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Thickness and fluctuations of free and adsorbed liquid films
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Effective mesoscopic Hamiltonians with the thickness of the adsorbed liquid films as a collective variable have
been widely used in the study of adsorbed systems. In the present work, we show that the intrinsic surface of
a liquid-vapor interface provides a very accurate way to evaluate the instantaneous film thickness in computer
simulations. This film thickness follows with quantitative accuracy the predictions of simple model Hamiltonians,
even for films as thin as one monolayer, and the effective interfacial potential has the simplest exponential form
with a surprising accuracy, from a single monolayer to very thick films. For both the free liquid slabs and the
adsorbed films and despite of the low vapor density, we have found that the fluctuations associated with the
evaporation of particles to the vapor and their condensation in the liquid layer give an important contribution to
the probability distributions of the liquid film thickness in our canonical (NVT) simulations.
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I. INTRODUCTION

Effective Hamiltonian approaches have been used over
the last decades to understand the basic phenomenology
of adsorption systems, in particular, for fluids adsorbed on
inert solid surfaces.1 These models use the thickness of the
adsorbed liquid film as a collective variable, and the free
energy of the interfacial system is assumed to have a simple
functional form in terms of the local film thickness ξ (R) at
each point on the R = (x,y) surface plane. Mean-field theories
for wetting transitions1,2 and dewetting dynamics3 provide
a qualitative understanding for the most salient features of
these problems in terms of the mean film thickness 〈ξ 〉. An
effective surface Hamiltonian H[ξ (R)], for the analysis of
the thickness fluctuations, is usually assumed to have two
separated contributions: a local free energy f [ξ (R)] per unit
area plus the free-energy cost of the fluctuations at the films
edge, described (as in the capillary wave theory for free liquid
surfaces) through the surface tension, γ , multiplied by the area
of the corrugated surface. However, in order to understand
discrepancies between theory and computer simulations,4,5

two nonlocal effective Hamiltonians have been proposed: the
first one introduced the nonlocal effects in the interaction
between the substrate and the liquid-vapor interface,6,7 i.e.,
in the interface potential, while in the second one, the nonlocal
effects are included replacing the interfacial tension by a
position-dependent stiffness.5 This second model may be
recovered as a small gradient expansion of the first one, and
it may create a stiffness instability at a wetting transition. The
experimental validation of these hypothesis for the functional
dependence of the effective surface Hamiltonian is very diffi-
cult, despite careful measurements of the disjoining pressure
for large films,8 because the experiments do not provide the

resolution necessary to measure interfacial potentials for the
required range of nanometer-thick films.

A promising alternative is to use computer simulations
that may provide full information on the structures at molec-
ular level. The calculation of coarse-grained free energies
from simulation is a long standing problem that requires
a computable link between the discrete molecular positions
and the continuous mesoscopic variables like ξ (R).9,10 Effec-
tive Hamiltonians that use the macroscopic thermodynamic
parameters, like the surface tension, may achieve a very
accurate description of other related problems, like capillary
condensation11 and capillary wave fluctuations,12–14 down to
scales of about 10 molecular diameters. In that range, the
results are fairly robust with respect to the specific choice to
define the collective continuous parameters from the molecular
positions.

In the range between 3 and 10 molecular diameters,
the surface Hamiltonians may still be qualitatively correct,
but quantitative accuracy requires the use of mesoscopic
corrections, like a wave-vector dependence of the surface
tension in the classical form of the capillary wave theory.
In that case, the results may become strongly dependent
on the specific choice of the projection of the molecular
configurations into the collective mesoscopic variables like
ξ (R).15,16 In the next section, we discuss two different ways
to define the intrinsic surface for a free liquid-vapor interface
that may be used to define the local thickness of an adsorbed
liquid film. The usual recipe is based on the concept of the
Gibbs dividing surface (GDS), and it defines the film directly
from the total number of particles. The alternative procedure is
the intrinsic sampling method (ISM) that localizes the edge of
the liquid film and associates the film thickness to the volume
between the surface and the substrate. The two proposals may
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lead to different (nominal) fluctuations of the film thickness,
and we explore here the relevance of those differences and their
description in terms of effective Hamiltonians. The analysis is
split in two steps: in Sec. III, we study free-standing liquid slabs
coexisting with saturated vapor for which the only relevant
variables are the volume and number of particles in each of
the coexisting phases. In Sec. IV, we extend the analysis to
films adsorbed on a planar substrate, to explore the form of the
effective surface potential and its relevance for the fluctuations
of the film thickness. This paper is restricted to the analysis
of the mean film thickness, i.e., averaged over the whole
surface with a simulation box of transverse size of about 10
molecular diameters. The implications for local fluctuations
of the film are discussed in the final section together with the
general conclusions for the limits of the computer simulation
analysis in the validation of mesoscopic surface Hamiltonian
models.

II. THE THICKNESS OF A LIQUID FILM

The usual description of adsorbed films from computer
simulations is made through the density profile, ρ(z) =
〈ρ̂(z)〉, given by the thermal equilibrium average (〈. . .〉) of
the instantaneous density operator ρ̂(z) ≡ ∑

i δ(z − zi)〉/Ao,
where Ao is the area of the planar substrate, the coordinate z is
perpendicular to it, and the index i runs over all the (fluid)
particles. Liquid films adsorbed on solid surfaces usually
show oscillatory (layering) structure in ρ(z). For thin films,
the layering structure goes directly down to the low-density
vapor ρv , while for thick liquid layers, the density profile
has a plateau with the liquid density, ρ(z) ≈ ρl , between
the structured solid-liquid region and the smooth decay of
the density at the liquid-vapor edge of the film. Theoretical
approaches have often used a specific value of the density
profile [e.g., the middle value ρe ≡ (ρl + ρv)/2 or the 90–10
recipe ρe ≡ 0.9ρl] to define the position of the film edge
at the value z = ze such that ρ(ze) = ρe. The averaged film
thickness is then defined as 〈ξ 〉 = ze − z0, i.e., the distance
between the nominal edge and some (arbitrary) origin at the
substrate.

