
UNIVERSIDAD AUTÓNOMA DE MADRID
Escuela Politécnica Superior
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Abstract

In this master thesis we describe a new automatic aspect extraction algorithm by
incorporating relevance information to the dynamics of the Probabilistic Latent
Semantic Analysis. An utility-biased likelihood statistical framework is described
to formalize the incorporation of prior relevance information to the dynamics of
the algorithm intrinsically. Moreover, a general abstract algorithm is presented to
incorporate any arbitrary new feature variables to the analysis.

A tempering procedure is inferred for this general algorithm as an entropic regu-
larization of the utility-biased likelihood functional and a geometric interpretation of
the algorithm is described, showing the intrinsic changes in the information space of
the problem produced when different sources of prior utility estimations are provided
over the same data.

The general algorithm is applied to several information retrieval, recommenda-
tion and personalization tasks. Moreover, a set of post-processing aspect filters is
presented. Some characteristics of the aspect distributions such as sparsity or low
entropy are identified to enhance the overall diversity attained by the diversification
algorithm. Proposed filters assure that the final aspect space has those properties,
thus leading to better diversity levels.

An experimental setup over TREC web track 09-12 data shows that the algo-
rithm surpasses classic pLSA as an aspect extraction tool for the search diversifica-
tion.

Additional theoretical applications of the general procedure to information re-
trieval, recommendation and personalization tasks are given, leading to new relevance-
aware models incorporating several variables to the latent semantic analysis.

Finally the problem of optimizing the aspect space size for diversification is
addressed. Analytical formulas for the dependency of diversity metrics on the choice
of an automatically extracted aspect space are given under a simplified generative
model for the relation between system aspects and evaluation true aspects.

An experimental analysis of this dependence is performed over TREC web track
data using pLSA as aspect extraction algorithm.

ACM Computing Classification System.
H.3.3 [Search and Retrieval]: retrieval models, relevance feedback
I.2.7 [Natural Language Processing]: Language models.

Key words and phrases. Intent space, aspect extraction, information retrieval,
diversity, probabilistic latent semantic analysis.
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Chapter 1

Introduction

1.1 Motivation and problem definition

Nowadays, diversity enhancement has become a consolidated research area in both
information retrieval and recommendation systems. A great variety of theoretical
models and methodologies have arisen for describing, measuring and enhancing the
diversity of search engines, recommendation systems and any other retrieval appli-
cation.

Classic evaluation methodology for IR systems was focused on precision and
relevance. Providing the user reiterative results was not penalized as far as the du-
plicate information was relevant. Diversity represents a complementary perspective
for relevance, as it takes into account the variety of retrieved results – understood
as a low redundancy between different retrieved elements – as a valuable objective
for improving user access to information.

Some authors (Zhai et al., 2003) describe the transition from traditional infor-
mation retrieval models to novel and diversity problems as arising from a change
in perspective about relevance. The first ones consider an independent relevance
model, where document relevance is an inherent characteristic of documents, de-
pending only on the initial user needs. On the other hand, diversity framework
proposes that information and relevance must be considered globally, depending on
the whole document or item ranking presented to the user. For example, during
a browsing session, the marginal of the information contained in a document for
a certain user is conditioned on the amount of such information already provided
to the user through previous documents of the ranking. We usually refer to this
perspective as a conditional relevance model.

A fruitful approach for diversifying search results corresponds to representing
the ambiguity of queries and documents through an abstract aspect or facet space.
These spaces reflect all possible interpretations or subtasks underlying the particular
choice of the query provided to the system. Some of the most popular diversity
evaluating methodologies rely on the choice of a suitable aspect space or taxonomy
(Zhai et al. (2003), Clarke et al. (2008), Agrawal et al. (2009), Santos et al. (2010),
etc.). Moreover, once a set of suitable aspects has been fixed, there exist multiple
models and algorithms which are able to use the intent information to increase the
diversity of the results (Agrawal et al., 2009; Santos et al., 2010). For this reason,
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10 CHAPTER 1. INTRODUCTION

aspect extraction becomes one of the main subproblems when aiming to improve
the overall diversity of a system.

The present master thesis analyzes some of main strategies used in the litera-
ture to extract intent spaces which are suitable for diversification, focusing on the
probabilistic ones: topic models. We analyze the theoretical background of two of
the main model-driven methods for latent semantic analysis, Probabilistic Latent
Semantic Analysis (Hofmann, 1999a,b, 2001) and Latent Dirichlet Allocation (Blei
et al., 2003). An overview of the state of the art applications of these methods
for intent space approximation is performed and a theoretical comparison between
them is given.

The main research problem addressed in this work is to build automatic aspect
space extraction algorithms that optimize the characteristics of the resulting spaces
to make them suitable for diversification. In particular, we aim to incorporate
relevance information to the system, in order to build query-specific spaces that
capture the precise intent differences within each single considered query, therefore
leading to extracted spaces being more informative about the diverse structures of
the retrieved documents.

Finally, the general optimization problem of finding an optimal number of as-
pects for diversification will be approached. Some preliminary studies have been
done (Vargas et al., 2012b), but an explicit analytic dependence of diversity metrics
to the number of aspects of the extraction system is an open question.

1.2 Reserach goals

The main broad research objective of this master thesis is to develop new auto-
matic aspect extraction algorithms which enhance the performance of the common
diversification methods by creating more suitable and informative intent spaces.

The main particular research objectives leading to the main goal can be sum-
marized as follows:

• State of the art study and analysis on the main-frame strategies used for
treating the diversity problem in information retrieval, focused on the intent-
aware methodology. An overview of classic explicit and implicit methods for
aspect extraction will be described.

• Analysis of topic models theoretical framework, focusing on the structure and
dynamics of pLSA and LDA. Applications of topic models to information
retrieval tasks will be outlined and outstanding topic models usages as part of
aspect extraction algorithms will be described.

• Development of a new generalization of pLSA involving relevance information
from baseline ranking.

• Description of an abstract probabilistic framework that covers the previous
model, allowing the incorporation of relevance notions to the pLSA dynamics,
together with arbitrary new variable analysis. Proof of correctness, conver-
gence, tempering variants and a geometrical interpretation will be given.
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• Obtaining of instances of this generic algorithm to other information retrieval
and recommendation tasks.

• Development of further aspect space optimization strategies in the form of
aspect filters which guarantee some desirable properties of the final intent
space, such as sparsity or low entropy.

• Computation of exact analytic formulas for the dependence of the diversifica-
tion quality on the size of the aspect space.

1.3 Document structure

The rest of the document is structured in the following way. Chapters 2 and 3 corre-
spond to a state of the art analysis about information retrieval diversity and the use
of topic models to approximate user intents. Chapters 4 and 5 introduce our major
contributions, namely a relevance aware pLSA generalization in the context of a
general utility-biased statistical framework and some major aspect space optimiza-
tion methods, in the form of a general tempered variant for the proposed algorithm,
aspect filtering methods and an analytical study of aspect space size optimization.
Particularly

• Chapter 2 summarizes some of the most relevant state of the art techniques
for measuring and enhancing information retrieval diversity. The notion of in-
tent space is introduced and various aspect extraction algorithms are outlined.

• Chapter 3 explores the concept of topic models. First of all, the basic compu-
tational statistics tools needed to describe the theoretical framework of latent
models is described. Starting from these notions, two of the main probabilistic
algorithms used for latent semantic analysis ( pLSA and LDA) are described
and analyzed. Some of the main recent applications of these methods to di-
versity tasks are described.

• In Chapter 4 a new utility-biased expectation maximization algorithm is
proposed as a framework for incorporating new variables and relevance to the
pLSA dynamics. The Relevance aware Probabilistic Latent Semantic Analysis
(RapLSA) is proposed, and various applications of the described framework are
given, including search diversity, recommendation diversity, content based rec-
ommendation filtering and personalization. A tempering method is developed
for the general abstract algorithm and an information-geometric interpretation
of the framework is given. As an additional aspect space optimization, three
families of aspect filters are described to improve the suitability of the ex-
tracted space for diversification. Finally, the proposed theoretical algorithms
are tested in search and recommendation experiments.

• The optimization of the size of the aspect space for diversity enhancing is
addressed in chapter 5. A simplified generative model for the relationship
between extracted aspects and true evaluation subtopics is used to develop
explicit exact formulas for the dependency of diversity quality to the size of
the aspect space.
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• Chapter 6 exposes the conclusions of our work, remarks the obtained results
and contributions and describes future work research lines.



Chapter 2

Information Retrieval Diversity

In this chapter we will present an outline of some of the most common methodologies
for evaluating and enhancing diversity in information retrieval systems. Following
our main research objectives, we will focus on intent-oriented approaches and we
will overview some of the major classic aspect space extraction methods used in the
literature.

2.1 Diversity Metrics

We will cover some of the most common methods used in the literature to measure
the overall diversity of an information retrieval system. In order to simplify the no-
tation and the terminology, we will describe them in the context of search diversity,
but a recommendation counterpart can trivially be stated for each of them.

2.1.1 Subtopic Recall

One of the major changes in the point of view in information retrieval when focusing
on the diversity problem is the notion of relevance. Usually, traditional retrieval
systems work under the assumption of independent relevance, i.e., they assume that
the probability of a document of being relevant is independent to the relevance
of other documents in the ranking. Relevance of information is considered as an
inherent property involving only a certain isolated document and the user.

Nevertheless, in the diversity framework it becomes clear that the user perceives
the retrieved ranking as a whole common source of information, and that the abso-
lute relevance of a document must be put in the context of the rest of the information
contained in the rest of the retrieved documents. Zhai et al. (2003) distinguish the
notion of independent relevance and dependent relevance, using query subtopics as
quantized elementary information tokens that each document can cover.

Let us consider a topic Q with K subtopics Z1, . . . , ZK . Let D = (d1, . . . , dN ) be
a ranked list of documents. For each document di, let Z(di) be the set of subtopics
covered by document di.

S − recall@α(D) =
|
⋃α
i=1 Z(di)|
K

13
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This metric is problematic when trying to compare results from different topics,
as the difference in the subtopic size directly influences the metric value, indepen-
dently of he subtopic coverage distribution along the ranking. In order to account
for the intrinsic difficulty, they propose to “invert” the recall problem and search
for the minimum ranking for which a certain recall is attained. In particular, for
0 ≤ r ≤ 1, let minRank(D, r) be the minimal rank α at which S−recall@α(D) ≥ r,
i.e.

minRank(D, r) = min{α|S − recall@α(D) ≥ r}

Subtopic precision (S-precision) at recall r is defined to be the collection-based
normalization of the inverse of minRank, i.e.,

S − precision@r =
minRank(Dopt, r)

minRank(D, r)

where Dopt is the optimal rank, i.e., the permutation of rank D that attains the
minimum minRank(·, r).

2.1.2 Intent-Aware metrics

Classic information retrieval metrics, like precision, nDCG or ERR, measure the
information provided by a document and its relevance as a whole, not taking into
account the possibility of a document being really relevant for certain aspect of
the query and not for the other. The latter is the usual scenario in ambiguous or
diverse queries, where the sets of documents covering each of the sub-topics may
be disjoint. Take, for example, the query “Java”. Two main facets of the query
are easily tracked, “Java” as a programming language and “Java” as an island. It
is probable that retrieved documents belong to exactly one of those classes. Now
let us suppose that we try to evaluate the relevance of an “island” document. In
general, programing results are more likely than the island ones. Therefore global
relevance of an “island” document would be low, while its relevance restricted to
the “island” facet may be really high.

If we want to measure the diversity of a system showing results of both kinds of
documents we can’t use absolute notions of relevance alone, as that would lead to
promoting non-diverse rankings where the predominant facet has been taken as the
unique one. As a solution, Agrawal et al. (2009) propose the use of Intent-Aware
variants of the classic common metrics.

Let us suppose that a certain taxonomy Z for the retrieved documents and the
query itself is available. We will suppose that documents and queries can belong to
more than one category and, in particular, we will assume that a distribution p(z|q)
measuring the probability of a given ambiguous query belonging to given categories.
Moreover, let us assume that we have category-dependent relevance judgments for
each ranked document, i.e., let us suppose that apart from the ad-hoc relevance
information r(d), we can determine the relevance of each document d restricted to
class z, r(d|z).

Intent-Aware metrics are obtained from classic metrics by taking the average of
the metric when restricted to a certain aspect, pondered by the probability of the
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query belonging to that aspect, i.e., given the metric M(D, q), the corresponding
IA-metric would be

M − IA(D, q) =
∑
z∈Z

p(z|q)M(D, q|z)

where loosely, M(D, q|z) corresponds to evaluating the metric M using conditioned
relevance information r(d|z) instead of the ad-hoc one r(d). The exact meaning of
this change is particular to each metric, but all the common ones share the same
basic idea. As an example, we present intent aware versions for mean reciprocal
rank (MRR) and average precision (MAP).

Classic MRR corresponds to the average among queries of the inverse of the first
relevant element. Let ri be the position of the first relevant document (for a certain
sense of relevance binarization of r). Then

RR(D, q) =
1

r1

In the intent-aware scenario, taking ri(z) to be the position of the i-th relevant
document for class z yields

RR− IA(D, q) = sumz∈Z
1

r1(z)

On the other hand, the average precision of a ranked resultset is

AP =

∑N
j=1 r(j)

∑j
i=1 r(i)
j∑N

j=1 r(j)

The analogous intent-aware version results

AP − IA =
∑
z∈Z

∑N
j=1 r(j|z)

∑j
i=1 r(i|z)
j∑N

j=1 r(j|z)

As an example for a cascade browsing model metric, we will give the explicit
equation for the intent aware expected reciprocal rank. Let us suppose now that
0 ≤ r(i|z) ≤ 1 denotes the normalized relevance of document, interpreted as the
probability of the document in position i being relevant for aspect z.

ERR− IA(D, q) =
∑
z∈Z

p(z|q)
N∑
j=1

1

j
r(i|z)

j−1∏
i=1

(1− r(i|z)) (2.1.1)

Finally, we will consider the intent-aware version of the Normalized Discount
Cumulative Gain (nDCG). Discount Cumulative Gain is computed as the expected
cumulative utility obtained by a user by browsing through the ranking. Explicitly,

DCG(D, q) =
N∑
j=1

r(dj)

log2(j + 1)
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We can give the previous formula two interpretations up to a normalization constant.
Either we estimate the probability of users reaching position j as proportional to

1
log2(j+1) and we model the utility of each of the visited documents as proportional

to their relevance r(d) or we assume that the probability that the user sees a certain
document dj is proportional to its independent relevance r(dj) and the marginal
utility of visiting a document in the j-th position is proportional to 1

log2(j+1) . It
becomes clear that DCG is not a normalized metric. Instead, a model-normalized
version is used, denoted as Normalized DCG (nDCG).

nDCG(D, q) =
DCG(D, q)

maxR∈σ(D)DCG(R, q)

where σ(D) denotes the set re-rankings (permutations) of D. The intractability of
an exact computation of the normalization constant results in a greedy algorithm
being used to approximate the optimal ranking.

Following the general methodology, Agrawal et al. (2009) propose the following
intent-aware version of nDCG. For each z ∈ Z, we consider the aspect-conditioned
DCG for the ranking as the value of the usual DCG metric computed using the
conditioned relevance information r(d|z) instead of r(d), i.e.

DCG(R, q|z) =

N∑
j=1

r(dj |z)
log2(j + 1)

Then, nDCG− IA is described as

nDCG− IA =
∑
z∈Z

p(z|q) DCG(D, q|z)
maxR∈σ(D)DCG(R, q|z)

where each optimal re-ranking for each aspect is computed using a greedy algorithm.
We notice that the previous metric would not be normalized even if the exact optimal
rankings were used, as the existence of a common optimal rank for all subtopics
would be impossible in general.

2.1.3 α-nDCG

α-nDCG corresponds to a novelty and diversity measuring analog of nDCG different
from IA-nDCG proposed by Clarke et al. (2008) in the framework of a methodol-
ogy for treating explicit subtopic relevance judgments for evaluating novelty and
diversity.

Let Z denote a set of subtopics or “information nuggets” representing the diverse
facets of a query. We will think both of the user and the documents as sets of those
nuggets. Documents provide information about certain subtopics and users seek for
a certain set of information tokens through the query. We will write p(z ∈ d) and
p(z ∈ u) to denote the probability of aspect z belonging to a document or a user
respectively. On the other hand, let us denote by p(R|u, d) the probability of user
u finding document d relevant. We estimate that the probability of a document
being relevant to the user corresponds to the probability of a certain subtopic z
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being present both in the document and the user. Assuming that all distributions
p(z ∈ d) and p(z ∈ u) are independent to each other, we obtain

p(R|u, d) = 1−
∏
z∈Z

(1− p(z ∈ d)p(z ∈ u))

We estimate the probability of a certain subtopic belonging to a document using
explicit relevance judgments. Let us suppose that for every d ∈ D and every z ∈ Z, a
human assessor determines whether the topic is covered by the document or not. Let
J(d, z) = 1 if the assessor thinks that the aspect is in the document and J(d, z) = 0
otherwise. We will estimate the probability p(z ∈ d) as

p(z ∈ d) =

{
α if J(d, z) = 1
0 if J(d, z) = 0

where, 0 < α ≤ 1 is a parameter modeling possible human errors. On the other
hand, as we don’t assume any additional knowledge of user preferences, we will take
distributions p(z ∈ u) to be independent and identically distributed, taking

p(z ∈ u) = γ

for some γ ∈ (0, 1].
Then the following browsing model is assumed. The probability of a user u

reaching document j in the ranking is the probability of user u finding document dj
still relevant after seeing documents d1 to dj−1, i.e., it corresponds to the probability
of existence of an aspect z ∈ u covered by dj but not covered by any of d1, . . . , dj−1.
We get

p(z ∈ u|z 6∈ d1, . . . , z 6∈ dj−1) = p(z ∈ u)

j−1∏
i=1

p(z 6∈ di)

Letting rj(z) =
∑j

i=1 J(di, z), we get

p(z ∈ u|z 6∈ d1, . . . , z 6∈ dj−1) = γ(1− α)rj−1(z)

Therefore, we estimate

p(Rj |u, d1, . . . , dj−1) = 1−
∏
z∈Z

(
1− αJ(dj , z)γ(1− α)rj−1(z)

)
≈ γα

∑
z∈Z

J(dj , z)(1− α)rj−1(z)

Using 1
log2(j+1) as the marginal utility for the information in position j, we obtain

α−DCG(D, q) =
N∑
j=1

∑
z∈Z J(dj , z)(1− α)rj−1(z)

log2(j + 1)

Alike nDCG, the previous quantity is not normalized, so a model-driven normaliza-
tion is used

α− nDCG(D, q) =
α−DCG(D, q)

maxR∈σ(D) α−DCG(R, q)

where, as usual, the optimal ranking is computed using a greedy algorithm.
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2.2 Diversification Algorithms

Once the diversity problem has been stated and a ground evaluation methodology
has been described, the next step is to describe algorithms improving the overall
diversity of the system. In this section we will explore one family of such algorithms,
the so called re-ranking methods.

These kind of algorithms take an initial undiversified ranking R and information
about the subtopic structure of the retrieved documents and reposition the same
retrieved elements to build a new diversified list S with maximum diversity. The
explicit notion of the overall diversity of the resulting list S vary depending on the
algorithm model and the used parameters, and it will be described precisely in each
case.

2.2.1 IA-Select

In the same article introducing intent aware metrics, Agrawal et al. (2009) propose
a diversification algorithm that uses prior subtopic-wise relevance of the retrieved
documents to re-rank the baseline result maximizing the expected subtopic coverage.

As with IA-metrics, let us suppose that a given taxonomy Z of documents and
queries is provided. Moreover, let us assume that we can compute an abstract
relevance functional V (d|q, z) ∈ [0, 1] measuring the quality value of a document
d for query q given the class z. A probabilistic interpretation of the functional is
possible, taking it as the likelihood of the document d satisfying the user intent z
for the query q. Nevertheless, only the following independence assumption will be
made as for the choice of V (d|q, z). If two documents d1 and d2 are retrieved for
the same query q and belong to the same aspect z, the probability of none of them
being relevant to the user for the intent z is

(1− V (di|q, z))(1− V (dj |q, z)) (2.2.1)

The diversification problem is then described as finding the re-rank S maximizing
the probability of the average user finding at least one useful result within the top
N results. In particular, given the original ranking R, the taxonomy Z and the
quality functional V , IA-select outputs the list S ⊆ R of M elements maximizing

p(S|q) =
∑
z∈Z

p(z|q)

(
1−

∏
d∈S

(1− V (d|q, z))

)
(2.2.2)

The previous equation can be easily derived from the abstract problem using
the probabilistic interpretation of functional V . Given an user intent z ∈ Z, the
probability of the user finding at least one relevant document within the set S
corresponds to one minus the probability of all documents not being relevant for
query q and aspect z. Independence condition (2.2.1), implies that the latter is
computed as the product of 1 − V (d|q, z) for all d ∈ S. Therefore, the probability
of the user finding useful information about a certain topic z is given by

p(S|q, z) = 1−
∏
d∈S

(1− V (d|q, z))
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Taking the expected value over all possible query intentions Z leads to (2.2.2).
The global optimization problem over S described by IA-Select is intractable (NP-
complete). Agrawal et Al. propose the following greedy approximation. Let
U(z|q,¬S) denote the probability of query q belonging to class z ∈ Z given that
none of the documents d ∈ S satisfy the user for aspect z. This corresponds to

U(z|q,¬S) = p(z|q)
∏
d∈S

(1− V (d|q, z))

The following greedy approximation is then computed

Algorithm 2.1 IA-Select algorithm

1: procedure IA-Select(q, R, Z, M , V (d|q, z), p(z|q))
2: S = ∅
3: for z ∈ Zq do
4: U(z|q, S) = p(c|q)
5: end for
6: while |S| < M do
7: Select document d∗ as

d∗ = argmax
d∈R

(∑
z∈Z

U(z|q, S)V (d|q, z)

)

8: S = S ∪ {d∗}
9: for z ∈ Zd∗ do

10: U(z|q, S) = (1− V (d∗|q, z))U(z|q, S\{d∗}
11: end for
12: R = R\{d∗}
13: end while
14: return S
15: end procedure

where Zq and Zd correspond respectively to the subsets of classes which queries
and documents belong to.

2.2.2 xQuAD

Santos et al. (2010) describe the xQuAD (eXplicit Query Aspect Diversification)
algorithm following global optimization problem: “given an initial ranking R for
query q, find the re-ranking S that has the maximum coverage and the minimum
redundancy with respect to the different aspects underlying q”.

The objective is engaged by a greedy approximation. The diversified ranking S
is successively built as taking the document d 6∈ S maximizing the mixture model

(1− λ)p(d|q) + λp (d,¬S|q)

where p(d|q) is a measure of ground relevance, corresponding to the likelihood of
document d being observed by the user as relevant for query q, and p (d,¬S|q) is an
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estimation of the likelihood of user finding document d relevant but not any other
document already in S, which corresponds to the diversity estimation.

Algorithm 2.2 xQuAD algorithm

1: procedure xQuAD(q, R, λ, M)
2: S = ∅
3: while |S| < M do
4: Select document d∗ as

d∗ = argmax
d∈R

((1− λ)p(d|q) + λp (d|¬S, q))

5: R = R\{d∗}
6: S = S ∪ {d∗}
7: end while
8: return S
9: end procedure

Given a set of sub-queries {q1, . . . , qK} for query Q, they estimate the probability
p(d,¬S|q) by estimating the covering/redundancy over each sub-query.

p (d,¬S|q) =

K∑
i=1

p(qi|q)p (d,¬S|qi)

Santos et Al. use sub-queries for estimating user intentions with a similar sense
than Zhai or Agrawall subtopics. As an approximation for sub-queries they use
either query reformulations, document clusters or the usual query expansion tech-
niques like Rocchio method. Document relevance for each sub-query is measured as
a distribution p(d|qi) and the diversity term conditioned by the sub-query is given
by

p (d,¬S|qi) = p(d|qi)p (¬S|qi)

where p(¬S|qi) denotes the probability of document set S not containing any relevant
document for sub-query qi. The latter is estimated assuming that relevance of a
document dj ∈ S to a given sub-query qi is independent of the relevance of any
other document dl ∈ S to qi. Therefore

p (¬S|qi) = p
(
(¬d1) ∧ . . . ∧ (¬d|S|)

∣∣ qi) =

|S|∏
i=1

p (¬dj |qi) =

|S|∏
j=1

(1− p(dj |qi))

Substituting in the general equation yields

p (d,¬S|q) = (1− λ)p(d|q) + λ

K∑
i=1

p(qi|q)p(d|qi)
|S|∏
j=1

(1− p(dj |qi))

If we compare its global objective with the one from IA-Select, we observe that
IA-Select is just focused on aspect coverage and has the redundancy avoiding as
a byproduct of demoting documents which have the already selected aspects. In
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contrast, xQuAD aims to explicitly avoid redundancy, even after coverage has been
achieved. In terms of re-ranking, this difference gets reflected in the way IA-Select
and xQuAD behave after the documents covering the totality of the considered
subtopics have been placed. In this situation, IA-Select essentially stops diversifying
and retains the relative position of the subsequent elements. On the other hand,
xQuAD continues to reorder the remaining documents, selecting those being less
redundant with respect to the already selected ones.

Moreover, xQuAD λ parameter allows us to balance the trade-off between rele-
vance and pure diversity. For λ = 0, the diversity score is neglected and documents
are ranked from their baseline relevance probabilities p(d|q). On the other hand,
for λ = 1 yields a pure diversification, i which document relevance is not considered
and final positions are only dependent on each document aspect distribution.

2.3 Aspect extraction

All the previously described strategies can be considered to be examples of explicit
or intent-aware diversity approaches. Both metrics and algorithms are based on a
choice of a certain classification space Z, capturing the different intentions that a
user may had when posing the query q, i.e., the possible latent information needs
underlying the literal expression of the query.

In the literature, the terms intent, aspect, subtopic or facet are usually used
in the context if diversity tasks to reflect the different interpretations or intentions
that a single explicit information token may have. They arise as a conceptual tool
to fill the information gap between what a user really needs and how those needs
are translated to a certain expression within the system interface.

For example, in search problems, a single query may be subject to different
interpretations or reflect many retrieval subtasks that the user intends to do fulfill
by that single query. In recommendation, where user profile traces acts as an implicit
query, a single user may have different separate item tastes. For instance, a single
user profile in a movie recommendation system may reflect completely different
behavior when consuming films from different genres.

In general, we will denote intent space to the choice of any space or source of
information whose elements represent each of the possible aspects of the information
tokens treated by the system. The way of building this kind of abstract spaces is
not obvious, as they attempt to capture unexpressed user needs. Several approaches
have been taken in the literature. We will give an overview of some of the most
relevant ones dividing them in two groups: methodologies relying on the use of
external sources of information and approaches building implicit aspect spaces from
the already known data. For additional information, an extensive comparison of
the different diversity strategies and aspect building methodologies can be found in
Santos et al. (2012).

2.3.1 External data approach

Explicit aspect spaces can be found if additional information is available about
users behavior. In order to build proper aspect spaces it is not necessary to know
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the explicit profile of each single user. It suffices to obtain a way of estimating the
“possible” interest that the set of considered users may have.

The most simple example of an external source for intent information is given by
TREC (Text REtrieval Conference) diversity task qrels (Clarke et al., 2010). Along
years 2009 to 2012, an explicit sub-query structure was provided for an overall set
of 200 queries and a set of subtopic-specific relevance judgments was provided.

Agrawal et al. (2009) use the Open Directory Project (ODP) to classify docu-
ments. ODP (www.dmoz.org) is a collaborative project for building a human-edited
directory of the Web. Nowadays, more than 4 million sites have been classified in
approximately one million stratified categories by a set of more than 90.000 editors.
Agrawal et Al. use the first 15 top categories of the taxonomy to classify the content.
Document relevance estimations and intents for queries are then obtained using the
Amazon Mechanical Truk platform (www.mturk.com).

Santos et al. (2010), Radlinski and Dumais (2006) and Capannini et al. (2011) use
query reformulations as a subtopic approximation. Sub-queries are found either by
the use of query logs, analyzing patterns of query reformulations and extrapolating
them to new observed data, or by traditional query expansion methods like Roccio.
Santos et al. (2010) indicate additional sources of sub-query generations, such as
the use of document clusters.

Additionally from ODP, Rafiei et al. (2010) use Wikipedia disambiguation pages
to build an explicit intent space for a search experiment. They selected 50 of such
pages from Wikipedia and used the ambiguous titles as queries, which were proposed
to the system being evaluated. The results were led to human evaluators who decided
which of the Wikipedia subtopics was the most suitable for each of the pages and
they evaluated the system based on the global S-recall@α. A similar approach for
subtopic generation was used by Welch et al. (2011).

2.3.2 Implicit aspect space building

Automatic aspect extraction algorithms represent a great challenge in diversity en-
hancement and evaluation. These algorithms aim to build a set of abstract aspects
approximating user intents implicitly from the observed data. In contrast to the pre-
viously described methods, no additional sources of information are used to express
user intentions.

Given a vectorial representation of data, matrix factorization algorithms have
been used in the literature as a mean to compress the information into a low-
dimensional summarizing space. Deerwester et al. (1990) propose the use of this
technique in the context of text indexing to build a vector space that approxi-
mates latent semantic information underlying the literal content of documents. The
method, called indexing by Latent Semantic Analysis, leads to spaces at the seman-
tic level of information and, therefore, are candidates for building intent spaces. This
procedure has been used in recommender systems diversity (Vargas et al., 2011) to
build implicit user intent spaces suitable for diversification.

Finally, probabilistic topic models have been recently used to build aspect spaces.
The use of methods like pLSA (Hofmann, 1999b,a, 2001) or LDA (Blei et al., 2003)
provide useful tools to approximate the latent semantic ideas underlying a certain
query or document term expression. Next chapter will be specifically devoted to
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studying this kind of algorithms in depth.
Moreover, our main research objectives, exposed in chapters 4 and 5, focus

on developing and optimizing new variants of these model-driven implicit aspect
extraction algorithms.



24 CHAPTER 2. INFORMATION RETRIEVAL DIVERSITY



Chapter 3

Topic Models

As we have seen in the last chapter, intent spaces are a powerful tool that allows
us to represent and approximate the different real user needs of information that lie
behind the expression of those needs provided to the system.

Nevertheless, whereas the abstract concepts of “aspect” or “intent space” provide
a great theoretical contraption for building intent aware systems and enhancing the
diversity of a search or recommendation engine, there exist a clear practical problem
when it comes to build explicit intent spaces if a concrete set of features is not
provided.

In the last part of the chapter we covered some methods used in the literature for
automatic aspect extraction. Although some of the methods have been proved to be
really effective in terms of the final diversity of the system, none of them is model
driven. As a consequence, the resulting intent spaces can’t be directly incorporated
to the system model. Instead, at some point an heuristic approach must be made
in most of the cases.

Probabilistic approaches have been proved to be among the most effective ones
in most information retrieval tasks and have become the dominant paradigm. When
describing a retrieval methodology, the ideal situation would be to prove that, given
some fixed assumed hypothesis about the problem, a retrieval algorithm based on a
retrieval model would be the most effective one among all approaches arising from
the same hypothesis (Croft et al., 2010). While this kind of optimality proofs are
usually intractable in the considered tasks, due to the complexity of formalizing hu-
man behavior, probabilistic methods provide a theoretical framework for controlling
the inherent uncertainty of the problem.

In the context of language processing, the term “topic model” stands for a statis-
tical latent variable language model describing a generative framework for abstract
latent semantic topics that occur in a collection of documents (Blei, 2012). Topic
models provide abstract low-dimensional spaces for text representation, such that
documents are represented in “orthogonal” and independent semantic dimensions
(Zhai, 2009). The low dimensionality and the orthogonality of the representations
imply two desirable characteristics for semantic analysis:

• Similar words having a common meaning tend to be summarized in single
abstract token

25
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• A single word can be represented as a mixture of several topics, representing
possible context depending meanings

While the first property is mainly desirable for text indexing systems, the second
one allows us to retrieve semantic intent from texts an documents. This will allow
us to use topic models to build intent spaces which can be used to measure and
enhance the diversity of a set of retrieved documents.

In this chapter we will describe probabilistic methods to automatically build
such intent spaces from a document corpus. In contrast to the previously described
algorithms, these model topic techniques have a strong statistical theoretical basis.
First of all, we will review some basic statistics notions on latent variable models,
maximum likelihood estimators and some optimization techniques needed to solve
the kind of parameter estimation problems that we will encounter later on. In
particular, we will focus on the Expectation-Maximization (EM) algorithm and
some of its variants. Then we will present two important model driven EM-based
aspect extraction algorithms, Probabilistic Latent Semantic Analysis (pLSA) and
Latent Dirichlet Allocation (LDA). Both algorithms aim to surpass the lexical level
of the documents language and extract the latent semantics behind it, building a
space of latent semantic classes in the process. We will explore how these spaces are
built and their application to diversity problems.

3.1 Previous concepts on maximum-likelihood estima-
tors and convex optimization algorithms

Before introducing topic models themselves and the corresponding topic extractions
algorithms, we need to present some of the main mathematical tools needed to
develop them.

