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1 Introduction

The origin of the observed pattern of neutrino masses and mixings in neutrino oscillation

experiments (see e.g. ref. [1] for a recent summary) comprises one of the few experimental

evidences for physics beyond the Standard Model (SM) of particle physics. The simplest

and most popular extension to account for these experimental observations consists in

the addition of right-handed neutrinos to the SM particle content. Given their singlet

nature, a Majorana mass term for the right-handed neutrinos is directly allowed in the

Lagrangian, thus inducing a new mass scale -the only one unrelated to electroweak (EW)

symmetry breaking- to be determined by data. Depending on the size of this scale its

phenomenological consequences are very different.

One of the most appealing choices is that this new Majorana scale is high, leading to

the well-known Seesaw mechanism [2–5] and providing a rationale for the extreme smallness

of neutrino masses when compared to the rest of the SM fermions and the EW scale. Values

for the neutrino Yukawa couplings ranging between that of the electron and that of the

top quark would lead to Majorana masses between the EW and the grand unification

scale. Unfortunately, even for the lightest mass choice, any phenomenological consequence

beyond neutrino masses tends to be hopelessly suppressed if the extra degrees of freedom

only couple to the SM through their Yukawa interactions.

However, the smallness of neutrino masses could derive from symmetry arguments [6–9]

rather than a hierarchy of scales. Indeed, the Weinberg operator [10] leading to neutrino
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masses in Seesaw mechanisms is protected by the B − L symmetry, conserved in the SM

and violated in two units by the Weinberg operator. Thus, if the pattern of the Yukawa

couplings and Majorana masses in a Seesaw realization is such that it conserves B − L,

the Weinberg operator will never be generated and the SM neutrinos will remain massless,

even for Yν ∼ 1 and Majorana masses of the order of the EW scale. Small violations of

B − L in this pattern would thus induce the small neutrino masses observed in oscillation

experiments. In this class of models fall the popular inverse [6, 7] or linear [11] Seesaw

mechanisms which, contrary to the canonical type-I Seesaw, would lead to an extremely rich

phenomenology through the large mixing allowed between the new extra sterile neutrinos

and their SM siblings implying observable contributions in lepton flavour violating (LFV)

processes, universality violation and signals in electroweak precision observables. It is then

of interest to fit all these available data to determine the allowed values of the mixing of

the heavy neutrinos with the SM charged leptons, examples of these constraints can be

found in refs. [12–29].

When deriving such constraints on heavy-active neutrino mixing, it was recently

pointed out in [24] that loop corrections involving the extra heavy neutrinos played an

important role, obtaining qualitatively different results to those derived by staying at lead-

ing order. In particular, it was shown that corrections to the T parameter [30, 31] could

be sizable and that these, in turn, would affect the determination of GF through µ decay

competing with the tree level effects. Since the value of GF from µ decay is generally in

good agreement with the measured value of MW and other determinations of sin θW , in [24]

it was found that the constraints stemming from these datasets could be weakened at loop

level through partial cancellations between the tree level corrections and the T parameter

contribution. Furthermore, the invisible width of the Z, which is in slight tension with the

SM prediction, is modified at tree level through the presence of extra heavy neutrinos, while

the oblique corrections computed in [24] were found to be subleading. Thus, by accounting

for these loop corrections, good fits with relatively large heavy-active mixing were found

in [24], since it is possible to alleviate the tension in the invisible width of the Z without

seriously affecting the determination of GF in µ decay through the partial cancellation of

the tree and loop level contributions.

However, when ref. [25] also investigated the relevance of the T parameter the same

cancellation was not reproduced and in [27] it was argued that loop contributions should

always be negligible, since the heavy-active mixing that controls the strength of the cou-

plings of the new degrees of freedom is bounded to be small (θ2 . 10−2). Therefore, new

tree-level bounds were derived instead through more updated fits to available data. While

this argument is generally true, models based on an approximate B − L symmetry are

characterized by large Yukawas and EW-scale Majorana masses, thus, even if loop cor-

rections through weak interactions further suppressed by θ2 are indeed negligible for all

practical purposes, when the loop corrections are mediated by heavy neutrinos and/or the

Higgs field or its Goldstones, the coupling involved in the vertex is no other than the large

Yukawa coupling, so that loop corrections can indeed become relevant, as stated in [24].