Alternatively, the edge of the film may be defined as the
GDS that sets the balance in the number of particles in ρ(z)
to be equivalent to a step function between the densities ρl

and ρv . Assuming that all the N particles are contained in the
interval z0 � z0 + z � Lz, this definition of the film thickness,
ξN , reflects the total number of particles N enclosed in the
simulation box:

ξN =
∫ z0+Lz

z0

dz
[ρ(z) − ρv]

(ρl − ρv)
= (N/Ao) − ρvLz

ρl − ρv

. (1)

The extensions of the above definitions to a local thick-
ness ξ (R) that represents the instantaneous shape of the
adsorbed layer is often given for granted in theoretical
analysis, assuming generic forms for the effective surface
Hamiltonians H[ξ ], independently of the specific definition
of its functional variable. However, any attempt to extract the
effective Hamiltonian from the computer simulations finds
that the operational link between the molecular coordinates
and the mesoscopic collective variable ξ is far from triv-
ial. The self-averaging of the instantaneous density profile,

ρ̂(z) ≈ 〈ρ̂(z)〉 ≡ ρ(z) over a large transverse area A0, makes
the definition ρ̂(z0 + ξ ) = ρe for the thickness ξ , instanta-
neously averaged over the whole surface, very similar to
its thermal average 〈ξ 〉 defined from ρ(z0 + ξ ) = ρe; but
the extension to a local thickness cannot be based on the
full density distribution operator ρ̂(x,y,z) made by the sum
of delta peaks at the instantaneous particle positions. Any
definition of a smoothly corrugated local density distribution
has to include some kind of coarse-graining, either in time
or position, or both, and the local film thickness defined from
ρ[x,y,z0 + ξ (x,y)] = ρe would incorporate the effects of such
coarse graining into the effective surface Hamiltonian.

At first sight, the GDS definition for ξN may be more robust.
In Eq. (1), we may replace N by the number of particles
�N inside a small prism with basis of area �A parallel to
the substrate around the point (x,y), and use �A instead of
the total area Ao. This is to define the edge of the wetting
layer as a local GDS, ξN (x,y), and it has the appeal of being
a conceptually simple recipe to compute the film thickness
from the molecular positions. However, the application of this
concept to the analysis of the capillary wave fluctuations on a
free liquid surface leads to a complete failure when the size of
the transverse sampling area �A becomes comparable to the
molecular size. The bulklike fluctuations of the liquid density
appear reflected as surface fluctuations, so that the nominal
intrinsic surface z = ξN (x,y), defined with this method, does
not represent the instantaneous edge of the adsorbed film at
molecular level.

To solve this problem, it was necessary to develop defi-
nitions of the intrinsic surface pinned to the surface, so that
the effects of the bulk fluctuations could be eliminated. In
these methods, the intrinsic surface z = ξ (R) is linked to a
set of molecules chosen to represent the instantaneous liquid
surface, instead of relying on a density balance across the
interface. The first proposal in this sense was made in 1985
by Stillinger,17,18 but only over the last few years there has
been a broad search for efficient and computationally feasible
methods for the intrinsic sampling of fluid interfaces.19–22

Here, we use the intrinsic sampling method (ISM)15,16,23,24

based on the identification of Ns surface pivots among the
instantaneous molecular positions. The number of such pivots
per unit area, ns = Ns/A0, is used as a control parameter to get
the sharpest resolution for the layering structure in the intrinsic
density profile. The optimal value of ns is interpreted as the
two-dimensional density of the “outmost molecular layer” in
a liquid surface; it depends on the molecular interactions and
on the temperature, and it may be consistently determined
from a wide range of structural and dynamical properties of
the interface. We refer the reader to previous works25 for a
detailed discussion of this point. The only relevant point here
is that the ISM provides an instantaneous shape for the intrinsic
surface z = ξ (x,y) that, applied to the edge of a wetting layer,
defines the local thickness of a liquid film.

In the Fourier-space representation, ξ (x,y) =∑
q ξ̂q exp[i(qxx + qyy)], the relevant variable for this

work is the q = 0 component, ξ̂0, that may be used,
instead of Eq. (1), as a collective variable to represent the
thickness of the wetting layer ξIS = ξ̂0 − z0. The qualitative
difference between ξN and ξIS is that the Gibbs dividing
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surface method (1) relates the film thickness to the total
number of particles, while the ISM gives a measure of the
volume ξISAo occupied by the liquid film in each molecular
configuration. Therefore along a canonical ensemble (NVT),
the computer simulated ξN would be trivially constant while
ξIS fluctuates. The aim of this paper is to explore the relation
between these two variables, and the accuracy of mesoscopic
effective Hamiltonians to describe the statistical properties
of ξIS.

III. FREE LIQUID SLABS

We consider a canonical ensemble simulation of a uniform
liquid slab bounded by two (upper and lower) parallel liquid-
vapor interfaces normal to the z direction. The system has
a fixed number of particles N in a box of total volume
V = A0Lz, and the usual GDS describes it as a slab of fixed
width ξN given by Eq. (1) in terms of the bulk coexisting
densities of the liquid and vapor phases. The number of
molecules in the liquid and in the vapor are consistently
fixed by Nl = ρlA0ξN and Nv = ρvA0(Lz − ξN ) = N − Nl .
In contrast, the ISM identification of the liquid slab edges
leads to a nominal thickness ξIS ≡ ξ̂

sup
0 − ξ̂ inf

0 that depends
on the instantaneous molecular configuration. The number of
particles within that volume may also change, so that we may
consider a mesoscopic description of the system in which ξ

and Nl are the variables of a free slab Hamiltonian Hslab(ξ,Nl)
that we model as

Hslab(ξ,Nl) = ξA0fl

(
Nl

ξA0

)

+ (Lz − ξ )A0fv

[
N − Nl

(Lz − ξ )A0

]
+ 2γA0, (2)

where fl(ρ) and fv(ρ) are the free energies per unit volume
in a bulk system when the density ρ is, respectively, near the
fixed bulk coexisting values ρl and ρv . Assuming small density
fluctuations around the thermodynamic equilibrium values, we
use a second-order Taylor expansion to get

fl(ρ) = −plv + μlvρ + 1
2μ′

l(ρ − ρl)2, (3)

and

fv(ρ) = −plv + μlvρ + 1
2μ′

v(ρ − ρv)2, (4)

so that liquid and vapor bulk phases, with densities ρl and
ρv , coexist with common pressure plv and chemical potential
μlv , but different compressibilities, χl = 1/(μ′

lρ
2
l ) and χv =

1/(μ′
lρ

2
v ).

