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Geometry-related magnetic interference patterns in long SN S Josephson junctions
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We have measured the critical current dependence on the magnetic flux of two long SNS junctions differing
by the normal wire geometry. The samples are made by a Au wire connected to W contacts, via focused ion
beam assisted deposition. We could tune the magnetic pattern from the monotonic Gaussian-like decay of a
quasi-one-dimensional (1D) normal wire to the Fraunhofer-like pattern of a square normal wire. We explain the
monotonic limit with a semiclassical 1D model, and we fit both field dependencies with numerical simulations
of the two-dimensional Usadel equations. Furthermore, we observe both integer and fractional Shapiro steps.
The magnetic flux dependence of the integer steps reproduces as expected that of the critical current Ic, while
fractional steps decay slower with the flux than Ic.
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I. INTRODUCTION

A nondissipative supercurrent can be transmitted between
two superconductors (S) through a nanometer-thin insulating
layer (I ), when a phase difference is imposed. Supercon-
ducting correlations can also penetrate into a micrometer-
long, nonsuperconducting coherent metal (N ) over lengths
L greater than ξS , the superconducting coherence length in
N . A supercurrent can then flow through long (L > ξs) SNS

junctions, provided that the phase coherence is preserved in
the normal wire. The supercurrent amplitude only depends
on the normal metal resistance, the normal metal length L,
and diffusion coefficient D,1 the latter setting the diffusion
time through the N wire τD = L2/D. The supercurrent thus
reflects the transport mechanisms in the normal wire, and is
affected by the interference and diffraction phenomena present
in the normal metal as a result of the phase coherence. The
characteristic energy of the junction is the Thouless energy,
also set by the same parameters: ET h = h̄/τD = h̄D/L2. The
Thouless energy not only controls the supercurrent, but also
determines the amplitude of the minigap �̃max ≈ 3.1ET h

created in the density of states of the normal wire by the
proximity of the two superconducting contacts. In contrast to
the superconducting gap �, the minigap is fully modulated
by the phase difference �ϕ across the normal wire, being
maximum at �ϕ = 0 and closing completely at �ϕ = π .

We have studied the behavior of the supercurrent in long
SNS junctions in a magnetic field perpendicular to the
sample plane. In a previous work,2 we observed that the
maximum supercurrent, the critical current Ic, monotonously
decreased with the magnetic field following a quasi-Gaussian
dependence. This behavior is different from the interference
Fraunhofer pattern usually observed, for example, in SIS junc-
tions, SNS junctions with L � ξs , magnetic SFS Josephson
junctions, etc. This difference is induced by the different aspect
ratios of short weak links and long SNS junctions. Indeed, in
SIS junctions the thickness of the junction is limited to a few
angstroms, to permit the tunneling of Cooper pairs; similarly,
in SFS junctions the magnetic layer thickness has to be shorter
than a few tens of nanometers, so that Cooper pairs are not
broken by the internal exchange field. In contrast to the wide

and short SIS and SFS junctions, SNS junctions offer the
interesting possibility to explore a broad range of aspect ratios,
since the length of the normal metal is only limited by the phase
coherence length, which can be as long as a few micrometers at
low temperature. In this paper we explore different geometries
of long SNS junctions. Both monotonic and nonmonotonic
Ic(B) dependencies have been observed before, but we show
that we can tune the Ic(B) curve from an interference pattern
to a quasi-Gaussian monotonic dependence by varying the
normal metal’s aspect ratio.

Monotonic Ic(B) dependencies have been observed in bal-
listic long SNS junctions, formed by a normal bidimensional
InAs electron gas connected to superconducting Nb contacts
larger than the London screening length.3 Their magnetic field
dependence resulted from the screening currents in the Nb.
On the contrary, the diffusive junctions investigated in the
present work are contacted by thin disordered superconducting
wires in which the magnetic field screening is negligible. We
show that the geometry-dependent magnetic field decay can be
explained taking into account only the interferences between
Andreev pairs’ trajectories in the normal metal.

