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Abstract
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Ensemble Learning in the Presence of Noise

by Maryam Sabzevari

Learning in the presence of noise is an important issue in machine learning. The design

and implementation of effective strategies for automatic induction from noisy data is

particularly important in real-world problems, where noise from defective collecting

processes, data contamination or intrinsic fluctuations is ubiquitous. There are two

general strategies to address this problem. One is to design a robust learning method.

Another one is to identify noisy instances and eliminate or correct them.

In this thesis we propose to use ensembles to mitigate the negative impact of mislabelled

data in the learning process. In ensemble learning the predictions of individual learners

are combined to obtain a final decision. Effective combinations take advantage of the

complementarity of these base learners. In this manner the errors incurred by a learner

can be compensated by the predictions of other learners in the combination.

A first contribution of this work is the use of subsampling to build bootstrap ensembles,

such as bagging and random forest, that are resilient to class label noise. By using lower

sampling rates, the detrimental effect of mislabelled examples on the final ensemble

decisions can be tempered. The reason is that each labelled instance is present in a

smaller fraction of the training sets used to build individual learners. Ensembles can

also be used as a noise detection procedure to improve the quality of the data used for

training. In this strategy, one attempts to identify noisy instances and either correct (by

switching their class label) or discard them. A particular example is identified as noise

if a specified percentage (greater than 50%) of the learners disagree with the given label

for this example. Using an extensive empirical evaluation we demonstrate the use of

subsampling as an effective tool to detect and handle noise in classification problems.
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Chapter 1

Introduction

The success of margin-based predictors, such as SVM’s or Adaboost ensembles in many

classification tasks of practical interest [1–4] has prompted many researchers to posit

that large margins are a key feature in explaining the generalization capacity of these

types of classifiers. In ensembles, the margin is defined as the weighted sum of votes

for the correct class minus the weighted sum of votes for the class that receives most

votes and is different from the correct one. The predictive accuracy of boosting has

been ascribed to the fact that the classification margins of the training examples are

effectively increased by the progressive focus on training examples that are difficult to

classify [5]. Nonetheless there are some empirical studies that put in doubt the general

validity of this explanation [6, 7]. Furthermore, efforts to directly optimize the margin

(or the minimal margin) have met with mixed results [8, 9]. In contrast to boosting,

bagging [10] and random forest [11] do not tend to increase the margin of the ensemble.

As a matter of fact there are other types ensembles, such as class-switching ensembles,

that are effective predictors and yet have small margins by construction [12, 13].

In this thesis we provide further evidence that small margin ensembles can achieve good

generalization performance and be robust to noise in the class labels of the training ex-

amples. As discussed in [14, 15], class label noise can be more harmful for classification

accuracy than noise in the features. Therefore, designing classifiers whose performance

does not significantly deteriorate in the presence of the former kind of noise is an impor-

tant issue in machine learning applications. The excessive weights assigned to incorrectly

labelled examples by the standard boosting algorithms, such as Adaboost [16], makes

them ill-suited to handling these type of noisy learning tasks. There are robust versions

of boosting [4, 8], generally based on the use of regularizations techniques, whose goal

is to avoid emphasizing instances that are identified as outliers (mislabelled instances).

Bagging is a robust classifier [17–19].
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Chapter 1. Introduction 2

In bagging, the predictors are built using different bootstrap samples from the original

training data with replacement. Each bootstrap sample in standard bagging contains

the same number of instances as the original training set. The final decision is obtained

by majority voting. Bagging generally improves the classification accuracy by reducing

the variance of the classifiers. By contrast, boosting works mainly by reducing the clas-

sification bias [20, 21]. The deterioration in the predictive accuracy in noisy problems is

mainly due to an increment in the variance of the classifiers [18, 19, 22]. Therefore bag-

ging, which is a variance reduction mechanism, is generally more robust than standard

boosting in presence of noisy instances [18, 19, 22].

The prescription used in bagging for the size of the bootstrap samples on which the en-

semble predictors are trained need not be optimal. In fact, the generalization capacity of

the ensembles can significantly improve with subsampling [23–25]. Using small sampling

ratios has an important effect on how isolated instances are effectively handled. By iso-

lated instances we refer to those located in a region in which the majority of instances

belong to another class. The intuition is that, when the bootstrap samples in bagging

contain less than 50% of the instances of the original training data, the classification

given by the ensemble on a given instance is dominated by the surrounding instances

[23, 25]. This is the case because each instance is present in less than half of the training

sets of the classifiers in the ensemble. As a consequence its classification is dominated

by classifiers trained on bootstrap samples that do not contain that particular instance.

Incorrectly labeled instances are often isolated instances. Hence, using small sampling

rates can help reduce the influence of these isolated instances and lead to ensembles that

are more robust.

The thesis is organized as follows: Chapter 2 provides an introduction to ensemble

learning. In chapter 3, we review previous work on how to deal with class-label noise

in classification problems. There are two main approaches to address this issue. In

one approach noisy examples are detected; these examples are then either removed or

cleansed; (i.e. their class labels are corrected). A second strategy is to design learning

algorithms that are robust to this kind of noise. In chapter 4 we present a comprehensive

empirical assessment of the accuracy and robustness to label noise of bagging ensembles

composed of decision trees, and random forests, as a function of the bootstrap sampling

ratio. The results of this study provide evidence that small margin classifiers can be

resilient to class label noise. In Chapter 5, we describe a noise detection method based

on subsampling in bagging. Finally, the conclusions of the thesis and proposals for future

work are presented in chapter 6.



Chapter 2

Classification with Ensembles

Machine learning (ML) is a branch of computer science devoted to the study of com-

putational systems learning. By applying machine learning techniques we are able to

identify patterns from data. These patterns can then be used to make predictions on

new instances [26, 27]. ML algorithms can be classified into two categories: supervised

learning and unsupervised learning. The goal of supervised learning is to induce a model

form a set of labelled instances in the form of input-output pairs. From these data we

induce a mapping from the attributes that characterize the instances (the inputs) to

their corresponding target labels (the outputs). The induced mapping captures under-

lying regularities in the data. Finally, the mapping can be used to predict the labels

of unseen instances. In unsupervised learning, the instances do not have an associated

label. The goal is to learn a plausible partitioning of the data into groups or clusters.

Semi-supervised learning is another class of problems that shows some characteristics

with supervised and with unsupervised learning. In semi-supervised learning, the tar-

gets of some instances are available (usually for a small subset of the data), while most

of the instances are unlabelled. In these types of problems, the unlabelled instances are

used to improve the predictions made by the learners induced from the labelled instances

[28, 29].

The focus of this thesis is on supervised learning and, in particular, on classification. The

goal of classification is the prediction of discrete target labels. Some well-known clas-

sification systems are: neural networks (NN) [30–32], support vector machines (SVM)

[33–35], k -nearest neighbours (k -NN) [36–38], decision trees (DT) [39–41], ensemble

learning [11, 17, 42, 43], etc. In this thesis we focus on ensemble learning to improve

the predictive accuracy of the model. In this family of methods, the predictions of a

collection of learners are combined to improve the generalisation capacity of individual

classifiers. Averaging the individual predictions or voting are common techniques for

3



Chapter 2. Classification with Ensembles 4

determining the final decision in an ensemble of learners [27, 29]. Different types of

classifiers such as NN [42, 44–46], SVM [47–50], k -NN [51–53] and DT [11, 54–56] can

be used as base learners in an ensemble. DTs are one of the most commonly used base

learners in ensembles of classifiers. DTs are simple, fast and flexible predictors [27, 57].

For these reasons DTs are chosen as the base learners of the ensembles analysed in this

thesis.

In classification, the margin of an instance is a measure of its distance to the decision

boundary. This concept is interesting because it can be used to set an upper bound

on the generalization error [58]. One of the best-known margin-based learner models

is SVM [58, 59]. The key idea in SVM is to find a linear separator that correctly

classifies the training instances while maximizing their distance to the decision boundary.

Intuitively, a narrow margin implies that the model is sensitive to small displacements of

the instances near the boundary. This lack of stability often reduces the generalization

capacity of the model. In the context of ensemble learning, the margin of an instance

is defined as the number of (weighted) votes for the correct class minus the number of

(weighted) votes for the most voted incorrect class. A higher margin means that the

ensemble prediction is more certain, because most of the classifiers agree. The idea of

margin maximization was first introduced by Schapire [5] for Adaboost. The progressive

emphasis of boosting on misclassified instances increases the margin of the training

examples. This property has been proposed as an explanation for the effectiveness of

boosting [5]. However, methods that directly optimize the margin yield mixed results [8,

9]. In addition, some well-known ensemble methods, such as bagging [10], random forest

(RF) [11] and class-switching [12, 13], do not show a margin maximization behaviour

and can also be effective predictors. Another example that small margin can be also

accurate and robust is subbagging. In subbagging one uses samples that are smaller

than the original training data to build the individual ensemble classifiers. The samples

are generated using sampling without replacement from the original training data. The

experiments performed in this thesis and in [25, 60] illustrate that bagging and random

forest using bootstrap samples of size smaller than the standard prescription are robust

to noise in the class labels, in spite of having smaller margins.

In this chapter we will describe how to build ensembles that are effective classifiers. The

material is organized as follows: Section (2.1) is devoted to classification and describes

how learners are validated. In this section we also discuss the decomposition of the

classification error into bias and variance. Then, we describe how to build Classification

And Regression Trees (CART). CART trees are the base learners used in the ensembles

analysed in this thesis. In section (2.2) we provide an overview of ensemble learning

and the justification of why ensembles have the potential to improve the accuracy of

individual predictors. Finally, bagging, boosting, random forest and class switching
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ensembles are described. Section (2.3) introduces and discuses margins in the context of

ensembles. An overview of the Structural Risk Minimization (SRM) principle and how

it can be used to select hypotheses with good generalization properties is presented in

this section. Finally, the conclusions of this chapter are given in section (2.4).

2.1 Classification

Classification is a type of supervised learning in which the goal is to predict the discrete

class labels of the input data instances. As in many learning problems, classification can

be divided in two phases. In the first phase, a predictor is built using the available train-

ing data. These data consist of a collection of labelled instances. In the second phase,

the induced hypothesis is used to predict the class labels for new unlabelled instances.

To build effective predictors, it is essential to have a sufficient amount of training data,

as well as to consider learning models with the adequate expressive capacity [61].

Consider the training set

Dtrain = {(xi, yi)}Ntrain
i=1 , (2.1)

where xi ∈ X is the input vector, yi ∈ Y is the class label, Y ∈ {c1, · · · , cK}. K is

the number of class labels. Ntrain is the number of training instances. In classification,

the ith instance is characterized by a value of the input vector xi and of the class label

yi. In this thesis we will assume that the instances are independently and identically

distributed (iid) random variables sampled from a fixed but unknown distribution S.

A hypothesis h is a function that maps the set of input vectors (X ) onto the correspond-

ing set of class labels (Y). This mapping function partitions the input region X into

K different regions. Each of these regions corresponds to one class. The separations

between these regions are called decision boundaries.

The generalization error is the probability of misclassifying instance (x, y) drawn from

the distribution S

Error(h) = Pr(x,y)∼S [h(x) 6= y]. (2.2)

The calculation of the exact generalization error is seldom possible because the underly-

ing distribution of the p is usually unknown [29]. Therefore, to evaluate a given hypoth-

esis, the empirical error is calculated on a test or validation set Dtest = {(xj , yj)}Ntest
j=1

that is drawn (iid) from the distribution S, independently of the training set. Ntest is

the number of test instances, xj ∈ X is the input vector and yj ∈ Y is the class label.
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The empirical error is the average misclassification error of the instances in Dtest [29]

Errortest(h) =
1

Ntest

Ntest∑
j=1

1h(xj) 6= yj , (2.3)

where 1 is the indicator function. In learning, the hypothesis is built by induction

from the training instances. The induced hypothesis is expected to have the ability

to generalize well; that is, to make correct predictions also for new unseen instances.

In other words, generalization refers to the capacity of learning from past experiences

instead of memorizing them [62]. The generalization capacity of a learning algorithm

depends on its expressive capacity or complexity (flexibility) and also on the number

of the instances available for training. Training a complex model using few instances

can lead to overfitting. Overfitting refers to the situation in which the model performs

well on the training instances but does not perform well on independent test instances.

This situation is more likely when the space of hypothesis considered in the learning

algorithm has a high flexibility. This increased expressive capacity means that small

changes in the training data can make the learner decisions very different. For a model

with fixed expressive capacity, increasing the size of the training set reduces the risk of

overfitting. If the expressive capacity of the considered learning algorithm is too small

to describe the regularities of the underlying problem, then underfitting can occur. In

such a situation, the learner has a high bias, because its capacity of representation is

not sufficiently large to capture the underlying structure of the data [27, 57, 63]. If

either underfitting or overfitting occur, the induced model does not attain the good

generalization performance.

The lowest error rate that can be achieved by a classifier in a particular problem is the

Bayes error. The optimal classification for instance x, drawn from the distribution S, is

h∗S(x) = argmax
y

P (y|x). (2.4)

The Bayes error can be accurately estimated only when the complete distribution of the

data is known.

There are different ways to decompose the prediction error. In [64–66], the error is broken

up into three terms: the bias, the variance and Bayes error. However, estimating Bayes

error is not possible in a dataset with limited samples from an unknown distribution.

Different definitions of bias and variance are given in the decomposition proposed by

Webb in [21]. Consider a learning algorithm L. Let L(Dtrain)(·) denote the hypothesis

induced by the learning algorithm L from the training data Dtrain. The generalization
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error can be expressed as the sum of two terms

Error = bias+ variance, (2.5)

bias = PS,Dtrain(L(Dtrain)(x) 6= y ∧ L(Dtrain)(x) = h
o

L,Dtrain
(x)), (2.6)

variance = PS,Dtrain(L(Dtrain)(x) 6= y ∧ L(Dtrain)(x) 6= h
o

L,Dtrain
(x)), (2.7)

where h
o

L,Dtrain
(x) is the most probable class label for instance x. This central tendency

is estimated using the training set instances. In this decomposition, bias refers to the

deviations of the central tendency from the actual class labels. Variance is defined as

the probability of errors that correspond to deviations of the individual predictors from

the central tendency.

2.1.1 Decision Trees

A Decision Tree (DT) is a hierarchical learning model, which can be used in regression

and classification problems. Besides giving fast predictions, decision trees are rule based

predictors which are easy to understand and interpret. These aspects make DT a popular

learning tool that has been employed in many applications in the medical [67], project

management [68], finance [69] marketing [70] and other domains.

In decision tree learning, a tree shaped structure is used to make predictions. The tree

is constructed based on rules that partition the space of attributes. These rules are

induced from the training data. The construction of a decision tree involves two phases.

In the first phase, the tree is grown by recursively splitting the space of attributes. To

do so, a root node is created and all instances are assigned to it. Then, the algorithm

searches for the most informative rule to partition the space. The root node is split

into child nodes, each of which corresponds to one of the regions in which the space is

partitioned. Each instance in the parent node is assigned to one of children nodes base

on the values of the attributes and on the selected splitting rule. Impurity functions

such as the entropy, the cross-entropy, the information gain or the Gini index are used

to select the splitting rule at each step. The child nodes are then split further with the

goal of achieving a higher degree of homogeneity in the successive children. The process

is continued until a stopping condition is fulfilled. Possible stopping conditions include:

(1) all instances assigned to the node considered for splitting have the same class label

(2) no split is found to further partition the data (3) the number of instances in each

terminal node is smaller than a predefined threshold (i.e. there are not enough instances

to make a decision) (4) a further split does not reduce the impurity of the node (5)

instances that are assigned to each node reach a degree of homogeneity, etc [71].
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In the second phase, the tree is pruned. Pruning refers to eliminating some of the ter-

minal branches of the tree. The goal is to limit the complexity of the tree with the

objective of avoiding overfitting and thus improving its generalisation capacity [26, 72].

Complexity is usually determined in terms of one of the following measures: number of

nodes, number of leaves, depth of the tree or number of variables used for splitting. In

addition to an increased risk of overfitting, the storage requirements and the prediction

times increase with the complexity of the tree. In the opposite situation, trees that are

too simple have a limited expressive capacity, which could be insufficient to capture the

underlying patterns in the data. This could imply a high bias and a poor prediction per-

formance. Therefore, it is important to build trees of the right size (complexity): neither

too small (risk of underfitting) nor too large (too complex and prone to overfitting).

Finally, the induced tree is used to make predictions on test instances. To make a

prediction, the instance is first assigned to the root of the tree. Then, based on the

value of the attribute on which the root node is split, it is assigned to one of the child

nodes. This process is iterated at the corresponding inner nodes until the instance

reaches a leave. The class label prediction for that instance is the majority label of the

training instances assigned to that particular leave.

Some of the better-known DT algorithms include ID3 (Iterative Dichotomiser 3) [73],

C4.5 [74] and CART [64]. Since CART is only the algorithm in which the base learners of

RF (random trees) are based. CART is the algorithm in which the base learner algorithm

of random forest (random tree) is based and it will be employed as the base learner in

the ensembles analysed in this thesis. It can be employed to address classification and

regression problems. CART trees are grown by recursive binary partitioning [75]. That

is, each internal node has two children. These children are called left child and right

child. The criterion used in the CART algorithm to select the node split is the Gini

index criterion

Gini(t) = 1−
K∑
i=1

P 2
i (t), (2.8)

where Pi(t) is the relative frequency of class i in node t. The Gini index takes values

between 0 and (1− 1
K ), where K is the number of class labels. The Gini index is equal to

0 when all instances in a node belong to the same class. The index takes its maximum

value, (1 − 1
K ), when the instances assigned to a node are distributed equally between

the K classes.

