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Abstract

A characteristic feature of both human and animal life are the constant alterna-

tions between active periods dedicated to different behaviors, and periods of

inactivity dedicated to rest and recuperation. The temporal pattern of active

and inactive periods is rich with information on the processes that govern and

regulate the transitions among behavioral states. Traditionally these tempo-

ral patterns had been believed to follow ’normal’ statistics like so many other

natural phenomena, but during the last two decades it has increasingly been

discovered that many behaviors in both humans and other animals are instead

governed by ’scale-free’ bursty temporal dynamics. Bursty dynamics are charac-

terized by having a temporal pattern where periods of many short and frequent

events are separated by long periods of little or no activity. Bursty dynamics

are thus more irregular than random dynamics and harder to predict. The

aim of this doctoral thesis has been to study the bursty behavioral dynamics of

spontaneous activity and sleep. The main theme has been to characterize the

bursty dynamics in genetically tractable ’simpler’ model organisms, to establish

baseline results to build upon and to probe the underlying neuronal control of

burstiness. The thesis consists of three main parts, in which we have studied

activity dynamics in the fruit fly Drosophila melanogaster, sleep-wake dynamics

in the zebrafish Danio rerio and in humans, and studied the properties of the

neuronal Ih “pacemaker” current which controls spontaneous rhythmic activity

and affects burstiness. In Drosophila we characterized the locomotor activity

dynamics and found that it is bursty. Subsequently we experimentally tested

a hypothesis on the origin of bursts, and found that decision-making circuits

affect the bursty behavioral dynamics. We next characterized the sleep-wake
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dynamics in the zebrafish at different ages across the lifespan and compared

it to the development of sleep-wake dynamics in humans at different ages.

We found that nightly wake increases as wake durations become longer and

less fragmented with age in both zebrafish and humans. Wake dynamics were

found to be highly bursty, while sleep dynamics were found to have a more

complex temporal dynamics than predominantly described. The highly similar

development of sleep-wake cycles in both species contributes to establishing

zebrafish as a valuable model organism for further studies of sleep-wake dy-

namics and regulation. Finally, we studied the Ih current as the DmIh null

mutation gives rise to alterations of the sleep-wake pattern in adult fruit flies.

The mutation also produces a locomotor and decision-making phenotype in

larvae, which have a much simpler nervous system and a well characterized

neuromuscular junction suitable for electrophysiology. We found that the larval

locomotor phenotype was due to the motoneurons, which exhibited a decreased

excitability and reduced responsiveness to dynamic stimuli. Model organisms

with sophisticated genetical tools like the fruit fly and the zebrafish have thus

been shown to be highly valuable animal models for characterizing and probing

the control and regulation of behavioral burstiness.
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Resumen

Una distinguida característica de la vida humana y animal son las constantes

alternancias entre periodos activos dedicados a diferentes comportamientos, y

periodos de inactividad dedicados a descanso y recuperación. El patrón tem-

poral de actividad e inactividad está lleno de información de los procesos que

controlan y regulan las transiciones entre estados. Tradicionalmente se había

considerado que estos patrones temporales seguirían una estadística ‘normal’

como tantos otros fenómenos naturales. Pero durante las dos últimas décadas

se ha ido descubriendo que muchos comportamientos, tanto en humanos como

en otros animales, siguen una dinámica temporal en ráfagas y ‘sin escala’. La

dinámica rafagosa se caracterizada por tener un patrón temporal donde pe-

riodos de muchos eventos cortos y frecuentes vienen separados por periodos

largos de poca o ninguna actividad. La dinámica rafagosa es más irregular que

la dinámica aleatoria, y es por lo tanto, más difícil de predecir. El objetivo de

esta tesis doctoral ha sido estudiar la dinámica rafagosa del comportamiento

espontáneo de actividad y sueño. La temática principal ha sido caracterizar la

dinámica rafagosa en animales ‘simples’ y genéticamente maleables, para es-

tablecer resultados de base sobre los que construir y explorar el control neuronal

subyacente de la dinámica rafagosa. La tesis consiste de tres partes principales,

en las cuales hemos estudiado la dinámica de la actividad en la mosca de la fruta

Drosophila melanogaster, la dinámica de sueño-vigilia en el pez cebra Danio

rerio y en humanos, y estudiado las propiedades neuronales de la corriente

“marcapasos” Ih que controla actividad espontánea rítmica y afecta a la rafagosi-

dad. En Drosophila caracterizamos la dinámica locomotora y encontramos

que es rafagosa. Después probamos experimentalmente una hipótesis sobre el
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origen de ráfagas, y descubrimos que circuitos de toma de decisiones afectan a

la dinámica del comportamiento en ráfagas. Posteriormente, caracterizamos

la dinámica de sueño y vigilia en el pez cebra a diferentes edades a lo largo

de su vida y lo comparamos con el desarrollo de la dinámica de sueño-vigilia

en humanos a diferentes edades. Encontramos que la fragmentación de la

vigilia disminuye, a medida que los episodios de vigilia y vigilia nocturna total

aumentan con la edad tanto en el pez cebra como en humanos. La dinámica de

vigilia mostró ser altamente rafagosa, mientras que la dinámica de sueño tenía

una estructura temporal más compleja de lo que ha sido predominantemente

descrito. El desarrollo de la dinámica de sueño-vigilia es muy similar en las

dos especies; lo que contribuye a establecer al pez cebra como un organismo

modelo valioso para futuros estudios de la dinámica y regulación del sueño y

de la vigilia. Finalmente, estudiamos la corriente Ih en Drosophila dado que la

mutación nula del DmIh da lugar a alteraciones en el patrón de sueño-vigilia

en las moscas adultas. La mutación también produce un fenotipo locomotor

y de toma de decisiones en larvas, las cuales tienen un sistema nervioso más

simple y una unión neuromuscular altamente caracterizada e idónea para la

electrofisiología. Hallamos que el fenotipo locomotor larvario se debía a la

motoneurona, que tenía una excitabilidad disminuida y una respuesta reducida

a estímulos dinámicos. Los animales modelo con herramientas genéticas sofisti-

cadas como la mosca de la fruta y el pez cebra han, por lo tanto, sido mostrados

como animales valiosos para caracterizar y explorar el control y la regulación

del comportamiento en ráfagas.
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1. INTRODUCTION

Animals are broadly defined as mobile multicellular organisms with a nervous

system able to quickly respond to stimuli (Oxford Dictionaries, 2015). These

nervous systems, brains in higher order animals, generate behavior in response

to internal and external signals in order to survive and reproduce. A constant

balance between active foraging behavior in search for food sources and other

active behaviors, and inactive periods of rest and recuperation characterizes the

overall structure of animal life.

The predominant view in neuroscience has been to consider brain function

as a series of more or less complex stimulus-response systems, where the brain

generates behavior as a consequence of perceived sensory events (Brembs,

2009). This approach has been very fruitful and has given rise to immense

bodies of knowledge on visual processing, escape behavior, olfaction and many

other areas of neuroscience (Allen et al., 2006; Silies et al., 2014; Wicher, 2015;

Brembs, 2013).

Following the paradigm of stimulus-response interactions as the driving force

of behavior, the temporal pattern of animal behavior would be highly contingent

on the the timing of the perceived stimuli. Since many natural phenomena can

be well approximated by a normal distribution by the central limit theorem,

the simplest and most general case is to consider that most natural stimuli an

animal encounters will be normally distributed. Consistent with this notion,

animal movement was traditionally modeled as a normal diffusive process,

where the durations of active locomotion are determined by a random process

and are independent of the previous activity (Codling et al., 2008).

During the last two decades, however, it was discovered that the temporal

dynamics of animal locomotor activity did not follow a random process but

instead followed a fractal, or bursty temporal pattern (Wiens et al., 1995; Cole,

1995; Viswanathan et al., 1996; Sims et al., 2008; Humphries et al., 2012,

2013). Bursty dynamics are characterized by a temporal pattern comprising

of periods where many short events succeed each other, followed by longer

periods of little or no activity. In particular, in bursty dynamics the bursts of

short activity are more frequently occurring than in random dynamics, as are

the really long durations which separate bursts.
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A few years later it was discovered that also wake periods in between sleep

episodes followed bursty dynamics in humans and other mammals (Lo et al.,

2002, 2004; Blumberg et al., 2005, 2007; Karlsson et al., 2011). Soon, other

human activities like telephone and e-mail correspondence, library loans or

entertainment consumption were also found to occur with a bursty temporal

pattern (Barabási, 2005; Vázquez et al., 2006; Goh and Barabási, 2008). Apart

from raising fundamental questions about the processes governing the timing of

human behavior, the presence of bursty dynamics in humans also has important

implications for how we model and design human services in our societies

(Barabási, 2005).

Despite the advances in finding and characterizing bursty behavior in animals

and humans, the origins of this temporal structure are not yet well understood.

Following the classical view of animal behavior as a response to external stimuli,

it has been suggested that the conditions of the natural environment might be

responsible for the observed bursty foraging patterns (Viswanathan et al., 1996;

Reynolds, 2014). Although an external influence cannot strictly be ruled out in

empirical studies of animals moving through a natural environment, controlled

studies in a laboratory setting have shown that also animals in featureless

environments display bursty dynamics (Maye et al., 2007). If animal behavior

was principally driven by reactions to external stimuli we would expect the

temporal dynamics under such experimental conditions to resemble the random

fluctuations of noise in the environment and sensory organs. Instead, the animal

behavior showed an intrinsic spontaneous burstiness (Maye et al., 2007).

Since the bursty behavioral dynamics occur in spontaneously behaving

animals, the question of the origin of this complex temporal organization

remains. Theoretical work on human dynamics led to the novel proposition

that the observed bursty behavioral dynamics occur as a consequence of an

internal decision-making process, when tasks are primarily executed in the order

of perceived priority (Barabási, 2005). The proposed model spurred further

theoretical work on both the intrinsically based decision-making model (Oliveira

and Barabási, 2005; Vázquez, 2005; Vázquez et al., 2006; Jo et al., 2012) and on

alternative competing explanations based instead on the interaction of random
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1. INTRODUCTION

and recurring internal or external processes of different time scales (Stouffer

et al., 2005, 2006; Hidalgo, 2006; Malmgren et al., 2008, 2009; Proekt et al.,

2012).

In this doctoral thesis I have studied the bursty behavioral dynamics of activ-

ity and sleep, in spontaneously behaving animals under controlled conditions in

a laboratory setting. The main motivating theme has been to characterize the

bursty dynamics in genetically tractable ’simpler’ model organisms, to establish

these as baseline results to build upon and to probe the underlying neuronal

control of burstiness. In light of the interdisciplinary nature of this biophysics

dissertation, my aim has been to include a sufficient level of introduction and

background throughout the chapters so as to satisfy interested readers coming

from either biology or physics, or from other related fields.

The results presented in this dissertation have been obtained both through

experimentation and analytical work. Many of the results would however not

have been possible without the additional contribution of experimental data and

inspiration by colleagues, to whom I am grateful for rewarding collaborations.

Each result section will state clearly in the material and methods subsection

when the experimental data were produced by a collaborator.

The dissertation work is divided into three main areas of study, presented in

the result chapters 3–5. First, however, CHAPTER 2 Studying Behavioral Dynamics

in Drosophila melanogaster will introduce the methodological motivation and

background on the use of the fruit fly Drosophila melanogaster for behavioral

studies, and introduce the conceptual and mathematical methodology used for

studying bursts.

In CHAPTER 3 Bursty Activity Dynamics in Drosophila melanogaster we first

characterized the bursty nature of spontaneous walking dynamics in Drosophila.

By using powerful genetical tools available in the fruit fly, we were then able

to experimentally test the hypothesized origin of bursty dynamics in decision-

making processes by disrupting decision-making circuits in the fly brain and

measuring the effect on behavioral burstiness.

In CHAPTER 4 Sleep-Wake Dynamics in Model Organisms and Humans we

studied the dynamics of spontaneous sleep and wake cycles in the zebrafish
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Danio rerio and in humans. A correct regulation of sleep is imperative to

feeling well rested and sleep disorders are one of the most common reasons for

seeking medical attention. Thus far the sleep-wake dynamics had only been

studied in mammalian species, as sleep had predominately been considered a

mammalian phenomenon. During the last ten–fifteen years genetically tractable

simpler model organisms have however irrupted and revitalized the field of

sleep research, as sleep became possible to measure by externally observable

behavioral criteria. The zebrafish in particular has proven to be a valuable

model as it possesses many of the experimental advantages of an invertebrate

model, but with a vertebrate neuroanatomy and neurochemistry. We therefore

studied the development of the sleep-wake dynamics across the lifespan in

zebrafish, and compared it to human sleep-wake dynamics.

In CHAPTER 5 Activity-Rest Dynamics and Neuronal Excitability of DmIh we

changed the experimental paradigm, and studied the neuronal ion current Ih in

Drosophila as the DmIh null mutation affects the sleep-wake patterns in adult

fruit flies. The Ih current is sometimes called the “pacemaker” current because

of its fundamental role in the control of spontaneous rhythmic activity in a

variety of excitable cells. The DmIh null mutation also produces a locomotor

and decision-making phenotype in larvae, as well as pre- and postsynaptic

morphological alterations in the neuromuscular junction. In this chapter we

present the physiological effect of the DmIh null mutation on the larval lo-

comotor system, with the use of electrophysiological experimentation in the

neuromuscular junction.
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2. STUDYING BEHAVIORAL DYNAMICS IN DROSOPHILA MELANOGASTER

2.1 Drosophila melanogaster as a Model Organism

2.1.1 Introduction

The importance of the fruit fly Drosophila melanogaster in biological research can

be traced back to the beginnings of the last century when Thomas Hunt Morgan,

advised by colleagues, started using it in a laboratory setting for genetic analysis

(Nobel Lectures, 1965). After a couple of years he identified his first mutant

– a fly with white eyes instead of red, and he called the mutation white. In

collaboration with three students, they formulated a revolutionary chromosome

theory of heredity between the years 1910 – 1915, for which T. H. Morgan

would later receive the Nobel Prize in Physiology or Medicine, in 1933 (Nobel

Lectures, 1965; Rubin and Lewis, 2000).

Drosophila was among the first organisms used for genetic experimentation,

and remains to this day one of the most frequently used and genetically best-

known organisms (Pierce, 2004). In the early days of Drosophila research,

millions of flies were bred and visually inspected under a microscope to find

the spontaneous mutations that arise naturally over the generations (Nobel

Lectures, 1965). To speed up the process, techniques such as exposing the flies

to radiation or feeding them a chemical agent that creates point mutations

in the DNA were introduced, and modern methods make use of transposable

elements combined with a marker, which insert into the genome at random

(St Johnston, 2002). Common to all these methods is the procedure known

as forward genetics, whereby, after a mutation in the DNA produces (either

naturally or induced) an observable phenotype, it is identified and isolated

to try to find the genetic basis for the observed mutation. This methodology

of (forward) genetic screening has produced many remarkable and influential

results, in the beginning half of the last century mainly in the fields of genetics

and developmental biology (St Johnston, 2002; Bellen et al., 2010).

The search for mutant phenotypes extended, however, from morphological

and developmental alterations into the search for the genetic basis of behavior,

pioneered by Seymour Benzer and his students during the late 1960s and early

8



2.1 Drosophila melanogaster as a Model Organism

1970s (Bellen et al., 2010; Jan and Jan, 2008). In the first study a simple and

elegant assay to isolate single-gene mutants with defective phototaxis behavior

was described, and a few years later they published a seminal work describing

single-gene mutations affecting the circadian rhythm of the activity-rest cycle.

Over the following three decades it has been shown that these mutations affect

the components of a cellular biochemical clock which is found in a wide range

of cells, although the main time-keeping is controlled by only a few dozen

neurons in the fly brain. Homologues to these biochemical clock genes have

been found in mice and humans as well, evidencing the conserved mechanism

of biological time-keeping (Bellen et al., 2010). Further advances on the genetic

basis of behavior were made in Benzer’s lab, including learning and memory

mutants, stress-sensitivity, mating behavior and vision (Jan and Jan, 2008;

Bonini, 2008). Drosophila has continued to be very important in the field of

behavioral genetics and neuroethology, showing e.g. how a polymorphism in

the single gene foraging can give rise to different foraging behavior (Sokolowski,

2001), probing the neural and genetic basis for visual attention and decision-

making processes (van Swinderen, 2011), and lately, using Drosophila to unravel

the biological mysteries of sleep (Hendricks et al., 2000; Shaw et al., 2000;

Cirelli and Bushey, 2008) – which we shall see more of in chapter 4, Sleep-Wake

Dynamics in Model Organisms and Humans.

While knowing as much as possible about Drosophila is interesting from

an ethological point of view, it has also proven itself immensely useful for

discovering conserved mechanisms across species, in particular, also for hu-

man function and disease. Since the whole genome sequencing of Drosophila

melanogaster in the year 2000 (Adams et al., 2000), 77% of known human

disease genes have a recognizable counterpart in the Drosophila genome (Reiter

et al., 2001), even though the fly genome is about 20 times smaller than the

human genome, counted in base pairs, and comprises about half of the number

of genes as the human genome (Adams et al., 2000; IHGSC, 2004). The smaller

size of the Drosophila genome is indeed an advantage when sequencing and

performing reverse genetics, where the function of a given gene is the target of

study, because the fly genome contains less duplicate genes than mammalian
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2. STUDYING BEHAVIORAL DYNAMICS IN DROSOPHILA MELANOGASTER

model organisms, making a “break it and see what happens”-approach much

more feasible (Gu et al., 2002). Since the early years of the new millennium,

as sequencing became less expensive and less time-consuming, several other

model organisms have had their genomes sequenced, from nematode worms to

mice, mosquitoes and fish, including the zebrafish, which we will see more of

in the chapter of Sleep Dynamics.

2.1.2 Fly Life Cycle, Rearing and Breeding

Another aspect which has helped establish Drosophila melanogaster as a model

organism in experimental research from the very beginnings (Nobel Lectures,

1965), is that it is small and easy to grow in the laboratory, it requires little space

to culture and care for, the females lay many eggs and it has a short generation

time, along with being inexpensive to maintain. Working with Drosophila is

further helped by the strong collaborative tradition of the Drosophila community,

dating back to the days of T. H. Morgan (Rubin and Lewis, 2000). In this line,

the FlyBase Consortium (The FlyBase Consortium, Web) runs a centralized

database of genetic and genomic data (Crosby et al., 2007), the Drosophila

Genomics Resource Center (The Drosophila Genomics Resource Center) collects

and distributes DNA clones, vectors and cell lines, and whole live fly stocks can

be ordered from several stock centers around the world, with the Bloomington

Drosophila Stock Center at Indiana University (Bloomington Drosophila Stock

Center, Web) being the largest and oldest, established in the original Morgan

laboratory (Bloomington Drosophila Stock Center, b).

Drosophila melanogaster is an insect of the order Diptera and as such, it

goes through a complete 4-stage metamorphosis during its early life. The

development rate is temperature dependent and under standard laboratory

conditions (25 ◦C) the whole process takes about 9–10 days (Stocker and

Gallant, 2008). The first developmental stage begins when an egg becomes

fertilized and the female deposits the eggs on a suitable food medium. After

about 24 hours the embryo has matured into a first instar larva that hatches

and starts feeding on the surrounding food. As the larva eats and grows it molts
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2.1 Drosophila melanogaster as a Model Organism

Figure 2.1: Illustration of male and female Drosophila melanogaster.

Drawing depicting two fruit flies: male on the left, female on the right. Note

the slight difference in size, and the darker hind tip of the male fly compared

to the female. The drawing is not to scale, the actual body length (excluding

wings) is about 3 mm. Source: (NASA, 2004).

twice into second and third instar developmental stages, denominated L1, L2,

L3. The larval stage takes approximately four days and towards the end of the

third instar it starts the “wandering stage”, where it leaves the food in search

for a dry place to pupate (Stocker and Gallant, 2008; Chippindale et al., 1999).

Extensive metamorphosis takes place during the pupation stage which will last

for another four days, whereupon the adult fly eccloses (emerges) from its

pupal case. During the first 8–10 hours post-ecclosion the flies remain sexually

immature, which is experimentally important for securing virgin females for

later genetic crosses. The first few days of adulthood are sometimes known

as the “juvenile stage” as extensive neuronal plasticity and maturation occur

during this time (Ganguly-Fitzgerald et al., 2006). The adult females can lay

100–200 eggs per day, and have a fecundity peak between the ages of 4–12

days (Stocker and Gallant, 2008). The life expectancy of Drosophila varies

considerably with genetic background and experimental conditions, but lies

typically in the range of 30–60 days (Chippindale et al., 1999).

When rearing and breeding Drosophila in the laboratory for behavioral

experimental purposes, the flies are kept in an incubator with a set temperature

and a light that switches on and off on a controlled schedule, usually on a
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12 hour light/12 hour dark (LD 12:12) cycle, to entrain the flies’ circadian

rhythms (Rosato and Kyriacou, 2006). When preparing for genetic crosses or

experimental studies the flies are kept at 23–25 ◦C, while flies in stock and for

longer keeping can be kept at 18 ◦C, since the development is slowed down

at lower temperatures. Flies are grown in vials or bottles with a standard fly

food (Bloomington Drosophila Stock Center, a) in the bottom, where bottles are

larger and better suited for fly stock keeping, while vials are more suitable for

keeping flies for crosses and in preparation for experimentation. Stocks need to

be transferred to new vials or bottles every two weeks approximately, although

the exact intervals are usually worked out depending on the stocks’ viability,

density and the temperature of keeping. Vials on the other hand, if used for

breeding can be flipped over to a fresh tube after 2–3 days to increase the speed

and production of offspring (Stocker and Gallant, 2008).

When the flies are reared and bred to be used in genetic crosses or for

experiments, it is important to separate the females from the males before

they have become sexually mature. This should be done within 8 hours post-

ecclosion to be sure and on the safe side that a female was not fecundated by an

incorrect male genotype, as several hours can pass by before a female deposits

the eggs on food, and because female flies have been shown to perform sperm

selection between mates after copulation (Snook and Hosken, 2004). For the

kind of experiments we have performed, described further in section 2.2.2, it

is also important to use virgin females because otherwise the female will lay

fecundated eggs that will grow into larvae, which risk disturbing the experiment

and the measuring procedure. The newly ecclosed flies are luckily quite easy

to tell apart, as the males are slightly smaller than the females and with a

darker and rounder abdomen, while the females have a lighter color and if very

recently ecclosed, have a slightly bloated abdomen with a greenish spot which

further eases the classification (see Figure 2.1). This separation of sexes is

usually done at a “fly pushing station” (Stocker and Gallant, 2008), comprising

of (in our laboratory) a dissecting microscope, a CO2-pad with foot pedal for

brief anesthetization of flies (both from Tritech Research Inc., CA USA) and

a fine and soft paintbrush for gentle manipulation. An additional invaluable
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2.1 Drosophila melanogaster as a Model Organism

tool is the (personal) aspirator, which allows gentle individual manipulation of

awake flies. The aspirator can be made from standard laboratory equipment by

taking a Pasteur pipette and severing its long tapered tip so that the resulting

diameter coincides quite closely with the size of the flies (measure with a female

as they are slightly larger), covering the large end of the pipette with a fine

meshed cloth and connecting it to a flexible plastic tube of a length to your

liking. Finally, construct a rechangeable mouth piece by using e.g. a cut-off

large micropipettor tip, and connect it to the rubber tube with an additional

layer of fine meshed cloth (it makes it easier to change the tip). The aspirator

allows one to manipulate single flies, even from within populated vials, and

in case of need the task of sexing and dividing the newly ecclosed flies into

single-sex vials can be done with just an aspirator and a trained eye. The fly

pushing station is also used for fly husbandry, as obtaining the desired genotype

often requires performing several genetical crosses that require sex separation

and may include trait selection of genetic markers.

2.1.3 Targeted Gene Expression: The GAL4/UAS Method

A big advancement for the Drosophila researcher came with the introduction of

the GAL4/UAS tool for targeted gene expression, in 1993 (Duffy, 2002). The

system allows the selective activation of any cloned gene in a wide variety of

tissue- and cell-specific patterns (Brand and Perrimon, 1993). This is achieved

by a bipartite approach, exploiting the diploid nature of Drosophila (meaning it

has two full sets of chromosomes), designed such that the Gal4 driver will be

inherited from one parent and the UAS element from the other (see Figure 2.2).

The Gal4 and UAS DNA sequences do not usually reside in the Drosophila

genome, but stem from the yeast Saccharomyces cerevisiae. There, the GAL4

enzyme is a transcriptional activator that binds to a DNA region known as

the Upstream Activating Sequence (UAS), and when bound, will activate tran-

scription of the nearest downstream gene. A few years prior to Brand and

Perrimon (1993) seminal paper it had been shown that the GAL4/UAS element

was capable of stimulating transcription in both Drosophila, as well as in a wide
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Figure 2.2: The bipartite Gal4/UAS transgenic system for targeted gene

expression. (A) Flies with the yeast transcription activator protein Gal4

inserted into the genome (left) are crossed (“mated”) with other flies carrying

the UAS Upstream Activation Sequence (right). (B) In their offspring the

Gal4 protein will specifically bind to the UAS DNA sequence and activate gene

transcription downstream. The promoter or enhancer sequences upstream

of the Gal4 element will control the temporal and spatial expression, while

the placement of the UAS sequence will determine which gene is transcribed.

Source: Modified from (Neckameyer and Argue, 2013).

variety of other systems. Importantly, it was also shown that the expression of

GAL4 in Drosophila showed no apparent or harmful effects on the phenotype

(Duffy, 2002).

The insertion of the Gal4 element into the Drosophila genome happens at

random, so a priori it is not possible to control where it will be expressed.

Combined with a UAS region coupled with a reported gene, like for example

the green fluorescent protein (GFP), however, the expression patterns can be
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mapped and the interesting lines are kept. Extensive libraries of GAL4-drivers

exist today, where over 7000 lines with detailed mapping of target cells have

been made available (Jenett et al., 2012), which can be ordered from one of the

fly stock centers. An important strength of this bipartite system is that parent

lines can be kept homozygote even with detrimental or lethal target genes, as

the activation of the system only occurs in their crossed offspring, when both

the GAL4 and the UAS elements are present in the genome concurrently.

Another important addition to the spacial and specific gene expression

control is the temporal ability to control when the gene expression will be

active, by using temperature sensitive components. In one of the studies of

this thesis we introduced the temperature sensitive blocker of neuronal activity

shibirets (Kitamoto, 2001), but more generally, there also exists a temperature

sensitive GAL4 repressor (Gal80ts) which allows for on/off-protocols, where

flies are allowed to grow at the permissive or prohibiting temperature and

are then switched over by changing the temperature (McGuire et al., 2003).

A great advantage of these protocols is that the target gene can be inactive

and thus not interfere during the development of the flies, but can then be

activated in a controlled manner during the study, by simply raising/lowering

the temperature.