3.1.1 Latent Variables, parametric models and Maximum Likeli-
hood estimators

Missing data arise in many applications of statistical analysis. Given a probability
model, we can split the random variables between the set of observed and unob-
served variables. In the literature, the term latent variable is usually reserved for
unobserved variables that, even if they are not directly measured, can be inferred
from the observed data.

We denote by latent variable models those in which the observed variables are
modeled as completely defined and independent given a set of latent variables.

Thus, in a latent variable model we can distinguish between what we call the
incomplete data model, or observed data model, that corresponds to the part of the
model and the samples corresponding to the observed variables and the complete
data model, which also involves the unknown value of the latent variables.

For example, quality of life, understood as the general well-being of individuals
belonging to a certain social group, can be thought as a latent variable. While
it can be estimated using quantitative measures like Human Development Index,
quality of life is usually considered to be unmeasurable. Instead, evidences of high
quality of life are observed from some related random variables. Examples of these
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dependent include the proper Human Development Index, Social Progress Index, life
expectancy, per-capita Gross domestic product, etc. An estimation of the overall
quality of life can obtained as a combination of these observed variables.

Latent variable models usually depend on a set of parameters modeling the
relation between the observed and unobserved variables, such as the ones defining
the conditional distribution of the observed variables given the unobserved ones or
the priori distribution of the latent variables. In this case, we say that the model is
“parametric”. Formally, a parametric model is a family of distributions modeling
the complete data parametrized by a set of (usually real) parameters.

Both latent variables and parameters represent unknown information in the
model. Nevertheless, they are not the same kind of statistical object. Latent vari-
ables are actual random variables, with its associated probability space of which we
don’t have (or we can’t have) any sample. On the other hand, parameters are fixed
(unknown) constants parametrizing the model.

As an example of parametric model, suppose that we toss a charged coin. The
number of heads and tails after a certain number N of tosses can be modeled as
a random variable which clearly depends on how much the coin was charged. As
different tosses are independent we can just model the hole experiment as different
samples from the following graphical model

Figure 3.1: Graphical model for charged coin toss

P

T N

Where variables Ti stand for the result of the i-th toss of the coin. And variable
P is the parameter representing the charge of the coin, in therms of the probability
of getting heads. The complete data model is fully described by the graphical model
and the conditional distribution

p(T = “heads”|P = p) = p

Given a parametric model like 3.1, we would like to infer some information about
the parameters given the observed data. In particular, we aim to find the values of
the parameters that maximize the probability of observing the given data. Those
values are called the maximum-likelihood estimators for the parameters.

More precisely, suppose that we have a set X of observed variables modeled by
a vector Θ of parameters. Let x1, . . . , xn be the samples of the variables in X that
form the incomplete data.

Definition 3.1.1. We define the likelihood of the incomplete data given a value
Θ = θ of the parameters to be the value of the functional

L(θ) := p(X = x1, · · · , X = xn|Θ = θ)
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Usually, different samples from the same model are assumed to be independent.
In that case, the likelihood is given by

L(θ) =
N∏
i=1

p(X = xi|Θ = θ)

This product is not computationally well-behaved, so we will usually take the loga-
rithm of this functional as a measure of the likelihood of the data

log(L(θ)) =

N∑
i=1

log(p(X = xi|Θ = θ)) (3.1.1)

We call this functional the log-likelihood of the data.

Definition 3.1.2. The maximum-likelihood estimator (MLE) for the parameters Θ
is given by

MLE(Θ) = argmax
θ

(L(θ))

As the logarithm is strictly increasing, the MLE could be equivalently defined
in terms of the log-likelihood.

In the coin toss example, we could compute the MLE for the charge of the coin.
Suppose that we observe an list of results t1, . . . , tN . For each i = 1, . . . , N , we know
that

P (T = ti|P = p) =

{
p ti = “heads”
1− p ti = “tails’

Thus, we have that

log(L(p)) =
N∑
i=1

p(T = ti|P = p) = (#heads) log(p) + (#tails) log(1− p)

In order to obtain the MLE, we shall just compute the derivative of the functional
and equal it to zero. Thus

0 =
∂ log(L(p))

∂p
=

#heads

p
− #tails

1− p
Solving for p we obtain the already expected result

p =
#heads

#heads+ #tails
=

#heads

N

Whereas this method seems easy to apply and clearly provides a way to uniquely
define the MLE for the data, the last step may not be as straightforward as the one
shown in the example. Depending on the form of the conditional distributions and
the structure of the model, the resulting equations may lead to a strongly nonlinear
system of equations with no explicit analytical solution. In this (rather typical)
scenario, some optimization theory is needed in conjunction with the probability
techniques in order to find the desired MLE.
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3.1.2 Majorize-Minimization algorithm

The majorize-minimization algorithm is an optimization algorithm that allows us to
obtain local minima of a convex function. It was developed by Ortega and Rhein-
boldt (1970) in the context of line search methods and since then it has been applied
to multiple problems, such as multidimensional scaling (De Leeuw and Heiser, 1977),
robust regression (Huber et al., 1981; Huber, 2004), quadratic lower bound princi-
ple (Böhning and Lindsay, 1988), medical imaging (De Pierro, 1995; Lange and
Fessler, 1995), variable selection (Hunter and Li, 2005), discriminant analysis (Wu
and Lange, 2010) and others (Hunter et al., 2000; Hunter and Lange, 2002; Sabati
and Lange, 2002; Hunter et al., 2004).

Let f : Rn → R be a convex function, i.e., such that for each x, y ∈ Rn and every
t ∈ (0, 1), we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

Definition 3.1.3. A function g : Rn × Rn → R is said to majorize the function f
at y ∈ Rn if

f(y) = g(y, y) (3.1.2)

f(x) ≤ g(x, y) for all x ∈ Rn (3.1.3)

Dually, g is said to minorize f at y if −g majorizes −f at y.

The algorithm proceeds as follows.

Algorithm 3.1 Majorize-Minimization algorithm

1: procedure MM-algorithm(f)
2: Start with a random point x0 ∈ Rn
3: for each n do
4: Select a function gn that majorizes f at xn
5: Select xn+1 as

xn+1 = argmin
x∈Rn

(gn(x, xn))

6: end for
7: The algorithm stops either after a maximum number of iterations or when
‖xn+1 − xn‖ is less than a certain threshold

8: end procedure

A dual version of this algorithm can be built in order to maximize f , just by
applying the previous algorithm to −f . In this situation, the algorithm is called
minorize-maximization algorith, because at each step instead of picking gn that
majorizes f , we pick gn that minorizes f at xn and choose xn+1 to be the arg-max of
gn instead of its minimum. Clearly, in order to apply this version, we usually ask for
f to be concave instead of convex. In the literature, both the minorize-maximization
and the majorize-minimization algorithms are usually denoted by MM-algorithm,
and it is usually clear from the context which version are we applying.

Even without any assumption on f or g, the following lemma proves that the
algorithm monotonically decreases the value of f .



30 CHAPTER 3. TOPIC MODELS

Lemma 3.1.4. Let {xn} be a set of points selected by Algorithm 3.1 for the function
f . Then, for each n,

f(xn+1) ≤ f(xn)

Proof. For each n, gn majorizes f at xn, so by equation (3.1.2),

gn(xn, xn) = f(xn)

On the other hand, (3.1.3) implies that

f(xn+1) ≤ gn(xn+1, xn)

Finally, by definition of xn+1 as the minimum of gn(·, xn), we have

gn(xn+1, xn) ≤ gn(xn, xn)

It is worth noting that in this form, the algorithm is more like a meta-algorithm.
For a generic f there is no guaranty of the existence of non-trivial minorizing func-
tions gn and even if they exist, the convergence to a local minimum of f is not
guaranteed unless we suppose some additional hypothesis about f and g.

Also note that for lemma 3.1.4 to work we don’t need xn+1 to be the minimum of
gn(·, xn), but we only need xn+1 to be a point such that gn(xn+1, xn) ≤ gn(xn, xn).
This leads us to a generalize version of the algorithm, called GMM algorithm in
which in each step, we just take xn+1 to be any point that decreases the value of
gn(·, xn). This may be useful in case that the minimum of the majorizing function is
intractable, but approximable with certain precision. In this case, depending on the
structure of both f and g, on most cases, the convergence properties of the GMM
algorithm can be proved to be the same as that of the MM algorithm (Neal and
Hinton, 1998).

(Dempster et al., 1977) proved that if f is convex, the algorithm converges to a
local minimum.

Now we will review some basic and useful means of building the majorizing
functions given that f has a certain form, for further reference, see Hunter et al.
(2004) and Zhou and Lange (2010).

Suppose that

f(x1, . . . , xn) = φ

(
n∑
i=1

xi

)
Where φ : R→ R is a convex function (and, therefore, f is convex). Then, applying
Jensen inequality to function φ proves that for every positive y1, . . . , yn

φ

(
n∑
i=1

xi

)
≤

n∑
i=1

yi∑n
j=1 yj

φ

(∑n
j=1 yj

yi
xi

)
(3.1.4)

Taking g(x, y) to be the right hand side of the inequality, we have that for every
x ∈ Rn, f(x) ≤ g(x, y) and clearly
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g(y, y) =
n∑
i=1

yi∑n
j=1 yj

φ

(∑n
j=1 yj

yi
yi

)
=

n∑
i=1

yi∑n
j=1 yj

φ

 n∑
j=1

yj

 = f(y)

Thus, g majorizes f at every point y = (y1, . . . , yn) where yi > 0 for i = 1, . . . , n.
A second kind of majorization can be made in case f is concave. In this case,

for every y ∈ Rn, the supporting hyperplane of f at y lies over the graph of f and,
by definition, it’s tangent at y, so it gives us a majorizing function

g(x, y) = f(y) +∇f(y) · (x− y)

If f is twice differentiable and has bounded curvature, Böhning and Lindsay
(1988) proved that we can further improve the previous bound by considering the
second order Taylor polynomial of f at a point y and majorizing its quadratic term.
Explicitly, let Hf be the Hessian of f . If if we can find a possitive definite matrix
M such that M −Hf (x) is nonnegative definite for all x, then

f(x) ≤ g(x, y) := f(y) +∇f(y) · (x− y) +
1

2
(x− y)tM(x− y)

And clearly, f(y) = g(y, y), so g(x, y) majorizes f at every y ∈ Rn. Finally, suppose
that f(x) =

∑n
i=1 fi(x) and that for each i = 1, . . . , n we have function gi majorizing

fi at a fixed common point y. Then it is straightforward to see that g(x, t) =∑n
i=1 gi(x, t) majorizes f(x) at y, because as a consequence of gi majorizing f at y

f(y) =
n∑
i=1

fi(y) =
n∑
i=1

gi(y, y) = g(y, y)

f(x) =

n∑
i=1

fi(x) ≤
n∑
i=1

gi(x, y) = g(x, y) for all x

3.1.3 Expectation-Maximization algorithm

Suppose that we have a latent variable model with observed variables X with sam-
ples {x1, . . . , xn} and unobserved variables Z parametrized by a vector of unknown
parameters θ. In order to simplify the computations, in this section we will assume
that considered random variables are categorical, but a continuous version can be
equivalently derived (Dempster et al., 1977).

The objective of the Expectation-Maximization algorithm (from now on, EM
algorithm) is to obtain a maximum likelihood estimator for the parameters θ given
the observed data X. Marginalizing, the likelihood of the observed data is given by

log(L(θ)) =

n∑
i=1

log(p(xi|θ)) =

n∑
i=1

log

(∑
z∈Z

p(xi, z|θ)

)
Trying to compute directly the minimum of the previous expression with respect

to θ generally leads to heavily nonlinear equations on the parameters, due to the
functional involving the logarithm of a sum of probabilities depending on θ.
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The EM algorithm uses the MM algorithm to solve this problem. In order
to build the minorizing function, we will use a version of equation (3.1.4). As
log(L(θ)) is a sum of functionals for every sample xi of the observed variables, it’s
only necessarily to build a minorizing function for every sample xi and sum them.
Then, fixed a parameter vector θt

fi(θ) = log

(∑
z∈Z

p(xi, z|θ)

)
= log

(∑
z∈Z

p(z|xi, θt)
p(xi, z|θ)
p(z|xi, θt)

)
The logarithm is concave. As p(z|xi, θt) are supposed to be positive (otherwise,

restrict the sum) and
∑

z∈Z p(z|xi, θt) = 1, Jensen inequality implies that for any
parameter vector θ

fi(θ) ≥
∑
z∈Z

p(z|xi, θt) log

(
p(xi, z|θ)
p(z|xi, θt)

)
=
∑
z∈Z

p(z|xi, θt) log(p(xi, z|θ))−

∑
z∈Z

p(z|xi, θt) log(p(z|xi, θt)) =: gi(θ, θt)

with equality when p(z|xi, θt) = p(z|xi, θ). In particular, fi(θt) = gi(θt, θt), so gi
minorizes the desired functional fi.

The previous form of functional gi can be expressed in a more representative
way in terms of the expected value of the complete data likelihood and a certain
entropy

gi(θ, θt) = EZ|xi,θt [log(p(xi, Z|θ))] +H(p(z|xi, θt)) (3.1.5)

Following the MM-algorithm, we can find local maxima of the complete func-
tional by successively maximizing g(θ, θt) =

∑n
i=1 gi(θ, θt). As each entropy term is

constant, maximizing g with respect to θ is equivalent to maximizing the functional

Q(θ, θt) =
n∑
i=1

EZ|xi,θt [log(p(xi, Z|θ))]

Thus, the MM-algorithm has the following explicit form

Algorithm 3.2 Expectation-Maximization algorithm

1: procedure EM-algorithm(p(X,Z|θ),{xi})
2: Start with a random vector parameter θ0 ∈ Rk
3: for each t do
4: Step E: Compute Q(θ, θt) =

∑n
i=1 EZ|xi,θt [log(p(xi, Z|θ))]

5: Step M: Select θt+1 as

θt+1 = argmax
θ∈Rk

(Q(θ, θt))

6: end for
7: The algorithm stops either after a maximum number of iterations or when
‖θt+1 − θt‖ is less than a certain threshold

8: end procedure
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Thus, the algorithm alternates between two steps, an “expectation” or “E” step
in which the conditional expectation given by functional Q is computed given the
previous value of the parameters θt and a “maximization” or “M” step, in which the
maximum of such functional is found and set as the new value for the parameter,
θt+1.

It is important to notice that the complete explicit form of the functional Q
doesn’t need to be computed during the E step but only the parameters depending
on θt needed in order to find the maximum in step M later on. In particular, if both
the observed and latent variables are discrete, it is usually enough to compute the
conditional distributions p(z|xi, θt) by Bayes rule.

Neal and Hinton (1998) formalize the EM algorithm in an equivalent way more
related to this form of “computing” the E step. They prove that the E and M steps
can be seen as both maximizing a common functional with respect to two different
variables.

For each sample of the observe data xi, let qi(z) be a distribution over the
latent variables Z. For notation simplicity denote by q = (q1, . . . , qn). Consider the
following functional over the qi and the parameter vector Q

F (q, θ) =
n∑
i=1

(Eqi [log p(xi, z|θ)] +H(qi)) (3.1.6)

Applying Bayes rule, we have that log(p(xi, z|θ) = log(p(z|xi, θ)) + log(p(xi|θ)).
By linearity of the expected value and taking into account that the second term is
constant in z, we have that for each i

Eqi [log p(xi, z|θ)] +H(qi) =
∑
z∈Z

qi(z) log(p(z|xi, θ))−
∑
z∈Z

qi(z) log(qi(z))+

log(p(xi|θ)) = −KLD (qi‖p(z|xi, θ)) + log(p(xi|θ)) (3.1.7)

Summing in the samples we have

F (q, θ) = −
n∑
i=1

KLD (qi‖p(z|xi, θ)) + log(L(θ)) (3.1.8)

First, notice that maximizing F with respect to q is the same as minimizing
KLD (qi‖p(z|xi, θ) with respect to qi for each i. By Gibb’s inequality, this quantity
is non-negative, reaching zero if and only if qi = p(z|xi, θ). Thus, F (·, θ) has a single
minimum at qi = p(z|xi, θ). On the other hand, equation (3.1.6) implies that for
qi = p(z|xi, θt)

F (q, θ) = g(θ, θt)

Therefore, given that qi = p(z|xi, θ)

argmax
θ

F (q, θ) = argmax
θ

g(θ, θt) = argmax
θ

Q(θ, θt)

This proves that the EM algorithm is equivalent to the following
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Algorithm 3.3 Alternate form of the Expectation-Maximization algorithm

1: procedure EM-algorithm(p(X,Z|θ),{xi})
2: Start with a random vector parameter θ0 ∈ Rk
3: for each t do
4: Step E: Select q(t) =

(
q
(t)
1 (z), · · · , q(t)n (z)

)
as

q(t) = argmax
q

(F (q, θt))

5: Step M: Select θt+1 as

θt+1 = argmax
θ∈Rk

(F (q(t), θ))

6: end for
7: The algorithm stops either after a maximum number of iterations or when
‖θt+1 − θt‖ is less than a certain threshold

8: end procedure

As the θ parameters usually describe the conditional and priori distributions
p(X|z, θ) and p(z|θ), this version of the algorithm shows a more symmetric aspect
of EM. E and M steps are both successively computing more precise approxima-
tions of the conditional distributions p(z|X, θ) and p(X|z, θ) respectively. This can
be interpreted as the algorithm first estimating a distribution of the unobserved vari-
ables given the observed date with a preliminary guess of the parameters p(z|X, θ),
and then using this distribution to compute the opposite conditional distribution
p(X|z, θ) and refine the previous approximation of the parameters θ.

3.1.4 Helmholz functionals and tempering

One of the main applications of the EM algorithm comes from statistical learning.
For example, suppose that we have a classification problem with input variables
X and output variables Y modeled through a set of hidden variables Z with the
following common generative model

Figure 3.2: Graphical model for classification/regression problem

X N Z K Y M

Taking either the categorical distributions p(Zi|X) and p(Yi|Z) in the discrete
scenario or its distribution parameters in the continuous counterpart as parameters
of the model, hidden variables Z as unobserved variables and pairs of input-output
samples (xi, yi) as observed data, the EM-algorithm gives a locally optimal esti-
mation for the parameters of the model that maximize likelihood of the observed
samples, thus obtaining a set of parameters that locally optimally fits the training
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data.

This kind of approach has been proved to be really effective in training feedfor-
ward neural networks (Ma et al., 1977), Boltzmann machines (Byrne and Member,
1992) and multiclass classification tasks (Ng and McLachlan, 2004) improving both
convergence rate and performance.

Alike any other learning algorithm, one of the main concerns while applying
the EM-algorithm to statistical learning tasks is overfitting the training data. In
order avoid it, annealing techniques can be incorporated to the classical EM algo-
rithm. The deterministic annealing was developed by Rose et al. (1990) in his thesis
(Rose, 1991) as a way to escape local optima while applying traditional clustering
methods, weakening the dependency of the algorithm on the initial configuration
in the process. The approach, motivated by the concepts of free energy and en-
tropy in statistical mechanics was later on adapted by Ueda and Nakano (1998) as a
modification of the EM algorithm in the frame of Generalized EM (GEM) methods.

GEM algorithms share the same philosophy of the EM algorithm. We find sur-
rogate minorizing functions for the likelihood functional and then maximize the
surrogates in order to increase the value of the total likelihood. The difference
between GEM and EM is that, during the M step, instead of updating the pa-
rameters to an absolute maximum of the minimizing function, we just update to a
point that increases the value of the functional. Obviously the convergence of these
GEM algorithms depend heavily on how the updated parameters are chosen in the
modified M step. A really successful strategy is to perturb the original surrogate
functional through adding secondary minor terms that change the local dynamics
of the algorithm without changing its global convergence rate.

Ueda and Nakano (1998) use this approach. In their work, Neal and Hinton
(1998) notice that the functional F in equation (3.1.6) is analogous to the “varia-
tional free energy” of statistical physics, taking the values of the hidden variables Z
for each sample xi to be the states of the system and considering − log(p(z, xi|θ))
as the “energy” of the state. With this interpretation, the free energy functional,
corresponding to a statistical version of the Helmholtz free energy functional, for
each sample xi, set of parameters θ and state distribution qi(z) is the sum of the
expected energy Eq[− log(p(z, xi|θ))] minus the entropy of the system H(q), which
coincides precisely with the opposite of the functional F . With this physical inter-
pretation, the EM algorithm successively decreases the total variational free energy
of the system by alternately optimizing it with respect to the state distribution
and the model parameters . Therefore, it corresponds to a grouped version of the
coordinate ascent algorithm for the Helmholtz functional.

Ueda and Nakano introduce an “inverse computational temperature” in the
Helmholtz functional. Instead of F , at each step the following functional is maxi-
mized given some β ≥ 0

Fβ(q, θ) =
n∑
i=1

(βEqi [log p(xi, z|θ)] +H(qi)) (3.1.9)

The main motivation for the change is the “principle of entropy maximization” of
statistical mechanics that specifies that among all probability distributions within
the same energy level, the one with maximum entropy naturally arises. Jaynes
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(1957) stated this principle in an article establishing the strong links existing between
statistical mechanics and information theory. In the information theory scenario,
the entropy of the distribution p(Z|xi, θ) is a measure of the amount of information
carried by the model. Thus, the distribution with maximal entropy corresponds
to the most general one satisfying the constraints, in the sense that it is the one
that models the most uncertain outcome of the random variable if we only know
the given constraints. As an example, if no other condition on p(Z|xi, θ) holds, the
principle of entropy maximization would state that the most natural and general
distribution to model the latent variable would be the uniform one.

In the clustering scenario, Rose (1991) and, posteriorly, Ueda and Nakano (1998)
in the general context of EM algorithm both state that the latent distribution (clus-
ter distribution, in the case of Rose’s work)

Uneda and Nakano notice that the latent distribution p(Z|xi, θt) being computed
as the posterior depending on the parameter selection θt makes the EM algorithm
depend excessively on the parameter estimation, and, in particular, on the original
random starting estimation θ0. If the parameter θt is far from optimal at one
step, then p(Z|xi, θt), computed directly as the posterior, can be far from the real
distribution. Instead, they propose that the distribution should be computed from
the parameters θt using the principle of entropy maximization, i.e., it should be
taken as the probability distribution qi with the maximum entropy within the ones
with the same energy level Ei = Eqi [− log(p(xi, z|θt))].

Considering simultaneously all samples xi, we are led to maximizing the total
entropy H(q) =

∑n
i=1H(qi) subject to the total energy being fixed, i.e.

n∑
i=1

Eqi [− log(p(xi, z|θt))] = E

The corresponding optimization problem with constraints can be solved using La-
grange multipliers. Letting β be the Lagrange multiplier for the restriction on E,
we have to maximize

L(q, β) =

n∑
i=1

H(qi)− β

(
n∑
i=1

Eqi [− log(p(xi, z|θt))]− E

)
(3.1.10)

with respect to q and β. It is clear that differentiating with respect to qi(z) yields
a parametric equation defining completely the distribution qi(z) depending on β
but not on E. This fixes the structure of qi up to the constant β, which is then
determined by the total energy equation. Thus, we can reparamtrize the solution in
terms of β. This allows us to take E = 0 in functional (3.1.10) and consider β not
as a Lagrange multiplier anymore, but as a parameter playing the same roll E did.
Thus, q is the maximum of functional

L(q, β)′ =
n∑
i=1

H(qi)− β

(
n∑
i=1

Eqi [− log(p(xi, z|θt))]

)
= Fβ(q, θ)

Once fixed the β parameter, the E and M steps now operate just as in EM
version 3.3. It’s worth saying that once the distributions qi are computed, the M
step takes exactly the same form as the traditional EM algorithm. Indeed, for β = 1
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both algorithms are equivalent. The second important part of the algorithm is the
choice of the β parameter. The following meta-algorithm is used

Algorithm 3.4 Tempered Expectation-Maximization algorithm

1: procedure TEM-algorithm(p(X,Z|θ),{xi},βmin)
2: Start with a random vector parameter θ0 ∈ Rk
3: Set β = βmin
4: while β ≤ 1 do
5: for each t do
6: Step E: Select q(t) =

(
q
(t)
1 (z), · · · , q(t)n s(z)

)
as

q(t) = argmax
q

(Fβ(q, θt))

7: Step M: Select θt+1 as

θt+1 = argmax
θ∈Rk

(Fβ(q(t), θ))

8: end for
9: The loop stops either after a maximum number of iterations or when
‖θt+1 − θt‖ is less than a certain threshold

10: Increase β
11: end while
12: end procedure

Parameter β is increased so that the last β value is close to β = 1. This way,
the las iteration is equivalent to an instance of EM for which the initial parameter
θ0 is chosen as the output parameter θt of the previous TEM iteration. Therefore,
upon convergence, the final parameter θt would have converged to a local maximum
of the likelihood functional L(θ) given the observed data.

The idea is to start with high computational temperature, i.e. 0 < βmin << 1.
This makes q(0) become almost uniform and Fβ(q(0), θ) has a single global maximum
to which the algorithm converges. By gradually increasing β, we are progressively
perturbing the dynamics, weakening the starting global maximum and introducing
the local maxima existing in the original EM functional F . Inside each step of the
outer β loop, the last selected parameters, which converged to a local maximum for
the old value of β, are now presumably out of a local maximum region, but near
one (if the β change is little enough) to which the algorithms converges by the end
of that β epoch.

While, as EM, this algorithm is not guaranteed to converge to a global maximum,
the tempered version has been shown to effectively attain better local maxima. The
basis behind this is that, if β grows slowly enough, the first local maxima of F to
become relevant in the dynamics of Fβ are the highest ones, thus making algorithm
unconcerned of weak local maxima for low values of β. Therefore, unlike traditional
EM, the global dynamics of TEM makes the algorithm able to scape easily from
“lower” maxima and reach better local extrema.

While this may be a great strategy in fitting problems, reaching a higher maxima
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than EM may make TEM overfit even more than expected with the classic algo-
rithm. On the other side, we have proved that each iteration of the TEM algorithm
for a fixed β leads to more entropic, thus general, distributions over Z. Taking both
things into account, Hofmann (1999a,b, 2001) proposes to use an “inverse” anneal-
ing. Instead of starting with a low β and increasing it, Hofmann proposes to start
with an usual EM (β = 1) and then exponentially decrease the value of β, updating
β ← ηβ. For each β, an early stop condition is implemented. TEM iterations stop
when performance deteriorates on held-out data. Performance on unseen data is
expected to increase on each β update. We stop to update β when this does not
yield further improvements.

3.2 Probabilistic Latent Semantic Analysis

In information retrieval tasks, many algorithms are based on direct word/item
matching strategies in order to rank relevance of documents or items with respect
to a query. The possible ambivalence of the words used both in the documents and
the query and, in general, the inherent lack of precision of natural language make
these algorithms get stuck in the explicit literal expression of information tokens
and incapable of abstracting in a precise way the abstract information behind them.

Latent Semantic Analysis (Deerwester et al., 1990) is an indexing method that
seeks to solve this problem by introducing the concept of a latent semantic space.
The elements of the latent semantic space represent the abstract information to-
kens behind a certain natural language expression. The basic assumption behind
LSA is that words with similar meaning (also in terms of intention) tend to ap-
pear in similar pieces of text. LSA aims to capture each of the possible different
meanings, represented as states in the latent space, and build a map between the
words in a document and their corresponding latent semantic meaning. This means
that, abstractly, synonyms would map to a single element in the latent space, while
polysemic words would split in several different states in the latent space.

In practice, the LSA algorithm builds the latent space by applying a dimen-
sionality reduction method to the document-term mappin. In particular, the latent
space is build as a vector space of a prescribed dimension. Then Singular Value
Decomposition (SVD) is applied to the document-term frequency matrix, thus find-
ing the most suitable factorization of the document - term map through the latent
space. The factors can be then interpreted as document-aspect and aspect-word
maps and thus can be used to represent any document or phrase in the latent space.

Retrieval algorithms are then supposed to use the states of the latent seman-
tic space instead of the term frequency vectors as a representation of a document
of query. This strategy has been proved to successfully detect synonyms, treat
polysemy and reduce noise in the samples, thus becoming a robust analysis tool
with many applications (Deerwester et al., 1990; Foltz and Dumais, 1992; Dumais,
1995; Landauer and Dutnais, 1997; Bellegarda, 1998). Nevertheless, the classic LDA
method lacks a probabilistic theoretical basis, which contrasts with the strong for-
malism of some of the most effective retrieval algorithms that are used in conjunction
with the method. Indeed the use of SVD instead of other kind of factorization cor-
responds to a choice of a certain (euclidean) metric in the matrix space. This choice,
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while natural and effective, is rather heuristic and independent of the data, and it
does not link with any generative model of the retrieval problem.

Probabilistic Latent Semantic Analysis (Hofmann, 1999a,b, 2001) is a probabilis-
tic reformulation of the paradigm of the LDA method that allows us to build the
latent space and the corresponding maps based on a generative model for the doc-
uments. Let D = {d1, . . . , dD} be the corpus of documents and W = {w1, . . . , wW }
the complete vocabulary of the corpus. A “bag of words”-type document model is
used. Thus, our observed data will consist on the pairs (w, d) such that the word
w is observed in document d. For each d ∈ D, and each w ∈ W, we observe a pair
(w, d) for each time that w appears in d. Let us denote by n(w, d) the number of
times that the word w appears in document d. The model is based suppose that
there exist a set Z = {z1, . . . , xK}

An “aspect model” is used to describe the data. It is a latent variable model that
assumes that for each observed pair (d,w) there exist an unobserved class variable
z ∈ Z = {x1, . . . , zK} modeling the underlying semantics and intention behind the
instance of word d in the document d. The generative model for the complete data
would be the following

• Select a document d ∈ D with probability p(d)

• Pick a latent semantic class z ∈ Z with probability p(z|d)

• Generate a word w ∈ W with probability p(w|z)

It is therefore assumed the word distribution is independent of the document
once the latent semantic class is selected. This agrees with the LDA paradigm of our
notion of the semantic occurrences of different words in a document are independent
given Which corresponds to this graphical model

Figure 3.3: pLSA graphical model

d z w

This generative model induces a probability distribution over W ×D, given by

p(w, d) = p(d)p(w|d) =
∑
z∈Z

p(w|z)p(z|d)p(d)

Applying Bayes, we get p(z|d)p(d) = p(d|z)p(z), so we can refactor the previous
equation in a symmetric form

p(w, d) =
∑
z∈Z

p(w|z)p(d|z)p(z) (3.2.1)

Which corresponds to the following graphical model

Figure 3.4: Symmetric pLSA graphical model

d z w
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In both cases, pLSA is presented as a parametric latent variable model, with
observed variables w and d, latent variable z and parameters given by the categor-
ical distributions p(w|z), p(z|d), p(d) for the model 3.3 or categorical distributions
p(w|z), p(d|z), p(z) for the model 3.4. Both formulations are indeed equivalent pa-
rameterizations of the model, but the symmetry of the second one will simplify some
computations, so we will use it instead.