Let t be a node that is considered for splitting. The change of the Gini index when split

s is made in node t is

Ginisplit(s, t) = Gini(t)− PL ·Gini(tL)− PR ·Gini(tR), (2.9)
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where tL and tR are the left child and the right child of the node t, PL and PR are the

fractions of the instances in t that are assigned to the left child and to the right child,

respectively, and s ∈ SP is a particular split in all possible set of splits SP . The split

that maximizes Ginisplit(s, t) is then selected. The splitting process is repeated until

one of the specified stopping conditions is fulfilled. In a second phase the fully grown

tree is pruned using cost-complexity pruning. This type of pruning uses a global cost

function that takes into account both the complexity and the accuracy of the resulting

tree,

Rα(t) = R(t) + α · C(t), (2.10)

where R(t) is the misclassification cost of the decision tree rooted at node t, which is

estimated on the training set. The complexity of the tree is computed as the number

of terminal nodes that it is denoted by C(t). The parameter α specifies the relative

weight between the accuracy and the complexity of the tree. Higher values of α lead to

smaller trees. Lower values of α produce larger trees with higher accuracy in training.

The value of α used in CART is estimated using cross-validation [64, 76].

2.2 Ensemble Learning

An ensemble is a collection of predictors whose outputs are combined to produce a global

decision. The main idea in ensemble learning is to take advantage of the complementarity

of the classifiers to improve their predictive accuracy [27, 29]. The aggregation of base

learners is beneficial only if the individuals make different predictions. Accuracy and

complementarity of the base learners are two fundamental aspects in the performance

of an ensemble [17, 42, 43, 77, 78].

Consider for instance an ensemble composed of three base classifiers {h1, h2, h3}. If

the three hypotheses are equal, then an incorrect prediction by h1(x) co-occurs with

incorrect predictions of the other two hypotheses. By contrast, if error of the classifiers

are uncorrelated, an incorrect decision by one of the predictors can be compensated

by the correct decisions of the other two. In this case majority voting would give the

correct prediction. Ideally, the errors of the classifiers should be independent, so that

the aggregation of the individual predictions is advantageous.

Assume that the predictions by the base learners for a particular instance x are inde-

pendent. If the combination of the classifier outputs is made by majority voting, the
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probability of error is the probability that that more than half of the classifiers misclas-

sify instance x is

Errortest(px, T ) =
T∑

bt=T/2c+1

(
T

t

)
ptx(1− px)T−t, (2.11)

where px is the average error of an individual learner of the ensemble. If the expected

accuracy of the individual classifiers is better than random guessing (i.e. px <
1
2), we

can apply the Condorcet Jury Theorem and conclude that the decision based on the

aggregation of the base learners is more accurate than the individual predictions [79].

Expression (2.11) is the area under the binomial distribution where more than half of the

classifiers yield an incorrect prediction. As a numerical example, consider an ensemble

of 21 independent classifiers. Assume that the error rate for each classifier on a given

instance is 0.3. Using (2.11), the ensemble error is 0.026, which is much lower than the

individuals error rate (0.3) [17]. Combining more such classifiers eventually reduces the

error to zero.

In [17], Dietterich gives three reasons that explain why group learning can be an effec-

tive method to enhance the performance of the individuals (see figure 2.1). The first

reason is statistical: assume that we are searching for an accurate hypothesis h in the

hypothesis space H. If the size of the training data is too small in relation with the size

of H, there might be several predictors with comparable performance. In this situation,

averaging the predictions of these hypotheses can reduce the risk of selecting an incorrect

one. The second reason is computational: the learning problem is usually transformed

into an optimization problem, which needs to be solved numerically. If the objective

function has several local minima it is possible that the algorithm converges to a sub-

optimal local minimum. Aggregation of several predictors, each of which is the result

of an optimization with a different starting point, reduces the risk of selecting a local

minimum far from the global one. Finally, it may be difficult to approximate the actual

predictor function in the selected hypothesis space. By averaging several hypotheses,

the representation capacity can be expanded.

According to the types of the classifiers whose decisions are combined, ensembles can be

either homogeneous or heterogeneous. In homogeneous ensembles, all base learners are

of the same kind. Heterogeneous ensembles are composed of base learners of different

types.

There are several techniques to build diverse base learners in a homogeneous ensemble.

Some ensemble learning algorithms use modified versions of the training set to train the

base learners; others introduce changes in the learning algorithms. These strategies can

also be used in combination.
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Figure 2.1: Illustration of the three reasons given by Dietterich [17] showing how
ensembles might enhance the results of single base learners

Applying the same learning algorithm to different versions of the training set, can be an

effective strategy to build diverse classifiers. Different versions of the training set can be

generated by using surrogates of the original training set and/or by manipulating the

training instances. The surrogates of the original training set can be generated using:

1. Resampling with replacement: In this technique, repeated instances can occur in

a given bootstrap sample. Bagging [10] is an ensemble method that uses this

technique.

2. Resampling without replacement: In this technique, all the instances in the boot-

strap samples are different. Therefore, to have different versions of the training

set, the number of the instances in each sample needs to be lower than the number

of instances in the original training set. Subbagging is an ensemble method that

uses this technique [80]. In subbagging the base learners are trained on subsamples

of size Ntrain
2 drawn without replacement from the original training set.

3. Weighted resampling: The idea in this technique is to draw samples from the

original training set taking into account the weights of the instances in the training

set. Instances with higher weights have a higher probability to be selected in each

sample. Boosting [55] and wagging [20] are two ensembles that are built using

weighted sampling. In boosting, instances that are misclassified by the most recent

ensemble classifier are assigned a higher weight to build the following classifier.

Wagging assigns random weights to the instances using the Poisson distribution.
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4. Using artificial data: In this technique, training samples include artificial instances.

An example of this strategy is DECORATE (Diverse Ensemble Creation by Oppo-

sitional Relabelling of Artificial Training Examples). DECORATE is an ensemble

method in which diversity is generated by adding artificial instances to the samples

used to build the individual ensemble classifiers. The distribution of the training

data is modelled using a Gaussian model. Artificial instances are then sampled

from this distribution. Finally, the class label of a particular artificial instance is

specified to be different from the current ensemble prediction for this instance [81].

Manipulation of the instances is another strategy for generating diverse predictors. It is

possible to modify the attributes of the instances, their class labels or the weights that

determine their importance in the learning process.

1. Altering the attributes: The base learners are trained using different feature sub-

sets. This method is specially adequate in problems with redundant features.

Attribute bagging [82], in which a random subset of features is used to train each

base learner, is an ensemble method based on this technique. Another example of

this strategy is using random feature subspaces in decision trees [83].

2. Altering the class labels: For example, in class-switching [84] to generate diverse

base learners, the class labels of a portion of the data in each sample is switched to

another randomly selected label. Error-correcting output coding (ECOC) [85] is

another ensemble method based on modifying the class labels. In this method, to

train each base learner, the labels are randomly categorized into two groups. For

a particular test instance x, the prediction is carried out based on the new labels.

The vote count of all the original labels that are in the group of the predicted label

is increased. The final prediction of the ensemble for the given instance x is the

original class label with the highest number of votes.

3. Modifying the weights of the instances: Boosting [86] is one the ensemble methods

in which training instances with their correspond weights attend in learning pro-

cess. In this method the weights of the instances are initially equal. Afterwards,

in an iterative process, the weights of the instances that are misclassified by the

previous base learners are increased.

As mentioned earlier, a second method for creating diversity in homogeneous learners is

to introduce modifications in the learning algorithm. This strategy can be implemented

using:

1. Different parameter choices: Diversity in k -NN can be achieved by using different

k values [53].
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2. Different architectures in a learning model: In models such as neural network,

diversity can be achieved by varying the architecture; for instance using different

numbers of hidden layers or of nodes in the hidden layer [87].

3. Initialisation of the learning algorithm with different starting points: For instance

using different initial weights to train a neural network [88].

4. Embedding global information in each hypothesis optimization space: An example

of this strategy is Negative Correlation Learning (NCL) [89, 90]. In this method

each neural network in the ensemble is trained by minimizing a cost function that is

the sum of the mean squared error (MSE) and a term that penalizes the correlation

of the individual and the ensemble predictions.

Combinations of these techniques can also be effective in ensemble construction [91–93].

For example, random forests are built by sampling with replacement from the original

training set and also by selecting splits in a random subsets of the features [11].

Heterogeneous ensembles are composed of predictors that are generated with different

learning algorithms. There is some evidence that heterogeneous ensembles can outper-

form homogeneous ensembles [94, 95], specially when their size is small [56]. A possible

explanation is that classifiers of the same type tend to be affected by the same types of

biases. Therefore, combining predictors whose biases are different increases the chance

of having complementary predictors [95, 96]. Nevertheless, the improvements depend

on the type of the base learners that are included in the ensemble and on the method

used to combine their predictions. In any case, the empirical evidence is inconclusive:

There are cases in which homogeneous ensembles outperform heterogeneous ensembles

[97]. In any case, heterogeneous classifiers are more difficult to build and analyze than

homogeneous ones: One needs to choose the adequate combination of base algorithms

for each application. Then the parameters of the different base learning algorithms have

to be tuned to optimize the accuracy not only of the individual predictors but also of the

ensemble [98]. In this thesis, all the analyzed ensembles are homogeneous. Nonetheless,

the strategies that are proposed can in principle be used to improve the effectiveness of

heterogeneous ensembles as well.

After having generated the base learners, the next phase is to combine the individual

decisions into a global decision. Different combination techniques can produce significant

differences in the accuracy of the ensembles. The combination techniques can be divided

into two groups:
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1. Voting strategies: In majority voting each of the base learners in the ensemble

predicts a class label for the instance under consideration. The ensemble predic-

tion is the class label that is predicted most often by the base learners. Bagging

[10] is a method in which majority voting is used to compute the final decision.

Another variant of these types of methods is weighted majority voting. In this

variant weights are used to determine the influence of the individual base learners

in the final decision. Adaboost [99] is one of the methods that uses weighted ma-

jority voting. In Adaboost, the weight of each base learner in the global ensemble

prediction depends on its accuracy on the training set.

2. Non voting strategies: These methods are used to combine predictors whose out-

puts quantify the confidence on the predictions. For instance, they could provide

an estimate of class posterior probabilities. Some operations such as maximum,

minimum, product, median and mean can be employed on the (weighted) confi-

dence levels that are the output of the individual base learners. The final decision

is determined by the most probable class label, based on the result of the employed

operation [100–102].

Simple methods, such as (weighted) majority voting are effective in a wide range of

applications [103]. Using the product in non voting strategies may be preferable if the

base learners make independent errors [103, 104]. Nevertheless there is no winner strat-

egy among the different combination techniques [101]. The optimal method is different

base on the type of the base learners and the classification task under consideration

[101, 104, 105].

The combination strategies that are described up to this point are static because the

rule used to combine the outputs of the individual predictors is fixed. It is possible to

design dynamic strategies, in which the combination depends on the particular instance

whose class label is being predicted. Stacking is an example of a dynamic combination

technique. In stacking the combination phase is accompanied by a learning process.

First the base learners are trained on some version of the original training set (e.g. a

bootstrap sample). After that, the predictions of the base learners are used as new

feature vectors to train a second level learner (meta-learner). The key point in this

strategy is to improve the guesses that are made by the base learners, by generalizing

these guesses using a meta learner [106].

In the following subsections we give a description of some representative ensemble meth-

ods: bagging, boosting, random forest and class switching ensembles.
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2.2.1 Bagging

Bagging [10] is an ensemble method in which individuals are trained on different boot-

strap samples drawn from the original training data. Each bootstrap sample is created

by selecting instances from the original training set with replacement. The standard

procedure in bagging is to use bootstrap samples that contain the same number of in-

stances as the original training set. This prescription produces samples containing on

average 63.2% of different instances from the original training data. The rest are re-

peated examples. Each base learner is trained on an individual bootstrap sample. The

final decision of the ensemble is given by simple majority voting. The pseudo-code of

bagging is shown in algorithm (1). Averaging over diverse classifiers removes the uncor-

related errors of the individuals. In this manner, the variance error tends to decrease as

a result of the aggregation of individual decisions. As mentioned earlier, bagging applies

the strategy of resampling with replacement to produce diversity. Nevertheless, if the

base learners are stable the variability introduced by the resampling process may not be

sufficient to generate diverse classifiers [10].

Algorithm 1: Bagging algorithm[20]

Input: Dtrain={(xi, yi)}Ntrain
i=1 % Training set

T % Ensemble size
L % Base learning algorithm

1 for t← 1 to T do
2 Dt ← Bootstrap(Dtrain)% Bootstrap sample from Dtrain, uniformly with

replacement
3 ht(·)← L(Dt) %Build a base learner applying L on bootstrap sample

Output: H(·) = arg max
y

∑
t:ht(·)=y

1

4 % Majority vote

Subbagging [80] is a variation of bagging in which sampling without replacement is

used to generate bootstrap samples. Therefore, there are no repeated instances in the

subsampled set. A common choice for the size of these subsampled sets is Ntrain
2 , where

Ntrain is the original training set size [107]. This prescription has been shown to be

statistically equivalent to standard bagging [25, 107, 108]. As in bagging, the final

decision is determined by a simple majority voting. The size of the bootstrap samples

can be tuned in both bagging and subbagging to improve the accuracy of the ensemble

prediction [25]. In this thesis, subsampling is used to build a variation of bagging which is

robust in the presence of noise [60]. In addition to the improvements in the generalisation

capacity of the ensemble, subsampling decreases the time complexity of the training also

reduces the storage requirements and improves the classification speed [25].
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The analysis of bagging in regression problems is straightforward [10] and illustrates

why bagging can improve over the single learners. Consider the aggregate prediction on

an instance characterized by the vector of attributes x

HA(x) = EDtrain [h(x)], (2.12)

where Dtrain indicates an average over all possible realizations of the training set. As-

suming that y is the actual continuous target value for the input vector x, the mean

square prediction error of hypothesis h(x) is

EDtrain [(h(x)− y)2] = y2 − 2yEDtrain [h(x)] + EDtrain [h2(x)]. (2.13)

Using the fact that EDtrain [h2(x)] ≥ (EDtrain [h(x)])2, we can write

EDtrain [(h(x)− y)2] ≥ y2 − 2yEDtrain [h(x)] + (EDtrain [h(x)])2. (2.14)

Considering the definition of the aggregated predictor in (2.12),

EDtrain [(h(x)− y)2] ≥ y2 − 2yHA(x) + [HA(x)]2 = (HA(x)− y)2, (2.15)

which indicates that the mean squared error for aggregated prediction is smaller or

equal than the expected squared error of the individual predictions. The improvement

in performance is given by difference between EDtrain [h(x)2] and (EDtrain [h(x)])2. If

most of the generated hypotheses h(x) produce the same outputs, the two expectations

converge to the same value and the aggregation will not improve over the accuracy of

the base learners [10]. In bagging one averages not over different training sets, but over

bootstrap samples from a single training set

HB(x) = EDt(Dtrain)[h(x)] ' 1

T

T∑
t=1

ht(x) (2.16)

where Dt(Dtrain) is the bootstrap sample drawn from the original training set. This

bootstrap estimate is generally not as accurate as HA(x). Therefore, there are two

opposing effects: On the one hand, the expected accuracy of the predictors built from

bootstrap samples is generally lower than expected accuracy of the predictor trained

on the original training data itself. On the other hand, the aggregation process tends

to reduce the classification error by variance reduction. Bagging reduces the error only

if the variance reduction dominates the error increase associated to using bootstrap

samples. A similar analysis can be made in the case of classification problems [10].
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2.2.2 Boosting

Boosting refers to an ensemble learning method in which a sequence of learners is built

so that each new learner focuses on examples that are misclassified by the previous

learner in the sequence [86]. Adaboost is one of the best-known boosting algorithm.

It was introduced by Freund and Schapire in [99]. The pseudo-code of Adaboost is

shown in algorithm (2). In this method, each instance in the training set is assigned

a weight. To train the first classifier, all instances are assigned equal weights. In the

subsequent classifiers, the instances weights are determined based on the correct or

incorrect classification of these instances by the previous learners. To build the next

classifier, the weights of the misclassified instances are increased and the weights of the

correctly classified instances are decreased. This process is continued until either the

ensemble reaches a specified size or the error of a base learner is higher than 0.5. The

final prediction of the ensemble is determined by weighted majority voting. The weight

of each particular base learner in the final decision is based on its individual accuracy on

the training set [55]. A shortcoming of Adaboost is that it can assign excessive weights

to instances that are difficult to classify. This can mislead Adaboost in problems with

noisy class labels.