As a reminder, we first consider the case of a wide short SIS

junction. A magnetic field in the SIS junction plane penetrates
in the insulating layer of thickness d and in the superconductors
nearby over a length λL, the London penetration length. In a
magnetic field �B = −Bẑ of vector potential �A = Byx̂, the
phase shift of the Cooper pairs tunneling at different points of
the junction width is [Fig. 1(c)]

θ (y) = 2π
2e

h

∫ d+λL

−λL

Ax dx = 2π
	(y)

	0
, (1)

where 	(y) is the flux through the surface Sy = (d + 2λL) y

and 	0 = h/(2e) is the quantum flux. The current is obtained
by integrating over the junction surface the supercurrent
density j = jc sin(δ + θ ), taking into account both the su-
perconducting phase difference between the contacts δ and
the phase due to the vector potential. The critical current
dependence on the magnetic flux 	 = B(d + 2λL)w, follows
the well-known Fraunhofer pattern, a diffraction pattern
created by the interference between the ballistic trajectories
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FIG. 1. (Color online) Scanning electron microscope images of
samples WAu-Sq (a) and WAu-N (b). One can see as a clear halo the
W contamination around the superconducting contacts. (c) Scheme
of a SIS Josephson junction. (d) Scheme of the 1D model developed.

over the junction width:

Ic = Ic(0)
	0

π	

∣∣∣∣ sin

(
π	

	0

)∣∣∣∣. (2)

If we now consider SNS junctions, we expect strong differ-
ences between junctions containing a wide or a narrow normal
wire of similar lengths: in the wide wire the phase difference
between the trajectories comes from the phase distribution
along the junction width, while in the narrow wire, the phase
of each trajectory is mainly accumulated along the junction
length.

II. THE SAMPLES

We have fabricated long SNS junctions where a Au normal
wire links two superconducting W contacts. First, a 50-nm-
thick Au wire is drawn by e-beam lithography and deposited
onto a SiO2 substrate. We use 99.9999% pure gold, with a
content in magnetic impurities (Fe) smaller than 0.1 ppm.
This ensures a long phase coherence length L	 ∼ 10 μm
below 50 mK, measured in a separated weak localization
experiment. We then deposit the superconducting contacts in
a focused ion beam (FIB). After slightly etching the Au wire
with the FIB to remove possible impurities on its surface,
we inject a metallo-organic vapor of tungsten hexacarbonyl
over the sample. This vapor is decomposed by the focused
Ga+ ion beam, and a disordered W alloy is deposited on
the substrate. The wires produced are composed of tungsten,
carbon, and gallium in varying proportions (in our case, the
atomic concentrations are roughly 30% W, 50% C, and 20%
Ga).4 The superconducting critical temperature of the wires
produced is Tc ∼ 4 K, an order of magnitude higher than the
bulk Tc of W.5 This could be due to the inclusion of Ga,
which is itself a superconductor with Tc = 1 K. The critical
magnetic field of the wires is also strikingly high: at 1 K,
Hc = 7 T.6 The W wires are 200 nm wide and 100 nm thick.
The dependence of the superconducting properties of these
wires on the deposition conditions has been investigated in
detail in Li et al.7 The superconducting gap as well as the
Abrikosov flux lattice have been studied by scanning tunneling
microscopy experiments.8 The investigation of proximity-

FIG. 2. (Color online) Main frame: sample WAu-N normalized
critical current vs normalized flux at T = 60 mK. Light blue line:
numerical simulation of the 2D Usadel equations, where the flux has
been rescaled by a factor of 2.5 to take into account an imperfect S/N

interface. Inset: theoretical predictions for the aspect ratio of junction
WAu-N and perfect interfaces: the analytical result of the Usadel
equation in the 1D limit L � w (red line), the numerical simulation
of the 2D Usadel equation (blue line), the semiclassical model for
a 1D diffusive normal wire (dotted line), and a Gaussian curve with
σ = 1 in the notation of Eq. (7) (dashed line). The Gaussian best
fit of the experimental data, which is also a good approximation of
the numerical Usadel result, is obtained for σ = 0.5 [as defined in
Eq. (7)]. Ic,max = 2.4 μA.