The distributions are then selected as those maximizing the likelihood of the
observed samples (w, d), i.e., the functional

log(L(p(w|z), p(d|z), p(z))) =
∑

w∈W,d∈D
n(w, d) log p(w, d) =

∑
w∈W,d∈D

n(w, d) log
∑
z∈Z

p(w|z)p(d|z)p(z) (3.2.2)

As finding the maximum of (3.2.2) is intractable, EM algorithm is applied to
the model instead. Using the original version (pseudo-code 3.2), the E step simply
consist on computing the conditional distribution p(z|w, d) through Bayes theorem

p(z|w, d) =
p(w|z)p(d|z)p(z)∑
z∈Z p(w|z)p(d|z)p(z)

On the other hand, the M step consists in maximizing the following functional
with respect to the three distributions

Q(p(w|z), p(d|z), p(z)) =
∑
d∈D

∑
w∈W

∑
z∈Z

n(w, d)p(z|w, d) log(p(w|z)p(d|z)p(z))

subject to the restrictions arising from the parameters being, in fact, distribu-
tions, i.e., all being nonnegative and summing to one for each z ∈ Z. The problem
can be solved using Lagrange multipliers, checking afterwards that the obtained
maxima correspond to nonnegative parameters. Thus, we have to maximize

F =
∑
d∈D

∑
w∈W

∑
z∈Z

n(w, d)p(z|w, d) log(p(w|z)p(d|z)p(z))−
∑
z∈Z

λz

(∑
w∈W

p(w|z)− 1

)

−
∑
z∈Z

µz

(∑
d∈D

p(d|z)− 1

)
− λ

(∑
z∈Z

p(z)− 1

)
(3.2.3)

Setting the partial derivatives with respect to each parameter to zero yields

0 =
∂F

∂p(w|z)
=
∑
d∈D

n(w, d)p(z|w, d)
1

p(w|z)
− λz

0 =
∂F

∂p(d|z)
=
∑
w∈W

n(w, d)p(z|w, d)
1

p(d|z)
− µz

0 =
∂F
∂p(z)

=
∑
d∈D

∑
w∈W

n(w, d)p(z|w, d)
1

p(z)
− λ
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Solving each equation for the corresponding parameter yields

p(w|z) =
1

λz

∑
d∈D

n(w, d)p(z|w, d)

p(d|z) =
1

µz

∑
w∈W

n(w, d)p(z|w, d)

p(z) =
1

λ

∑
d∈D

∑
w∈W

n(w, d)p(z|w, d)

Summing first equation over w ∈ W and taking into account that
∑

w∈W p(w|z) =
1 we get that

λz =
∑
w∈W

∑
d∈D

n(w, d)p(z|w, d)

Similarly, we get µz = λz and

λ =
∑
z∈Z

∑
w∈W

∑
z∈D

n(w, d)p(z|w, d)

Thus, λz, µz, λ are just normalization parameters for the already computed dis-
tributions. Substituting the values and simplifying the notation yields the following
explicit M step for the algorithm

p(w|z) =

∑
d∈D n(w, d)p(z|w, d)∑

w′∈W
∑

d∈D n(w′, d)p(z|w′, d)

p(d|z) =

∑
w∈W n(w, d)p(z|w, d)∑

w∈W
∑

d′∈D n(w, d′)p(z|w, d′)

p(z) =

∑
w∈W

∑
d∈W n(w, d)p(z|w, d)∑

z′∈Z
∑

w∈W
∑

d∈D n(w, d)p(z|w, d)

Finally, Hofmann (1999a,b, 2001) proposes the use of Tempered EM instead of
EM as a way of increasing the perplexity. In this case, the M step is the same,
but the equations for the E step are obtained by maximizing the functional (3.1.9),
which takes the following explicit form

Fβ = β
∑
w∈W

∑
d∈D

∑
z∈Z

n(w, d)p(z|w, d) log(p(d|z)p(w|z)p(z))

−
∑
w∈W

∑
d∈D

∑
z∈Z

n(w, d)p(z|w, d) log(p(z|w, d)) (3.2.4)

With respect to p(z|w, d) subject to the restrictions
∑

z∈Z p(z|w, d) = 1 and
p(z|w, d) ≥ 0. Again, applying Lagrange multipliers, we have to maximize the
functional

F ′β = Fβ −
∑
w∈W

∑
d∈D

λwd

(∑
z∈Z

p(z|w, d)− 1

)
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Setting the partial derivatives to zero yields

0 =
∂F ′β

∂p(z|w, d)
= βn(w, d) log(p(d|z)p(w|z)p(z))−n(w, d) (log(p(z|w, d) + 1))−λwd

Solving for p(z|w, d)

p(z|w, d) = (p(d|z)p(w|z)p(z))β exp

(
− λwd
n(w, d)

− 1

)
As n(w, d) and λwd are constant in z, p(z|w, d) ∝ (p(d|z)p(w|z)p(z))β. The

distribution has to be normalized, so we get the following tempered E step

p(z|w, d) =
(p(d|z)p(w|z)p(z))β∑
z∈Z (p(d|z)p(w|z)p(z))β

Then, we apply the “inverse deterministic annealing” described in the previous
section, starting with β = 1 and exponentially decreasing its value as long as this
improves the performance.

3.3 Latent Dirichlet Allocation

Following the probabilistic framework introduced by pLSA, LDA provides a gen-
erative latent semantic model for a text corpus based on the use of latent top-
ics. Blei et al. (2003) notice that while the generative model provided by pLSA
establishes a useful probabilistic modeling for text data, it does not present a
generative model for the mixing proportions for the latent factors. In the pLSA
model, any document d withing the corpus is essentially described by its proba-
bility mixing distribution p(z|d). The algorithm effectively computes these distri-
butions for the documents in the corpus, but does not provide a generative model
for these numbers. Moreover, samples (w, d) are treated as observations from inde-
pendent and identically distributed random variables over W ×D with distribution
p(w, d) =

∑
z∈Z p(w|z)p(d|z)p(z). This leads to some problems:

1. The length, and thus content, of a single document is not fully described. The
model only predicts proportions n(w,d)

|d| ∼ p(w|d), but not the explicit number

of occurrences n(w, d).

2. The number of parameters {p(w|z), p(d|z), p(z)} grows linearly with the num-
ber of documents, D. This increases both the convergence time and complexity
of the model for big datasets, as well as the chances of overfitting.

3. Parameters {p(d|z)} are only computed directly for documents in the train-
ing corpus. While Hofmann (1999b,a) describes a “fold in” strategy to infer
the mixing distribution for an unobserved document, the procedure is not
completely model driven. The lack of generative model makes it impossi-
ble to use a maximum-likelihood approach for the new distributions, leaving
Bayesian inference from the already computed distributions as the closest,
non-statistically-strong solution.
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As a mean to solve this, LDA describes a generative process for both length of
documents and mixing proportions in the following way:

For each document d ∈ D

• Choose the length of the document Nd ∼ Poisson(ξ)

• Choose a vector of mixing proportions θd = (θz,d)z∈Z ∼ Dir(α)

• For each of the Nd words in document d, wn,d

– Pick a latent semantic class zn,d ∈ Z from distribution p(z|θd) = θz,d

– Generate a word wn,d ∈ W with probability p(w|zn,d, β) = βw,zn,d

A document d will be identified by the array of words d ; (w1,d, . . . , wNd,d).
Thus, contrary to pLSA, LDA models a set of arrays of words instead of a proba-
bility distribution over W ×D. In order to do so, three kind of parameters are to
be estimated. ξ > 0 corresponds to the expected mean length of a document in the
corpus. The length of each document is observed directly from the data and, once
observed, the rest of the generative model doesn’t depend on ξ. Thus, it can be
estimated independently before starting the proper semantic analysis. For this rea-
son, we will consider both the length and parameter ξ as constants from this point
on. Parameter matrix β = (βw,z)w∈W,z∈Z parametrizes the categorical distribution
p(w|z) = βw,z in the same way that it was done in pLSA. The important difference
in the parametric model is the transformation of the family of parameters p(z|d)
into a random variable θd modeled as a Dirichlet distribution with parameter α. α
is constant within the whole corpus D and, therefore, mixing proportions for every
document θd are identically distributed, not only for documents in the corpus (for
which this model is intended and adjusted) but also for any new document, allow-
ing the “out of the training” inference that we were seeking. Globally, the graphical
model for the corpus D is

Figure 3.5: LDA graphical model

α θd zn,d wn,d Nd

D

β

Taking all this into account, the complete data distribution for a document
d = (w1,d, . . . , wNd,d) is given by

p(zd, θd, d|α, β) = p(θd|α)

Nd∏
n=1

p(zn|θd)p(wn|zn, β)
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where

p(θ|α) =
Γ
(∑K

i=1 αi

)
∏K
i=1 Γ(αi)

K∏
i=1

θαi−1i

Marginalizing over all possible outcomes of the latent variables θ and z = (z1, . . . , zNd)
for each document, we get the following posterior for each document

p(d|α, β) =

∫
p(θ|α)

Nd∏
n=1

(∑
zn∈Z

p(zn|θ)p(wn,d|zn, β)

)
dθ

Substituting the value of the corresponding distribution yields

p(d|α, β) =
Γ
(∑K

i=1 αi

)
∏K
i=1 Γ(αi)

∫ K∏
i=1

θαi−1i

Nd∏
n=1

(∑
z∈Z

θz,dβwn,d,z

)
dθ

Variables β and θ are heavily coupled, making the exact computation of the posterior
intractable for general data. This also makes it impossible to perform the necessary
computations needed to infer the exact conditional distribution of latent variables

p(θ, z|d, α, β) =
p(θ, z, d|α, β)

p(d|α, β)

Our objective is to obtain a maximum likelihood estimation of the parameters α
and β which define the mixing proportions distributions from the model. A priori,
EM algorithm would fit our needs perfectly, but E step explicitly computes the
conditional distribution p(θ, z|d, α, β) for each document and the previous estimation
of the parameters α, β. Thus, direct application of EM algorithm is impossible.
Instead, approximation methods are needed in order to estimate these conditional
distribution and being able to infer latent space distributions through the model
once the training has ended.

Blei et al. (2003) propose the use of a variational method. Coupled parameters
α and β come from the dependences between θ, Z and W in the graphical model.
If these dependences didn’t exist, the computation of E step of the EM algorithm
would be straightforward. The suggested method consists precisely in substitut-
ing the exact distribution p(θ, z|d, α, β) by a family of distributions parametrized
through a decoupled version of the graphical model. For inference purposes, the
new parameters are selected as those minimizing the divergence of the original dis-
tribution with respect to the variational one.

Explicitly, dependency between Z and θ is separated through a set of indepen-
dent variational parameters φn,d and factor-term relations are suppressed from the
model. Moreover, θd distributions from different documents, which depend on a sin-
gle corpus parameter α, are decoupled, depending on a new set of document-specific
parameters γd. The resulting Bayesian network is
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Figure 3.6: LDA variational graphical model

γd θd zn,d

φd

Nd

D

Therefore, for each document d, the estimated family of distributions yield

p(θ, z|γd, φd) = p(θ|γd)
Nd∏
n=1

p(zn|θn,d)

The variational parameters are fixed as

(γ∗d , φ
∗
d) = argmin

(γd,φd)
KLD (p(θ, z|γd, φd)‖p(θ, z|d, α, β))

Optimal parameters can be found via an iterative fixed-point method, successively
computing the following two update equations alternatively

φn,d,z ∝ βwn,d,z exp

Ψ(γd)−Ψ

 k∑
j=1

γj



γd = αd +

Nd∑
n=1

φn,d

where Ψ is the first derivative of the log Γ function.

Once optimal variational parameters have been estimated for each document,
distribution p(θ, z|γ∗d , φ∗d) provides a suitable approximation for the desired condi-
tional p(θ, z|d, α, β).

Using this technique, we can adapt EM algorithm to work in the variational
framework



46 CHAPTER 3. TOPIC MODELS

Algorithm 3.5 LDA algorithm

1: procedure LDA(p(X,Z|θ),{xi},βmin)
2: Start with random parameter vectors α(0), β(0), γ(0), φ(0)

3: for each t do
4: Step E:
5: for each d ∈ D do
6: Take (γ

(t,0)
d , φ

(t,0)
d ) = (γ

(t−1)
d , φ

(t−1)
d ).

7: for each s do
8:

φ
(t,s)
n,d,z ∝ β

(t)
wn,d,z

exp

Ψ(γ
(t,s−1)
d )−Ψ

 k∑
j=1

γ
(t,s−1)
j


9:

γ
(t,s)
d = α

(t)
d +

Nd∑
n=1

φ
(t,s−1)
n,d

10: end for
11: Stop when variational parameters have converged. Take

(γ
(t)
d , φ

(t)
d ) = (γ

(t,s)
d , φ

(t,s)
d )

12: Step M:
13: Select β(t+1) as

β(t+1)
w,z ∝

∑
{(n,d)|d∈D,1≤n≤Nd,wn,d=w}

φ
(t)
n,d,z

14: Select α(t+1) as

α(t+1) = argmax
α

∑
d∈D

log Γ

 k∑
j=1

αj

− k∑
j=1

log Γ(αj)+

k∑
j=1

(αj − 1)

(
Ψ(γ

(t)
d,j)−Ψ

(
k∑
i=1

γ
(t)
d,i

))

15: end for
16: The loop stops either after a maximum number of iterations or when

parameters have converged
17: end for
18: end procedure

α estimation can be computed in M step using Newton-Raphson algorithm.
This variational framework has the advantage of allowing both parameter learning
and inference approximations using at each step the closest possible approximation
within the tractable ones.

An alternative to the variational approach is using Markov chain Monte Carlo
for estimating the conditional distributions p(θ, z|α, β). and produce inference on
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the aspect space, in the form of distributions p(zj |z−j , d) for each latent factor
assignment given the observed factors for the other terms in the document.

3.4 Equivalence between pLSA and LDA

The latent semantic generative bases of pLSA and LDA are clearly analogous. In
both cases, aspects are assumed to be drawn for each document and words are
drawn from distributions depending on the selected aspect. Moreover, both models
consider that the aspects are chosen from mixing distributions which are particular
to each document.

The main difference between pLSA and LDA is the theoretical consideration
of those mixing proportions p(z|d). While pLSA considers them as parameters
estimated during the execution of the EM algorithm, LDA takes them as a new
set of latent random variables θd. These random variables are meant to follow a
Dirichlet distribution Dir(α) depending on a vector parameter α which is assumed
to be constant for the whole corpus.

Therefore, LDA generative model can be understood as a Bayesian regularization
of the mixing distributions p(z|d) in the pLSA model. Parameters p(z|d) = θz,d
are given a prior Dirichlet distribution that collapses all the information trough a
narrower vector of parameters α = (αz)z∈Z .

This imposes a clear difference in the degrees of freedom of the system. LDA β
parameters correspond to pLSA parameter distributions p(w|z) unequivocally, thus
contributing in WK independent parameters to both models. Nevertheless, LDA
α parameter corresponds, in a certain sense, to fixing priors p(z), in contrast to
pLSA p(z|d) parameters. Therefore, LDA adds K independent parameters to its
system, while pLSA adds a whole new set of KD independent parameters. The main
consequence of this parameter counting is that pLSA parameter space dimension
depends on the size of the corpus, while LDA parameter space only grows with the
vocabulary.

Despite these differences, the common ground generative model allows us to
connect inference estimation in both pLSI and PLSA. Girolami and Kabán (2003)
prove that pLSI can be recovered from a certain approximate inference method
within the LDA framework, if a certain α parameter is fixed. In order to obtain
this equivalence, we have to introduce MAP estimators as an alternative to the
variational inference used in Blei et al. (2003).

During the parameter estimation process, a maximum likelihood estimation is
used, which leads to the need of computing the intractable posterior p(d|α, β). In-
stead of computing this posterior, a maximum a posteriori – maximum likelihood
approximation can be taken. It consists on estimating the maximum a posteriori
for the latent variable θ for each document in the corpus. Then, these estimations
substitute the original latent variable θ in the posterior approximation for each
document. MAP estimators being decoupled from the rest of the model simplify
parameter dependencies in the computation of the posterior p(d|α, β), making a
maximum a posteriori of the rest of parameters (β) possible.

In particular, if we fix αz = 1 for all z ∈ Z, thus forcing a uniform prior on θ,
we obtain p(θ|d, β) ∝ p(d|θ, β). Therefore, the MAP estimator coincides with the
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maximum likelihood estimator, corresponding to

θMAP
d = θML

d = argmax
θ

log p(d|θ, β) = argmax
θ

∑
w∈W

n(w, d) log

(∑
z∈Z

p(w|z, β)θz

)

Once θMAP
d is fixed, we compute the beta parameters by maximum likelihood

βML = argmax
β

∑
d∈D

log p(d|θMAP
d , β) = argmax

β

∑
d∈D

∑
w∈W

n(w, d) log

(∑
z∈Z

βw,zθ
MAP
z,d

)

Combining both steps, an estimation by MAP-ML of the latent variable θ and
parameter β would correspond to setting

(θMAP , βML) = argmax
θ,β

∑
d∈D

∑
w∈W

n(w, d) log

(∑
z∈Z

βw,zθz,d

)

Taking into account that θz,d and βw,z are the parameters defining p(z|d) and
p(w|z) respectively, we obtain that (θMAP , βML) is the solution to pLSA maximum
likelihood problem. Therefore, pLSA corresponds to a MAP estimation of LDA
if Dirichlet α parameter is taken as (1, . . . , 1). Direct computation from the LDA
generative model using this choice of α justifies directly pLSA fold-in estimations.

3.5 Topic models in IR Diversity

In general terms, diversification algorithms aim to diversify a set of aspects or intents
that are usually unknown to the system, corresponding to the different facets of the
overall user information needs. Even if an explicit set of aspects is available (like
ODP taxonomy in web search or movie genres in a recommendation task), they
represent mere approximations to the real latent intentions of the user.

Latent aspect models seem to be natural tools to study this problem. The main
idea consists in using topic models to abstract the semantics behind the particular
information tokens available. As we saw, this latent semantics are encoded in an
aspect space which is expected to approximate the space of abstract intents of the
user.

Topic models extract latent semantic information from the observed data based
on a robust probabilistic framework. Most of the aspect extraction methodologies
described in the last chapter are either based on prior additional information about
the observed data – like an ODP classification (Agrawal et al., 2009) or Wikipedia
disambiguation pages (Rafiei et al., 2010; Welch et al., 2011) – or are based on
an algebraic compression of information which is heavily dependent on the explicit
representation of the data – like matrix factorization methods (Vargas et al., 2011).

While the latter algorithms are indeed really effective, one can’t obviate the fact
that the extracted aspects rely on a more or less heuristic choice of data representa-
tion. On the other hand, topic models describe the interaction between the observed
variables and the latent semantic information in a generative intrinsic way, as far as
the used generative model fits the data.



3.5. TOPIC MODELS IN IR DIVERSITY 49

The explicit use of Latent Semantic Analysis in diversity tasks has been explored
by diverse authors. As a possible continuation on their work on subtopic retrieval,
Zhai et al. (2003) mention the possibility of using pLSA and LDA to model query
subtopics. Carterette and Chandar (2009) propose the use of LDA to model query
facets, or sub-queries. They use this estimated facet information to build rank-
ings maximizing facet covering in the so called FM-LDA (Facet Model with LDA),
therefore maximizing the overall diversity of the results. Among other diversifica-
tion strategies, He et al. (2011) use FM-LDA together with clustering methods to
develop query-specific diversified rankings. Krestel and Fankhauser (2012) propose
the use latent factors computed by LDA to represent documents within the vector
space of mixing proportions. He et al. (2012) uses Laplacian PLSA – a regularized
generalization of pLSA due to Cai et al. (2008) – as a source of latent subtopics for
a multi-source subtopic approach to diversity.

Vargas et al. (2012b) explicitly study the suitability of automatically extracted
intent spaces as means of approximation of user intents for diversification purposes.
They analyze the aspect space informativeness and use simulated data to explore the
effect of the aspect space size in the overall diversity reached by the diversification
system in terms of the ranking distance from the diversified results to the baseline,
understood as a measure of the “room for change”.

While the potential of latent factors for diversification has been proved, there
exist several open questions about the optimization of the aspect extraction method-
ology in order to enhance the final diversity of the system. For example, Krestel
and Fankhauser (2012) finds that latent factor representation of documents performs
slightly worse than classic language models as a representation space for their model.
On the other hand, they remark that topic models accomplish diversification with a
significantly less amount of re-ranking and open the research objective of developing
similar approaches to diversification that focus on the topical content of documents.

Through the next chapters, we will deepen in the objective of optimizing the
process of aspect extraction for diversity enhancement. We will propose a new theo-
retical framework for generalizing pLSA model to incorporate relevance information
to the dynamics of the intent space construction and provide a general probabilistic
algorithm for incorporating arbitrary sources of information to the model, extending
the potential application of pLSA to different kind of diversity problems. Moreover,
further optimization methods will be studied for improving the obtained intent
space, such as several aspect filtering methods and precise analytical estimations for
the effect of the aspect space size to diversity.
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Chapter 4

Latent Semantic aspects for
Diversification

In the last chapter, we showed how automatically extracted intent spaces could be
used to enhance search and recommendation diversity. Latent semantic information
has been used in the literature to approximate user intents in diversity tasks. Prob-
abilistic approaches to latent semantic extraction like pLSA have been proven to be
really effective in ad-hoc tasks both as an indexing method or in recommendation
tasks. Nevertheless, the use of probabilistically extracted latent semantic spaces as
intent spaces for diversification has not been fully studied.

Our objective is to develop probabilistic aspect extraction models which are able
to construct intent spaces that are more suitable for diversification. Starting from
Hofmann’s Probabilistica Latent Semantic Analysis, we aim to develop enriched
probabilistic procedures that incorporate additional sources of information to the
semantic model, such as document relevance, user profile information or additional
features. This would generate more informative and precise semantic spaces which
are expected to help diversification algorithms obtain more diverse results.

Focusing on the search diversity problem, we target to build spaces that capture
better the relations between documents query and latent aspects by introducing
baseline relevance information and query-specific information in the latent seman-
tic model. Common diversification algorithms like IA-Select or xQuAD use these
relations, in the form of distributions p(z, d, q), to compute the diversified rank-
ings. Therefore, refining aspect spaces with query-specific relevance information
intuitively leads to more precise re-rankings, therefore improving the overall diver-
sity.

In order to do so, we will introduce the concept of utility-biased likelihood es-
timator as a theoretical probabilistic framework for enhancing latent probabilistic
models with a notion of “utility” for the observed data. This “utilitiy” will corre-
spond generally to a measure of how relevant an observation is to the overall model.
In our scenario, we will use it to make ground relevance impact the dynamics of the
EM algorithm used to build the latent space.

An “utility-biased” Expectation Maximization algorithm is introduced, as a gen-
eralization of EM algorithm that allows us to incorporate the utility functional to
the EM dynamics. We will use it to develop explicit Bayesian formulas for an au-

51



52 CHAPTER 4. LATENT SEMANTIC ASPECTS FOR DIVERSIFICATION

tomatic latent semantic space extraction algorithm in case the latent model can be
described as a Bayesian network. In this scenario, an explicit tempered version will
be developed, analogous to the one described for classic EM in the last chapter.
Both variations combined will allow us to introduce arbitrary feature variables and
an utility notion to the tempered pLSA model.

This general algorithm will be applied to different information retrieval tasks. We
will analyze deeply some applications to search and recommendation diversity, and
introduce some possible applications to other tasks like personalization or content
based recommendation.

Finally, further aspect filtering optimization techniques and fold-in strategies will
be explained and a geometric information-theoretical interpretation of the algorithm
will be studied. Experimental results showing the effectiveness of the proposed
methods for search and recommendation tasks will be exposed.

4.1 Approach

We propose to use latent factors obtained from a probabilistic latent semantic anal-
ysis as aspects for diversification. This approach was initially mentioned by Zhai
et al. (2003), who noticed the possibility of modeling subtopics with LDA as a pos-
sible direction of future work. Some authors have recently explored the effectiveness
of pLSA as an intent space builder for diversification (He et al., 2012; Vargas et al.,
2012a,b), but a complete deep study has not been developed yet. In particular, the
possibility of changing pLSA dynamics in order to obtain more suitable latent factors
for diversification has not been addressed, and the dependency of the final diversity
results on the properties of the aspect space has not been established completely.

On the other hand, the balance between outputting relevant or pure diverse re-
sults in retrieval systems has always been a main issue when enhancing the diversity
of the results shown to user. Thus, it has been subject to multiple optimizations.
While there have been advances in producing diversification algorithms that treat
document relevance properly and produce resultsets that can be considered both as
relevant and diverse by the final users (Santos et al., 2010; Vargas et al., 2012a),
ground relevance of documents remain transparent to the construction process of
the intent spaces which are used to retrieve these resultsets posteriorly.

Finally, query-specific latent information has been exploited to improve both
retrieval and diversity. The use of query-specific cluster-based retrieval has long
been proposed as a way to identify the top relevant documents for a given query,
based on the idea that relevant documents for each query tend to be clustered to-
gether if query-wise clusters are built (Tombros et al., 2002). Moreover, He et al.
(2011) proved that query-specific clusters can be used as an approximation for query
subtopics. They proved that clustering documents within each single query sepa-
rately led to an intent space that can be fed to a diversification algorithm in order
to improve the overall diversity of the results.

Our approach aims to incorporate the previous ideas to a single unified theoretically-
robust probabilistic framework for building enhanced model-driven latent semantic
spaces. In the search scenario, we describe a relevance aware query-specific proba-
bilistic latent semantic analysis (RapLSA) that is meant to produce aspect spaces
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distinguishing the main latent semantic aspects of each query. The dynamics of
the algorithm are altered from the ones of pLSA in a way that prioritizes adjusting
the semantics of the top relevant documents and neglecting spam documents in the
collection. In order to do so, the algorithm uses the baseline ranking and, if avail-
able, any kind of specific relevance information, to ponder the significance of each
observed information token to the complete data model.

The resulting aspects are then interpreted as a query-specific intentions, or sub-
queries. Obtained document-aspect and query-aspect distributions are led to a
diversification algorithm, like xQuAD or IA-Select, in order to obtain the final di-
versified results. Using RapLSA is shown to improve the overall diversity of the
results in comparison with classic pLSA and query fold-in strategies.

In recommendation tasks, the theoretical framework is used to build user profiles
that incorporate item relevance to the intent space construction dynamics. Although
Hofmann (2003, 2004) has already incorporated explicit ratings (both categorical
and Gaussian) to the pLSA recommendation model successfully, this is done in a
way that does not alter the dynamics of the semantic part of the model significantly,
as the topology and underlying relevance information of ratings are not transfered
to the dynamics of the model. In the case of categorical ratings, rating values
are symmetric and indistinguishable from the model point of view. There is no
connection between the rating relevance information and its impact on the model.
For example, if we consider the user-aspect distribution, the aspect with highest
probability may not correspond to the one representing the items that the user
liked the most, but, more likely, just the one representing the major class of observed
items (even if the are all rated low). Nevertheless, if we used the latent factors for
diversification, this kind of factor would be still prioritized.

The situation is analogous in the continuous case. Whereas ratings do retain
their topology in the model, it remains restricted to the rating variable and it does
not transfer the relevance information to the dynamics of the algorithm. On the
other hand, RapLSA recommendation version is explicitly designed to incorporate
relevance information and, in general, any additional item features to the model,
prioritizing learning the ratings of more relevant items for each user. This way, high
predicted rates are expected to be more accurate and, in general, the aspect space
is expected to reflect better the user needs following a smoothed positive feedback
strategy.

The general probabilistic model is shown to be suitable for other information
retrieval tasks and diversity models, such as personalization, content based rec-
ommendation, or a variant of collaborative filtering recommendation models that
infers an intent aware similarity function, augmenting the capacity of the system to
develop topic-specific recommendations, thus improving the overall diversity when
used in conjunction with a diversification algorithm.

Finally, some undesirable properties of the aspect distributions generated by the
general model (including pLSA) are identified and a set of aspect filtering tech-
niques is introduced to improve the diversity produced by common diversification
algorithms that use these aspect spaces. In particular, we introduce a filter that
increments the sparsity of aspect distributions, another one that neutralizes possi-
ble prior aspect biases and provides the diversification algorithm a “pure diversity”
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aspect space, and a third one that decreases the entropy of the aspect distributions.

4.2 Relevance aware Probabilistic Latent Semantic Anal-
ysis

As we discussed through the exposition of the xQuAD algorithm, there exists an
inherent trade-off between maximizing the diversity or novelty of a resultset and
its pure relevance. While xQuAD effectively equilibrates this tradeoff, given a suit-
able intent space, none of the usual automatic aspect extraction algorithms (matrix
factorization algorithms, pLSA, LDA, etc.) take into account the relevance of the
documents while building the aspect space.

For example, it is known that both common standard training datasets and re-
sultsets from commercial search engines present a certain non-negligible percentage
of spam among the retrieved documents (Cormack et al., 2011). While applying
algorithms like pLSA, the content of these documents is considered by the system
at the same level as the content of the most relevant ones. This may produce a
distortion in the formation of the semantic space, as spam documents can contain
almost gibberish language (Crane and Trotman, 2012). For this reason, some au-
thors (He et al., 2012) choose to filter spam before applying any kind of semantic
algorithm.

In general, after applying an automatic intent space extraction algorithm, apply-
ing an algorithm like xQuAD will deprecate the semantic information of documents
with low enough baseline score. The global score being a combination of the pure
diversity score (probability of information being new given the already selected doc-
uments) and the low baseline score will usually make these documents sink below
the top relevant documents, independently of their semantics. The algorithm may,
indeed, produce some great permutations of documents in the lower part of the
ranking, but the later has really little effect on the user experience and common
diversity or relevance metrics based on cascade browsing models.

Therefore, the semantics of lower rank documents will have a lot of impact in the
construction of the intent space in comparison to the fewer top documents (simply
because all documents are considered at the same level and relevant documents are
the less). In contrast the semantic of the lower documents will have almost no effect,
from the user’s perspective, in the final ranking of the lower rank documents. Thus,
documents being considered at the same level independently on its relevance allow
the semantics of the non-relevant documents to greatly perturb the semantic rep-
resentation of the high relevance ones. At the end, the semantics that discriminate
the novel information among the top documents is not that of the top documents.
On the other hand, it depends heavily on the interaction between them and the
other, irrelevant, documents in the corpus.

In order to overcome this effect, we present a version of pLSA that takes into
account the baseline relevance information of the documents and the semantic in-
formation of the query in order to build a query-specific latent semantic space that
allows diversification algorithms to maximize the diversity of the top part of the
ranking, introducing pseudo-relevance feedback effects in the overall re-ranking pro-
cess.
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4.2.1 Abstract Probabilistic Model

We will start proposing a general probabilistic modification of the EM algorithm
that will allow us to introduce the relevance in the model. Suppose that we have a
parametric latent variable model, with observed variables X, unobserved variables
Z and parameter vector Θ. Let us suppose that we have a set of observations
X = {x1, . . . , xn} with frequencies f1, . . . , fn.

Depending on the background generative model, we may be able to predict that
there might exist a set of statistically relevant observations (high frequency ones)
which are either not useful for our model or, for some reason, are better to be
filtered out before fitting its parameters. The aim of this model is to make the EM
algorithm be able to take this a priori information into account in order to improve
its effectiveness.

Let us suppose that together with the observed data, we are given an utility
function f : X → [0, 1], obtained from a priori knowledge of the observed data,
which associates each observation a score that measures how relevant it is. We will
further assume that it is normalized i.e., that

∑n
i=1 f(xi) = 1.

From (3.1.1), the log-likelihood of the observed data would be given by

log(L(θ)) =

n∑
i=1

fi log(p(xi|θ))

In the case that the samples are enhanced with the additional utility data f , it
makes sense to perturb the previous functional in order to increase the impact of
the high utility observations and weak the effect of the low utility ones. We propose
the use of the following utility-biased log-likelihood functional notion instead

Definition 4.2.1. Let (X, f) be a pair consisting on a set of observations X together
with a normalized utility function f : X → [0, 1]. We denote the functional

Lf (θ) =

n∑
i=1

f(xi) log(p(xi|θ))

both as the likelihood of the pair (X, f) or as the f -likelihood of the observed data
X.

Definition 4.2.2. The maximum-likelihood estimator for the parameters Θ given
the enhance observed data (X, f) is given by

MLEf (Θ) = argmax
θ

(Lf (θ))

It is clear that taking f(xi) = fi∑n
i=1 fi

, we have L = Lf and, thus, MLE(Θ) =

MLEf (Θ). Therefore, this notion of likelihood functional is a generalization of
the usual likelihood log(p(X|θ)). This biased estimators take a really meaningful
form in case that the utility function f can be given a model-driven probability
interpretation. Suppose that there exists a priori probability distribution x̃i over
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the observed data X for which f is an approximation over the samples, in the sense
that p̃(xi) ∼ f(xi). Then

Lf (θ) ∼
n∑
i=1

p̃(xi) log(p(xi|θ)) = H(p̃)−KLD (p̃‖p(·|θ)) (4.2.1)

Thus, we get

MLEf (Θ) = argmax
θ

(H(p̃)−KLD (p̃‖p(·|θ))) = argmin
θ

KLD (p̃‖p(·|θ))

This way, we get that the biased maximum likelihood estimator for Θ is the vector θ
for which the distribution p(·|θ) is the closest possible to the prior p̃ in the Kullback-
Leibler pseudo-metric. In other words, the distribution p(·|MLEf (Θ)) is the best
approximation of p̃ among all probability distributions of the observed variables that
factor through the given parametric latent model.

Using this theoretical framework, we can describe a general abstract procedure
in order to build relevance aware algorithms for automatic intent space construction.
The general method is to perturb pLSA retrieval models (either, search, recommen-
dation, personalization, etc.) by introducing relevance in the form of an utility
function and then applying EM or TEM algorithm to build an intent space. As
an example (to be developed in a next section), we will consider the classic pLSA
algorithm (Hofmann, 1999a) as used for building intent spaces for search diversity.
A possible application of this method would be to introduce a query variable in the
generative method, represented in a probability space Q. We pass from a latent
model over W ×D to a latent model over W ×D ×Q. This can be done in several
ways that we will consider later on.

The observed data in classic pLSA correspond to pairs (w, d), so we have a
frequency scheme of this pairs given by number of occurrences n(w, d). From this
frequencies we can estimate a conditional a priori distribution p(w|d), given by

p̃(w|d) =
n(w, d)∑

w∈W n(w, d)

On the other hand, we can estimate a probability distribution p̃(d|q) from the search
baseline. This can be done, for example, using a discount function of the ranking
of the document for the given query. Depending on the structure of the search
engine, it is possible that it even outputs such a probability distribution (or another
equivalent one, like p̃(q|d)) as a model driven document score (for example, if it is
using language models). Either of these ways allow us to compute a distribution
p̃(d, q) (taking uniform distribution over Q, for example, but the method allows
more representative utility functionals, perhaps involving inherent query ambiguity,
for instance) and, finally, a priori distribution for the observed data

p̃(w, d, q) = p̃(w|d)p̃(d, q)

This distribution will act as an utility function of the samples (w, d, q) of triples such
that the word w belongs to document d and document d appears in the baseline
ranking for query q. Now, we can use EM (and even TEM) algorithm to approxi-
mate the maximum likelihood estimator for the observed ((w, d, q), p̃). The choice of
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distribution p̃(d, q) makes observations related to more relevant documents for each
query to be taking in further consideration when it comes to building the corre-
sponding intent space. As we mentioned, this scenario will be treated in depth later
on, but it is a clear representative on how using utility-biased maximum likelihood
instead of the regular one can solve our initial problem, making EM algorithm ca-
pable of using the priori relevance information, which was omitted in classic pLSA,
and making us capable of building more discriminant and effective intent spaces
oriented for diversification.