Algorithm 2: Adaboost algorithm [55]

Input: Dtrain={(xi, yi)}Ntrain
i=1 % Training set

wt = {wt(xi)}Ntrain
i=1 % Vector of weights

T % Ensemble size
L % Base learning algorithm
w1(xi)← 1

Ntrain
for i = 1, ..., Ntrain % Initialize the vector of weights

1 for t← 1 to T do
2 Dt ← Bootstrap(Dtrain,wt)% Bootstrap sample from Dtrain with weights wt

3 ht(·)← L(Dt) % Train the base learner from Dt

4 εt = Prwt [ht(xi) 6= yi]
5 if εt >

1
2 then

6 T = t− 1 and exit loop

7 αt = 1/2 ln(1−εtεt
) % The weight of base learner t

8 for i← 1 to Ntrain do

9 wt+1(i) = wt(i)exp(−αtyiht(xi))
Zt

10 % Zt =
Ntrain∑
j=1

wt(j)e
−αtyjht(xj) is a normalization factor

Output: H(·) = sign(
∑T

t=1 αtht(·))

Boosting can be viewed as an optimization process in the hypothesis space of linear

combinations of predictors of the same type [109]. Consider a binary classification

problem. The training data are {(xi, yi)}Ntrain
i=1 , where xi ∈ X are the attributes and

yi ∈ {−1, 1} are the class labels. We will build an ensemble whose output is a function
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of a linear combination of the base learner predictions. Let F denote the space of base

learners, where fτ ∈ F and fτ : X → {−1, 1}. The ensemble prediction is of the form

HT = sign[FT (x)], (2.17)

FT (x) =

T∑
t=1

αtft(x), FT : X → R. (2.18)

That is, FT ∈ lin(F), the set of linear combinations of function in F . Assume that

lin(F) is endowed with an inner product

〈F,G〉 =
1

Ntrain

Ntrain∑
i=1

F (xi)G(xi), (2.19)

where F,G ∈ lin(F). Consider now a cost functional C[F ] : lin(F)→ R+ of the form

C[F ] =
1

Ntrain

Ntrain∑
i=1

c(yiF (xi)), (2.20)

where c is the misclassification cost function. For FT fixed, our goal is to find the values

of αT+1 ∈ R and fT+1 ∈ F that minimize

C[FT+1], where FT+1(x) = FT (x) + αT+1fT+1(x). (2.21)

For a general definition of the inner product

〈F,G〉 =

∫
X

F (x)G(x)dP (x), (2.22)

the expansion of the cost functional is

C[F + εδF ] ≈ C[F ] + ε〈∇C[F ], δF 〉+O(ε2), (2.23)

where

∇C[F ](x) =
∂C[F + αIx]

∂α

∣∣∣∣
α=0

, (2.24)

in terms of Ix, the indicator function of x. For a cost function of the form (2.20)

δC[F ] = C[F + εδF ]− C[F ] =
1

Ntrain

Ntrain∑
i=1

c(yi(F (xi) + εδF (xi)))− C[F ]

≈ ε
1

Ntrain

Ntrain∑
i=1

c′(yiF (xi))yiδF (xi) +O(ε2), (2.25)
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assuming that αT+1 is fixed, the condition on fT+1 in (2.21) so that C[FT+1] ≤ C[FT ] is

− 〈∇C[FT ], fT+1〉 ≤ 0. (2.26)

Therefore, fT+1 is the function that minimizes

Ntrain

αT+1
δC[FT ] =

Ntrain∑
i=1

c′(yiFT (xi))yif(xi) =
∑

i:yi=f(xi)

c′(yiFT (xi))−
∑

i:yi 6=f(xi)

c′(yiFT (xi))

=

Ntrain∑
i=1

c′(yiFT (xi))− 2
∑

i:yi 6=f(xi)

c′(yiFT (xi)) =

=

Ntrain∑
i=1

c′(yiFT (xi))

(
1− 2

∑
i:yi 6=f(xi)

c′(yiFT (xi))
Ntrain∑
j=1

c′(yjFT (xj))

)

= −2

Ntrain∑
i=1

c′(yiFT (xi))

( ∑
i:yi 6=f(xi)

w
[T+1]
i − 1

2

)
, (2.27)

where

w
[T+1]
i =

c′(yiFT (xi))
Ntrain∑
j=1

c′(yjFT (xj))

. (2.28)

Assuming that the c(m) is a monotonically decreasing function of m, then −c′(m) is

non-negative, and {w[T+1]
i }Ntrain

i=1 can be regarded as the weights of the instances.

Therefore, minimizing (2.21) for FT and αT+1 fixed is equivalent to minimizing the

weighted error

εT+1 =
∑

i:yi 6=f(xi)

w
[T+1]
i ; w

[T+1]
i =

c′(yiFT (xi))
Ntrain∑
j=1

c′(yjFT (xj))

. (2.29)

The stopping criteria is

δC[FT ] ≥ 0 =⇒
∑

i:yi 6=fT+1(xi)

w
[T+1]
i ≥ 1

2
. (2.30)

For the particular case of Adaboost

c(m) = e−m, c′(m) = −e−m. (2.31)
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Therefore, the weights of the instances are

w
[T+1]
i =

e−yiFT (xi)

Ntrain∑
j=1

e−yjFT (xj)

=
e
−yi

T∑
t=1

αtft(xi)

Ntrain∑
j=1

e
−yj

T∑
t=1

αtft(xj)

i = 1, · · · , Ntrain (2.32)

Assume that, given FT , we have chosen fT+1. The value of αT+1 is determined by

minimizing

C[FT + αfT+1] =
1

Ntrain

Ntrain∑
i=1

c(yi(FT (xi) + αfT+1(xi)), (2.33)

with respect to α. Taking the derivative with respect to α and setting its value to 0

when α = αT+1 we obtain

1

Ntrain

Ntrain∑
i=1

c′(yi(FT (xi) + αT+1fT+1(xi)))yifT+1(xi) = 0. (2.34)

The solution of this equations is

∑
i:fT+1(xi)=yi

c′(yiFT (xi) + αT+1) =
∑

i:fT+1(xi)6=yi

c′(yiFT (xi) + αT+1). (2.35)

For Adaboost c′(m) = −e(−m)

e2αT+1 =

∑
i:f(xi)=yi

e−yiFT (xi)

∑
i:f(xi)6=yi

e−yiFT (xi)
=

∑
i:f(xi)=yi

w
[T+1]
i∑

i:f(xi)6=yi
w

[T+1]
i

=
1− εT+1

εT+1
, (2.36)

where εT+1 =
∑

f(xi)6=yi
w

[T+1]
i . The equation (2.36) implies

αT+1 =
1

2
log

1− εT+1

εT+1
. (2.37)

Using this result the expression for the weights can be simplified

w
[T+1]
i =

e−yiFT (xi)

Ntrain∑
j=1

e−yjFT (xj)

=
e
−yi

T∑
t=1

αtft(xi)

Ntrain∑
j=1

e
−yj

T∑
t=1

αtft(xj)

=
1

Z [T+1]
w

[T ]
i e−yiαT+1fT+1(xi), (2.38)
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where

Z [T+1] =

Ntrain∑
i=1

w
[T ]
i e−yiαT+1fT+1(xi) =

∑
i:f(xi)=yi

w
[T ]
i e−αT+1 +

∑
i:f(xi)6=yi

w
[T ]
i eαT+1

= (1− εT+1)

√
εT+1

1− εT+1
+ εT+1

√
1− εT+1

εT+1
= 2
√
εT+1(1− εT+1). (2.39)

2.2.3 Random Forest

Random Forest (RF) is a very effective ensemble method in which the individual learn-

ers are randomized trees [11]. As in bagging, each tree is generated using a different

bootstrap sample drawn with replacement from the original training set. RF differs

from bagging in the way that decision trees in the ensemble are built. In RF, in order to

identify each split in the tree, a random subset of the features is sampled from the set

of features. The best split within this subset is then selected. This process is repeated

until all instances are correctly classified. The randomized trees are fully grown and

no pruning is applied. As in bagging, the final decision in RF is obtained by majority

voting. The pseudo-code of RF is shown in algorithm (3).

Since RFs have an additional randomization mechanism, the diversity in this types of

ensembles is larger than in bagging. Numerous empirical studies show that this leads to

improvements in the prediction accuracy in many problems of practical interest [11, 110–

112].

Algorithm 3: Random Forest algorithm[11]

Input: Dtrain={(xi, yi)}Ntrain
i=1 % Training set

T % Ensemble size
l % number of selected features in each split
L %Data dimension
L % Base learning algorithm

1 for t← 1 to T do
2 Dt ← Bootstrap(Dtrain)% Bootstrap sample from Dtrain uniformly, with

replacement
3 %Build tree on Dt

4 while nodes are not pure do
5 for each node in tree do
6 Select l < L random features.
7 choose among the randomly selected feature, the one that provides the best

split based on a specified objective function.
8 Split the current node on the selected feature.

Output: H(·) = arg max
y

∑
t:ht(·)=y

1 %Majority voting
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2.2.4 Class Switching Ensemble

Class switching is an ensemble method in which diversity is obtained by using different

versions of the training data polluted with class label noise. Specifically, to train each

base learner, the class label of each training point is changed to a different class label

with probability p.

This idea was first proposed by Breiman [12]. In this work the class labels of the training

instances are changed at random according to a probability matrix P, whose elements

are

Pj←i = w Pj for i 6= j

Pi←i = 1− w(1− Pi) (2.40)

where Pj←i is the probability of changing a class label i to j, Pj is the fraction of

instances with class label j in the training set and w is defined in terms of the switching

rate p as

w =
p

1−
∑
j
P 2
j

=
p

2
∑
j

∑
k>j

PjPk
. (2.41)

The probability matrix is such that the class distribution of the training set is main-

tained. The switching rate p in this method is chosen to be sufficiently small so that

the training error tends to zero in large ensembles. Actually, p needs to be smaller than

the proportion of the instances in the minority class. Otherwise, more than half of the

instances in the minority class would have their class flipped. In that case the minority

class instances would be misclassified by the ensemble. To address this shortcoming,

Mart́ınez-Muñoz and Suárez in [113] proposed to apply a fixed switching rate p, inde-

pendently of the class distribution. The class label of each instance in the training set

is randomly switched to an another label according to the transition probability matrix

Pj←i =
p

K − 1
for i 6= j,

Pi←i = 1− p, (2.42)

where K is the total number of the classes. Using this prescription, the class distribution

of the original training set is not maintained for unbalanced datasets. By increasing p,

the proportion of the different class labels in the modified dataset becomes approximately

equal. In this method, the probability of changing a class label needs to be lower than

the probability of keeping the original class label (Pj←i < Pi←i) to guarantee that the

ensemble correctly classifies the instances in the training set. Based on this consideration
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and (2.42) the upper bound of the switching rate is

p < pmax =
K − 1

K
. (2.43)

The final decision in this method is computed using majority vote among the base

learners of the ensemble. The number of classifiers that need to be aggregated for

convergence of the ensemble prediction is fairly large (> 1000) in most of the analysed

classification tasks, specially for high values of p. This method is equivalent to Breiman’s

class flipping in class-balanced datasets, and exhibits better performance in unbalanced

problems.

2.3 Classification Margins

In the context of classification the margin of an instance is defined as the distance to

the decision boundary. The concept of margin has been a useful tool in the design and

analysis of the effectiveness of numerous classification methods [114–119]. The obser-

vation that upper bounds on the generalization error decrease with increasing margins

suggests that increasing the margin could improve the generalization capacity of the

classifier and the confidence of its predictions. Support Vector Machine (SVM) [58, 59]

is the best-known classification method based on margins. This method combines two

ideas: first, instances are mapped to a high dimensional feature space in which the

classification problem is linearly separable. Second, one searches for a hyperplane that

correctly separates the training instances and maximizes the minimal distance between

the hyperplane and the closest instances. Instances from different classes that are close

to the separator hyperplane have higher uncertainty, due to their proximity to the region

assigned to the other class.

The concept of the margin in an ensemble was introduced by the Schapire et al. in [5] in

relation to boosting. In the context of ensembles, the margin is defined as the difference

between the weighted sum of the votes for the correct class and the weighted sum of the

votes for the most voted class other than the correct one

margin(x, y) =
1

T

T∑
t=1

αt1(ht(x) = y)−maxj 6=y
1

T

T∑
t=1

αt1(ht(x) = j), (2.44)

where αt is the weight of base learner t in the ensemble and 1 is the indicator function.

Assuming that the weights are normalized (
∑

t αt = 1), the margin is a real number

in [−1, 1]. The margin is positive for correctly classified instances and negative for

misclassified ones. A larger positive margin indicates a higher confidence on a correct

classification. Large margins are often identified as a key point in the generalization



Chapter 2. Classification with Ensembles 24

capacity of a classifier [1–4]. Nonetheless there are some empirical studies that put in

doubt the general validity of this view [6, 7]. Furthermore, efforts to directly optimize

the margin (or the minimal margin) have met with mixed results [8, 9]. In the area of

ensemble learning, boosting effectively increases the margins of the training example by

progressively focusing on hard-to-classify instances. It defines a classification boundary

that tends to minimize the overlap between classes. On the other hand, bagging and

random forest do not tend to increase the margin [5]. Another example of classifiers

that exhibit low margins is class-switching [12, 13]. This ensemble learning method,

which has a generalization performance comparable to boosting [13], builds classifiers

that exhibit small margins by construction. Furthermore, we will show in this thesis

that subsampling improves the robustness of bagging in the presence of noise, while

decreasing the margin [60].

2.3.1 V C dimension and Structural Risk Minimization

As discussed earlier in this thesis, the goal of machine learning is to use training data

to automatically induce a system that make correct predictions on new instances. The

learning algorithm should be able to generate predictions with an adequate capacity

to properly capture the underlying regularities in the data. on the one hand, if the

expressive capacity of the hypothesis space is insufficient, underfitting can occur. On

the other hand, an overly complex hypothesis is prone to overfitting. Therefore, the

complexity of the learning model should be tuned to the complexity of the classification

problem.

The complexity of a family of hypothesis H can be quantified in terms of the Vapnik

Chervonenkis dimension (V C). The V C dimension is defined as the largest number of

instances that can be shattered by a hypothesis in the family considered. Shattering

refers to separating instances for any possible class labeling. If for any sample set size

Ntrain, every set with Ntrain instances can be shattered by H, then the V C dimension

of H is infinite [120]. Vapnik shows [120] that the generalization error of a classifier can

be bounded with probability 1− µ as

Error(h) ≤ Errortest(h) +

√
V C(log(2Ntest

h ) + 1)− log(µ4 )

Ntest
, (2.45)

where Errortest(h) is the empirical error and Error(h) is the generalization error, Ntest

is the size of the test set and V C is the value of the V C dimension of H. The second

term in (2.45) is called the V C confidence [121].
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Figure 2.2: SRM structure in selection of the optimal learning model [122]

Structural Risk Minimization (SRM) refers to a technique for selecting an optimal hy-

pothesis in which the complexity of the learning model and its generalization ability is

adapted to the data available for training. In this method, a nested structure of fam-

ilies of hypothesis with increasing V C dimension are identified. In this structure, each

family of hypothesis is more complex than the previous one. The family that is selected

is the one with the minimum value of the generalization error upper bound (2.45). In

this manner, SRM selects a learning model in which the complexity is adapted to the

complexity of the data. Figure (2.2) shows the scheme of SRM in the model selection

procedure. In this figure, the most complex family of hypothesis (Sk) is the one with the

highest V C dimension and in consequence with the highest value of the V C confidence.

This family has the lowest value of the empirical error, but is prone to overfitting. As the

V C dimension goes down the empirical risk increases and underfitting is more probable.

Choosing an appropriate V C dimension leads to the lower expected risk (generalization

error). The V C dimension is difficult to calculate in nonlinear models such as neural

network. The estimation is simpler in linear models such as SVM [59]. It can be shown

[123, 124] that an upper bound of V C dimension of a linear model, with margin ρ is

V C ≤ min{d, 4r2

ρ2
}+ 1, (2.46)

where r is the radius of the smallest sphere containing all instances and d is the dimen-

sionality of the feature space. As it has seen in (2.46), larger margins correspond to the

learning models with lower V C dimension.
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2.4 Conclusions

In this chapter we have discussed how ensembles can be used to address classification

problems. Classification refers to the prediction of the class label of an instance from

the vector of attributes that characterizes it. The learning strategy is to identify pat-

terns in the training data that allow us to make correct predictions on new instances.

To do so, the learner should be sufficiently flexible to capture the complexity of the

regularities in the training data. However, a model that is too flexible has the risk of

overfitting and may not generalize well. Ensemble methods attempt to alleviate some

limitations of individual learners by combining the decision of several base learners.

Accuracy and complementarity of the base learner decisions are key features to build

effective ensembles. The prediction accuracy of each base learner should be at least

better than random guessing. In randomized ensembles, such as bagging, random forest

and class switching, complementarity is an indirect consequence of the diversity among

the classifiers. In some other ensemble learning methods, such as boosting or negative

correlation learning, one actively seeks to generate complementary classifiers.

Finally, we introduced the concept of classification margin and discussed its relevance

to the generalization capacity of a predictor. Margin of an instance refers to its distance

to the decision boundary. The best-known margin-based classifier is SVM. In SVM, one

identifies a separator hyperplane that correctly classifies the training instances while

maximizing the margin. In the context of ensembles, the margin is defined as the

number of the votes for the correct class label minus the number of the votes for the

class that receives the highest number of votes and that is different from the correct

one. This definition of margin is important to understand the performance of boosting

ensembles such as Adaboost [5]. In this method, the margin tends to increase as the

ensemble grows. However not all ensemble methods work by increasing the margin.

Bagging, random forest and class-switching ensembles do not increase the margin. In

this thesis we analyse the performance of bagging with sampling rates that are lower

than the standard prescription. Lower sampling rates in bagging decrease the margin in

comparison with standard bagging. The experiments performed in this thesis illustrate

that bagging and random forest using lower rate sampling to train the base learners, are

robust to noise in the class labels, in spite of having smaller margins.
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Learning in the Presence of Noise

Poor data quality and contamination by noise are unavoidable in many real-world classi-

fication problems [14, 15]. This can mislead the learning algorithms used for automatic

induction from these data. Two types of noise can be present in these problems: class-

label noise and polluted feature values [14, 15]. Class-label noise is the consequence

of incorrect manual labeling, missing information or failures in the measuring process.

Feature noise is often the result of a faulty data gathering process [14, 15]. Class-label

noise typically has a more pronounced misleading effect than feature noise, except when

most of the feature values are corrupted [14].

Frénay et al. [15] identify three types of label noise, characterized by different statistical

models: The Noisy Completely at Random Model (NCAR), in which the probability of

a class-label error is independent of the values of the features, the actual class of the

instance and the noise rate. To simulate this type of noise the class labels of randomly

selected instances are changed to a different class label at random. The second model

is Noisy at Random (NAR). Labelling errors in this model are assumed to occur with a

different probability for each class. NAR is useful to characterize tasks in which some

classes are more susceptible to mislabeling than others. The third model is Noisy Not at

Random (NNAR). In this case, the probability of an error depends on the actual class

label and on the values of the features. This model should be used when some regions

of the feature space, such as boundaries or sparse regions, are more prone to noise than

others.

Noise can be handled in a preprocessing step (data cleansing) or during the learning

process, assuming that the algorithms used for induction from the contaminated data

are robust [15].