By construction, the minimum of H(ξ,Nl) with respect to
the volume A0ξ and the number of particles Nl agrees with the
GDS prescription, but Eq. (2) predicts finite fluctuations for
these two variables. Within the usual Gaussian approximation
for the probability distribution P(ξ,Nl) ∝ exp[−βH(ξ,Nl)],
the mean values of the slab thickness would be precisely at
the minimum of H[ξ,Nl], i.e., at the GDS results 〈ξ 〉 = ξN

and 〈Nl〉 = ρlAoξN . From the second-order derivatives of

Eq. (2),

Txx = ∂2

∂ξ 2

(Hslab

A0

)
= μ′

lρ
2
l

ξ
+ μ′

vρ
2
v

Lz − ξ
,

Txy = A0
∂2

∂ξ∂Nl

(Hslab

A0

)
= −μ′

lρl

ξ
− μ′

vρv

Lz − ξ
, (5)

Tyy = A2
0

∂2

∂N2
l

(Hslab

A0

)
= μ′

l

ξ
+ μ′

v

Lz − ξ
,

we get the mean square fluctuations of the thickness,

〈�ξ 2〉 = 〈(ξ − 〈ξ 〉)2〉 =
[
Txx − T 2

xy

Tyy

]−1

= χlρ
2
l ξN

βAo(ρl − ρv)2
+ χvρ

2
v (Lz − ξN )

βAo(ρl − ρv)2
, (6)

with two additive contributions proportional to the mean width
of the liquid and vapor regions, ξN and Lz − ξN . We may use
the ideal gas approximation for the vapor compressibility to
estimate that χvρ

2
v ≈ βρv is much smaller than the prefactor

χlρ
2
l in the liquid contribution. However, for thin liquid films

in large simulation boxes, Lz � ξ , the values of 〈�ξ 2〉 with
different amounts of vapor cannot be directly compared. This
is due to the coupling between the fluctuations of ξN and Nl ,
given by the term T 2

xy/Tyy that represents the evaporation and
condensation of molecules between the liquid and the vapor.
In contrast, if we consider that the number of particles in the
liquid is constant, the fluctuations of the slab thickness would
be given by

〈�ξ 2〉 = [Txx]−1 =
[

βAo

χlξN

+ βAo

χv(Lz − ξN )

]−1

, (7)

where the dependence on the box length Lz is qualitatively
different than in Eq. (6), and it gives a well defined limit
〈�ξ 2〉 = χlξN/(βAo) for a very large thickness of the vapor
region.

The point is that the canonical ensemble for the whole
system, with N particles in a fixed volume V , is not a canonical
ensemble for the liquid slab. The vapor phase provides a finite
reservoir of particles that may condensate in (or evaporate
from) the liquid. In the limit when the volume occupied
by the vapor, A0(Lz − ξN ), is very large, the liquid slab
would be effectively in a grand canonical (μVT) ensemble
at the chemical potential of liquid-vapor coexistence with very
large fluctuations in its thickness. Only if the vapor is very
rarefied or its volume is not too large, we may expect that
χvρ

2
v (Lz − ξN ) ≈ βρv(Lz − ξN ) 	 χlρ

2
l ξN so that the second

term in Eq. (6) may be neglected, and the difference with
Eq. (7) is reduced to the factor ρ2

l /(ρl − ρv)2 ≈ 1, since we
approach the critical point ρv 	 ρl − ρv ≈ ρl .

The application of the ISM to the free surfaces of the
liquid slab allows us to check the method, comparing the
simulation results with the above predictions of the effective
Hamiltonian (2). The first question is the accuracy of the
prediction 〈ξIS〉 = ξN , so that the mean volume occupied by
the liquid, ξISA0, equals the thermodynamic value given by the
GDS. To check this point, we have run molecular dynamics
(MD) simulations with an Lennard-Jones (LJ) potential fluid,
truncated at rc = 2.5σ , at temperature kbT = 0.75ε, in terms
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FIG. 1. (Color online) Circles: liquid-film thickness of the free
liquid slab (NVT simulation) evaluated with the ISM recipe 〈ξIS〉
against its Gibbs dividing surface value ξN . Dashed line: theoretical
behavior giving by 〈ξ〉 = ξN .

of the usual LJ parameters σ and ε. The transverse dimensions
of the box (with periodic boundary conditions) are always
the same, Lx = Ly = 10.457σ , while the longitudinal size Lz

is changed, between Lz = 110σ and 260σ , to accommodate
liquid slabs of different thickness, at equilibrium with its
vapor. Canonical ensemble simulations were carried with
N = 2000 to 10 000 particles, and the coexisting liquid-vapor
densities ρl = 0.7598σ 3 and ρv = 0.0126σ 3 were obtained
with samplings restricted to regions well inside the liquid and
vapor phases. Using these values, the nominal slab thickness
ξN given by the GDS in Eq. (1) is constant for all the
configurations along any simulation with fixed N .

The ISM procedure was used to obtain the instantaneous
intrinsic surface associated to the upper and lower edges of the
slab, with samplings over 10 000 configurations, separated by
500 time steps and after 4000 time steps for equilibration. The
instantaneous values of the q = 0 Fourier component were
used to get the slab thickness ξIS = ξ̂

sup
0 − ξ̂ inf

0 , and they give
the mean values 〈ξIS〉 represented in Fig. 1 for different values
of ξN (i.e., different total number of particles). The surface
density of pivot molecules used in the ISM algorithm was kept
equal to the optimal value ns = 0.7/σ 2 for the free LJ liquid
surface at this temperature.25 The results show that the ISM
identification of the liquid volume is very precise, the linear fit
to the points in Fig. 1 gives 〈ξIS〉 = 0.9966ξN − 0.05σ , so that
the slope is within 0.4% of its nominal value, well within the
accuracy for the independent determination of the coexisting
densities ρl and ρv that determine ξN in Eq. (1). What is still
more relevant is the small mismatch at the origin: the volume
within the two ISM surfaces is accurate at the level of 0.05
molecular diameters per unit transverse area. Therefore the
estimation of the slab thickness given by the ISM offers an
extremely precise link between the molecular structure of the
system and its thermodynamic description.