However, not only the oblique corrections computed in [24] fall in this category, since the

effect of the large Yukawa interactions does not vanish in the limit of massless neutrinos
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and charged leptons. Indeed, some vertex and box corrections involving large Yukawas are

found not to vanish in the massless limit for light leptons (see e.g. [32]).

In this work we clarify the importance of loop contributions to the determination of

the heavy-active neutrino mixing including all loop corrections mediated by the potentially

large Yukawa interactions. We find that, as discussed by [24], the most relevant of these

corrections are indeed the ones encoded through the oblique parameters but, in order to

make them competitive with the tree-level contributions, EW scale Majorana masses and

Yukawas on the very border of perturbativity are simultaneously required. Furthermore,

we find that, as long as B−L is conserved, the T parameter is always positive, so that the

partial cancellation discussed in [24] cannot take place in such a setup. Large violations

of B − L are thus required to achieve the negative and sizable values of T capable of

reproducing the effect. But these large violations of B − L would render the Weinberg

operator unprotected and, in presence of the EW-scale Majorana masses and large Yukawas

required for T , radiative corrections lead to unacceptably large contributions to the light

neutrino masses, even if these are fixed to their correct value at tree level by means of the

Casas-Ibarra parametrization. Thus, when we impose an approximate B − L symmetry

with only 3 extra heavy right-handed neutrinos, we always find that loop corrections are

irrelevant when deriving bounds on the heavy-active neutrino mixings.

This paper is organized as follows: in section 2 we detail the parametrization employed

for our study. In section 3 we list the observables we analyze in our global fits. In section 4

we present our findings and discuss the importance of loop effects in the global fits as well

as the necessity of large violations of B−L in order to obtain partial cancellations between

the tree and loop level contributions. Finally, in section 4 we summarize our results and

present our conclusions.

2 Parametrization

In this work we explore the constraints that can be derived through various EW observables

on the extra neutrino mass eigenstates mixing with charged leptons in a Seesaw scenario:

L = LSM − 1

2
N i

R(MN )ijN
cj
R − (YN )iαN i

Rφ
†ℓαL +H.c. . (2.1)

Here, φ denotes the SM Higgs field, which breaks the EW symmetry after acquiring its

vev vEW. We have also introduced the Majorana mass MN allowed for the right-handed

neutrinos N i
R as well as the Yukawa couplings between the neutrinos and the Higgs field.

We will restrict our study to the extension of the SM by 3 right-handed neutrino fields. The

vev of the Higgs will induce Dirac masses mD = vEWYN/
√
2. Thus, the full 6 × 6 mixing

matrix U is the unitary matrix that diagonalizes the extended neutrino mass matrix:

UT

(

0 mT
D

mD MN

)

U =

(

m 0

0 M

)

, (2.2)
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where m and M are diagonal matrices containing respectively the masses of the 3 light νi
and 3 heavy Ni mass eigenstates. The diagonalizing matrix U can be written as [33]:

U =

(

c s

−s† ĉ

)(

UPMNS 0

0 I

)

, (2.3)

where

(

c s

−s† ĉ

)

≡













∞
∑

n=0

(

−ΘΘ†
)n

(2n)!

∞
∑

n=0

(

−ΘΘ†
)n

(2n+ 1)!
Θ

−
∞
∑

n=0

(

−Θ†Θ
)n

(2n+ 1)!
Θ†

∞
∑

n=0

(

−Θ†Θ
)n

2n!