27



Chapter 3. Learning in the Presence of Noise 28

3.1 Data cleansing

To mitigate their harmful effects, noise and outliers can be eliminated in a preprocessing

step, before the selected learning algorithm is applied. For instance, it is possible to use

statistical models or clustering-based methods to detect outliers. Patterns and associa-

tion rules can also be used in the cleansing process [125]. An example of a pattern-based

data cleansing algorithm is described in [126, 127]. In this method, local SVM’s are

used to identify and remove instances that are suspected to be noise. For each particu-

lar training instance, k -NN is applied to locate nearby instances. An SVM is then trained

on these instances to find the optimal separating hyperplane in that neighborhood. If

the label predicted by this locally trained SVM does not coincide with the actual label,

the instance is identified as noisy and discarded. This cleansing method has been tested

on real and artificial datasets, where it showed improvements over k -NN. In [128], noisy

instances are removed based on wrappers of different classification methods. In this

study, the best results were obtained by removing or cleaning instances based on the

prediction of a SVM built with the rest of the training data. Noisy instances are often

included in the set of support vectors by a SVM classifier. Based on this observation,

Fefilatyev et al. [129] propose to manually remove support vectors that are identified as

noise by an expert. Then, a new SVM is built on the cleansed dataset. This process is

iterated until no more support vectors are identified as noisy instances.

Noise handling has also been considered in the context of ensembles of classifiers. In

[130], an ensemble of three classifiers (an univariate decision tree, a k-nearest neigh-

bor and a linear machine) is used to identify noisy instances. Since different learning

algorithms have different biases, employing information from a variety of learning algo-

rithms can be more informative than a single one [130]. The noise detection protocol

in this method is the following: The training set is partitioned into 4-folds. Then, an

ensemble is trained using three of these folds. Finally, the ensemble is used to identify

noisy instances in the fold not used for training. In this study two filtering strategies are

considered: majority filtering and consensus filtering. In majority filtering a particular

instance of the leave-out fold is identified as noisy when the predictions of more than half

of the learners do not coincide with the label of that instance. The consensus filtering

rule is more conservative. It identifies an instance as noisy when all the members of

ensemble misclassify it. This process is repeated for each different fold to identify noisy

instances in all 4 folds. In this study, majority filtering had better overall performance

than consensus filtering.

In a similar approach, the authors of [131] used an ensemble of 25 classifiers of different

types to detect noisy instances. The increased diversity of this heterogeneous ensemble

reduces the risk of false positives in the noise detection process. In addition, different
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intermediate strategies between majority and consensus filtering are explored. In the

problems investigated, the optimal threshold of erroneous ensemble predictions used to

identify an instance as noisy is 23 out of 25, which is close to consensus filtering.

In [132], an ensemble of Top-down Induction of Logical Decision Trees (Tilde) is used

to filter the training data. In this study either cross validation or bootstrap sampling

are used to generate the training sets on which the base learners are built. Majority

and consensus filtering are then applied to identify noisy instances. The best results are

obtained with majority filtering. In addition, boosting is proposed as a noise detection

strategy. The idea is to filter instances that have higher weights after a number of pre-

defined iterations of the boosting algorithm. In the problems investigated this strategy

does not perform well. However, in datasets with different number of instances and noise

levels the results can be different.

In [133], a distributed method for large datasets is presented. In this method the original

training set is partitioned into small subsets. A classifier is induced from each of the

these subsets. These classifiers are used then to classify the instances in the original

training data. The local error of an instance is defined as the fraction of classifiers whose

training data included that particular instance and misclassified it. The global error for

an instance is computed using those classifiers that did not include that instance in their

training sets. Majority and consensus filtering are used to identify noisy instances. A

necessary condition for an instance to be identified as noisy is that it be misclassified by

the base learners whose training sets induced it. The justification is that a classifier has

usually higher accuracy on instances that are in its training set. In this work majority

filtering is found to yield better results than consensus filtering.

In [134], a noise detection strategy that combines ideas from bagging and boosting is

investigated. In this method the weights are assigned to the instances. The instances

are initialized with equal weights. Then bootstrap samples from the original training

data are used to build different classifiers. For each instance a noise count is computed

as the number of base learners that have misclassified the instance. The noise count is

used in a boosting-like iterative process in which the weight of the instances with higher

noise counts is decreased. This process is iterated for a predefined number of rounds.

Finally, instances with noise count values higher than a threshold are labelled as noisy.

In most of the noise detection methods based on ensembles, majority and consensus

filtering are used. More instances are identified as noise when majority filtering is

applied with respect to consensus filtering. Majority filtering was found to be better

than consensus filtering in most cases. This is probably due to the fact that consensus

filtering is too restrictive and does not remove enough instances. However, in [131]

strategies very close to consensus filtering worked best. This indicates that, the optimal
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filtering strategy depends on the noise level and on the particular classification problem

considered.

3.1.1 Robust learning algorithms

Another strategy to deal with noise is the design of robust learning algorithms. For

instance, pruning is used in decision trees to reduce overfitting : the presence of noise

tends to increase the size of the decision trees induced from the contaminated training

data. Pruning can thus be an effective way to improve the robustness of decision trees

[64, 130]. Another robustifying strategy is to explicitly incorporate in the learning

algorithm the fact that the values of the features and the class labels can be polluted

by noise. This strategy is adopted in the construction of Credal Decision Trees [135].

These types of trees are grown using the Imprecise Info-Gain Ratio (IIGR) as a splitting

criterion. In this method the values of the features and class labels are approximated

using probabilities and uncertainty measures.

It is also possible to adapt the algorithms used to build Support Vector Machines to

improve their robustness to class-label noise. For instance, in [136] the hinge loss is

replaced by a related loss function that takes into account the amount of noise in the

data. Unfortunately, with this loss function the optimization problem becomes non-

convex. Heuristic optimization methods are then used to search for the global minimum

of this non-convex problem. Promising results were obtained by this robust SVM in

problems with asymmetric class noise (NAR model). A drawback of this method is

that it is necessary to estimate the amount of noise in the data before hand. Another

robust version of SVM, called P-SVM (Probabilistic SVM) is proposed in [137] to clas-

sify magnetic resonance medical images. The P-SVM takes as inputs not only class

labels but also class probability estimates. These probabilities are used to estimate the

confidence on the labeling of each instance. The lower the confidence on the label, the

lower the weight of that instance in the learning process. A practical limitation of this

method is that one needs both qualitative (class labels) and quantitative (class posterior

probabilities) information on the classes.

The problem of induction from noisy data has also been extensively addressed in the

area of ensemble learning. In [138], Ali and Pazzani analyze the behavior of multiple

classifier systems in the presence class-label noise. They observed that the improvements

of the ensemble with respect to a single learner are generally smaller when the training

data are contaminated with class-label noise. However, the reduction is not uniform and

depends on the type of ensemble used.



Chapter 3. Learning in the Presence of Noise 31

Noise is not always harmful. In fact, noise injection is a powerful regularization mech-

anism that has the potential of improving the generalization capacity and robustness

of prediction systems. In particular, randomization is used to build diverse ensembles

that have good generalization capacity [11–13, 17, 18, 20, 84, 139–143]. Furthermore,

randomized ensembles, such as bagging and random forests, have been shown to be ro-

bust classifiers. By contrast, adaptive ensembles, such as boosting, are very sensitive

to class-label noise [17, 18, 20, 139, 140]. The differences between these two types of

ensembles can be explained by how errors are handled during the training phase: In

bagging and random forest, the randomness injected during the construction of the en-

semble is not correlated with the noise. For this reason, the influence of the different

instances is equalized during training process [144]. By contrast, boosting increases the

weights of misclassified instances irrespective of whether they are correctly labeled or

not. The emphasis on correctly labeled instances that are difficult to classify is ben-

eficial, because it reduces the classification bias. However, the focus on outliers tends

to mislead the learning process. The adaptivity that makes boosting such a powerful

learner also renders it overly susceptible to noise.

There are many proposals to improve the robustness of boosting to class-label noise. In

most of these variants the weight update rule is modified to reduce boosting’s sensitivity

to noise. A successful strategy is to use less aggressive weight updates. In standard

boosting the weight updates are exponential. Using slower updating scheme moderates

the emphasis on misclassified instances. This is generally advantageous because some

of this misclassified instances could be outliers [145]. In BrownBoost [146] misclassified

instances with small negative margins are assigned higher weights, as in Adaboost. By

contrast, instances whose margin is negative and above a specified threshold receive lower

weights. The rationale behind this weight updating strategy is that instances in regions

with a large class overlap tend to have low margins. By emphasizing these instances it

is possible to model the classification boundary in more detail. Large negative margins

correspond to isolated instances, which are far from the classification boundary. These

instances are likely to be outliers and should therefore be discarded. In [140], Brownboost

is shown to be more robust than Adaboost in a limited experimental setting (5 datasets

for 20% class-label noise). Another way of avoiding excessive emphasis on misclassified

instances is to discard instances whose weight is above a threshold [147]. The value

of the threshold can be determined using a validation set. This algorithm is shown

to be more robust than standard Adaboost in 8 datasets with low to medium class-

label noise (up to 10%). None of these studies [140, 147] compares the results of robust

boosting ensembles with bagging. Finally, it is possible to combine bagging and boosting

strategies to improve the accuracy and robustness of the resulting ensembles [21, 148].
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However, as far as we are aware, the effectiveness of these hybrid ensembles has not been

systematically evaluated in experiments with class-label noise.

In [22] the authors propose to use credal decision trees to improve bagging’s resilience

to label noise. The results obtained with these types of ensembles in the low to medium

noise regime (0%-10% class-label noise) are comparable to bagging of C4.5 trees. For

higher noise levels (20%-30%) bagging of credal trees is more accurate than bagging of

C4.5 trees.

3.1.2 Subsampling as a regularization mechanism

Subsampling can also be used to design robust bootstrap ensembles. The individual

classifiers of a bagging ensemble are built by applying the same base learning algorithm

to different m-out-of-n bootstrap samples from the original training data. In standard

bagging the number of instances in the bootstrap sample, m, is equal to the number of

instances in the original training data, n (i.e. m = n). This choice of m need not be

optimal. As an illustration, the performance of bagged nearest neighbors is comparable

to the nearest neighbor algorithm itself [10]. However, if each bootstrap sample contains

on average less than 50% distinct instances from the training set, the accuracy of bagged

nearest neighbors can actually improve. In fact, if the sampling ratio tends to 0 as the

training set size tends to ∞, the performance of bagged nearest neighbor tends to the

Bayes (optimal) error [23]. Another study [24] shows that subbagging with low sampling

ratios generally improves the accuracy of bagging when stable classifiers are combined.

The optimal subsampling ratio can be effectively determined using out-of-bag data [25].

In chapter 4 of this thesis we show that subsampling has potential to improve the

robustness of bagging to class-label noise in some classification problems [60].

One way of understanding how the sampling ratio can influence the performance of bag-

ging ensembles is to consider the average number of distinct instances in each bootstrap

sample. The dependence of this value with the sampling ratio is displayed in Figure 3.1.

In standard bagging (100% sampling ratio) each bootstrap sample contains on average

63.2% different instances from the original training data [149]. The remaining 36.8%

are repeated instances. As the sampling ratio becomes smaller, the number of distinct

instances in each bootstrap sample decreases. Eventually, only one instance is sampled

for a sampling ratio of 1/N , where N is the size of the training set. The classifier built on

such a sample would predict the class label of the single instance in the sample. Hence,

the ensemble decision would be the majority class in the training data, irrespective of

the values of the features. On the other extreme, bootstrap samples obtained with high

sampling ratios contain most of the training instances. In such cases most base learners
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Figure 3.1: Average percentage of the unique training instances with respect to the
size of the bootstrap sample

are very similar; the diversity arises only from having different repeated examples in the

different bootstrap samples. Ensembles built using these extreme values of the sampling

ratio will not in general have good generalization. The optimal performance is generally

obtained at intermediate values of the sampling ratio [25]. Furthermore, the optimal

sampling ratio need not coincide with the standard prescription (100%).

An interesting regime corresponds to sampling ratios smaller than 69.3% (see Figure 3.1).

For values below this threshold, fewer than 50% of the original training instances are

included in each bootstrap sample. This means that each instance is present in less

than half of the classifiers of the ensemble. In this regime, the class label given by the

ensemble for each training instance is strongly influenced by the class label of nearby

instances. In consequence, subsampling has the potential to increase the diversity of the

classifiers in the ensemble. Higher diversity results in more variability in the votes and

therefore in lower margins. We conjecture that using sampling ratios in this regime is

an effective strategy to handle class-label noise in classification ensembles.
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Small Margin Ensembles

In this chapter we explore how subsampling affects the classification margins in ensem-

bles. The goal is to understand the relation between ensemble diversity, margins and

robustness. We first present the results of a set of experiments that illustrate the effect

of subsampling on the classification margin. Then we analyze how subsampling can act

as a regularization mechanism that reduces the influence of mislabeled data.

4.1 Subsampling and margins

To understand how classification margins are affected by susbsampling we have carried

out a series of experiments in the classification problems Threenorm, Twonorm and

Ringnorm [6]. These are synthetic datasets for which the optimum Bayes decisions are

known. Bagging ensembles and random forests of 500 trees were trained using different

bootstrap sampling ratios: 100%, which is the standard prescription, 20% and 5%.

Ensembles trained on a noiseless set are used as a baseline. The bagging and random

forest ensembles were built on the same training sets, which consist of 300 instances. The

boosting ensembles were built on different sets of the same size. Additional ensembles

were then built on copies of these sets contaminated with 20% label noise. The noise was

simulated using the NCAR model. Bagging and random forest ensembles were tested

using the out-of-bag error [149]. The out-of-bag data of a particular classifier consists

of those instances which are not included in the bootstrap sample used to build that

classifier. Since they are not used for training, they can be employed as independent

test data. Thus, to compute the out-of-bag error, each instance in the training set is

classified using only the votes of those predictors whose training sets do not include that

particular instance. Besides providing a good estimate of the generalization capacity,

the out-of-bag method allows us to analyze how the injected noise is handled by the

34
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ensemble: The same instances, including those whose class labels have been altered,

are used both for training and for testing. To allow comparisons across ensembles, the

performance of boosting was evaluated on the training data used to build the bagging

and random forest ensembles.

Scatter plots of the posterior probability of class 2 versus the fraction of class 2 votes for

the instances in the evaluation set are given in figures 4.1 and 4.2. The results displayed

correspond to experiments with the different ensembles, sampling ratios and class-label

noise levels. In bagging and random forest, the fraction of class 2 votes for a particular

instance is estimated using the classifiers for which that instance was in the out-of-bag

set (i.e. the set of instances not used to train that particular classifier). For boosting,

all the classifiers in the ensemble were used. Figure 4.1 presents the scatter plots for

an execution of Threenorm. Similar results are obtained in the other datasets. The

plots included in this figure display (by rows) the results for standard bagging (100%

sampling ratio), bagging using 20% sampling, 5% sampling and boosting. The results

for a noiseless training set are presented in the first column. The results for a training

set with 20% injected label noise are presented in the second column. Figure 4.2 shows

the corresponding plots for random forest. In all plots the class 1 (class 2) instances are

marked as empty circles (triangles). The instances whose class has been changed into

class 1 (class 2) are marked as filled circles (triangles). The lines shown in the plots

define the decision boundaries for the Bayes classifier (horizontal line) and the ensemble

(vertical line). In addition, the errors for the ensembles and the Bayes classifier are

displayed on the right bottom corner of the plots. For the problems with injected label

noise, error values considering noise (N) and without noise (O) are given. The Bayes

classifier and the ensembles agree in the classification of instances located in the upper

right and bottom left quadrants. The ensemble and the Bayes predictions are different

for the remaining instances.

Several noteworthy features are revealed in these plots. In the noiseless problem (left

column), the Bayes classifier assigns fairly high margins to most instances. The clas-

sification margins of bagging ensembles are lower than those of the Bayes classifier.

Furthermore, they become smaller as the sampling ratio decreases. However, bagging

ensembles with sampling ratios of 20% (second row) are more accurate than standard

bagging, with 100% sampling (first row), in spite of the fact that the margins are smaller.

The accuracy obtained with a sampling ratio of 5% is comparable to standard bagging.

This is contrary to the view that accuracy should improve with increasing margin. A

possible explanation of this behavior is that the different bootstrap samples have fewer

common instances as the sampling ratio decreases. In consequence, the base classifiers

become more diverse. This increased diversity initially leads to accuracy improvements.

However, if the sampling ratio is reduced beyond a threshold, the individual classifiers
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Figure 4.1: Scatter plots of the posterior probability of class 2 versus the fraction
of ensemble class 2 votes for each instance in the evaluation set. Results are given for
Threenorm without noise (left column) and with 20% noise (right column). The plots
correspond to bagging ensembles with sampling ratios: 100% (first row), 20% (second

row) and 5% (third row). The results for boosting are presented in the forth row.
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Figure 4.2: Scatter plots of the posterior probability of class 2 versus the fraction
of ensemble class 2 votes for each instance in the evaluation set. Results are given for
Threenorm without noise (left column) and with 20% noise (right column). The plots
correspond to random forest ensembles with sampling ratios: 100% (first row), 20%

(second row) and 5% (third row).
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become inaccurate. The error reduction that results from the aggregation of their de-

cisions in the ensemble is not sufficient to compensate the lack of accuracy of the base

learners. As a result, the fraction of instances with small and negative margins increases

(see 5% sampling, third row, left plot).

A similar behavior is observed when label noise is present in the training set (right col-

umn): The classification margins are now smaller in all cases, relative to the noiseless

situation. The test error (second row, right column) initially improves with decreasing

sampling rates. However, if the sampling ratio is too low the performance of the en-

semble eventually deteriorates. A similar behavior has been reported in class-switching

ensembles [13].

The behavior for boosting (last row) is somewhat different. Because of its adaptive

nature, boosting produces larger margins than bagging. While this is effective in the

noiseless setting, it can be disruptive in noisy problems. In particular, when 20% class-

label noise is injected boosting has the worst accuracy.

The results for random forest (shown in Figure 4.2) are qualitatively similar to those

of bagging. However, the margins in random forest ensemble are typically smaller than

in bagging or boosting. This is a consequence of the higher diversity provided by the

random trees that make up the ensemble. From the experiments performed in this study

the best overall results are achieved by random forests built with the standard 100%

sampling ratio. The larger initial diversity of random forest implies that there is less

room for improvement as the sampling ratio decreases. The variability introduced by

subsampling could in fact be detrimental to the accuracy of the ensemble. Therefore,

subsampling is in general not as effective in random forest as it is in bagging. The

validity of this qualitative analysis is confirmed by the empirical evidence presented in

the section on experiments.