The fluctuations of ξIS obtained along the NVT-MD
simulation may be directly compared with the prediction of the
effective mesoscopic Hamiltonian (2) to check the relevance
of the two contributions in Eq. (6). In the top panel of Fig. 2,
we present the mean squared fluctuations of ξIS for a slab
with ξN = 50σ and with several cell sizes Lz. The number
of particles was changed, between 4237 and 4443 to keep
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FIG. 2. (Color online) Fluctuations of the free liquid slab thick-
ness: (black) circles are the simulation values 〈
ξ 2

IS〉 and the (red)
squares the canonical values 〈
ξ 2

IS〉C obtained after removing the
effect of the vapor slab. Top panel: fluctuations of a liquid slab
with fixed GDS width ξN = 50σ at coexistence with vapor slabs of
different sizes Lz − ξN . Lower panel: fluctuations for different liquid
ξN and vapor slab thickness. In the lower panel, the (red) dashed line
shows the fit to Eq. (6).

constant ξN . We see that our simulations verify the theoretical
prediction (6) that predicts an affine increase of 〈
ξ 2

IS〉 with
the cell size Lz. This result confirms the importance of the
evaporation and condensation of particles between the liquid
and the vapor phases in the evaluation of 〈
ξ 2

IS〉. From the
slope of the line, we can get the compressibility of the
vapor, χv = 83.48βσ 3/ε, slightly above its ideal gas value
χv = β/ρv = 79.36βσ 3/ε.

We may define an effective canonical amplitude for the
fluctuations of the liquid slab through the extrapolation of
〈
ξ 〉2 to null amount of vapor (i.e., to Lz = 〈ξ 〉),

〈
ξ 2〉C = 〈
ξ 2〉 − ∂〈
ξ 2〉
∂Lz

(Lz − 〈ξ 〉), (8)

that corresponds to the first term in Eq. (6). The results
for 〈
ξ 2

IS〉C presented by the squares in Fig. 2 are indeed
independent of the amount of vapor. The lower panel of the
same figure presents the results as a function of ξN , to show
that the values of 〈�ξ 2

IS〉 for different Lz (circles) collapse in a
single straight line for 〈�ξ 2

IS〉C, consistently with the first term
in Eq. (6). From the slope of this line and using the previously
given values for the coexisting densities, we may extract the
value χl = (0.14 ± 0.01)βσ 3/ε for the compressibility of the
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coexisting liquid phase. This value is compatible with the value
obtained by calculating the density fluctuations in the center
of the slab, χl = (0.13 ± 0.01)βσ 3/ε.

The good linear fits in both panels of Fig. 2 support the
validity of the ISM estimation for the slab thickness as the rele-
vant mesoscopic variable for the effective Hamiltonian (2). It is
important to remark that the LJ model, at kbT = 0.75ε, and the
range of cell sizes used in our simulations are representative of
typical computer simulation studies for adsorbed liquid films.
Under these conditions, the evaporation and condensation of
particles from one phase to the other play a relevant role,
since we observe a clear increase in the fluctuations with the
box length Lz, that should be taken into account to compare
simulations made in different boxes. Taking the effective
canonical ensemble for the liquid slab, the fluctuations are

reduced but still we get
√

〈
ξ 2
IS〉C

∼ 0.2σ to 0.4σ , clearly
above the accuracy for the ISM determination of that thickness.
Therefore the compression expansion of the coexisting phases
is observed in NVT simulations run with typical models and
sizes, and they should be taken into account if we aim to
link effective Hamiltonians, like Eq. (2), with the probability
distribution for the film thickness extracted from computer
simulations. Finally, note that for our computer simulations,
the width of the liquid-vapor interface is mainly determined by
the capillary fluctuations (ξq with q > 0), and the fluctuations
of the q = 0 term analyzed here would only become relevant
for slabs thicker than 200σ .

IV. ADSORBED FILMS

In this section, we apply the ISM to determine the thickness
of adsorbed liquid layers on a solid substrate. In order to
simplify the problem, we consider only a situation of complete
wetting over a structureless substrate. The substrate is modeled
as a planar wall at z = 0, which acts on the fluid as an external
potential Vsf(z) that depends only on the distance to the wall
plane. In particular, we use a sum over three layers with
truncated 4–10 potentials cut at rc = 2.5σsf ,

Vsf(z)

8πεsfσsfρlay
=

3∑
i=1

{[
1

10

(
σsf

(z − zi)

)10

+ 1

4

(
σsf

(z − zi)

)4
]

−
[

1

10

(
σsf

rc

)10

− 1

4

(
σsf

rc

)4
]}

, (9)

with LJ parameters εsf = 1.3, σsf = 0.912σ for the solid-fluid
interactions, and with ρlay = 1.143 σ 2 as the density in each
layer. This model potential has been previously used by
Velasco et al.,26,27 and it gives complete wetting by the
LJ liquid at the temperature kbT /ε = 0.75 used here. A
purely repulsive potential is considered at z = Lz, to close
the simulation cell along the Z axis, with the usual periodic
boundary conditions on the X and Y directions.

A. NVT simulations

We have run series of canonical ensemble Monte Carlo
simulations with N = 150 to 2000 LJ particles, to analyze
adsorbed films up to a thickness of 23.5σ in a simulation
box with Lx = Ly = 10.457σ and Lz = 65.36σ . The systems
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FIG. 3. (Color online) Liquid-film thickness of adsorbed films
calculated by the ISM 〈ξIS〉 vs the GDS thickness. (Black) Circles are
the simulation values 〈ξIS〉 and the (red) squares the canonical values
〈ξIS〉C obtained after removing the effect of the vapor slab and given
by Eq. (10). The dashed lines are the exact theoretical values obtained
by numerical minimization of the mesoscopic Hamiltonian (19), and
the dashed-dotted line is the analytical approximation to linear order
in the effective potential for 〈ξIS〉 given by Eq. (20). The (blue) full
line is the free slab behavior giving by 〈ξ〉 = ξN .

were equilibrated for about 2.5 ns (5 × 105 time steps) and the
production time was 20 ns (4 × 106 time steps) with a time
step of 5 fs. The ISM was applied, as in the previous section,
to get now the intrinsic surface associated to the external
edge of the adsorbed film, and we take as the measure of
the film thickness the difference, ξIS = ξ̂0 − z0, between the
q = 0 Fourier component of the intrinsic surface and a fixed
position z0 to represent the inner edge of the film, close to the
solid-substrate edge. The surface density of pivot molecules
used in the ISM algorithm was kept equal to the optimal value
for the free liquid films considered in the previous section.