With this method it is not only possible to express genes that create a gain-of-

function, but also to create loss-of-function by expressing a Dominant Negative

(DN) of the gene under study. The dominant negative is a protein that is very

similar to the one that is desired to block, but with little or no physiological

function. This can be achieved by creating a point mutation in the gene’s DNA

or by truncating parts of the coding sequence. While the DN is being expressed

by the GAL4/UAS system, the gene producing the natural protein still remains

intact and continues to function so the DN must thus compete with the natural

copy inside the expressing cells. The GAL4/UAS driver system, however, is very

powerful and produces many more DN copies than the cell produces the natural

copy, so the effect is a blockage of activity. This system of producing a Dominant

Negative to study gene function was used in chapter 5, Activity-Rest Dynamics

and Neuronal Excitability of DmIh.
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2.2 Measuring Drosophila’s Innate Activity Patterns

2.2.1 Environmental Conditions

Even though fruit flies are quite easy to handle and breed, it is important to

know about and to take into consideration that they can also be quite sensitive

to environmental factors, especially when planning behavioral studies. As

mentioned in the previous section, the Drosophila development and physiology is

temperature dependent as the flies cannot regulate their own body temperature

beyond behaviorally seeking an adequate thermal environment. In studies of

thermosensation and hygrosensation, it was found that wild type flies prefer a

temperature of ∼ 24 ◦C and a relative humidity of the air below 77% but not dry

(Sayeed and Benzer, 1996). Thus, the recommended conditions for Drosophila

research are at 23–25 ◦C with ∼ 60–70% relative humidity, allowing complex

behavioral experiments to be done at room temperature. Depending on other

factors, however, such as experiments designed with heat shock protocols, lower

or higher temperatures can also be required.

To control for these environmental factors and to try to keep them as constant

across experiments as possible, all the behavioral experiments were performed

inside an incubator with controlled temperature, set at 23 ◦C unless otherwise

noted. As the fruit flies’ activity levels are also strongly influenced by the

circadian day-night light cycle (Rosato and Kyriacou, 2006; Sokolowski, 2001),

the incubator also had a programmable light cycle (Tritech Research Inc., CA

USA: DT2-MP-68O DigiTherm™ Heating/Cooling Incubator Standard w/ Opaque Door

with -CIRC-TL Built in Circadian Temperature Ramping and Lighting System). To

avoid data loss in case of power blackouts, both the incubator and the activity

measuring set-up, described in the next section, were connected to a battery

backup power with a capacity of several hours of run-time.

Apart from the external environmental conditions affecting the life and

behavior of Drosophila, its immediate social environment has also been shown to

affect development and maturation. Exposure to socially enriched environments

within the first week as adult flies affect the number of synapses and the size
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of information-processing regions, although the fly brain shows plasticity also

after this time period (Heisenberg et al., 1995; Ganguly-Fitzgerald et al., 2006).

Ganguly-Fitzgerald et al. (2006) showed that social exposure directly affect

activity levels, where flies that have been socially isolated sleep less during

the day than flies exposed to social interactions before the experiments. The

increased daytime sleep need was in addition proportional to the size (4, 10,

20, 60, and 100 individuals) of the social group. For my experiments I therefore

always took extra care to keep the social environment constant, at 20 flies

per vial before the experiments. In addition to the social environment it is

also advisable to leave the flies to mature during the first three days of post-

ecclosion, when many complex behaviors develop (Hirsch and Tompkins, 1994).

Therefore, flies were usually selected for experiments at day 3 post-ecclosion

so that the first day of recording would coincide with day 4, when activity and

sleep patterns have consolidated to adult levels (Shaw et al., 2000).

2.2.2 Drosophila Activity Monitor System

To study the spontaneous activity of Drosophila we used the Drosophila Activity

Monitor System (second generation, DAM2) (TriKinetics Inc., 2005) to record the

spontaneous locomotion behavior of flies. The DAMS monitoring and recording

system was initially developed for circadian rhythms and chronobiology studies

(Rosato and Kyriacou, 2006; TriKinetics Inc., 2005), but it has also been adopted

by the sleep community (Hendricks et al., 2000), and lends itself well for our

studies of the fine-scale dynamics of behavior as well. The DAM System is

an automated monitoring system that consists of one or several connected

monitors with 32 channels each arranged in a 8 by 4 grid (see Figure 2.3), with

accompanying small glass tubes of 65 mm length and 5 mm inner diameter

that fit in the channels, as well as wires and software to record the activity

on a PC. Each channel on a monitor has an infrared detector system around it

such that it detects every time something passes through the channel, whereby

the monitor records the occurrence as a beam-break event. These beam-break

events are then collected by the PC software, summed and recorded as ’counts’
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per unit time. The investigator controls this time unit, or binning, as a setting

in the software prior to the initiation of the experiment.

To measure the activity of flies, each fly is individually placed in a glass

tube which has previously been filled with enough food for the duration of the

experiment in one end, while the open end is closed behind the fly with a small

cotton ball which allows air to get through. The side with food has previously

been sealed with a black rubber cap, so the food doesn’t dry out during the

course of the experiment. The flies are at this point gently handled with an

aspirator and are not anesthetized, so their natural rhythms won’t get disturbed

more than absolutely necessary. Thereafter, each glass tube is introduced into

a channel on the monitor, such that the free space between the food surface

and the cotton ball is centered around the infrared detector on the monitor.

When all the tubes have been mounted, two elastic rubber bands are stretched

around the tubes in 8-shapes, to keep the tubes from sliding when handling

Figure 2.3: Drosophila Activty Monitor. A DAM2 monitor loaded with

32 tubes for long-term individualized monitoring of fly activity. Source:

(TriKinetics Inc., 2005)
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the monitors. Once the monitors have been placed in the incubator and the

doors have been shut, effectively sealing it all off from external stimuli, the flies

are usually left for at least 24 hours to settle into the new environment before

recordings are started.

This procedure has been used successfully since the start of our experiments,

but over the years I also started taking into account the placement of the moni-

tors in the incubator as a possible environmental factor, thus ideally spreading

the genotypes in such ways that this effect is minimized (see Figure 2.4 [p. 20]).

I also experimented with mixing and intertwining genotypes on a per-channel-

basis throughout all the monitors and while this would indeed minimize the

environmental effects, it is very laborious and also prone to human error – and

a mistaken interchange of genotypes would definitely be a larger source of

error than the minor environmental effects of placement of monitors within the

incubator. When measuring sexual differences I did change from a placement

of one sex in channels 1–16 (top half) vs. the other sex in channels 17–32

(bottom half of monitor) to an odd-even placement of sexes across the channels,

which does not require a noticeable increase of effort in comparison to the

concentration and effort it takes to load the flies gently and successfully into

the monitors anyway.

As a last note on this section about measuring the spontaneous activity of

Drosophila, it is worth mentioning that there exist other methods to measure

the activity, in particular video recording. Since video recording allows for

a much finer spacial detail and time-scale than DAMS – where typically the

measurements are set to collect data in 1-minute bins – studies using video

recording of flies inside DAMS monitors showed that the data obtained with

DAMS showed a good level of correspondence with the data obtained by detailed

video analysis, especially during the nights (Hendricks et al., 2000; Zimmerman

et al., 2008; Martin et al., 1998). While other more natural and ’free-ranging’ set-

ups than flies inside one-dimensional DAMS tubes could be achieved with video

tracking systems, like in (Martin et al., 1998; Hendricks et al., 2000; Zimmerman

et al., 2008), at the time of experimentation these systems had the draw-back

that they did not scale well with population-size or allowed for several days of
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recording. In addition, these video recordings typically require(d) some human

intervention to validate the data, as well as computer processing power, while

DAMS data require very little processing power and human oversight. Thus,

since the DAM System has been shown to give relatively good measurements

of activity levels during the night, the data are smaller and less error prone,

and since several DAMS monitors can be placed in an incubator concurrently,

which minimizes the environmental effects when comparing effects between

genotypes as all the flies have been subjected to the exact same environment,

we have used the DAM System as the chosen experimental system for the

behavioral activity and sleep experiments presented in this thesis.

Figure 2.4: Experimental set-up of DAMS in incubator. A close up photo

of six DAM2 monitors placed inside the incubator in preparation of an exper-

iment (open door not shown), spread across three shelves. The incubator

has a programmable daily lights on and off schedule to keep the circadian

rhythm entrained; here seen with the lights on. Please note that these six

DAM2 monitors have not been connected with cables to the PC yet.
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2.3 Analyzing the Fine-Scale Dynamics of
Spontaneous Activity

To begin with, we should start by defining what we mean by “fine-scale dynam-

ics” of spontaneous behavior. When referring to behavioral studies, dynamics

refers to the temporal structure of the behavior under study. The specification

of fine-scale implies that we will take into account all the details of the temporal

relationships between the episodes of the behavior, as opposed to circadian

studies for instance, that are mainly occupied with large trends and phase shifts

over several days.

To understand the dynamics of a behavior, we thus need to analyze the

timings of the changes in that behavior. In our case, to study the spontaneous

walking activity of Drosophila we need to study the timings of said locomotion,

as opposed to the other state, in which the fly is not walking. By doing this

we can treat the transitions between walking and not walking as a stochastic

process, for which there exists an extensive mathematical framework to draw

from. Hence, by studying when activity occurs, we can try to learn about the

processes that govern that activity.

Depending on the question in mind, we can study the initiation of a behavior

by looking at when it occurs with respect to its previous episode, that is,

study the times between events of the behavior – the inter-event intervals

(IEIs). Complementary, by studying the duration of the episodes we can learn

something about the processes that govern the maintenance of the behavior. On

the other hand, if our concern is to study the dynamics of the resting periods,

we need to analyze the times between episodes of rest, and similarly, the

maintenance dynamics of rest is given by the durations of the resting episodes.

2.3.1 Processing Raw Data into Bouts

To analyze the fine-scale dynamics of locomotor behavior, the first step is thus

to process the raw recordings into active and non-active episodes, or bouts.
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Figure 2.5: Turning raw locomotor activity counts into activity and inac-

tivity bouts. (A) An extract from a data file from the DAM System for one fly.

The right hand column shows the number of beam breaks during each time

unit and the left hand column indicates the row number (the time bin since

the start of the recording). (B) Plot of the count of beam breaks vs time. For

this experiment the DAM System was set to record in 1-minute bins, so this

extract from minutes 737–763 shows us the activity of one fly during almost

half an hour. (C) The number of consecutive active or inactive minutes is

summed to construct each bout. In the figure are indicated one inactivity

bout of 5 minutes (lower arrow) and one activity bout of 6 minutes (upper

arrow).

The recordings from the DAM System monitors come as long successions of

numbers, where each number represents the cumulative count of times each

fly crossed the infrared beam during each time unit (Figure 2.5 A). A count

of 0 (zero) thus means that the fly did not show any locomotion during that

time bin. While it is still possible that the fly is awake, eating or clawing at

the cotton stopper, it is unlikely that it is active in locomotion without crossing

the midpoint of the tube, as it has been shown that when the flies show active

locomotion they tend to utilize the full extension of tube, walking back and
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forth (Hendricks et al., 2000; Zimmerman et al., 2008). An active bout is

constructed by summing the consecutive time units with non-zero beam-breaks,

and an inactive bout is constructed, respectively, by summing the number of

consecutive time-units without any locomotor activity (Figures 2.5 B and C).

The raw recordings are thus dichotomized into non-overlapping alternating

bouts of activity and inactivity. This data processing step is summarized in

Figure 2.5.

2.3.2 Randomness, Burstiness and Memory

To learn about the underlying processes that produce the observed behavior,

we need to take into account both the inter-relation between the timing of the

events, and the distribution of these inter-event intervals as a whole (Goh and

Barabási, 2006, 2008). If we consider a generalized temporal pattern, we can

identify three distinct possibilities: A regular pattern, like the ticking of a clock;

a random pattern, like radioactive decay; and a bursty pattern – where several

events occur in short succession, followed by long periods of low activity or

quiescence – like the firing activity of cortical neurons. What distinguishes these

patterns is how predictable they are: the regular pattern is highly repetitive

and predictable, a truly random, Poisson process pattern is characterized by its

mean inter-event interval, while a bursty pattern is highly irregular and more

unpredictable. Examples of these patterns are shown in Figure 2.6 a–c, where

2.6 a is a random pattern created by a Poisson process, 2.6 b is a bursty pattern

generated by a power law and 2.6 c a is highly regular pattern.

The temporal pattern generated by the (homogeneous) Poisson process is an

important benchmark when studying animal behavior, or complex systems in

general, because it is a truly random pattern. The probability of an event occur-

ring at any given time is completely independent of what has happened before,

and only depends on a characteristic event rate, which is constant for each pro-

cess. The distribution of inter-event intervals follows an exponential distribution

with the probability density function (pdf): f(t) = Pr(t) = λ · e−λt, where λ

is the global rate of the events per unit time. The cumulative probability density
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Figure 2.6: Examples of random, bursty and regular event patterns,

with and without memory effects. The black vertical stripes represent

events occurring and the white spaces between them the inter-event intervals,

within the time frame of 50 time units. (a) A random pattern, generated by

a Poisson process with λ = 1. (b) A bursty signal generated by the power

law inter-event time distribution P (τ) ∼ τ−1. (c) A regular (“anti-bursty”)

pattern generated by the Gaussian inter-event time distribution with m = 1
and σ = 0.1. (d) and (e) Memory effects are introduced to the inter-event

interval distribution from (a) to create seemingly more bursty (d) and regular

(e) patterns, just by shuffling the event orders. Source: Figure from (Goh and

Barabási, 2008).

function (cdf) is obtained by integrating the pdf over all values smaller than

t, and is thus given by F (t) = Pr(τ < t) = 1− e−λt, where τ is a non-negative

random variable representing the time until some event of interest. Finally,

the complementary cumulative probability density function (ccdf), or “survival

function” of the inter-event intervals, that is, the probability that an event has

not yet occurred by time t, is defined as

S(t) = 1− F (t) = 1− Pr(τ < t) = Pr(τ ≥ t) (2.1)

such that S(t) = e−t/β where β = λ−1 is the characteristic time between

events, for the Poisson process. The independence of previous events, or
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memorylessness, is what is especially characteristic of the Poisson process.

When considering bursty inter-event interval patterns on the other hand,

these can differ from the Poisson process pattern in two main ways: A bursty

pattern can either be due to a change in the distribution of inter-event intervals

(Figures 2.6 b and c), or be due to the presence of memory effects between

events (Figures 2.6 d and e) (Goh and Barabási, 2006, 2008). An appearance

of burstiness can occur if the duration of the previous inter-event intervals

affects the probability of the timing of the next event, even if the distribution

of IEIs at large has a random structure. To distinguish between these two

generating mechanisms of bursty patterns, Goh and Barabási (2008) introduced

the burstiness parameter B and the memory parameter M to quantify these

separate effects.

Burstiness

To measure the burstiness due to the distribution of inter-event intervals, the

burstiness parameter B is defined as:

B = σ − µ
σ + µ

, (2.2)

where µ is the mean and σ is the standard deviation of the inter-event interval

distribution. With this definition, B will take values in the range (−1, 1), with a

magnitude that correlates with the distributions burstiness. For highly regular

(periodic) patterns, the standard deviation of the inter-event intervals will be

close to zero, so the burstiness parameter will be dominated by the fraction

−µ/µ leaving B → −1. For the neutral, random case, the mean and the

standard deviation of a Poisson process are both equal to the characteristic rate

λ, such that BPoisson = (λ − λ)/(λ + λ) = 0. On the opposite end, a highly

bursty pattern will be composed of many very short intervals as well as fairly

long ones, and therefore will be dominated by the standard deviation of the

inter-event intervals σ, and thus B → 1.
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Memory

To characterize the memory effects in a bursty signal, the memory parameter

M was chosen to be defined as the first step of the autocorrelation function,

namely, the correlation coefficient of consecutive inter-event intervals. If τi and

τi+1 are two consecutive inter-event intervals, the memory parameter is defined

as:

M = 1
N − 1

N−1∑
i=1

(τi − µ1)(τi+1 − µ2)
σ1σ2

(2.3)

where N is the total number of inter-event intervals in the signal, µ1 (µ2) are

the sample mean and σ1 (σ2) are the sample standard deviation of the τi (τi+1),

i = 1, . . . , N − 1 inter-event intervals. This memory parameter will be bound in

the range (−1, 1), where high degrees of memory will be observed in signals

where similar intervals succeed (short–short or long–long) leaving M → 1,

and anti-memory patterns will be observed when the interval lengths alternate

(short–long or long–short), yielding M → −1. Since the memory parameter

M only considers the correlation between adjacent intervals, it is important to

note that this is a measurement only of short term memory effects.

Detrended Fluctuation Analysis

To measure long term memory effects of the inter-event intervals of behavior,

we have used detrended fluctuation analysis (DFA) algorithm, which detects

long-range correlations embedded in non-stationary signals (Peng et al., 1994,

1995). The DFA algorithm consists, briefly, of integrating the time series and

dividing it into smaller evenly sized subsets, or “boxes”. For each subset the

trend is found by fitting a straight line to the integrated signal in the box, and

the full detrended signal is obtained by subtracting the local trends in each

box. The root mean-square fluctuation F (n) is then calculated on the full

integrated and detrended signal. The process is repeated for all the possible

sizes of boxes, such that we obtain a relationship between F (n) and the box

size n. This relationship is typically increasing with box size and linear on a

double logarithmic scale. The last step is thus to characterize this relationship
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by considering the scaling exponent α of the straight line fit between log(F (n))
and log(n). For random, memoryless signals like from a Poisson process the

scaling exponent is α = 0.5, while an 0 < α < 0.5 indicates that short and long

inter-event intervals tend to alternate, and an 0.5 < α < 1 that short (long)

intervals tend to follow short (long) intervals. For α ≥ 1 the power law relation

breaks down, with special cases of α equal to 1 and 1.5 corresponding to 1/f
noise and Brown noise, respectively.

2.3.3 Finding Simple Functional Forms

While calculating the burstiness parameter and the memory effects is important

for finding out about the source of the observed burstiness, we also need to

study the distribution of inter-event intervals to learn more about the dynamics

and hopefully about the underlying generating mechanism. This is done by

trying to find the most simple mathematical functional forms or standard basic

distributions to describe and compare the inter-event distributions to. While

more complicated functional forms pose no technical problem, the difficulties

arise at the time of interpretation. Complex functional forms increase the

number of parameters, and clear cut interpretations of the parameters and how

they relate to the biological system are usually difficult. In addition, complex

functional forms are prone to over-fitting, whereby the function adapts to all

the small turns and curves, when in fact these could be due to noise in the

signal.

There are four main classes of simple functional forms that have known or

interpretable generating mechanisms behind, and that are commonly used in

the study of complex systems. These are the exponential function, the power

law, the stretched exponential and the log-normal distribution (Newman, 2004;

Goh and Barabási, 2008). The latter three of these are all able to fit bursty

distributions which are known for having a “fat” or “heavy” tail – meaning that

the probability of finding really long inter-event intervals is higher than for the

exponential function. Briefly, the exponential function is observed when the

inter-event intervals stem from a memoryless process with a constant rate, which
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we saw corresponds to the Poisson process. In contrast, a power law is indicative

of fractal, or scale-free dynamics, whereby there exists no characteristic rate.

Distributions that follow a power law are often called self-similar, because they

are invariant to scaling factors and thus retain the relationship between “large”

and “small” – regardless of the scale, or zoom used to observe them. Next,

the stretched exponential function and the corresponding Weibull distribution

is a generalization of the exponential function where a shape parameter is

introduced as a power of time, so that the probability of observing an event

depends on how much time has transcurred since the previous event. Lastly,

the log-normal distribution is observed when a large number of independent

components’ interactions create a multiplicative effect, which also gives rise to

a heavy-tailed distribution.

We say that an empirical inter-event interval distribution follows a functional

form, when by a fitting method the function is found to have a good fit to

the data. There exist two main methods for estimating the parameters of the

function to the data: goodness-of-fit measures, like least squares, and maximum

likelihood estimation. The exact fitting procedures and choices among the

methods will be presented in each chapter as they are used.
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3. BURSTY ACTIVITY DYNAMICS IN DROSOPHILA MELANOGASTER

3.1 Introduction & Background

Bursty phenomena have been observed across the fields, throughout both the

physical and biological realms, as well as in man-made systems (Barabási, 2005;

Goh and Barabási, 2008). Relating to animal behavior, bursty phenomena or

“scale-free” behavior has predominantly been studied in free ranging animals

and the observations have been linked to foraging behavior, mate encounters

and predator evasion (Viswanathan et al., 2011). Although the experimental

studies and results presented in this chapter mainly take a neurobiological

approach to the dynamics of spontaneous behavior, we will start with a short

overview of the modeling approaches and empirical evidence from the fields

relating to spatial ecology and Lévy statistics, to not forgo this vast body of

literature which is relevant and related to our work, even though its framework

has not been the main focus of our studies. Thereafter we will briefly be

introduced to the neuroscientific approach to studying animal behavior and the

“discovery” of spontaneous behavior in invertebrates.

3.1.1 Modeling Animal Movement Patterns

Traditionally in the field of spatial ecology, the non-oriented movement of

animals had predominantly been assumed and modeled as a normal diffu-

sion process based on Brownian motion (Viswanathan et al., 2011; Reynolds

and Rhodes, 2009). In the long-term limit, normal diffusion assumes that

animal movements can be modeled as uncorrelated random walks (Codling

et al., 2008; Viswanathan et al., 2011). In an uncorrelated random walk, an

animal’s path is modeled as a succession of randomly oriented straight lines

with step-lengths drawn from a distribution with finite variance, e.g. from

the exponential distribution (Codling et al., 2008). After a sufficiently long

time, by the central limit theorem, the spatial distribution will converge on

a Gaussian distribution, with the mean squared displacement of the diffusive

process linearly dependent on time. In this model, uncorrelated specifies that
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the direction of movement of each new step is completely independent of the

directions previously taken (Codling et al., 2008). This model has been useful

in many cases for describing experimentally observed movement and dispersal

of animals and micro-organisms (Skellam, 1951; Broadbent and Kendall, 1953;

Fenchel, 2004).

It was however noted that animal motion seldom is uncorrelated but tends

to progress in approximately the same direction as the previous steps, a quality

coined as “persistence” (Patlak, 1953). This gave rise to the correlated random

walk (CRW) models, where memory effects are introduced through correlations

between the orientation of steps to create persistence, and has been used to

model animal motion in various contexts (e.g. Siniff and Jessen, 1969; Kareiva

and Shigesada, 1983; Bovet and Benhamou, 1988, and for overview see Codling

et al., 2008; Viswanathan et al., 2011; Turchin, 1998). Important to note about

CRWs is that while these models effectively create persistence on the local

scale, the memory effect diminishes over time leaving the step orientations

uniformly distributed overall. Thus, on large spatial and temporal scales CRWs

also become uncorrelated random walks (Viswanathan et al., 2011).

In the 1980s, however, work on fractals and anomalous diffusion from fields

such as critical phenomena, non-linear and complex systems in physics reached

the field of spatial ecology, through the work by Shlesinger and Klafter, who

suggested that the movement pattern of some animals could be described by a

Lévy flight (Shlesinger and Klafter, 1986), a term coined by Mandelbrot in his

highly influential book “The Fractal Geometry of Nature” (Mandelbrot, 1982).

A Lévy flight is a random walk in which the distribution of jump sizes is drawn

from a power law and thus has infinite variance, creating fractal trajectories that

have no characteristic scale. Lévy flight patterns are characterized by clusters of

many short jumps interspersed by longer jumps between them, which in turn

is repeated at all scales, leading to a self-similar and scale-invariant pattern

(Klafter et al., 1996; Codling et al., 2008), Figure 3.1. The distribution of jump

sizes ` has an inverse power law tail with p(`) ∼ `−µ, with 1 < µ < 3 being

the power-law (Lévy) exponent (Reynolds, 2012; Viswanathan et al., 2011).

A defining characteristic of the Lévy flight is that the jumps are instantaneous
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Figure 3.1: Examples of Lévy flight and Brownian walk. (A) The Lévy

flight and the Brownian walk have the same trajectory length, but the Lévy

flight visits much larger areas. The trajectories are to scale. (B) An enhance-

ment of the Brownian walk trajectory of panel A. Notice how the Brownian

walk trajectory returns many times to the same place, and thus explores a

much smaller area than does the Lévy flight trajectory. Source: Modified from

(Viswanathan et al., 2011, p. 55).

between points and that the mean squared displacement between them is

infinite. Since instantaneous jumps are not compatible with physical and

biological systems, this can be overcome by defining the Lévy walk, where

movement between points is given a finite velocity (usually constant), so that

the spatial probability density converges to a Lévy stable distribution with Lévy

index α = µ − 1, with 0 < α < 2. Lévy walks give rise to superdiffusion,

meaning that the mean square displacement grows faster than linear with time,

and thus in contrast to the correlated random walks above, Lévy walks can

be used to model phenomena with long-range dispersals (Klafter et al., 1996;

Viswanathan et al., 2011).

The first experimental findings of non-Brownian motion of animals were

made in the swimming behavior of micro-organisms (Levandowsky et al.,

1988a,b), and the fractal structure of insect movement trajectories which were

presented some years later (Wiens et al., 1995; Cole, 1995), Figure 3.2. In

1996, an influential study by Viswanathan, H.E. Stanley and collaborators on
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Figure 3.2: Fractal patterns of insect movement. Regression line fits

between the logarithm of the insect movement pathway lengths (y-axes)

and the logarithm of the measurement scale for three beetles species (left),

four grasshopper species (center) and one ant species (right). The linear

regression yielded fractal dimensions D of 1.17–1.19 (beetles), 1.09–1.21

(grasshoppers) and 1.31 (ants). Source: (Wiens et al., 1995).

the foraging paths of free-ranging wandering albatrosses (Diomedea exulans)

looking for prey on the ocean surface found that the flight times t followed a

power-law distribution t−µ with µ ≈ 2, and suggested several possible expla-

nations, such that the albatrosses foraged in fractally structured environments

or that the pattern might have occurred due to the turbulent atmosphere and

oceans (Viswanathan et al., 1996), Figure 3.3 A. Three years later, Viswanathan

and colleagues published similar findings in bumblebees and deer, and showed

that truncated Lévy walks with µ ≈ 2 can outperform Brownian walks when

searching for resources that are sparsely and randomly distributed (Viswanathan

et al., 1999). In the truncated Lévy walk model a step ends when the animal

finds food and thus truncates some search steps, leading to a power law dis-

tribution with an exponential (Gaussian) tail. This led them to propose the

Lévy flight1 foraging hypothesis which states that “since (truncated) Lévy flights

1Although Lévy flights strictly speaking are defined as instantaneous (discrete) jumps and

Lévy walks represent continuous movement with a velocity, and thus corresponds better to
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Figure 3.3: Flight duration distribution of albatrosses, original and re-

visited. (A) Log-binned distribution of the number of intervals ni vs the flight

time intervals ti. A linear regression finds µ=2, and thus that the flight-time

intervals are power-law distributed. (B) The original data (open circles) and

power-law fit (solid line) from panel A, plotted together with the corrected

data (solid dots) for comparison. (C) The corrected data (solid dots) no

longer follow a power law, and is instead well fitted by a gamma distribution

(solid line and open circles). The albatross data are thus better fit by an

exponential tail. Source: Panel A from (Viswanathan et al., 1996) and panels

B and C from (Edwards et al., 2007).

optimize random searches, biological organisms must have therefore evolved to

exploit Lévy flights” (Viswanathan et al., 1999, 2008). Several studies followed,

where support for Lévy walks were found in the movement patterns of for

example reindeer (Maarell et al., 2002), jackals (Atkinson et al., 2002), gray

seals (Austin et al., 2004) and spider monkeys (Ramos-Fernández et al., 2004).