4.2 Experimental evaluation

In this section we present the results of an empirical investigation of the performance

of bootstrap ensembles in the presence of label noise. The experiments are designed to

assess how different sampling ratios affect the robustness of such ensembles. A total of

25 datasets from the UCI repository [150] and other sources [6] are used. They include

synthetic data (Ringnorm, Twonorm, Threenorm and Tic-tac-toe) and classification

problems from different application domains. The characteristics of the datasets are

summarized in Table 5.1. They have been selected to cover a wide spectrum: there are

problems with high and low numbers of attributes (e.g. Sonar and Balance, respectively),
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Dataset Instances Test Attrib. Classes

Australian 690 230 14 2
Balance 625 198 4 3
Breast W. 699 233 9 2
Diabetes 768 256 8 2
German 1000 333 20 2
Heart 270 92 13 2
Hepatitis 155 51 19 2
Horse-Colic 368 122 21 2
Ionosphere 351 117 34 2
Iris 150 50 4 3
Labor 57 38 16 2
Liver 345 115 6 2
Lung Cancer 32 10 56 3
Magic 19020 6340 11 2
New-thyroid 215 143 5 3
Ringnorm 300 2000 20 2
Segment 2310 1540 19 7
Sonar 208 699 60 2
Threenorm 300 2000 20 2
Tic-tac-toe 958 319 9 2
Twonorm 300 5000 20 2
Vehicle 846 564 18 4
Votes 435 145 16 2
Waveform 300 5000 21 3
Wine 178 59 13 3

Table 4.1: Characteristics of the classification problems and testing method

with small and large number of instances (e.g. Magic04 and Lung Cancer, respectively),

and with different numbers of classes.

The protocol used in the experiments is similar for all datasets. The only difference is

in the generation of the training and test sets. For the synthetic datasets (Threenorm,

Ringnorm and Twonorm) we generate a training set of 300 instances and a test set of

2000 instances. For the remaining datasets, 2/3 of the available data are used for training

and 1/3 for testing. Stratified sampling is used to guarantee that the class distributions

in the training and test sets are similar to the complete dataset class distribution. For

each problem and realization of the training and test sets, the following steps are carried

out:

1. Label noise is injected in the training set with different rates: 0% (no noise),

5%, 10% and 20%. In each case the class label of the randomly selected training

instances is changed to a different class, also at random. This corresponds to the
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Noisy Completely At Random noise (NCAR) model [15]. Uniform noise was used

to avoid making specific assumptions about the structure of the noise.

2. For each contaminated training set, six bagging ensembles composed of 500 un-

pruned CART (Classification And Regression Tree) trees [64] were built. The

bootstrap sampling ratios used are: 10%, 20%, 40%, 60%, 80% and 100% (stan-

dard bagging). The CART trees were grown until pure class nodes were obtained.

No pruning was applied to the fully grown decision trees. Random forest ensem-

bles were built on the same training sets and sampling ratios. Random forest is

a bagging ensemble composed of random trees. In random trees the splits at the

inner nodes of the tree are selected from those that involve only a random subset

of features. The size of these subsets was set to the square root of the number of

features for each dataset [151].

3. The generalization performance of all ensembles is gauged using the error on the

test set. To obtain comparable results across all the ensembles considered no noise

was injected in the test set.

The test errors reported in the tables are averages over the 100 realizations of the training

and test sets.

4.2.1 Results

To give an overall view of the results, we have computed the averages of the test error

changes in the 25 problems investigated, for each noise level, sampling strategy and

ensemble method (bagging and random forest). The results are presented in Table 4.2

as the relative error change, using standard bagging in the noiseless setting as the ref-

erence value. This reference value is marked in boldface in the Table. Values below 1

indicate that, on average, the corresponding method outperforms standard bagging in

the noiseless setting. Values above 1 signal a higher average test error.

In addition, the average error changes with respect to the noiseless setting for each

ensemble type are shown in Table 4.3. The reference values are highlighted in boldface.

These results serve to analyze how the accuracy of ensembles built with the different

sampling ratios is affected by class-label noise. The specific average test errors for the

individual datasets are presented in the appendix: Tables A.1, A.2 and A.3 for bagging

and Tables A.4, A.5 and A.6 for random forest ensembles.

An analysis of the results presented in Table 4.3 reveals that the loss of accuracy with

respect to the noiseless setting is very different for different sampling ratios. For standard
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Table 4.2: Relative error change for bagging and random forest for the different levels
of noise and sampling ratios. The reference value corresponds to standard bagging in

the noiseless case (marked in boldface as 1.00±0.00 in the table).

Noise 10 20 40 60 80 100

Bag 0 1.38±1.43 1.06±0.41 0.98±0.16 0.96±0.08 0.98±0.08 1.00±0.00
5 1.41±1.58 1.11±0.64 1.05±0.27 1.08±0.25 1.10±0.23 1.18±0.25

10 1.45±1.70 1.19±0.92 1.13±0.43 1.18±0.44 1.28±0.47 1.38±0.57
20 1.55±1.98 1.42±1.51 1.44±1.16 1.60±1.10 1.72±1.13 1.83±1.19

RF 0 1.77±2.85 1.49±2.24 1.21±1.44 1.06±0.91 0.97±0.58 0.94±0.42
5 1.75±2.62 1.48±2.08 1.23±1.31 1.13±0.91 1.05±0.68 1.01±0.55

10 1.77±2.56 1.48±1.98 1.27±1.36 1.20±1.03 1.15±0.82 1.16±0.76
20 1.81±2.43 1.62±2.03 1.51±1.55 1.48±1.36 1.51±1.31 1.53±1.26

Table 4.3: Relative error change averaged over all datasets for bagging and random
forest for the different levels of noise. The reference values are the test errors bagging
and random forest noiseless case (marked in boldface in the first and fifth rows of the

table).

Noise 10 20 40 60 80 100

Bag 0 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
5 1.01±0.09 1.03±0.14 1.06±0.14 1.12±0.19 1.12±0.20 1.18±0.25

10 1.03±0.11 1.07±0.22 1.13±0.30 1.22±0.38 1.30±0.45 1.38±0.57
20 1.08±0.13 1.23±0.44 1.43±0.95 1.66±1.02 1.75±1.12 1.83±1.19

RF 0 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
5 1.05±0.18 1.02±0.08 1.05±0.08 1.09±0.16 1.08±0.11 1.06±0.11

10 1.09±0.30 1.06±0.18 1.09±0.16 1.14±0.15 1.18±0.18 1.21±0.26
20 1.18±0.51 1.22±0.39 1.35±0.37 1.44±0.39 1.55±0.49 1.59±0.53

bagging with 20% noise injected, the average error increase with respect to the noiseless

case is 83%. This large increase should be expected, given the high level of noise injected.

By contrast, if a 10% sampling ratio is used, the average error increase is only 1.0%,

3.0% and 8.0% for the 5%, 10% and 20% label noise rates, respectively. An interesting

observation is that these error increments are significantly lower than the corresponding

levels of injected noise. Using lower sampling ratios in bagging tends to increase the

variability of the base classifiers. This larger ensemble diversity generally translates

into more robust classification. The remarkable robustness to class-label noise of these

ensembles is illustrated in greater detail by the results presented in Tables A.1, A.2 and

A.3 in the appendix. In some cases, there is even an improvement in the classification

accuracy when noise is injected. For instance, the best overall accuracy of bagging in

Breast with 20% noise is achieved using a 10% sampling ratio: The test error goes from

4.1% when no noise is injected to 3.5% when the training data has 20% noise. By

contrast, when standard bagging is used, the test error increases almost 5 percentage

points (from 4.3% with no noise to 9.2% with 20% noise).

For random forest ensembles, a similar, albeit less marked effect, is observed in Table 4.3:

The deterioration with the level of noise injected is more pronounced for larger sampling

ratios (18% increment with a 10% sampling ratio and 59% with a 100% sampling ratio).

However, the baseline accuracy of random forest ensembles at low sampling ratios is



Chapter 4. Small Margin Ensembles 42

rather poor: In the noiseless setting, the average error rate of random forest with a 10%

sampling ratio is 77% larger than standard bagging (see Table 4.2). One of the reasons

why subsampling is not as effective, is that random forests are typically more diverse

than bagging ensembles. This diversity makes standard random forest more robust to

noise (see rightmost column of Table 4.2). Using lower sampling ratios is not as effective

in increasing the diversity of the random trees. Therefore, subsampling does not lead to

systematic accuracy improvements in this type of ensemble.

Finally, from the analysis of the results displayed in Table 4.2 one concludes that the best

overall performance in the noiseless setting is achieved using standard random forests

(0.94). The difference with standard bagging is 6 percentage points on average. However,

the difference between standard random forest and bagging using 60% sampling ratio

is only of two percentage points (values 0.96 and 0.94 in Table 4.2). As the noise level

increases the best overall accuracy corresponds to bagging using 20-40% sampling ratios

(1.42 and 1.44 in the Table 4.2 for a 20% noise rate).

4.2.2 Accuracy as a function of ensemble size

The error curves displayed in Figures 4.3 and 4.4 trace the dependence of the average

test error of bagging on the number of classifiers in the ensemble. The classification

problems used to illustrate this dependence are Australian (Figure 4.3) and Threenorm

(Figure 4.4). The curves displayed correspond to different sampling ratios and noise

levels: noiseless setting (top left plot), 5% (top right plot), 10% (bottom left plot) and

20% (bottom right plot) noise rates. The qualitative features of these error curves are

similar in all the classification problems investigated.

When no noise is injected, the error curves for Australian converge to their asymptotic

(infinite ensemble) limit after approximately 50 trees. As more noise is injected larger

sizes are required for convergence. In this dataset the qualitative behavior of the error

as a function of ensemble size is similar for the different sampling ratios. By contrast,

in Threenorm (Figure 4.4), the convergence of the ensemble error curves is slower for

smaller sampling ratios.

4.2.3 Statistical significance of the results

A record of the statistically significant differences in accuracy with respect to the stan-

dard ensembles in the 25 classification problems investigated is given in Tables 4.4 and

4.5 for bagging and random forest, respectively. In each cell of these tables the number

of times a given method wins, draws or looses against standard bagging (Table 4.4) or
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Figure 4.3: Average test error of bagging in the Australian dataset: Noiseless setting
(top left); 5% (top tight), 10% (bottom left) and 20% (bottom right) noise rates. The

different curves in each plot correspond to different sampling ratios.

standard random forest (Table 4.5) is displayed. Paired t-tests with α = 0.05 are used to

determine the significant wins and losses. A draw is recorded if the differences between

the test errors are not statistically significant.

From the results presented in these tables one concludes that subsampling is more ef-

fective at higher levels of label noise. For instance, from Table 4.4, bagging using a 10%

sampling ratio and 0% noise significantly outperforms standard bagging in 9 datasets

and obtains lower accuracy in 11 datasets. When the noise rate is increased to 20%, the

situation is reversed: there are 20 wins and only 3 significant losses.

An analysis of the results for random forest in Table 4.5 leads to similar conclusions.
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Figure 4.4: Average test error of bagging in the Threenorm dataset: Noiseless setting
(top left); 5% (top tight), 10% (bottom left) and 20% (bottom right) noise rates. The

different curves in each plot correspond to different sampling ratios.

Subsampling becomes more effective also at higher noise levels. The effect, however, is

less salient than in bagging. In the noiseless case random forest using 20% bootstrap

sampling outperforms the standard version in only one dataset and losses in 21 datasets.

When the noise rate is increased to 20% the number of wins increases to 11 and the

number of losses decreases to 9. Random forests built using the standard prescription

(100% sampling ratio) have the best overall performance in the problems investigated

for all noise levels. However, as the amount of class-label noise increases, subsampling

becomes more effective and is actually advantageous in some problems.

Finally, the method proposed by Demšar in [152] is used to compare the performance

of the ensembles across the different datasets. The comparison is made in terms of
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Figure 4.5: Comparison of bagging with different sampling ratios using the Nemenyi
test, for datasets without noise (top left) and with 5% (top right), 10% (bottom left)
and 20% (bottom right) noise rates. Horizontal lines connect sampling ratios whose

average ranks are not significantly different (p-value < 0.05).
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Figure 4.6: Comparison of random forest with different sampling ratios using the
Nemenyi test, for datasets without noise (top left) and with 5% (top right), 10% (bottom
left) and 20% (bottom right) noise rates. Horizontal lines connect sampling ratios whose

average ranks are not significantly different (p-value < 0.05).
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Noise (%) 10% 20% 40% 60% 80%

0 9/5/11 15/3/7 13/8/4 13/12/0 1/23/1
5 11/6/8 17/2/6 16/6/3 14/11/0 7/18/0
10 15/5/5 19/2/4 17/7/1 13/12/0 7/18/0
20 20/2/3 21/1/3 18/6/1 14/11/0 9/16/0

Table 4.4: Records for statistically significant wins/draws/losses for bagging with
subsampling for different sampling ratios with respect to standard bagging (100 %

sampling ratio).

Noise (%) 10% 20% 40% 60% 80%

0 1/1/23 1/3/21 2/14/9 5/12/8 3/19/3
5 0/5/20 1/6/18 2/14/9 1/19/5 1/22/2
10 3/4/18 3/9/13 3/16/6 4/19/2 3/21/1
20 8/6/11 11/5/9 9/10/6 6/16/3 3/19/3

Table 4.5: Records for statistically significant wins/draws/losses for random forest
with subsampling for different sampling ratios with respect to standard random forest

(100 % sampling ratio).

the average rank of each classifier in the problems considered. For a given dataset, the

rank of the different ensembles is computed on the basis of the average test errors in the

different realizations of the training and test sets. Figure 4.5 presents the results of these

tests for different noise levels and sampling ratios. A Nemenyi test with p-value< 0.05

is used to determine the statistical significance of the differences between average ranks.

The critical distance above which these differences are considered significant is shown

for reference (CD = 1.5 for 6 methods, 25 dataset and p-value< 0.05). In this diagrams,

if two methods are connected with a horizontal solid line, the difference between their

average ranks is not statistically significant.

Figure 4.5 displays the results of the Demšar test for bagging ensembles in the noiseless

setting (top left), and with 5% (top right), 10% (bottom left) and 20% (bottom right)

noise rates. In all cases, standard bagging with 100% sampling ratio has the lowest

average rank. When no noise is injected the highest accuracy corresponds to bagging

with 20%, 40% and 60% sampling ratios. However, the differences with other sampling

ratios are not statistically significant. The improvements over standard bagging for 20%

and 40% sampling ratios are statistically significant in the problems with noise rates

5%, 10% and 20%. For the 20% noise rate, bagging ensembles that use 10%, 20%, 40%

and 60% sampling ratios are significantly better than standard bagging (100% sampling

ratio).

The results of the Demšar test for random forest are displayed in Figure 4.6. Standard

random forest (i.e. with 100% sampling ratio) is the best method for the noiseless
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setting (top left plot) and for the data contaminated with a 5% noise rate (top right

plot). However, the differences with ensembles built with 80%, 60% and 40% sampling

ratios are not statistically significant. For these noise rates standard random forest

significantly outperform ensembles built using 20% and 10% sampling ratios. When

higher noise levels are injected (10%), the best performance corresponds to random

forest with 80% sampling ratio. The improvements over ensembles built with 10% and

20% sampling ratios are statistically significant. For the highest noise level (20%) the

method with the highest average rank is random forest with a 20% sampling ratio.

However, in this case, none of the differences between the average ranks of the different

ensembles are statistically significant.

4.3 Conclusion

In this chapter we have analyzed the resilience to class-label noise of bootstrap aggre-

gation ensembles as a function of the size of the bootstrap samples used to train the

individual predictors. The results of an extensive empirical evaluation show that bag-

ging composed of unpruned decision trees trained on bootstrap samples whose size is

between 10% and 40% of the size of the original training set are more resilient to label

noise than standard bagging (i.e. using a 100 % sampling ratio). For random forests

subsampling is effective only in noisy domains (≈ 20% noise in the class labels) and in

specific classification tasks. In most problems, for low noise levels the best results are

obtained using high sampling ratios. In fact, using the standard sampling ratio to build

random forests is a reasonable choice with a good overall performance in the problems

investigated, especially in the absence of class-label noise. However, in noisy tasks, it is

worth to explore the possibility of subsampling, because the optimal size of the bootstrap

samples is problem dependent.

Experiments in synthetic data have been used to illustrate that the classification margins

become smaller as the sampling ratio decreases. This effect occurs both in the noiseless

setting and when class-label noise is injected. They provide empirical evidence that

using smaller bootstrap samples to build the individual ensemble classifiers can lead

to improvements in accuracy, especially in noisy domains. However, if the sampling

ratio decreases beyond a threshold the accuracy of the ensemble abruptly drops. This

abrupt deterioration of performance occurs at higher sampling rates in random forests

than in bagging. The reason is that the margins are typically larger in bagging than in

random forests. Since lower sampling ratios tend to reduce the margin, the potential

improvements of subsampling for random forest are realized only in problems with high

levels of class-label noise.



Chapter 5

Noise Detection

In the previous chapter we have shown that subsampling can be used to generate sub-

bagging ensembles that are resilient to class label noise [60]. In this chapter we design

a noise cleansing method based also on subsampling to improve the quality of the data

before the training process. The idea is to predict the class label of each example in the

training set using subbagging. Then, if the predictions of a specified fraction of the base

classifiers do not coincide with the actual label, this instance is considered as noise.