Figure 3 presents the mean ISM thickness 〈ξIS〉, from
canonical MD simulations with different number of particles,
given in terms of the GDS thickness ξN . For thick films, our
results show that 〈ξIS〉 recovers the unit slope with respect to ξN

as we have checked for free liquid slabs. The nominal position
for the inner edge of the film has been fixed to be z0 = 0.67σ ,
with respect to the position of the outer solid layer in Eq. (9).
This choice makes 〈ξIS〉 = ξN for thick films (see full line
and the figure inset), and it corresponds to the zero-adsorption
GDS for the solid-liquid interface. The difference between
〈ξIS〉 and ξN appears only for thin adsorbed films, with less
than three molecular layers, for which the mean ISM values
deviates upward with respect to the asymptotic straight line.
This effect depends on the box size Lz and it reflects the
difference between the density of the saturated vapor ρv used
in Eq. (1) and the actual density of the undersaturated vapor at
equilibrium with a thin film. Therefore there are less molecules
in the vapor and the film is thicker than its nominal GDS value,
〈ξIS〉 � ξN . This effect could be eliminated if the definition for
ξN includes the actual value of ρv(N/A0,Lz), measured from
the bulk vapor density in the simulations, but the value would
depend on the solid-fluid interaction potential Vsf(z), and this
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prediction requires a theoretical approach at molecular level.
An alternative for the direct analysis of the MD simulations is
to compare the results for 〈ξIS〉 with several box sizes Lz and
to extrapolate them to the value Lz = 〈ξ 〉, which corresponds
to the effective canonical limit for the liquid film, as analyzed
for the fluctuations of the free slabs in the previous section:

〈ξ 〉C = 〈ξ 〉 − ∂〈ξ 〉
∂Lz

(Lz − 〈ξ 〉). (10)

The results of this extrapolation are given by the squares in
Fig. 3, and they are much closer to the asymptotic line than the
circles, which represent the raw results for a typical box size
Lz = 65.36σ . The small residual deviation from 〈ξIS〉C = ξN

describes that thin films (with ξN � 1.5σ ) are slightly less
dense than thick liquid films, so that their volume A0ξIS

is slightly larger than that of the same number of particles
in the liquid bulk. Again, this is a microscopic effect that
produces small variations in the value of the “mesoscopic”
film thickness, depending on its molecular definition. Even if
we avoid the effects of the vapor volume, taking the Lz = 〈ξIS〉
limit, we may observe some differences between the GDS
definition, based on the number of particles, and the ISM
definition based on the film volume.

The fluctuations of the film thickness are shown in Fig. 4.
As for the free liquid slab studied in the previous section,
the size Lz of the simulation box is a most relevant variable
for 〈�ξ 2

IS〉, since with the typical values of the vapor density
and the simulation box size, the fluctuations associated with
the evaporation and condensation of particles are as large as
those given by the compression and expansion of the adsorbed
film. We may get the same effective canonical ensemble limit,
〈�ξ 2

IS〉C, taking the extrapolation of the results to Lz = 〈ξIS〉.
As in the results for 〈ξIS〉, the fluctuations of the film thickness
reflect also a clear change at ξN ≈ 3σ . Above this value, the
fluctuations grow with the film thickness exactly as the free
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FIG. 4. (Color online) Fluctuations in the intrinsic surface of
adsorbed films vs the GDS thickness ξN . Circles are the simulation
values 〈
ξ 2

IS〉 and the squares its canonical values 〈
ξ 2
IS〉C obtained

after removing the effect of the vapor slab. The solid lines are the
values obtained from the exact numerical second-order derivatives of
the mesoscopic Hamiltonian (19), and the dashed line is the analytical
approximation to linear order in the effective potential of 〈
ξ 2

IS〉 given
by Eq. (21).

liquid slabs studied in the previous section, with the slope
given by Eq. (6) in terms of the density and compressibility of
the two bulk coexisting phases. For thin films with ξN � 3σ ,
the mean-square fluctuations of the thickness decay below
the asymptotic straight line, again, an effect that can only be
predicted with a description at molecular level.

B. Mesoscopic Hamiltonians

Mesoscopic Hamiltonians for the local thickness ξ (x,y) of
adsorbed layers are usually written with the functional form:

1

A0
H[ξ (x,y)]

= 1

A0

∫
dxdy[f (ξ (x,y)) + γ

√
1 + |∇ξ (x,y)|2 − γ ]

≈ f (ξ̂0 − z0) + 1

2

∑
q

[f ′′(ξ̂0) + γ q2]|ξ̂q |2 + · · · ,

(11)

were f (ξ ) is the free energy per unit area of a film with uniform
thickness ξ . This function is evaluated at the local value of
the film thickness, ξ (x,y), over the whole substrate area. The
other contribution is proportional to the surface tension γ of
the liquid-vapor interface, to account for the corrugations at
the outer edge of the liquid film. The third line in Eq. (11)
expands H[ξ ] up to quadratic order in the Fourier components
of the local thickness.

In the present work, we are restricted to the study of the
effective Hamiltonian for the instantaneous film thickness
averaged over the whole area A0, ξ ≡ ξ̂0 − z0, which is given
by the local free energy f (ξ ),

1

A0
H[ξ ] = f (ξ ), (12)

that may be obtained from the probability distribution for
the mean film thickness P(ξ ) ∼ exp[−βH[ξ ]], sampled
along computer simulations. Therefore the function f (ξ ) =
− ln[P(ξ )/(βA0)] + C may be obtained, except for an additive
constant. This f (ξ ) depends on the statistical ensemble ofP(ξ )
and also on the definition of the mesoscopic variable ξ . We
use P(ξ |N ) for the canonical ensemble probability with N

particles and P(ξ |μ) for the grand canonical ensemble with
chemical potential μ. Although we do not make it explicit, the
probabilities would also depend on the temperature T as well
as on the box dimensions, A0(= LxLy) and Lz.

The GDS definition ξ = ξN in Eq. (1) gives a constant
film thickness along any canonical ensemble simulation ξ ,
so that P(ξ |N ) = δ(ξ − ξN ). In contrast, the ISM definition
allows the fluctuations of ξ , so that the probability distribution
P(ξ |N ) ∝ exp[−βA0f (ξ |N )] is a Gaussian defined by the
mean value 〈ξ 〉 and the mean-square deviation 〈�ξ 2〉 described
above. The dependence of these Gaussian parameters on the
size of the simulation box reflects the role of the vapor as a
finite particle reservoir. A very large vapor volume would act
as a grand-canonical reservoir of particles for the liquid film,
and the function f (ξ |N ) becomes the grand-potential energy
of the adsorbed film, f (ξ |μ), with the chemical potential μ as
the only relevant parameter.
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As the chemical potential approaches the liquid-vapor
coexistence value, the wetting layer grows, and the grand
canonical probability P(ξ |μ) is spread over the whole box
length, 0 � ξ � Lz. For undersaturated systems, �μ ≡ μlv −
μ > 0, the probability for thick films decays exponentially
like exp(−β�μN ) and the excess of particles in the film goes
like (ρl − ρv)A0ξ , so that the free energy for large thickness
grows like f (ξ ) ≈ �μ(ρl − ρv)ξ . At the opposite limit, for
thin films, the attraction of the fluid toward the substrate creates
an effective repulsion of the liquid-vapor edge of the film that
is represented by an effective potential (ξ ) decaying to zero
for thick films, and assumed to be independent of �μ,

f (ξ |μ) = (ξ ) + �μ

[
N (ξ )