induced superconductivity in metallic nanowires contacted by
FIB has also been recently performed.9 The advantages of
this technique are the deposition of the material of practically
any shape and size, without any mask, and the good quality
of the interface created. The main disadvantage is the Ga
contamination of about 250 nm around the deposited wires.
The SNS junctions created by FIB-assisted deposition are
comparable to junctions created with more standard fabrication
methods. We thus recovered the general results for the voltage
vs current curves and the temperature dependence of the
critical current.10

To investigate the influence of the geometry on the Ic(	)
dependence, we have designed two samples with different
aspect ratios: sample WAu-Sq is 1.2 μm long and 1.75 μm
wide, with an aspect ratio L/w = 0.7, while sample WAu-
N is 1.53 μm long and 0.34 μm wide, with an aspect ratio
L/w = 4.5 [Figs. 1(a) and 1(b)].

The Ic(	) normalized curves for samples WAu-N and
WAu-Sq are shown in Figs. 2 and 3, respectively. They
illustrate the important role of the aspect ratio: sample WAu-
N displays a quasi-Gaussian decay of the critical current,
while sample WAu-Sq displays oscillations which recall a
Fraunhofer pattern.

III. SEMICLASSICAL MODEL

To explain the behavior of sample WAu-N, a semiclassical
model was developed.11 The aim is to model a long diffusive
SNS junction, with w � L � Lφ,LT (1D geometry), in a
perpendicular magnetic field �B = −Bẑ of vector potential
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FIG. 3. (Color online) Sample WAu-Sq normalized critical cur-
rent vs normalized flux at T = 60 mK (blue dots). A trapped flux
of 4.3 G has been subtracted. Red line: numerical simulation of the
2D Usadel equation for a junction with aspect ratio L/w = 0.7 and
W wires inductance L = 11.5 pH. Inset: raw data for Ic(B), with
Ic,max = 38.8 μA.

�A = Byx̂ [Fig. 1(d)]. We suppose a sinusoidal current-phase
relation for simplicity: j = jc sin(δ + θij ). θij is the phase
acquired along the trajectory starting at point i and finishing
at point j . δ is the phase difference between the two
superconducting contacts, and is independent of the position
of i and j , since in this 1D geometry one can ignore the
dephasing along the junction width in comparison to the one
along the junction length. The total current is the average over
all possible trajectories Cij :

I ∝ Im[〈ei(δ+θij )〉Cij
]. (3)

Considering a reference trajectory 1–2 with a phase difference
θa , we have θij = θa + �θij [see Fig. 1(d)]. The critical current
is the maximum of the current I :

Ic ∝ Im[ei(δ+θa )〈ei�θij 〉Cij
]max ∝ |〈ei�θij 〉Cij

|. (4)

Given the great number of possible trajectories, the central
limit theorem sets the distribution of the trajectories length
to a Gaussian distribution. The phase θij , associated with the
trajectory ij , follows then also a Gaussian distribution. Thus

Ic ∼ ∣∣e−1/2 〈(�θij )2〉Cij
∣∣, (5)

where �θij = θij − θa is proportional to the flux 	ij in the
surface Sij defined by the trajectory ij [Fig. 1(d)]:

�θij = 2e

h̄

[ ∫ j

i

Ax dx −
∫ 2

1
Ax dx

]

= 2e

h̄

∮
Ax dx = 2π

	ij

	0
. (6)

Introducing Eq. (6) in Eq. (5), we find that the critical current
decays as a Gaussian function:

Ic ∼ ∣∣e− (	/	0)2/(2 σ 2)
∣∣, (7)

where σ 2 = [S2/〈S2
ij 〉Cij

]/(4 π2) and S = w × L. The Gaus-
sian fit of sample WAu-N gives σ = 0.5, while in our previous

results,2 we obtained σ in the range 0.74–1.8 for aspect ratios
L/w in the range 1.9–10.4.