A reanalysis of the original wandering albatross data in 2007 by Edwards

and colleagues (including the original authors), found however that there

had been experimental errors included in the longest flight times, and when

reanalyzed and compared to newly acquired high-resolution data, no evidence

for Lévy flight was found, but instead exponentially distributed flight times for

the longest flights (Edwards et al., 2007), Figure 3.3 B–C. A reanalysis of the

deer and bumblebee data with modern statistical techniques found that neither

biological systems, in the literature on random searching the terms “flight” and “walk” have come

to be interchangeable (Reynolds and Rhodes, 2009).
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exhibited Lévy flight behavior, and that more rigorous statistical methods had

to be used to determine the existence of power laws and to determine their

scaling exponents, putting in question the strength of the empirical evidence

for biological Lévy walks. Shortly after, in a survey of 24 studies of foraging

movements and dispersals, including some mentioned above, only six were

found to have correctly estimated the power law exponent, and for some,

an exponential distribution provided a better fit (James and Plank, 2007).

Concurrently, composite correlated random walk (CCRW) models, inspired

by empirical evidence of intermittent search behavior in patchy environments

where local search and relocation phases alternate, were shown to also optimize

the search time and proposed as alternatives to the Lévy flight mechanism.

CCRWs can be generated by mixing classical random walks of different time

scales, and can easily be confounded with Lévy walks because they also display

move-length distributions with heavy tails and superdiffusivity (Bénichou et al.,

2006; Benhamou, 2007).

Only a year later, Sims and colleagues published a large-scale study of

several marine predators which were found to show Lévy-walk-like behavior

(Sims et al., 2008), which was again criticized a few years later for incorrectly

estimating the scaling exponents (Edwards et al., 2012) (but rebutted (Sims

and Humphries, 2012)). It was also suggested that the observed pattern might

be due to oceanic turbulence (Reynolds, 2014). Many more experimental,

theoretical and modeling efforts have been made, where empirical evidence

both in favor of the Lévy flight hypothesis has been presented (e.g. Raichlen

et al., 2014; Sims and Humphries, 2012; Sims et al., 2014), as well as reanalyses

of previously published findings showing little support for Lévy flights (Edwards,

2011). In addition, there have been studies finding more complex behaviors

which are not easily explained solely by the Lévy walk model (Bazazi et al.,

2012; Humphries et al., 2010). These findings are more consistent with mixed

models, where animals are thought to perform Lévy walks between patches

of food, and switching over to Brownian motion when in abundant areas of

food (Lomholt et al., 2007; Humphries et al., 2010; Sims and Humphries,

2012), a characteristic encompassed by and in evidence for the Lévy flight
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foraging hypothesis by its proponents. Yet others have found that individual

variability created the impression of a Lévy flight (Petrovskii et al., 2011) or

that it was due to intraspecific interactions (Breed et al., 2014). Remarkably, a

new study with new data on wandering albatrosses, as well as a reanalysis of

the previous data, showed wandering albatrosses exhibiting Lévy and Brownian

movement patterns and thus again support the Lévy flight foraging hypothesis

(Humphries et al., 2012, 2013). The effect of data acquisition and sampling

were shown through simulations to give rise to misidentification of power

laws (Plank and Codling, 2009; Codling and Plank, 2011; Gautestad, 2013),

and theoretical advances have investigated the conditions under which the

Lévy flight optimizes the search and found that it only does so under certain,

non-universal, conditions (Reynolds, 2010; James et al., 2011; Palyulin et al.,

2014), or investigated the hypothesis that Lévy walks emerge as adaptations to

the statistical patterns of the landscape (Benhamou, 2007; Sims et al., 2008;

Reynolds, 2009), just to mention a few.

Nevertheless, it is important to point out that there is growing evidence of

heavy tailed distributions in animal foraging patterns (be it from Lévy walks,

CCRWs or other underlying mechanisms), and that the technical issues about

correct parameter extraction have been mainly settled during the last few years’

discussions about usage of correct statistical methods (Clauset et al., 2009;

Virkar and Clauset, 2012). There does however remain active debate about

under what conditions the optimal search occurs, as well as notably, about

whether the underlying generating mechanism i) is a Lévy walk at all, and if so,

ii) if it was evolutionary selected for or not. A growing number of mechanisms

able to generate power laws and other heavy tailed distributions have been

published (Mitzenmacher, 2001; Newman, 2004; Barabási, 2005; Proekt et al.,

2012), which suggest that the patterns we see in animal behavior could have

arisen freely as by-products of other processes. A recent addition to the debate

by A.M. Reynolds (2015) suggesting “that the Lévy flight foraging hypothesis

should be amended, or even replaced, by a simpler and more general hypothesis”

(Reynolds, 2015) prompted 9 published comments and a reply (see URL of

Reynolds, 2015), and is a good indicator of the state of the field as of today.
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3.1.2 Movement Patterns and Spontaneous Behavior

A very different approach is that of neuroscience, where one of the main goals

is to unravel circuitry and neuronal function that give rise to and control

behavior, in this case, animal movement. For over a century, insect movement

has been studied in a wide variety of species, as insects have provided the

perfect ’simpler’ model systems to understand behavior and the components of

which it is constituted. One of the most important functional systems for flying

insects is the visual system, which in Drosophila accounts for about two-thirds

of the fly’s nervous system (Strausfeld, 1976). Flying insects have evolutionarily

had an enormous success, with tens of millions of species occupying almost

every habitable land mass on the planet (Dudley, 2000).

Important early advances on component-based modeling of insect vision

were made by Reichardt and Hassenstein during the 1950s, when they devel-

oped the correlation model – now known as the elementary motion detector

(EMD), which they tested and corroborated by studying the walking behavior

of tethered beetles (Cholorphanus) clasping onto and walking on a light-weight

“Y-maze globe”, in response to visual stimuli (Hassenstein and Reichardt, 1956),

Figure 3.4 A. The EMD is a simple and elegant theoretical model that explains

the minimal computations that are needed in order to perceive motion from

two elemental units of photoreceptors, by introducing a time delay between

the signals and a non-linear multiplication when these are correlated (Borst

and Egelhaaf, 1989). Reichardt later moved on to study the visual system of

fruit flies in collaboration with Götz, who had designed a torque compensator

for an experimental set-up known as the torque meter, in which a tethered

fly is attached to a torque compensator in the center of a cylindrical rotatable

drum, so that the visual field of a fly can be controlled (Götz, 1964; Reichardt

and Wenking, 1969). The fly is attached by the head and thorax, such that the

abdomen, legs and wings can be moved freely and used to produce movements

which are registered by the torque compensator, Figure 3.4 B. When in this

setting the flies tend to fly (for about 20 minutes), and the intended flight

maneuvers can be measured as a response to different visual stimuli (Brembs,
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2008). Two general modes of operation are used at the torque meter: open-loop,

where the fly is presented with visual stimuli and the yaw torque is measured

in response; and closed-loop, where a feedback loop is established between

the yaw torque and the cylinder rotation, so that the fly controls its own visual

environment, creating in effect a “flight simulator”. With this torque meter they,

and many others, studied for example the principles of optomotor reactions

(Götz, 1972), fixation, tracking and chasing behavior (Virsik and Reichardt,

1976), and stabilization of the panorama (Heisenberg and Wolf, 1979). Since

then extensive research on the fly visual system has continued, making it prob-

ably the best understood sensory and control system for which we have an

understanding on all levels of complexity: from the systems/components level

down through single cells and recently even to the molecular level (reviewed in

e.g. Silies et al., 2014; Behnia and Desplan, 2015).

The dominating paradigm for behavioral neuroscience for most of the past

century had been to consider the brain as a set of simple input-output systems

(more or less complex) and thus treat each system as a black-box problem,

where the goal is to find the internal components or circuitry that provide the

observed behavior in response to a stimulus. Many of the early advances on

the visual system of Drosophila were achieved by applying control theory tools

from electronics and physics to visual stimulus-response relationships, in order

to construct a control model of the expected motor output for tested and novel

input stimuli (Reichardt and Poggio, 1976; Brembs, 2009). The experiments at

the torque meter had initially been performed in open-loop mode, where the

flies’ behavioral responses had no effect over the visual stimuli received, but also

closed-loop experiments showed interesting effects of complex visual processing.

In 1975 Collete and Land observed how flies during free flight would switch

from one behavioral pattern to another without any apparent external cues, and

found the only plausible explanation to be “free will” of the flies (Collett and

Land, 1975), unfortunately without any experimental proofs. In 1979, however,

Heisenberg and Wolf presented the novel observation at the torque meter that

even in the absence of visual stimuli in featureless visual arenas the flies would

produce spontaneous variable motor outputs. These “actions” were generated
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Figure 3.4: Tethered walk and flight assays in insects. (A) The response

to visual stimuli is measured in a tethered beetle by its behavioral choices of

selecting the right or the left direction at a bifurcation, when walking on a

light-weight “Y-maze globe”. (B) The response to visual stimuli is measured

in a tethered fruit fly by the torque meter, which measures the yaw-torque

(turning force) exerted by the fly when trying to turn left or right. The yaw

torque signal is sent to a computer that records the activity and that can

control the visual panorama of the fly by rotating the drum, if the set-up

is operated under closed-loop. by the torque meter, which then sends the

signal to a computer. Source: Panel A from (Poggio, 2011) and panel B from

(Sareen et al., 2011).

actively by the flies independently of any input and were not “responses”,

showing a variability in the behavior which did not appear to originate in a

noisy input-output system and was thus concluded to be voluntary, in stark

contrast to the prevailing control theory paradigm of the stimulus-response,

input-output function of the brain (Heisenberg and Wolf, 1979). In a more

recent study Maye and colleagues confirmed the spontaneous nature of the

behavior, and studied the yaw torque behavior under closed-loop conditions as

well, where they found the same kind of variability in the behavioral patterns

(Maye et al., 2007).
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The discovery led to further progress on the “initiation activity” (Heisenberg,

1983), as well as to the next and extraordinary discovery: even when flies were

placed in an “inverted flight simulator”, where left and right turns were flipped

to have the opposite effect on the visual surrounding to what they do in natural

conditions, the flies were able to learn to control it and continue to fly straight

after a few minutes of trial and error (Heisenberg and Wolf, 1984; Wolf et al.,

1992). This directly challenged the prevailing notion that insects and ’simple’

organisms were thought to have a hard-wired neuronal “autopilot” that assured

straight flight (Rowell, 1988). Plasticity to “inversion goggles” of the visual field

had been shown in primates in famous experiments during the 1950s and 60s.

The inverted flight simulator experiments provided evidence of a remarkably

plastic nervous system also in invertebrates, where spontaneous activity and

flexible adaptation were the prominent features, and led to the proposal of

the operant loop in flies (Wolf and Heisenberg, 1991; Wolf et al., 1992). In

operant behavior, animals actively generate actions and evaluate the sensory

feedback in order to find the motor output that controls the environment as

desired (Brembs, 2009). This idea of animal brains as output-input systems

which generate behavior and assess the consequences, sometimes known as

forward models, is increasingly recognized as an important explanatory concept

for vertebrate motor control, and are now also being found in invertebrates

such as Drosophila (Webb, 2004; Brembs, 2013; Heisenberg, 2015). While the

control theory based approach to animal behavior both gave, and continues

to give us new and fascinating insights into how the nervous system produces

everything from stereotypical responses to stimuli; to learning and memory

formation; to visual attention and decision-making processes, there also exists

this other parallel paradigm of animal behavior in which the animals rely on

endogenous, voluntary behavior to adapt to the external world.
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3.1.3 Concluding Remarks

In this Introduction & Background section we have seen a statistical modeling

approach and a neuroscientific approach to animal locomotor behavior, the latter

focused mainly on invertebrate research. The work presented in this chapter

has drawn inspiration from both of these fields, using tools and methodology

from the statistical approach to measure the burstiness in spontaneous behavior,

while using the neuroscientific tradition of controlled experiments in the lab and

genetic manipulation to further dissect the neural basis of behavioral variability.
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3.2 Dynamics of Spontaneous Walking Activity

3.2.1 Introduction

Drosophila melanogaster has been used extensively to study biologically intrin-

sic patterns for almost half a century, starting with the mutational studies of

circadian rhythm components (Konopka and Benzer, 1971) (see also 2.1.1 In-

troduction). The fine-scale dynamics of walking activity were first investigated

during the “discovery” of Lévy statistics across physical and biological systems

during the 1990s, discussed in the introduction to this chapter. The first account

was given by Cole (1995), where Drosophila was reported to move in fractal

time, with a self-similar activity pattern on all scales (Cole, 1995). Following,

Martin et al. (1999a) studied the walking activity under various environmental

conditions and also found a fractal dimension, although only for flies walking

in complete darkness and without any food. If either of these were present, the

activity dynamics were described to “resemble [what] would be obtained from

a random distribution” (Martin et al., 1999a, p. 79). In the next study, Martin

et al. (2001) found that the fractal property of the temporal pattern was lost

when selectively blocking neuronal activity in the ellipsoid-body, a subpart of

the brain region known as the central complex and known to control locomotor

behavior (reviewed in Strauss, 2002).

These studies thoroughly examined the fractal properties of walking flies,

however, as we just saw, these are only present under specific conditions. Since

the optimal foraging hypothesis is built on Lévy statistics and Lévy statistics

is based on power laws, the previous studies have centered on finding the

power-law nature of fly walking activity, and merely noted when this was lost,

without much further investigation. Much of fly life does however take place

in daylight and in presence of food, leaving ecologically relevant behavioral

conditions open for closer examination.

We used the Drosophila Activity Monitor (DAM2) System, described in

section 2.2.2 [p. 17], to measure the walking activity of flies. In the DAM2

monitor each fly is housed individually in a small glass tube, sealed with a softly
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packed cotton stopper which allows for air to pass on one side and enough food

for the duration of the experiment on the other. Unlike the previous studies,

which measured the activity of flies without access to food and were thus limited

in time, we studied the walking activity for several consecutive days and nights,

to obtain long-running data. We found that the activity dynamics of Drosophila

can be described by a stretched exponential function (Weibull distribution), and

that Drosophila has markedly bursty dynamics also under these conditions.

The work presented in this section has been published previously, as

a part of: Amanda Sorribes, Beatriz G. Armendariz, Diego Lopez-Pigozzi,

Cristina Murga, Gonzalo G. de Polavieja (2011) The Origin of Behavioral Bursts

in Decision-Making Circuitry. PLoS Computational Biology 7(6):e1002075.

doi:10.1371/journal.pcbi.1002075

3.2.2 Results & Discussion

Fitting to Empirical Distributions, Approach and Considerations

To study the dynamics of walking activity in the DAM2 System, we need to

study the fine-scale structure of the timing of events (as described in section

2.3 Analyzing the Fine-Scale Dynamics of Spontaneous Activity). To find a simple

functional form that fits the data of inter-event intervals, the first inclination

might be to plot the histogram of the data to obtain the empirical probability

(relative frequency), and fit a theoretical probability density function (pdf) to

this empirical distribution. This approach works well for distributions that

are mostly centered around a mean value, but for bursty processes which are

characterized by many short inter-event intervals interspersed by a few long

and very long ones, the empirical histogram becomes very noisy for large and

rare values, as only a few bins will be represented while the majority of bins will

be zero in the tail. Incidentally, for bursty distributions which are right-skewed

and heavy-tailed, the right tail region is where much of the information about

the burstiness resides, as the degree of burstiness is mainly characterized by

the relative occurrence of these very long inter-event intervals in relation to

medium and short ones.
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An approach to mitigating the sampling error in the tail is to use bin sizes

of increasing widths, so that each bin now gets a larger sample size and the

sampling error is reduced. If this method is used, each sample count has to be

normalized by the bin width, so that the sample counts become independent of

the choice of bin widths. A commonly used choice of bin widths is logarithmic

binning, where each bin is a fixed multiple wider than the one before it (New-

man, 2004). This has the added benefit of creating equidistant bin spaces on

logarithmically scaled axes.

Another approach is to use the complementary empirical distribution func-

tion, defined as the complementary cumulative distribution function (ccdf) for

the empirical data (van der Vaart, 2000). The complementary cdf, or “survival

function”, describes the probability of finding an inter-event interval greater

than or equal to t for each t, and is a monotonically decreasing function starting

at Pr(0) = 1, as all time intervals are greater or equal to t = 0 for a non-

empty distribution (see also Equation 2.1 [p. 24]). Using the ccdf is thus more

powerful than using logarithmic binning as the empirical ccdf has information

(non-zero values) for every t up until and including the largest value in the data

set, without losing some of the detailed positional information otherwise lost

by aggregating large values into wide bins in the tails.

Before we dive into analyzing the fine-scale dynamics of Drosophila walking

behavior, however, there are some important considerations that need to be

addressed. The first consideration is to collect sufficient data from each animal

to be able to perform meaningful model fits for each individual. In older studies

it used to be quite common to pool data from several or many individuals

together and then perform model fits on the pooled data, a strategy used in

all the previously mentioned studies on Drosophila walking dynamics cited

above in the introduction (section 3.2.1 [p. 44]). Performing model fits to

pooled data has however been shown to give rise to spurious results, especially

when encountering power laws, since by a version of the central limit theorem

the power-law distribution acts as the limiting distribution for the sum of

independent random variables drawn from heavy-tailed distributions (Stumpf

and Porter, 2012) and is therefore expected to be found often even if the
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underlying distributions are not power-law distributed. It has also been shown

that power laws can be obtained when fitting to collective pooled data of Poisson

individuals acting randomly but at different rates (Hidalgo, 2006).

Another important consideration, especially when working with spontaneous

animal locomotion, is to take into account the naturally occurring circadian

rhythm of activity and rest, which modulates the probability of being active

according to the time of day. In the case of seasonal or circadian variations

it has been shown that if an individual acts randomly according to a Poisson

process, but at a dynamically variable rate, it also gives rise to apparent power-

laws of the inter-activity distribution (Hidalgo, 2006; Malmgren et al., 2009).

Figure 3.5: Circadian activity pattern for three standard genetic back-

ground lines. Plot of population mean daily activity pattern, for 3-day-old

Canton-S (CS, blue), yellow-white (yw, green) and white1118 (w1118, red).

Zeitgeber Time (ZT) denotes the subjective time of day, where ZT=0 denotes

the start of the day (lights on, white background) and ZT=12 the start of

the night (lights off, gray background). After an initial day of adaptation,

the walking activity was measured for 3 consecutive days, and for each fly a

daily average pattern was calculated as the number of active minutes per half

an hour. The population mean is calculated as the mean of the individual

average daily patterns. Number of flies n=28—32, error bars represent s.e.m.

Source: Modified from (Sorribes et al., 2011).
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If we recall from section 3.1.1 Modeling Animal Movement Patterns, this is

the basis for the composite correlated random walk (CCRW) models, which

as we saw, also gave rise to power-laws of the intermittent animal foraging

behavior. In Drosophila this consideration is of particular importance given that

the activity pattern is highly dependent on the subjective time of day, with more

activity during the day-time (lights on) with peaks of activity occurring after

the subjective sunrise and before the subjective sunset (Figure 3.5).

Finally, a very important consideration is that of validating the method used

for model fitting or parameter estimation. As we saw in the Introduction &

Background section 3.1.1 Modeling Animal Movement Patterns, much controversy

arose over the presence or not of power laws, Pr(t) ∼ t−α, in animal movement

data, and over whether the exponent α had been correctly estimated in many

studies. As it turns out, power laws are particularly tricky to estimate, as a

power law cannot hold over the entire empirical probability distribution because

a pure power law cannot be normalized. This leads to the necessity of only

finding a power-law relationship over some region of the data, with the added

arbitrariness of deciding these limits. An additional complication resides in

that, traditionally, the presence of power laws used to be established by a linear

regression (sometimes even visually) of the data on a log-log plot (Stumpf and

Porter, 2012). For an empirical distribution to be considered to follow a power

law, an often used criteria was that the power law hold over at least one order of

magnitude with a linear regression coefficient r2 > 0.99 (Coughlin et al., 1992;

Martin et al., 1999a). This approach has however been shown to be problematic

for two main reasons. First, it has been shown that linearity on a log-log plot is

a consequence, but not a predictor, of an underlying power-law relationship,

as many other heavy-tailed distributions can “look straight” on a log-log plot,

as well as previously mentioned, other generating mechanisms (like mixed

exponentials) can give rise to power-law-like distributions (Newman, 2004;

Hidalgo, 2006; Clauset et al., 2009). Secondly, it has been shown that even

if the distribution is in fact a power law (created explicitly by drawing from

a power law with known exponent), the linear regression method still does

not estimate the scaling exponent α correctly (Clauset et al., 2009). The first
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objection deals primarily with the problem of model selection (which we will not

see in this chapter, but will be presented and employed in section 4.2 Ontogeny

of Sleep-Wake Dynamics in Zebrafish and Humans), while the second stresses the

importance of verifying the parameter estimation technique (which we will see

in section 3.2.2 Validating the Parameter Estimation Method).

Intrinsic Burstiness of Walking Activity

To study the fine-scale dynamics of Drosophila we used the DAM2 System which

allowed us to record for several consecutive days from each individual fly, to

obtain sufficient data (Figure 3.6). Moreover, with the DAM2 System we were

able to collect data from up to 32 individual flies concurrently in each monitor.

We measured the walking dynamics in the wild-type (WT) strain Canton-S (CS)

and in the genetic background strains yellow-white (yw) and white1118 (w1118),

Figure 3.6: Raster plot of Drosophila walking activity. After an initial

day of adaptation, the walking activity of 28 Canton-S flies (y-axis) was

measured for 3 consecutive days in 1-minute bins (x-axis). The color of the

bins represent the number of beam-breaks, where white denotes no activity

and darker gray-scale colors indicate more intense walking activity. The flies

were kept on a 12:12 light:dark schedule, which is clearly visible in the flies’

activity patterns, with more activity during the light hours (the first half of

the day).
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commonly used as backgrounds for genetic mutations and transgenic crosses

and thus frequently also serving as control lines. Additionally, we measured

the dynamics in young (3 days) and adult (4 weeks) flies. To avoid a circadian

influence on the walking dynamics we only used data from the night (lights

off) period which has a largely stationary activity profile, in contrast to the

day-time period (lights on) which shows a non-stationary activity dynamics

with a mid-day siesta, Figures 3.5 and 3.6.

After an initial day of adaptation (24 h or more) the flies’ walking activity

was recorded for 3 days. From the recordings we constructed the inter-activity

intervals (IAIs) and activity bouts (ABs) for each fly, as described in section

2.3.1 Processing Raw Data into Bouts [p. 21]. When plotting the empirical

complementary cumulative distribution function (ccdf) of the IAIs from the

night (Figure 3.7 A, black error bars) there is a clear deviation from random

behavior as the empirical IAI distribution has a heavier tail than the exponential

function which corresponds to Poissonian behavior (Figure 3.7 A, dotted line

for Poisson distribution with the same mean IAI as the empirical data). A heavy

tail is indicative of bursty dynamics, where short and very long inter-activity

intervals are found more often than in random (Poisson) dynamics.

We found that the stretched exponential function (which when normalized

is also called the Weibull distribution) gives an excellent fit to the full range of

IAIs (Figure 3.7 A, gray line), and thus avoids the problem of the power law

which can only fit a portion of the data. The ccdf of the Weibull distribution is

given by

Pr(τ ≥ t) = exp(−(t/λ)k) (3.1)

where τ represents the inter-activity intervals, λ is the scale parameter and k is

the shape parameter of the Weibull distribution. As we see by the presence of λ

the Weibull distribution has a natural scale, in contrast to the power law which

is scale free. It must be stressed however, that we are measuring IAIs during a

complete night-cycle, and thus there must exist a cut-off at the high end because

an IAI cannot last longer than a full night (12 h) by external constraints. This is

true of finite systems that exhibit power-law dynamics as well, which is why

power laws with exponential cut-offs are sometimes used (Clauset et al., 2009).
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Figure 3.7: The Weibull distribution fits the empirical IAIs well.

(A) Mean IAI ccdf (black) of CS flies has a heavier tail than the exponential

distribution with the same mean IAI (dotted line). The Weibull distribution

(gray) with k=0.45, λ=6.0 fits the data accurately (r2=0.998). (A-Inset)

Individual fits to the same flies reveal that each fly has bursty dynamics

with k=0.46±0.08 and r2=0.92±0.07 s.e.m. (B) Shape parameter k for

young (left) and adult (right) flies all show bursty dynamics with k<1 and

significantly differs from k=1 (Poisson) with p<10−7. Number of flies n=28—

32, error bars represent s.e.m. Source: 0.1371/journal.pcbi.1002075.g001

(Sorribes et al., 2011).
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The most important parameter from the Weibull fit, however, is the shape

parameter k which allows for a parametrization of the degree of burstiness.

When k=1 the stretched exponential function takes on the form of a (normal)

exponential function, and therefore describes a Poisson process, while when

k<1 the shape parameter describes bursty behavior – the lower the k the

burstier the dynamics. The shape parameter k from the Weibull distribution fit

can thus describe both random and bursty behavior in a continuous and flexible

manner.

While we have shown the excellent Weibull fit to the mean IAI distribution

from the 3-day-old CS flies in Figure 3.7 A, it is important to perform the fits on

the individual level and not on pooled data, as discussed in the previous section.

We find that every fly shows bursty dynamics with k=0.46 (mean) ± 0.08 (s.d.)

and that all flies are fit well by the Weibull distribution, with r2=0.97 ± 0.02,

Figure 3.7 A–Inset. The other two common genetic backgrounds were also

well fit by the Weibull distribution and found to have similar burstiness val-

ues with k=0.40 ± 0.10 (yw) and k=0.40 ± 0.07 (w1118) for the 3-day-old

flies. The older flies also showed bursty behavior with k=0.58 ± 0.14 (CS),

k=0.50 ± 0.14 (yw) and k=0.47 ± 0.09 (w1118), Figure 3.7 B. The older flies

were on average found to have a 22.2% mean increase of the shape parameter

k, meaning that there is a general decrease of burstiness with age. Please note

that parameter values in the text are reported as mean ± standard deviation,

while the error bars in the figure show standard error of the mean.

As a comparison we also plotted the empirical cumulative distribution on

double-logarithmic axes, where a straight line raises the possibility of finding

power-law dynamics, Figure 3.8. While it could be possible to squint and find

“straight” regions in this plot, the Weibull distribution provides a good fit for the

complete range of inter-activity intervals.

We conclude that Drosophila walking activity as measured by the DAM2

monitors does not show power-law scaling, but that it nonetheless is heavy-

tailed and bursty. This is an important finding because previous results (Martin

et al., 1999a) had suggested that under conditions where the walking dynamics

had lost its power-law scaling the dynamics instead followed an exponential
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distribution, meaning that the dynamics were random when not power law. We

instead found that the walking dynamics retain a high degree of structure and

are not random, as is evident from the heavy tail of the inter-activity interval

distribution (Figure 3.7).