A0
− Lzρv

]
= (ξ ) + �μ (ρl − ρv) ξ. (13)

Therefore we can define the effective potential (ξ ) as the free
energy per unit area of a liquid film with uniform thickness ξ

at coexistence with its vapor:

(ξ ) = f (ξ |μlv) = − ln[P(ξ |μlv)/(βA0)] + C, (14)

where the constant C, tied to the normalization of P(ξ |μ), is
fixed to get (ξ ) = 0 for large ξ . Notice that (ξ ) may depend
on the specific definition of film thickness, so that the GDS
and the ISM estimates for ξ , could lead to different effective
potentials.

C. The effective potential �(ξ ) from restricted μVT simulation

For short-ranged interactions, as the truncated LJ potential
used here, a generic density functional analysis28 predicts
the asymptotic exponential decay (ξ ) ∼ exp(−λξ ), where λ

may be obtained from the decay of the density profile toward
the liquid bulk, ρl − ρ(z) ∼ exp(−λz). The Landau-Ginzburg
density approximation gives (shorter range) corrections to the
pure exponential decay of the potential with terms like

(ξ ) = oe
−λξ + 1e

−2λξ + · · · (15)

that become relevant for the analysis of the possible nonlocal
effects.6,7

We do not know the general range of validity for the
asymptotic form (15), but it is often assumed that the film
has to be thicker than 3–4 molecular layers, to avoid the
interference between the layering structure of ρ(z) near the
substrate and the external edge of the liquid layer. On the other
hand, the analysis of computer simulations results could only
settle the discussion on the alternative and subtle corrections
over the simple Hamiltonian form (11) if the effects are
observable close to the wall where the effective potential (ξ )
is observable above the noise level of the simulation.

The sampling of P(ξ |μ) near saturation requires extremely
large simulation times to get good statistics over a wide range
of film thickness. Moreover, small differences in the chemical
potential, like β�μ ∼ ±0.01, produce enormous changes in
the probability for observing a film with ξ ∼ 10σ , with factors
10±10 in a simulation box with A0 = 100σ 2. In order to
overcome these difficulties, we have used a variant of the
known umbrella sampling technique, the successive sampling,
developed recently by L.G. McDowell and M. Muller.10,29 The

successive sampling procedure performs a grand canonical
Monte Carlo simulation restricted to consecutive intervals
[Ni−1,Ni] in the allowed number of particles. Monte Carlo
simulations are performed in each interval and moves that try
to leave the interval are rejected. The restricted probability
distributions Pi(N |μ) for the number of particles and Pi(ξ |μ)
for the film thickness are calculated in each interval, and the
results at neighbor intervals are matched at their boundary,
with free fitting parameters Fi(μ), to get a continuous form:

P (N |μ) = Fi(μ)Pi(N ), N ∈ [Ni−1,Ni]. (16)

We may (arbitrarily) take F1 = 1, and then

Fi(μ) =
∏j=i

j=0 Pj−1(Nj−1|μ)∏j=i

j=0 Pj (Nj−1|μ)
i �= 1, (17)

gives the (unnormalized) probability distribution, like those
presented in Fig. 5 for two values of the chemical potential
close to the saturation value βμ = −8.3774 and −8.2940.
We have used intervals with Ni − Ni−1 = 30 in a simulation
box with Lx = Ly = 10.457σ and Lz = 65.36σ . The systems
were equilibrated for about 2.5 ns (5 × 105 time steps) and the
production time was 20 ns (4 × 106 time steps) with a time
step of 5 fs.

Notice that the functions in Fig. 5 span over a huge range
∼1010 of relative values. The precise determination of P (N |μ)
over such range would be impossible with an unrestricted
grand-canonical sampling, since a good sampling of the less
probable regions would require an unfeasible long simulation
time mostly spent in the most probable regions. Moreover, the
method may be used both above and below the saturation value
μ = μlv , as shown by the slopes of the two curves in Fig. 5 at
large N . The precise value βμlv = −8.3065 may be obtained
by interpolation between the slopes of the two dashed lines.

The values of Fi(μ) obtained from Eq. (17) may be also used
to get the (unnormalized) probabilities for the film thickness,
P (ξ |μ) = Fi(μ)Pi(ξ |μ), either with the GDS definition ξN

100 200 300 400 500 600
N

10-5

1

105

1010

P
(N

,μ
)

FIG. 5. (Color online) Probability distributions for the number of
particles P (N,μ) obtained from restricted μVT simulations at two
different chemical potentials. The dashed lines show the exponential
fit to large values of N . Dark (black) lines: results for βμ = −8.3774.
Light (green) lines: results for βμ = −8.2940 .
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FIG. 6. (Color online) The lower curves are the interfacial
potentials (ξ ) obtained from the probability distributions. The dark
(red) full curves are (ξIS) as a function of ISM thickness of the slab
ξIS, and the light (green) curves are (ξN ) as a function of ξN , i.e., of
the total number of particles N . In both cases, we show the results for
the two chemical potentials simulated, βμ = −8.3774 and −8.2940,
although the curves are indistinguishable. The dashed line shows the
exponential fit to the curve (ξIS). The upper (black) curves show
the asymptotic decay of the density profile (αρ) in the liquid-vapor
interface and its exponential fit (dashed line). The inset shows (ξIS)
and ξN with linear axis scale.

(that is a linear transformation of N ) or with the ISM results
ξ = ξIS. The effective wall potential is directly extracted as

(ξ ) ≡ − 1

βA0
ln

[
P (ξ |μlv)

P (ξmax|μlv)

]

≈ − 1

βA0
ln

[
P (ξ |μ)eβ�μN

P (ξmax|μ)eβ�μNmax

]
. (18)

The results for both the GDS (ξN ) and the ISM (ξIS) are
presented in Fig. 6. In both cases, the difference between the
estimations done from positive and negative �μ are well below
the noise level, supporting the splitting of f (ξ ) in Eq. (13) as a
linear term proportional to �μ plus a decaying wall potential
(ξ ). The most remarkable aspect of the effective potential
obtained with the ISM definition of ξIS is observed in the main
panel of Fig. 6. Within the accuracy of our simulations, we
get a perfect exponential form, with βo = 215.4/σ 2. The
exponential decay λ = 1.55/σ is the same as observed in the
asymptotic decay of the density profile in the free liquid-vapor
interface, as predicted by the asymptotic density functional
analysis for the true correlation length,28,30 so that all the
relevant aspects of the solid-fluid interaction are represented
by the value of the prefactor o.