Beyond this simple Gaussian approximation, the exact
calculation describing diffusive trajectories from point i to
point j gives11

Ic = Ic(0)
π√

3
	
	0

sinh
(

π√
3

	
	0

) . (8)

The small difference between this flux dependence and a
Gaussian one is shown in the inset of Fig. 2. While this
model explains the origin of the quasi-Gaussian shape of
our Ic(	) curves, the experimental decay is faster than the
predicted one. A more precise calculation, taking into account
the two-dimensional (2D) nature of both samples as well as
the role of imperfect interfaces, is thus necessary.

IV. USADEL EQUATIONS

Cuevas and Bergeret12 have solved the 2D Usadel equation
for long diffusive SNS junctions with low-resistance interfaces
and for different aspect ratios of the normal wire. A complete
field penetration in the normal metal (w < λL,N ) is assumed,
neglecting any Josephson current screening effects. Moreover
no inelastic scattering is considered. The authors found
different limits:

(1) w � L : In this 1D limit, Usadel equations can be
solved analytically yielding a monotonous Gaussian decay of
the flux-dependent critical current: at T = 0, Ic(B)/Ic(0) ∼
e−0.238 (	/	0)2

(inset of Fig. 2).
(2) w � L: The analytical expression being no longer valid,

a numerical solution of the Usadel equations needs to be found.
However, the numerical simulation still yields a monotonous
quasi-Gaussian decay of Ic with the flux.

(3) w � L: In this case, the main effect of the field is to
modulate the phase over the junction width, giving rise to an
interference pattern, which is identical to a Fraunhofer pattern
for small enough aspect ratios (L/w <0.04).

The authors do not suppose a purely sinusoidal current-
phase relation to start with, but calculate the complete I (δ)
relation of a long SNS junction. However, the wide junction
limit corresponds exactly to the Fraunhofer pattern obtained
in the case of a sinusoidal current-phase relation.

V. EXPERIMENTAL RESULTS

In agreement with the prediction of Cuevas et al. for the
aspect ratio L/w = 4.5, junction WAu-N does not exhibit any
oscillating pattern (Fig. 2). The field decay cannot, however,
be fitted by the numerical simulation for the corresponding
flux scale 	/	0: the experimental decay is faster than the
predicted one by a factor of 2.5. This can be explained by
taking into account a nonperfect interface,13 with an interface
resistance Ri given roughly by Ri = 2RN ∼ 5  (the ratio
Ri/RN = 2 leads to a rescaling of the perfect interface curve
by a factor of 2.3). The main effect of nonideal interfaces
is indeed to increase the dwell time in the normal metal of
the coherent pairs carrying the supercurrent, thereby leading
to a larger enclosed flux. In the case of sample WAu-N, this
nonperfect interface may be attributed to the right W contact,
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which is just at the extremity of the gold wire [see the scanning
electron microscopy image, Fig. 1(b)].

To understand the experimental Ic(	) of sample WAu-Sq,
it is necessary to take into account not only the aspect ratio
of the normal wire, but also the flux correction due to the
inductance of the W contacts, evident in the tilt of the central
peak of the Ic(	) curve. The “internal” flux 	int through the
normal wire is thus the sum of the applied external flux 	 and
the flux created by the current flowing in the superconducting
contacts, 	L = L × Ic(	int), following the relation

	int = 	 + L Ic(	int). (9)

The experimental curve should then be compared not to
the calculated curve I th

c (	int) but to I th
c (	) = I th

c [	int −
L I th

c (	int)]. The best fit of our data for sample WAu-Sq
according to the above expression yields L = 11.5 pH. This
value, which we attribute to the kinetic inductance (much
larger than the geometrical one) of the two 2-μm-long
superconducting wires over the normal metal, is compatible
with the kinetic inductance of similarly made W wires.