In addition these results are interesting when considering the Lévy flight

foraging hypothesis, which states that animals´ search strategies naturally

evolved in such a way that they exploit optimal Lev́y patterns. In over a

dozen marine animals it was found that the search strategy of some animals

is highly dependent on environmental variation of food density (Humphries

et al., 2010). In areas where the prey were sparse the animals would use Lévy

Figure 3.8: Double-logarithmic plot of inter-activity intervals (IAIs).

This figure presents the the same empirical IAI survival distribution from

Canton-S flies as in Figure 3.7 (black error bars) and the Weibull fit (gray

line). There is no pronounced straight region which can be a sign of the

presence of power-law scaling in the IAIs. Instead the Weibull distribution

shows a good fit to the entire range of inter-activity intervals with k=0.45,

λ=6.0. Since k<1 the IAIs are markedly bursty, although less so than with

power-law dynamics. Error bars represent s.e.m. Source: Modified from

(Sorribes et al., 2011).
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flight search patterns, while in abundant areas the animals would switch over to

Brownian (random) search motions. In Drosophila it was shown that the activity

dynamics of flies walking in an arena without food for several hours showed

power-law scaling (Cole, 1995; Martin et al., 1999a), a finding compatible

with the Lévy flight foraging hypothesis. We found in this study, however,

that the “opposite” is not true in fruit flies – the Drosophila walking activity

inside DAM2 monitor tubes with ad libitum access to food does not default to a

random behavior but still displays a strong burstiness, presumably not related

to food searching behavior but generated by other intrinsic processes driving

spontaneous behavior.

Validating the Parameter Estimation Method

To validate our results and conclusions, we tested the fitting method to make

sure that the parameters were estimated correctly. For this, we evaluated two

different techniques for fitting the Weibull distribution to data: “linear” and

“non-linear”. The Weibull survival distribution is given by y = exp(−(t/λ)k)
(Equation 3.1). The linear fit was obtained by calculating the least-squares

regression between y′ = k · x′ + C, where y′ = log(−log(y)), x′ = log(x) and

C = −k · log(λ). For the non-linear fit we used Matlab’s Curve Fitting ToolboxTM

(“NonlinearLeastSquares” method) to fit log(y) = −(x/λ)k with Matlab R2007b.

To examine the quality of the fitting methods to the type of empirical data

we obtain with the Drosophila Activity Monitor System, we created synthetic

data sets drawn from the Weibull distribution with known k and λ. To imitate

the experimental data we discretized the randomly drawn data into bins of 1

(1-“minute” bins). An important detail that should not be overlooked when

fitting to binned data (artificial or empirical) is that the x-vales must represent

the midpoint of the bin, not the beginning (or end part) of the bin – otherwise,

the fits will not estimate the parameters correctly (pers. obs.). To simulate

the experimental data we created data sets of sizes similar to the number of

IAIs for the lights-off period we encounter in our empirical data: 50 (red),

100 (orange), 150 (green), 200 (light blue) or 250 (dark blue), drawn from the
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Weibull distribution with parameters varying in the empirically found ranges:

k=0.2—1.4 and λ=5-–25. To replicate the typical number of flies we have for

each genotype, we drew 30 random data sets for each set of parameter values

(k, λ), Figure 3.9 (error bars represent standard deviation).

To estimate the accuracy of the fitting methods we compared the estimated

parameters to the true parameters (the parameters of the Weibull distribution

from which the data were drawn) by calculating the differences ∆k and ∆λ,

Figure 3.9 A–D. We see that the linear fit is better than the non-linear fit at

estimating the parameter values since it has less bias in both parameters and

smaller standard deviations for all sample sizes. In addition, the linear fit

correctly estimates the parameters over the full range of parameter values that

we might encounter in our experimental data.

To test the fits we compared the coefficient of determination R2 for the

regressions of the two fitting methods against the value obtained by calculating

the R2 between the synthetic data and the “regression” line constructed with

the true parameters used in the Weibull distribution from which the synthetic

data were drawn. The ∆R2 between the best fit of the fitting methods and

the “real” fit shows that the non-linear fitting method tends to over-fit more

than the linear fit (Figure 3.9 E, G H J). This is an important point because it

shows that the fitting method should not be determined by the highest R2, but

by the method that most accurately reproduces the true, underlying, parameter

values. In addition we see in Figures 3.9 F, I that the survival distributions

are quite noisy for small k’s (k<0.5) and small sample sizes, with coefficients

of determination quite low (R2<0.9), but that the parameter estimations of

both k and λ are accurately obtained with the linear fitting technique. All the

parameter values from fits with the Weibull distribution presented in this thesis

have been estimated using this linear fitting method.

We have thus validated the fitting method and conclude that we can accu-

rately estimate the parameters of the Weibull distribution with the linear fitting

method, and corroborate our previous finding that Drosophila’s spontaneous

walking activity is heavy-tailed and bursty.
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Burstiness and Memory in the Fly Activity Dynamics

Whilst the Weibull distribution has proven useful for characterizing the intrinsic

bursty nature of Drosophila’s walking activity inside the DAM2 System, the

characterization and parameterization is still dependent on finding a good

fit between the model distribution and the empirical distribution. As the

exact statistical model chosen to describe heavy-tailed distributions has been

contended on multiple occasions (especially regarding power laws, see e.g.

Clauset et al., 2009 for examples, and section 3.1.1 Modeling Animal Movement

Patterns for a discussion and further references), we have also employed the

distribution-agnostic burstiness parameter B and memory parameter M to

distinguish the source and magnitude of burstiness in the inter-activity intervals.

The burstiness parameter B was introduced in section 2.3.2 [p. 25] and

measures the relative importance of the mean and the variance (standard

deviation) in the IAI distribution. When B → −1 the IAI distribution shows

a regular (anti-bursty) pattern and when B → 1 the IAI distribution is highly

bursty, while if B = 0 the IAI distribution shows random (Poisson) dynamics.

To examine the relationship between the burstiness parameter and the Weibull

distribution, we can substitute the mean µ and the standard deviation σ of

the Weibull distribution into Equation 2.2 to obtain the analytical relationship

between the burstiness parameter B and the Weibull parameters k and λ. The

n’th moment of the Weibull distribution is given by λnΓ(1 + 1 · k−1), such that

µ = λ · Γ(1 + k−1) ,

σ = λ ·
√

Γ(1 + 2k−1)− Γ2(1 + k−1)
(3.2)

which when introduced into the burstiness parameter B = (σ − µ)/(σ + µ)
yields

B = (Γ(1 + 2k−1)− Γ2(1 + k−1))1/2 − Γ(1 + k−1)
(Γ(1 + 2k−1)− Γ2(1 + k−1))1/2 + Γ(1 + k−1)

. (3.3)

From this last Equation 3.3 we see that the burstiness parameter B only de-

pends on the shape parameter k of the Weibull distribution, and that it thus is

independent of the scale λ. The relationship between B and k is negatively de-

pendent due to the negative exponent of k in the gamma function. In addition,
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we see from Equation 3.2 that the mean inter-activity interval (µ̂) is directly

proportional to the scale parameter λ.

We thus set out to measure the burstiness B in 3-day-old and 4-week-old

common wild-type and genetic background strains. For the young flies we found

(mean ± s.d. for all values) B=0.37 ± 0.09 (CS), B=0.42 ± 0.11 (yw) and

B=0.40± 0.08 (w1118), and for adult fliesB=0.24± 0.14 (CS),B=0.28± 0.16

(yw) and B=0.31 ± 0.13 (w1118), Figure 3.10 C and Figure 3.11 A. In Fig-

ure 3.10 B we plot the shape parameter k again, for comparison. Generally we

find that the two measures of burstiness strongly agree, but for experimental

(finite) data the Weibull parameter k has shown to be more sensitive to data in

the right tail (large values) of the interval distribution whereas the burstiness

parameter B is more dominated than k by the short time events.

In addition to measuring burstiness in the inter-activity intervals (IAIs),

Figure 3.10 A–C, we also examined the dynamics of the Activity Bouts (ABs),

Figure 3.10 D–F. The dynamics of the activity bouts measure the intervals of ac-

tive time and thus characterize the dynamics of sustained activity. Figure 3.10 D

shows the total time active during the 12h night (averaged over the three days)

while Figures 3.10 E F shows the shape k and burstiness B of the ABs. For young

flies we found the burstiness parameters to be in the range of k=0.47–0.66 and

B=0.21–0.38, while in the adult flies the range was k=0.53–0.64 and B=0.24–

0.32. We see that the maintenance of activity bouts is also bursty, albeit just

slightly less so than the dynamics of activity initiation (IAIs). Generally we ob-

serve that there are some differences between the commonly used background

strains in both the overall activity levels and in the burstiness parameters. It

is thus imperative to measure burstiness in strains with genetic mutations or

transgenic flies together with their controls, to assess the effect on burstiness.

We have shown that the IAI distribution has bursty dynamics, but as we saw

in section 2.3.2 Randomness, Burstiness and Memory [p. 23] burstiness can also

arise from memory effects in the time-series of events. Systems with the same

inter-event interval distribution can nevertheless show differences in perceived

burstiness due to memory effects, where systems with a stronger memory

component are burstier. We measured the memory effects with the memory

58



3.2 Dynamics of Spontaneous Walking Activity

Fi
gu

re
3.

10
:

B
u

rs
ti

n
es

s
of

ac
ti

vi
ty

in
it

ia
ti

on
(I

A
Is

)
an

d
ac

ti
vi

ty
m

ai
n

te
n

an
ce

(A
B

s)
in

co
m

m
on

fl
y

st
ra

in
s

at

tw
o

di
ff

er
en

t
ag

es
.

To
ta

l
ti

m
es

(p
er

12
-h

ou
r

ni
gh

t)
an

d
bu

rs
ti

ne
ss

of
In

te
r-

A
ct

iv
it

y
In

te
rv

al
s

(A
-C

)
an

d
A

ct
iv

it
y

B
ou

ts
(C

-F
)

fo
r

th
e

co
m

m
on

ly
us

ed
st

ra
in

s
C

an
to

n-
S

(C
S)

,y
el

lo
w

-w
hi

te
(y

w
)

an
d

w
hi

te
11

18
(w

11
18

).
A

ll
st

ra
in

s
at

yo
un

g
an

d
ad

ul
t

ag
es

ar
e

fo
un

d
to

di
sp

la
y

bu
rs

ty
dy

na
m

ic
s

of
bo

th
ac

ti
vi

ty
in

it
ia

ti
on

(B
,C

)
an

d
m

ai
nt

en
an

ce
(E

,F
).

Er
ro

r
ba

rs
de

no
te

s.
e.

m
.

So
ur

ce
:

(S
or

ri
be

s
et

al
.,

20
11

).

59



3. BURSTY ACTIVITY DYNAMICS IN DROSOPHILA MELANOGASTER

parameter M , defined as the correlation coefficient of consecutive inter-event

intervals (Equation 2.3 [p. 26]). The memory parameterM measures short-term

memory (between adjacent intervals), and a strong memory component, M →
1, will be observed in systems where similar intervals succeed each other, while

a strong “anti-memory”, M → −1, when the lengths of the intervals alternate.

The antithesis to both of these isM = 0, which describes a memoryless sequence

of intervals and thus describes a Poisson process.

We calculated the memory parameter M for the inter-activity intervals for

all the fly strains and both age groups. When comparing to see if there was

a memory effect present in the time series it would not however be entirely

accurate to compare it to M = 0, as a zero memory is only possible to achieve

in very large (infinite) time series. When time series are finite – and especially

when small – there will almost always be a “residual” memory effect due to

limited sampling. To mitigate this sampling effect we created 1000 randomly

shuffled versions of each of the original empirical data sequences, to create the

memoryless control distributions to compare against. The memory parameters

were found to be in the range M=[-0.05 0.07] for young flies and M=[-0.05

0.01] for adult flies. Canton-S and yellow-white showed small but significant

deviations from the shuffled versions at both ages, while white1118 did not

have any memory component contributing to the bursty dynamics at either age

(p>0.5), Figure 3.11 B (white bars show the shuffled versions), making it ideal

as a control strain when testing for burstiness.

To summarize the contributions of burstiness and memory to the walking dy-

namics of Drosophila, we have plotted these values on a B-M plot, Figure 3.11 C.

This enables us to characterize the dynamics in a more complete way since we

are dealing with two separate and different mechanisms for creating bursty

dynamics, namely the IAI distribution (as measured by the burstiness B) and

memory (as measured by the memory coefficient M). The 2-dimensional B-M

plot allows us further to compare the bursty dynamics of Drosophila walking

activity with human behavioral dynamics and other bursty phenomena pub-

lished previously by Goh and Barabási (2008). The region where Drosophila

IAI dynamics are located coincides with that of human dynamics, which both
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Figure 3.11: Walking dynamics is dominated by burstiness of the dis-

tribution and not by memory effects. (A) Burstiness parameter B shows

bursty dynamics with B>0 for all genotypes and ages (p<10−7). (B) Mem-

ory parameter M shows a weak effect of memory in CS and yw but not in

w1118, as compared to shuffled data (white bars). (C) Drosophila dynamics

compared to other bursty data in the B-M plane. Drosophila and humans

have similar dynamics, clearly differentiated from environmental phenomena

and texts. Source: doi:10.1371/journal.pcbi.1002075.g002 (Sorribes et al.,

2011).
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are dominated by the burstiness of the inter-event distribution and only weakly

affected by memory effects in the time series, Figure 3.11 C. Meteorological and

earthquake bursty dynamics on the other hand have stronger memory effects,

while the distances between consecutive occurrences of a given letter in a text

have both low burstiness and low memory (Goh and Barabási, 2008). As a

result, the possibility of predicting the dynamics of Drosophila is similar to that

of human dynamics in that it is even more difficult to predict than earthquakes

or meteorological phenomena.

3.2.3 Conclusions

We studied the walking activity dynamics of Drosophila melanogaster in three

frequently used strains: the wild-type strain Canton-S (CS) and the commonly

used background strains yellow-white (yw) and white1118 (w1118). Additionally

we studied the activity dynamics at two different ages: 3 days old (young) and

4 weeks old (adults). We measured the walking activity with the Drosophila

Activity Monitor (DAM2) System, where each fly is housed individually in

a small tube with ad libitum access to food for the entire duration of the

experiment. The DAM2 System records each time the fly crosses the midpoint of

the tube, and experimentally it has been verified that when the flies are active

in locomotion they generally walk back and forth along the whole tube and thus

generate an activity count when crossing the midpoint. Up to 32 flies can be

recorded individually but simultaneously in each monitor and the experiments

usually run for several days to obtain sufficient data for each fly. Fly activity is

strongly influenced by the circadian rhythm, with a midday ’siesta’ and activity

peaks after sunrise and before sunset while the nightly activity is predominantly

stationary (Figures 3.5 and 3.6). Since non-stationarity in time series can give

rise to erroneously high variances due to changing dynamics throughout the

measuring period, we centered on studying only the activity dynamics during

the night, which show a stable pattern.
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We found that the Drosophila walking activity dynamics are bursty with

heavy-tailed distributions for all flies, genotypes and age groups (Figure 3.7).

Both the initiation of activity (described by the inter-activity intervals) and

the maintenance of activity (described by the activity bout durations) showed

bursty dynamics (Figure 3.10). We further found that Drosophila walking dy-

namics could be well described by the stretched exponential function (Weibull

distribution), and validated the fitting method with synthetic data (Figure 3.9).

Finally, to determine the source of burstiness we measured the relative impor-

tance of the mean and the standard deviation of the distribution, as well as

memory effects between consecutive intervals in the time series. We found that

burstiness mainly stems from the interval lengths distribution and not from

memory effects, and that the spontaneous activity dynamics of Drosophila are

very similar to human dynamics (Figure 3.11).

3.2.4 Material and Methods

Fly Strains and Rearing

The wild type strain Canton-S and the common genetic background strains

white1118 and yellow-white were kindly provided by I. Canal and J.F. Celis

(Universidad Autónoma de Madrid and Centro de Biología Molecular, Spain).

Fly stocks were maintained on a standard cornmeal food in incubators at

18 ◦C before commencing the experiment, and at 23 ◦C for at least one full

generation before the experiment. Both the stocks and the experimental flies

were housed in incubators on a 12 h light/12 h dark cycle starting at 8:00 AM.

Locomotor Activity Assay

Locomotor activity data were obtained with the DAM2 System, as described

in section 2.2 Measuring Drosophila’s Innate Activity Patterns [p. 16]. The data

were collected in 1-minute bins. One complete 32-channel monitor was used
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for each genotype. The experiments were performed inside incubators at 23 ◦C,

with no external stimuli, apart from the light cycle. Both male and virgin female

flies were used for the experiments, and were around 3 days old at the start of

the experiment. The fly rearing and experiments for this assay were performed

by Beatriz G. Armendariz, a fellow student in the de Polavieja lab at the time.

Data Analysis

Data analysis was performed with Matlab R2007b (The MathWorks Inc., MA

USA) by writing my own custom built code. The fitting technique and other anal-

yses have been described more in detail in the preceding results section. Much

of the analysis has been streamlined into the custom built software FlySiesta,

which can be found at http://www.neural-circuits.org/flysiesta.

Statistical Analysis

Statistical analysis was performed by using the two-tailed Student’s t-test with

the Bonferroni correction when conducting multiple comparisons between

groups. The data were first tested for normality with a Lillie-test; in case of a

pass (failure to reject the null hypothesis) the parametric t-test was used, while if

the requirements to pass the normality test were not met by one or more groups

the hypothesis testing was performed by bootstrapping the t-statistic (sampling

with replacement and computing the t-statistic), using 10.000–100.000 sam-

pling iterations. The p-value of the statistical test is represented in all figures as

either one star (p<0.05), two stars (p<0.01) or three stars (p<0.001).

64

http://www.neural-circuits.org/flysiesta


3.3 Behavioral Bursts and Decision-Making Circuits

3.3 Behavioral Bursts and Decision-Making Circuits

3.3.1 Introduction

Bursty and scale-free behavior has been observed in many animal species, as we

have seen in the Introduction & Background to this chapter, but also human ac-

tivities have been observed to show bursty, non-Poissonian behavioral dynamics.

Activities such as communications and letter writing, as well as entertainment

and work patterns, have been shown to occur with bursty dynamics (Barabási,

2005; Oliveira and Barabási, 2005). From the field that studies animal foraging

trajectories a prominent hypothesis is that animals have evolved to make use

of scale-free patterns because these have been shown to optimize the search

(under some conditions) (Viswanathan et al., 1999) – it does not however

consider the underlying mechanisms of how these patterns would emerge. From

work on human dynamics though, Barabási (2005) proposed a model with an

underlying mechanism that can generate the observed behavioral bursts, known

as the priority-list model (Barabási, 2005; Vázquez, 2005; Vázquez et al., 2006).

In this model tasks are executed according to perceived priority, in combination

with an additional random component. It is the interplay between this random

component and the decision-making process which assigns and executes tasks

according to priority which gives rise to behavioral bursts.

While the data modeling in Barabási (2005) received the usual scrutiny

regarding whether the distribution is truly a power law or a lognormal (Stouffer

et al., 2005), and whether a cascading non-homogeneous Poisson process

(Malmgren et al., 2008, 2009) or a sum of Poisson processes with different mean

rates (Hidalgo, 2006) might explain the communications pattern better (and

yet another study refuted the critiquing studies (Jo et al., 2012)), the important

fundamental idea in the model is that cognitive functions like decision-making

processes can be the underlying generating mechanism for bursty behavior. This

connection between decision-making processes and bursty behavior is a novel

proposition, as the other proposed alternative explanatory models are based
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on Poisson processes and are thus inherently random models. These proposed

generating mechanisms are therefore fundamentally different and would need

empirical validation, so we decided to experimentally test whether neuronal

circuitry implicated in decision-making also controls behavioral burstiness.

As we have seen in the previous section 3.2 Dynamics of Spontaneous Walking

Activity, Drosophila shows markedly heavy-tailed activity distributions and

bursty behavior. As we saw in the introductory section 3.1.2 Movement Patterns

and Spontaneous Behavior, fruit flies are not merely hard-wired input-output

systems but capable of initiating behavior (Wolf et al., 1992; Maye et al.,

2007), probabilistically activate actions and behave in operant loop to learn

which actions obtain the desired result (Wolf et al., 1992; Heisenberg, 2001;

Brembs, 2009). Importantly, Drosophila is also capable of complex decision-

making when presented with options of contradicting cues (Tang and Guo, 2001;

Tang and Juusola, 2010). Neuroanatomical identification and characterization

of choice behavior in flies have found that dopaminergic neurons and the

neuroanatomical substructure (neuropil) known as the mushroom body (MB)

are necessary for decision-making processes (Tang and Guo, 2001; Zhang

et al., 2007; Yin et al., 2009; Brembs, 2009; Claridge-Chang et al., 2009;

Riemensperger et al., 2011). In particular, dopaminergic neurons have been

found to be necessary for decision-making in olfactory-driven (Claridge-Chang

et al., 2009) and visually-driven choices of walking flies (Riemensperger et al.,

2011) and in tethered flight (Zhang et al., 2007), while the mushroom body

was also found to be necessary for decision-making in tethered flight (Tang and

Guo, 2001; Zhang et al., 2007) and involved in visual attention-like behavior

(Xi et al., 2008). The mushroom body is perhaps best known as the neuropil

responsible for olfactory memory formation and retrieval (reviewed in e.g.

Gerber et al., 2004), but it has also been implicated in behavioral variability and

habit formation, and has been suggested to be responsible for establishing the

appropriate level of behavioral flexibility (Brembs, 2009). The dopaminergic

neurons, in turn, have been found to form a reinforcement circuit in which the

choice of appropriate actions is established (Claridge-Chang et al., 2009). The

complex behavioral repertoire of decision making in Drosophila thus already
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shows components compatible with the proposed priority-list model, as it has

circuitry capable of reinforcing some actions, that is, to give them higher priority.

To experimentally test the proposed link between decision-making processes

and behavioral burstiness we studied the walking activity dynamics of flies

with disrupted choice behavior with the same method as described in section

3.2. We found that in flies with enhanced dopaminergic signaling or impaired

mushroom body function, components previously found to disrupt normal

decision making, the degree of burstiness was also affected. This is consistent

with the fundamental idea of the decision-based generating model where when

individuals execute tasks based on some perceived priority, the timing of tasks

becomes heavy tailed and thus bursty.

The work presented in this section has been published previously, as part of:

Amanda Sorribes, Beatriz G. Armendariz, Diego Lopez-Pigozzi, Cristina Murga,

Gonzalo G. de Polavieja (2011) The Origin of Behavioral Bursts in Decision-

Making Circuitry. PLoS Computational Biology 7(6):e1002075.

doi:10.1371/journal.pcbi.1002075

3.3.2 Results & Discussion

To explore the possible implication of decision-making circuitry on behav-

ioral burstiness, we employed the analysis methods previously described in

section 3.2 Dynamics of Spontaneous Walking Activity. Briefly, behavioral bursti-

ness was assessed by evaluating the shape parameter k obtained by fitting a

Weibull distribution to the complementary cumulative distribution function of

the inter-activity intervals (IAIs) for each fly and then calculating the mean for

each genotype, as described in section 3.2 Dynamics of Spontaneous Walking

Activity. Burstiness was also measured with the burstiness parameter B (sec-

tion 2.3.2 [p. 25]) to obtain a distribution-agnostic comparative measure, and

with the memory parameter M (section 2.3.2 [p. 26]) to assess and determine

the source of burstiness.
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Dopamine Levels and Burstiness

We began by studying the implication of dopamine (DA) on burstiness in

Drosophila, as it has been found to disrupt normal decision-making (Zhang

et al., 2007; Claridge-Chang et al., 2009; Riemensperger et al., 2011). In

Drosophila it is possible to both enhance and silence dopamine signaling by

using mutants and transgenic crosses.

Enhancement of dopamine is accomplished by using the mutant line fumin

(fmn), which has a higher level of dopamine in the synaptic cleft due to a

genetic lesion in the dopamine transporter gene (Kume et al., 2005). High

levels of dopamine led to a 38.0% increase of the shape parameter k (p<0.0001,

Figure 3.12 A) as well as a decrease of the burstiness parameter B by 22.6%

(p<0.0001, Figure 3.12 B). As to the memory coefficient M we could not detect

any effect (p=0.136, Figure 3.12 C). The summary of these results can be seen

in the B-M plot (Figure 3.12 D), which shows the control strain to be further

from Poissonian behavior than the mutant strain, that is, increased dopamine

makes the flies act more randomly than normal.

We also examined the effect of reducing dopaminergic signaling, by using the

bipartite GAL4/UAS system, described in more detail in section 2.1.3 Targeted

Gene Expression: The GAL4/UAS Method. By using the GAL4/UAS system, we

can selectively express shibirets1 (shits1), a temperature-sensitive mutation of

the enzyme dynamin which is necessary for a correct synaptic function. The

temperature sensitive property allows it to act as an on/off switch for neuronal

activity. At temperatures below 29 ◦C – known as the permissive temperature

(PT) – the synapses work as normal, but at temperatures above 29 ◦C – known

as the restrictive temperature (RT) – the synaptic functioning ceases to work

within minutes (Grigliatti et al., 1973; Kitamoto, 2001). After an initial day of

adaptation to the experimental set-up, the fly walking activity was recorded

for three days at 23 ◦C (permissive temperature) to obtain baseline values,

whereupon the temperature was switched to 31 ◦C (restrictive temperature)

for three additional days (although often only the first day of RT was used

for analysis as many flies could not survive for several consecutive days at
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3.3 Behavioral Bursts and Decision-Making Circuits

Figure 3.12: Behavior becomes more random with increased dopamin-

ergic signaling. (A–D) Effect of increased dopamine levels. fumin shows

an increase of k (A) and a decrease of B (B) compared to its control w1118,

denoting a reduction of burstiness. (C) Both groups show only low levels

of memory, indicating that the observed burstiness stems from the distri-

bution of IAIs and not from their internal order. (D) B-M -plot for control

(gray) and fumin (black). (E–H) Disruption of dopaminergic signaling does

not change IAI burstiness (E,F) or memory (G), compared with controls.

∆ denotes values at RT−PT. (H) Approximation of net effect of silencing

dopamine, without the heat effect. Here “∆=Gal4/shi – mean(Controls)” at

PT (right dot) and RT (left dot). Number of flies n=29—64, bars indicate

mean ± s.e.m. Source: doi:10.1371/journal.pcbi.1002075.g004 (Sorribes

et al., 2011).
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the higher temperature). Parameters were then calculated as the difference

between the values at RT minus the values at PT for each fly, to obtain the effect

of selective neuronal silencing.

To silence dopaminergic neurons we expressed shibirets1 with the tyrosine

hydroxylase (TH) GAL4 driver, since TH is an enzyme necessary for the proper

synthesis of dopamine and present in most dopaminergic neurons (Friggi-

Grelin et al., 2003). No change of shape, burstiness or memory parameters

were however found when dopaminergic signaling was silenced (p>0.168, Fig-

ure 3.12 E–G). To approximately separate the effects of the heat treatment from

the targeted silencing of the dopaminergic system, we calculated the net effect

of neuronal silencing by subtracting the mean of the B and the M of the two

control lines at the permitted and restricted temperatures from the transgenic’s

B and M at the corresponding permitted and restricted temperatures. The

B-M plot in Figure 3.12 H thus shows a summary of the net change of the

controls subtracted from the TH-GAL4/UAS-shits1at each temperature.