The simple matching procedure (17) is not accurate enough
to get (ξIS) over the simulation noise for ξ � 4σ . However,
we may reasonably assume that the pure exponential continues
for larger ξIS and use it to determine the parameters Fi(μ),
with the excellent piecewise matching of the continuous
function (ξIS), for the full range explored in Fig. 6. The
surprising simplicity of (ξIS), from a single monolayer to
very thick films, contrasts with the strong layering structure
of the density profiles shown in Fig. 7 that would suggest
a more complex relation between the film thickness and its
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FIG. 7. (Color online) The left panel shows the density profiles
of the adsorbed fluid for several total numbers of particles N =
2000, 1500, 850, 650, 500, 325, and 150. The right panel shows
the intrinsic density profile for the thicker film N = 2000.

free energy. Also, it is surprising to not find any ∼ exp(−2λξ )
terms that are predicted by density functional approximations
for H[ξ ],6 with the definition of the film thickness associated
to a given value of the (assumed smooth) local density profile,
ρ[x,y,z0 + ξ (x,y)] = ρe. Such terms are, indeed, observed
in the density profile and also in effective potential (ξN )
associated to the GDS definition of the film thickness, as shown
in Fig. 6.

We may assume that the deviation of (ξN ) from the pure
exponential form is produced by the same causes that produce
the flattening of the function 〈ξIS〉(ξN ) for thin films. The GDS
definition for ξN describes the film thickness in terms of the
total number of particles, letting aside the fact that a thin film
would be at equilibrium with an undersaturated vapor, and that
only for thick wetting layers the vapor phase would approach
saturation.

D. Theoretical results

As discussed above, if we want to develop a theoretical
model to describe our simulation NVT of the adsorbed liquid
films, we must take into account the role of the vapor as a finite
particle reservoir. So we must keep the double dependence
on the volume, A0ξ , and the number of particles in the
liquid film Nl used at the study of the free slab (2), instead
of a single variable, either ξ or ξN , used at mesoscopic
Hamiltonians (11) developed in order to study adsorbed films
in the grand-canonical ensemble. We may generalize the
effective Hamiltonian (2) to include the effect of the solid
substrate with the form

H(ξ,Nl) = Hslab(ξ,Nl) + Nl

ξ (ρl − ρv)
(ξ )

= Hslab(ξ,Nl) + Nlo

ξ (ρl − ρv)
e−λξ , (19)

Notice that o is the only information on the substrate-fluid
interactions included in Eq. (19). The parameters ρl , ρv , μ′

l ,
μ′

v , and λ contain all the relevant information on the coexisting
fluid phases, and they are independent of the solid substrate.
The remaining parameters in Eqs. (2) and (19) are the geometry
of the system given by the transverse area A0 and the length
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Lz. As we have observed in the description of the simulation
results, despite its low density, the role of the vapor phase
as a finite reservoir for the adsorbed film is important, and it
produces a dependence of 〈ξ 〉 and 〈�ξ 2〉 with Lz that has to
be taken into account for the analysis of simulation results.
The exploration of the mesoscopic Hamiltonian (19), and the
comparison of its results with the simulation data in Figs. 3 and
4, allow to check the interpretation given above for the role of
the evaporation and condensation processes in adsorbed liquid
layers.

To that effect, the minimization of Eq. (19) under the
canonical ensemble constrain (i.e., for fixed ξN ) may be done
analytically up to linear order in o, to get

〈ξ 〉 = ξN − 0ρl

(ρl − ρv)3

{
χlρ

2
l [1 − (1 + λξN )e−λξN ]

− ρlρvχl(1 − e−λξN ) − χvρ
2
vλ(Lz − ξN )e−λξN

}
, (20)

where the first term, ξN is the mean width that would have
the free slab of Nl particles without the presence of the wall.
For an adsorbed film, the free slab thickness is changed by
the second term, which includes both the increase due to
the undersaturation of the vapor for small thickness and the
(always small) difference between the mean density of the
film Nl/(ξNA0) and the bulk liquid density ρl . As shown
by the dashed-dotted lines in Fig. 3, the result of Eq. (20)
is in agreement with the MD results for 〈ξIS〉 at the range
ξN � 1.7σ , the deviation for thinner films is due to the linear
expansion on o, since the full numerical minimization of
H(ξ,Nl) produces very good agreement over the full range
thickness explored here, i.e., from a monolayer film (see
dashed line in Fig. 3). As in the analysis of the simulation
results, we may cancel the evaporation effects through the
extrapolation of the results to Lz = 〈ξ 〉, i.e., with an effective
canonical ensemble for the liquid film. Again, the prediction
of the mesoscopic Hamiltonian (19) is in excellent agreement
with the simulation results 〈ξIS〉C, proving that the results
of the ISM definition for the thickness of adsorbed liquid
layers in computer simulations may be described by a simple
mesoscopic Hamiltonian with a very high resolution (better
than a tenth of the molecular diameter).

In the same way, we obtain the fluctuations of the thickness
of the adsorbed through the second derivatives of the free
energy. Again we have to solve theset equations numerically
but the analytical first-order approximation is achievable:

〈
ξ 2〉 = χlρ
2
l ξN + χvρ

2
v (Lz − ξN )

βA0(ρl − ρv)2
− φ0ρl

βA0(ρl − ρv)5

× (
χ2

l ρ4
l

{
1 − [1 + λξN − (λξN )2]e−λξN

}
− ρ3

l ρvχ
2
l [1 − (1 − 2λξN )e−λξN ]

+ ρ2
l ρ

2
vχlχv{1 + [−1 + λ(Lz − 4ξN )

− 2λ2ξN (Lz − ξN )]e−λξN }
+ ρlρ

3
vχlχv{1 − [1 + 2λ(Lz − ξN )]e−λξN }

+χ2
v ρ4

vλ(Lz − ξN )[3 + λ(Lz − ξN )]e−λξN
)
. (21)

The results are shown in Fig. 4, again compared with the
numerical full minimization of (19) that extends the good
agreement with the simulation results over the entire range
of film thickness.