(2.4)

and UPMNS is, approximately, the PMNS matrix measured in neutrino oscillation experi-

ments up to the non-Unitary (Hermitian) corrections from c. For alternative parametriza-

tions of the full mixing matrix see refs. [34–38]. Indeed, due to this Hermitian correction,

the actual PMNS matrix appearing in charge current interactions mixing the light neutrinos

and charged leptons will, in general, not be Unitary and we will refer to it as N :

N = c UPMNS (2.5)

The general matrix Θ, representing the mixing between active (νe, νµ and ντ ) and heavy

(N1, N2 and N3) neutrino states, and the mass eigenstates m and M are determined from

eq. (2.2) which leads to:

c∗U∗
PMNSmU †

PMNSc = −s∗Ms†. (2.6)

In the Seesaw limit, that is MN ≫ mD, these conditions reduce to the well-known results:

Θ ≃ m†
DM

−1
N

U∗
PMNSmU †

PMNS ≃ −mt
DM

−1
N mD ≡ −m̂

M ≃ MN . (2.7)

Notice that, naively, the mixing between the active and heavy neutrinos ΘΘ† ∼ m/M

and, given the smallness of neutrino masses m, the mixing effects we will study here would

be unobservably small. However, in the context of Seesaw mechanisms with an approximate

conservation of B − L such as the inverse [6, 7] or the linear [11] Seesaws, this symmetry

suppresses the neutrino mass m while allowing a sizable mixing. This approximate symme-

try not only ensures an equally approximate cancellation in the combination mt
DM

−1
N mD

leading to the observed neutrino masses while allowing large — potentially observable —

ΘΘ† = m†
DM

−2
N mD, but also ensures the radiative stability and technical naturalness of

the scheme [39].

When extending the SM Lagrangian by only 3 new singlet (right-handed neutrino)

fields essentially the only neutrino mass matrix with an underlying L symmetry that leads

to 3 heavy massive neutrinos is [40] (see also ref. [41]):

mD =
vEW√

2







Ye Yµ Yτ
ǫ1Y

′
e ǫ1Y

′
µ ǫ1Y

′
τ

ǫ2Y
′′
e ǫ2Y

′′
µ ǫ2Y

′′
τ






and MN =







µ1 Λ µ3

Λ µ2 µ4

µ3 µ4 Λ′






, (2.8)
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with all ǫi and µj small lepton number violating parameters (see also ref. [42] for a particular

scenario where these small parameters arise naturally). Indeed, setting all ǫi = 0 and

µj = 0, lepton number symmetry is recovered with the following L assignments Le = Lµ =

Lτ = L1 = −L2 = 1 and L3 = 0. In eq. (2.7) this leads to: m̂ = 0 (3 massless neutrinos

in the L-conserving limit), M1 = M2 = Λ (a heavy Dirac pair) and M3 = Λ′ (a heavy

decoupled Majorana singlet), but:

Θ =
vEW
2Λ







−iY ∗
e Y ∗

e 0

−iY ∗
µ Y ∗

µ 0

−iY ∗
τ Y ∗

τ 0






≡ 1√

2







−iθe θe 0

−iθµ θµ 0

−iθτ θτ 0






and ΘΘ† =







|θe|2 θeθ
∗
µ θeθ

∗
τ

θµθ
∗
e |θµ|2 θµθ

∗
τ

θτθ
∗
e θτθ

∗
µ |θτ |2






. (2.9)

Thus, vanishing light neutrino masses can still be associated with arbitrarily large

mixing between the heavy Dirac pair and active neutrinos and, for these kind of Seesaw

scenarios, the bounds on the mixing we will explore are complementary and independent

to the stringent constraints on the absolute light neutrino mass scale.