Although reduced dopamine levels did not affect the IAI burstiness, that

is, the initiation of activity, the burstiness B of activity bout durations in-

creased by 10.6–9.3% (p<0.03, Figure 3.13 E,F). Neither shape parameters

(Figure 3.13 B,E) nor burstiness parameters (Figure 3.13 C,F) nor memory pa-

rameters (Figure 3.13 A,C,G) could be found to have any clear correlation with

total activity (Figure 3.13 A,C). We have shown that animal behavior becomes

more random with increasing dopamine levels, while the dynamics of activity

bout maintenance are affected when the levels of dopamine are decreased.

Mushroom Bodies and Central Complex Circuitry

We next explored the possible implication of mushroom body (MB) circuitry

on burstiness, by expressing shibirets1 with several MB GAL4 drivers, using

the same permissive/restrictive temperature protocol as for the transgenic TH

line which disrupted dopamine signaling. Line 247-GAL4/UAS-shits1(‘247’)

was selected for assessing changes in burstiness due to decision-making pro-

cesses, as these flies were shown to have disrupted choice behavior in a visual
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salience-based assay where they were exposed to contradictory cues (Zhang

et al., 2007). In addition, four more MB lines were tested: c309-GAL4/UAS-

shits1(‘c309’), 201Y-GAL4/UAS-shits1(‘201Y’), 17d-GAL4/UAS-shits1(‘17d’) and

H24-GAL4/UAS-shits1(‘H24’). Both general activity levels and burstiness were

assessed, to make sure that the possible changes in burstiness were not due

solely to an overall change in activity level.

Differences emerged between the lines when comparing the level of active

time, where line c309 was more active, 201Y and H 24 less active, while 247

and 17d showed no significant change, Figure 3.15. The burstiness level of

transgenic 247 flies showed a mean increase of 16.9% (k) and 17.1% (B) at

the restricted temperature (p<0.004, Figure 3.14 A and p<0.013 Figure 3.14 B)

as compared to controls. There was however no accompanying change in mean

activity (p>0.08, Figure 3.15 A,D). The burstiness shown by lines c309, 17d

and H24 was not significantly different from controls whereas line 201Y’s de-

crease in the burstiness parameter B (10.9—14.8%) was statistically significant

(p<0.005), Figure 3.14 B. The memory parameter M remained unchanged in

all the MB shibirets1 lines, Figure 3.14 C. The approximate net effect of silencing

MB circuitry without the conditional heat-effect was obtained like before, by

subtracting the mean B and M of the two control lines from the transgenic’s

B and M at PT and RT. This is summarized in the B-M plot, Figure 3.14 D.

Finally, an analysis of the burstiness of the activity bouts (ABs) maintenance was

made in order to complete the study of behavioral timings dependent on the

MB, Figure 3.15 D–F. The increase in the burstiness parameter B applied to ABs

displayed by line H24 was significant (p<0.01) as was the decrease of the shape

parameter k applied to ABs (p<0.05). The other MB lines, however, showed

no significant changes in the k and B parameters applied to ABs (p>0.05 in

Figure 3.15 F). Thus, we found that no correlation exists between changes in

burstiness and time spent in activity/inter-activity, Figure 3.15 A–C and D–F.

While all of these lines express in the mushroom bodies, the MBs are com-

posed of five distinct substructures known as lobes. The five lobes are further

neuroanatomically, biochemically and functionally divided into three lobe sets,

known as the α/β lobes, the α′/β′ lobes, and the γ lobe (Crittenden et al., 1998).
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Figure 3.14: Silencing mushroom body (MB) neurons affects burstiness.

(A–C) Change (∆) in parameters between permissive and restrictive temper-

atures (RT−PT). Silencing MB with line 247/shits1increased burstiness (A,B)

while silencing with line 201Y/shits1decreased burstiness (B). The other MB

lines had no effect on burstiness with respect to controls (A,B). (C) There

was no memory effect for any MB line. (D) Approximation of net effect of

silencing MB, without the heat effect. Here “∆=Gal4/shi – mean(Controls)”

at PT (base of arrow) and RT (head of arrow). Note that ∆B is close to zero

for all MB lines at PT, meaning the Gal4/shi and controls had similar bursti-

ness when the MB worked normally. Number of flies n=18—32, error bars

indicate s.e.m. Source: doi:10.1371/journal.pcbi.1002075.g003 (Sorribes

et al., 2011).
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The two MB lines where we found statistically significant changes in burstiness,

lines 247 and 201Y, show interesting similarities in expression patterns as they

both have very strong expression in the α/β lobes and in the γ lobe while

they are not expressed in the α′/β′ lobes (Aso et al., 2009). In addition, their

expression is quite selective, as there is either weak or no expression at all

in other parts of the brain. The other MB lines, however, are expressed in a

different pattern (Aso et al., 2009). While line 17d has a strong expression in

the α/β lobes, it is not expressed in the γ lobe, whereas line H24 has a strong

expression in the γ lobe but is only expressed weakly in the α/β lobes. H24

also shows strong expression in other areas of the brain, including the central

complex (CCX). Finally, line c309 shows some expression in the α′/β′ lobes, as

well as expressing in most parts of the brain. Thus, we find our results to be

most consistent with an implication of the α/β lobes together with the γ lobe.

Interestingly, recent advances on the neuroanatomy of memory formation has

established that the acquisition of new memories is predominantly mediated by

the γ neurons, while the retrieval of long-term memory is entirely dependent

on the α/β lobes (Guven-Ozkan and Davis, 2014). As we mentioned, both lines

247 and 201Y express in the α/β and γ similarly, but the expression in the α/β

lobes can be further subdivided into surface and core regions (Aso et al., 2009).

A stronger expression in the surface and posterior subdivision of the α/β lobes

is found in 247, whereas 201Y has its stronger expression in the core of these

lobes. Since both of these lines show a modification of the degree of burstiness,

they have opposite effects: 247 increases the burstiness while 201Y decreases it,

implying that core and surface regions of the α/β lobes might play a differential

role.

Since some of the MB lines also partly show expression in the ellipsoid-body

(EB) of the central complex (CCX), and the EB has previously been shown to

affect the power-law distributions of walking activity (in absence of light or

food) (Martin et al., 1999b, 2001), we complemented our study of burstiness by

testing several lines expressing in the EB and the CCX. The line C507-GAL4/UAS-

shits1(‘C507’), with expression in the EB (Renn et al., 1999), had also been

tested in the decision-making study (Zhang et al., 2007) and found not to affect
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Figure 3.16: Silencing central complex (CCX) circuitry does not affect

burstiness. (A–C) Change (∆) in parameters between permissive and re-

strictive temperatures (RT−PT). None of the CCX lines had any significant

changes in burstiness (A,B) or memory (C) when silenced. (D) Approxima-

tion of net effect of silencing CCX, without the heat effect. Here “∆=Gal4/shi
– mean(Controls)” at PT (base of arrow) and RT (head of arrow). Note that

∆B is close to zero for all CCX lines at PT, indicating that the Gal4/shi and

controls had similar burstiness when the CCX worked normally. Importantly,

note the change of scale of the axes if comparing with Figure 3.14 (MBs).

Number of flies n=25—32, error bars indicate s.e.m. Source: (Sorribes et al.,

2011).
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the decision-making process. Here, we tested for burstiness and memory and

found no statistically significant changes in either k, B, or M , Figure 3.16.

We extended the analysis to lines C819-GAL4/UAS-shits1(‘C819’) and C232-

GAL4/UAS-shits1(‘C232’) with expression in EB ring neurons (Connolly et al.,

1996; Martin et al., 2001), and 78Y-GAL4/UAS-shits1(‘78Y’) with wider CCX

expression (Martin et al., 1999b), and none of them displayed any significant

changes in burstiness or memory, Figure 3.16.

Taken together, thus, we have seen that the mushroom body affected bursti-

ness, while lines expressing in the central complex did not. Importantly, we saw

that MB line 247 which was found to have impaired decision-making ability

(Zhang et al., 2007) was here also found to have changes in burstiness. Line

C507 which is expressed in the ellipsoid-body of the central complex and which

was found to have normal choice-behavior in the previously mentioned decision-

making assay (Zhang et al., 2007), did not show a change in burstiness. This

is in itself quite remarkable, since the central complex has been implicated in

the fine locomotor control of walking behavior (Strauss and Heisenberg, 1993;

Strauss, 2002), the trait under study here. We thus conclude that the temporal

pattern of burstiness is controlled separately from the locomotor control, and

that it co-localizes with decision-making processes.

Relating Neuroanatomy to the Bursty Decision-Making Model

Building on the vast literature available on the neuroanatomy and function

of different neuropils and neurotransmitters in Drosophila, we can suggest a

putative relationship between these anatomical structures and the proposed

priority-driven model of bursty behavior. The strongest effect on burstiness

was found to be increased levels of dopaminergic signaling. Dopaminergic

neurons extensively innervate the MB lobes, as well as several other neuropils

(Friggi-Grelin et al., 2003; Zhang et al., 2007; Tanaka et al., 2008; Mao and

Davis, 2009). The MB α/β lobes have been shown to affect the retrieval of

olfactory memories (Krashes et al., 2007) and regulate habituation responses

(Acevedo et al., 2007), while the γ lobes have been implicated in the acquisition
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of memories (Guven-Ozkan and Davis, 2014). Dopaminergic neurons have

on the other hand been shown to disrupt aversive olfactory memory retention

(Zhang et al., 2008) and convey motivational state through a modification of

the MB memory processing, in an internal-state dependent manner (Krashes

et al., 2009). We found in this study that the bursty locomotor behavior

decreased when the dopamine signaling was enhanced, that is, the activity

became more random with higher dopamine levels. This is consistent with a

model where a decision-making process occurs as the weighing of different

sensory impulses in combination with the internal motivational states and

memories of past outcomes, through the interaction of the mushroom bodies

and the dopaminergic systems. Relating it to the priority-based task-executing

model (Barabási, 2005; Vázquez et al., 2006), this decision-making process

would be what assigns priorities to the different options of attention, impulses

or actions. Thus, when the dopamine signaling is hyper-active or the mushroom

bodies α/β and γ lobes have impaired function, the relative importance and

balance between different options in the decision-making process breaks down

and the proper establishment of priorities is disrupted.

It has been shown that the bursty outcome of the priority-list model is valid

for as few as two options and independent of the specific function of priority

assignment (Barabási, 2005), making the link between decision-making process

and burstiness independent of the specific details of that process. Thus, when

an animal chooses to act first upon the option that has the highest perceived

priority (determined by e.g. salience or other processes), then the behavior

will become bursty, while if the animal does not weigh the options and instead

acts on impulses as they come, then the behavior will become less bursty and

more random – similar to what we saw in the flies with hyper-excited dopamine

signaling. Although more detailed studies on the intricacies of the decision-

making process are needed to establish causation, we have empirically found

that circuitry responsible for decision-making processes also affects burstiness.
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3.3.3 Conclusions

We used Drosophila melanogaster to experimentally test the link between bursti-

ness and decision-making processes, proposed in the priority-based task execu-

tion model (Barabási, 2005; Vázquez et al., 2006). Burstiness was measured

by the shape parameter k of the Weibull distribution fit to the inter-activity

intervals (IAIs) and by the burstiness parameter B, in addition to measuring the

memory parameter M to assess the source of burstiness. Fly lines with altered

dopamine signaling or impaired mushroom body (MB) function were selected,

as these have previously been shown to regulate decision-making in Drosophila

(Zhang et al., 2007). In addition, we tested flies with impaired ellipsoid body

(EB) or other central complex (CCX) regions since these have been shown to

control walking behavior and have previously been found to affect the dynamics

of activity (Martin et al., 1999b, 2001; Strauss, 2002).

Burstiness was found to be due mostly to the IAI distributions, and not

to memory effect (Figures 3.12-3.16 D). We found that enhanced dopamine

signaling exerted the largest effect on burstiness, while decreased levels of

dopamine affected the maintenance of the activity bouts (Figure 3.13). The

mushroom body line 247, found to have disrupted decision-making (Zhang

et al., 2007) also affected burstiness. Line 201Y, with a similar expression

pattern as 247 also changed the degree of burstiness, albeit in the opposite

direction (Figure 3.14). The other three MB lines (c309, 17d and H24) with

a different expression pattern, did not show statistically significant changes in

burstiness. We also tested line C507 which expresses in the EB and which was

previously found not to affect decision-making circuitry (Zhang et al., 2007),

and found that it did not alter the degree of burstiness (Figure 3.16). Other

lines with expression patterns in the EB or other parts of the CCX (C819, C232,

and 78Y) were found to not affect burstiness either.

We thus found that the impairment of decision-making circuitry impacted the

fine-scale dynamics of activity. The co-localization of burstiness and decision-

making processes is hence consistent with the proposed model (Barabási, 2005)

where priority-based choice of action generates the observed burstiness.
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3.3.4 Material and Methods

Fly Strains and Rearing

The fumin flies were kindly provided by K. Kume (U. Kumamoto, Japan), and

the mushroom body driver c309-GAL4 was obtained from the Bloomington

Drosophila Stock Center. Lines 247-GAL4, 201Y-GAL4, 17d-GAL4, H24-GAL4,

C507-GAL4, C819-GAL4, C232-GAL4, TH-GAL4 and UAS-shits1 were kindly

provided by A. Ferrús (Instituto Cajal, CSIC, Spain) while line 78Y-GAL4 was

kindly provided by J.-R. Martin (CNRS, U. Paris-Sud). All the lines of Gal4 and

UAS were kept heterozygote on a w1118 background throughout.

Fly stocks were maintained on a standard cornmeal food in incubators at

18 ◦C before commencing the experiment, and at 23 ◦C for at least one full

generation before the experiment. Both the stocks and the experimental flies

were housed in incubators on a 12 h light/12 h dark cycle starting at 8:00 AM.

Locomotor Activity Assay

Locomotor activity data were obtained with the DAM2 System, as described in

section 2.2.2 Drosophila Activity Monitor System. The data were collected in

1-minute bins. One complete 32-channel monitor was used for each genotype,

with both male and virgin female flies which were around 3 days old at the

start of the experiment. The experiments were performed inside incubators

on a LD 12:12 light cycle, at 23 ◦C for fumin and for establishing baseline

values. For heat-shock experiments, flies were first monitored for three days

at the permissive temperature (PT) 23 ◦C to establish baseline values, then the

temperature of the incubators was raised to the restrictive temperature (RT)

31 ◦C degrees for an additional three days.

The fly rearing, crossings and experiments with fumin, mushroom bodies

(MB) and TH flies for this assay were performed by Beatriz G. Armendariz and

Diego Lopez-Pigozzi, fellow students in the de Polavieja lab at the time. The fly

rearing, genetic crossings and experiments with the central complex (CCX) flies

were performed by me, Amanda Sorribes.
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Data Analysis

Data analysis was performed with Matlab R2007b (The MathWorks Inc., MA

USA) by writing my own custom built code. The recordings from the DAM2

system were divided into inter-activity intervals (IAIs) and activity bouts (AB),

as described in section 2.3.1 Processing Raw Data into Bouts.

The fitting method to the survival distributions was performed as described

in 3.2 Dynamics of Spontaneous Walking Activity. Briefly, this consists of con-

structing the survival distributions and fitting them to the survival Weibull

distribution exp(−(x/λ)k), by linear regression. A linear relation is obtained by

applying a double logarithm, transforming the sides into y′ = log(−log(y)) and

x′ = log(x), such that y′ = k · x′ + C, where C = −k · log(λ). This was found

to produce a robust fit, controlled against artificial data drawn from a Weibull

distribution with known parameters and a variable number of data points.

To test for the presence of short-term memory (M) effects (described in

section 2.3.2 [p. 26]), we compared the empirical values against shuffled

versions of the same data. Although a non-zero memory effect seems to indicate

that there are memory effects present in the time series, it is important to realize

that this is true only when the number of data points is very large (pers. obs.).

For finite, and relatively small time series as our experimental ones, it is possible

(and quite common, actually) to have non-zero memory even in shuffled data,

which is why we compare our empirical data to a distribution of shuffled data

to determine the presence or not of memory effects.

For experiments where flies were treated with a heat effect, differential

values between the restrictive and the permissive temperatures (RT – PT)

were calculated individually for each fly, before comparative studies between

genotypes were made.

Statistical Analysis

Statistical tests were performed by using the two-tailed Student’s t-test with the

Bonferroni correction for multiple comparisons between groups. The data were

first tested for normality with a Lillie-test, in case of a pass (failure to reject the
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null hypothesis) the parametric t-test was used, while if the requirements to pass

the normality test were not met by one or more groups the hypothesis testing

was performed by bootstrapping the t-statistic (sampling with replacement

and computing the t-statistic), using 10.000–100.000 sampling iterations. The

p-value of the statistical test is represented in all figures as either one star

(p<0.05), two stars (p<0.01) or three stars (p<0.001).
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4. SLEEP-WAKE DYNAMICS IN MODEL ORGANISMS AND HUMANS

4.1 Introduction & Background

The never ceasing cycle of sleep and wake is an inescapable experience through-

out all of our lives. Sleep is a time consuming, complex behavioral state, yet

essential for our wellbeing (Rihel et al., 2010). One of the most common

reasons for seeking medical attention is problems with sleep (Mahowald and

Schenck, 2005). Nonetheless, the function of sleep and how it is regulated by

genes, neurons and circuits remains one of the mayor challenges in biology

today (Rihel et al., 2010).

Sleep has predominantly been studied in mammalian animals and birds, ever

since the discovery that sleep and wake can be observed and objectively mea-

sured externally with the electroencephalography (EEG) (Davis et al., 1937).

Since the turn of the millennium, however, sleep research has also expanded to

“simpler” model organisms by broadening the identification of sleep to behav-

iorally defined criteria (Hendricks et al., 2000; Shaw et al., 2000; Zhdanova,

2006; Raizen et al., 2008). In this Introduction & Background we will start

with a brief introduction of the regulatory systems for sleep and wakefulness

in mammals. Thereafter we will see an overview of the studies on sleep-wake

dynamics so far, and end with a short section on the study of sleep in simpler

model organisms.

4.1.1 Regulation of Sleep-Wake Cycles in Mammals

During the course of a normal day an animal must transition between various

behavioral states in response to external and internal drives (Chiu and Prober,

2013), of which sleep is the most vulnerable and distinct. Sleep disorders with

impaired (or prolonged) sleep consolidation or with disrupted timing of sleep

onset have been shown to pose important health risks connected with obesity

and diabetes (Knutson, 2010; Nielsen et al., 2011), cardio-vascular disease

(Knutson, 2010; Cappuccio et al., 2011), impaired vigilance and cognition

(Kronholm et al., 2011) and even death (all-cause mortality) (Cappuccio et al.,
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2010). Understanding the transitions, maintenance and dynamics of the sleep-

wake episodes is therefore of uttermost importance and currently an active field

of research.

On a macroscopic level the transitions between wake and sleep can be

understood as the interplay between two main regulatory systems, namely the

circadian rhythm and the homeostatic sleep drive (Borbély and Achermann,

1999). The circadian rhythm regulates many physiological processes, such

as the body temperature and hormone levels throughout the day, as well as

cognitive function and memory (Klein, 1991; Pace-Schott and Hobson, 2002). It

also regulates the sleep-wake cycle, making day-time sleeping more difficult for

diurnal animals, like humans, leading to problems with insomnia or excessive

sleepiness for many night-shift workers (Gumenyuk et al., 2012). The circadian

clock is composed of a set of circadian genes which produce proteins that

interact in such a way that they oscillate on an approximately 24-hour cycle1.

The periodicity of the oscillation is entrained to the external natural light cycle

through cells in the retina (Pace-Schott and Hobson, 2002), which are connected

to the master circadian clock located in the anterior hypothalamus, in a region

known as the suprachiasmatic nucleus (SCN) (Clayton et al., 2001; Pace-Schott

and Hobson, 2002). The SCN coordinates the circadian rhythm throughout the

body and has been shown to regulate the circadian timing of sleep (Schwartz

and Roth, 2008).

Although there are many hypotheses about why we need to sleep (Scharf

et al., 2008), one of the known properties of sleep is that it is a restorative pro-

cess, leading e.g. to a replenishment of the cellular energy stores (Scharf et al.,

2008; Dworak et al., 2010), as well as playing an important role in learning

and memory consolidation (Zisapel, 2007). The homeostatic sleep drive can be

described as a “measurement” of the need for this restorative process, where the

homeostatic drive increases with prolonged wakefulness and decreases during

sleep. The restorative processes of sleep have been shown to be vital, since the

1Many advances in what we know about these clock genes and the biochemical time-keeping

machinery were first discovered in Drosophila (Clayton et al., 2001; Bellen et al., 2010), as

described briefly in section 2.1.1 Drosophila melanogaster as a Model Organism, Introduction.
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detrimental effects of prolonged sleep deprivation have been shown in rats to

lead to death (Rechtschaffen and Bergmann, 1995). The homeostatic process

of sleep is not yet as well and fully understood as the circadian process, but

important pieces of the regulatory machinery have been proposed, in particular

the neuromodulators adenosine and nitric oxide (Tonsfeldt and Chappell, 2012;

Brown et al., 2012). Adenosine is the basal component of the energy molecule

ATP and the end-product when the energy has been completely metabolized

(Scharf et al., 2008). High levels of extracellular adenosine have been shown

to build up after prolonged wakefulness, which has led to it being proposed as

the mediator of the homeostatic sleep drive (Porkka-Heiskanen et al., 1997).

Adenosine and nitric oxide act in the cholinergic arousal centers in the basal

forebrain and in the brainstem by inhibiting the wake-promoting signaling and

are sufficient to facilitate and induce sleep (Portas et al., 1997; Brambilla et al.,

2005; Kalinchuk et al., 2010; Porkka-Heiskanen and Kalinchuk, 2011). Inter-

estingly, the central nervous system stimulant caffeine works by temporarily

blocking the adenosine receptors of neurons, which prevents adenosine from

inhibiting the arousal system and hence prolongs wakefulness (Landolt et al.,

2004; Landolt, 2008). Viewed from the two-process model of the interplay

between the circadian rhythm and the homeostatic sleep drive (Borbély and

Achermann, 1999), the circadian drive for wakefulness during the active phase

of the day counteracts the increasing sleep drive of the homeostatic process,

thus facilitating sustained wakefulness. Analogously, prolonged sleep consolida-

tion during the inactive phase of the day is accomplished by the circadian drive

for sleep while the homeostatic sleep need diminishes (Fuller et al., 2006).

A crucial part to understanding the transitions between wake and sleep has

been to map the wake- and sleep-promoting circuits in the brain with ever

increasing levels of detail. Briefly, the wake-promoting system is composed of

several ascending arousal systems characterized by their distinct neurochemistry

and localization. Each of these arousal-promoting systems has been shown to in-

crease wakefulness on its own, but all are needed as a coordinated ensemble to

achieve alertness and cortical activation (Zisapel, 2007). The important arousal-

promoting systems, defined by neurochemistry, are the monoaminergic neurons,
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the hypocretin (also known as orexin) neurons and the previously mentioned

cholinergic neurons (Szymusiak and McGinty, 2008; Brown et al., 2012). These

arousal-promoting systems originate in the brainstem and posterior hypothala-

mus and send projections to the basal forebrain and cerebral cortex (Szymusiak

and McGinty, 2008; Saper and Lowell, 2014). The sleep-promoting neurons, on

the other hand, use the inhibitory neurotransmitters GABA and galanin and are

located in the preoptic (anterior) part of the hypothalamus from where they

project and inhibit the monoaminergic and hypocretin systems (Zisapel, 2007;

Szymusiak and McGinty, 2008). These sleep-promoting neurons in turn are

inhibited by the monoaminergic and cholinergic systems through noradrenaline,

serotonin and acetylcholine, which all regulate wakefulness (Zisapel, 2007).

Sleep-promoting parts of the hypothalamus have been suggested to integrate

homeostatic sleep signals (Szymusiak and McGinty, 2008), while the circadian

system also projects to these inhibitory, GABA-ergic sleep-promoting neurons

(Brown et al., 2012). The sleep-wake transitions are thus regulated by the inter-

actions between the anterior hypothalamus, which integrates both homeostatic

sleep need and circadian sleep-regulation, and the wake-promoting neurons in

the posterior hypothalamus, brainstem and basal forebrain.

The transitions between sleep and wakefulness can thus be seen as the

result of a mutually inhibitory interplay between the wake-promoting and sleep-

inducing systems, which in addition, generally happen fast once initiated in

healthy individuals (Saper et al., 2010). These observations led to a proposed

flip-flop model for sleep-wake transitions, where the arousal and inhibitory sys-

tems work analogously to an electronic switch (Saper et al., 2001). In this model

the inhibitory GABA-ergic sleep-promoting neurons and the wake-promoting

hypocretin (orexin) neurons play an indispensable role for maintaining normal

sleep-wake patterns. This conceptual model helps explain the bistability of

wakefulness and sleep as well as the fast transitions between the two behavioral

states (Saper et al., 2010). The model was later extended to also account for the

cycling between NREM (non-rapid-eye-movement, non-REM) sleep, important

for the energy restoration and memory consolidation, and REM sleep, associated

with dreaming (Lu et al., 2006; Brown et al., 2012).
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4.1.2 Sleep-Wake Dynamics

An important step to further our understanding of the transitions between sleep

and wake is to explore the temporal properties of these behavioral states. Apart

from the overarching circadian rhythmicity of sleep and wake there are also

shorter, ultradian cycles within sleep in humans and other mammals, such as

the approximately 90-minute cycle of NREM and REM sleep in humans (Pace-

Schott and Hobson, 2002; Hobson and Pace-Schott, 2002). The duration of

sleep episodes is thus not random, and the disruption and fragmentation of

sleep cause both day-time sleepiness, a reduction of cognitive functions and a

degradation of mood (Bonnet and Arand, 2003). Experimentally disrupting the

natural progression of sleep, while keeping the total amount of sleep constant,

has been shown to cause impairment of the next-day performance and alertness

(Wesensten et al., 1999) and memory consolidation (Djonlagic et al., 2012),

while sleep disorders that cause fragmentation of sleep like narcolepsy and

obstructive sleep apnea cause excessive day-time sleepiness and heightened risk

for cardio-vascular disease (Mahowald and Schenck, 2005). Similarly, elderly

have increased difficulties initiating and maintaining sleep (Floyd et al., 2000),

and report frequent nightly awakenings as the most common sleep disturbance

(Maggi et al., 1998). It is thus clear that the structure in which sleep occurs

is as important as the total amount of sleep. Despite the adversarial effects of

induced sleep fragmentation, wake episodes are a normal occurrence during

sleeping periods and appear spontaneously in both humans and other mammals

(Halász et al., 2004; Lo et al., 2004). It has therefore been proposed that

arousals during sleep not only be viewed as a sleep disturbance but that they

are an integral part of the normal sleeping process (Halász et al., 2004).

The first study to look at the statistical distributions of sleep and wake

bouts was published by Lo et al. (2002). Sleep was recorded in twenty healthy

human adults according to standard procedures (Rechtschaffen and Kales,

1968) and all sleep stages of NREM and REM were grouped together into a

single sleep state. They found that the wake bout distribution follows a power

law (Pr(t) ∼ t−α) with a mean exponent of α= 1.3±0.4 (s.d.), and that the
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Figure 4.1: Power-law fits to wake bouts and exponential fits to sleep

bout distributions for sleep-wake cycles in humans, cats, rats and mice.