4.2.2 Latent factor estimator via the EM algorithm

Once we have selected an utility function (that we will assume, from this point
on, to have the form of a probability distribution p̃ of the observed data), we get
an utility-based maximum likelihood estimator problem for the parameters of the
latent variable model. We can adapt the EM and TEM algorithms in order to work
with this kind of biased functionals, thus obtaining iterative algorithms which can
find locally optimal approximations for the parameters.

In this section we will obtain explicit, yet general, equations for E and M steps
of this modified EM algorithm in terms of the graph structure of the complete data
graphical model. We will see that both steps acquire a meaningful Bayesian form
when the utility functional comes from a model-driven probability distribution.

Let S = X ∪ Z be the random variables of the complete data model. Let us
assume that the complete model for S is a Bayesian network. For each node Si ∈ S,
let Sπ(i) denote the set of parents of node Si in the graphical model. The probability
of the complete data is then given by

p(X,Z) =

|S|∏
i=1

p(Si|Sπ(i))

By a convenient abuse of notation, giving a sample (x, z) of the variables X,Z we
will denote by Si(x, z) and Sπ(i)(x, z) respectively the projection of sample (x, z) to
variable Si and variables in Sπ(i) respectively. Therefore

p(x, z) =

|S|∏
i=1

p(Si(x, z)|Sπ(i)(x, z))

Let us suppose that we have samples X = {x1, . . . , xn} of observed variables X, en-
hanced with a prior utility functional, in the form of a given prior distribution p̃(X)
supported over X. The enhanced observed data is then modeled by a parametric
latent variable model, with latent variables Z and parameter vector Θ corresponding
to the unknown categorical distributions p(Si|Sπ(i)) for each node Si in the graphical
model. The utility biased maximum likelihood of the parameter vector Θ = θ given
(X, p̃) is then given by

Lp̃(θ) =
n∑
i=1

p̃(xi) log p(xi|θ) =
n∑
i=1

p̃(xi) log

∑
z∈Z

|S|∏
j=1

p(Sj(xi, z)|Sπ(j)(xi, z), θ)


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Maximizing the likelihood directly is clearly intractable. We will use the same
approach that EM, using p(z|xi, θt) as coefficients for applying Jensen inequality in
order to find a minorizing function. The calculation for each xi is exactly the same
as that of (3.1.5). Using linearity of minorizing functions proved in last chapter
yields the following minorizing functional

gp̃(θ, θt) =
n∑
i=1

p̃(xi)EZ|xi,θt [log p(xi, Z|θ)] +
n∑
i=1

p̃(xi)H(p(Z|xi, θt))

As the last factor is constant in θ, this is equivalent to maximizing the functional

Qp̃(θ, θt) =

n∑
i=1

∑
z∈Z

p(z|xi, θt)p̃(xi)
|S|∑
j=1

log p(Sj(xi, z)|Sπ(j)(xi, z))

subject to the usual normalization constraints,
∑

s∈Si p(s|v) = 1 for all i = 1, . . . , n
and every v ∈ Sπ(i). Taking a Lagrange multiplier λi,v for each i and v, M step
correspond to maximizing the functional

F =
n∑
i=1

∑
z∈Z

p(z|xi, θt)p̃(xi)
|S|∑
j=1

log p(Sj(xi, z)|Sπ(j)(xi, z))−

|S|∑
j=1

∑
v∈Sπ(j)

λj,v

∑
s∈Sj

p(s|v)− 1

 (4.2.2)

Deriving with respect to each parameter p(s|v), with s ∈ Sj , v ∈ Sπ(j), we have

0 =
∂F

∂p(s|v)
=

1

p(s|v)

∑
{(x,z)∈X×Z|Sj(x,z)=s,Sπ(j)(x,z)=v}

p(z|x, θt)p̃(x)− λi,v

Therefore,

p(s|v) ∝
∑

{(x,z)∈X×Z|Sj(x,z)=s,Sπ(j)(x,z)=v}

p(z|x, θt)p̃(x)

and normalization constraint yields the explicit form of the M step

p(s|v, θt+1) =

∑
{(x,z)∈X×Z|Sj(x,z)=s,Sπ(j)(x,z)=v} p(z|x, θt)p̃(x)∑

s∈Sj
∑
{(x,z)∈X×Z|Sj(x,z)=s,Sπ(j)(x,z)=v} p(z|x, θt)p̃(x)

(4.2.3)

On the other hand, the E step is obtained directly by Bayesian inference from
distributions p(Sj |Sπ(j)) computed in the last step

p(z|xi, θt) =

∏|S|
j=1 p(Sj(xi, z)|Sπ(j)(xi, z), θt)∑

z∈Z
∏|S|
j=1 p(Sj(xi, z)|Sπ(j)(xi, z), θt)

(4.2.4)

Therefore, we observe that both E and M steps correspond to Bayesian estima-
tion of the corresponding distributions. E step computes the aspect distributions
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p(z|xi, θt) from the Bayesian network assuming the parameter estimation for con-
ditional distributions p(Sj |Sπ(j), θt) computed in the last step. On the other hand,
M step computes the distributions p(Sj |Sπ(j), θt+1) from the aspect distribution
p(z|xi, θt) and the prior utility distribution p̃(θi), applying Bayes theorem to obtain
a distribution p(xi, z|θt) = p(z|xi, θt)p̃(xi) and marginalizing with respect to the
observed variables. Putting this together, we obtain the following general algorithm

Algorithm 4.1 Utility-biased Expectation-Maximization algorithm

1: procedure EM-algorithm(p(X,Z|θ),{xi},p̃(xi))
2: Start with a random parameter vector θ0, corresponding to random normal-

ized probability distributions p(Si|Sπ(i), θ0)
3: for each t do
4: Step E:
5: for each xi ∈ X do
6: Compute

p(z|xi, θt) =

∏|S|
j=1 p(Sj(xi, z)|Sπ(j)(xi, z), θt)∑

z∈Z
∏|S|
j=1 p(Sj(xi, z)|Sπ(j)(xi, z), θt)

7: end for
8: Step M: Select θt+1 as
9: for each i = 1 to |S| do

10: Compute

p(s|v, θt+1) =

∑
{(x,z)∈X×Z|Sj(x,z)=s,Sπ(j)(x,z)=v} p(z|x, θt)p̃(x)∑

s∈Sj
∑
{(x,z)∈X×Z|Sj(x,z)=s,Sπ(j)(x,z)=v} p(z|x, θt)p̃(x)

11: end for
12: end for
13: The algorithm stops either after a maximum number of iterations or when
‖θt+1 − θt‖ is less than a certain threshold

14: end procedure

It is worth noticing that step M becoming a direct Bayesian computation al-
lows us to apply any of the classical Bayesian network exact inference algorithms
(variable elimination, clique tree propagation, etc.) to compute the M step faster
than direct calculation. The use of an approximate inference algorithm (loopy belief
propagation, generalized belief propagation, variational inference, etc.) in order to
compute approximations for the M step parameters may be possible if it is shown
to increase functional Qp̃(θ, θt). In this case, a GEM-like algorithm would be being
used instead of an EM algorithm. Increasing of the global likelihood is warranted
at each step, but convergence properties are to be analyzed in each scenario.

The previous equations approximate all conditional distributions p(Sj |Sπ(j)). If
any of these distributions only involves observed variables, it can be estimated with
the incomplete data model alone. In this case, the algorithm can be provided with
some of the probability distributions p̃(Sj |Sπ(j)). We may substitute the param-
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eters p(Sj |Sπ(j)) by the corresponding known distributions in functional (4.2.2).
This distributions don’t need to be estimated anymore during the M step and E
step equations clearly correspond to substituting the parameters by the distribu-
tions p̃(Sj |Sπ(j)). This is essentially equivalent, yet faster, to executing the full EM
algorithm. In order to prove this, let Sj be an observed variable such that Sπ(j)
only contains observed variables. Then Sj(x, z) and Sπ(j)(x, z) are constant in z.
Denoting this projections as Sj(x) and Sπ(j)(x) respectively, we get

{(x, z) ∈ X×Z|Sj(x, z) = s, Sπ(j)(x, z) = v} = {x ∈ X|Sj(x) = s, Sπ(j)(x) = v}×Z

Therefore, as p(z|x, θt) is normalized for every x ∈ X and every step t, M step
approximation yields

p(s|v, θt+1) =

∑
{(x,z)∈X×Z|Sj(x,z)=s,Sπ(j)(x,z)=v} p(z|x, θt)p̃(x)∑

s∈Sj
∑
{(x,z)∈X×Z|Sj(x,z)=s,Sπ(j)(x,z)=v} p(z|x, θt)p̃(x)

=∑
{x∈X|Sj(x)=s,Sπ(j)(x)=v}

∑
z∈Z p(z|x, θt)p̃(x)∑

s∈Sj
∑
{x∈X|Sj(x)=s,Sπ(j)(x)=v}

∑
z∈Z p(z|x, θt)p̃(x)

=∑
{x∈X|Sj(x)=s,Sπ(j)(x)=v} p̃(x)∑

s∈Sj
∑
{x∈X|Sj(x)=s,Sπ(j)(x)=v} p̃(x)

Therefore, p(s|v, θt+1) does not depend on p(z|x, θt), it’s constant through all it-
erations and it’s equal to the distribution p̃(s|v) computed directly with the in-
complete data model. The only difference between both forms of computation is
the first E step. If distributions p̃(s|v) are used, this first step uses these exact
distributions for computing the first approximation p(z|x, θ0). Otherwise, it uses
random distributions, and starts using the real ones after the second E step. As
the rest of the parameters remain random at first approximation, the effect on con-
vergence and effectiveness can be considered negligible. Finally, this version of EM
can also be equivalently stated following Neal and Hinton (1998) structure. Let
q = (q1(z), . . . , qn(z)) represent an array of n distributions, one for each observation
in X. Let us consider the functional

Fp̃(q, θ) =

n∑
i=1

p̃(xi) (Eqi [p(z, xi|θ)] +H(qi)) (4.2.5)

We will prove that E and M steps are equivalent to alternatively maximizing func-
tional Fp̃ with respect to q and θ. Using equation (3.1.7), we obtain an analogous
correspondence to that of (3.1.8)

Fp̃(q, θ) = −
n∑
i=1

p̃(xi) KLD (qi‖p(z|xi, θ)) +

n∑
i=1

p̃(xi) log p(xi|θ) =

−
n∑
i=1

p̃(xi) KLD (qi‖p(z|xi, θ)) + Lp̃(θ) (4.2.6)

As the last term is constant in q, Gibb’s inequality implies that Fp̃(·, θ) attains
a unique global maximum at qi(z) = p(z|xi, θ). Thus, computation of E step is
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equivalent to maximizing Fp̃ with respect to q. On the other hand, it is obvious
that Fp̃(p(z|xi, θt), θ) = g(θ, θt), so maximizing F (p(z|xi, θt), θ) with respect to θ is
completely equivalent to step M. Then, we get the following algorithm

Algorithm 4.2 Alternate form of the utility-biased EM algorithm

1: procedure EM-algorithm(p(X,Z|θ),{xi},p̃(xi))
2: Start with a random vector parameter θ0
3: for each t do
4: Step E: Select q(t) =

(
q
(t)
1 (z), · · · , q(t)n (z)

)
as

q(t) = argmax
q

(Fp̃(q, θt))

5: Step M: Select θt+1 as

θt+1 = argmax
θ

(Fp̃(q
(t), θ))

6: end for
7: The algorithm stops either after a maximum number of iterations or when
‖θt+1 − θt‖ is less than a certain threshold

8: end procedure

4.2.3 Tempering

Following the ideas of Rose et al. (1990), Rose (1991) and Ueda and Nakano (1998),
discussed in last chapter, we can perturb the previous EM model with a tempering,
parametrized by an inverse computational temperature β, in order to improve its
effectiveness. If we follow the tempering methodology exposed by Ueda and Nakano
(1998), we expect this to allow the algorithm to converge to better local maxima
of the likelihood functional. On the other hand, if we adapt the Hofmann (1999b)
“inverse” tempering strategy, more general distributions are expected to arise from
the algorithm, thus decreasing the chances of overfitting the data. Both strategies
are based on applying the maximum entropy principle on the basic Helmholtz energy
functional of the algorithm.

We will start by interpreting our utility-biased maximum likelihood in the Helmholtz
energy framework. As in the last section, we will suppose that the utility function
is given by a probability distribution p̃ over X supported over X. In classic TEM,
for each sample xi ∈ X, latent variables are considered as states of a probabilistic
system with state distribution qi(z), such that the energy of each state is given by
− log p(z, xi|θ). TEM step E computes state distributions qi(z) with maximum en-
tropy among those with the same energy and M step computes the parameter vector
θ that correspond to the minimum global energy given the state distributions qi(z).

In contrast, we will consider a single probabilistic physical system, composed of
|X| mixed overlapped subsystems, each one with state space Z. Each system xi ∈ X
occurs with probability p̃(x) and, as in the EM case, they have state distribution
qi(z) and energy − log p(z, xi|θ), computed through the complete data model. Thus,
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the total energy of the complete system is given by

E(q, θ) =
n∑
i=1

p̃(xi)Eqi [− log p(z, xi|θ)]

On the other hand, the total entropy of the system is not given as the sum of the
entropies of probabilities qi. In this case, the expected total entropy is given by

H(q) = Ep̃ [H(qi)] =

n∑
i=1

p̃(xi)H(qi)

Following the maximum entropy principle, the modified E step is now stated as
maximizing the expected total entropy within the same fixed expected total energy
E(q, θt) = E. Using a Lagrange multiplier β for the energy and Lagrange multipliers
λi for each observation xi, this is equivalent to maximizing the functional

L(q, β) =
n∑
i=1

p̃(xi)H(qi)− β

(
n∑
i=1

p̃(xi)Eqi [− log p(z, xi|θt)]− E

)
−

n∑
i=1

λi

(∑
z∈Z

qi(z)− 1

)
= −

n∑
i=1

p̃(xi)
∑
z∈Z

qi(z) log qi(z)+

β
n∑
i=1

∑
z∈Z

p̃(xi)qi(z) log p(z, xi|θt)− Eβ −
n∑
i=1

λi

(∑
z∈Z

qi(z)− 1

)
(4.2.7)

Differentiating with respect to qi(z) yields

0 =
∂L(q, θ)

∂qi(z)
= −p̃(xi) (log(qi(z) + 1) + βp̃(xi) log p(z, xi|θ)− λi

Solving for qi(z) yields

qi(z) = p(z, xi|θt)β exp

(
− λi
p̃(xi)

− 1

)
so qi(z) ∝ p(z, xi|θt)β. As the distribution is normalized we get the tempered E step

q
(t)
i (z) =

p(z, xi|θt)β∑
z∈Z p(z, xi|θt)β

=

(∏|S|
j=1 p(Sj(xi, z)|Sπ(j)(xi, z), θt)

)β
∑

z∈Z

(∏|S|
j=1 p(Sj(xi, z)|Sπ(j)(xi, z), θt)

)β (4.2.8)

The same discussion about the choice of the β parameter made in the last chapter
clearly holds for this utility-biased EM. The value of the β parameter would be
determined by equation E(q, θt) = E as a function of the energy level E. As the
choice of E is essentially arbitrary, we can directly reparametrize the equations as
a function of β and fix it as a parameter of the algorithm.

This way, utility-biased TEM algorithm correspond to alternatively maximizing
functional

Fp̃,β(q, θ) = β
n∑
i=1

p̃(xi)Eqi [log p(z, xi|θ)] +
n∑
i=1

p̃(xi)H(qi) (4.2.9)
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with respect to distributions qi (E step) and parameter vector θ (M step). we can
refactor functional Fβ in terms of the untempered EM functional F (q, θ)

Fp̃,β(q, θ) = β
n∑
i=1

p̃(xi) (Eqi [log p(xi, z|θ)] +H(qi)) + (1− β)
n∑
i=1

p̃(xi)H(qi) =

βFp̃(q, θ) + (1− β)
n∑
i=1

p̃(xi)H(qi) (4.2.10)

At each step, we are identifying probability distributions qi(z) as approximations
of the distribution p(z|xi, θ). Thus, taking into account the development of equa-
tion (3.1.6) exposed in last chapter we have that the TEM algorithm finds a local
maximum of the functional

Fp̃,β = βLp̃(θ) + (1− β)

n∑
i=1

p̃(xi)H(p(z|xi, θ)) (4.2.11)

If we substitute equation (4.2.1), we get

Fp̃,β = βH(p̃)− βKLD (p̃‖p(·|θ)) + (1− β)

n∑
i=1

p̃(xi)H(p(z|xi, θ))

Dropping the first constant entropy term, we can interpret the expected topic en-
tropy as a regularization term for the EM learning algorithm. EM finds the distri-
bution p(·|θ) that factors through the complete data model that is (locally) closest
to the prior distribution p̃ in the KLD pseudo-metric. TEM seeks for this nearest
distribution while maxing the expected entropy of the topic distribution p(z|x, θ).

4.2.4 Algorithm convergence

The interpretation of the algorithm as a coordinate ascent algorithm proves that each
E and M step successively increase the value of functional Fp̃,β. This functional is
bounded from above, as Fp̃(q, θ) ≤ Lp̃(θ) ≤ H(p̃) and H(qi) ≤ H(u) for all i, where
u is a uniform distribution over Z. Thus,

Fp̃,β(q, θ) ≤ βH(p̃) + (1− β)H(u)

Then, {Fp̃,β(q(t), θt)}t≥0 is a crescent sequence bounded from above, so it converges.
Once Fp̃,β(q(t), θt) is close enough to the sequence limit, either (q(t), θt) converges
or it moves describing an Fp̃,β-almost-constant path. From this point, following an
analogous argument to the one given by Dempster et al. (1977), a convergence proof
based on the curvature of functional Fp̃,β being bounded could be straightforward.
Dempster et al. (1977) curvature computations would held simply changing the
frequency parameters to the prior distributions.

As this proof goes beyond the scope of this work, we will present an intuitive idea
of why the algorithm should computationally converge and why it should not stay
on slowly decaying cycles. From Dempster et al. (1977) proof, we know that classic
EM converges for any starting set of parameters. In particular, we know that the
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algorithm convergence for any observed samples, and thus, for any frequency vectors
n(x) over the observed dataX. Executing EM algorithm with frequency vectors n(x)

is equivalent to executing the utility-biased algorithm with prior p̃(x) = n(x)∑
x∈X n(x) .

We know that the EM algorithm converges for any choice of the frequency vectors
n(x), so, in particular, we know that the utility-biased EM converges for any p̃ with
rational values, i.e., such that p̃(x) ∈ Q for all x ∈ X. As any real number is
computationally represented as a rational number, utility-biased EM can always be
simulated in a computer as an EM execution with the adequate choice of frequency
vectors. Therefore, the algorithm will computationally converge for any choice of p̃.

Experimental results on the evolution of the Kullback-Leibler divergence between
the prior and the estimated distribution in search diversity tasks show that the
algorithm converges at a similar rate than classic EM.

4.2.5 Applications to search diversity

Deepening in the initial example, we will describe several models able to incorporate
query-specific document relevance to the pLSA algorithm. We will work in the
theoretical utility-biased likelihood framework described in the previous sections,
using the explicit utility-biased EM algorithm 4.1.

Let Q be the set of queries in the corpus. The proposed models are be based in
extending the word-document base space of pLSA to a latent model overW×D×Q.
We will consider that the observed data consist of triples (w, d, q), where the word
w belongs to document d and document d is retrieved by the baseline search system
for the query q. We can consider that d is retrieved by q if the baseline score is
higher than a threshold o simply if it belongs to the top ranking for a certain fixed
cut. In our experiments we will select documents that appear in the top 100 results
for each query. The set of retrieved documents for the query q will be denoted by
Dq.

Observed triples (w, d, q) are enhanced with a priori utility distribution p̃ as
follows. In pLSA, distribution p(w, d) corresponds to the probability of observing
the pair (w, d) in the corpus. In our case, distribution p(w, d, q) would be interpreted
as the probability of observing the pair (w, d) and document d being relevant for
query q. Using the baseline search system information, we can approximate a prior
distribution p̃(w, d, q).

If the baseline provides a full language model, the desired distribution may be
obtained directly and take into account relevance of word w for query q apart form
relevance of document d, resulting in the distribution being more informative about
the query semantic information need. Nevertheless, we will consider the search
system as a black box and use only baseline rankings for each query. In this case,
we will use the usual independence hypothesis of words being independent from the
query once the document is observed.

Figure 4.1: Prior incomplete data model

Q D W



4.2. RELEVANCE AWARE PLSA 65

Thus, we approximate

p̃(w, d, q) = p̃(w|d)p̃(d|q)p̃(q)

Distribution p̃(w|d) can be estimated from word count in the classical way

p̃(w|d) =
n(w, d)∑

w∈W n(w, d)

Jelinek-Mercer, Dirichlet or any other kind of smoothing would be possible, but
incidence matrix sparsity is crucial to the algorithm efficiency both in memory us-
age and execution time, as the observed incidence population is several orders of
magnitude smaller than |W| · |D|. We will take distribution p̃(q) simply as uniform
over Q. A priori there is no reason to treat information from different queries as
more or less valuable, but an utility functional can be used instead if we want to
incorporate parameters like query ambiguity or difficulty to the model.

Finally, we can estimate distribution p̃(d|q) either form baseline score or from
ranking position. As before, further information about probabilistic meaning of the
baseline score (for example, knowing that it corresponds to a PRP system or as the
result of a document likelihood language model) would lead to more informative
distribution, but if we only consider ranking information, it is natural to consider
the distribution as proportional to a discount functional on the ranking position.
Let τ(d, q) be the position (starting in 0) of document d in the baseline ranking of
query q, and let s : N→ R+ a discount function. We estimate

p̃(d|q) ∼ s(τ(d, q))∑
d∈Dq s(τ(d, q))

Different discount functions can be used in order to regulate the impact of the low
rank documents in the algorithm. In our search diversity task, we are not interested
in penalizing too much documents with mid-low ranking, as they might have useful
diverse information that might be promoted by the diversification algorithm, but a
non-incisive discount is yet recommended to be applied. We propose to use a simple
linear discount

s(τ) = 1− τ

|Dq|
Moreover, a Jelinek-Mercer smoothing can be applied, resulting in

p̃(d|q) ∼ λ s(τ(d, q))∑
d∈Dq s(τ(d, q))

+ (1− λ)
1

|Dq|

Once the incomplete data model is set, we need to extend pLSA latent variable
model to include the new query variable Q. Properties of the latent space will
strongly depend on the generative model used. The closer distribution p̃ is to a
distribution p(w, d, q) representable in the selected data model, the better the latent
distributions will be able to fit the data. Of course, as in every machine learning
algorithm, more complex models allow to fit better the data, but at the cost of a
bigger parameter space, and thus, more chances of overfitting.

As an example, we will provide a model that aims to extend Hofmann’s prob-
abilistic Latent Semantic Indexing algorithm (Hofmann, 1999b) so that it takes
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document relevance into account. We will consider the following utility-biased gen-
erative model for the enhanced observed data (i.e., the observed triples (w, d, q))

• Choose a random query q ∈ Q with probability p̃(q) (usually UnifQ(q))

• Select a document d ∈ Dq with probability p̃(d|q)

• Pick a latent semantic class z ∈ Z with probability p(z|d)

• Generate a word w ∈ W with probability p(w|z)

corresponding to the following complete data Bayesian network

Figure 4.2: RapLSI complete data model

Q D Z W

As the aspects and words are independent to the query once the document is
selected and none of the parameters of the model depend on the query, we can
collapse that variable in the model marginalizing and get exactly the same utility-
based MLE for the parameters. Thus, we arrive to the asymmetrical graphical model
of the original pLSA (3.3), in which the prior distribution for documents p(d) has
been replaced by

p̃(d) =
∑
q∈Q

p̃(d|q)p̃(q)

where p̃(d|q) = 0 if d 6∈ Dq. As in pLSA, we can reparametrize the problem in
the symmetric form (3.4). Substituting step E by the tempered version (4.2.8) in
algorithm 4.1 leads to the following explicit algorithm for the selected Bayesian
network
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Algorithm 4.3 Relevance aware pLSI

1: procedure RapLSI(p̃(w, d),X = {(w, d)},β)
2: Start with a random distributions p(w|z), p(d|z), p(z)
3: for each t do
4: Step E:
5: for each (w, d) ∈ X and every z ∈ Z do

p(z|w, d) =
(p(d|z)p(w|z)p(z))β∑
z∈Z (p(d|z)p(w|z)p(z))β

6: end for
7: Step M:
8: for each z ∈ Z, d ∈ D and w ∈ W do

p(d|z) =

∑
(w′,d)∈X p(z|w′, d)p̃(w′, d)∑

(w′,d′)∈X p(z|w′, d′)p̃(w′, d′)

p(w|z) =

∑
(w,d′)∈X p(z|w, d′)p̃(w, d′)∑

(w′,d′)∈X p(z|w′, d′)p̃(w′, d′)

p(z) =

∑
(w′,d′)∈X p(z|w′, d′)p̃(w′, d′)∑

z∈Z
∑

(w′,d′)∈X p(z|w′, d′)p̃(w′, d′)

9: end for
10: end for
11: The algorithm stops either after a maximum number of iterations or when

distributions p(d|z), p(w|z), p(z) have converged
12: end procedure

Once the algorithm has converged, distributions p(z|q) can be computed through
Bayesian fold in from the computed parameters, for example, taking p(z|q) =∑

d∈Dq p(z|d)p̃(d|q), where, applying Bayes theorem, p(z|d) = p(d|z)p(z)∑
z∈Z p(d|z)p(z)

. The

observed data distribution approximation is given by

p(w, d) =
∑
z∈Z

p(w|z)p(d|z)p(z)

The algorithm converges to a local maximum of the tempered functional (4.2.11),
i.e., it maximizes locally

Fp̃,β = βH(p̃)− βKLD (p̃‖p) + (1− β)
∑

(w,d)∈X

p̃(w, d)H(p(z|w, d)) (4.2.12)

Dropping the entropy regularization and focusing on the main term (i.e., taking
β = 1), we can analyze the divergence term, factorizing it trough the incomplete



68 CHAPTER 4. LATENT SEMANTIC ASPECTS FOR DIVERSIFICATION

data model as

Lp̃ =
∑
w∈W

∑
d∈D

p̃(w, d) log p(w, d) =
∑
w∈W

∑
d∈D

p̃(w|d)p̃(d) (log p(w|d) + log p(d)) =∑
d∈D

p̃(d) log p(d) +
∑
d∈D

p̃(d)
∑
w∈W

p̃(w|d) log p(w|d) = H(p̃(d))−KLD (p̃(d)‖p(d)) +∑
d∈D

p̃(d) (H(p̃(w|d))−KLD (p̃(w|d)‖p(w|d)))

Dropping the constant entropy of the priori terms, we obtain that RapLSA mini-
mizes

KLD (p̃(d)‖p(d)) + Ep̃(d) [KLD (p̃(w|d)‖p(w|d))] (4.2.13)

In the incomplete data model, p̃(w, d) splits in p̃(w|d) and p̃(d). Distributions p̃(w|d)
contain the semantic information of the data, while priori p̃(d) contain the relevance
information. Looking at equation (4.2.13) we observe that RapLSA minimizes a
combination of two divergences. Minimizing the first term, KLD (p̃(d)‖p(d)) makes
the algorithm learn the relevance information of the baseline, p̃(d). The second
term is a weighted mean of divergences between prior word distributions p̃(w|d) and
estimated distributions p(w|d), using p̃(d) as coefficients. By minimizing the second
term, the algorithm learns the term distribution of all the documents in the corpus,
prioritizing those with higher baseline relevance p̃(d).

Taking 0 < β < 1 keeps this behavior, but introduces an entropic regularization
term for the aspect distributions p(z|w, d), leading to more “general” aspect distri-
butions in the sense explained in the last section. It is worth noticing that taking

p̃(d) = p̃pLSI(d) :=
∑
w∈W n(w,d)∑

w∈W,d′∈D n(w,d
′) leads to Hofmann’s pLSI algorithm. This al-

lows us to analyze theoretically the difference in the objective functional between
classic pLSI and the proposed RapLSI.

Equation (4.2.13) hold for pLSI settingp̃ = p̃pLSI . Therefore, Hofmann’s pLSI
minimizes a combination of KLD (p̃pLSI(d)‖p(d)) and a weighted combination of
divergences KLD (p̃(w|d)‖p(w|d)) for each document. In RapLSI, the first divergence
effectively captures the relevance information provided by priori p̃, but for classic
pLSI, distribution p̃pLSI is just proportional to the length of the document, so pLSI
“learns” document length. On the other hand, document distribution p̃(d) sets
the weight coefficient for every document divergence KLD (p̃(w|d)‖p(w|d)). In case
of using classic pLSI, the algorithm gives more importance to learning the term
distribution of the largest documents.

Taking these two properties into account, theoretically, the RapLSI resulting
aspect space would cover the same abstraction needs of pLSI (synonym detection,
polysemy disambiguation, etc.), but, depending on the p̃ distribution choice, it is
supposed to become more robust than classic pLSI when dealing with noise and
spam in samples.

Now, we will focus on the task of building intent spaces optimized for their use
by diversification algorithms. As before, we will consider incomplete data models
overW×D×Q with the same prior distribution p̃(w, d, q) = p̃(w|d)p̃(d|q)p̃(q). Term
p̃(w|d) in the priori equation contains the semantic information of the data, while
the term p̃(d|q) hold the pseudo-relevance feedback information. As the Bayesian
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abstract model minimizes the KLD between the priori and the estimated distribution
of p̃(w, d, q), the resultant EM balances the influence of the semantic and relevance
information in a way that maximizes the likelihood of the a priori knowledge of the
data.

This equilibrium fits perfectly with the problem of IR diversification, in which
the mixture of pure diversity and relevance is critic. The semantic information acts
as a pure diversity source. The relevance part of the priori modulates the aspect
distributions of each document, promoting the election of high-rated documents
among those which share a certain aspect. The algorithm controls the equilibrium
while extracting the aspects, so it can lead to a more precise treatment of the
relevance for each specific document.

While the previous graphical model (4.2) appears to be natural for the indexing
task and it can indeed be used to build an intent space for diversification by means
of folding-in techniques, the resulting aspect space parametrizes global semantic
categories, similar to the ones provided by ODP. The algorithm acts essentially as
a clustering algorithm in the KLD pseudo-metric, so the size of the aspect space K
modules the “depth” of the categories, in the same way that we can use different
levels of categories in the ODP classification.

Instead, we want to extract query-specific intent spaces that are able to distin-
guish and isolate any subtle aspect of the possible information needs behind the
query expression. In order to do so, we need to use a complete data model which,
at least, makes the aspect variable depend on the query.

Several generative models may fit our needs

1. Symmetric model: We select an information need z ∈ Z from distribution
p(z) and then choose w ∈ W, d ∈ D and q ∈ Q from distributions p(w|z),
p(d|z) and p(q|z) respectively. These three distributions are interpreted as
parametrizing probability of taking a word expressing the aspect z, a docu-
ment covering the aspect z or a query that express the information need z
respectively. Words, documents and queries are considered mutually indepen-
dent given an aspect.

Figure 4.3: RapLSA model 1
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2. Symmetric linked: Similar to model 1, but document selection is supposed
to depend both on the chosen aspect and query, thus linking explicitly latent
semantics and relevance information in a single parameter distribution.
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Figure 4.4: RapLSA model 2
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3. Space of pairs (z, q): Documents and words are supposed to be independent
given a pair (z, q). Aspects are selected for each query from a probability dis-
tribution p(z|q). Documents and words are drawn from distributions p(d|z, q)
and p(w|z, q) respectively, depending on the selected pair (z, q) but indepen-
dent from each other.