The pseudo-code of the algorithm is shown in Algorithm 4. The first step is to esti-

mate the optimum bootstrap sampling rate. Several bagging ensembles with different

bootstrap sampling rates are trained. The one with the lowest out-of-bag error, bag∗, is

kept. This ensemble is then used to detect the noisy or outlier instances. A particular

instance is labeled as noisy when its label does not coincide with at least a fraction

θ ≤ 0.5 of the classifiers in the ensemble bag∗. For instance, for θ = 0.2, the class

1 (class 2) instances that receive more than 80% of the votes for class 2 (class 1) are

marked as noisy instances. In general, the value of θ should be below 0.5. Otherwise,

correctly classified instances would be marked as noise. Finding the optimum filtering

parameter, θ∗, depends on the type of data and on the amount of noise. The parameter

θ∗ is determined by 3-fold cross-validation. A value of θ between 0 and 0.5 is used to

cleanse the data in two of the folds using the ensemble bag∗. Then a classifier (standard

bagging in our case) is trained on the cleansed data. Finally, the error is computed on

the leave-out fold. The process is repeated exchanging the roles of the folds as test and

training data. The optimum value for θ∗ is determined as the one that minimizes the

average cross-validation error. Finally, the instances in the training set that receive a

percentage of votes greater than (1 − θ∗) and are incorrectly classified are marked as

noise.

48
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Algorithm 4: Noise detection by subbagging

Input:
Dtrain = {(xi, yi)}Ntrain

i=1 % Training set
yi ∈ {−1, 1} %Class labels
T % Ensemble size
L % Base learning algorithm

1 rates = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
2 min error ← ∞
3 for i ← 1 to length(rates) do
4 sr ← rates[i] % Sampling rate
5 for t← 1 to T do

Dt ← Bootstrapsr(Dtrain)
% Bootstrap is sampled from Dtrain, uniformly with replacement, with sampling rate sr
ht(·)← L(Dt) %Train the base learner from Dt

6 bag[i]← {ht}Tt=1 %Aggregation of the base learners using rates[i]
7 Calculate oob error[i] (out-of-bag error of bag[i])
8 Calculate aggregated votes[i] (aggregated votes of bag[i])
9 if oob error[i] < min error then

min error ← oob error[i] %Out-of-bag error
sr∗ ← rates[i]
votes∗ ← aggregated votes[i] %Save aggregated votes for optimal subbagging ensemble

10 θ =[0, 0.1, 0.2, 0.3, 0.4, 0.5] % Candidates for cleansing parameters
11 min error ← ∞
12 for i ← 1 to length(θ) do
13 for n ← 1 to Ntrain do
14 if y(n) == -1 AND votes∗(n) >= 1-θ[i] OR y(n)== 1 AND votes∗(n) <= θ[i]

then
15 Mark instance n as noisy

16 cv error[i] ← Calculate error by 3 fold cross-validation
17 if cv error[i]) < min error then
18 θ∗ ← θ[i]
19 noise set ← save detected noisy set using current cleansing parameter

20 Cleanse dataset using aggregated votes (votes∗) of the optimum sampling rate and
optimum cleansing parameter (θ∗)
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Dataset Instances Test Attrib. Classes

Australian 690 230 14 2
Breast W. 699 233 9 2
Diabetes 768 256 8 2
German 1000 333 20 2
Heart 270 92 13 2
Ionosphere 351 117 34 2
Liver 345 115 6 2
Sonar 208 699 60 2
Twonorm 300 5000 20 2
Votes 435 145 16 2

Table 5.1: Characteristics of the classification problems and testing method

Once the instances are marked as noisy they can be dealt with in two ways: either the

class label is switched to the majority class given by bag∗ or the instance that is marked

as noise is removed from the training set.

5.1 Experimental Results

To assess the effectiveness of this noise detection procedure we have conducted an anal-

ysis on 10 datasets from the UCI repository [150]. The characteristics of the datasets

are shown in Table 5.1. In all the experiments, unpruned CART trees are used [64].

In all datasets with the exception of Twonorm, which is a synthetic problem, the data

are randomly divided into training and test sets with sizes equal to 2/3 and 1/3 of

the data respectively. For Twonorm, 300 examples are used for training and 2000 for

testing. In all cases, stratified sampling was used. The reported results are averages

over 50 independent runs. The following testing protocol is followed for each dataset

and run:

1. First, class noise is injected in the training set by randomly switching the class label

of a random subset of the training instances. Different noise rates are considered:

0% (no injected noise), 10% and 20%. This type of label noise is know as completely

at random noise (NCAR) [15].

2. For each noise level, six bagging ensembles composed of 500 trees are trained

using the following bootstrap sampling ratios: 10%, 20%, 40%, 60%, 80% and

100% (standard bagging). The out-of-bag error is computed in each of these sets.

The ensemble with the best out-of-bag accuracy (bag∗) is kept for the next step.
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3. The bag∗ ensemble is used to compute the percentage of correct votes for each of

the training instances using out-of-bag. That is, for each instance, the votes are

tallied using only those trees whose training set does not include that instance.

Then, the percentage of correct predictions (votes) of the individual ensemble

members is computed.

4. To detect noisy instances, if less than θ% of the classifiers for a particular instance

agree on the class label prediction then the instance is considered as noise and will

be either cleansed (i.e. its class label corrected) or removed. The following values

of θ are tested: 0 (no cleansing), 0.1, 0.2, 0.3, 0.4 and 0.5. The optimum value of

θ∗ is selected by 3-fold cross-validation within the training set.

5. Training instances with a percentage of votes for the correct class below θ∗ are

identified as noise.

6. Instances marked as noise are either corrected or removed from the training set.

Finally a standard bagging classifier composed of 500 decision trees is trained in

each data set. For reference a bagging ensemble is trained on the full original

training set without any noise cleansing process.

7. The performance of the resulting ensembles is estimated on the test set.

In this chapter we have used the filtering strategy described in [130] as a reference for

comparison. In [130], an ensemble of three classifiers (an univariate decision tree, a

k-nearest neighbor and a linear machine) is used for noise detection. In that paper

majority and consensus filtering are used to mark noisy instances. Majority filtering

had a better overall performance than consensus filtering.

To gain insight into how the proposed method works we have plotted the percentage of

removed instances as a function of the threshold θ. Figures 5.1 and 5.2 show the per-

centage of instances marked as noisy (dashed purple line) as a function of the detection

threshold, θ. In addition, the plots show the percentage of instances marked as noisy

that are actually part of the injected noise (solid black line). In these plots the blue

asterisk (with dashed lines) shows the percentage of instances that are marked as noisy

for the selected threshold θ∗. For this same threshold the red circle (with dotted lines)

shows the percentage of instances marked as noise that correspond to injected noise. In

Figure 5.1 the results for Heart (first row of plots) and Diabetes (second row) are shown.

In Figure 5.2, Sonar (first row) and Votes (second row) datasets are shown. In both

figures, the left and right plots correspond to 10%, 20% injected noise, respectively.

The extreme values of θ correspond to the cases in which no instances (θ = 0) and all

instances (θ = 1) are marked as noise respectively. For θ = 1 the percentage of instances
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marked as noise that correspond to injected noise is 10% for the left plots and 20% for

the plots on the right. From these plots we can have a rough estimate of the best choice

of θ. When both lines coincide, all marked instances correspond to injected noise. From

these plots we observe that choosing a small value of θ marks only a small percentage of

instances as noise. However, the marked instances as noise are very likely to be injected

noise. If we increase the value of θ the lines start to diverge and the percentage of

instances that are detected increases. The objective is to select a value of θ that detects

most noisy instances without removing valid ones. In general this value should be close

to the point where the two lines start to diverge. From these plots, we conclude that in

the investigated problems the optimal choice for θ for 10% injected noise is between 0.2

and 0.3. For 20% of injected noise the optimal choice of θ is higher, between 0.3 and

0.4. Another interesting aspect is that the performance of this noise detection procedure

depends on the problem. For Sonar (Fig. 5.2 top row) the proposed method does not

manage to detect adequately all the injected noises. By contrast, in Votes (Fig. 5.2

bottom row) most noisy instances are correctly identified and few noiseless instances are

marked as noise.

Table 5.2 shows the average test errors for each method and dataset. For each dataset

the errors for the cases of no injected noise, 10% and 20% noise are reported. The first

column displays the test error of bagging trained on the original training set without

any cleansing. The second column shows the average test error for bagging when trained

on the cleansed dataset (i.e. in which the label of instances marked as noise is modified

to the purportedly correct class label). The third column shows the test error when

bagging trained on the dataset without the instances marked as noisy. In the last two

columns, the test errors of standard bagging on data sets that their noises are marked

using θ∗ = 0.5 (majority filtering as proposed by Brodley [130]) are shown. Columns

for and five show the test error of bagging on datasets after cleansing and eliminating

marked as noisy instances, respectively. The best result for each dataset and noise level

is highlighted in boldface.

From the results presented in Table 5.2 one concludes that the method proposed in

this chapter is more effective when more noise is injected in the training sets. For

the noiseless case, the proposed method using cleansing outperforms bagging only in

Votes and draws in other two problems (Twonorm and Brest). The method based on

noise elimination performs similarly to the previous one. As more noise is injected, the

proposed method outperforms bagging in seven datasets. In two datasets, (Liver and

Twonorm), the accuracy of the proposed method is similar and in Sonar it is inferior to

bagging. In several datasets the improvement is significant. For example in Breast our

method achieves 4.9% error with 20% injected noise. Bagging trained on the original

dataset achieves an error that is more than double this value (10.8%). The differences
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Figure 5.1: The Percentage of instances in training set, detected as noise and the per-
centage of correct detected noise instances in training set, correspond to each cleansing
parameter, for heart and pima datasets with 10 and 20% noise. first row: heart 10 and

20% noise respectively. second row: pima 10 and 20% noise respectively.

between no cleansing and eliminating marked as noisy instances are small. In all cases

the proposed method outperforms majority filtering.

In Table 5.3, the average values for the selected sampling rate sr∗ (third column), thresh-

old θ∗ (fourth column), the percentage of marked instances (fifth column) and the per-

centage of injected noise detected (sixth column) are given. Note that the percentage of

injected noise detected is relative to the total number of instances. In consequence, it

cannot be above the actual percentage of noise injected.

As more noise is injected in the training set, the method marks a higher percentage of
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Figure 5.2: The Percentage of instances in training set, detected as noise and the per-
centage of correct detected noise instances in training set, correspond to each cleansing
parameter, for sonar and vote datasets with 10 and 20% noise. first row: sonar 10 and

20% noise respectively. second row: vote 10 and 20% noise respectively.

instances. Simultaneously, the value estimated for the optimal θ∗ also increases. This

indicates that the proposed method adapts to the amount of noise present in the dataset.

Interestingly, in some datasets the method manages to detect a rather high percentage of

the injected noise (Australian, Breast and Votes) without removing a significant number

of noiseless instances. For these datasets the improvement in accuracy is apparent (see

Table 5.2). In addition, for many datasets, the percentage of instances labelled as noise,

when no noise is injected is quite low, suggesting that the datasets contain little intrinsic

noise. A clear case for this is Twonorm. Being a synthetic dataset, we know that it is a

noiseless dataset. For this dataset, when no noise is injected, the proposed method only
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Table 5.2: Bagging on original datasets and on datasets after cleansing and removing
detected noise instances

Noise
Dataset (in %) Original Dataset Cleaned Dataset Filtered Dataset Cleaned Dataset(θ = 0.5) Filtered Dataset(θ = 0.5)

Australian 0 13.2±2.2* 13.4±2.0 13.4±2.1 13.8±2.0 14.0±2.1
10 15.0±2.2 13.9±2.1* 14.0±2.0 14.6±2.1 14.5±2.3
20 18.1±2.8 15.1±1.8* 15.2±2.2 16.9±3.2 16.2±2.6

Breast W. 0 3.9±1.2* 4.1±1.1 4.0±1.2 4.4±1.4 4.4±1.2
10 6.1±1.5 4.5±1.6* 4.5±1.6* 5.4±1.7 4.8±1.5
20 9.8±2.2 5.5±2.3 5.3±2.2* 7.7±1.9 6.3±1.7

Diabetes 0 24.2±2.4* 24.4±2.2 24.3±2.3 24.5±2.6 24.6±2.5
10 26.1±2.1 24.6±2.5* 24.6±2.2* 25.5±2.7 25.0±2.7
20 28.8±2.7 25.2±2.1* 25.3±2.1 26.4±2.1 26.6±2.4

German 0 24.4±1.9* 25.4±1.8 25.1±1.6 26.5±1.7 25.3±1.8
10 26.0±1.8 26.0±2.0 25.8±2.0* 27.0±1.9 26.0±2.1
20 28.0±2.4 27.2±1.9 26.9±1.9* 28.0±1.8 27.3±2.2

Heart 0 19.9±3.4* 20.8±3.5 20.6±3.5 21.4±3.8 22.0±3.7
10 22.7±4.3 21.4±4.0 21.1±3.9* 23.1±4.3 23.2±4.5
20 25.1±3.4 22.2±4.0* 22.9±3.6 25.2±4.9 25.3±4.7

Ionosphere 0 7.7±2.8* 8.0±2.8 7.9±2.8 9.6±2.8 9.9±3.0
10 9.2±3.1 8.7±3.4* 8.9±3.3 10.6±3.4 9.8±3.2
20 12.9±3.9 10.5±3.7 10.5±3.8 12.3±3.8 10.3±3.9*

Liver 0 29.4±4.5* 30.6±3.9 30.1±3.9 33.6±3.8 32.6±4.1
10 31.3±4.7* 33.6±3.4 33.3±3.7 34.3±4.0 34.5±3.4
20 35.5±5.0 35.5±4.9 35.4±4.4* 36.9±4.7 36.0±4.8

Sonar 0 21.7±5.1* 23.1±5.1 23.3±5.4 26.3±4.9 26.3±4.4
10 23.5±5.7* 24.6±5.9 24.4±5.4 26.9±4.8 26.3±5.1
20 27.7±5.3* 29.3±6.2 28.5±6.2 31.5±6.9 31.0±6.2

Twonorm 0 6.3±1.6* 6.3±1.6* 6.4±1.6 11.4±3.9 10.0±3.7
10 7.3±1.4 7.4±1.5 7.3±1.5* 10.6±3.4 10.8±3.9
20 9.8±2.1 9.7±2.2 9.6±2.1* 11.2±3.1 12.9±4.1

Votes 0 5.1±1.8 4.5±1.8* 4.5±1.8* 5.1±1.7 4.8±1.5
10 7.8±2.8 5.8±2.6 5.8±2.5 6.6±2.3 5.5±2.4*
20 12.1±3.5 6.8±3.2* 6.9±3.1 11.0±3.8 7.8±3.1

detects 0.16% of instances. Another interesting case is Diabetes, generally considered

as a noisy dataset. In this dataset, the percentage of removed instances that do not

correspond to the injected noise ones, is very high. In the noiseless case the percentage

of detected instances is 15.5%.

5.2 Conclusions

In this chapter we have proposed a noise detection procedure based on the level of

agreement of the predictions given by individual ensemble members. To detect noisy

instances in the training set, we have used subsampling, which, as shown in the previous

chapter, is more resilient to noise than standard bagging. In this procedure a particular

instance is marked as noisy if more than a specified fraction (1 − θ) of the individual

learners predictions are different from the actual class label. For θ = 0 , no instance is

marked as noise. When θ = 0.5, an instance is marked as noisy, when it is misclassified

by more than half of the learners. For θ = 1 only instances misclassified by all learners

are marked as noise. Using θ = 0.5 and θ = 1 in our procedure corresponds to the

majority filtering and consensus filtering methods proposed by Brodley in [130]. In

our proposal, the optimal value of θ∗ is determined using cross-validation. This optimal
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Table 5.3: Average values of sr∗, θ∗ and percentage of marked as noisy instances and
percentage of detected noises that have been injected.

Noise
Dataset (in %) sr∗ θ∗ %Marked instances %Marked instances that correspond to injected noise

Australian 0 0.42 0.32 8.0 0
10 0.23 0.32 12.4 7.0
20 0.17 0.40 20.0 14.1

Breast W. 0 0.35 0.17 1.34 0
10 0.16 0.27 9.6 8.4
20 0.11 0.35 18 16.7

Diabetes 0 0.30 0.34 15.5 0
10 0.21 0.38 18.1 6.0
20 0.13 0.42 26.0 12.6

German 0 0.43 0.42 16.1 0
10 0.32 0.41 22.8 6.5
20 0.26 0.43 29.4 12.9

Heart 0 0.24 0.28 5.7 0
10 0.17 0.33 12.3 5.5
20 0.17 0.36 17.0 10.3

Ionosphere 0 0.37 0.20 2.4 0
10 0.32 0.27 9.8 6.9
20 0.22 0.34 16.5 13.5

Liver 0 0.35 0.34 12.0 0
10 0.28 0.41 19.6 4.7
20 0.23 0.42 26.4 9.8

Sonar 0 0.44 0.33 3.0 0
10 0.55 0.27 9.3 4.1
20 0.44 0.33 11.5 6.6

Twonorm 0 0.18 0.17 0.16 0
10 0.16 0.25 3.9 3.7
20 0.16 0.30 9.9 9.5

Votes 0 0.32 0.14 1.3 0
10 0.20 0.23 9.7 8
20 0.13 0.35 17.4 15.8

value depends the problem under consideration and the amount of noise that it contains.

In datasets with higher test error, the selected value of θ∗ is higher. As the amount of

injected noise increases, the value of θ∗ also increases. This dynamic behaviour of the

proposed method in the presence of noise explains the improvement in accuracy with

respect to the fixed filtering strategy of Brodley [130].
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Conclusions and Future Work

With increasing amounts of information, data analysis is nowadays a key tool in many

scientific fields. The goal of machine learning is to identify regular patterns in the data

that make generalization possible. However, these patterns could be masked or disturbed

by noise and outliers. These irregularities can mislead the learning algorithms and limit

or reduce the accuracy of the predictors induced from the data. There are two main

strategies to address these issues. The first is to design robust learning algorithms that

are resilient to noise and/or outliers. The second strategy is to detect noisy instances in

a preprocessing step. By either correcting or eliminating these instances it is possible

to improve the quality of the data that are used for induction.

In this thesis we have described different ensemble learning techniques especially de-

signed to cope with the difficulties associated to learning from noisy data. Ensembles

are multiple classifier systems that can provide a certain flexibility for robust decision

making. In this thesis, we have investigated robustified versions of ensembles based on

bootstrapping (bagging and random forest). In addition, we have proposed an ensemble-

based procedure for noise detection.