(A) Wake bout distributions plotted on a double-logarithmic scale. All species

were found to follow a power law with similar exponents α. Note how wake

bouts can last from a few seconds to several tens of minutes. The distributions

have been vertically offset for visual clarity. (B) Sleep bout distributions from

the same animals plotted on a semi-logarithmic scale. The sleep distributions

were rescaled to all start from P = 1. Sleep bouts were found to follow an

exponential distribution for all animals, with varying time constants τ . Source:

Modified from (Lo et al., 2004).

sleep bout distribution follows an exponential distribution (Pr(t) ∼ e−t/τ ) with

τ = 20± 5 minutes – although only in the “large-time region” (t > 5 min). The

stretched exponential distribution was tested as an alternative distribution to

both sleep and wake bouts with the Levenberg–Marquardt method for non-linear

least squares fitting, but found to provide a lesser fit2. In their highly influential

follow up study, Lo et al. (2004) extended the analysis and compared the sleep

and wake bout distributions of human sleep to other mammalian species’ sleep-

wake distributions (Figure 4.1). The sleep and wake bout distributions were

2It is however not stated if both the exponential distribution and stretched exponential were

tested against all sleep bout durations or only to the large-time region t > 5 min.

91



4. SLEEP-WAKE DYNAMICS IN MODEL ORGANISMS AND HUMANS

collected from adults in each of humans, cats, rats and mice, and from each

species’ respective inactive/sleep periods as humans are diurnal while the other

three species are nocturnal. They found that wake bouts follow a power law

with an exponent in the range of α= [2.0 2.3] for all species, including humans.

Unfortunately, no mention or comparison was made with the previously found

result (by some of the same authors) of α= 1.3 for human wake bouts (Lo et al.,

2002). Sleep bouts, on the other hand, were found to follow an exponential

distribution in all animals with a characteristic time constant τ , which was found

to correlate with the species brain and/or body mass. Sleep and wake were thus

found to be regulated independently with clearly differing statistics, where wake

bouts follow a power-law distribution with a common scale-invariant pattern

while sleep bouts follow an exponential distribution with a species-dependent

characteristic time constant.

In a study published shortly thereafter, Blumberg et al. (2005) explored the

dynamic properties of the sleep and wake bout distributions during develop-

ment and maturation in infant rats. Since the sleep and wake states alternate

much faster at a young age when the circadian system has not yet been fully

established, it opens the possibility to examine the control of the sleep-wake

regulation before it has been properly developed (Blumberg et al., 2005). They

found that sleep bouts follow an exponential distribution at all ages (0–3 weeks

post-natal), with an increasing characteristic time constant τ as the sleep bouts

become longer with increasing age and maturation. For wake bouts, however,

they found that the power-law distribution is not yet present in the very young

individuals – where instead the exponential distribution gave a better fit – and

that the power law only emerged at the older ages as sleep became more con-

solidated.3 This finding is a valuable addition to our understanding of how the

control and regulation of the sleep-wake cycle is established, and correlates

with the increasing modulatory effect of the basal forebrain over the brainstem

in the developing brain (Blumberg et al., 2005; Mohns et al., 2006). These

findings were followed by a study of wild-type mice and knock-out mice with

a non-functioning hypocretin (orexin) receptor (Blumberg et al., 2007). A

3No other alternative distributions to the power law and exponential were however tested.
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defective hypocretin transmission had quite recently been established as the

biological basis for the human disease narcolepsy, which we saw in the pre-

vious section causes severe sleep fragmentation and acute sleepiness (Taheri

et al., 2002). Hypocretin is produced by neurons in the hypothalamus, which

projects to the locus coeruleus and other nuclei in the brainstem that control

the sleep-wake cycle (Taheri et al., 2002). Blumberg et al. (2007) found that

the developmental progress of the sleep-wake transitions in mice is very similar

to that of rats, as the sleep bouts follow an exponential distribution for all

ages whereas the wake bouts only develop a power-law distribution during the

third post-natal week. They also found that a lack of hypocretin delays the

maturation of the power-law distribution, but it does not completely abolish

the transition. In the next study on the topic, however, the locus coeruleus was

selectively targeted with a neurotoxin and found to halter the emergence of the

power-law structure of wake bouts (Gall et al., 2009). The locus coeruleus is

part of the monoaminergic arousal system which controls the wake process, and

was thus shown by Gall et al. to be an important and interesting piece of the

intrinsic sleep-wake regulation. In the latest study on the statistical properties

of sleep and wake bouts during development, Karlsson et al. (2011) assessed

the dynamics of sleep-wake distributions along early development but this time

in prenatal sheep, to compare the development of the sleep-wake cycling during

the gestational period in a precocial species (which when born are autonomous

and can feed themselves) to the post-natal period of the altricial rodents (which

are born undeveloped, with the eyes unopened and initially in need of care

and feeding by their parents). Karlsson et al. found a similar development

of the sleep-wake distributions in prenatal sheep as in rats and mice, where

sleep bouts were found to follow an exponential distribution for all gestational

ages with an increasing characteristic time scale as the sleep and wake bouts

consolidated throughout development, whereas wake bouts showed exponential

distributions for all ages and only tended towards a power-law distribution for

the oldest age, close to parturition.

As we saw in the studies of the impaired locus coeruleus circuit and the

animal model of narcolepsy (with knocked-out hypocretin system), the ex-
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amination of the temporal aspect of the sleep-wake cycle shows great utility

for finding critical regulatory systems and investigating the effect of disease

on the sleep-wake dynamics. In this line, several studies have analyzed the

effect of obstructive sleep apnea (Chervin et al., 2009; Chu-Shore et al., 2010;

Bianchi et al., 2010) and chronic fatigue syndrome (Kishi et al., 2008) on the

sleep and wake bout distributions. Since these studies have been focused on

human disease, the choice of methodology has been to also utilize the internal

fine-structure within the sleeping state, such as REM sleep and NREM sleep, and

sometimes also the different stages (I-IV) within NREM sleep. This makes the

results of these studies less easily comparable with the ones we saw previously,

which centered on studying the transitions between wake and sleep as these

are more easily generalizable between species. Nevertheless, the results are

interesting as Kishi et al. (2008) found that the deeper sleep stages were more

complex than the other stages of sleep: while REM sleep episodes and stage I

of NREM sleep followed an exponential function, stage II followed a stretched

exponential distribution and finally, the deep sleep stages III and IV followed

a power-law distribution. Like in previous studies, the wake bout distribution

was also found to follow a power-law distribution. The results presented by

Bianchi et al. (2010) are also interesting, albeit different: they found that both

REM and NREM sleep bouts were better fit by a multi-exponential rather than

by a mono-exponential distribution, and that wake bouts could be explained by

a multi-exponential distribution just as well as by a power law. The model selec-

tion was done by using the Akaike Information Criterion (AIC) and comparing

the exponential fits pair-wise in increasing order of complexity.

A notable difference between these newer results and the original studies in

humans (Lo et al., 2002, 2004) is that, as mentioned above, the NREM and REM

were joined into a single sleeping state in the previous studies while the more

recent ones considered the substages of sleep separately (Kishi et al., 2008;

Bianchi et al., 2010). An additional difference is that Bianchi et al. (2010) fit

the entire distribution, while Lo et al. (2002) only considered the exponential

distribution to be good fit for t > 5 minutes. Rather than a difference, however,

this could also be seen as a similarity, in that the sleep bouts do seem to show
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more complexity (Lo et al., 2002; Kishi et al., 2008; Bianchi et al., 2010) than

what they appear to have when described only as following an exponential

distribution (Lo et al., 2004; Blumberg et al., 2005, 2007; Gall et al., 2009;

Karlsson et al., 2011). Notably, only Lo et al. (2002, 2004), Kishi et al. (2008)

and Bianchi et al. (2010) considered other distributions than the exponential

and the power law, and the fitting methods and model selection technique of

the other studies were based on linear regression of the semi-logarithm and

double-logarithm and comparing these two r2 fits – a practice that was common,

but in the last few years has been deemed unsatisfactory for determining the

quality of the fits and the suitability of the model, at least without further

validation (see e.g. Clauset et al. 2009, and section 3.1.1 Modeling Animal

Movement Patterns for further references). It should therefore, in my view, not

be seen as a contradiction to find that sleep bouts might have more structure

than previously described, since it was usually never even tested if sleep bouts

might have this complexity (in the form of heavier tails than an exponential

but less so than a power law). Therefore I suggest that we consider sleep

bouts to be “exponential-like” and wake bouts to be “power law-like” for the

time being, while recognizing the power that these descriptors have had in

characterizing the general trends and differences between the regulation of

sleep and wake bouts. While the exact functional forms are desirable for a full

understanding and for modeling efforts, it is not yet possible without detailed

targeted experimentation to distinguish between a generating model where the

circuitry is seen as a self-organized critical system giving rise to scale-free power

laws (Lo et al., 2004) or a generating model where the combination of random

stochastic processes generate a multi-exponential distribution (Bianchi et al.,

2010; Chu-Shore et al., 2010).

Regardless of the difficulties, we should again highlight the remarkable

findings that we have seen throughout this section: that sleep bouts follow

exponential-like distributions that scale as the brain mass and developmental

maturity, while wake bouts follow power law-like distributions that consolidate

throughout development, and with a similar exponent across species. Hopefully

more experiments with continually increasing details about the circadian regu-
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lation, sleep homeostasis, sleep-promoting system and the arousal systems that

control the sleep-wake transitions can shed further light on the dynamics and

the underlying generating mechanisms.

4.1.3 Sleep in “Simpler” Model Organisms

Sleep has primarily been studied in mammalian and avian animals, and sleep

in animals of other orders was generally not considered to occur (Campbell

and Tobler, 1984; Tobler, 1995; Hendricks et al., 2000). Traditionally, sleep

has been defined as a coordinated set of physiological changes measured by

electroencephalography (EEG), electromyography (EMG) and electrooculogra-

phy (EOG) (Brown et al., 2012). However, in large review-surveys covering

studies of sleep in most of the animal orders by Campbell and Tobler (1984) and

Tobler (1995), they identified the need for establishing a behaviorally based

definition of sleep, so that sleep could also be identified in species that do

not possess a cerebral cortex (and thus do not produce an EEG signal) or in

species that are water-based (which makes electrical recordings difficult). Based

on this work, the proposed behavioral criteria that need to be met in order

for an animal to be considered to have a sleep state are: i) immobile periods

regulated by the circadian rhythm, ii) homeostatic regulation of these quiescent

periods, iii) reversibility to wakefulness (distinguishing it from coma or stupor),

iv) reduced sensory responsiveness when in the quiescent state (an increased

arousal threshold to stimuli), and v) a preferred posture and/or resting place

(Campbell and Tobler, 1984; Tobler, 1995; Hendricks et al., 2000).

Based on these criteria, two research groups independently and almost si-

multaneously published the findings that Drosophila fulfills them all and can

thus be considered to have a sleeping state (Hendricks et al., 2000; Shaw et al.,

2000). Since then part of the sleep-wake circuitry has been mapped and it

has been shown that Drosophila shares much of the signaling and molecular

machinery governing sleep and arousal in mammals, e.g. caffeine and adeno-

sine have the same effects in Drosophila, and monoaminergic and GABA-ergic

signaling are important regulators in flies as well (Rihel and Schier, 2013). Both

96



4.1 Introduction & Background

sleep homeostasis and the connection between memory consolidation and sleep

are being investigated in Drosophila (Donlea et al., 2014; Michel and Lyons,

2014). Besides Drosophila, sleep has also been identified in two more genetically

tractable model organisms: in the zebrafish Danio rerio (Zhdanova et al., 2001;

Prober et al., 2006; Yokogawa et al., 2007) and in the nematode Caenorhabditis

elegans (Raizen et al., 2008; Van Buskirk and Sternberg, 2007). The small worm

C. elegans is helping shed light on the most ancient and conserved mechanisms

of sleep, while the zebrafish has quickly grown to become an important model

animal since as a vertebrate it shares many of the mammalian neural substrates,

while at the same time it has a much faster reproductive and experimental cycle

than other more complex mammalian models like rodents (Rihel et al., 2010).

The research on sleep in simpler model organisms has contributed with many

advances on the genetic and molecular basis of sleep regulation and disorders

also to the human sleep research, and has been recognized to have been the

catalyzer for the rapid progress seen in sleep research during the twenty-first

century (Zimmerman et al., 2008; Sehgal and Mignot, 2011; Saper and Sehgal,

2013).
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4.2 Ontogeny of Sleep-Wake Dynamics in Zebrafish
and Humans

4.2.1 Introduction

Sleep is a fundamental and vital process, essential in all stages of life. The

amount of sleep needed throughout ontogeny is not constant, however, and all

species wherein sleep has been studied have been found to need more sleep

in the early part of the lifespan (Roffwarg et al., 1966; Jouvet-Mounier et al.,

1970; McGinty et al., 1977; Shaw et al., 2000; Jenni et al., 2004; Blumberg

et al., 2005; Jenni et al., 2006) (with the exception of cetaceans (Lyamin et al.,

2005)). The amount of time dedicated to sleep then decreases throughout

development and consolidates to adult levels as an individual matures. In

humans for example, it has been shown that infants sleep for about two thirds

of the 24-hour day; then gradually the waking hours increase until sleep only

takes up about one third of the day in adulthood (Roffwarg et al., 1966).

Another common feature of the sleep development among species is the

initial high level of sleep and wake fragmentation in early life (Blumberg et al.,

2005; Arnardóttir et al., 2010; Karlsson et al., 2011). In humans a significant

consolidation of sleep and wakefulness occurs during infancy and the first

couple of years of living (Jenni et al., 2006; Arnardóttir et al., 2010). In rats

there is a similar development as sleep bout durations quadruple during the

first two post-natal weeks (Blumberg et al., 2005). The sleep and wake bouts

thus consolidate during early development, while the total amount of sleep

needed throughout the day decreases.

The consolidation of sleep and wake bouts during development happens

concurrently with a shift of the sleep and wake bout distributions (Blumberg

et al., 2005, 2007), as we saw in the Introduction & Background to this chapter,

4.1.2 Sleep-Wake Dynamics. While the sleep bout distribution follows an expo-

nential distribution with a characteristic time constant τ that increases as the

sleep bouts lengthen during development, the wake bout distribution undergoes
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a shift from initially an exponential distribution to a power-law distribution as

the animal matures (Blumberg et al., 2005, 2007). The mature distributions

parallel the findings in adults for several species, where sleep bouts were found

to exhibit an exponential distribution with a characteristic time constant τ that

is developmental- and species-dependent, while the wake bouts were found

to follow a power law with a common species-invariant exponent α (Lo et al.,

2002, 2004; Blumberg et al., 2005, 2007).

While this pattern of exponential sleep bout distributions and power-law

distributed wake bout durations has been found across several species, both

nocturnal and diurnal, all of the species examined so far have been mammalian

(Lo et al., 2002, 2004; Blumberg et al., 2005, 2007; Karlsson et al., 2011). Sleep

research has however advanced immensely during the last ten–fifteen years

with the introduction and utilization of genetically tractable “simpler” model

organisms, in particular Drosophila and the zebrafish Danio rerio (Zimmerman

et al., 2008; Sehgal and Mignot, 2011; Saper and Sehgal, 2013). The zebrafish

is a diurnal vertebrate that has become a popular model organism due to its

small size and easy handling, fast development cycle with transparent embryos

and larvae, and rich behavioral repertoire (Spence et al., 2008). It is well suited

for large-scale genetic and pharmacologic screens and the zebrafish genome

has been fully sequenced (Lessman, 2011; Howe et al., 2013; Chiu and Prober,

2013). The transparency of the embryo and larva has further made it ideal for

studying development and neuronal circuits (Spence et al., 2008; Portugues

et al., 2013).

In sleep research, the zebrafish has been shown to fulfill all the five behav-

ioral criteria that characterize sleep, exhibiting a reversible immobile state with

an increased arousal threshold and a characteristic posture that is under circa-

dian and homeostatic regulation (Zhdanova et al., 2001; Prober et al., 2006;

Yokogawa et al., 2007). Zebrafish larvae have also been shown to sleep, with

an observable sleep behavior emerging by the fifth day of development (Prober

et al., 2006). As a vertebrate animal model, it has been found to share all of

the known signaling systems that regulate sleep and wakefulness in humans,

despite developmental differences in some brain regions (Panula et al., 2010).
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In addition, it has been shown to be affected by stimulants and hypnotics in

much the same way as mammals (Rihel and Schier, 2013).

The zebrafish has thus become an important model organism for sleep

research as it shares many of the advantages of an invertebrate model like

Drosophila, while its brain anatomy and neurochemistry resembles those of

mammal species. To further probe the characteristics of sleep and wakefulness

in zebrafish, we studied the development of sleep and wake across ontogeny

and compared it with the sleep and wake development over the human lifespan.

Additionally, we studied the dynamics of sleep and wake bouts in zebrafish and

also contrasted that to the human sleep-wake dynamics. We found that sleep

and wake in zebrafish follow a similar course across ontogeny as in humans and

other mammals, where sleep levels are highest in the early stages of life and

then decrease with age. We further found that wake bouts follow a power-law

distribution in both zebrafish and humans of all ages, whereas the sleep bouts

were better fit by a stretched exponential distribution in both zebrafish and

humans, except for the oldest ages which were better fit by a power law. We

thereby show that zebrafish have a similar regulation of sleep and wake as

humans, and further validate zebrafish as an important model organism for

unraveling the intricacies of the sleep-wake process.

4.2.2 Results & Discussion

To compare the ontogeny of sleep and wake in zebrafish and humans we

analyzed the sleep-wake behavior during the night, since both species are

diurnal. In both humans and zebrafish we measured the nightly sleep and

wake episodes in subjects representing a wide range of ages across the lifespan.

Human sleep was measured according to standard procedure (Rechtschaffen

and Kales criteria (Rechtschaffen and Kales, 1968)), after which all the sleep

stages were merged into a single sleeping state.

The analysis is divided into two main parts: first, a characterization of the

sleep and wake structure in humans and zebrafish, that is, the total amount

of sleep and wake, the mean duration of sleep and wake bouts, the number of
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transitions per night and the fragmentation indices (defined as the number of

bouts divided by the total amount of time of each sleep and wake during the

night). In the second part we studied the sleep-wake dynamics by analyzing the

distributions of sleep and wake bouts in the different age groups of the human

participants and of zebrafish.

Human Sleep and Wake Structure Across Ontogeny

We analyzed nightly recordings of sleep and wake from 50 participants between

the ages of 2 and 74. The data have been published previously in (Arnardóttir

et al., 2010), but in this study we have employed different analysis methods

and divided the participants into age groups differently. The participants were

divided into four groups: “Children” (ages 2–8, n=15), “Preteens and Teens”

(ages 11–16, n=9), “Adults” (ages 23–43, n=15) and “Adults 50+” (ages 49–74,

n=11), representing roughly the different stages of human life, Figure 4.2.

Figure 4.2: Division of human participants into age groups. 50 human

participants were divided into four groups according to their age. In the

youngest age group “Children” there were 15 participants between ages 2–8.

The next group was chosen to comprise of the 9 preteens and teenagers,

between ages 11–16, in the text referred to as “Preteens and Teens” and

here referred to as “Teens”. The adult participants were divided into two age

groups, “Adults” with 15 participants between 23–43 and “Adults ’50+”’ with

11 participants of ages 49–74.
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When measuring the sleep levels throughout the night, we found the sleep

ratio (the percentage of time asleep during night) to be reduced across age

(F(3,46)=11.69, p<0.0001). The sleep ratio of the Adults 50+ age group

was lower compared to Children (p<0.01), Preteens and Teens (p<0.01) and

Adults (p<0.01), Figure 4.3 A. The average duration of sleep bouts, number

of sleep bouts and sleep fragmentation were however unchanged across age,

Figure 4.3 B–D.

Turning to wake during the night, the wake ratio (percentage of time

awake during the night) concomitantly changed with age (F(3,46)=11.69,

p<0.0001). Thus, the Adults 50+ showed a significant increase of time awake

during the night when compared to that of Children (p<0.01), Preteens and

Teens (p<0.01) and Adults (p<0.01), Figure 4.3 E. Another effect of age on

the wake structure was the lengthening of the average wake bout durations

(F(3,46)=9.08, p<0.0001), longer in the age group Adults 50+ compared to

Children (p<0.0001) and Preteens and Teens (p<0.0001), Figure 4.3 F, while

no change across age was found in the number of wake bouts, Figure 4.3 G.

We found a decrease with age in wake fragmentation, defined as the num-

ber of awakenings divided by the total time awake (F(3,46)=6.94, p<0.001),

Figure 4.3 H. The Adults 50+ age group showed reduced wake fragmenta-

tion (i.e. a longer wake bout duration once awake) compared to Children

(p<0.0001), Preteens and Teens (p<0.001) and Adults (p<0.0001).

We thus found that the sleep and wake structure is affected by age in

humans, and confirm previous findings of decreased sleep levels in the elderly

(Floyd et al., 2000). While we did not find that the youngest participants sleep

significantly more than the two older age groups, it is important to note that

the youngest children were already 2 years old and that a rapid development of

the sleep-wake pattern occurs during infancy (the first 12 months of life) with a

considerable consolidation of sleep and wake and a shift towards night-time

sleeping (Jenni et al., 2004, 2006; Peirano et al., 2003). We further found a

significant effect of age on wake fragmentation in the elderly, which was due to

longer, but not more numerous wake bouts during the night.
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Figure 4.3: Human sleep-wake structure across age groups. Upper row (A–D)

shows parameters of sleep structure and lower row (E–H) shows parameters of wake

structure. The age groups are Children (blue), Preteens and Teens (“Teens”, green),

Adults (yellow) and Adults 50+ (“50+”, red). (A) Percent of time asleep during the

night. Adults 50+ sleep less time during the night than the younger participants.

(B) Mean sleep bout duration, (C) mean number of sleep bouts per night and (D) sleep

fragmentation (number of bouts/total time of sleep) are not significantly different

between groups. (E) Percent of time awake during the night. Adults 50+ spend more

time awake than the younger age groups. The awakenings during the night appear as

longer wake bouts (F) while the number of awakenings remains unaffected (G). Adults

50+ show a more fragmented sleep than the younger age groups (H). Diamond, white

line, and squares indicate mean, median, and outlier values, respectively, while a star

indicates p<0.05. Source: Modified from (Sorribes et al., 2013).
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Zebrafish Sleep and Wake Structure Across Ontogeny

To study the ontogeny of the sleep-wake structure in zebrafish four age groups

were defined to represent approximately the larval, juvenile, adult and se-

nior phases of the zebrafish lifespan. A total of sixty-one zebrafish of the

Tübingen stock strain were recorded in the following age groups: 6–10 days-

post-fertilization (n=16); 4–6 weeks old (n=16); 4–6 months old (n=14);

and over 12 months old (n=15). While these groups were chosen to represent

different stages of the zebrafish lifespan in order to study the ontogeny of

sleep-wake regulation in zebrafish and how it relates to mammal sleep-wake

regulation, it is not currently known if or how well these age groups correspond

to the age groups defined above for the human participants in the sleep study.

Sleep in zebrafish is classified according to behavioral criteria, established by

video recordings of larvae and fish which are housed in individual compartments

for the entire duration of the recording. Sleep in zebrafish has been established

to occur after the sixth second of immobility, both in adult fish (Yokogawa et al.,

2007; Zhdanova et al., 2008; Singh et al., 2013) and larvae (Sigurgeirsson

et al., 2011). Sleep was thus classified as all immobile 1-second bins starting

from and including the 7th immobile second, while all non-sleeping bins were

classified as wake. The activity of zebrafish was recorded under white and IR

lights on a 14:10 light:dark cycle with lights on at 07:00 and lights off at 21:00,

with a 28.5 ◦C water temperature. The recordings lasted 48 hours following a

24-hour acclimation period, and only night-time data were considered since

zebrafish show a diurnal circadian pattern of activity and sleep.

We found that in zebrafish the nightly sleep ratio, defined as the percentage

of time spent asleep during the night, decreased with age (F(3,57)=6.87,

p<0.001), Figure 4.4 A. Both adult age groups showed a significantly lower

sleep ratio compared to the larval and juvenile groups. When comparing the

sleep ratio of the 4–6 month olds to the 6–10 day olds it was significantly

decreased (p<0.001) as well as in comparison to the 4–6 week olds (p<0.01).

The sleep ratio of the 12 month+ group was also shown to be lower than

those of the 6–10 day old group (p<0.01) and 4–6 week old group (p<0.05).
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Figure 4.4: Zebrafish sleep-wake structure across age groups. Upper row (A–D)

shows parameters of sleep structure and lower row (E–H) shows parameters of wake

structure. The age groups are 6–10 days (blue), 4–6 weeks (green), 4–6 months

(yellow) and 12+ months (red). (A) Percent of time asleep during the night, (B) mean

sleep bout duration, (C) mean number of sleep bouts per night and (D) sleep frag-

mentation (number of bouts/total time of sleep). The two older groups sleep less and

have fewer sleep bouts than the two younger groups. (E) Percent of time awake during

the night, (F) mean wake bout duration, (G) mean number of wake bouts per night

and (H) wake fragmentation (number of bouts/total time of wake). The two older,

adult, age groups spend more time awake during the night in longer but fewer wake

bouts, with a resulting decreased fragmentation of wake as compared to the larval

and juvenile age groups. Diamond, white line, and squares indicate mean, median,

and outlier values, respectively, while a star indicates p<0.05. Source: Modified from

(Sorribes et al., 2013).
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No statistically significant difference was found in the mean duration of sleep

bouts between the age groups, Figure 4.4 B, whereas the number of sleep bouts

significantly decreased with age (F(3,57)=17.25, p<0.0001). The sleep-wake

transitions were significantly less frequent in the 4–6 month old group compared

to the 6–10 day old (p<0.001) and 4–6 week old (p<0.0001), while the 12+

month old group also displayed fewer sleep bouts as compared to the 6–10

day olds (p<0.0001) and 4–6 week olds (p<0.0001), Figure 4.4 C. Despite the

decreased number of sleep bouts in the two adult age groups as compared to the

larvae and juvenile fish, the fragmentation of sleep was not different between

the age groups, Figure 4.4 D, as the effect was compensated by a concomitant

decrease of the time spent asleep, Figures 4.4 A–D.

Considering the structure of wake bouts in zebrafish next, we found a

significant increase of the nightly wake ratio with age (F(3,57)=6.87, p<0.001).