Figure 4.5: RapLSA model 3
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Experimental results show that model 3 performs significantly better than the
others under diversity metrics benchmarking. As explicit E and M steps equations
are easily derived from each graphical model using pseudo-code 4.1, we will only
analyze model 3 equations and its differences from classic pLSA algorithm. In
particular, the explicit algorithm runs as follows
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Algorithm 4.4 Relevance aware pLSA model 3

1: procedure RapLSA(p̃(w, d, q),X = {(w, d, q)},β)
2: Start with a random distributions p(w|z, q), p(d|z, q), p(z|q)
3: for each t do
4: Step E:
5: for each (w, d, q) ∈ X and every z ∈ Z do

p(z|w, d, q) =
(p(d|z, q)p(w|z, q)p(z|q)p̃(q))β∑
z∈Z (p(d|z, q)p(w|z, q)p(z|q)p̃(q))β

6: end for
7: Step M:
8: for each z ∈ Z, q ∈ Q, d ∈ Dq and w ∈ W do

p(d|z, q) =

∑
(w′,d,q)∈X p(z|w′, d, q)p̃(w′, d, q)∑

(w′,d′,q)∈X p(z|w′, d′, q)p̃(w′, d′, q)

p(w|z, q) =

∑
(w,d′,q)∈X p(z|w, d′, q)p̃(w, d′, q)∑

(w′,d′,q)∈X p(z|w′, d′, q)p̃(w′, d′, q)

p(z|q) =

∑
(w′,d′,q)∈X p(z|w′, d′, q)p̃(w′, d′, q)∑

z∈Z
∑

(w′,d′,q)∈X p(z|w′, d′, q)p̃(w′, d′, q)

9: end for
10: end for
11: The algorithm stops either after a maximum number of iterations or when

distributions p(d|z, q), p(w|z, q), p(z|q) have converged
12: end procedure

If we take, p̃(q) ∼ UnifQ(q), as p̃(w, d, q) = p̃(w, d|q)p̃(q), p̃(q) factors cancel
in each fraction both in E and M steps in algorithm 4.4. Therefore, in this case,
model 3 is equivalent to conditioning RapLSI model by q for each q ∈ Q in terms
of the generative model and the complete data model. This would be therefore
equivalent to executing a RapLSI instance for each query independently, using p̃(d|q)
as document prior for each query.

Therefore, the algorithm minimizes the combination of divergences

KLD (p̃(d|q)‖p(d|q)) + Ep̃(d|q)[KLD (p̃(w|d)‖p(w|d, q))]

4.2.6 Applications to recommenders diversity

Recommendation tasks can be set in the framework of a generative model similar
to the one used by pLSA for search tasks. In terms of information recovery, user
profile would act as an implicit query and items would take the same roll of docu-
ments. Nevertheless, unless a set of item content features is available, thus enabling
content-based recommendation strategies, in recommendation tasks there is no clear
information token taking the same role as document words.
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Instead, Hofmann (2004) uses items as implicit user features. Let U be the set
of users and I be the set of items. Let us consider that a set of user-item pairs is
observed X = {(u, i)}. Let n(u, i) denote the number of observed instances of the
pair (u, i) in the corpus. Depending on the recommendation scenario, n(u, i) may
correspond to a number of times user u “accesses” or “uses” item i, evaluated by
click counts, reproductions or other methods. Then, users take a similar role to the
one documents had in the search framework and items observed for each user take
the roll of words within a document. A latent semantic model is then assumed for
the set of observed pairs (u, i), u ∈ U , i ∈ I.

Figure 4.6: Latent model for recommendation
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Hofmann (2004) applies EM algorithm to get distributions p(z|u) and p(i|z) that
maximize the likelihood of the observed pairs

L =
1

U

∑
(u,i)∈X

n(u, i) log p(i|u) =
1

U

∑
(u,i)∈X

n(u, i) log
∑
z∈Z

p(i|z)p(z|u)

Hofmann also proposes a method for introducing explicit ratings information
into a collaborative filtering model (Hofmann, 2003, 2004). Let R denote the set
of possible ratings. Hofmann describes algorithms for treating both discrete and
continuous sets of ratings. The latter is parameterized as a Gaussian distribution
whose parameters are estimated in step M of the algorithm. In order to focus on
the theoretical properties of the model and avoid additional computations, we will
restrict our ongoing analysis to a discrete set of ratings.

Hofmann (2004) considers various graphical models that can extend classic pLSA
model 4.6 to incorporate the rating variable. As we are interested in the construction
of an intent space for diversification purposes, we will use the so called categorized
model, in which items only impact the prediction through the aspect space Z

Figure 4.7: Latent model for recommendation with ratings
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Incidence triples X = {(u, i, r)} are then used as observed data, and EM algo-
rithm is used to maximize the functional

L =
1

U

∑
(u,i,r)∈X

log
∑
z∈Z

p(i|z)p(r|z)p(r|u)
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We propose to use an utility-biased version of this algorithm, in the framework
of the general procedure previously described, using either explicit or estimated user
ratings as a source of relevance for both the observed pairs (u, i) and triplets (r, u, i).

Let us assume that we have a baseline recommender system that allows us to
estimate a relevance score s : U × I → R+. The main assumption of our model is
that we can estimate the relevance of an observation (which may not correspond
exactly to the item rating) from the item relevance score. In a first approximation,
we will assume that the higher an item has been rated, the more informative it
is for the user profile. This would essentially correspond to a smoothed positive
feedback personalization strategy, in which information from non-relevant elements
is discarded (or, in this case, given a much lower impact on the profile estimation).
Normalizing the score, we obtain a normalized utility function which can be inter-
preted as a probability of observing a user-item pair, assuming that more relevant
items are more likely to be drawn for each user.

p̃(u, i) ∼ s(u, i)∑
u∈U ,i∈I s(u, i)

If an explicit set of ratings is considered in the model, for each observed pair
(u.i), a prior distribution can be estimated over the rating values, p̃(r|u, i). As a
simple approximation, if multiple ratings are available for a single pair (u, i), the
distribution can be taken simply as proportional to the observed frequency. Usually,
this is not the case, and users only rate items once. Then, triples (r, u, i) are in
bijection to observed pairs (u, i) and we can build a function r : X ⊆ U × I → R
identifying the observed rating of each pair. Therefore, as a particular case, we can
take

p̃(r|u, i) ∼
{

1 r = r(u, i)
0 r 6= r(u, i)

As usual, if more baseline information is available (such as a discovery-rating
model or prior information about user or item biases), it can be incorporated to
single utility functions p̃(u, i) or p̃(r, u, i) depending on ratings being considered or
not in the observed data model.

Once the enhanced observed data is modeled, complete data models are described
from pLSA generative models 4.6 and 4.7 using a symmetric parameterization. Both
observed and complete data models together allow us to apply utility-biased EM 4.1,
resulting in the following explicit algorithms
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Algorithm 4.5 Relevance aware pLSA recommendation model

1: procedure RapLSA(p̃(u, i),X = {(u, i)},β)
2: Start with a random distributions p(u|z), p(i|z), p(z)
3: for each t do
4: Step E:
5: for each (u, i) ∈ X and every z ∈ Z do

p(z|u, i) =
(p(u|z)p(i|z)p(z))β∑
z∈Z (p(u|z)p(i|z)p(z))β

6: end for
7: Step M:
8: for each z ∈ Z, u ∈ U and i ∈ I do

p(u|z) =

∑
(u′,i)∈X p(z|u′, i)p̃(u′, i)∑

(u′,i′)∈X p(z|u′, i′)p̃(u′, i′)

p(i|z) =

∑
(u,i′)∈X p(z|u, i′)p̃(u, i′)∑

(u′,i′)∈X p(z|u′, i′)p̃(u′, i′)

p(z|q) =

∑
(u′,i′)∈X p(z|u′, i′)p̃(u′, i′)∑

z∈Z
∑

(u′,i′)∈X p(z|u′, i′)p̃(u′, i′)

9: end for
10: end for
11: The algorithm stops either after a maximum number of iterations or when

distributions p(u|z), p(i|z), p(z) have converged
12: end procedure

Utility-biased likelihood equation (4.2.1) imply that the untempered algorithm
minimizes locally KLD (p̃(u, i)‖p(u, i)). Therefore, the algorithm effectively learns
the baseline relevance information provided to the system and builds aspect spaces
that prioritize approximating correctly the most relevant items for each user.

Classic tempered pLSA model can be recovered from algorithm 4.5 simply taking

p̃(u, i) ∼ n(u, i)∑
u∈U ,i∈I n(u, i)

Therefore, the proposed method generalizes Hofmann’s pLSA.
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Algorithm 4.6 Relevance aware pLSA recommendation model with explicit ratings

1: procedure RapLSA(p̃(u, i),X = {(r, u, i)},β)
2: Start with a random distributions p(u|z), p(i|z), p(r|z), p(z)
3: for each t do
4: Step E:
5: for each (r, u, i) ∈ X and every z ∈ Z do

p(z|u, i, r) =
(p(u|z)p(i|z)p(r|z)p(z))β∑
z∈Z (p(u|z)p(i|z)p(r|z)p(z))β

6: end for
7: Step M:
8: for each z ∈ Z, u ∈ U and i ∈ I do

p(u|z) =

∑
(r′,u′,i)∈X p(z|r′, u′, i)p̃(r′, u′, i)∑

(r′,u′,i′)∈X p(z|r′, u′, i′)p̃(r′, u′, i′)

p(i|z) =

∑
(r′,u,i′)∈X p(z|r′, u, i′)p̃(r′, u, i′)∑

(r′,u′,i′)∈X p(z|r′, u′, i′)p̃(r′, u′, i′)

p(r|z) =

∑
(r,u′,i′)∈X p(z|r, u′, i′)p̃(r, u′, i′)∑

(r′,u′,i′)∈X p(z|r′, u′, i′)p̃(r′, u′, i′)

p(z|q) =

∑
(r′,u′,i′)∈X p(z|r′, u′, i′)p̃(r′, u′, i′)∑

z∈Z
∑

(r′,u′,i′)∈X p(z|r′, u′, i′)p̃(r′, u′, i′)

9: end for
10: end for
11: The algorithm stops either after a maximum number of iterations or when

distributions p(u|z), p(i|z), p(r|z), p(z) have converged
12: end procedure

If ratings are unique for every observed pair (u, i) step M equations can be
slightly simplified, as summation over R is no longer necessary (there is only one
factor).

Either case, analogous computations to the ones done for RapLSA prove that
the untempered algorithm minimizes locally

KLD (p̃(u, i)‖p(u, i)) +
∑

(u,i)∈X

p̃(u, i) KLD (p̃(r|u, i)‖p(r|u, i))

The first factor corresponds exactly to the same divergence between the rele-
vance prior p̃(u, i) and the estimated distribution p(u, i), minimized by the previous
version. The second factor corresponds to a weighted mean of the divergences be-
tween the real rating distribution p̃(r|u, i) and the predicted rating p(r|u, i), using
the prior utility distribution values as mixing factors.

Thus, the algorithm learns the relevance information and, at the same time, it
learns the explicit ratings registered for the observed pairs user-item, prioritizing
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learning items with higher relevance.

While it may seem redundant to enhance the rating observations (r, u, i) with
an estimated relevance distribution p̃(r, u, i) obtained from the rating itself, we have
to notice that categorical ratings R don’t hold the same topological information as
the distribution p̃(r, u, i). Even if we used a continuous set of ratings that held the
original rating order, classic pLSA does never allow rating values to be transfered to
the EM dynamics. Nevertheless, previous divergence computations prove that the
proposed new models intrinsically learn this relevance information, therefore adapt-
ing successfully the original algorithm to the desired smoothed positive feedback
strategy.

Finally, we notice that depending on the baseline system, there might exist user
an item biases that would get immediately propagated to the EM dynamics. In
particular, the profiles of users (or items) with overall higher ratings would be an-
alyzed through observed pairs (u, i) with high relevance p̃(u, i). Therefore, learning
its profile would become a priority for the system, over learning profiles with lower
ratings. There are several ways of mitigating this effect. The first and simplest one
would consist in normalizing the ratings/scores before applying the algorithm. As
the explicit rating value doesn’t affect the dynamics, categorical ratings may be left
unmodified, but relevance scores are highly recommended to be normalized among
users/items.

On the other hand, a model driven strategy might be applied. Taking into
account that

KLD (p̃(u, i)‖p(u, i)) = KLD (p̃(u)‖p(u)) +
∑
u∈U

KLD (p̃(i|u)‖p(i|u)) =

KLD (p̃(i)‖p(i)) +
∑
i∈I

KLD (p̃(u|i)‖p(u|i))

we can compensate any relevance bias by perturbing user or item priors, therefore
absorbing any existing biases in the selected prior.

4.2.7 Further applications

General algorithm 4.1 can be applied to any pair consisting of an utility-enhanced
observed data and a complete latent variable model in the form of a Bayesian net-
work, for which unknown distributions are assumed to be categorical (i.e., whose
parameters correspond to categorical distributions).

Generative models described in the last sections represent just a few examples
of application of the general theoretical framework. As far as a suitable generative
model can be described for the complete data of an information retrieval problem and
a proper utility distribution can be inferred for the observed data that reflects the
relevance of the observation, the algorithm allows us to build automatically intent
spaces that priorize learning of the more relevant pieces of information, while, at
the same time, learning the utility distribution itself.

In this section we will describe some information retrieval tasks for which these
models can be theoretically described and thus, for which RapLSA algorithm can
be applied. Once prior distribution and complete data model are fixed, the explicit
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form of E and M equations comes straightforward from direct computation in general
algorithm 4.1, so some of them will be omitted. Tempering is also available for all
models, applying equation (4.2.8).

Personalized search

RapLSA models describe in the las section transfer almost directly to the person-
alization scenario by introducing a random variable over the set of users U acting
similar to the query. We will assume that we have a baseline user profile source and
we will distinguish two scenarios depending on the baseline being sensible or not to
the user profile.

In the first simplest one, we will suppose that our baseline search engine is
already personalized, so that retrieved documents for each query q also depend on
the user u. Denoting by Dq,u the set of retrieved documents (top 100 retrieved, for
example, just as in RapLSI), we can build a probability distribution p̃(d|q, u) over
Dq,u. Similarly to RapLSI, this distribution can be estimated precisely from the
baseline score if suitable, or it can be estimated from the ranking τ(d, q, u) using a
discount function

p̃(d|q, u) ∼ s(τ(d, q, u))∑
d∈Dq.u s(τ(d, q, u))

Then, we can use this incomplete data model

Figure 4.8: Personalized incomplete data model for RapLSA (scenario I)
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to estimate p̃(w, d, q, u) = p̃(w|d)p̃(d|q, u)p̃(q, u) for some, typically uniform dis-
tribution p̃(q, u).

Then, we can use the following graphical model for the complete data with
coupled (z, q, u) triples
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Figure 4.9: Personalized RapLSA(model 3)
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As with RapLSA model 3 (4.5), the resulting algorithm will be equivalent to
executing RapLSI for each query and user, taking p̃(d|q, u) as document priori.
This version of the algorithm would minimize, for each user and query,

KLD (p̃(d|q, u)‖p(d|q, u)) + Ep̃(d|q,u)[KLD (p̃(w|d)‖p(w|d, q, u))]

so it will learn personal document relevance for each query (the provided person-
alized relevance information) at the same time as the term distribution of each
document, prioritizing those expected to be more relevant to the user for the query.

The second and more complex scenario would correspond to having ad-hoc base-
line separated from personal profiles. In this case, we can use the following simplified
version of model 4.8, in which personal information is (initially) supposed to be in-
dependent of the query given a document (i.e., personal bias is content-related,
independently of the query).

Figure 4.10: Personalized incomplete data model for RapLSA (scenario II)
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to estimate p̃(w, d, q, u) = p̃(w|d)p̃(u|d)p̃(d|q)p̃(q) for some, typically uniform dis-
tribution p̃(q). p̃(u|d) can be estimated using Bayes theorem from p̃(d|u), assuming
a known prior distribution p̃(u) over U (for example, p̃(u) ∼ UnifU (u)) taking

p̃(u|d) =
p̃(d|u)p̃(u)∑
d∈D p̃(d|u)p̃(u)

where p̃(d|u) can be easily estimated directly from user profile data depending on
the explicit kind of profile available (document history, tags, personalized language
model, etc.). In particular, if p̃(u) is uniform, we get p̃(u|d) = p̃(d|u). Previous
complete data model (4.9) can still be applied.
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If p̃(q) is taken as uniform, analogous computations to the ones done for RapLSA
model 3 show that distribution p̃(q) cancels in E and M step equations. Priori and
estimated distributions for the incomplete data model factors as

p̃(w, d, u|q) = p̃(w|d)p̃(d|q)p̃(u|d)

p(w|d, q, u) = p(w|d, q, u)p(d|q, u)p̃(u)

Thus, for each query q ∈ Q, the (untempered) algorithm minimizes

KLD (p̃(d, u|q)‖p(d, u|q)) + Ep̃(d,u|q)[KLD (p̃(w|d)‖p(w|d, q, u))]

or, equivalently, it minimizes

Ep̃(u|q)[KLD (p̃(d|q, u)‖p(d|q, u))] + Ep̃(d,u|q)[KLD (p̃(w|d)‖p(w|d, q, u))]

Therefore, the algorithm learns both personalized relevance (distributions p̃(d|q, u))
and term distributions p̃(w|d), priorizing learning the profile of users that are more
likely to find information provided by query q relevant, i.e., such that relevant
documents for query q are overall considered relevant for user u (high p̃(u|q) =∑

d∈Dq p̃(u|d)p̃(d|q)).

Producer-consumer search model

General methodology behind utility-biased EM can be applied additively when the
utility-biased likelihood of more than one set of observed variables is considered. We
will use this to obtain a RapLSA-like model that takes into account all information
available for the system at the same time: baseline relevance scores, term frequencies
for each document and a query language model (which, in the simplest scenario,
would correspond to smoothed query terms).

The basis of the model is to decouple the generative model of the production of
a document from the point of view of its creator (or producer user) from the gen-
erative model describing how (consumer) users consume the information, in terms
of how they form a query expressing an abstract need of information. Both pro-
ducer and consumer generative models are describe within the pLSA latent semantic
framework.

Producer user generates documents expressing a series of abstract ideas/topics
Z. For each topic, a certain word distribution p(w|zp) from a universal vocabulary
W is used to select the literal expression of those ideas. Identifying each document
with its producer user, we get classic pLSI generative model

Figure 4.11: Producer semantic model

Up ∼= D Zp W

for which we observe the final term distribution for each document, p̃(w|d).
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On the other hand, consumer user wants to search for a set of abstract in-
formation tokens/topics Zc, summarized selecting a few words in a query from a
distribution p(w|zc). Identifying each query to its consumer user, we get

Figure 4.12: Consumer semantic model

Uc ∼= Q Zc W

for which we observe (or estimate from a query language model) the final query
term distribution p̃(w|q).

The main assumption of the producer-consumer model is that aspects Zc and
Zq both lie within a big universal latent topic space Z. Aspect distributions over
Zc and Zq can be understood as distributions over Z supported over Zc and Zq
respectively, so both parts of generative model are linked by the common aspect
space Z. Moreover, relation between Up and Uc, identified withD andQ respectively,
can be inferred from the baseline relevance (baseline search system score or ranking
for the given query). Using a symmetric reparametrization of models 4.11 and 4.12
and identifying latent variable spaces, we obtain the following complete data model

Figure 4.13: Producer-consumer semantic model
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where the dashed lines over the graphical model indicate the known priors in
the observed data model. Distributions p̃(w, d), p̃(w, q) and p̃(d, q) are obtained
from the described priors fixing suitable p̃(q) (for, example, uniform) and p̃(d). The
algorithm then maximizes the combination of the utility-biased likelihoods of the
parameters using all three prior distributions,

L =
∑

w∈W,d∈D
p̃(w, d) log

∑
z∈Z

p(w|z)p(d|z)p(z)+

∑
w∈W,q∈Q

p̃(w, q) log
∑
z∈Z

p(w|z)p(q|z)p(z) +
∑

d∈D,q∈Q
p̃(d, q) log

∑
z∈Z

p(d|z)p(q|z)p(z)

In order to do so, we will simultaneously execute three utility-biased EM itera-
tions coupled by a common set of parameters, in the form of distributions p(w|z),
p(d|z), p(q|z) and p(z).

In chapter one, we proved that minorizing relation is additive, so

g(θ, θt) = gp̃(w,d)(θ, θt) + gp̃(w,q)(θ, θt) + gp̃(d,q)(θ, θt)
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minorizes L. E step comes from direct Bayes computation for each pair of coupled
variables

p(z|w, d) =
p(w|z)p(d|z)p(z)∑
z∈Z p(w|z)p(d|z)p(z)

p(z|d, q) =
p(d|z)p(q|z)p(z)∑
z∈Z p(d|z)p(q|z)p(z)

p(z|w, q) =
p(w|z)p(q|z)p(z)∑
z∈Z p(w|z)p(q|z)p(z)

(4.2.14)

M step Qp̃ functional equations and Lagrange multiplier functional (4.2.7) are
additive over the three combined minorizing functionals. Therefore, direct compu-
tation yields

p(w|z) ∝
∑
d′∈D

p̃(w, d′)p(z|w, d′) +
∑
q′∈Q

p̃(w, q′)p(z|w, q′)

p(d|z) ∝
∑
w′∈W

p̃(w′, d)p(z|w′, d) +
∑
q′∈Q

p̃(d, q′)p(z|d, q′)

p(q|z) ∝
∑
w′∈W

p̃(w′, q)p(z|w′, q) +
∑
w′∈W

p̃(w′, q)p(z|w′, q)

p(z) ∝
∑

w′∈W,d′∈D
p̃(w′, d′)p(z|w′, d′) +

∑
w′∈W,q′∈Q

p̃(w′, q′)p(z|w′, q′)+

∑
d′∈D,q′∈Q

p̃(d′, q′)p(z|d′, q′) (4.2.15)

The resulting aspect space would theoretically capture at the same time docu-
ment semantics, query latent intents and prior document relevance. If we compare
this algorithm to RapLSA, we observe that this would be already possible if we were
able to build a prior p̃(w, d, q) that represented at the same time all three sources
of information. Nevertheless, this can be difficult to estimate unless our baseline
system gives us access to a complete language model that fits both documents and
queries.

The observed data prior proposed for RapLSA uses a simplified generative model
for the incomplete data that would make it almost impossible to obtain this kind
of information. Estimating distributions p̃(w, d), p̃(w, q) and p̃(w, d) doesn’t allow
us to infer a complete distribution p̃(w, d, q) (known distributions impose less than
WD + WQ + DQ + 1 independent equations over WDQ variables). Trying to do
so would result in a more restrictive system. If such a distribution is fixed, RapLSA
would obtain the (locally) closest distribution factoring through the complete data
model, while this new proposed algorithm would obtain distributions (locally) closest
to set of distributions marginalizing to the given ones. Therefore, the obtained
distributions would potentially be closer to the primal priors, while RapLSA over
an estimated mixture would just be closer to that approximated joint distribution.
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Content based recommender models

In our previous exposition about the similarities between pLSA models for recom-
mendation and search, we described how, while user profiles seem to take the role
of implicit queries and items seem to represent documents, there didn’t exist a clear
substitute for the role of words within documents. We will describe a simpler, yet
general, alternative for the previous model when there exist an explicit set of infor-
mation tokens that can take that content-describing role, thus leading to a content
based model.

Let us suppose that there exist a set F = {F1, · · · ,FL} of item feature spaces,
such that for each item i ∈ I an associated vector of prior feature distributions can
be estimated ˜p(f |i) = p̃(f1, . . . , fL|i) for each fj ∈ Fj .

We will assume that triples (u, i, f) are observed following the next generative
model

• A random user u ∈ U is drawn from a prior distribution p̃(u).

• A latent user feature z ∈ Z is selected from a distribution p(z|u)

• An item i ∈ I is picked from distribution p(i|z)

• For each feature Fj ∈ F , pick a feature value fj ∈ Fj from a distribution
p(fj |z)

Figure 4.14: RapLSA recommendation model with item features
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There exist several kind of feature spaces for which the model can be applied. As
an example, let us consider film recommendation. Suitable features would include

• Title and plot summary word distributions: The combination of title
and plot summary gives us explicitly a plain text description of the algorithm,
completely analogous to a text document in search tasks.

• The director: binary prior that takes value 1 for the film director.

• List of principal actors: distribution among the set of actors, with higher
probability the more important its role was or the more popular the actor is

• Producer companies: uniform among set of producers involved in the movie

• Explicit known genres: if a set of genres is available, each film can be given
a distribution over them, for example, taking it as uniform supported over the
genres to which the film belong
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• Country: Adding a variable that ranges over the full existing countries would
be computationally inefficient. Instead, a set of the most ones plus an ”other”
option can be used. Prior distribution

As a natural assumption, in order to build a distribution over the full observed
data X ⊆ U × I ×F we will suppose that feature distributions only depend on the
item, thus making all feature variables Fj independent from the user U given an item
i ∈ I. On the other hand, a distribution p̃(u, i) can be estimated from a baseline
relevance source as with the usual RapLSA, leading to a prior utility distribution

p̃(u, i, f) = p̃(u, i)p̃(f |i)

Usually, in order to build the prior, we can further consider that features are inde-
pendent from each other given a the item, so

p̃(u, i, f) ∼ p̃(u, i)
L∏
j=1

p̃(fj |i)

It becomes clear that the availability of any of these features would be useful
for building a more precise user profile. Resulting latent intent space would then
be expected to be more refined, capturing the semantic information simultaneously
from user similarities and item features.

As usual, we will consider the equivalent reparameterized symmetric version.
Instantiating algorithm 4.1 with the modified tempered E step (4.2.8) yields
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Algorithm 4.7 Relevance aware pLSA recommendation model

1: procedure RapLSA(p̃(u, i, f),X = {(u, i, f)},β)
2: Start with a random distributions p(u|z), p(i|z), p(fj |z), p(z)
3: for each t do
4: Step E:
5: for each (u, i, f) ∈ X and every z ∈ Z do

p(z|u, i, f) =

(
p(u|z)p(i|z)p(z)

∏L
j=1 p(fj |z)

)β
∑

z∈Z

(
p(u|z)p(i|z)p(z)

∏L
j=1 p(fj |z)

)β
6: end for
7: Step M:
8: for each z ∈ Z, u ∈ U and i ∈ I do

p(u|z) =

∑
(u′,i,f ′)∈X p(z|u′, i, f ′)p̃(u′, i, f ′)∑

(u′,i′,f ′)∈X p(z|u′, i′, f ′)p̃(u′, i′, f ′)

p(i|z) =

∑
(u,i′,f ′)∈X p(z|u, i′, f ′)p̃(u, i′, f ′)∑

(u′,i′,f ′)∈X p(z|u′, i′, f ′)p̃(u′, i′, f ′)

p(fj |z) =

∑
{(u,i′,f ′)∈X|f ′j=fj}

p(z|u, i′)p̃(u, i′)∑
(u′,i′,f ′)∈X p(z|u′, i′, f ′)p̃(u′, i′, f ′)

p(z) =

∑
(u′,i′,f ′)∈X p(z|u′, i′, f ′)p̃(u′, i′, f ′)∑

z∈Z
∑

(u′,i′,f ′)∈X p(z|u′, i′, f ′)p̃(u′, i′, f ′)

9: end for
10: end for
11: The algorithm stops either after a maximum number of iterations or when

distributions p(u|z), p(i|z), p(z) have converged
12: end procedure

In this case, the minimized function would correspond to

KLD (p̃(u, i)‖p(u, i)) +
∑

u∈U ,i∈I
p̃(u, i) KLD (p̃(f |i)‖p(f |u, i))

Therefore, as usual, both relevance information p̃(u, i) and feature distributions
p̃(f |i) are learned, prioritizing the approximation of the features of the most relevant
items for each user.

Collaborative filtering based recommender models

The previously described recommender models (4.5 and 4.6) can be used indepen-
dently on the kind of baseline relevance source used. This includes any kind of
content based, collaborative or hybrid filtering methods. In this section, we will
explore an alternative procedure for the collaborative filtering scenario.
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A common procedure for a collaborative filtering method diversification would
be the following

1. A user similarity matrix sim(u, v) is estimated using a certain similarity com-
puting algorithm Asim

2. Apply a collaborative filtering recommendation algorithm ACF that computes
the objective function using the previous similarity. For example, if we want
to uniformize user biases, we can take

s(u, i) = µ(r) + σ(r)
∑
v∈Nu

sim(u, v)r̃(v, i)

where r̃(v, i) is the normalized rating

r̃(v, i) =
r(v, i)− µv(r)

σvr

3. PLSA is applied over the observed pairs X = {(u, i)}. If our recommendation
models are used, RapLSA is applied using p̃(u, i) ∝ s(u, i) in order to obtain
a latent variable space that represents latent interests of users. A complete
distribution p(u, i, z) is approximated.

4. A diversification algorithm Adiv like xQuAD or IA-Select is used to diver-
sify ACF results based on the latent factor space extracted by RapLSA, the
estimated distribution p(u, i, z) and the baseline score s(u, i).

In this kind of approaches, user similarity is computed in absolute terms, not
taking into account that users might be similar to each other in some aspects of
their profiles bot not in others. For example, let us consider two users A and B in
a movie recommendation task.

• User A is mainly interested in science fiction and terror movies.

• User B is interested in science fiction and comedy movies. Moreover, he likes
the same kind of science fiction movies than A.

The overall similarity between user profiles A and B can be very low if A watches
more terror film than science fiction ones and B watches more comedies than science
fiction. Nevertheless, if we restrict ourselves to science fiction recommendation, user
A and B are very similar. If we want to recommend user A a science fiction film it
would indeed be interesting to analyze user B tastes in science fiction films.

Therefore, in the context of latent aspects, it is interesting to analyze user sim-
ilarity conditioned by a certain aspect. We propose to use RapLSA to extract an
aspect space from both item ratings and baseline user similarities. User baseline
similarity is not necessarily restricted to evaluate common item rating profiles. It
can incorporate other sources of information, such as user popularity or social data.
In this way, we can incorporate both ground relevance and inter-user information
to the pLSA model.

Let us take p̃(v|u) ∝ sim(u, v), where we will assume that the similarity function
is positive and bounded. We will interpret p̃(v|u) as the probability that v has the
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same user model/profile than u for a fixed u. Utility distribution p̃(i|u) can be
estimated through item scores, taking p̃(i|u) ∝ s(u, i). Moreover, we can incorporate
explicit ratings taking binary p̃(r|i, u). Finally, a user prior p̃(u) is assumed. This
can be taken as uniform or through a popularity model.

As observed data, we will consider quadruples (u, v, i, r) consisting of a triple
(v, i, r) such that rating r is registered for user v and item i, and a user u such that
u and v might share a common latent intent profile. A priori, user u would range
over all U for all triple (v, i, r), and expected probability of u and v sharing profile
is regulated by p̃(v|u). Observed data is enhanced with distribution

p̃(r, v, i, u) = p̃(r|i, v)p̃(i|v)p̃(v|u)p̃(u)

following the Bayesian model

Figure 4.15: RapLSA CF observed data model
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Observed items and ratings can be considered independent from user u given
user v, because u and v are assumed to share a common latent profile. We consider
the following latent variable model

Figure 4.16: RapLSA CF complete data model
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Subgraph {R,U, I, Z} can be refactorized using any of the pLSA rating recom-
mendation models used by Hofmann (2004). The final estimated user-item-rating
distribution is taken as

p(r, i, u) =
∑
z∈Z

∑
v∈V

p(r|i, v, z)p(i|z)p(v|z)p(z|u)

We observe that, similarly to classic collaborative filtering algorithms, item ratings
are computed as a mixture of item ratings for other users, pondered by the similarity
between the original user and the others.
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If p̃(u) is considered as uniform, the algorithm is equivalent to considering every
distribution as conditioned by u. Then, the algorithm minimizes, for each user u ∈ U

KLD (p̃(v|u)‖p(v|u)) +
∑
v∈U

p̃(v|u) KLD (p̃(i|v)‖p(i|v, u)) +∑
i∈I,v∈U

p̃(i, v|u) KLD (p̃(r|i, v)‖p(r|i, v, u))

First factor makes algorithm learn the explicit baseline user similarity. Second factor
makes algorithm learn item distribution for each user. As p̃(i|v) is independent of
u, the algorithm tries to make p(i|v, u) the closest possible to be independent of u,
prioritizing for each user, learning the item distribution of its closest neighbours. It
is worth noticing that this is done in both directions, ranging over u and v, as the
more close two users are, the more similar p̃(i|u) and p̃(i|v) are supposed to be, and
the algorithm would make p(i|u, v) and p(i|v, u) be both very similar to each other
and similar to p(i|v) in the Kullback-Leibler divergence sense. Finally, the third
factor makes the algorithm learn the ratings for each of the observed users and
items, overall prioritizing learning those having higher probability to being relevant
to user u.

User similarity sim(u, v) can be estimated using any available method, but a
probabilistic method would link better with the rest of the theoretical framework.
In particular, conditional exponential model for user similarity proposed by Jin
et al. (2004) fits both the global probabilistic formulation and the maximum entropy
principle applied in EM tempering. Taking into account the previous divergence
factorization, KLD (p̃(v|u)‖p(v|u)) being minimized and p̃(v|u) being obtained by
the maximum entropy principle makes p(v|u) estimation tend to be of maximum
entropy possible.

Therefore, the obtained distribution p(v|u) is an approximation by the maximum
entropy principle. If we add the entropic regularization term of tempered EM (4.2.8),
the whole model correspond to the distribution covering the observed data with
maximum entropy.

4.2.8 Geometric interpretation of the algorithm

The utility biased Expectation-Maximization algorithm can be given an interesting
theoretical interpretation in the framework of information geometry.