When comparing our experimental results with the nu-
merical simulation of the 2D Usadel equation for L/w = 0.7
modified by the self-inductance, we find good agreement in the
position of the zeros for 	 = BS, with S = 3.25 μm2. This
corresponds roughly to the whole surface of the normal metal
square, slightly larger than the surface between the contacts.
The amplitude of the measured oscillations following the
central peak decreases slower than predicted, and the minima
of the first periods do not go to zero; this can be qualitatively
explained as the effect of a nonuniform current distribution in
the normal metal.14

VI. SHAPIRO STEPS

We have measured the differential resistance dV/dI when
irradiating the junctions with microwaves from an antenna.
We have observed Shapiro steps, in the form of microwave-
induced zero resistance dips at V = h

2e
nf . They result from

the resonance of the ac voltage at frequency f induced by
the microwaves, with the current oscillations at frequency
fJ = 2 eV/h, due to the ac Josephson effect at finite voltage
V [Figs. 4(a) and 4(b)]. In addition to the Shapiro steps at
integer n, we find fractional Shapiro steps at n = 1/2, n = 1/3,
n = 3/2, and n = 1/4. In contrast to what has been observed
by Dubos15 at high temperature (T = 4 K, corresponding
to 13ET h), at T = 150 mK (2.4ET h) we still see Shapiro
steps with n > 1 at voltages larger than the Thouless energy
(ET h/e = 5.3 μV). Moreover, we observe Shapiro steps for
frequencies larger than the minigap (�̃/h = 4 GHz), despite
the fact that frequencies of the order of the minigap are
expected to break the pairs and create excitations above the
minigap.

Fractional Shapiro steps appear in SNS junctions as a
consequence of a nonsinusoidal current-phase relation. The
additional harmonics in the current-phase relation can be
generated by multiple coherent Andreev reflexions (MAR),
when the coherence length is much longer than the N length, or
by nonequilibrium effects. Fractional Shapiro steps reflect the
behavior of each harmonic individually: the step at n = 1/2,
for example, is generated by the second harmonic and is

FIG. 4. (Color online) (a) Differential resistance dV/dI of
sample WAu-Sq in the presence of an irradiation at frequency f =
2.8 GHz. (b) dc voltage vs Shapiro step order for sample WAu-Sq;
the voltage was directly deduced from the measured V (I ) curves.
Lines show the predicted dependence V = h/2enf . (c) Normalized
flux dependence of Shapiro steps current amplitude for n = 1 and
n = 1/2 (symbols) compared to the critical current dependence under
microwaves, which cause the reduction in Ic amplitude (continuous
lines); the trapped flux of 4.3 G, corresponding to 0.7 	0, is partially
compensated by the inductance-related tilt of the Ic(	) central
peak.

proportional to its amplitude, having the same dependence
on field and temperature. We have studied the magnetic field
dependence of both integer and fractional step amplitudes. As
expected, the field dependence of the integer Shapiro steps
follows roughly that of the zeroth-order step, the critical
current [Fig. 4(c)]. This is not the case, however, for the
fractional steps: In Fig. 4 we show that the decay with
the normalized flux of step n = 1/2 is slower than that of
the critical current. If this fractional Shapiro step was due to
the MAR at equilibrium, the field dependence would show
a periodicity half that of the critical current, corresponding
to the double length covered by the Andreev pairs, and the
zeros of the Fraunhofer pattern should be found at multiples of
	0/2. This is evidently not the case, so that the supplementary
harmonic in the current-phase relation may be traced back
to nonequilibrium effects, as already suggested in Dubos
et al.15 and Chiodi et al.16 Moreover, the effect of the
magnetic field at the lowest temperatures was already shown to
increase the total critical current in the out-of-equilibrium SNS

junction.17

VII. CONCLUSIONS

We have measured the Ic(	) curves for two different
geometries of long SNS junctions. The samples are made
by a Au wire connected to W contacts, via FIB-assisted
deposition. We have observed a monotonic Gaussian-like
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decay for a quasi-one-dimensional normal wire, in contrast
to the Fraunhofer-like interference pattern of a square normal
wire. We explain the monotonic limit with a semiclassical
1D model, and fit both field dependencies with numerical
simulations of the 2D Usadel equation. Moreover, we have
observed both integer and fractional Shapiro steps and their
dependence in magnetic field. While integer steps follow
as expected the field dependence of the critical current,
fractional steps decay slower than Ic. This is incompatible

with equilibrium MAR-originated steps, but may be explained
as an out-of-equilibrium effect.
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