The 4–6 month old group increased significantly with respect to the 6–10 day

(p<0.001) and the 4–6 week olds (p<0.01), as did the 12+ month olds with

respect to the 6–10 day old larvae (p<0.01) and the 4–6 week old fish (p<0.05),

Figure 4.4 E. The increase in wake ratio was accompanied by an increase of the

mean wake bout duration with age (F(3,57)=5.05, p<0.01). The 4–6 month

group and the 12+ month group had significantly longer wake bout durations

than the 6–10 day group (both with p<0.0001) and longer than the 4–6 week

group (p<0.0001 for both), Figure 4.4 F. Regarding the sleep-wake transitions,

the number of wake bouts per night were significantly fewer in the two older

groups as compared to the two younger groups (F(3,57)=17.29, p<0.0001),

with the 4–6 month and 12+ month olds having fewer wake bouts than the 6–10

day olds (p<0.001 and p<0.0001, respectively) and 4–6 week olds (p<0.0001,

both), Figure 4.4 G. The wake fragmentation also displayed a clear decrease

with age in zebrafish (F(3,57)=45.8, p<0.0001). Both the 4–6 month and the

12+ month olds had a significantly lower wake fragmentation than the 6–10 day

olds (p<0.0001) and the 4–6 month olds (p<0.0001), Figure 4.4 H. We thus see

that the wake structure is more complex than the sleep structure in zebrafish,

as all four parameters of wake structure change across age, Figures 4.4 E–H.
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We thus conclude that the internal structure of the sleeping state across the

lifespan of zebrafish does not change much with age – the mean sleep bout

durations and sleep fragmentation remain constant across age. The significant

difference, however, emerges in the total amount of sleep during the night,

higher in younger and lower in older fish, achieved through a decrease of the

number of sleep bouts along the night with age.

The wake ratio per night and the number of wake bouts are intrinsically tied

to the sleep ratio per night and the number of sleep bouts, as these by definition

are complementary and alternate with the sleep-wake transitions throughout

the night. Therefore we find the analogous results that older zebrafish spend

more time awake during the night than the younger ones, with wake spread

across fewer bouts. While sleep bout durations remain approximately the same

throughout the lifespan and the sleep fragmentation is stable across age, the

structure of wake is more susceptible to the effect of age, with longer wake

periods during the night and a decreased fragmentation in the adult zebrafish

when compared to larval and juvenile fish.

Comparison of Sleep-Wake Structure in Zebrafish and Humans

We can thus compare the ontology of the sleep-wake structure in zebrafish

with that in humans, and conclude that they follow a highly similar pattern

across the age groups. In both zebrafish and humans there is a generalized

decrease of the sleep ratio during the night, which is the same as to say that

older individuals spend more time awake during the night. In both zebrafish

and humans there is no change in sleep bout durations or sleep fragmentation

with age, while wake undergoes differences in both mean wake duration and

fragmentation with age. In both species the wake bouts become longer with

age and the wake fragmentation decreases. The only aspect which differed

was the number of sleep-wake transitions during the night, which in zebrafish

decreased with age while in humans it remained stable across age. We can

therefore conclude that the developmental pattern of the sleep-wake structure

in zebrafish mirrors that of humans to a great extent.
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Sleep-Wake Dynamics: Models and Approach

To study the dynamics of the sleep and wake bout distributions, we tested

them against four simple functional forms commonly used to study complex

dynamics: the exponential distribution, the power law, the stretched exponential

and the log-normal distribution (Newman, 2004; Goh and Barabási, 2008). The

exponential and the power law distributions have previously been found to

describe sleep bouts and wake bouts respectively, as we saw extensively in the

introduction to this chapter, section 4.1.2 Sleep-Wake Dynamics. The stretched

exponential has been found to describe the heavy-tailed activity dynamics in

Drosophila well (Sorribes et al., 2011 and 3.2 Dynamics of Spontaneous Walking

Activity), while the log-normal distribution is a commonly found heavy-tailed

alternative to especially to the power law distribution (Mitzenmacher, 2004).

The analytical expressions of these distributions are given by

f(x; τ) = 1/τ · exp(−x/τ) (4.1)

f(x;α, xlow) = (α− 1) · xα−1
low · x

α (4.2)

f(x; k, λ) = (k/λ) · (x/λ)k−1 · exp(−(x/λ)k) (4.3)

f(x;µ, σ) = (1/x)(σ22π)−1/2 · exp(−(ln(x)− π)2/2σ2) (4.4)

where Equation 4.1 is the exponential distribution, Eq. 4.2 is the power law,

Eq. 4.3 the stretched exponential and Eq. 4.4 the log-normal distribution.

These four distributions represent different generating mechanisms for the state

transitions, where the power law is indicative of complex scale-free dynamics,

while the log-normal arises from random events that have a multiplicative effect.

Both of these are heavy-tailed and bursty, while the exponential distribution

is indicative of a memoryless random (Poisson) process with a characteristic

time scale. The stretched exponential distribution on the other hand, is more

flexible and can capture both bursty and random dynamics depending on

its scale parameter k (Eq. 4.3). When k=1 the expression simplifies and

describes a (simple) exponential distribution, while when k<1 the stretched

exponential distribution becomes heavy tailed. An interpretation of the heavy

tailed stretched exponential distribution applied to state transitions is that there
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is an initial settling period for the dynamics. Before the system has settled the

probability of transitioning out of the state is high, but once settled, the system

tends to remain in its current state.

We applied the model selection procedure presented by Clauset et al. (2009).

In this procedure the following steps were detailed for each model, namely i)

finding the best fit to the data and its corresponding Kolmogorov-Smirnov (KS)

distance, ii) drawing a large number (N=10,000) of random samples from the

model distribution using the estimated parameters from the data, each random

sample being the same size as the data, and iii) performing a ‘plausibility’ or

consistency test by comparing the empirical KS distance to the ones from the

randomly sampled data, and thus obtaining a p-value. The final step, iv) is to

find the model that is the most consistent with the data among the different

plausible models, using the Akaike Information Criterion with a correction for

finite sample sizes (AICc) and/or the Bayesian Information Criterion (BIC).

To determine the best fit to the data we estimated the parameters using

maximum likelihood estimators (MLE) for the exponential, power-law and

log-normal distributions, while for the stretched exponential distribution we

used the linear fit between log(x) and log(-log(y)), where y is the survival

distribution, as we have previously shown in section 3.9 The Linear Fit Cor-

rectly Estimates the Parameters, that it robustly estimates the parameters of the

stretched exponential distribution for small sample sizes. The power-law expo-

nent α and the lower cut-off xlow were estimated following the best practices

recommended in (Clauset et al., 2009) for estimating the parameters of a power

law. All the distributions were shifted in time so that the distributions start at

the smallest bout duration determined by the experimental conditions (tmin),

such that x = t − tmin, where tmin is 30 seconds for human sleep and wake

bouts, while 6 and 1 seconds respectively for zebrafish sleep and wake bouts.

Human Sleep-Wake Dynamics Across Ontogeny

To accurately determine the possible functional forms of the distributions of

sleep and wake bouts, the numbers of unique bout durations is an important
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factor since the number of bouts with different durations determine the number

of points in the survival distributions. In humans we found, however, that the

sleep-wake dynamics are characterized by relatively few transitions and that

the variation in bouts durations is fairly limited. The number of sleep bout

durations was on average 13.6 (range: 7–21 among all individuals in the age

group) for Children, 16.6 (range: 10–28) for Preteens and Teens, 12.5 (range:

5–21) for Adults and 13.6 (range: 9–25) for Adults 50+. An even lower number

of unique wake bout durations was found, indicating that most awakenings are

short with most wake bout durations falling in the 30-sec or 60-sec bins. The

average number of unique wake bout durations for Children was 3.9 (range:

2–7), for Preteens and Teens 4.2 (range: 2–6), for Adults 4.5 (range: 1–8) and

for the Adults 50+ group 6.4 (range: 3–11).

While it is important to perform fits on an individual level, it is also important

that the underlying distributions have enough statistics to do so. To perform

meaningful model fits we thus established the criteria that the empirical distribu-

tions had to have at least 5 points (5 unique bouts durations) to be considered.

In the different age groups, however, only 5 Children, 4 Preteens and Teens,

8 Adults and 8 Adults 50+ met this requirement. As a consequence, we also

considered the pooled distributions of each age group for model selection.

The pooled sleep bouts distributions were found to be well fit by stretched

exponential distribution for Children (k=0.79, λ=31.6 minutes), Preteens and

Teens (k=0.78, λ=19.6 minutes) and the Adults group (k=0.76, λ=23.0 min-

utes), Figures 4.5 A–B [p. 113], whereas a power law distribution was favored

for sleep of the Adults 50+ group (α=2.2, xlow=2.5 minutes). From the fits

to each individual survival distribution we obtained k=0.84 ± 0.06 for Chil-

dren, k=0.84 ± 0.05 for Preteens and Teens and k=0.79 ± 0.07 for Adults,

Figure 4.5 A, with no statistically significant differences between the age groups.

We thus find that sleep bouts exhibit heavy-tailed distributions and hence have

more structure than in the random dynamics case when they follow an expo-

nential distribution (Lo et al., 2002, 2004), consistent with more recent finding

that also found more complex dynamics (Chu-Shore et al., 2010). Apart from

heavier tails than previously reported, the scale parameters are similar to the
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previously reported value of 22 minutes in healthy adult participants (Lo et al.,

2002), especially the Preteens and Teens and the Adult groups.

The pooled wake bout distributions were found to be consistent with a

power law for all age groups, with the exponent for Children estimated at α=2.4

(xlow=2.5 minutes), Preteens and Teens α=2.7 (xlow=1 minutes), Adults α=2.2

(xlow=1.5 minutes) and Adults 50+ α=2.2 (xlow=2.5 minutes), Figures 4.5 C–

D. The group mean exponents were α=1.78± 0.04 for Children, α=1.90± 0.04

for Preteens and Teens, α=1.71 ± 0.03 for Adults and α=1.83 ± 0.13 for

Adults 50+, with no statistically significant differences between the age groups,

Figure 4.5 D. These results thus match previously reported findings of wake

bouts following a power law distribution with an exponent α ≈ 2 (Lo et al.,

2002, 2004).

Zebrafish Sleep-Wake Dynamics Across Ontogeny

The dynamics of the zebrafish sleep-wake cycle, on the other hand, are domi-

nated by many more transitions during the night. A comparison of sleep-wake

dynamics between humans and zebrafish reveals that the transitions occurring

in the fish during the night are 10–100 times more frequent than in human

night sleep (cf. Figures 4.3 C and 4.4 C). In zebrafish the number of unique

sleep bouts were on average 94.7 (range: 58–164) for the 6–10 day group, 94.3

(range: 27–154) for the 4–6 week group, 81.9 (range: 22–131) for the 4–6

month group and 75.6 (range: 11–134) for the 12+ month group. As observed

in human sleep-wake dynamics, the unique wake bout durations were less

numerous, averaging 42.8 (range: 23–88) for the 6–10 day olds, 51.8 (range:

23–98) for the 4–6 week group, 85.9 (range: 56–128) for the 4–6 month olds

and 85.3 (range: 39–130) for the 12+ month olds.

The comparatively large number of unique sleep and wake bout durations

in zebrafish allowed us to perform model estimations on an individual level.

For each zebrafish, thus, each of the four model distributions (the exponential,

stretched exponential, power law and log-normal distributions) was fit to the

sleep and wake bout length distributions, following the steps i–iii outlined
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above. Briefly, the steps consist of estimating the parameters from the empirical

distribution and calculating a goodness-of-fit (GoF) measure; drawing a large

number of synthetic random samples from the distribution with the empirical

estimated parameters and calculating the GoF for each of the random samples;

and calculating how ’extreme’ the empirical GoF is in comparison to the syn-

thetic GoFs in the form of a p-value. This p-value then quantifies how plausible

it is that the empirical distribution stems from the model distribution, and by

this method we thus obtain a plausibility measure for each of the four model

distributions. The last step is the model selection, where all of the plausible

models are compared with the AICc and/or BIC to determine the best model

for the data. This procedure has been used to validate and debunk power laws

in a wide variety of empirical distributions, but usually these consist of a single

distribution for each phenomenon (Newman, 2004; Clauset et al., 2009). In our

case we have multiple individual distributions in each age group and would thus

quantify which of the model distributions is the best fit to the most individuals

in each group, to compare the age groups.

However, out of the 61 fits to the empirical sleep bout distributions across all

ages only about half (33 of 61, or 54%) were found to be plausibly consistent

with one or more models, and of these, 26 were only consistent with a single

model. Similarly, while 36% of the wake bout distributions were consistent

with one or more models, the majority, 91%, of those proved to be consistent

with one model only. The last step of using AICc or BIC to select among models

was thus generally superfluous, and we instead directly quantified which model

was found to be the most plausible in each of the age groups.

The low level of plausibility for any of the four models might create the

temptation to try with a wider array of distributions with a higher degree of

complexity, to capture features that the simpler models seem to not be able to

incorporate. There are however two main downsides to this approach. First,

the introduction of complex functional forms that have more parameters makes

it more complicated to interpret the distribution parameters and what they say

about the sleep-wake dynamics. Second, there is a clear risk of over fitting

when employing complex models to noisy data. With an increased number
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of parameters the complex models are more flexible and will thus be able to

better fit the kinks and twists of the individual distributions, but the information

gained will generally not be generalizable.

Many of our empirical sleep and wake bout distributions are indeed quite

noisy, as we can see in Figure 4.6. It is therefore quite unlikely that they would

be plausibly consistent with any reasonably simple functional form that we

might try. Importantly, though, is to consider that a failed plausibility test

only indicates that the empirical distribution does not purely follow the exact

functional form of the model, and that real-world noisy systems seldom do

(Alstott et al., 2014). This does not exclude that the models can still be useful

for parameterizing and comparing distributions that have a reasonable, albeit

noisy fit. This can probably most easily be seen visually in Figure 4.6, where

the models quite accurately capture the shape of the distributions despite the

many failed plausibility tests and noisy data.

The fits to the sleep bout distributions were thus found to most often

be described by the stretched exponential distribution in the 6–10 day olds

(k=0.69 ± 0.03, λ=20 ± 7 sec), 4–6 week olds (k=0.77 ± 0.03, λ=16 ± 2 sec)

and 4–6 month olds (k=0.71 ± 0.02, λ=14 ± 2 sec), Figures 4.5 E–F [p. 113].

Neither the shapes k nor the scales λ showed any statistically significant differ-

ences between the means of the age groups. The 12+ month olds, however,

had a larger proportion of power law and log-normal fits, tied with an equal

number of plausible cases. To determine the best model for this group we

applied AICc to the two cases where both models had been found plausible,

which favored the power law model over the log-normal, with α=2.8 ± 0.2.

We thus conclude that the sleep dynamics are heavy-tailed in all age groups,

characterized by longer sleep bouts being more frequent than in the random

(exponential distribution) case.

The wake bout distributions, in turn, were consistent with the power law

for all age groups, with α=4.1 ± 0.4 for 6–10 day olds, α=4.0 ± 0.1 for the

4–6 week group, α=2.6 ± 0.1 for the 4–6 month olds and α=2.4 ± 0.1 for the

12+ month olds, Figures 4.5 G–H. We observed that with age the power law

exponent α was reduced (F(3,57)=12.1, p<0.0001). Adult fish (4–6 month
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and 12+ month groups) exhibited significantly (p<0.0001) lower exponents of

the power-law fits to the wake bout distributions than the larval and juvenile

stages (6–10 day and 4–6 week groups), Figure 4.5 H. The wake bouts thus

exhibit markedly heavy-tailed distributions, where with age the likelihood of

soon falling asleep anew after having woken up becomes lower.

Comparison of Sleep-Wake Dynamics in Zebrafish and Humans

We can now compare the dynamics of sleep and wake across ontogeny in

zebrafish and humans. The sleep bout distributions were best fit by the stretched

exponential distribution in all age groups except the oldest, in both zebrafish

and humans (Figure 4.5). The distributions were found to be burstier than

random with k<1 in all age groups across species.

The wake bout distributions were found to follow a power law for all age

groups in both zebrafish and humans (Figure 4.5). In humans the power-law

exponent α was found to be around 2, like reported previously for humans,

cats, rats and mice (Lo et al., 2004). In zebrafish we found a similar power-law

exponent for the two adult fish ages, while the larval and juvenile ages showed

markedly steeper power-law relationships, indicative of a less bursty dynamics –

which is probably tied to increased sleep pressure and the shorter wake bouts in

the younger individuals. Although we found a clear power-law structure of the

wake bouts in the young larvae and juvenile fish, the shift towards a burstier

wake dynamics with age resembles that found in young rats, mice and sheep,

where newly born (or prenatal in the case of sheep) exhibit exponential(-like)

distributions in the early ages which turn into power laws as the animals mature

and grow (Blumberg et al., 2005, 2007; Karlsson et al., 2011).

Clearly, an important sleep-wake maturation takes place between the

4–6 weeks and 4–6 months of age in zebrafish (Figures 4.4 and 4.5), opening

the door for further studies of the sleep-wake dynamics during this critical time.

In humans the youngest participants were already 2 years old, when much

of the important sleep-wake maturation has already occurred. It would be

interesting to thoroughly study the development of the sleep-wake dynamics
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in even younger children, even though it poses important methodological

difficulties as the sleep-wake dynamics are highly non-stationary and undergo

important changes from around-the-clock sleeping to predominantly nightly

sleep as the sleep-wake cycle comes under circadian control during the first

year of infancy (Jenni et al., 2004, 2006; Peirano et al., 2003).

Despite some differences in early development, we conclude that the dy-

namics of both sleep and wake are very similar in zebrafish and humans across

ontogeny.

4.2.3 Conclusions

We studied the sleep-wake cycles of humans and zebrafish at different ages

along the lifespan. In humans the different life stages were represented by the

age groups of Children, Preteens and Teens, Adults and Adults ’50+’, while in

zebrafish the groups comprised of larvae, juvenile fish, young adults and adult

fish. By combining the different sub-stages of human sleep and only considering

the state transitions between sleep and wake, meaningful comparisons become

available also to species with behaviorally defined sleep criteria.

We first studied the structure of sleep and wake in humans and zebrafish.

We found that older individuals spend less time asleep during the night than

the younger groups in both humans and zebrafish, while there is no change in

sleep bout durations or sleep fragmentation with age. The wake bouts on the

other hand become longer with age and the wake fragmentation decreases in

both species. Apart from a difference in the number of sleep-wake transitions

with age, the sleep-wake structure in zebrafish resembles that of humans to a

great extent across ontogeny.

We next studied the dynamics of sleep and wake, by fitting the sleep and

wake bout distributions against four common modeling distributions: the

exponential, stretched exponential, power law and log-normal. In humans

we were able to replicate and extend previous findings, while in zebrafish it

had never been studied before. In both humans and zebrafish the sleep bout

distributions were best fit by a stretched exponential distribution for all age
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groups except the oldest, which was better fit by a power law. We thus found

that the sleep bout dynamics exhibit more structure than had generally been

found previously. The wake bout distributions were best fit by the power-law

distribution, in accordance with previous findings, which we have now shown

extends to zebrafish as well.

The findings that both the sleep-wake structure and dynamics in zebrafish

resembles that of humans to such a high degree points to a conserved evolution-

ary control of the sleep-wake control and the underlying neural circuitry. We

have thus shown that the zebrafish sleep state is very similar to human sleep

across ontogeny, and thus further validated the zebrafish as a valuable animal

model for sleep research.

4.2.4 Material and Methods

Human Sleep Data

Nightly sleep-wake data were provided by Karl Æ. Karlsson from the University

of Reykjavik, Iceland. Briefly, the procedure to acquire the human sleep-wake

recordings was as follows.

Possible candidates for the study were drawn from a randomized sample

from the national registry of Iceland of 1000 inhabitants from the Reykjavik

area. Of the over 250 contacted candidates, 78 accepted to partake in the

study. After screening for sleep-related health issues, 57 healthy participants

were included and underwent an unattended ambulatory polysomnography

(PSG) with a digital recording system (Medcare Inc., Iceland). 1 participant

was excluded due to suspected hypothyroidism and 6 PSGs were unusable

for technical reasons, leaving 50 participants between the ages of 2 and 74

participating in the study.

The unattended ambulatory PSGs were recorded at home between 22:00 and

08:00, and the participants were instructed to follow their normal daily sleep

routine as closely as possible. The recordings were scored by an accredited sleep

technologist in 30-s epochs as either non-REM sleep stages 1–4, REM sleep, or
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wake, in accordance with the Rechtschaffen and Kales criteria (Rechtschaffen

and Kales, 1968). For subsequent analysis the non-REM and REM sleeping

stages were unified into a single sleeping state.

For further detail on the data acquisition process, please see (Sorribes et al.,

2013) for a longer description of the Recruitment, Questionnaire and Proce-

dure used to obtain the human sleep-wake data. In addition, the data col-

lection has also been described in detail in (Arnardóttir et al., 2010). The

study was approved by the Icelandic National Bioethics Committee (permit

VSNb2007100011/03-15).

Zebrafish Sleep Data

Nightly sleep-wake data were provided by Karl Æ. Karlsson from the University

of Reykjavik, Iceland. Briefly, the procedure to acquire the zebrafish sleep-wake

recordings was as follows.

Zebrafish of the Tübingen reference strain were obtained from the University

of Oregon Zebrafish International Resource Center. Four age groups were

selected to approximately represent the different stages along the zebrafish life:

larvae, just after they have developed an observable sleep-wake pattern (6–10

days old), juvenile fish (4–6 weeks old), young adults (4–6 months old) and

adult fish (12+ months). The typical lifespan of zebrafish in captivity is 2–3

years (Spence et al., 2008).

The zebrafish were entrained to a daily cycle of 14:10 light:dark with lights

on at 07:00 and off at 21:00, and with daily feeding at 12:00 (noon). The

experimental set-ups were blocked from natural light and instead illuminated

from below with white light (255 lx) during the lights-on period and infrared

light (0 lx) during the lights off period. Recordings started at noon and contin-

ued for 48 hours, after the first day of acclimatization. Larvae were recorded in

24 well plates and the juvenile fish in 12 well plates, while the adult fish were

recorded in individualized compartments inside an opaque tank. All recordings

were performed at a 28.5 ◦C water temperature, with circulating water.

The movements of the zebrafish were recorded with the Ethovision XT 7.0
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behavioral tracking system (Noldus Information Technology), which allows the

velocity of each fish to be tracked in two dimensions. After the recordings, the

velocity data were divided into 1-second bins and classified as either movement

or non-movement according to an age-dependent velocity threshold. The veloc-

ity thresholds were found to scale with body mass, determined and verified by

three independent human raters. The velocity thresholds were 0.5 cm/s for the

6–10 days (Sigurgeirsson et al., 2011), 0.75 cm/s for the 4–6 weeks, 1.0 cm/s

for the 4–6 months, and 1.5 cm/s for the 12+ month olds. Subsequently,

the movement/non-movement data were dichotomized into sleep and wake

using the established criteria of sleep occurring after 6 seconds of immobility,

in both larvae and adult fish (Yokogawa et al., 2007; Zhdanova et al., 2008;

Sigurgeirsson et al., 2011; Singh et al., 2013).

For further detail on the data acquisition process, please see (Sorribes et al.,

2013) for a longer description of the Fish, Procedure and Data Preprocessing

used to obtain the zebrafish sleep-wake data. All the procedures of the study

were in compliance with the regulations of the National Bioethics Committee

of Iceland, with a permit issued to Karl Æ. Karlsson on 19th May 2008 (no

number).

Statistical Analysis

All data on human and zebrafish sleep-wake bouts were imported into Matlab

2010a (The MathWorks Inc.) for analysis. To test the influence of age on

the sleep and wake structure parameters (ratio percentage, bout duration,

number of bouts and fragmentation index) analysis of variance (ANOVA) was

used, with the null hypothesis that all of the means across the age groups

were the same. Two-tailed Student’s t-tests were used to test the specific pair-

wise difference between age groups, using the Holm-Bonferroni correction for

multiple comparisons. The family-wise type I error rate was set to α=0.05 for

both the ANOVA and the sets of multiple pair-wise comparisons.

The two-tailed Student’s t-test was implemented with care to fulfill the

prerequisites of the standard parametric tests. For each pair-wise test, the two
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groups were tested with the Lilliefors test of normality and with the two-sample

F-test for equal variances. If both groups were normally distributed (or rather,

failed to be rejected as coming from a normal distribution) and the variances

were not unequal (i.e. “equal”) the standard parametric Student’s t-test was

used, while if the variances were unequal, the Welch’s t-test was used. If

however one (or both) of the two group samples did not pass the normality test

the t-statistic was bootstrapped with a resampling of 10,000 to calculate the

probability of finding a result at least as extreme as the test t-statistic.

All values in the text are presented as the mean ± standard error of the

mean (s.e.m.), unless otherwise noted. In the figures containing box plots, the

whiskers extend to the lowest and highest values within the 1.5 interquartile

range (IQR), which corresponds approximately to ±2.7 standard deviations

and 99.3% coverage if the data are normally distributed. Values outside the 1.5

IQR are considered outliers, and are plotted with square symbol outside of the

whisker range.
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5. ACTIVITY-REST DYNAMICS AND NEURONAL EXCITABILITY OF DMIH

5.1 Introduction & Background

In this chapter we will take a somewhat different approach and make an in-

depth exploration into the neuronal current Ih, known as the “pacemaker”

current, and see its effect on neuronal excitability in Drosophila. But first we

will learn a bit more about the Ih current and the HCN channels and see how it

got the name of “pacemaker” by regulating rhythmic electrical activity.

5.1.1 The Ih Current

The Ih current is a slow inward ionic current which activates at hyperpolarization

and depolarizes the membrane (Robinson and Siegelbaum, 2003). It arises

through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels

(Robinson and Siegelbaum, 2003). The HCN channels are selectively permeable

to the monovalent cations Na+ and K+, but not to Li+ or divalent cations (Pape,

1996). Unusually for voltage channels, the HCN channels are modulated by

cyclic nucleotides which bind to the channel and shift the voltage dependence

towards more positive potentials (Wahl-Schott et al., 2014). Neurotransmitters

and hormones can thus modulate the dynamic properties of the channel through

the secondary messenger cAMP (Tsien, 1974; DiFrancesco and Tortora, 1991).

The HCN channels are structurally composed of four subunits, which are in

turn each composed of six transmembrane helices (He et al., 2014). In mammals

there exist four different kinds of subunits, each encoded by a different gene

(HCN1–4) (Ludwig et al., 1998; Santoro et al., 1998). The HCN channels can

be homomerically or heteromerically assembled in a cell specific pattern, and

confer different electrical properties (Altomare et al., 2003).

The Ih current was first discovered three–four decades ago rather concur-

rently in rod photoreceptors, hippocampal pyramidal neurons as well as in

sino-atrial node cells and Purkinje fibers of the mammalian heart (Pape, 1996).

The current has primarily been studied in mammals, where it has been found

throughout the nervous system and heart. The study of the Ih current has

124



5.1 Introduction & Background

however also extended to the zebrafish Danio rerio and the fruit fly Drosophila

melanogaster (Baker et al., 1997; Marx et al., 1999). In Drosophila, Ih seems to

be located throughout the nervous system and in the aorta, but advancements

have been hampered by the lack of effective antibodies to identify the HCN

channels (Marx et al., 1999; Monier et al., 2005).

The electrical properties and the resulting physiological effect of the Ih
current have been perplexing since the very beginning. When the current was

first discovered, it was named If for “funny” in the heart (Brown et al., 1979)

and Iq for “queer” in hippocampal neurons (Halliwell and Adams, 1982), but

the name Ih was later settled on for its hyperpolarized activation. The activation

upon hyperpolarization and deactivation by depolarization is what especially

sets this current apart – and that a substantial degree of HCN channels remain

open and depolarize the membrane at resting potentials (Wahl-Schott et al.,

2014). These electrical properties, in conjunction with its permeability to Na+

and K+ and modulation by cAMP, are what is thought to confer Ih its ability to

control rhythmic activity in the heart and nerve populations (Wahl-Schott et al.,

2014).