The first idea is to use subsampling in bootstrap ensembles such as bagging and random

forest to improve their robustness in the presence of noise. In bagging, the base learners

in the ensemble are trained using bootstrap samples (with replacement) from the original

training set. In the standard version of the algorithm, each bootstrap sample has the size

as the original training set. When subsampling is used, the number of unique instances in

each bootstrap sample is smaller than in the standard prescription. This can lead to an

increase in the diversity of the base learners. Higher diversity can result in improvements

in generalization capacity of the ensemble. Subsampling can also have other beneficial

effects: When the sampling rate is below 69.3%, the percentage of unique instances

in each bootstrap sample is on average below 50%. This means that each instance is
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present on average in less than half of the bootstrap samples used to train each of the

base learners. In this regime, the predictions on a given instance in the training set is

dominated by the labels of their neighbouring examples. This regularization effect limits

the impact of this incorrectly labelled instances on the final decision.

To show the effectiveness of subsampling in bootstrap ensembles, extensive experiments

on real-world and synthetic datasets have been carried out. The results show that

bagging with bootstrap samples of sizes between 10% and 40% of the original training set

are more robust to label noise than standard bagging. In random forest the improvement

in robustness is observed only in some problems when high levels of noise are present.

When the level of noise is low, standard random forest is the preferred choice. In any

case, the optimal bootstrap samples size strongly depends on the problem and on the

noise level. Nevertheless, this optimal size can be determined by using cross-validation.

A second proposal of this thesis is a method to deal with noise in a pre-processing step,

i.e. a data-cleansing method. The idea is to use bagging with subsampling to detect

noisy instances. An instance is marked as noise if a percentage (greater than 50%) of

the base learners misclassify it. The value of the optimum threshold is selected using

3-fold cross-validation. We have carried out extensive experiments to demonstrate the

effectiveness of the proposed cleansing method.

6.1 Future Work

As we discussed in this thesis, ensemble learning can be an effective strategy to over-

come the limitations that arise from the lack of expressive capacity of a single learner.

However, complementarity among base learners is an prerequisite to build a powerful

ensemble. One of our open questions is to find out how strong classifiers such as SVMs

or deep belief networks (DBNs) can be modified to introduce complementarity in their

decisions. One of our ideas is that subsampling can increase diversity in learners and

can improve chance of their being complementary.

Another line of work is to design robust boosting ensembles. Boosting is an ensemble

method that improves the accuracy of individual learners in an iterative manner. In

each iteration, the weight of the examples misclassified by the previous learner are

increased. This process leads to the concentration of the learners on the examples

that are difficult to classify. Nevertheless, in addition to the difficult examples, the

noisy examples or outliers also are assigned higher weights and therefore overfitting may

occur. One possible path to explore is to use subsampling together with boosting. By

using subsampling a smaller amount of examples are selected in the training sets of the
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base learners. Therefore the risk of having excessive noise examples in the training sets

decreases.



Appendix A

Lower Sampling Rate Error

Tables

In Tables A.1, A.2 and A.3, the average generalization error (with the standard devia-

tion after the ± sign) is shown for bagging ensembles for different sampling ratios and

injected noise levels. The results are split into three tables. For each row the lowest

error is highlighted with an asterisk (*). In addition, for each noise level and dataset

(that is for each row) the results that are significantly better (using a paired t-test with

p-value=0.05) than standard bagging (column 100%) are highlighted in boldface. Un-

derlined those that are significantly worse than standard bagging. In the same manner,

the detailed results for random forest are shown in Tables A.4, A.5 and A.6.
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Table A.1: Average generalization error for bagging and subbagging (I)

Noise Bootstrap sampling ratio
Dataset (in %) 10% 20% 40% 60% 80% 100%

Australian 0 13.5±1.9 13.0±1.9 12.8±1.6* 12.9±2.0 13.5±1.9 13.7±2.2
5 13.8±1.9 13.3±1.9 13.4±2.0 12.8±2.0* 13.9±2.0 13.7±2.0

10 13.6±1.9 13.5±2.2* 13.5±1.9* 14.1±1.7 14.2±2.0 14.6±2.2
20 13.9±2.1* 14.7±1.8 15.8±2.3 16.8±2.6 17.4±2.5 18.2±2.6

Balance 0 10.2±0.9* 11.4±1.7 13.8±1.4 16.0±1.9 17.4±1.8 18.3±2.1
5 11.0±1.1* 11.9±1.3 14.7±1.2 17.1±1.6 18.3±1.4 19.8±2.0

10 11.2± 1.2* 12.9±1.5 16.3±1.6 17.9±1.4 19.2±1.9 20.3±2.1
20 12.8±1.1* 14.9 ±1.6 18.5±1.8 20.9 ±1.8 23.6±3.0 25.1±3.2

Breast W. 0 4.1±1.3 3.7±1.1* 3.8±1.0 3.9±1.1 4.1±1.0 4.3±1.1
5 3.7±1.0 3.5±1.0* 3.7±1.0 4.2±1.3 4.7±1.2 5.0±1.6

10 3.5±1.2* 3.6±1.0 3.7±1.2 4.4±1.2 5.3±1.5 6.1±1.7
20 3.5±1.0* 4.2±1.3 5.1±1.4 6.4±1.7 8.0±2.1 9.2±2.2

Diabetes 0 23.7±2.2* 23.8±2.1 24.1±2.6 23.8±1.9 24.6±2.3 24.4±2.3
5 23.7±2.4* 24.2±1.9 24.2±2.3 24.2±2.1 24.8±2.2 25.2±2.3

10 23.4±2.2* 24.2±2.4 24.6±2.1 25.1±2.5 25.8±2.0 25.9±2.3
20 24.5±2.3* 24.9±2.3 26.8±2.4 27.1±2.9 27.7±3.0 28.5±2.5

German 0 25.0±1.8 24.2±1.6 23.9±2.0* 23.9±1.8* 24.0±1.8 24.3±1.8
5 25.4±1.6 24.1±1.8* 24.3±1.9 24.2±1.7 24.5±1.9 25.1±1.8

10 25.5±1.6 24.6±1.8* 24.6±1.8* 25.4±2.1 25.8±2.0 26.0±2.3
20 26.5±1.8 25.8±1.9* 26.4±2.1 27.6±2.5 28.0±2.5 28.5±2.1

Heart 0 17.0±3.5* 17.1±3.7 18.7±4.4 19.0±3.7 19.3±3.8 19.9±3.4
5 17.4±4.0* 18.6±4.2 18.8±4.0 19.3±4.3 20.4±3.7 21.8±4.6

10 18.1±3.9* 19.1±4.6 19.5±3.7 21.5±4.0 21.2±4.4 22.3±4.1
20 20.3±3.8* 22.1±4.7 22.4±4.7 24.3±4.4 24.3±5.1 25.9±4.3

Hepatitis 0 21.2±0.4 19.7±2.0* 19.8±1.9 20.7±2.7 21.5±4.0 22.2±3.3
5 20.1±2.5 19.8±2.0* 20.8±2.6 21.3±2.9 22.2±3.6 23.3±4.1

10 20.0±2.6 19.8±1.8* 21.1±3.1 22.4±3.7 23.5±4.4 25.0±4.8
20 20.2±3.6* 20.2±2.6* 24.9±4.2 25.8±4.4 27.9±5.6 31.4±5.2

Horse-Colic 0 25.2±2.1 19.9±0.9 16.1±0.4* 16.1±0.5* 17.2±0.7 16.4±0.9
5 25.8±2.4 21.8±2.2 17.8±2.1 17.1±2.1 17.1±1.8 17.0±2.5*

10 26.4±2.5 23.3±2.9 19.4±2.8 18.5±2.9* 18.5±3.2* 18.6±2.8
20 27.5±3.8 25.8±3.9 22.4±3.5 22.4±3.8 21.3±3.6* 21.9±3.8

Ionosphere 0 9.6±2.8 6.8±1.9* 7.5±2.2 7.2±2.1 7.7±2.5 8.0±2.4
5 9.1±2.5 7.2±2.3* 7.6±2.3 8.6±2.9 8.5±2.6 8.4±2.5

10 9.6±2.2 7.4±2.3* 7.9±2.6 8.1±2.7 9.1±2.7 9.6±2.8
20 10.3±3.1 9.8±3.2* 10.1±3.0 11.2±3.5 12.7±3.4 13.0±3.7

Iris 0 12.3±4.6 4.5±2.6* 5.2±2.7 5.3±2.4 5.2±2.8 5.3±2.4
5 8.6±6.0 5.1±3.2* 5.3±2.8 5.3±2.5 7.4±3.3 7.9±3.7

10 4.6±6.8* 4.7±3.4 5.3±2.6 6.4±3.4 8.9±4.0 10.6±5.0
20 5.0±3.1* 6.1±3.5 7.0±4.6 10.8±5.1 13.4±5.4 16.0±6.2
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Table A.2: Average generalization error for bagging and subbagging (II)

Noise Bootstrap sampling ratio
Dataset (in %) 10% 20% 40% 60% 80% 100%

Labor 0 16.2±8.8 14.7±8.5 13.3±9.8 11.8±7.6* 13.6±5.1 12.0±6.4
5 16.0±10.2 13.3±8.8 14.2±8.8 12.4±8.5 11.8±7.0 10.4±5.6*

10 14.2±7.2 11.8±6.3* 17.6±14.6 15.8±6.9 17.8±10.3 16.0±9.4
20 18.9±8.3 17.3±9.0* 17.8±8.3 18.4±9.6 22.9±10.4 20.0±10.0

Liver 0 28.6±4.0 27.4±3.4* 27.5±3.7 27.8±3.4 28.7±3.6 29.9±3.6
5 29.0±3.5 28.5±3.8* 28.5±4.3* 29.5±4.3 30.1±3.9 30.7±3.9

10 29.9±4.0 29.1±3.4 29.0±4.0* 30.4±3.8 31.0±3.3 31.4±3.7
20 32.4±4.3 31.9±4.5* 32.3±4.4 32.9±4.3 34.3±4.1 34.8±4.3

Lung Cancer 0 42.0±8.9* 53.5±10.2 42.0±11.2* 45.5±11.1 45.5±11.8 45.0±12.9
5 44.0±8.5* 53.0±10.8 49.0±11.5 47.5±12.2 46.5±11.5 49.5±12.7

10 42.0±9.1* 50.5±10.4 47.0±11.7 45.5±12.0 49.0±11.9 49.0±11.8
20 49.5±9.0 53.5±11.1 48.0±12.0 43.5±12.8* 55.0±12.2 54.0±13.7

Magic 0 13.0±0.4 12.5±0.4 12.3±0.3 12.3±0.4 12.2±0.4* 12.2±0.4*
5 13.1±0.4 12.7±0.4 12.5±0.4 12.3±0.3* 12.4±0.4 12.5±0.3

10 13.0±0.4 12.8±0.3 12.7±0.4* 12.7±0.4* 12.9±0.3 12.9±0.4
20 13.4±0.4 13.2±0.4* 13.3±0.4 13.6±0.4 13.8±0.4 14.2±0.4

new-thyroid 0 5.4±3.0 6.4±2.9 6.9±3.2 5.2±3.2* 5.6±3.1 5.7±2.7
5 6.5±2.5 4.5±1.8* 5.3±2.7 6.7±3.0 5.0±2.0 8.3±2.8

10 6.3±3.8 5.4±2.8 5.2±2.5 5.0±2.3* 6.7±3.5 7.9±3.6
20 5.2±3.1 5.1±2.7* 5.8±2.5 10.1±4.4 11.0±3.6 10.6±5.4

Ringnorm 0 12.1±1.1 8.1±1.1 7.6±1.3* 8.2±1.8 8.6±1.7 8.8±1.9
5 11.4±1.7 7.9±1.3 7.4±1.3* 8.0±1.7 8.4±1.6 9.1±1.8

10 11.3±1.9 7.8±1.5 7.5±1.5* 8.4±1.6 8.7±1.6 9.5±1.9
20 11.5±2.1 8.6±1.5* 9.1±1.9 9.7±1.9 10.1±1.7 11.2±1.9

Segment 0 3.4±1.4 3.0±1.2 2.6± 1.7 2.3± 1.5 2.2± 1.0 2.1± 0.9 *
5 3.2±1.5 3.1±1.3* 3.4±1.9 3.8±1.9 3.6±0.7 3.8±1.1

10 3.2±1.2 3.1±1.3* 4.2±1.1 4.6±1.7 5.2±1.2 6.6±1.3
20 3.5±2.1 3.2±1.5* 4.0±1.6 5.7±1.5 7.2±1.4 7.4±1.5

Sonar 0 22.5±4.4 23.6±4.3 23.0±4.6 21.5±4.9 * 22.0±4.7 21.0±4.9
5 24.7±4.2 24.0±5.3 23.2±4.2 21.3±4.5* 22.4±4.6 22.7±5.3

10 24.8±4.6 22.7±5.1 23.9±5.2 21.7±4.8* 24.1±5.4 21.8±5.0
20 25.6±5.1 25.7±5.5 26.8±5.8 25.2±5.4* 26.3±5.9 26.2±6.0

Threenorm 0 18.7±1.2 17.6±1.3* 17.7±1.4 18.0±1.7 18.8±1.6 18.9±1.8
5 19.5±1.3 18.1±1.6* 18.4±1.4 19.2±1.8 19.0±1.6 19.1±1.5

10 19.1±1.5 18.6±1.3* 19.1±1.5 19.8±1.5 19.3±1.8 21.1±1.7
20 21.7±1.9 21.5±1.9 21.4±1.8* 22.3±1.9 22.9±1.9 22.8±2.0

Tic-tac-toe 0 15.4±2.0 5.1±2.0 2.2±0.9 2.0±0.9 1.9±0.8* 1.9±0.7 *
5 16.9±2.5 7.6±2.3 3.5±1.3 3.1±1.2* 3.3±1.2 3.6±1.4

10 18.0±2.3 10.4±2.1 5.4±1.7 5.1±1.6* 5.4±1.6 5.6±1.6
20 20.8±2.6 16.3±2.7 13.0±2.4 12.2±2.1* 12.2±2.1* 12.7±2.7
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Table A.3: Average generalization error for bagging and subbagging (III)

Noise Bootstrap sampling ratio
Dataset (in %) 10% 20% 40% 60% 80% 100%

Twonorm 0 4.9±1.1 4.6±0.8* 5.1±1.0 5.2±0.7 6.3±1.5 6.6±1.4
5 4.4±0.7* 5.1±1.1 5.5±1.1 6.2±1.9 6.2±1.0 7.1±2.0

10 5.0±0.8 4.8±0.6* 5.9±0.7 6.6±1.2 6.8±1.0 7.3±1.3
20 6.0±0.5* 7.2±1.8 7.3±1.8 7.8±1.1 8.4±0.6 9.1±1.7

Vehicle 0 26.0±2.5 25.5±2.3 25.5±2.1 25.2±2.0 25.7±1.0 25.1±1.1
5 30.1±2.4 28.2±2.2 27.6±2.0 27.4±1.3 27.2±1.6 26.5±1.5

10 31.8±2.3 28.4±2.2 27.9±2.0 27.5±1.8 28.1±1.7 28.5±1.2
20 32.3±2.6 29.9±2.7 28.7±2.5 29.0±2.2 29.5±2.0 29.8±1.7

Votes 0 4.4±1.6 4.0±1.6* 4.0±1.5* 4.5±1.6 4.7±1.9 5.0±1.5
5 4.4±1.4 4.3±1.5* 4.4±1.8 4.5±1.5 5.1±1.7 5.9±2.1

10 4.5±1.5* 4.7±1.5 4.8±1.8 5.7±1.8 6.7±2.3 7.3±2.0
20 4.8±1.7* 5.8±1.9 7.8±2.9 9.5±2.9 11.2±3.1 12.9±3.7

Waveform 0 17.5±2.5* 17.9±2.4 17.8±2.0 18.8±1.4 19.0±1.0 20.1±1.2
5 17.0±2.6* 17.3±2.0 17.7±1.9 19.1±1.6 19.3±1.6 19.5±1.5

10 17.5±2.2* 17.8±2.2 19.5±1.6 20.8±1.7 21.2±1.7 21.9±1.8
20 18.1± 2.7* 19.5±2.6 19.3±2.0 22.0±1.5 22.2±1.8 22.8±1.7

Wine 0 7.6±4.5 4.5± 2.5 5.2±4.4 4.4±2.4 3.9±3.3* 5.1±3.1
5 6.2±3.9 3.4±2.4* 5.2±2.9 4.9±3.0 4.7±2.9 6.1±3.6

10 5.9±3.3 3.5±2.2* 4.0±2.3 4.3±3.4 5.8±4.2 7.3±4.1
20 5.6±3.4 4.2±2.4* 5.9±3.9 7.0±3.1 8.7±3.4 10.5±4.3
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Table A.4: Random forest generalization error (I)

Noise Bootstrap sampling ratio
Dataset (in %) 10% 20% 40% 60% 80% 100%

Australian 0 13.3±1.3 6.5±0.6 4.9±0.5 4.7±0.5* 4.9±0.6 5.1±0.8
5 14.4±4.7 7.8±2.2 5.7±1.4 5.4±1.1 5.2±0.7* 5.4±0.8

10 16.6±5.2 9.4±3.5 6.5±1.8 6.0±1.3 5.7±1.0* 6.1±1.1
20 21.5±6.5 13.5±4.8 9.6±2.5 8.9±2.0 8.7±2.0 8.3±1.5

Balance 0 16.9±2.0 15.4±1.8 14.5±1.9 14.3±1.6 14.0±1.5* 15.0±1.8
5 16.1±2.2 15.2±2.0 14.6±2.0* 14.8±1.8 15.4±1.9 16.1±2.1

10 15.2±2.5 14.6±1.9* 15.7±2.2 16.2±2.1 17.1±2.2 17.6±2.4
20 15.2±2.2* 16.0±2.1 17.5±2.6 19.1±2.4 19.8±2.3 20.3±2.9