Let us consider a complete data model consisting on a set of observed variables
X = {X1, . . . , Xn} and a set of latent variables Z = {Z1, . . . , Zk}, represented by
a Bayesian graph G. Let P(X) be the manifold with boundary parameterizing all
possible categorical probability distributions over the observed variables X. As a
differential manifold, it is defined as the submanifold of R|X1|···|Xn| corresponding to
the nonnegative coordinates with sum one, i.e.

P(X) = {p(x)|x ∈ X, p(x) ≥ 0,
∑
x∈X

p(x) = 1}

the manifold can be given a Riemannian structure using Fisher information metric.
In the case of a space of categorical distributions, this metric takes the following
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explicit form in the adapted coordinates
{

∂
∂p(x)

}
x∈X

g|p =
∑
x∈X

p(x)d(log p(x))⊗ d(log p(x)) =
∑
x∈X

1

p(x)
d(p(x))⊗ d(p(x))

Reparameterizing p(x) = f2x , P(X) is diffeomorphic to the possitive quadrant of the
sphere S|X1|···|Xn|−1 ⊂ R|X1|···|Xn|. If we pull back the fisher information, we obtain
that it is isometric to the positive quadrant of the euclidean sphere or radius 2, i.e.,
the sphere with the induced ambient euclidean metric, as

gc|f =
∑
x∈X

dfx ⊗ dfx =
∑
x∈X

d(
√
p(x))⊗ d(

√
p(x)) =

1

4

∑
x∈X

d(p(x))⊗ d(p(x))

p(x)
=

1

4
g|p

Fisher information metric is heavily linked to Kullback-Leibler divergence. For
each distribution p, metric matrix at point p, gp, correspond to the Hessian of the
Kullback-Leibler divergence with respect to p, KLD (p‖·).

Now, let us consider the space of distribution over X and Z, P(X,Z). This
manifold parameterizes all possible distributions of the complete data. Marginalizing
the latent variables allow us to project P(X,Z) into P(X) taking

P(X,Z) �
� π // P(X)

p(x, z) � //
∑

z∈Z p(x, z)

Let P0(X) denote the interior of the manifold, corresponding to distributions that
are nowhere zero (its support is all X). On the other hand, let us suppose that a
Bayesian network is given over the complete data, represented by a directed acyclic
graph G. Let Sj be a node in G and let us denote by Sπ(j) the set of parents of node
Sj . We will denote by P(Sj |Sπ(j)) the manifold parameterizing the set of conditional
distributions of variable Sj given the value of Sπ(j), i.e.

P(Sj |Sπ(j)) = {p(s|v)|s ∈ Sj , v ∈ Sπ(j), p(s|v) ≥ 0,
∑
s∈Sj

p(s, v) = 1∀v ∈ Sπ(j)}

From the definition it becomes clear that P(Sj |Sπ(j)) ∼= P(Sj)
|Sπ(j)|. Moreover,

for any couple of variable sets X, Y , Bayes theorem provides us an isomorphism
between the interior of the manifolds

P0(X|Y )× P0(Y ) oo
∼ // P0(X,Y ) := P0(X ∪ Y )

(p(x|z), p(z)) � // p(x|z)p(z)(
p(x,z)∑
x∈X p(x,z) ,

∑
x∈X p(x, z)

)
p(x|z)p(z)�oo

If we drop the nonzero condition, we still have a projection P(X|Y ) × P(Y ) →
P(X,Y ). This correspondence can be clearly extended to an arbitrary number of
factors following Bayes rule. This motivates the following definition. Let PG(X,Z)
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be the subvariety of P(X,Z) corresponding to distributions factorizing through the
graphical model G. This corresponds to the image of the map

∏n
j=1 P(Sj |Sπ(j))

ϕG // P0(X,Y ) := P0(X ∪ Y )

(p(Sj(x, z)|Sπ(j)(x, z))) � // p(x, z) =
∏n
j=1 p(Sj(x, z)|Sπ(j)(x, z))

Let PG(X) be the projection of PG(X,Y ) through π, i.e., the manifold consisting
on the marginalized distributions that factor through G.

PG(X) := π(PG(X)) = (π ◦ ϕG)

 n∏
j=1

P(Sj |Sπ(j))

 =

=

{
p(x) ∈ P(X)|∃p(x, z) ∈ PG(X,Z) p(x) =

∑
z∈Z

p(x, z)

}

Now, let us consider some utility enhanced data (X, p̃) over which utility-biased EM
is applied. Clearly, p̃ ∈ P(X). On the other hand, as the estimated distribution
factorizes through the complete data model, p(x, z) ∈ PG(X,Z). Equation (4.2.1)
proves that the utility-biased maximum likelihood estimator corresponds to the set
of parameters minimizing KLD (p̃‖p). As considered distributions are categorical
and the set of parameters is taken to be the full set of values of the distributions
p(Sj |Sπ(j)), the utility-biased maximum estimator correspond to finding the distri-
bution p(x, z) ∈ PG(X,Z) such that KLD (p̃‖p) is minimum.

Utility-biased EM algorithm locally minimizes this divergence. Instead of con-
sidering the corpus-dependent complex local dynamics, we will focus on the global
objective dynamics and on comparing utility-biased EM with classic EM. This will
give a taste on the qualitative differences between both methodologies from the
information-theoretical point of view.

For a given p̃ fixed, given another point q ∈ P(X,Z), KLD (p̃‖q) gives the square

of the length of the geodesic γt(x) = p1−t(x)qt(x)∑
x′∈X p1−t(x)qt(x) from p to q. Therefore, for a

fixed point p̃, minimizing the divergence of any point of PG(X) with respect to p̃ is
equivalent to finding the projection of p̃ to the manifold PG(X).

We proved that classic EM correspond to taking p̃(x) ∝ n(x). Let us denote
that canonical prior distribution by p̃c(x). Then changing from EM to utility-based
EM corresponds to rotating the projection point in the space of distributions P(X).

In order to appreciate better the geometric effect of this change, let us particu-
larize the previous manifolds for a pLSI model executed over a single query q (model
4.2). Classic Hofmann prior is

p̃c(w, d) = p̃c(w|d)p̃c(d) =
n(w, d)

|d|
|d|∑
d∈D |d|

while proposed prior would be

p̃(w, d) = p̃c(w|d)p̃(d)
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where, as we considering a single query q, p̃(d) = p̃(d|q). PG(W,D) can be explicitly
described as the image of P(W |Z) × P(D|Z) × P(Z) by π ◦ ϕG. Moreover, if we
naturally suppose that samples are available for all documents within the corpus, we
can restrict the model to the interior of P(D) and consider the equivalent problem in
P(W |D)×P0(D). Pulling back Kullback-Leibler divergence from P(W,D) induces
the following divergence in P(W |D)× P0(D)

KLD (p(w, d)‖q(w, d)) =∑
d∈D

∑
w∈W

p(w|d)p(d) (log p(d)− log q(d) + log p(w|d)− log q(w|d)) =∑
d∈D

p(d) (log p(d)− log q(d)) +
∑
d∈D

p(d)
∑
w∈W

p(w|d) (log p(w|d)− log q(w|d)) =

KLD (p(d)‖q(d)) +
∑
d∈D

p(d) KLD (p(w|d)‖q(w|d))

This divergence comes as the sum of the divergences of the projections of p(w, d)
and q(w, d) to both spaces P0(D) and P(W |D). In the first space, the divergence is
the usual Kullback-Leibler divergence. Using the isomorphism P(W |D) ∼= P(W )|D|,
the second divergence corresponds to a pondered sum of divergences of each factor,
where each term is pondered by the corresponding p(d).

Taking this consideration into account, back to the original pLSI scenario, we
can translate the projection problem into the factorized space P0(D) × P(W )|D|,
projecting PG(W,D) into both factors through Bayes theorem. Prior p̃(w, d) de-
composes in the classical priors p̃c(w|d) and the variable document prior p̃(d).

Geometrically, distributions p̃(w|d) being fixed, if we restrict ourselves to P(W |D)
we can understand the change of prior p̃(d) not as a movement of the projection
point, but as a dilatation of the space in certain directions. Considering the image of
PG(W,D) in P0(D)×P(W )|D|. Finding the closest point to (p̃(d|q), p̃c(w|d)) would
be equivalent to finding the closest point to (p̃c(d), p̃c(w|d)) if we dilated each space
P(W ) corresponding to D = d by the factor

λd =
p̃(d|q)
p̃c(d)

and rotate p̃(d) in the space P0(D)

Therefore, we prove that geometrically, changing the prior from the Hofmann
pLSA one to the relevance p̃(d|q) corresponds to compressing the information variety
along term distribution spaces P(W ) corresponding to less relevant documents and
stretching it along distribution spaces P(W ) corresponding to relevant documents,
while rotating the projection point in the space P0(D).

In particular, this gives a geometric proof that the algorithm takes into account
relevant documents information more than the standard one, neglects information
from irrelevant documents and optimizes pure relevance information, as by changing
p̃(d) to become p̃(d|q), the algorithm is forced to obtain a projected point whose
marginal to the P0(D) factor lies close to the relevance distribution p̃(d|q).
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4.3 Aspect filtering

Experiments in both search and recommendation diversity show that aspect distri-
butions obtained by the application of EM and TEM algorithms may have some
undesirable characteristics when they are fed directly to diversification algorithms
as intent spaces. Experimental data shows that aspect distributions tend to be
highly entropic, specially when applying TEM with lower values of β, leading to
documents sometimes having really similar mixing proportions, therefore obstruct-
ing diversification algorithms to discriminate the novel semantic information among
documents. Resulting distributions also tend to be noisy, with long heavy tails com-
posed of topics which documents don’t really belong to. In order to develop more
suitable distributions which lead to improved diversity performance we have devel-
oped some post-processing filters for the distributions. The filters can be applied to
any algorithm derived from the previously described abstract probabilistic model,
and they are shown to improve the results both in classic pLSA and new models.

As the notation is very different from the search to the recommendation tasks,
but filters are completely analogous in both cases, we will only describe them in the
search diversity context. This will simplify and shorten the necessary mathematical
derivations while summarizing the main ideas.

4.3.1 Cutoff filter

The asymptotic convergence of the EM algorithm leads to the absence of 0-probability
aspects for every document or query if initialized in a random way. In order to prove
it, we just have to notice that the initial random parameters are almost never zero
(in the probabilistic sense). If the parameters are nonzero for a given step of the
algorithm, equations (4.2.4), (4.2.3) and, in general, EM equations for any model
similar to the ones already described imply that each parameter is updated in E
and M steps as a rational function with positive coefficients of the parameters of the
previous iteration, therefore leading to positive new parameters.

On the other hand, the dimensional difference between W and Z makes EM al-
gorithm converge to distributions that minimize the common information between
term distributions of each semantic aspect. Therefore, aspect-document distribu-
tions naturally tend to mainly concentrate on some aspects for each document and,
in general, they present a really high difference between the probability of a few
aspects and the rest of them. For this reason, one can experimentally check that
the distribution matrix is full of nearly-zero values.

When retrieving the documents after diversification, these non-zero values pro-
duce noise that may affect the process. In order to clear that noise we suggest
applying a filter consisting in truncating the tail of the aspect distributions and
then renormalizing the obtained probability vectors. This transform the previous
dense aspect distribution matrices y sparse ones, with sparsity degree depending on
the way the extreme of the cut tail is selected for each document.

The previous general filter can be implemented in several ways. For example,
for each document d we select aspects z such that

• p(z|d) ≥ ξ for some fixed threshold ξ > 0.
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• z belongs to the top x percentile, for some x.

• p(z|d) is not a bottom outlier of {p(z|d)} at ξ-sigma significance for some fix
ξ > 0, i.e.

p(z|d) >=
1

K
− ξ
√

Var({p(z|d)})

In the experiments we have chosen to take an intermediate approach between
the first and third approach, dropping those aspects whose probability is under the
uniform distribution, i.e., those such that

p(z|d) <
1

K

This corresponds to taking ξ = 1
K in the first case or ξ = 0 in the third one and

has the advantage of being an auto-adjusting threshold when varying the size of the
latent space.

4.3.2 Uniform aspect filter

This kind of ad-hoc filter corresponds to changing aspect query distributions p(z|q)
to uniform distributions over Z before passing the information to the diversifier.
The main idea behind this is that there exist a difference between query aspects
and user intentions. RapLSA infers the first, but can’t precisely deduce the later
unless explicit user information is available. In this situation, obtained aspects can
be considered as a good semantic approximation of user abstract information needs,
but relevance information, codified in distributions p(z|q), may be biased, as it is
approximated from the baseline relevance estimation.

As an example illustrating the differences between the RapLSA-estimated and
real relevance to the user, let us consider a query with a “main” aspect and “sec-
ondary” aspects. For example, executing query “Java” in most commercial search
systems will mainly produce “Java programming language” results in the first posi-
tions. Query “Java” has another possible intention, related to “Java island”. While
results corresponding to this other meaning still appear in the baseline ranking, they
are clearly considered by the system as less relevant. Now let us suppose that we
execute RapLSA algorithm for this query q and such a typical relevance prior p̃(d|q).

RapLSA introduces the query in order to build query-specific distributions. Doc-
ument and term distributions p(d|z, q) and p(w|z, q) are inferred prioritizing infor-
mation contained in the most relevant documents. As island-related documents
term distribution are be completely different from the programming-related ones
and island pages don’t have a neglectable relevance prior (they have lower prior
than programming ones, but are not spam documents), one or many aspects (de-
pending on the aspect space size) would likely capture this sense. For simplicity,
let us suppose that there exist only one such aspect z. Distributions p(d|z, q) and
p(w|z, q) are expected to effectively “select” documents referring to the island, so
the semantics are correctly extracted, allowing the diversifier to work properly.

Nevertheless, p(z|q) and p(z|q) for z 6= z can become a problem for diversity
enhancing. As all “island” documents are systematically considered as less relevant
from the baseline point of view, p(z|q) would be little, compared with other aspect
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probabilities. Therefore, when the diversity algorithm is applied, it will prioritize
covering the other aspects before covering z, thus degrading the original “secondary”
island aspect of the query.

This effect only depends on how much the baseline score penalizes island docu-
ments and not on real user intentions (unless the baseline is personalized). Setting
p(z|q) as uniform before using the diversifier “resets” all baseline biases towards any
of the aspects as far as of the intent space. Baseline relevance can be introduced
again into the diversifier if an algorithm like xQuAD is used. The difference is that,
in this case, we are provided a “balanced” latent space that provides “pure” diver-
sity information and the impact of prior relevance can be regulated with the own
algorithm parameters.

4.3.3 α-means filter

We have observed that the aspect distributions become sometimes too uniform, in
the sense that some documents have a large amount of aspects with nearly the
same probability. Although the probabilities are different, the high entropy of the
distribution makes discriminating among the aspects difficult for the diversification
algorithms.

Moreover, tempering is based on selecting distributions p(z|x) with maximum
entropy among those with similar “energy”. Taking into account the explicit form
of the total functional Fp̃,β locally maximized by TEM (4.2.11), for 0 < β < 1, TEM
maximizes a convex combination of likelihood and the entropy of the distributions
p(z|xi, θ), so it is expected, in general, to find distributions with higher entropy
H(p(z|xi, θ)).

In order to show the effect of feeding highly entropic distributions to a diversifier,
let us consider a simplified example. Suppose that we obtain a distribution with
high H(p(z|xi, θ) for each sample xi. This is not really far from reality, as we have
just proved that TEM maximizes the sum of all of them and, while experimental
results in search diversity experiments prove that not all of the documents will have
extremely highly entropic aspect distributions, they show that a great majority of
them tend to be almost uniform, thus attaining nearly maximum entropy.

Let us consider two samples xi, xj with high entropy. Using parallelogram iden-
tity for the Kullback-Leibler divergence (Csiszar, 1975), we can find a bound for the
Jensen-Shannon divergence between their topic distributions. In order to simplify
the notation, let pi(z) = p(z|xi, θ), and let us denote the uniform distribution over
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Z as u(z) = 1
K . Then

2 JSD (pi‖pj) = KLD

(
pi

∥∥∥∥pi + pj
2

)
+ KLD

(
pj

∥∥∥∥pi + pj
2

)
=

KLD (pi‖u) + KLD (pj‖u)− 2 KLD

(
pi + pj

2

∥∥∥∥u) ≤
KLD (pi‖u) + KLD (pj‖u) =

∑
z∈Z

pi(z) log pi(z)−
∑
z∈Z

pi(z) log u(z)+

∑
z∈Z

pj(z) log pj(z)−
n∑
i=1

pj(z) log u(z) = −H(pi)−H(pj)+

log(K)
∑
z∈Z

(pi(z) + pj(z)) = −H(pi)−H(pj) + 2 log(K) (4.3.1)

In particular, suppose that the entropy of pi and pj are near enough to the top
possible entropy, i.e., that for a certain ε ≥ 0 yields

H(pi) ≥ max
p
H(p)− ε

concavity of function f(x) = −x log x and Jensen inequality implies that the maxi-
mum entropy is attained for the uniform distribution, so that

H(pi) ≥ H(u)− ε =
∑
z∈Z

1

K
logK − ε = logK − ε

If the last bound holds, substituting in equation (4.3.1) yields

JSD (pi‖pj) ≤
−H(pi)−H(pj) + 2 logK

2
≤ ε

Thus, if H(pi) ≥ H(u)− ε for some ε and all samples i = 1, . . . , n, then we can
assure that the divergence between any two of the distributions is less than ε. In
our diversification scenario, this means that if EM results in high entropy results,
then the diversifying algorithm will be given really close aspect distributions for
every pair of documents. In particular, using Pinsker-Csiszár-Kullback inequality
(Pinsker, 1964; Csiszár, 1967; Kullback, 2006), the following bound in terms of the
Jensen-Shannon divergence holds (Yamano, 2014)∑

z∈Z
|pi(z)− pj(z)| ≤

√
8 JSD (pi‖pj) ≤

√
8ε

In algorithms like xQuAD this would make the variability of diversity scores among
the corpus to be negligible in comparison to the variability of the baseline score,
so that the final score ranking will become essentially the baseline score ranking,
maybe with some minor modifications.

Of course, this effect can be mitigated by selecting high enough values of the λ
parameter in xQuAD, but this would be a simple patch to fix a defective choice of the
intent space. Anyway, it becomes clear that more discriminant aspect distributions
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would allow xQuAD to use the latent semantics more effectively in order to increase
the overall diversity of the system.

For this reason, we introduce a family of filters intended to increase the overall
entropy of the aspect distributions.

Definition 4.3.1. Let t1, . . . , tn be real positive numbers. Let α ∈ R\{0}. We define
the α-mean of numbers t1, . . . , tn to be

Mα(ti) =

(∑n
i=1 t

α
i

n

) 1
α

For α ∈ {0,±∞}, we define

Mα(ti) = lim
α′→α

Mα(ti)

Explicitly, we get

M0(ti) = n

√√√√ n∏
i=1

ti

M−∞(ti) = min{ti}

M∞(ti) = max{ti}

This notion of generalized mean covers some of the most usual “means”

• Arithmetic mean : α = 0

• Geometric mean: α = 1

• Quadratic mean: α = 2

• Harmonic mean: α = −1

Taking logarithms and applying Jensen inequality to the logarithm function
(which is concave) yields that if α < α′ then for every {ti}

Mα(ti) ≤Mα′(ti)

with equality only when t1 = · · · = tn. If α > 0, Mα has sense for non-negative
ti. Taking limits when some of the ti tend to zero, this theorem also holds for any
nonnegative choice of ti.

In particular, we will be interested in taking ti as a probability distribution over
Z. In this case

M1(p(z)) =
1

K

M∞(p(z)) ≤ 1

Thus, for every α and every distribution p, 1
K ≤Mα(p(z)) ≤ 1. Karamata inequality

then tells us that for α > 1, if a distribution p majorizes a certain distribution q,
then Mα(p) ≥ Mα(q). This allows us to control the “shape” of the distribution
through the value of its α-mean. The higher the value, the more “far” from the
uniform and “close” to a one-point distribution (p(zi) = δij for some j) it is.

Following this idea, we propose the following filter
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Definition 4.3.2. Let p(z) be a probability distribution over Z and let α > 0. We
define the α-filter of p, Fα(p), as the probability distribution over Z given by

Fα(p)(z) =
p(z)α

Mα(p(z))α

It is clear from the definition that Fα(p)(z) ≥ 0 for all z ∈ Z and

∑
z∈Z

Fα(p)(z) =

∑
z∈Z p(z)

α

Mα(p(z))α
= 1

Thus, Fα(p) is, indeed, a probability distribution over Z. The behavior of the filter
depends on whether α is greater or less than 1. For α = 1, clearly F1(p) = p. Let us
consider α > 1. Then, as the function f(x) = xα is a convex and crescent bijection
of the interval [0, 1], the filter must “lower” even more the lowest values of p(z) and
increase its higher peaks.

Let us consider a basic example. Let K = 5 and consider the following, rather
typical, probability distribution

Table 4.1: α-means filter distribution example
z p(z)

1 0.1
2 0.4
3 0.1
4 0.1
5 0.3

In the context of intent spaces, this distribution would typically arise during EM
from a document belonging to two different topics (2 and 5). As topic classification
is fuzzy and EM can’t attain zero values, the aspect distribution retains traces of the
other three aspects (1, 3 and 4). We will show the approximate effect of applying
the F2 and F3 filters, together with the basic cutoff filter F previously described
with threshold ξ = 1

K = 0.2.

Table 4.2: α-mens filter effect example
z p(z) F (p)(z) F2(p)(z) (F ◦ F2)(p)(z) F3(p)(z) (F ◦ F3)(p)(z)

1 0.1 0 0.036 0 0.01 0
2 0.4 0.58 0.57 0.64 0.68 0.7
3 0.1 0 0.036 0 0.01 0
4 0.1 0 0.036 0 0.01 0
5 0.3 0.42 0.32 0.36 0.29 0.3

As expected, we observe that for higher α values the filter Fα becomes more
incisive, dropping the bottom aspects to almost zero probability and spacing the
distribution of the top factors. The example shows how, in contrast to the cutoff



4.3. ASPECT FILTERING 97

filter, the α-filter redistributes the mass lost by the bottom aspects to the top ones
in an exponentially proportional way to the previous value of the distribution. For
high α, the most probable aspects receive much more mass than the successive ones,
thus increasing the gaps between aspects and remarking the semantic differences
between different documents.

The fact that the lower aspects are drop to having almost zero probability makes
it natural to apply a cutoff filter after using the α-mean filter.

Finally, we will see that this kind of filter effectively increases the entropy of the
distributions, while moving among distributions that adjust the original observed
data exactly as well as the original distribution, linking it to tempering.

In TEM algorithm, the last instance of p(z|xi, θt) is computed as

p(z|xi, θt) =
p(z, xi|θt)β∑
z∈Z p(z, xi|θt)β

Let us denote this distribution as pβ. We can write this distribution in terms of the
p1 distribution as follows

Fβ(p1(z|xi, θt)) =
p1(z|xi, θt)β∑
z∈Z p1(z|xi, θt)β

∝ p1(z|xi, θt)β =
p(z, xi|θt)β(∑
z∈Z p(z, xi|θt)

)β ∝ p(z, xi|θt)β
We already proved that Fβ(p1(z|xi, θt)) is normalized, so we get

Fβ(p1(z|xi, θt) =
p(z, xi|θt)∑

z∈Z p(z, xi|θt)β
= pβ(z|xi, θt) (4.3.2)

On the other hand, we have the following lemma

Lemma 4.3.3. Let α and β be positive real numbers. Then Fα ◦ Fβ = Fαβ.

Proof. Let p be any distribution over a space X. We have

Fα(Fβ(p)) = Fα

(
p(x)β∑
x∈X p(x)β

)
∝
(

p(x)β∑
x∈X p(x)β

)α
∝ p(x)αβ

As Fα(Fβ(p)) is normalized, we get

Fα(Fβ(p)) =
p(x)αβ∑
x∈X p(x)αβ

= Fαβ(p)

Combining this lemma with equation (4.3.2) yields

Fα(pβ(z|xi, θt)) = Fα(Fβ(p1(z|xi, θt))) = Fαβ(p1(z|xi, θt)) = pαβ(z|xi, θt)

Therefore, applying an α-mean filter to the aspect distribution of a tempered
model is equivalent to executing an E step of the TEM algorithm with inverse
computational temperature αβ instead of β. As α > 1, we get a higher value of
β (possibly even greater than one). We know that this E step is equivalent to
maximizing functional Fαβ(q, θt) with respect to q. Decomposition (4.2.10) of this
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functional in EM functional and entropy implies that for higher β ≤ 1 resulting
distributions maximize a convex combination of likelihood and entropy, but with
lower weight in the entropy term. Thus, less entropic solutions are expected to
arise. In some sense, this almost corresponds to starting a new β epoch in the
TEM algorithm proposed by Ueda and Nakano (1998), but only updating an E
step (the difference being that θt and not θt+1 parameters would be used to obtain
p(z|xi, θt+1)).

If αβ > 1, we get the algorithm to directly maximize the entropy. Functional
Fαβ is

Fαβ(q, θt) = βF (q, θ)− (αβ − 1)H(q)

Therefore, it minimizes the entropy of distributions qi while maximizing the likeli-
hood of the observed data. This will be the scenario in the experimental results,
where we will use β ∈ (0.6, 1] as a typical value and α = 2, 3.

In conclusion, the previous arguments prove that the overall entropy of the aspect
distributions is increased with respect to TEM solutions by applying α-mean filters
to the distributions.

4.4 Folding-in

In Latent Semantic Analysis (Deerwester et al., 1990), folding-in is described as a
way to obtain a latent factor approximate representation for documents and queries
out of the training corpus. In the LSA approach, this is done applying a linear map
to the term distributions of the new document/query using the term-factor matrix
computed during the training. In its original paper, ? uses the probability nature of
the computed p(w|z) to compute p(z|q) for a query, incorporating it to the corpus as
a document and approximating it through the execution of EM iterations for which
only p(z|q) distributions are updated at M steps. As the rest of the parameters are
kept fixed, this is essentially equivalent to updating p(z|q) via a Bayesian estimation
through the complete data algorithm. Hofmann proposes to use this fold-in query
representation in conjunction to the latent indexing to compute matching vector-
space models .

In this section we will explore some further variants of classic LSA fold-in meth-
ods in order to be able to compare classic query folded-in pLSA to our query-wise
RapLSA model. These estimations assume that classic pLSI is applied, so only
p(w|z), p(d|z) and p(z) distributions are available in the complete data model. Our
objective is to explore suitability of estimates for p(q|z) from Bayesian manipulation
of these parameters and some known priors.

While the following list of Bayesian fold-in options is not intended to be com-
pletely exhaustive, it provides a taste of the kind of Bayesian inference methods
which can be applied to this scenario, and subsequent experimentation will deter-
mine the overall effectiveness of these fold-in approximation in comparison with the
new RapLSA models.

4.4.1 Query folding estimation

We will consider three principal approaches
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1. Probabilistic fold-in via words: We assume that p(q|w, z) ∼ p(q|w).

p(q|z) ∼
∑
w∈W

p(q|w)p(w|z) =
∑
w∈W

p(w|q)p(q)
p(w)

p(w|z)

2. Probabilistic fold-in via documents: We assume that p(q|d, z) ∼ p(q|d).

p(q|z) ∼
∑
d∈D

p(q|d)p(d|z) =
∑
d∈D

p(d|q)p(q)
p(d)

p(d|z)

3. Binary model: We take the event q|z to correspond to the joint extraction of
the query terms from the distribution p(w|z).

p(q|z) ∼
∏
w∈q

p(w|z)

The first two computations require obtaining some additional distributions, namely
p(w), p(w|q), p(d), p(d|q) and p(q). As we lack of biases towards any query, we
will consider p(q) ∼ UnifQ(q). On the other hand, the other distributions need to
be approximated, either from the observed data distribution or from the estimated
complete data distribution. Estimations which are nearer to the prior are closer to
the observed data. Nevertheless, using a model-estimated distribution makes the
computation become more compatible with the estimated complete data distribution
to which we want to project the query.

4.4.2 Word estimation

If fold-in via words is used, an estimation of a priori distribution p(w) is needed.
W being an observed variable, this can be computed from both the observed and
complete data models. The following options are considered

1. Uniform prior: As folded in terms are query terms and there is no priori
information about query-specific relevance of these words, taking a uniform
word distribution may simply correspond to assuming a neutral bias.

p(w) ∼ UnifW(w)

2. Fold-in via query: As only query terms are being folded in, it makes sense to
marginalize word distribution from query-word distribution

p(w) ∼
∑
q∈Q

p(w|q)p(q)

3. Fold-in via document: As documents are the main word sources to our model,
it makes sense to use them in order to smooth the document distributions

p(w) ∼
∑
w∈D

p(w|d)p(d)

4. Fold-in via aspects: As term-aspect distribution is considered fixed, it is nat-
ural to obtain the distribution through them.

p(w) ∼
∑
z∈Z

p(w|z)p(z)
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4.4.3 Document estimation

In our models, document prior is assumed to be proportional to the relevance of the
document. We can compute this estimated relevance in several ways

1. Uniform prior: If no relevance or further information is used, we can simply
take

p(d) ∼ UnifD(d)

2. Fold-in through queries: We use document-query prior distribution as a mea-
sure of document relevance

p(d) ∼
∑
q∈Q

p(d|q)p(q)

3. Fold-in through aspects: Alike word, if we factor through the complete data
model, it makes sense to compute the new document distribution from the
document-aspect distribution

p(d) ∼
∑
z∈Z

p(d|z)p(z)

4.4.4 Query language model estimation

The distribution of terms within the query p(w|q) is not a trivial parameter. We
can take neutral, non-informative estimations of this distribution, but smoothing
and extension through a language model are natural.

1. Uniform prior:

p(w|q) ∼ 1

|{w ∈ q}|

2. Fold-in via documents: We can extend the query language model by assuming
that words appearing in documents which are relevant to the query likely
belong to the query language model

p(w|q) ∼
∑
d∈D

p(w|d)p(d|q)

3. Smoothed uniform prior: A Jelinek-Mercer smoothing is applied to the query
term distribution

p(w|q) ∼ λ n(w, q)∑
w∈W n(w, q)

+ (1− λ)p(w)

4.4.5 Document likelihood estimation

Estimation of distribution p(d|q) is needed for certain models. We will use the
smoothed normalized ranking discount prior previously described

p(d|q) ∼ λ s(τ(d, q))∑
d∈Dq s(τ(d, q))

+ (1− λ)
1

|Dq|
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4.4.6 Possible different combinations

Here we list all possible different combinations of the previously described tech-
niques. Combinations appearing in this list result in a full approximation of p(q|z)
from the basic known distributions, and two combinations are considered equivalent
if one of them can be computed from the other with exact Bayesian manipulations
(i.e., they lead to the same distribution p(q|z) independently of the starting param-
eters).

• Fold trough w. Choice of p(w) and p(w|q) or p(d) when suitable.

– Word model 1: word-query model 1 or 2

– Word model 2: word-query model 1 or 2

– Word model 3: document model 1, 2 or 3

– Word model 4

• Fold through d. Choice of p(d)

– Document model 1

– Document model 2

– Document model 3

• Binary model

A pLSA execution over the whole corpus is held. Then fold-in is applied for each
query and the aspect distributions p(q|z) are estimated and passed to the diversifier
together with the already estimated document mixtures p(d|z) and p(z|d).

4.5 Experimental results

4.5.1 RapLSA effectivenes in search diversity task

We will test the previous models using the diversity qrels from the TREC web trac
diversity task datasets from 2009 to 2011. We will use two baseline search engines,
Terrier with DLM stemmer and Indri with Porter stemmer. In both cases, a spam
filter will be applied at a 70% cutoff level.

For each of the three years, reduced corpus are built from the top 100 documents
retrieved by each baseline system for each of the 50 annual queries proposed in TREC
diversity task. The effectiveness of each model will be evaluated independently for
each annual corpus. IA-Select and xQuAD will be used as diversification algorithms.
XQuAD λ parameter will be initially optimized independently for each choice model,
year and parameter configuration. Later experimental results will prove that the
optimal choice of λ is extremely stable for most of the proposed models and only
depends on the baseline selection.

The optimal number of selected aspects for each model has been independently
optimized. Explicit experimental methodology for this point will be described in the
next chapter. This optimal number has shown to be more model-dependent than
baseline-dependent. Results have been essentially equivalent for any of the used
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baselines for a fixed given model, but vary a little among models depending on the
self-organizing structures of the aspect space. For example, query-wise models like
RapLSA or the execution of a single Hofmann pLSA for each query tend to need a
much narrow aspect space than a single global execution of pLSA with fold in. The
first ones tend to need among 15 and 20 aspects, while the latter attains maximum
efficiency for around 100 aspects.

Similarly, the adjustment of the β parameter for tempered models have been
initially done independently for each model and baseline. In this case, the choice
of higher or lower β parameters do regulate the dynamics and has an analogous
effect to the one produced by the learning parameter in neural networks training.
Nevertheless, as with the other one, a reasonable choice of β is moreover mode-
dependent and not baseline dependent or data dependent. Global choice of the
parameter have been found to be specially stable for new models.

As the combinatorics of the experimental data regarding the parametric sweep
are enormous, we will omit them from this final report. Instead, we will only present
the obtained results for the optimal number of aspects, optimal tempering and
optimal expected λ parameter for each model.