V. SUMMARY AND CONCLUSIONS

The aim of this paper is to explore the application of
the ISM, to define the thickness of adsorbed layers on
solid substrates. The method, developed for the analysis of
capillary wave fluctuations in free liquid surfaces, defines the
instantaneous volume of the film per unit transverse area,
ξ = Vfilm/A0, rather than the usual Gibbs dividing surface
definition of the film thickness ξN , directly related to the
total number of particles in the system. The analysis of free
liquid slabs with two parallel liquid-vapor interfaces has been
compared with the predictions of a mesoscopic Hamiltonian in
which the coexisting phases are treated as fluctuating volumes
with fluctuating densities under the canonical constrain of
fixed total number of particles and total volume. The excellent
agreement obtained in that comparison proves that the ISM
results represent the volume of free liquid slabs with a precision
better than a tenth of the molecular diameter σ . With that
assurance, we have gone to the application of the ISM for
adsorbed layers in which we could foresee major difficulties,
due to the strong layering structure of the density profiles ρ(z).
It is usually assumed that such effective Hamiltonians H[ξ ]
could only describe thick adsorbed layers, when the profile
presents a plateau ρ(z) ≈ ρl between the layered region near
the substrate, and the liquid-vapor interface at the outer edge of
the film. However, our main result here is that the ISM results
for ξ follow very precisely the predictions of simple model
Hamiltonians, even for films as thin as one monolayer.

The obvious advantage of this outcome is that the sampling
of molecular configurations, along computer simulations of
adsorbed layers, may be accurately used to get the effective
interfacial potential (ξ ) for the film thickness. If the
mesoscopic description were restricted to very thick films,
for which this potential is already very small, it would be
impossible to extract precise information from the intrinsic
noise of the simulation results. However, since the method
works well also for thin films for which (ξ ) � 20kT /σ 2, the
functional form of this mesoscopic potential may be obtained
very accurately. Thus we establish a quantitative link between
realistic models for solid-fluid interfaces and the generic
mesoscopic Hamiltonians used to describe the behavior of
these systems at large scale.

Moreover, the form of the thickness potential is particu-
larly simple: over the whole range σ � ξ � 5σ for which
we get accurate results this effective potential follows the
predicted asymptotic form (ξ ) = 0 exp(−λξ ), with the
same decaying constant λ observed in the tail of the density
profile toward the liquid bulk, and with the constant 0 as
the only parameter to reflect the effects of the solid-fluid
interactions. Such simplicity for (ξ ) goes even beyond what
is usually assumed in model mesoscopic Hamiltonians H[ξ ],
obtained from the theoretical analysis with mean-field density
functional techniques, that predict exp(−2λξ ) corrections for
thin films. The analysis of computer simulations for other
temperatures and molecular models would be needed to know
if the result obtained here is general, or if there is some
fortuitous simplification of (ξ ) for the particular system
simulated here. In particular, a pure exponential decay could
appear in tricritical wetting transitions.31 We are currently
investigating the wetting behavior of the model to check this
possibility.
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A simple model Hamiltonian, which makes use of the
thermodynamic data for the coexisting fluid phases and takes
o as the only simulation result from the solid substrate, gives
an excellent representation of the probability distributions
for the film thickness. It is important to notice that such
good quantitative agreement is achieved only if we allow the
fluctuations of both the film volume and its mean density (or the
number of particles that it contains). As in the case of the free
liquid slabs, the fluctuations associated with the evaporation
of particles to the vapor and their condensation in the liquid
layer, give an important effect to the volume of the simulation
box occupied by the vapor phase. This effect has to be taken
into account when comparing simulations with different sizes,
and we have shown how it may be eliminated through an
extrapolation to the “effective canonical” ensemble for the
liquid film.

On the other hand, we may wonder how a simple model,
based on the treatment of the adsorbed film as a uniform
liquid slab, is so accurate in the description of strongly layered
density profiles. A possible answer is that the layering of the
fluid near the wall reflects its short-range correlation structure,
but changing it very little, so that both the entropic and
energetic effects of the fluid-fluid interactions are really similar
to those in a bulk liquid. This interpretation is supported by
the view of the fluid interface obtained through the intrinsic
density profile in Fig. 7, which shows the strong layering at
the free edge of the film, rather than at the substrate side.
The difference between the mean ρ(z) and the intrinsic ρ̃(z)
profiles is just a matter of “reference system” to fix the origin
of z; in the first case, it is tied to the rigid substrate, while in the
second it is tied to the instantaneous position of the fluctuating
free edge of the liquid film, but both profiles describe the same
reality, a distribution of highly correlated particles that may in
fact be much more similar to a homogeneous liquid bulk than
what could be guessed from its density profiles.

Finally, in this work, we have addressed only the effective
Hamiltonian for the instantaneous film thickness averaged

over the whole area A0 of the substrate. The grand-canonical
prediction for (ξ ) is one of the key ingredients to plug into the
effective Hamiltonian H[ξ (x,y)] like Eq. (2) that describes the
fluctuations of the local thickness on each point of the interface.
The second contribution is given by the fluctuations of the free
edge of the film, treated as a liquid surface, and the ISM was
precisely designed to that effect, i.e., to open a quantitative
connection between computer simulations of liquid surfaces
and the capillary wave theory (CWT). In that respect, it has
been clearly established that the simple CWT Hamiltonian
based on the macroscopic surface tension fails for wave vectors
q � 1/σ . The distribution of amplitudes for the intrinsic
surface Fourier components ξ̂q is still Gaussian, but their
mean-square values are given by 〈|ξ̂q |2〉 = kT /[A0q

2γ (q)],
with a wave-vector-dependent surface tension that only goes
to its macroscopic limit for low q. This fact is particularly
important since the alternative proposals for the relevant
form of H[ξ (x,y)] are centered in the effects of the solid
substrate on the fluctuations of the film thickness, and they
may be understood as alternative proposals for a q-dependent
correction over the classical CWT Hamiltonian. The fact
that even for the free liquid interface there are important
deviations of γ (q) from its macroscopic limit γ (0) sets a new
perspective to analyze the possible relevance of the alternative
proposals for realistic systems. A very recent publication
by Pang et al.32 has presented evidence in favor of the
nonlocal interface model for the Ising model. Work in progress
addressing these questions would be reported in a future
publication.
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