Physiologically, Ih has been found to have several different functions, includ-

ing controlling and limiting the resting potential, controlling the membrane

resistance and the signal integration in dendrites, regulate synaptic transmis-

sion, and controlling pacemaker activity in the heart and brain (Robinson and

Siegelbaum, 2003). The pacemaker function is not only important for estab-

lishing and maintaining a correct heart rhythm, but also in the brain, where

specialized pacemaker cells generate spontaneous rhythmic activity that under-

lies the coordinated activity of behavioral states (Santoro et al., 1998). Ih is

found in many regions and neuronal types throughout the brain, and is impor-

tant for regulating arousal and sleep; learning and memory; and perceptual

representation and consciousness (Lewis and Chetkovich, 2011).
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5.1.2 Activity-Rest Patterns of DmIh Null Mutant

An important cell type that expresses the Ih channel are the dopaminergic

neurons. Dopamine has been shown to be important in many higher order

brain functions, like sleep and wake, learning and memory and consciousness

(Palmiter, 2011). Dopaminergic neurons exhibit spontaneous rhythmic activity

patterns, which can be modulated by neuronal inputs. The Ih current has been

found to be important in regulating the firing rate of the spontaneous activity

(Seutin et al., 2001; Neuhoff et al., 2002; Zolles et al., 2006), and the HCN

channels have been identified as key targets through which neurotransmitters

can alter the dopaminergic firing rate (Cathala and Paupardin-Tritsch, 1997; Liu

et al., 2003; Arencibia-Albite et al., 2007). In addition, HCN channels have also

been implicated in several dopamine-related disorders like Parkinson’s disease

(Chan et al., 2011) or schizophrenia (Arnsten, 2007).

As mentioned in the previous section, there exist four genes that encode

subunits for the Ih channel in mammals (HCN1–4). While most studies have

centered on the Ih current in the heart, a few studies have investigated the

consequences of blocking one of the HCN genes in neuronal populations (Lewis

and Chetkovich, 2011; Herrmann et al., 2007). Taking advantage of the fact

that the Drosophila genome only contains a single Ih gene, named DmIh, a

collaborating group created a null mutation for this gene (DmIh−) by deleting

a core region of the channel and thus creating a non-functioning variant of the

HCN channel (Gonzalo-Gómez et al., 2012).

With this Ih null mutation Gonzalo-Gómez et al. (2012) were able to study

the effects of complete abolishment of the Ih current throughout the entire

organism. In particular, their study centered on the behavioral effects of missing

the Ih current on the activity-rest pattern, and how it relates to dopamine. To

establish baseline results they first measured the levels of dopamine in wild-type

flies, and found that it cycles throughout the day. In the DmIh null mutants,

however, dopamine lost the cyclicity during the day (light period) but with

overall normal levels, while the dopamine levels increased significantly during

the night (dark period).
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5.1 Introduction & Background

The behavioral consequences of the DmIh− induced dopamine alteration

were studied next. The Ih current null mutants had overall lower activity levels

during the day, in particular during the characteristic “dawn” activity peak.

Measuring sleep-wake parameters during the day and night, they found that

sleep levels were increased during the day, while not significantly different

during the night. The sleep fragmentation was however affected during both

day and night, with shorter and more numerous sleep bouts. We studied the

activity dynamics in these flies, and found a strong effect on burstiness during

the night, and a weak effect during the day. Taken together, the results suggest

that the Ih current in Drosophila is necessary for preventing an overproduction

of dopamine during the night, while Ih is necessary for a correct cycling of

dopamine during the day.
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5.2 Electrophysiological Study of the DmIh NMJ

5.2.1 Introduction

The null mutation for the Ih current creates a behavioral phenotype in adult

Drosophila, affecting the activity-rest patterns by modulating the dopaminergic

signaling (Gonzalo-Gómez et al., 2012). In addition there was a differential

effect on the activity intensity (mid-point crossings/active minute) during day

and night. At day, the flies showed a decreased walking intensity during the

active periods, while at night it reversed, with an increased walking intensity

during active episodes compared to control flies.

To better understand the physiological effect of a missing Ih current in

Drosophila, the larvae were examined for a possibly similar phenotype, since

the Drosophila larvae have a much simpler nervous system than the adult flies.

The null mutation mutants DmIh− were indeed found to have a locomotor

phenotype, as well as an altered morphology of the neuromuscular junction.

Both walking speed and the total distance traveled were lower than in controls,

as well as the number of stops and turns – which in the Drosophila larvae are

search and decision-making events (Wang et al., 1997).

Since the Drosophila larval neuromuscular junction is an ideal system for

electrophysiological examination due to its simple constitution of easily accessi-

ble muscles and motoneurons, as well as having a simple and easily quantifiable

morphology and locomotor behavior, we decided to further investigate how

the Ih current affects locomotion in the Drosophila larva together with our

collaborators at the laboratory of Dr. Inmaculada Canal (Universidad Autónoma

de Madrid).

To this extent, our collaborators generated a dominant negative isoform

IhDN, which dominates and disrupts the normal Ih channel function in

Drosophila. With this dominant negative isoform we could express the blocking

of the Ih current with Gal4/UAS constructs selectively in either motoneurons

(D42-Gal4/UAS-IhDN) or muscles (24B-Gal4/UAS-IhDN).
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Morphologically, the DmIh− null mutants showed a drastic decrease in the

number of synaptic boutons, which is usually a sign of reduced excitability

(hypoexcitability). The size of the synaptic boutons was larger than in the

control strain (henceforth called ’ISO’ for isogenic), which was surprising as the

opposite result would be expected for a hypoexcitable strain (Lnenicka et al.,

2003). When analyzing the number of active sites per bouton, however, it was

found that the increase in size was not accompanied by a proportional increase

of synaptic release sites, as the number of active sites was lower than in controls.

To further probe the effect of abolishing the Ih current, the IhDN was expressed

in either motoneurons or muscles, after having confirmed with RNA in situ

hybridization that Drosophila larval muscles also express the Ih channel. Both

targeted expressions yielded an identical pattern to the DmIh−, indicating that

the Ih current is needed both pre- and postsynaptically for a normal maturation

of the neuromuscular junction.

Turning to behavior, the DmIh− null mutation had a slower crawl speed,

more frequent pauses as well as decision-making events, and an overall shorter

crawl path, as mentioned above. The presynaptic mutant (D42/IhDN) showed

a similar phenotype with slower crawl speed and shorter overall distances, but

did not show a difference in the number of pauses and decision-making events

compared to controls. This indicates that the locomotor movement is affected

in the presynaptic mutant, but not the decision-making phenotype which is

controlled in the central nervous system (Peron et al., 2009). The targeted

expression of the dominant negative in the postsynaptic muscles (24B/IhDN)

did not however display any locomotor defects, despite the morphological

phenotype.

In addition to the effects on the displacement parameters, the DmIh− and

presynaptic mutant also had an aberrant body movement, in the form of altered

peristaltic waves. Both mutants had an increased peristaltic contraction fre-

quency, while only the general mutant (DmIh− ) had a concomitant reduction

of the stride length, which often occurs in ion channel mutants (Wang et al.,

2002). These results are particularly interesting given the role of Ih in the

maintenance of rhythmic activity.
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In conjunction with these results, we performed an electrophysiological study

of the effects of the general, presynaptic and postsynaptic silencing of the Ih
current in Drosophila larvae. To control for developmental effects, we also used

the Ih specific pharmacological blocker ZD7288 to test the immediate effect of

blocking the Ih current on the synaptic transmission at the larval neuromuscular

junction.

This study has been done in collaboration with members of the laboratory

of Dr. Inmaculada Canal (Universidad Autónoma de Madrid), in particular

with Alicia Gonzalo Gómez who generated the mutants and performed the

morphological study, and JM Barcia who performed and analyzed the locomotor

assays.

5.2.2 Results & Discussion

Spontaneous and Evoked Junction Potentials

To test the physiological effects of genetically removing the Ih current from

either the whole animal, only presynaptically in motoneurons or only postsy-

naptically in the muscles, we performed intracellular recordings from muscles 6

& 7 in segments A3 and A4 of wandering third instar Drosophila melanogaster

larvae. To study the spontaneous neurotransmitter we severed the innervat-

ing nerve and recorded the miniature end-plate potentials (mEPPs) caused

by presynaptic spontaneous release of vesicles. The mEPP amplitude distribu-

tions were significantly shifted towards higher values in DmIh− and D42/IhDN

(general expression and presynaptically), with a mean increase of 28% and

34% respectively (pDmIh=0.003 and pD42=0.001), while no significant change

was observed postsynaptically in 24B/IhDN (p=0.41), Figure 5.1. No statis-

tically significant changes in frequencies of mEPPs were found (pDmIh=0.086,

pD42=0.94, p24B=0.97). The resting potential of the muscle membranes were

also not statistically different between genotypes (pDmIh=0.086, pD42=0.94,

p24B=0.97).

Evoked junction potentials (EJPs) were measured by stimulating the severed

nerve at a 0.5 Hz frequency. No significant differences between genotypes were
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5.2 Electrophysiological Study of the DmIh NMJ

Figure 5.1: Miniature Spontaneous Neurotransmitter Release. Main

Panel: Distribution of mEPP amplitudes for the general DmIh null mutant

(red), presynaptic (orange) and postsynaptic (yellow) mutants, and their

controls. The distribution of amplitudes is shifted towards larger values in

the presynaptic and general mutants. Inset: Comparing the mean mEPP

amplitudes reveals that the general and presynaptic lack of Ih leads to statisti-

cally significantly larger miniature potentials, as compared to their respective

controls. Error bars indicate s.e.m. while asterisk p<0.05.

observed in muscle resting potential (pDmIh=0.29, pD42=0.83, p24B=0.48) and

the average resting potential was -70 mV across genotypes. No significant

differences were found among the EJP amplitudes (pDmIh=0.65, pD42=0.11,

p24B=0.57), with a mean amplitude across genotypes of 49 mV. Considering

that there were differences in the mEPP amplitudes, but not in the EJP ampli-

tudes, we next calculated the quantal content (the number of effective vesicles

released in response to a nerve impulse) as the mean EJP amplitude divided

by the mean mEPP amplitude, which was found to be 13% lower in DmIh−

(p=0.03) and 26% lower in D42/IhDN (p=0.0002) compared to controls,

while 24B/IhDN had no apparent difference (-1.2%, p=0.91), Figure 5.2 A.

This means that DmIh− and D42/IhDN release fewer vesicles but with more

neurotransmitter content than the controls in order to produce comparable

EJPs.
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Figure 5.2: Characteristics of the Evoked Junction Potentials. (A) Quan-

tal content, defined as the mean EJP amplitude divided by the mean mEPP

amplitude, measures the number of effective vesicles released in response to

a nerve impulse. (B) The time constant τ of an exponential fit to the decay

shape of the EJPs. A lower time constant indicates that the EJPs decay faster.

Error bars indicate s.e.m. while asterisk p<0.05.

The latencies between stimuli and EJP responses were found to be similar in

all genotypes, while the shape, quantified by the time constant of an exponential

fit to the tail of the EJP (Figure 5.2 B:Inset), was found to be reduced by 16.2%

in DmIh− (p=0.045), i.e., the EJPs decayed slightly faster, Figure 5.2 B.

Adaptation Effect of the EJP Responses

The presence of a ’hysteresis’ effect of the NMJ response was assayed by a stairs

protocol which, in essence, stepwise incremented the stimuli for each repetition

(15 traces at 0.5 Hz, with 2 s pause in between) until reaching a maximum EJP

response and then symmetrically decreased it. The facilitation (or depression)

was then calculated as the difference between the EJP responses to the stimuli

during the decrease and increase phases. DmIh− showed depression, i.e., a
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5.2 Electrophysiological Study of the DmIh NMJ

Figure 5.3: Adaptation Effect to a Variable Stimulus. A ’hysteresis’ proto-

col was employed to assess the level of adaptation depending on previous

stimuli. (A) Lower panel: The stimulus size was step-wise incremented until

reaching a maximum, and then decreased symmetrically. Main panel: Exam-

ple EJP amplitude response to the stimulus steps. (B) The same example EJP

responses plotted as EJP amplitude vs. stimulus size. The color indicates the

stim. sequence, starting at blue and ending at red. (C) The normalized area

between the ascending and descending curves in (B) quantifies the degree of

adaptation. Error bars indicate s.e.m. while asterisk p<0.05.

loss of responsiveness to stimuli depending on the previous stimulus strength

history (p<0.001 with respect to zero, p<0.001 with respect to control), while

D42/IhDN and 24B/IhDN showed no adaptation (pD42=0.12, p24B=0.72 with

respect to zero), Figure 5.3.

Taken together, thus, these results indicate a presynaptic effect of disrupting

the Ih current, as D42/IhDN has increased mEPP amplitude and lower quantal

content, DmIh− has increased mEPP amplitude, lower quantal content and

shows adaptation, while physiologically the 24B/IhDN mutant is indistinguish-

able from its corresponding controls.

Pharmacological Ih Channel Blocker

To further probe the physiological effect of the Ih channel in Drosophila , we

used the Ih channel blocker ZD7288 to help distinguish between possible
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Figure 5.4: Effect of Pharmacological Ih Blocker. Pharmacologically block-

ing the Ih channel reveals a presynaptic function for the Ih current. (A) The

mean EJP amplitude was measured over 50 sets of repetitions (each set 10

stimulations at 0.5 Hz), with the Ih blocker added after the 10th repetition

(gray area). (B) The effect of the pharmacological blocking of the Ih channel

was assessed at the 50th repetition, revealing a significant decrease of the EJP

amplitude in the genotypes with a pre-experimental functioning presynaptic

Ih current. Error bars indicate s.e.m. while asterisk p<0.05.

developmental compensatory effects of a continuous lack of Ih current and

the direct functional effect of blocking the Ih channel. ZD7288 has been used

previously in mammal preparations (Neuhoff et al., 2002; Puopolo et al., 2007;

George et al., 2009), but never before in Drosophila.

Briefly, the protocol consisted of 50 repetitions of 10 traces at 0.5 Hz stim-

ulation, with 2 s pause between each repetition. 110% of the lowest voltage

shock that produced full EJP amplitude responses was used as the stimulus.

The first 10 repetitions served as baseline recordings, with the ZD7288-saline
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5.2 Electrophysiological Study of the DmIh NMJ

mixture slowly added to the bath starting at the 11th repetition. An additional

set of experiments were also performed on ISO larvae to control for the method,

where only the vehicle (saline with no drug) was added instead, henceforth

referred to as ‘ISO-Ctrl’. ISO-Ctrl showed a slight decrease of the EJP amplitudes

over the course of the stimulations, while ISO showed a significantly larger

decrease of the EJP amplitudes when applying ZD7288, compared to ISO-Ctrl

(p<0.001), Figure 5.4. When the drug was applied to DmIh− it had no mea-

surable effect, seen as a non-significant difference with ISO-Ctrl, concurrently

with a large significant difference with ISO (p<0.001), showing that ZD7288

is a specific blocker of the Ih current also in Drosophila. Similarly, D42/IhDN

did not significantly differ in comparison to the ISO-Ctrl (p=0.71), while its

controls UAS-IhDN and D42-Gal4 both had significantly smaller EJPs (p<0.01).

Lastly, 24B/IhDN EJPs were not significantly different than its controls (p=0.89),

which in turn were all significantly smaller than ISO-Ctrl (p<0.021). We thus

further conclude that the effect of the Ih blocker on the EJP amplitudes must

be presynaptic, since the Ih blocker caused no effect in D42/IhDN, which has

the IhDN expressed in the motoneurons, while causing a differential effect in

24B/IhDN, with the directed disruption of Ih channels in the muscles. The de-

creased amplitudes of the EJP responses point towards a decreased excitability

of the motoneurons when functioning without the Ih current.

5.2.3 Conclusions

We studied the functional role of the null mutation of the Ih current in the

Drosophila larval neuromuscular junction, motivated by an observed locomotor

and decision-making phenotype coupled with a morphological phenotype in

these larvae.

First we studied the spontaneous release of neurotransmitter vesicles in the

neuromuscular junction, and found that the generally Ih-lacking (DmIh−) and

the presynaptically Ih-lacking (D42/IhDN) genotypes had larger miniature end-

plate potentials (mEPPs) than their control strains, while the postsynaptically

Ih-lacking (24B/IhDN) genotype were indistinguishable from the controls. This
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translated to an identical presynaptic effect on the quantal content, i.e. the

number of effective vesicles released in response to stimulus, since there were

no significant different of the evoked junction potentials (EJPs) among the

groups. The only noticeable difference of the EJPs was a faster decay rate in

the generally expressed DmIh−.

We next assayed the dynamical properties of the adaptation response to a

variable stimulus sequence, by applying a symmetric stimulus ’stair’ protocol.

This allowed us to measure the ’hysteresis’ effect as the difference in response to

a stimulus depending on the intensity history of the stimuli. We found that the

general DmIh− null mutant exhibited a desensitization, or fatigue syndrome,

as compared to the control, with less ample EJPs in response to the same

stimuli but after having recently received stronger stimuli. The other selectively

expressed pre- and postsynaptic IhDN did not exhibit a similar effect.

Lastly, we examined the role of developmental adaptation to the lack of Ih
current, by applying a pharmacological Ih-channel blocker. Since the electrical

properties of the larval neuromuscular junction during development are estab-

lished dynamically, channel defects or other irregularities can be corrected and

compensated for during development (Collins and DiAntonio, 2007). Using

a pharmacological agent to externally block the channel function therefore

reveals the immediate effect of missing the Ih current. We found that the EJP

amplitudes gradually decreased over the course of repeated stimulation in all

the genotypes that had a functioning Ih channel prior to applying the blocker,

while the blocker had no effect on the genotypes with an already genetically

non-functioning Ih channel.

We thus conclude that the locomotive phenotype is due to a defective presy-

naptic neuronal function, and not due to reduced excitability of the muscles.

The lack of Ih current causes a reduced excitability to prolonged and varied

stimuli, causing a fatigue syndrome, responsible for the slower crawl velocities

and the shorter overall distances covered by the larvae.
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5.2.4 Material and Methods

Dissection

The neuromuscular electrophysiological experiments were performed on third

instar wandering larvae using the standard "open-book" preparation (Broadie,

2000). Briefly, the larvae were pinned down on a sylgard coated petridish, were

covered in ice cold extracellular saline and a longitudinal mid-dorsal incision

was made, permitting the edges to be pinned down, spreading out the surface

and exposing the body wall musculature. Internal organs including the CNS

were carefully removed with fine dissection scissors, with particular care given

to cleanly cutting the segmental nerves of segments A3–A4. The saline HL3 was

used as extracellular saline (Broadie, 2000), consisting of (in mM): 70 NaCl,

5 KCl, 1.5 CaCl2, 20 MgCl2, 10 NaHCO3, 5 Trehalose, 115 Sucrose, 5 HEPES,

adjusted to a pH of 7.2.

Electrophysiology

Intracellular recordings were performed on muscles 6 or 7 from segments A3–

A4 with microelectrodes containing 3 M KCl electrolyte and with tip resistances

≤50 MΩ (mean: 31.8 MΩ) in a room with a controlled temperature of 18–20◦ C.

The custom-built BioSyst software (Juusola and de Polavieja, 2003) (National

Instruments board interface MATDAQ, (c) HPC Robinson, 1997–99) was used

to perform all experiments. Only recordings with a resting potential −60 mV

were used.

Spontaneous neurotransmitter release events (mEPPs) were passively

recorded for 1 minute at 10 kHz, after a low-pass filtering at 0.3 kHz (LPBF-

01G, npi instruments). The raw recordings were then passed through a simple

smoothing function with a window of 22.5 ms and subsequently down-sampled

by 1/10. mEPPs were identified as all those peaks above 0.3 mV (minimum am-

plitude threshold) that had a fast rise time (so as to exclude mEPPs from neigh-

boring muscles). The mEPP minimum amplitude threshold was determined

by analyzing the noise histograms of proximal extracellular recordings. The
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number of recordings was as follows (with number of different larvae in paren-

thesis): 25 (15) DmIh, 23 (14) D42/IhDN, 23 (14) 24B/IhDN, 28 (16) D42-Gal4,

30 (16) 24B-Gal4, 28 (17) UAS-IhDN, 23 (10) ISO. When possible, recordings

were performed on both the left and right side of each larva.

For the evoked responses, suction pipettes with diameters of 5–10 µm were

used to stimulate the severed nerve ends (ISO-STIM 01M, npi instruments).

EJPs were acquired at 0.1 kHz using a dynamic protocol of variable steps of

stimulation intensities, where each step consisted of 15 identical nerve stim-

ulations at a 0.5 Hz frequency, with 2 seconds pause between each step. The

stimulation intensity was increased step-wise until at least one EJP amplitude

≥40 mV (or after a maximum number of attempts once the muscle started

responding), stepped up 3 more steps for a reliable response of both the Ib

and Is motoneurons and then stepped down with the same stimuli intensities

used for the ascent. During the posterior analysis the mean amplitude of each

set was calculated for all EJPs ≥30 mV where the response was confirmed to

be of Ib+Is type (both the Is and Ib identified separately). The total number

of recordings was as follows (with number of different larvae in parenthe-

sis): 30 (15) DmIh, 30 (15) D42/IhDN, 29 (15) 24B/IhDN, 35 (16) D42-Gal4,

34 (16) 24B-Gal4, 30 (17) UAS-IhDN, 23 (10) ISO.

For the Ih channel blocker experiments, 100 µM ZD7288 mixed with 1 ml

HL3 saline was administered through a Pasteur pipette by slowly and steadily

injecting the mixture into the extracellular saline, close (∼1 cm) to the recording

site. A similar step-up protocol as described above for finding the adequate

stimulation intensity was used, but with 50 sets of 10 traces at 0.5 Hz and 2

seconds pause between. The drug (or control saline) was administered right

after the 10th stimulation set, leaving the first 10 sets as control reference and

the remaining 40 sets for assessing the drug effect. During the posterior analysis

the mean amplitude for each set was calculated over all the traces of the set.

The number of recordings was as follows: 6 ISO-Ctrl, 6 DmIh, 8 D42/IhDN,

5 24B/IhDN, 6 D42-Gal4, 7 24B-Gal4, 4 UAS-IhDN, 24 ISO. Since drug (or

saline) was administered during the recordings only one recording per larva

was possible.
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Statistical Analysis

All values are presented as mean ± s.e.m. (standard error of the mean). The

statistical significance level α was set to 0.05 and a significant difference is

denoted with an asterisk (*). The two-tailed Student’s t-test was used through-

out with the Bonferroni correction for multiple comparisons. If both samples

passed the Lillie test of normality the standard two sample t-test was used,

otherwise the t-statistic was bootstrapped with a resampling of 10,000. All

the electrophysiological data analysis was performed in MATLAB R2009a (The

MathWorks Inc., Natick, MA).
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Conclusions

• The Drosophila melanogaster walking activity dynamics are bursty with

heavy-tailed distributions. Both the initiation of activity (inter-activity

intervals) and the maintenance of activity (activity bout durations) have

bursty dynamics. The activity dynamics are almost memoryless.

• The Drosophila inter-activity interval distribution is well described by the

stretched exponential function (Weibull distribution). The fitting method

was shown to be accurate by validating with artificial data.

• The bursty dynamics in Drosophila is affected in mutants with an impaired

decision-making process. Enhanced levels of dopamine affect burstiness

the strongest, making behavior more random. The Mushroom Bodies also

affect behavioral burstiness, while the Central Complex did not.

∼

• Human sleep-wake structure is affected by age, with a decreased wake

fragmentation and longer nightly awakenings, leading to a shorter overall

sleep. The sleep bout distributions show bursty (and not random) dy-

namics, with stretched exponential and power law fits. The wake bout

distributions show even burstier dynamics, with overall power law fits.
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CONCLUSIONS

• Zebrafish sleep-wake structure is affected by age, decreasing the wake

fragmentation and the number of sleep-wake transitions per night, while

increasing the wake durations and the total time awake. The sleep bout

distributions show bursty dynamics with stretched exponential and power

law fits, while the wake bout distributions show even burstier dynamics,

with power law fits to all age groups.

• The ontogeny of the zebrafish sleep-wake cycle show a very high degree

of similarity to that of humans, suggesting a conserved mechanism of

sleep-wake regulation and further validating the zebrafish as a valuable

’simple’ model organism for the study of sleep.

∼

• The locomotive phenotype of DmIh is due to a defective presynaptic

neuronal function, and not to reduced excitability of the muscles. The lack

of Ih current leads to a decreased neuronal excitability of the motoneuron,

especially visible when applying a pharmacological blocker of the Ih
channel.
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Conclusiones

• La dinámica de actividad de Drosophila melanogaster cuando camina

es rafagosa con una distribución de cola pesada. Tanto la iniciación

de actividad (los intervalos de interactividad) y el mantenimiento de

actividad (las duraciones de actividad) tienen una dinámica rafagosa. La

dinámica de actividad no tiene casi memoria.

• La distribución de intervalos de interactividad en Drosophila se de-

scribe bien por la distribución de exponencial estirada (la distribución

de Weibull). El método de ajuste fue validado con datos artificiales y

mostrado ser correcto.

• La dinámica rafagosa de Drosophila se ve afectada en mutantes con el

proceso de toma de decisiones silenciada. Niveles aumentados de dopam-

ina afecta a la rafagosidad, haciendo el comportamiento más aleatorio.

El cuerpo de setas también afecta a la rafagosidad, mientras el complejo

central no lo afectó.

∼
• La estructura de sueño-vigilia es afectada por la edad en humanos, con un

decrecimiento de la fragmentación y un alargamiento de las duraciones de

vigilia, dando lugar a menos sueño durante la noche. La distribución de

episodios de sueño tiene una dinámica rafagosa (y no aleatoria), ajustada

por la exponencial estirada y ley de potencias. La distribución de episodios

de vigilia es aún más rafagosa, ajustada por ley de potencias.
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CONCLUSIONES

• La estructura de sueño y vigilia se ve afectado por la edad en el pez

cebra, con una disminución de la fragmentación de vigilia y del número

de transiciones de sueño vigilia nocturno, mientras las duraciones y el

tiempo total de vigilia aumentan. La distribución de episodios de sueño

muestra dinámica rafagosa con ajustes de exponencial estirada y ley de

potencias, mientras la distribución de episodios de vigilia es más rafagosa

aún, viniendo ajustada por ley de potencias para todas las edades.

• La ontogenia de los ciclos de sueño-vigilia en el pez cebra muestra un

alto grado de similitud con la de humanos, sugiriendo un mecanismo

conservado de regulación de sueño-vigilia, por tanto validando el pez

cebra como valioso animal modelo ’simple’ para el estudio del sueño.

∼

• El fenotipo de locomoción de DmIh se debe a una función neuronal defec-

tuosa presináptica, y no a una excitabilidad reducida del músculo. La falta

de corriente Ih da lugar a una disminuición de la excitabilidad de la mo-

toneurona, especialmente visible cuando se bloquea farmacológicamente

el canal Ih .
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