Regarding fold in strategies, all the combinatorics described in the previous
section have been tested and only the results of the best model of each family is
presented here.

In order to simplify experimental references, instead of large descriptions of the
explicit system combinations, the following code system will be used

Indri Porter results and pLSA fold in analysis

We present the obtained results for each of the models and the Indri baseline

Figure 4.17: ERR-IA@20 results for Indri baseline and IA-Select unfiltered
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Table 4.3: Model code descriptions
Code Model

0 Baseline

1 ODP

25 Model 2 passing p(z|d, q) to xQuAD

32 RapLSA

322 RapLSA + α-mean filtering

323 RapLSA passing p(z|d, q) to xQuAD

325 RapLSA + α-mean filtering passing p(z|d, q) to xQuAD

33 RapLSA with α-mean filtering in E step (β > 1)

611 Hofmann + word fold in

612 Hofmann + document fold in

62 Hofmann + query word fold in

622 Hofmann + query word fold in with Jelinek Mercer

6114 Hofmann + word fold in + α-mean filtering

6124 Hofmann + document fold in + α-mean filtering

624 Hofmann + query word fold in + α-mean filtering

6224 Hofmann + query word fold in with Jelinek Mercer + α-mean filtering

70 Hofmann executed query-wise

720 pLSI executed query-wise

7204 pLSI executed query-wise+ α-mean filtering

73 pLSI executed query-wise+ passing p(z|d, q) to xQuAD

Figure 4.18: ERR-IA@20 results for Indri baseline and xQuAD unfiltered
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Figure 4.19: ERR-IA@20 results for Indri baseline and IA-Select filtered

Figure 4.20: ERR-IA@20 results for Indri baseline and xQuAD filtered

As it was expected, we observe that fold in strategies develop worse diversifi-
cation results than executing single independent pLSA over each individual query.
The main difference is query-specificity of the constructed intent spaces. While
global pLSI may get better semantic representations of documents, the extracted
aspect spaces would lay in a different semantic level than the desired query intents.
Therefore, query-wise executed pLSA unfolds query ambiguity more precisely than
any of the tested fold-in strategy. This been said, if new documents or queries
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were incorporated to the corpus, the only available tools for representing them in
the aspect space would be precisely the described fold-in strategies. Among them,
experimental data suggests than word fold in via aspects (Model 4) is the most ef-
fective one. Improvement of its performance by means of α-mean filtering has been
observed, but is not conclusive.

In order to facilitate the comparison of the main models, result tables will be
presented with the comparison between most relevant models:

Figure 4.21: Summarized ERR-IA@20 results for Indri baseline and IA-Select un-
filtered

Figure 4.22: Summarized ERR-IA@20 results for Indri baseline and xQuAD unfil-
tered
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Figure 4.23: Summarized ERR-IA@20 results for Indri baseline and IA-Select fil-
tered

Figure 4.24: Summarized ERR-IA@20 results for Indri baseline and xQuAD filtered

We observe that the new proposed models lead to overall better results for almost
all the considered scenarios when. In particular, either query-wise RapLSI or basic
RapLSA improve query-wise Hofmann in each considered scenario.

Taking the simplest of the models, i.e. untempered unfiltered RapLSI, it presents
a consistent significant average improvement of 7,4% with respect to query-wise Hof-
mann results. If additional filtering is taken into account for both models, the aver-
age improvement increases to 8.8%. In particular, 2010 queries results get improved
by more than 22%.
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Terrier DLM results

Figure 4.25: ERR-IA@20 results for Terrier baseline and IA-Select unfiltered

Figure 4.26: ERR-IA@20 results for Terrier baseline and xQuAD unfiltered

Figure 4.27: ERR-IA@20 results for Terrier baseline and IA-Select filtered
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Figure 4.28: ERR-IA@20 results for Terrier baseline and xQuAD filtered

The results for the new Terrier Baseline seem to reinforce the previous observa-
tions. In particular, filtered versions of query-wise RapLSI outperforms every filtered
version of query-wise pLSA by an average 8.7%. Again, 2010 queries get extraor-
dinary improvement. Tempered RapLSI outperforms tempered pLSA by almost a
30% in the ERR-IA@20 value.

Convergence results

In this section we show a typical convergence curve for the RapLSA model. Data has
been taken for a complete convergent run over data coming from the Indri baseline.

Figure 4.29: Convergence results for RapLSA. Normalized total absolute difference
of p(q|z) and p(z) between iterations

The convergence becomes clear. We observe that the absolute difference de-
creases almost linearly from approximately 50 to 200 iterations. Nevertheless, the
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differences in the final diversity results have not been found to be significant among
different choices of the maximum number of iterations. As it could be expected,
the minimum number of steps for convergence has been found to depend slightly
on the number of aspects. A greater number of latent factors lead to an increased
number of parameters for the model, and therefore, to an increased number of local
minima presence in the phase space of the algorithm. A combination of lower beta
tempering and an increased number of iterations is recommended in order to attain
better final diversity results.

4.5.2 Other models

Some basic tests have been carried out for instances of the general model apart
from the main RapLSA application to search diversity. These tests aim to show the
potential of some of some of the models

Two main tests have been taken, regarding the qualitative properties of the
producer-consumer search model and the RapLSA application to recommendation
diversity.

The first of the tests was carried under the experimental setup for search diversity
described in the last section. A basic smooth word-counting approximation was
taken for the query language model p̃(w|q). Utility distributions p̃(w, d) and p̃(d, q)
were estimated as in the RapLSI model, considering uniform q distribution. RapLSA
producer–consumer model ((4.2.14) and (4.2.15)) is applied to extract an aspect
space. While the initial experiments carried out didn’t show significant improvement
in diversity with respect to the results of the already optimized RapLSA variants
described in the last section, some interesting properties of the aspect space were
found.

In contrast to other models, the underlying complete data model of this version
of the algorithm is completely symmetric. In contrast to RapLSA, where the aspect
space was coupled with the query variable, the producer-consumer model builds
a unique common aspect space for all queries. In the absence of a proper query
language model grouping together query dependencies in model 4.13, it is natural
that the developed aspect space looses specificity with respect to the query, therefore
leading to diversity results being worse than those of other query-specific models. On
the other hand, this opens up the possibility of exploiting inter-query information.

In order to explore the aspect distribution dynamics, we looked at the obtained
filtered aspect distributions after a couple of EM iterations (before complete a con-
vergence is obtained). We observed that the query aspect distribution grouped the
queries into narrow clusters having between 2 and 4 queries each. As expected,
many of the clusters seemed to be more or less fuzzy, with queries belonging to var-
ious clusters. Nevertheless, a pair of “liked queries” was found while analyzing 2011
results. Queries 127, “dutchess county tourism” and 137, “rock and gem shows”
belong to a single common aspect from a pool of 20 possible ones. When analyzing
the content of some document results for query 127, we found that some “dutchess
county tourism” main pages contained announcements of geology activities, thus
being content-related to query 137.

As a curious fact, searching in a commercial engine shows that Dutchess County
hosts the Mid-Hudson Gem and Mineral Society annual gem and mineral show and



110 CHAPTER 4. LATENT SEMANTIC ASPECTS FOR DIVERSIFICATION

sale. Moreover, links to the events exist in main pages related to the Dutchess
County tourism office. Of course, this initial results are not significant and an
exhaustive experimental setup is to be made to understand the dynamics of the
inter-query information within the system, but the described preliminary results
point to the model being able to abstract such common information.

On the other hand, the proposed recommendation diversity model 4.5 have been
shown to outperform pLSA as an aspect extraction method under certain conditions.
The following exploratory results are obtained over the MovieLens 1M dataset.
Hofmann pLSA version is used as a baseline recommender. ERR-IA@20 is computed
for four possible recommendation setups:

• pLSA baseline is used as a the final recommender.

• A second execution of pLSA is used to build an intent space, and pLSA baseline
is diversified using xQuAD with the subtopic data coming from that second
execution.

• pLSA baseline score is fed to RapLSA, which is used as the final recommender.

• pLSA baseline secore is fed to RapLSA. The baseline is then diversified using
xQuAD with the subtopic data coming from RapLSA.

50 aspects are used for both the pLSA baseline and RapLSA. For simplicity,
both versions are taken untempered and a fixed λ = 0.5 is used by xQuAD.

Table 4.4: ERR-IA@20 comparison between pLSA and RapLSA as baseline recom-
menders or aspect space extractors

Direct Recommendation Diversified results via xQuAD

pLSA 0.149427 0.149708

RapLSA 0.149704 0.151589

We observe that in this scenario RapLSA improves pLSA diversity performance
both as a baseline recommender and as an aspect extraction algorithm.

However, the tests correspond to preliminary exploratory experiments. No sig-
nificant results were found. PLSA aspect space has been taken as optimal for the
untempered scenario, but an analysis of the RapLSA dependency on parameters
is to be performed. Moreover, scoring normalization variants, aspect filtering and
tempering has not been tested, and are expected to improve the overall effectiveness
of the algorithm. An exhaustive experimental setup, comparing the effectiveness of
both systems as diversifiers over other fixed recommendation baselines such as KNN
would be necessary.

It becomes clear that more experiments are needed to evaluate significantly the
precise performance of these alternative models, but the shown preliminary results
seem to indicate their diversity enhancing potential.



Chapter 5

Optimization of the aspect
space size for diversity
enhancement

Past chapters have shown the high potential of automatic query intent space extrac-
tion algorithms as a source of suitable aspect spaces for diversification tasks. The
choice of appropriate aspects clearly impact the final diversity of the system, but,
while being a core problem in diversity problems, there is little explicit research on
the desirable properties of the space of extracted aspects, in terms of best enabling
an effective diversification.

In this chapter we address a primary one among such properties, namely the
size of the aspect space. We study the impact of the number of aspects on the
diversification behavior in terms of two effects:

• The expected amount of change in the ranking resulting from diversification.

• The degree of enabled quality enhancement, in terms of diversity evaluation
metrics.

We will study the problem both analytically and empirically. We will define
predictive models describing the aspect dynamics of two families of diversifiers,
including some of the most common diversification algorithms in search tasks, like
IA-Select and xQuAD. Under certain simplifying hypothesis about the generating
models of the aspect extraction algorithm and the true query subtopics (or real
aspects), we will determine the expected distributions of both extracted and true
aspects within the diversified ranking precisely. This will allow us to derive formal
predictions on how the expected ranking distances and diversity quality evolve with
the number of aspects. Particularly, we will derive (semi)closed exact combinatoric
formulas for both the expected distance from the baseline to the diversified ranking
and the expected value of certain diversity metrics, like subtopic recall and ERR-IA.

Analytic predictions within the simplified model will be tested against Monte
Carlo simulations. Finally, measures of the studied distances ranging over the size
of the aspect space will be taken in an experiment on the TREC diversity task.
The empirical results show a fair correspondence to some of the theoretical models,
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thus providing evidence of the predictive value of the analytical approach, and its
potential usefulness to guide the configuration of the query aspect space size.

5.1 Diversity prediction models

In order to study the effect of the aspect space on the effectiveness of diversification
algorithms, two different settings could be considered, according to whether the
query aspects for which diversity is evaluated are known by the diversification system
or not. Scenarios where aspects are known have been considered in such experiments
as presented in Agrawal et al. (2009) or Vargas et al. (2012b), where diversity is both
targeted and measured, for instance, in terms of ODP categories. The system does
not necessarily know the right association of aspects to documents and queries, but
it does know the space where aspects range. A different and more general scenario
is set up in the TREC diversity task, where the subtopics for evaluation are hidden
from the systems, and extracting an aspect space is part of the diversifier task
(Santos et al., 2010). We shall focus on this second situation, where the choice of
the aspect space for diversification clearly belongs to the system designer. Moreover,
as we shall see, the first scenario can be treated as a particular case of the second
one. Thus, the research question we aim to address now is how diversity evolves
with the number of extracted aspects.

Predicting the optimal size for maximizing the effectiveness of a diversification
algorithm is an important unsolved problem. Depending on the aspect extraction
system, experimental adjustment on this parameter can be quite expensive. Suppose
that we want to optimize the aspect size dimension for an extraction algorithm
running on linear time on the number of aspects, such as pLSA or RapLSA. A blind
check for the optimal parameter for a number of aspects ranging from 1 to N would
have a quadratic cost on N . If other parameters such as the inverse computational
temperature β for a tempered algorithm are to be adjusted simultaneously, and we
add the uncertainty coming from pLSA random initial choice of parameters, a blind
optimal choice for the aspect size can become intractable.

As a first approximation, we will omit some of the complex retrieved aspect-true
aspect dynamics existing between the aspect extraction algorithm and the diversifier
system. We will also simplify inherent biases coming from the corpus data, the
extraction algorithm and the diversifier, resulting in an expected “neutral” state
of the aspect distributions. Moreover, we will focus on pure diversity, omitting
document relevance considerations.

Assuming an idealized generative model for aspect distributions, we will develop
exact analytic expressions for the “potential diversity” of an aspect space, measured
as the expected Kendall distance between the baseline and the diversified ranking
(equations (5.1.2) and (5.1.3)), the expected subtopic recall of the baseline (5.1.4), or
various families of diversifiers (5.1.7)(5.1.8) and the expected ERR-IA for a random
diversifier (5.1.9).

Moreover, a correction term will be derived to adjust metric predictions when
nonideal system recall conditions are present (5.1.11). Finally, a general procedure
for computing analytically the probability of a diversification system being better
than random in terms of a fixed metric is described, given that the state distribution
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for the metric values is available (5.1.12).

5.1.1 Generative model for aspect distributions

Let us assume that we want to diversify a baseline ranking consisting on D docu-
ments. An intent approach will be used to measure diversity. Let us assume that
a set of true aspects AT with T true aspects is used for evaluation. An aspect
extraction algorithm is used to approximate the true aspect space. A set AS of
system aspects is generated and document-aspect distributions are computed. As a
common notation, we will denote the l-th document in the baseline ranking as dl,
starting with d0, i.e., the baseline ranking is (d0, d1, . . . , dD−1).

Then a diversification algorithm is applied to re-rank the initial baseline result
using the system aspect space AS obtained from the aspect extraction algorithm.
Finally, the diversified ranking is evaluated using the original true aspects AT .

The following additional ideal assumptions will be made:

1. The baseline ranking function is constant over the D considered documents.
In order to focus on pure diversity, we will consider a neutral baseline.

2. All retrieved documents are relevant, i.e., the baseline algorithm has perfect
precision.

3. Each document has a unique true aspect, i.e., for each document d ∈ D, there
exist a unique a ∈ AT such that p(a|d) > 0. Therefore, the set of documents
are partitioned in AT classes depending on their true aspect. We will denote
the true aspect of a document d by cT (d).

4. The aspect extraction algorithm assigns each document d ∈ D a single system
aspect a ∈ AS . We will denote it by the system aspect of document d, cS(d).

Assuming the previous We will consider the following idealized diversification
algorithms

Definition 5.1.1. A diversification algorithm of type 1 selects the first document
with each of the system aspects a ∈ AS and reranks them in the first S positions
of the ranking, preserving their relative order. Then it repositions the rest of the
documents in the remaining D − S positions with the same relative order.

Definition 5.1.2. A diversification algorithm of type 2 repeats type 1 procedure
successively with the remaining documents after extracting the first S distinct as-
pects. More precisely, the algorithm chooses the document for the position j as the
unselected one appearing in the highest position in the baseline ranking such that its
aspect is the lest frequent among the first j − 1 documents.

IA-Select is an example of diversification type 1, xQuAD, round-robin, and MMR
with a distance function based on document aspects (such as Jaccard, cosine, or
Pearson correlation) are examples of type 2.

As for the dynamics of the relation between AS and AT , we will consider two
degrees of generality in our work.
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The first simpler case corresponds to considering AS = AT = A. This situation
will be assumed for the computation of the expected value of the Kendall distance
between baseline and diversified rankings, and allows us to obtain some quantitative
information about the “shape” of the metric-aspect size curves.

For a second more precise model describing true aspects, system aspects and the
probabilistic dependencies between each of them and the documents, we consider the
following abstraction. The purpose of aspect extraction is to approximate the unseen
true aspects as closely as possible. The ideal aspect extraction result – the most
effective one in terms of the re-ranking quality it enables – would be one which makes
a perfect guess of true aspects, i.e. one that achieves a one to one correspondence
between the extracted system aspects and the hidden true aspects. This is obviously
not achieved in the general case (although quite good approximations have been
found by TREC participants), but a certain dependency between system and true
aspects needs to be obtained for diversification to achieve any kind of improvement
– if the system and true aspects of all documents are mutually independent, the
effect of diversification is naturally the same as random re-ranking.

We model this dependency as follows. Given a document d, its system aspect
cS(d) does not determine with certainty what its true aspect cT (d) is. However, we
assume that each system aspect s will tend to correspond to a certain specific true
aspect t more often than to other ones. That is, some true aspect t (let us refer to
it as preferential) will occur more frequently than others in the set of documents
that have the s system aspect (thus lending the dependency between system and
true aspects which makes diversification effective). We model this by a mapping
ϕ : AS → AT between true and system aspects, where ϕ(s) is the preferential
true aspect of s, and we model the dependency between them as a certain constant
probability p that ϕ(s) occurs when s occurs. In case ϕ(s) does not occur (a case
with 1− p0 probability), then any true aspect may occur with uniform probability.

This can be summarized formally as follows: given d ∈ D and t ∈ AT

p(cT (d) = t|cS(d) = s) =

{
p0 if t = ϕ(s)

1−p0
T−1 otherwise

In order to simplify the ongoing analysis, we will reparameterize this intuitive
idea in the following way. With probability p, the system “fails” to classify each
document d. In that case, its true aspect is drawn from an uniform distribution over
AT independently of its system aspect. Then

p(cT (d) = t|cS(d) = s) =

{
p+ (1− p) 1

T if t = ϕ(s)
1−p
T otherwise

It is easy to check that this corresponds to a substitution p0 = p + (1 − p) 1
T , i.e.

p = Tp0−1
T−1 . We will refer to probability p as the aspect extraction accuracy.

This abstraction thus models some stability in the correspondence between sys-
tem and true aspects, determined by ϕ and p. We need not make any particular
assumption on ϕ for our purposes, in fact we may just define it as a random as-
signment with uniform probability. The mapping is therefore neither injective not
surjective (as in general S 6= T ). Thus ϕ and p also capture the imprecision in the
correspondence between true and extracted aspects: the correspondence would be
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perfect if ϕ was bijective (assuming S = T ), and p = 1(= p0). The aforementioned
scenarios where the true aspects are known to the system fit as a particular case of
this model, where ϕ is the identity function, but still p(ϕ(ct(d) = a|cs(d) = a) < 1
in general. Adding up the previous considerations, we will assume the following
generative model

1. A random map ϕ : AS → AT is sampled in the following way: for each system
aspect s, the aspect ϕ(s) is drawn from a prior distribution p̃(t) over AT . We
will usually take p̃(t) ∼ UnifAT (t).

2. For each document d ∈ D, a system aspect s ∈ AS is sampled from a prior
distribution p̃(s). Again, we usually take p̃(s) ∼ UnifAS (s). We take cS(d) = s.
Then

(a) With probability p, we fix the true aspect of d as cT (d) = ϕ(cS(d)) = ϕ(s).

(b) With probability 1 − p, document d is misclassified by the system, and
its true aspect is sampled from prior p̃(t).

Parameter p models aspect extraction system accuracy, in the terms of one minus the
percentage of “missclassified” or ambiguous documents. On the other hand, distri-
bution ϕ regulates true aspect coverage. We can summarize the previous generative
model with the following Bayesian network

Figure 5.1: Generative model for system aspect - true aspect generation

d cS(d) cT (d)

ϕ p

D

It is also interesting to note that the relation between AS and AT can be seen
as an issue of clustering agreement degree. The assignment of aspects to documents
define a partition of the document set. A common measure of how well two partitions
approximate each other is the Rand index (Rand, 1971), which can be defined as
the probability that two elements (documents) from the same cluster (having the
same aspect) in one partition belong to the same cluster in the other. It can be seen
(we omit the details) that the Rand index is directly determined from our model
by:

RI(cS , cT ) = p(cT (d) = cT (d′)|cS(d) = cS(d′)) = p20 +
1− p20
T − 1

5.1.2 Kendall distance prediction

Diversification algorithms take a baseline ranking and reorder some of the retrieved
documents in order to maximize the expected user-perceived diversity of the list.
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Depending on the information provided by the structure of the aspect space, the
diversifier may reorder the entire list or just swap a couple of documents. In the
described neutral conditions, the amount of changes in the ranking done by the
algorithm is completely determined by the composition of the system aspects for
the retrieved documents. In particular, the average amount of change is heavily
conditioned by the size of the system aspect space. For example, if a system has
S = 2, a type 1 diversification algorithm will just move one document, the first
one whose aspect is not the same as the one of the first document of the list.
The possible increase in the list diversity is then bounded by the amount of new
information provided by that single document to the user.

We will analyze the diversity potential of an aspect space by the expected amount
of change introduced in the baseline ranking by the diversifier when using the se-
lected aspects. The expected difference between the original and the diversified lists
will indicate the amount of information pieces that the diversification system can
reorder to enhance the diversity.

This “potential for change’ dependency on the aspect space size was first studied
by Vargas et al. (2012b). They simulated different neutral baseline rankings (base-
lines with constant document scores) and a random assignment of aspects. Then,
they applied IA-Select and xQuAD to the simulated rankings and used Spearman
ρ rank correlation to measure the distance between the diversified ranking and the
baseline.

In this section we will explore a similar approach. We will measure the expected
“room for diversification” available for a random baseline in terms of the amount
of changes introduced by the diversifier in the original ranking once the aspect
space is fixed. In contrast to Vargas et al. (2012b), instead of using Spearman rank
correlation to measure the difference between both rankings, we will use a more
combinatorial index, the normalized Kendall distance.

Given two rankings of the same length N , i, e, two permutations L1 = (l1(i))
N
i=1

and L2 = (l2(i))
N
i=1 of the list (1, . . . , N). The Kendall distance measures the number

of pairs of elements (i, j) that appear in different relative order in both lists, and

normalizes it dividing it by the total amount of pairs, N(N−1)
2 . Explicitly

Kendall(L1, L2) =

2

N(N − 1)
|{(i, j)|i < j, (l1(i) < l1(j)∧l2(i) > l2(j))∨(l1(i) > l1(j)∧l2(i) < l2(j))}|

From the normalized Kendall distance, we can construct a rank correlation index,
named Kendall τ correlation, simply taking

τ(L1, L2) =
|{concordant pairs}| − |{discordant pairs}|

N(N − 1)/2
= 1− 2Kendall(L1, L2)

As Spearman ρ correlation, Kendall τ measures the correlation in ranking or-
der between both lists. Indeed Kendall (1948) showed that both correlations are
particular cases of a general correlation. Let A = (A(i))Ni=1 and B = (B(i))Ni=1

be two lists. For every pair (i, j), let us consider antisymmetric matrices (aij) and
(bij) measuring a certain score of the relative order of the pairs (A(i), A(j)) and
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(B(i), B(j)) respectively. Then the general correlation coefficient is defined as

Γ =

∑N
i,j=1 aijbij√∑N

i,j=1 a
2
ij

√∑N
i,j=1 b

2
ij

Then taking aij = sign(A(j) − A(i)) and bij = sign(B(j) − B(i)), aijbij is 1 if
(i, j) is a concordant pair and −1 otherwise. As a2ij = b2ij = 1 the denominator is
N(N − 1). Taking into account that we are adding each pair (i, j) twice ((i, j) and
(j, i)), we recover Kendall τ distance.

On the other hand, taking aij = A(j) − A(i) and bij = B(j) − B(i), direct
computation shows that we recover Spearman’s ρ correlation.

Therefore, in terms of qualitative measure of the amount of change between
diversified and baseline rankings, both correlations are similar. In this case, we will
choose to analyze the Kendall distance (and thus, the expected Kendall τ) due to its
combinatorial nature. The inherent symmetries existing in the rankings will make
exact computations more tractable that in the case of the Spearman correlation. We
will exploit these symmetries to develop a closed formula for the Kendall distance
both for type 1 (equation (5.1.2)) and type 2 (equation (5.1.3)) diversifiers in terms
of the number of aspects A and the number of retrieved documents D.

Type 1 diversifier expected Kendall distance

Type 1 diversifier searches for an element of each available aspect until it gets every
system aspect covered. Document dl ends in position t if the following conditions
hold

• If dl is not the first document of class c(dl), t equals l plus the number of
non-covered aspects among the l first documents, because the diversifier has
to search for documents covering those aspects behind document dl and then
exactly those documents jump over dl.

• If dl is the first of class c(dl), then t is the number of covered aspects among
the first l documents (it is the next new aspect found in the ranking and thus,
it is positioned next to the last found one).

As type 1 diversifier preserves the relative order of the documents that are not the
first of their classes, in order to compute the number of inversions we just have to
consider the first elements of each class and count the number of positions that they
jumped forward when selected, i.e., l− t+ 1. Let us denote by π(dl) the number of
documents “jumped” by dl when applying the diversification algorithm. It becomes
clear that

π(dl) =

{
l − t if dl is the first of its class

0 otherwise

Then

E[Kendall] =
2

D(D − 1)
E

[
D−1∑
l=0

π(dl)

]
=

2

D(D − 1)

D−1∑
l=0

E[π(dl)] (5.1.1)
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We can decompose this final expectation depending on the value of π(dl).

E[π(dl)] = 0 · p(not first) +

l−1∑
t=0

(l − t)p(l − 1 first documents cover t aspects ∧

c(dl) covers one of the other A− t)

As system aspects are assumed to be independent, we can decompose the prob-
ability as the product of the probability of documents d0, . . . , dl−1 being assigned
to exactly t different aspects and the probability of c(dl) to be one of the remaining
A− t. As aspect distribution is uniform, the latter is

p(c(dl)covers one of the other A− t) =
A− t
A

The other probability corresponds to the proportion of functions c : [0, l − 1]→
[1, A] whose image has size t. There are

(
A
t

)
possible ways of choosing the selected t

aspects and for each choice, the probability of the image being exactly those aspects
is (see (5.3.2) for details)

p({c : [0, l − 1]→ [1, A]|Im(c) = [1, t]}) =
t∑

j=0

(−1)j
(
t

j

)(
t− j
A

)l−1
Therefore, substituting in equation (5.1.1) yields

E[Kendall] =
2

D(D − 1)

D−1∑
l=0

l∑
t=0

(l−t)
(
A

t

)
A− t
A

t∑
j=0

(−1)j
(
t

j

)(
t− j
A

)l−1
(5.1.2)

Type 2 diversifier expected Kendall distance

If dl is the n-th document with aspect c, when a type 2 algorithm selects it, it jumps
over the elements di, i < l which where the n+ 1-th document or more appearing in
the ranking with their correspondent aspect. Let NA(di) be the order of document
di among documents dj such that c(di) = c(dj),

NA(dl) = |{dj |j < l, c(dj) = c(dl)}|+ 1

Then dl jumps over di if and only if i < l and NA(dl) < NA(di). Additionally, let
us denote by Dl(c) the number of documents with aspect c among the l first ones,

Dl(c) = |{dj |j < l, c(dj) = c}|

In particular, NA(dl) = Dl(c(dl)) + 1. Then dl jumps over min{0, Dl(c
′)−NA(dl)}

documents with aspect c′. Let

Cl = {c′|Dl(c
′) ≥ NA(dl)}

Then, by the previous characterization of the documents jumped by dl, if c := c(dl)
then

π(dl) =
∑
c′∈Cl

(Dl(c
′)−NA(dl)) =

∑
c′∈Cl

Dl(c
′)−|Cl|NA(dl) =

∑
c′∈Cl

Dl(c
′)−|Cl|(Dl(c)+1)
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Pondering over all possible aspect assignations for document dl, taking into account
that aspects are drawn independently from a uniform distribution, we get

Ec[π(dl)] =
1

A

∑
c∈A

∑
c′∈Cl

Dl(c
′)− |Cl|(Dl(c) + 1)

 =

1

2A

∑
c,c′∈A

|Dl(c)−Dl(c
′)| − 1

A

∑
c∈A
|Cl|

As for every pair (c, c′) ∈ A2, either c ∈ Cc′ or c′ ∈ Cc or Dl(c) = Dl(c
′). Denoting

B = 1
A

∑
c∈A |Cc| and pondering over the aspect distributions of the remaining

documents

E[Ec[π(dl)]] =
1

2A

∑
c,c′∈A

E[|Dl(c)−Dl(c
′)|]− E[B]

By sum symmetry, it is enough to check which is the expected order for the
difference between the number of documents in one aspect and the other

E[|Dl(c)−Dl(c
′)] = 2

l/2∑
i=0

l−i∑
j=i

p(Dl(c) = i ∧Dl(c
′) = j)(j − i)

In order to compute the last distribution, we have to count the number of distri-
butions c : [1, D] → [1, A] for which Dl(c) = i and Dl(c

′) = j. This corresponds to
the number of ways of choosing i documents among the l first documents for aspect
c, j documents among the l − i remaining ones for aspect c′, and choosing one of
the other A− 2 aspects for the remaining l − i− j documents. Then

p(Dl(c) = i ∧Dl(c
′) = j)(j − i) =

(A− 2)l−i−j
(
l
i

)(
l−i
j

)
Al

On the other hand, as for every pair (c, c′) ∈ A2, either c ∈ Cc′ or c′ ∈ Cc or
Dl(c) = Dl(c

′), then

B =
1

A
|{(c, c′) ∈ A2}| − 1

A
|{(c, c′) ∈ A2|Dl(c) = Dl(c

′)}| := A− λ

A

Taking the expected value over all possible aspect distributions yield

E[λ] =
A(A− 1)

2
p(Dl(c) = Dl(c

′)) =
A(A− 1)

2

l/2∑
i=0

(
l
i

)(
l−i
i

)
(A− 2)l−2i

Al

Substituting all the previous computations in (5.1.1) results in

E[Kendall] =
2(A− 1)

D(D − 1)

D−1∑
l=0

l/2∑
i=0

 l−i∑
j=i

(A− 2)l−i−j
(
l
i

)(
l−i
j

)
Al

(j − i)+

(
l
i

)(
l−i
i

)
(A− 2)l−2i

2Al

− D

2
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We can further simplify the last equation by some combinatorial manipulation. Let

α =

l/2∑
i=0

l−i∑
j=i

(A− 2)l−i−j
(
l
i

)(
l−i
j

)
Al

(j − i)

We make the following change of variables

x← i+ 1

y ← i

Then

α =
l∑

x=0

(A− 2)l−x

Al

bx/2c∑
y=0

(x− 2y)

(
l

y, x− y, l − x

)
We will give an explicit form for the inner sum, so that the overall complexity of
the global expression is reduced by one order. We have

bx/2c∑
y=0

(x−2y)

(
l

y, x− y, l − x

)
=

bx/2c∑
y=0

(x−2y)
l!

y!(x− y)!(l − x)!
=

(
l

x

) bx/2c∑
y=0

(x−2y)

(
x

y

)

We decompose the last summation in two similar tasks. The first is computing

bx/2c∑
y=0

x

(
x

y

)
= x

bx/2c∑
y=0

(
x

y

)

And the second is evaluating

bx/2c∑
y=0

y

(
x

y

)
=

bx/2c∑
y=1

x(x− 1)!

(y − 1)!(x− y)!
= x

bx/2c∑
y=1

(x− 1)!

(y − 1)!((x− 1)− (y − 1))!
=

x

bx/2c∑
y=0

(
x− 1

y − 1

)
= x

bx/2c−1∑
y=0

(
x− 1

y

)

From
∑x

y=0

(
x
y

)
= (1 + 1)x = 2x and the symmetry of the binomial, we get

that the desired sums essentially correspond to summing half of a line of the Pascal
Triangle. Therefore

bx/2c∑
y=0

(
x

y

)
=

{
2x−1 xodd

2x−1 + 1
2

(
x
x/2

)
xeven

Similarly
bx/2c−1∑
y=0

(
x− 1

y

)
=

{
2x−2 x even

2x−2 − 1
2

(
x−1

(x−1)/2
)

x odd
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Adding up both equations, we get that

bx/2c∑
y=0

(x− 2y)

(
x

y

)
= x

bx/2c∑
y=0

(
x

y

)
− 2x

bx/2c−1∑
y=0

(
x− 1

y

)
=

=

 x
(

2x−1 + 1
2

(
x
x/2

))
− x2x−1 x even

x2x−1 − x
(

2x−1 −
(

x−1
(x−1)/2

))
x odd

 =

{
x
2

(
x
x/2

)
x even

x
(

x−1
(x−1)/2

)
x odd

}
Direct computation of the previous formula yield

bx/2c∑
y=0

(x− 2y)

(
x

y

)
= x

(
x− 1

bx−12 c

)
Therefore, substituting the value of α in the Kendall equation, we get

E[Kendall] =
2(A− 1)

D(D − 1)

D−1∑
l=0

 l∑
x=1

l(A− 2)l−x

Al

(
l − 1

x− 1

)(
x− 1

bx−12 c

)
+

l/2∑
i=0

(
l
i

)(
l−i
i

)
(A− 2)l−2i

2Al

− D

2
(5.1.3)

5.1.3 Subtopic Recall prediction model

Subtopic recall corresponds to a useful basic metric to evaluate the overall diversity
of a system in terms of the subtopic coverage of each query. Using the cut version,
S −Recall@α allows us to measure continuously the aspect coverage of the system
when advancing through the ranking.