Breast W. 0 3.5±1.0 3.3±1.0 3.2±1.0 3.1±1.0 3.0±0.9* 3.0±1.0*
5 3.4±1.1 3.3±0.9 3.2±1.0 3.2±1.0 3.2±0.9 3.1±1.0*

10 3.2±1.1* 3.4±1.1 3.7±1.3 3.8±1.2 3.8±1.1 3.8±1.1
20 3.7±1.2* 4.2±1.4 5.0±1.5 6.1±1.9 5.8±1.5 6.6±1.7

Diabetes 0 25.8±2.3 24.7±2.7 24.4±2.3 24.3±2.3 24.2±2.2 23.9±2.2*
5 25.0±2.7 24.7±2.7 24.6±2.3 24.6±2.2 24.2±2.3* 24.4±2.2

10 25.2±2.2 24.6±2.5* 24.7±2.3 25.1±2.1 25.0±2.3 24.7±2.1
20 25.4±2.5 25.3±2.5* 26.5±2.5 27.2±3.0 27.0±2.7 27.4±2.9

German 0 29.6±0.4 28.4±0.7 27.0±1.0 25.8±1.3 25.3±1.4 24.9±1.3*
5 29.2±0.7 27.9±1.0 26.7±1.1 26.0±1.2 25.3±1.4 24.9±1.5*

10 28.6±0.9 27.5±1.3 25.8±1.3 25.6±1.6 25.5±1.7* 25.5±1.5*
20 28.0±1.3 27.2±1.6 26.6±1.6 26.4±1.6* 27.0±2.2 26.8±1.9

Heart 0 20.9±3.4 19.6±3.9 17.5±3.1 17.4±3.4 17.2±3.5* 17.5±3.2
5 19.8±3.1 18.2±3.3 17.6±3.3* 18.7±3.7 18.4±3.3 17.7±3.4

10 19.5±3.7 18.8±3.7 18.5±4.2* 19.1±3.4 19.8±3.7 18.9±3.8
20 19.7±4.3* 20.3±4.7 21.5±3.5 22.0±4.2 22.4±3.9 22.8±4.9

Hepatitis 0 20.5±1.1 17.9±2.6 14.9±3.0 13.7±3.4 13.1±3.3 12.7±3.6*
5 19.6±2.2 15.7±3.1 13.9±3.3 13.0±3.3 13.0±3.7 12.5±3.7*

10 17.7±3.5 15.7±3.7 13.9±3.8 13.9±3.6 13.2±3.4* 13.5±3.9
20 16.3±4.2 15.5±4.0 15.8±4.2 15.2±4.4* 16.1±4.4 16.5±3.8

Horse-Colic 0 30.2±1.7 27.6±1.6 26.5±1.8 26.5±1.9 26.2±1.8 25.3±1.8*
5 31.0±3.1 27.6±2.7 26.3±2.2 25.8±3.0 25.8±2.9 24.8±2.9*

10 31.2±3.4 28.3±3.6 27.1±3.0 25.7±3.6 25.8±3.3 25.6±3.3*
20 31.2±4.1 29.8±3.8 28.1±3.6 27.4±4.3 27.2±3.9 26.5±3.7

Ionosphere 0 12.6±2.4 7.8±1.9 6.6±2.0 6.8±1.9 6.2±1.9 6.1±1.8*
5 10.3±3.0 7.8±2.3 7.2±2.2 7.2±2.3 6.8±2.0* 7.1±2.3

10 10.7±2.9 8.1±2.2 7.4±2.3* 7.5±2.3 7.6±2.2 8.3±2.7
20 11.1±3.1 9.5±2.4* 9.6±3.1 9.7±2.6 10.8±3.2 10.6±2.7

Iris 0 4.4±2.5* 4.6±2.2 4.4±1.9* 4.7±2.5 5.0±2.6 4.8±2.4
5 6.2±4.9 4.9±3.1* 5.5±2.8 5.0±2.7 5.3±2.9 5.4±2.9

10 7.6±5.5 6.8±4.5 5.6±3.5* 5.7±2.8 5.7±3.0 6.5±3.9
20 8.2±4.8 7.8±5.0* 8.9±5.0 8.9±5.3 10.6±5.1 11.8±5.4
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Table A.5: Random forest generalization error (II)

Noise Bootstrap sampling ratio
Dataset (in %) 10% 20% 40% 60% 80% 100%

Labor 0 12.0±3.7 12.7±3.2 11.7±2.8 11.1±2.9 9.0±2.8 8.9±2.2 *
5 12.7±3.8 12.5± 3.3 13.5±3.6 12.5±4.8 12.4±3.8 11.0±3.3 *

10 12.7±4.2* 12.8±4.5 14.5±4.1 14.8±4.0 15.6±4.5 15.7±4.2
20 13.0±5.8* 13.5±5.3 15.5±5.1 15.7±4.8 16.4±4.7 16.4±4.5

Liver 0 36.8±2.0 33.5±2.2 29.7±3.0 28.1±2.9 27.5±3.2 27.1±3.2*
5 35.1±3.2 32.7±3.0 29.9±3.2 29.2±3.5 28.8±3.6 28.5±4.0*

10 33.6±2.9 31.4±3.9 30.8±4.2 30.4±3.6 30.3±3.7* 30.6±3.4
20 33.9±3.8 33.2±4.2* 33.7±4.4 34.3±4.7 33.5±4.4 34.4±4.6

Lung Cancer 0 57.9±9.1 53.8±11.7 48.2±12.9 43.0±13.1* 46.8±13.2 48.4±14.6
5 60.7±7.4 55.8±11.7 49.2±13.0 49.3±12.3 47.6±13.7 47.4±12.6*

10 61.8±9.3 55.9±11.7 54.2±12.9 50.2±15.7* 51.2±13.5 51.8±12.7
20 61.8±10.9 58.7±12.1 55.4±11.5 54.7±13.0 50.5±13.3* 54.8±14.2

Magic 0 14.4±0.4 13.6±0.4 12.9±0.3 12.6±0.4 12.4±0.3* 12.4±0.4*
5 13.5±0.4 13.2±0.4 12.8±0.4 12.7±0.4 12.5±0.3* 12.5±0.3*

10 13.3±0.4 13.0±0.4 12.9±0.4 12.8±0.4 12.7±0.4* 12.7±0.4*
20 13.6±0.4 13.5±0.4* 13.5±0.4* 13.6±0.4 13.7±0.4 13.8±0.4

New-thyroid 0 8.4±2.3 7.3±2.5 5.1±2.0 3.3±1.8 3.0±1.0 4.4±1.2
5 8.1±2.4 8.2±2.5 5.6±2.3 5.8±1.9 4.0±1.6 3.4±1.5

10 8.2±2.8 5.9±2.1 3.3±2.4 4.8±1.8 4.3±1.7 3.2±1.7
20 6.1±2.5* 6.2±3.0 7.2±2.8 8.0±2.5 8.4±2.7 8.5±2.6

Ringnorm 0 13.2±1.4 6.5±0.7 4.9±0.5 4.8±0.6* 4.8±0.6* 5.0±0.7
5 14.9±4.7 7.4±2.3 5.5±1.2 5.2±0.9* 5.2±0.9* 5.4±0.8

10 16.7±5.2 9.3±3.1 6.2±1.4 6.1±1.2 6.0±1.3* 6.1±1.4
20 21.4±5.7 14.3±4.8 9.7±2.4 8.6±2.3 8.5±1.7 8.2±1.8

Segment 0 5.9±0.9 4.4±0.9 3.5±0.5 2.9±0.6 2.7±0.7 2.6±0.6*
5 5.9±0.8 4.5±0.9 3.7±0.7 3.1±0.8* 3.1±0.7* 3.2±0.8

10 5.8±1.1 4.6±1.1 3.4±0.6 3.0±0.7* 3.4±0.7 4.1±0.7
20 5.7±0.7 4.9±0.8 4.0±0.9* 4.5±0.8 5.2±0.7 6.1±0.7

Sonar 0 31.1±4.8 24.6±4.9 21.5±4.6 19.6±4.5 18.3±4.6* 18.6±4.4
5 28.6±6.1 24.9±5.2 21.3±5.0 20.6±5.2 20.5±4.5 19.9±3.8*

10 28.7±6.5 24.4±5.0 21.2±4.5 20.7±4.5 20.9±5.2 20.6±4.5*
20 27.8±6.4 26.3±5.2 24.9±4.7 24.4±5.5 24.2±5.9 23.9±5.2*

Threenorm 0 18.2±0.9 16.9±0.9 16.0±0.9* 16.8±1.0 16.2±1.0 16.0±1.1*
5 22.3±3.2 19.3±1.9 18.4±1.2 17.2±1.1 17.2±1.1 16.9±1.0*

10 24.7±3.9 21.7±2.5 20.0±1.6 19.5±1.5 18.6±1.6* 19.0±1.5
20 30.6±4.5 26.3±3.2 23.4±2.0 22.9±2.2 22.3±2.0 21.6±1.7*

Tic-tac-toe 0 29.0±1.3 23.0±1.4 15.2±1.7 10.0±2.0 6.6±2.0 4.9±1.7*
5 26.9±1.9 21.5±1.9 14.0±1.9 10.1±2.3 7.7±2.0 6.3±1.9*

10 26.3±2.2 20.6±2.2 14.5±2.4 11.3±2.4 9.1±2.1 8.4±2.3*
20 25.2±2.5 21.3±2.7 16.8±2.6 14.9±2.5 14.3±2.4 13.6±2.4*
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Table A.6: Random forest generalization error (III)

Noise Bootstrap sampling ratio
Dataset (in %) 10% 20% 40% 60% 80% 100%

Twonorm 0 3.3±0.3* 3.3±0.3* 3.3±0.3* 3.4±0.3 3.6±0.3 3.6±0.4
5 4.5±1.3 3.9±0.8* 3.9±0.5* 4.0±0.5 3.9±0.5* 4.0±0.4

10 5.9±2.0 4.8±1.2 4.4±0.7* 4.6±0.9 4.4±0.6* 4.5±0.6
20 9.5±4.4 7.4±2.7 6.3±1.4 6.0±1.2* 6.1±1.0 6.3±1.1

Vehicle 0 30.7±2.4 29.6±1.7 27.2±1.9 26.3±1.7 25.9±1.7* 26.1±1.6
5 30.9±3.0 29.0±2.0 27.3±2.0 26.1±1.8 26.2±2.1 25.6±2.5*

10 30.1±2.2 27.8±2.2 27.9±2.4 26.2±1.7 26.3±2.0 25.9±1.8*
20 30.5±2.2 29.6±2.4 28.2±2.2 27.0±2.5 27.4±1.8 26.9±2.6*

Votes 0 5.3±1.7 4.4±1.5 3.9±1.4 3.6±1.3* 3.6±1.4* 3.6±1.3*
5 5.4±1.7 4.4±1.5 4.0±1.4 3.9±1.4 3.7±1.5* 3.7±1.7*

10 5.7±1.6 5.0±1.7 4.5±1.5 4.1±1.5* 4.2±2.0 4.6±1.9
20 6.3±2.2 5.5±2.1* 5.9±2.2 6.2±2.3 6.5±2.6 6.7±2.5

Waveform 0 15.5±0.7 14.9±0.8 14.8±0.8 14.5±0.6* 14.6±0.6 14.6±0.6
5 15.3±0.9 15.1±0.9 14.9±1.1 15.0±0.8 14.8±0.8* 14.8±0.6*

10 15.1±0.6 14.8±0.5 14.8±0.8 14.9±0.8 14.6±0.9* 15.0±0.7
20 14.9±1.0* 15.0±0.6 15.3±0.8 15.4±0.7 15.4±1.0 14.9±0.7*

Wine 0 3.0±1.8 3.1±1.9 2.5±1.7 2.3±1.6 2.1±1.7 1.9±1.6*
5 4.8±3.3 3.6±2.7 2.7±2.0 2.9±2.2 2.8±2.1 2.4±2.0*

10 5.8±4.3 4.1±3.0 3.7±2.6 3.4±2.6 3.2±2.4* 3.4±2.6
20 7.0±4.4 5.8±3.6 5.9±3.5 5.1±3.1 5.3±3.5 5.0±3.0*
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[8] Gunnar Rätsch. Robust boosting via convex optimization: Theory and applica-

tions (doctoral thesis), 2001.
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based hybrid probabilistic sampling for imbalanced data learning in lung nodule

CAD. Comp. Med. Imag. and Graph., 38(3):137–150, 2014.

[92] Sahand Khakabimamaghani, Farnaz Barzinpour, and Mohammad Reza Gho-

lamian. A high diversity hybrid ensemble of classifiers. In Software Engineering

and Data Mining (SEDM), 2010 2nd International Conference on, pages 461–466.

IEEE, 2010.

[93] Louis Wehenkel, Damien Ernst, and Pierre Geurts. Ensembles of extremely ran-

domized trees and some generic applications. Proceedings of Robust Methods for

Power System State Estimation and Load Forecasting, 2006.

[94] Sean Whalen and Gaurav Pandey. A comparative analysis of ensemble classifiers:

Case studies in genomics. In 2013 IEEE 13th International Conference on Data

Mining, Dallas, TX, USA, December 7-10, 2013, pages 807–816, 2013.

[95] Sean A Gilpin and Daniel M Dunlavy. Relationships between accuracy and diver-

sity in heterogeneous ensemble classifiers. Department of Energy’s Nuclear Security

Administration under Contract DE-AC04-94AL85000,, SAND2009, 694OC, 2009.

[96] Kuo-Wei Hsu and Jaideep Srivastava. Diversity in combinations of heterogeneous

classifiers. In Advances in Knowledge Discovery and Data Mining, 13th Pacific-

Asia Conference, PAKDD 2009, Bangkok, Thailand, April 27-30, 2009, Proceed-

ings, pages 923–932, 2009.



Bibliography 75

[97] Mahmoud O Elish, Tarek Helmy, and Muhammad Imtiaz Hussain. Empirical

study of homogeneous and heterogeneous ensemble models for software develop-

ment effort estimation. Mathematical Problems in Engineering, 2013, 2013.

[98] Daniel M. Dunlavy and Sean A. Gilpin. Heterogeneous ensemble classification.

In Proceedings of the 2008 Sandia Workshop on Data Mining and Data Analy-

sis, number SAND2008-6109, pages 33–35. Sandia National Laboratories, Albu-

querque, NM and Livermore, CA, 2008.

[99] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line

learning and an application to boosting. In Proceedings of the Second European

Conference on Computational Learning Theory, EuroCOLT ’95, pages 23–37, Lon-

don, UK, UK, 1995. Springer-Verlag. ISBN 3-540-59119-2.

[100] Duin Robert P. W. Tax David M. J. Hartog J. E. den Breukelen, M. Handwritten

digit recognition by combined classifiers. Kybernetika, 34(4):[381]–386, 1998. URL

http://eudml.org/doc/33365.

[101] Robert P. W. Duin and David M. J. Tax. Experiments with classifier combining

rules. In Proceedings of the First International Workshop on Multiple Classifier

Systems, MCS ’00, pages 16–29, London, UK, UK, 2000. Springer-Verlag. ISBN

3-540-67704-6.

[102] Anil K. Jain, Robert P. W. Duin, and Jianchang Mao. Statistical pattern recog-

nition: A review. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND

MACHINE INTELLIGENCE, 22(1):4–37, 2000.

[103] Josef Kittler, Mohamad Hatef, Robert P. W. Duin, and Jiri Matas. On combining

classifiers. IEEE Trans. Pattern Anal. Mach. Intell., 20(3):226–239, March 1998.

ISSN 0162-8828. doi: 10.1109/34.667881. URL http://dx.doi.org/10.1109/

34.667881.

[104] David M. J. Tax, Martijn van Breukelen, Robert P. W. Duin, and Josef Kit-

tler. Combining multiple classifiers by averaging or by multiplying? Pattern

Recognition, 33(9):1475–1485, 2000. doi: 10.1016/S0031-3203(99)00138-7. URL

http://dx.doi.org/10.1016/S0031-3203(99)00138-7.

[105] David M.J. Tax, Robert P.W. Duin, and Martijn Van Breukelen. Comparison

between product and mean classifier combination rules. In In Proc. Workshop on

Statistical Pattern Recognition, pages 165–170, 1997.

[106] David H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–259,

1992. doi: 10.1016/S0893-6080(05)80023-1. URL http://dx.doi.org/10.1016/

S0893-6080(05)80023-1.

http://eudml.org/doc/33365
http://dx.doi.org/10.1109/34.667881
http://dx.doi.org/10.1109/34.667881
http://dx.doi.org/10.1016/S0031-3203(99)00138-7
http://dx.doi.org/10.1016/S0893-6080(05)80023-1
http://dx.doi.org/10.1016/S0893-6080(05)80023-1


Bibliography 76

[107] On bagging and nonlinear estimation. Journal of Statistical Planning and Infer-

ence, 137(3):669–683, March 2007. ISSN 03783758. doi: 10.1016/j.jspi.2006.06.002.

URL http://dx.doi.org/10.1016/j.jspi.2006.06.002.

[108] Andreas Buja and Werner Stuetzle. Observations on bagging. Statistica Sinica,

16(2):323, 2006.

[109] Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. Boosting algo-

rithms as gradient descent in function space. NIPS, 1999.

[110] Pall Oskar Gislason, Jon Atli Benediktsson, and Johannes R. Sveinsson. Random

forests for land cover classification. Pattern Recogn. Lett., 27(4):294–300, March

2006. ISSN 0167-8655.

[111] Rich Caruana, Nikolaos Karampatziakis, and Ainur Yessenalina. An empirical

evaluation of supervised learning in high dimensions. In Machine Learning, Pro-

ceedings of the Twenty-Fifth International Conference (ICML 2008), Helsinki,

Finland, June 5-9, 2008, pages 96–103, 2008. doi: 10.1145/1390156.1390169.

[112] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of super-

vised learning algorithms. In Machine Learning, Proceedings of the Twenty-Third

International Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-

29, 2006, pages 161–168, 2006. doi: 10.1145/1143844.1143865.

[113] Gonzalo Mart́ınez-Muñoz and Alberto Suárez. Switching class labels to generate
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