Under the hypothesis of documents belonging to a single class, in an ideal system,
where the aspect extraction space is able to retrieved the exact intent space over
which the system will be evaluated, the subtopic recall would be 1 at any cut. This
is due to diversification algorithms placing documents with non-redundant aspects
in the first positions of the ranking, thus covering the maximum number of true
aspects possible.

Nevertheless, as reflected by our proposed generative model, a real aspect ex-
traction system won’t be able to retrieve the real aspect space perfectly. Then, the
diversification algorithm placing different system aspects in the first positions won’t
imply that it will recover different real aspects. The real aspect coverage depends
on the interaction between the space of system aspects AS and the space of true
aspects AT . We will focus on the dependency of this interaction and the metric
value on the system aspect space size, S.

In this section we will build a predictive model for the Subtopic Recall metric in
terms of the metric cutoff α, the number of system aspects S, the number of true
aspects T and aspect extraction accuracy p. Assuming the previously described
generative model, we will develop exact analytic equations for the expected value
of S − recall@α for the baseline ranking (5.1.4) and a type 1 diversifier (5.1.7), and
we will approximate the expected subtopic recall for a type 2 diversifier under an
additional condition on the accuracy of the aspect extraction system (5.1.8).
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Baseline expected subtopic recall

Let α be our fixed cutoff for the metric. As in the experimental settings we will
have a narrow number of topics, we will assume that α ≥ T , so that S −Recall@α
corresponds to the number of retrieved aspects among the first α documents over the
total number of true aspects T . Let us denote by p(k) the probability of retrieving
exactly k different aspects among the first α documents.

Let τ be the number of system failures, i.e., the number of documents whose
system aspect has been incorrectly assigned. The probability of exactly τ failures
happening comes from a binomial distribution

p(τ failures) =

(
α

τ

)
(1− p)τpα−τ

Given τ failures, let λ be the number of system aspects covered by the α − τ
remaining documents. This corresponds to

(
S
λ

)
times the number of aspect functions

c : [1, α− τ ]→ [1, S] whose image is exactly [1, λ], so, by (5.3.2)

p(λ system aspects covered|τ) =

(
S

λ

) λ∑
j=0

(−1)j
(
λ

j

)(
λ− j
S

)α−τ

Finally, both the λ retrieved system aspects and the τ failures are given random
true aspects. The probability of those true aspects covering exactly k aspects cor-
responds to the ways of choosing those k aspects among the T possible true ones
times the probability of assigning the λ+ τ “free” aspects to those aspects covering
all of them. This corresponds to the proportion of functions ϕ : [1, λ + τ ] → [1, T ]
whose image is [1, k]. Then, by (5.3.2)

p(k|λ, τ) =

(
T

k

) k∑
j=0

(−1)j
(
k

j

)(
k − j
T

)α+τ

Therefore, we obtain

p(k) =

α∑
τ=0

p(τ)

minS,α−τ∑
λ=0

p(λ|τ)p(k|λ, τ) =

α∑
τ=0

(
α

τ

)
(1− p)τpα−τ ·

·
minS,α−τ∑

λ=0

(
S

λ

) λ∑
j=0

(−1)j
(
λ

j

)(
λ− j
S

)α−τ(T
k

) k∑
j=0

(−1)j
(
k

j

)(
k − j
T

)α+τ
(5.1.4)

From the previous equation, the expected random subtopic recall at α can be
found as

E[S −Recall@α] =

T∑
k=0

k

T
p(k)
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Type 1 diversifier expected subtopic recall

As we will execute our simulations taking the number of system aspects from 1 or
2 aspects to more than D, we can’t suppose that S ≤ α, as we did with the true
aspects. Instead, we must distinguish between two scenarios: the cutoff α being
greater than S or not.

If α ≤ S, the diversifier positions a different system aspect in each of the first α
positions. Therefore, either if the system has failed to classify each document or not,
the choices of the true aspect for each of the α documents are independent. Then,
the probability p(k) corresponds to the proportion of functions ϕ : [1, α] → [1, T ]
that cover exactly k aspects. Analogous computations to the previous scenario lead
to

p(k) =

(
T

k

) k∑
j=0

(−1)j
(
k

j

)(
k − j
T

)α
If α > S, we must distinguish between possible errors among the first S doc-

uments, whose system aspects are known, and errors among the other documents.
Let τ1 be the number of fails among the first S documents, and τ2 the number of fails
among the rest. The probabilities of finding exactly those errors are independent,
and each of them is a binomial

p(τ1) =

(
S

τ1

)
(1− p)τ1pS−τ1

p(τ2) =

(
α− S
τ2

)
(1− p)τ2pα−S−τ2

The first S−τ1 hits correspond to S−τ1 different aspects. The other α−S−τ2 hits
can have any system aspect. Let λ be the number of system aspects covered among
all hits. As the first documents cover at least S − τ1 different aspects, but there
are only α − τ1 − τ2 hits, we have S − τ1 ≤ λ ≤ min{S, α − τ1 − τ2} and the total
system coverage depends on the number of aspects covered by the last α − S − τ2
hits. Exactly λ system aspects are covered if the last α− S − τ2 hits cover at least
the λ−S+ τ1 remaining aspects, possibly covering also some of the already existing
S−τ1. In particular, as we can choose arbitrary which λ−S+τ1 aspects are covered
last, applying (5.3.1) we get

p(λ|τ1, τ2) =

(
τ1

λ− S + τ1

)
|{ϕ : [1, α− S − τ2]→ [1, λ]|Im(ϕ) ⊇ [1, λ− S + τ1]}|

|{ϕ : [1, α− S − τ2]→ [1, S]}|

=

(
τ1

λ− S + τ1

) λ−S+τ1∑
j=0

(−1)j
(
λ− S + τ1

j

)(
λ− j
S

)α−S−τ2
(5.1.5)

Finally, true aspects are sampled independently from the λ covered system aspects
and the τ1 + τ2 fails.

p(k|λ, τ1, τ2) =

(
T

k

)
|{ϕ : [1, λ+ τ1 + τ2]→ [1, k]|Im(ϕ) = [1, k]}|

|{ϕ : [λ+ τ1 + τ2]→ [1, T ]}|
=(

T

k

) k∑
j=0

(−1)j
(
k

j

)(
k − j
T

)λ+τ1+τ2
(5.1.6)
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As τ1 and τ2 are independent, we finally get

p(k) =

S∑
τ1=0

p(τ1)

α−S∑
τ2=0

p(τ2)

min{S,α−τ1−τ2}∑
λ=S−τ1

p(λ|τ1, τ2)p(k|λ, τ1, τ2) (5.1.7)

The explicit final formula for p(k) is get substituting the binomial distributions for
τ1, τ2 and equations (5.1.5) and (5.1.6) in (5.1.7). As before, the expected value of
the metric is given by

E[S −Recall@α] =

T∑
k=0

k

T
p(k)

Type 2 diversifier expected subtopic recall

The previous combinatorial strategies become intractable for the Type 2 diversifier.
If we compare the combinatorics to the ones of Type 1, we see that the total system
aspect coverage depends on the number of errors appearing at the documents for
each aspect s ∈ AS . Instead of counting errors by “diversified rows”, we need to
count for errors in “columns”.

A parameterization over the number of errors τs over the documents of aspect
s would be possible, but the number of independent parameters would grow as S,
leading to an equation with exponential complexity on S. Instead, a model-driven
approximation is possible. We will assume that the algorithm of type 2 places in
the top S documents the ones for which the corresponding aspects are the most
probable. Therefore, the documents in positions [1, S] are almost surely correctly
classified. In this approximation we will assume that they are always correctly
classified, so that their true aspect is the image of their system aspects by a random
ϕ : AS → AT .

If α ≤ S, the behavior of a Type 2 diversifier is clearly the same of a Type 1
diversifier, as we don’t reach to check documents after the first S retrieved aspects
(the moment when Type 1 stops diversifying). We will focus on α > S. Again, we
will consider the number of errors. The infallibility hypothesis for the classification
of the first S documents makes us suppose that there exist at most τ ≤ α− S clas-
sification error. As before, the probability of that exact number of errors happening
is a binomial distribution. Then, the probability of the S system aspects and the τ
error covering exactly k aspects is simply given by

(k|τ) =

(
T

k

) k∑
j=0

(−1)j
(
k

j

)(
k − j
T

)S+τ

Putting all together we obtain

p(k) =
α−S∑
τ=0

(
α− S
τ

)
(1− p)τpα−S−τ

(
T

k

) k∑
j=0

(−1)j
(
k

j

)(
k − j
T

)S+τ
(5.1.8)
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5.1.4 Random diversifier ERR-IA prediction model

We recall, that the usual ERR-IA equation (2.1.1) corresponds to

ERR− IA =
1

T

T∑
t=1

D∑
i=1

1

i

i−1∏
j=1

(1− p(c(dj−1) = t))p(c(di−1) = t)

by binarizing relevance distribution (p(c(di) = t) = 1 if t is the single di true aspect),
the previous equation simplifies into

ERR− IA =
1

T

T∑
t=1

1

min{i|c(di−1) = t}

Even with the assumed simplifications, exact computation of this metric is almost
intractable due to the extensive combinatorics of the problem. In contrast with the
previous estimations, in which we could exploit the space of symmetries of the
problem to factorize the computation into tractable cases, the space of possible
ERR-IA values is much greater than that of Kendall distance or S-recall. As we will
see, the expression of the ERR-IA value as a sum of inverses of positions induces a
family of asymmetric states that depends on the factorial of the number of aspects,
thus leading to non-polynomial computational costs.

Nevertheless, we present a semi-closed formula that can be used to estimate the
metric value for small aspect spaces and a random diversifier. This will provide
information about the inherent expected diversity perceived by the user if the sub-
queries were generated under the simplified model. Moreover, it can serve as a lower
bound for the expected ERR-IA for diversification algorithms of type 1 and 2.

Let ik, for k = 1, . . . , T denote the position (starting by 1) of the first document
belonging to the k-th aspect in the ranking. The value of ERR-IA is given by

ERR− IA =
1

T

T∑
k=1

1

ik

Let p(i1, · · · , iT ), for 1 = i1 < i2 < · · · iT ≤ D be the probability of getting the first
of the k-th aspect appearing in the ik-th document for k = 1, . . . , T . By symmetry,
we can reduce the computation to the case when aspects appear in order. then

E[ERR− IA] =
1

T

∑
1=i1<···<iT≤D

(
1

i1
+ . . .+

1

iT

)
p(i1, . . . , iT )T !

We need to compute p(i1, . . . , iT ). As we said, we can suppose that documents
are ordered. As the diversifier is random, the aspect assignment is uniform among
all possible aspect configurations. Indexes i1, . . . , iT occur if and only if for each j
within ik ≤ j < ik+1, the aspect of document dj−1 lies within aspects [1, k], and
c(dik−1) = k. Then we can split the suitable possible aspect functions c : [1, D] →
[1, T ] in those mapping each interval [ik + 1, ik+1 − 1] to [1, k] and mapping ik to k.
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Then

p(i1, . . . , iT ) =

∏T
j=3 |{c : [ij−1 + 1, ij − 1]→ [1, 1]}||{c : [iT+1, D]→ [1, T ]}|

|{c : [1, D]→ [1, T ]}|
=

1

TD

T∏
j=3

(j − 1)ij−ij−1−1TD−iT =
1

(T − 1)!

T∏
j=2

(
j − 1

j

)ij
=

1

(T − 1)!

T∏
j=2

(
1− 1

j

)ij
Therefore, we get that

E[ERR− IA] =
∑

1=i1<i2<···<iT

(
1

i1
+ . . .+

1

iT

) T∏
j=2

(
1− 1

j

)ij
(5.1.9)

5.1.5 System subtopic recall adjustment

Let us suppose that we have a quality function f : N→ R such that for any number
of system aspects S it determines the expected value of a certain metric (Kendall
distance, S-Recall@k, ERR-IA, etc.) supposing ideal conditions on the system aspect
coverage, i.e., S − recall = 1 (every system aspect can be found among documents
in the top N considered ranking).

Nevertheless, this ideal situation won’t be possible neither in simulated experi-
ments nor real data. In general, the pool of generated system aspects will be bigger
than the set of observed aspects in the dataset. The proportion of the total aspect
space that can be fund in the sample is determined by the global subtopic recall of
the corpus with respect to the system aspect space.

Our objective is to obtain an estimating function f̃ : N→ R from quality function
f that measures the expected value of the given metric without assuming the total
coverage of the true aspect space. In particular, as expectations commute, from
our simplified generative model we can assume that true aspects of documents are
sampled from a uniform distribution over the complete set of true aspects. Let S
be the number of total system aspects, and let us denote by p(k) for k = 1, . . . , S,
the probability of the top D documents covering exactly k of those aspects. Then
the expected true value of the metric f is given by

f̃(S) = Ep(k)[f(k)] =

S∑
k=1

f(k)p(k) (5.1.10)

As every element are assumed to have random aspects, the distribution of possible
aspect assignment functions c : [1, D] → [1, S] is uniform. On the other side, p(k)
can be decomposed by the sum of probabilities of retrieving each subset of k aspects
from [1, S]. Reordering the retrieved aspects, p(k) can be written as

p(k) =

(
S

k

)
p(cover exactly the k first aspects)

The later is computed in the last section of this chapter (5.3.2). Substituting into
the real quality equation yields

f̃(S) =
S∑
k=1

f(k)

(
S

k

) k∑
j=0

(−1)j
(
k

j

)(
k − j
S

)D
(5.1.11)
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This equation holds for any quality measure under the given generative hypothesis.
For example, Kendall prediction measures are obtained under the assumption of
the system having exactly S aspects. However, in our generative model, document
aspects from a certain ranking can have less than S aspects, as it is possible that
a system aspect s ∈ S is never assigned to a single document. Then the diversity
algorithms effectively acts as if the system had just the number of aspects covered
by at least one document of the baseline ranking, which may be strictly less than S.
In other words, after applying the aspect extraction algorithm, the baseline ranking
may present a subtopic recall over the system aspects below 1.

By applying equation (5.1.11) to Kendall distance equations (5.1.2) and (5.1.3)
we account for this effect which, as we will see, appears in real data naturally. In the
more general contest, an aspect extracted by the system may be only assigned as a
secondary aspect (with low probability) to every document, or be assigned only to
irrelevant documents, therefore becoming essentially invisible to the diversification
algorithm.

5.1.6 Probability of a diversifier being better than random

Besides the expected value of a certain diversity metric, another interesting mea-
sure of the quality of a diversification algorithm is the probability of being better
than the baseline or than a random diversifier. All previous arguments exploiting
the symmetries of the aspect selection functions when we range over all possible
transition functions ϕ : AS → AT allow us to identify both scenarios.

In our model, take the expected values both over the system aspect choices and
the functions ϕ : AS → AT . Both choices are independent, so the expected values
with respect to each of the choices commute. Therefore, considering a random
baseline and then finding the expected value of the metric over all possible random
diversifiers is equivalent to assuming a random diversifier and getting the expected
value of the metrics with respect to each possible baseline.

The probability of a system being better than random, measured as the proba-
bility of the system obtaining a better result in a certain metric, provides us quan-
titative information about how better the proposed algorithm is, but also gives us
information about the statistical significance of this quantitative data.

We will assume that the probability is computed through a decoupled model /
experiment, in which both systems are given random independent samples. Each
system gets its own different data sample, and is executed independently. Then,
metric measures for both systems are taken and compared to each other. While this
is slightly different from the usual paired comparison, it corresponds to an estimation
of the probability of the diversifier getting an average better result than a random
diversifier if the number of samples is high enough.

The previously described models are developed combinatorially and provide, for
the considered scenarios, a full state distribution for each of the metrics. In all the
considered cases, there existed a finite set of possible states for which the metric was
computed. Let R be the set of possible states of the metric. R is equipped with
the total order ≤ inherited from the metric’s order. We say that r ≤ s, for r, s ∈ R
if a system getting to state s is considered better than one reaching state r from
the point of view of the metric. This does not mean necessarily that the numerical
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value (if it exist) of the metric for state r is less than the value for state s. The
“sign” choice is selected from the “goodness” of the system, not the objective of the
function (for example, if we consider an “aspect redundancy metric”, states with
higher redundancy will be considered as smaller in the order of R.

Then, the probability of the diversifier being better than random corresponds
to the probability of the system reaching higher states than the random diversifier.
Let pr(k) and ps(k) denote the probability of reaching state k in the random system
an the diversified system respectively. Then, as pr and ps are independent, it yields

p(system ≥ random) =
∑
r∈R

pr(r)
∑
s≥r

ps(s) (5.1.12)

In particular, taking R = {1, . . . , T} and substituting equations (5.1.4) and (5.1.7),
we can apply the previous equation to obtain the probability of a Type 1 diversifier
of being better than a random diversifier in terms of the expected subtopic recall at
a certain cut α.

5.2 Experimental results

We run two kind of tests. First of all, a set of Monte-Carlo experiments simulat-
ing the proposed simplified generative model for both system and true aspects are
executed. IA-select and xQuAD diversifiers under the described hypothesis of neu-
tral rank and early stop over each simulated aspect distribution. As a soundness
test, all the previously deduced analytical formulas for the expected quality metrics
are tested against the Monte-Carlo experiments. We will prove that the obtained
expressions are correct and predict with absolute precision the dependency of the
metrics to the number of selected aspects.

On the other hand, experiments over the TREC WebTrack data are used to
test the generative mode and the system prediction for a real scenario. RapLSA is
used as an aspect extraction method in order to provide a homogeneous continuous
variation of the aspect space size parameter. IA-select and xQuAD are applied
and the studied diversity metrics are calculated. Analytically predicted expected
value of the metrics for each number of aspects is compared with the real one, and
the resulting data is explained in terms of the qualitative properties of the aspect
extraction and the diversification algorithms.

5.2.1 Monte-Carlo experiments

We will start by comparing the analytical expression for the evolution of the ex-
pected Kendall distance of type 1 algorithms to the empirical mean Kendall distance
obtained by simulating 50 random baseline rankings per data point and applying
IA-Select to each of them. We make the total number of system aspects vary from
1 to 200 aspects, therefore getting a total collection of 10.000 samples.
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Figure 5.2: Comparison between type 1 analytical result and simulated IA-Select

we observe that the results correlate perfectly, with a Pearson coefficient of 0.9997.
Similarly we compare the expected Kendall distance for a type 2 algorithm with the
mean observed value of the distance for xQuAD executed over each sample.

Figure 5.3: Comparison between type 2 analytical result and simulated xQuAD

Once again, we observe a perfect correlation, with Pearson coefficient of 0.9987, prov-
ing that both analytic equations capture perfectly the diversifier dynamics within
the proposed generative model.

In order to appreciate the effect of the system subtopic recall adjustment in
the expected value of a metric, we show the difference between a simulation of
xQuAD where the system aspects distribution for documents has been forced to
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attain perfect subtopic recall (ideal situation) and the general free scenario, where
not every system aspect has to appear in the corpus.

Figure 5.4: Comparison between ideal and non-ideal system aspect coverage in
Monte Carlo simulation

We observe that the curve for the non-ideal situation essentially corresponds to
stretching the ideal one to the left. This effect becomes completely clear from
equation (5.1.10). The corrected value of the non-ideal metric f̃ over a number of
aspects S corresponds to a pondered average of the values of the ideal metric f
over k for 1 ≤ k ≤ S. Therefore, the new graphic can be understood as a kind of
“moving average” of the previous values of the ideal metric, thus stretching it to
the right. In order to prove the effectiveness of the correction formula, we take the
mean values of the Kendall distance computed by Monte Carlo assuming an ideal
system aspect recall and apply the correction formula (5.1.11) to estimate the true
nonideal distance.
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Figure 5.5: Extended comparison between ideal and non-ideal system aspect cover-
age in Monte Carlo simulation

We observe that the corrected function fits perfectly the simulated non-ideal data,
up to a Pearson coefficient of 0.9966. Here we present a comparison between random
and type 1 algorithm S-recall@20 evolution for a set of 4 true aspects.

Figure 5.6: Comparison between analytical expected S-Recall@10 for a random and
a type 1 diversifiers

Under the ideal generative model, both systems are expected to converge to a
high probability of covering all 4 aspects within the top 20 documents. This is to
be expected due to the low number of system aspects in comparison with the high
number of documents. The initial slope is essentially due to system aspects creating
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a bottleneck for the generation of new aspects once the system aspects have been
fixed and covered. After that point coverage of new different true aspects rely on
the number of errors existing in the remaining documents.

If we amplify the initial slope we observe that during this process, type 1 diver-
sifier are still better that random, as expected.

Figure 5.7: Comparison detail between analytical expected S-Recall@10 for a ran-
dom and a type 1 diversifiers

This anomalous convergence phenomenon shows the theoretical prediction limits
of the simplified generative model. In a real system, aspect extraction algorithms
compress information which is supposed to exist within an inherent space of true
aspects. Therefore, system aspect coverage and true aspect coverage depend on
each other. In the simplified model, this dependency is just one-directional, as
aspect effective distribution depends generatively on system distribution.

5.2.2 Real data resutls

In order to compare the theoretical results with the actual effects on real data, we
run an experiment on the TREC 2009/10 diversity task. We take the Indri search
engine as a baseline ranking, and we use latent factors extracted by pLSA as the
system aspect space (similarly to He et al. (2011) and He et al. (2012)), in such a
way that we have fine control over the number of system aspects. In order to avoid
interactions between the selection of the aspect space and the tempering, pLSA
results are taken untempered and unfiltered.

We run IA-Select, xQuAD and a random diversifier on the top 100 documents
re-turned by Indri for each query, with the number of latent factors ranging from
1 to 100. 10 different independent executions of pLSA are run for each choice of
the aspect space size, in order to randomize the starting point of the algorithm
and improve statistical significance of the data. The analyzed metrics are evaluated
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over each resultset. We compute Kendall distance to baseline, subtopic recall at
cut 10 and 20 and ERR-IA@20 (as a fair fast approximation of ERR-IA). In order
to be closer to the neutral-baseline consideration, xQuAD results are taken with
λ = 1. While the overall diversity results of the diversification system with λ = 1
are worse than the results with other intermediate λ values, we choose to sow the
“pure diversity” λ = 1 results to analyze the differences between the real imperfect
xQuAD execution and our ideal model. The following figures show the obtained
results.

Kendall distance

Figure 5.8: Kendall distance variation for IA-Select

Figure 5.9: Kendall distance variation for IA-Select
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We observe that IA-Select have a qualitative behavior comparable to the ones
described in both type 1 and 2 algorithms, but xQUAD presents a completely dif-
ferent evolution shape. Moreover, xQuAD presents a much higher than expected
number of lists saps. A Kendall distance of almost 0.5 is barely the same as the
expected distance of a random re-rank. If we take into consideration the low diver-
sity metric values, we conclude that, for this data, xQuAD diversification results for
λ = 1 are essentially defective.

Regarding to IA-Select, we observe that it reflects exactly twice the expected
amount of swaps of a type 2 algorithm. While IA select is classified as a type 1
algorithm, if none of the documents cover an aspect completely, it will continue to
diversify expecting to attain a complete coverage, therefore transforming into a type
2. The 2 factor may correspond to swaps between relevant and irrelevant documents
being intercalated inside the ranking.

Figure 5.10: Kendall distance variation for IA-Select
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Figure 5.11: S-Recall@10 variation for IA-Select

Figure 5.12: S-Recall@10 variation for xQuAD

We observe that the optimal number of aspects for aspects for maximum subtopic
recall at 10 is obtained between 20 and 30 aspects. As we will see, this agrees with
the results obtained for ERR-IA@20. Of course, in contrast to the theoretical model,
perfect subtopic recall is not attained and arbitrary increase of the number of system
aspects no longer perturbs true topic distributions. Low number of aspects seem to
increase the expected subtopic recall of xQuAD.
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Figure 5.13: S-Recall@20 variation for IA-Select

Figure 5.14: S-Recall@20 variation for xQuAD

Another experiment with doubled cut-off shows that the observed decreasing ef-
fect on xQuAD also appears in IA-Select. These kind of evolution curves have also
been observed in Monte Carlo experiments when simulating document relevance and
imposing total coverage conditions over system aspects. Complete analogous com-
putations that the ones pondering the expected coverage by the expected number of
errors (5.1.4) allow us to introduce relevance within the previous equations. Doing
so has lead us to approximate qualitatively the shape and optimal value prediction
for the previous curves, but complete fit has not been achieved.
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Figure 5.15: ERR-IA@20 variation for IA-Select

Figure 5.16: ERR-IA@20 variation for xQuAD

We appreciate that the optimum size of the aspect space with respect to the S-
recall@20 and the ERR-IA@20 metrics correspond to a approximate 20∼25 aspects.
XQuAD results for different values λ other than 1 show similar bounds, consistent
with the simulated results obtained by Vargas et al. (2012b).

5.3 Computation of probability of aspect coverage

Let p(k, r|D,S) denote the probability that an aspect assigning function c : [1, D]→
[1, S] covers the first r aspects but not more than the first k ones, i.e. [1, r] ⊆
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Im(c) ⊆ [1, k] for r ≤ k ≤ S. This corresponds to

p(k, r|D,S) =
|{c : [1, D]→ [1, k]|Im(c) ⊇ [1, r]}|

|{c : [1, D]→ [1, S]}|

The numerator can be computed by inclusion-exclusion principle, counting functions
whose image lies in [1, k] but don’t cover j of the first r aspects. Let Ai be the set
of functions c : [1, D]→ [1, k] not covering aspect i. Clearly

{c : [1, D]→ [1, k]}\{c : [1, D]→ [1, k]|Im(c) ⊇ [1, r]} = A1 ∪ · · · ∪Ar

By inclusion exclusion principle, we get

|{c : [1, D]→ [1, k]|Im(c) ⊇ [1, r]}| = kD − (|A1|+ · · ·+ |Ar|)+∑
i<j

|Ai ∩Aj | − · · ·+ (−1)r|A1 ∩ · · · ∩Ar|

For each j ∈ [1, r] and each 1 ≤ i1 < · · · < ij ≤ r, Ai1 ∩ · · · ∩ Aij corresponds to
functions omitting {i1, . . . , ij}, i.e., functions c : [1, D] → [1, k]\{i1, · · · , ij}. There
are exactly (k− j)D distinct such functions for each choice of the set {il}. As there
are

(
r
j

)
forms of choosing these j uncovered aspects among the first ones, we get

|{c : [1, D]→ [1, k]|Im(c) ⊇ [1, r]]}| =
r∑
j=0

(−1)j
(
r

j

)
(k − j)D

Substituting these computations yields

p(k, r|D,S) =
r∑
j=0

(−1)j
(
r

j

)(
k − j
S

)D
(5.3.1)

In particular, taking k = r, we get the probability of a system aspect distribution
covering exactly the first k aspects

p(cover exactly the k first aspects) =
|{c : [1, D]→ [1, S]|Im(c) = [1, k]}|

|{c : [1, D]→ [1, S]}|
=

k∑
j=0

(−1)j
(
k

j

)(
k − j
S

)D
(5.3.2)



Chapter 6

Conclusion and future work

Aspect space selection constitutes one of the main problems in intent-oriented di-
versity methodologies. Several approaches have been taken. We can classify them
as those based on the use of external subtopic information sources and those build-
ing inherent aspect spaces from the observed data. The first ones use a variety of
sources of aspect information such as ODP categories, Wikipedia disambiguation
pages or an explicit sub-query structure. On the other hand, the second ones usu-
ally rely either on applying an algebraic transformation to the space of document
representations (like LSA) or on extracting semantic data through a latent variable
language model.

Among the implicit aspect space building proposals, probabilistic frameworks
have been proved to be specially effective for the diversity problem. The use of
topic models for extracting latent semantic information lead to statistically robust
estimations for the desired intent space. Probabilistic Latent Semantic Analysis and
Latent Dirichlet allocations have been proved to be specially effective tools for this
purpose. In the literature, they have been consistently used either as direct source
of query subtopics or as part of a more complex aspect extraction algorithm.

A relevance aware version of the Probabilistic Latent Semantic Analysis have
been developed as an application of a proposed utility-biased likelihood statistical
framework. The described algorithm incorporates relevance estimation coming from
the baseline ranking information to the pLSA dynamics, leading in an overall blind
relevance feedback effect and allowing us to build query-specific more informative
intent spaces. The obtained spaces have been empirically proved to make common
diversifiers like IA-Select or xQuAD attain better diversity bounds.

The proposed framework allows us to build a great variety of intent space con-
struction algorithms that incorporate several variables related by arbitrary latent
models. Almost every kind of available prior information about the observed data
can be incorporated to the analysis using the combination of the utility-biased
methodology and the aggregation of the corresponding variables to the generative
model. In contrast to other pLSA variants, the given geometric interpretation proofs
that the introduced factors intrinsically perturb the dynamics of the algorithm.

The proposed methodology has a great degree of plasticity. The final simple
Bayesian form of the E and M step computations, together with the adaptability
to arbitrary generative models provide an almost universal tool that information
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retrieval system designers can personalize to obtain domain-specific optimized aspect
space extraction algorithms. This system freedom provides a vast amount of possible
fields of application.

Moreover, as convergence properties, geometric interpretations, tempering and
filtering techniques were developed at the level of the utility-biased EM algorithm,
they descend trivially to any particular instance, providing additional optimization
tools. Overall, the mathematical formalism of utility-biased estimators give all de-
rived applications a common statistically strong theoretical base, independently of
the specific properties of each model.

Finally, under certain simplified assumptions over the generative model ruling
the relations between system and true aspects, explicit analytic formulas have been
described for estimating the evolution of the diversity quality in terms of the choice
of the aspect space size. This kind of explicit algebraic formulas do not exist in the
literature for this context and solve partially a long open problem in diversity tasks,
namely the choice of the optimal parameter space size.

The most important equations have been proved to be sound through testing
against simulated baselines. An experiment with real data has been developed and
qualitative evolution of some of the principal diversity metrics with respect to the
aspect space size has been studied.

While the simplified model itself has not been able to fit the data properly, the
overall combinatoric development can be used to work out explicit formulas for a
generalized model. Some preliminary results of this model were showed, proving
the overall validity of the described methods for analytically treating the problem
of diversity dependency on the aspect size.

The proposed results open some possible research questions:

• While a nice amount of effort has been addressed to build an abstract theo-
retical framework for the incorporation or relevance and additional features to
the pLSA dynamics, applications for this framework to tasks other than search
and recommendation diversity have not been fully analyzed yet. In particular,
experimental analysis of the proposed personalization and recommendation
algorithms is to be performed in depth .

• The proposed application of the framework to a content-based recommender
model was stated in a general way, without explicitly considering a particu-
lar feature model. There exist some instances of that algorithm that can be
specially interesting and are worth considering. As a basic example, experi-
ments in movie recommendation incorporating the described features (genres,
director, cast, plot summary, etc.) would be interesting validating tools for
measuring the true generality limits of the proposed abstract model.

• A particular interesting feature to incorporate to RapLSA general models
would be the time variable. Considered as a discretized variable, time can be
incorporated to the model taking a similar role that the one assumed by rating
variables or relevance. As with these other kinds of variables, incorporating
time directly to the model wouldn’t necessarily alter significantly the dynamics
of the algorithm. The key comes in using the utility-biased framework to intro-
duce time-dependent utility functionals. For example, user-item ratings can
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be pondered with time dependent terms that make closest to present ratings
more relevant than older ones. This would correspond to the idea that more
recent observations are more significant to the current user profile. A complete
model description would be interesting and experimental data comparing its
effectiveness to other time-aware models like time dependent Collaborative
Filtering methods could lead to some interesting interactions.

• LDA being essentially a regularized version of pLSA, a natural question arises,
is it possible to build a RaLDA(Relevance aware LDA)?, i, e., is it possible
to mixture utility-biased formalism with Latent Dirichlet Allocation model.
While it seems to be possible, it would require perturbing slightly the varia-
tional LDA methods.

• Matrix transition framework for the study of the dependency of diversity met-
rics to the choice of the aspect size has been addressed just as a theoretical
possibility, and the corresponding effects have been only proved in a simula-
tion context. It is based on substituting transition function ϕ : S → T by a
transition matrix (ϕst)s∈S,t∈T , modeling the full conditional probability ma-
trix p(t|s) for each t ∈ T and s ∈ S. Matrix versions of the described formulas
have already been obtained, but a suitable experimental setup has not been
found. In particular, we would be interested in describing a learning algo-
rithm for estimating transition matrices from intrinsic data, without using the
evaluation subtopics.

• Using the information about the optimal number of aspects for diversification
provided in this work and the EM-based techniques exposed during the past
chapters, the next step would be to build an auto-adjusting pLSA algorithm
which automatically selects the number of aspects needed for representing the
data and diversifying. Initial results involving the use of divergence regular-
ization terms have been obtained, but the question remains open.
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