The small L-violating parameters ǫi and µj will induce small non-zero neutrino masses

and mixing among these light mass eigenstates but will only translate in negligible pertur-

bations to the matrix Θ. With the simple form in eq. (2.9) for the heavy-active mixing,

the series expansions in eq. (2.4) can be added exactly obtaining:

s =
sin θ

θ
Θ and c = I − 1− cos θ

θ2
ΘΘ†, (2.10)

with

θ =
√

|θe|2 + |θµ|2 + |θτ |2. (2.11)

Regarding the role of the ǫi and µj parameters in the generation of the light neutrino

masses and mixings observed in neutrino oscillations, all of them except µ1 and µ3 will

lead to m̂ 6= 0 through eq. (2.7) when switched on:

m̂ =

(

µ2 +
µ2
4

Λ′

)

mt

DΛ−2mD − ǫ1m
′t
DΛ−1mD − ǫ1m

t

DΛ−1m′
D + ǫ22m

′′t
DΛ′−1m′′

D

+ǫ2
µ4

Λ′

(

mt

DΛ−1m′′
D +m′′t

DΛ′−1mD

)

, (2.12)

with

mD ≡ vEW√
2
(Ye, Yµ, Yτ ), m′

D ≡ vEW√
2
(Y ′

e , Y
′
µ, Y

′
τ ) and m′′

D ≡ vEW√
2
(Y ′′

e , Y
′′
µ , Y

′′
τ ). (2.13)

Indeed, even though µ1 and µ3 do violate L, upon their inclusion the mass matrix in

eq. (2.2) does not increase its rank, which, in absence of the other ǫi and µj , is only 3 and

thus 3 massless eigenstates are still recovered.1 The parameters µ2 and µ4 do contribute

at tree level to generate light neutrino masses, however, their effect can be absorbed in a

redefinition of the vectors m′
D

and m′′
D

as follows:

ǫ1m
′
D → ǫ1m

′
D − µ2

2Λ
mD and ǫ2m

′′
D → ǫ2m

′′
D − µ4

Λ
mD (2.14)

1Notice that, even if µ1 and µ3 do not induce neutrino masses at tree level, the L symmetry protecting

them is now broken and loop contributions would appear instead [43].
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up to contributions with two extra powers of the small L-violating parameters. Thus, in

presence of non-zero ǫi, it is enough to consider their contribution to the generation of

neutrino masses which reads:

m̂ = ǫ1m
′t
DΛ−1mD + ǫ1m

t

DΛ−1m′
D + ǫ22m

′′t
DΛ′−1m′′

D. (2.15)

Notice that the last term in eq. (2.15) is suppressed by two powers of ǫ2 while the others

only by one power of ǫ1. However, ǫ2 (and µ3 and µ4) violates L by one unit while ǫ1
(and µ1 and µ2) by 2. Hence, if the source of L-violation is by one unit it is expected

that ǫ1 ∼ ǫ22. Thus, for full generality, we will keep the last term in eq. (2.15). The six

free parameters encoded in m′
D

and m′′
D

allow to give mass to the three mass eigenstates

observed in neutrino oscillations as well as the possibility of reproducing any mixing pattern

including the, yet unknown, CP-violating phases of Dirac and Majorana types encoded in

the PMNS matrix, while leaving mD, and hence Θ, s and c, mostly unconstrained.2 One

of the three elements of mD is, however, fixed by the other two, the values of the light mass

eigenstates and the elements of the PMNS matrix when solving for eq. (2.15) obtaining the

following relation:

Yτ ≃ 1

m̂2
eµ − m̂eem̂µµ

(

Ye (m̂eµm̂µτ − m̂eτm̂µµ)+

Yµ (m̂eµm̂eτ − m̂eem̂µτ )−
√

Y 2
e m̂µµ − 2YeYµm̂eµ + Y 2

µ m̂ee×

×
√

m̂2
eτm̂µµ − 2m̂eµm̂eτm̂µτ + m̂eem̂2

µτ + m̂2
eµm̂ττ − m̂eem̂µµm̂ττ

)

,

(2.16)

where m̂ = −U∗
PMNSmU †

PMNS is the mass matrix of the flavour eigenstates. Thus, in

our numerical exploration of the parameter space in section 4 we will consider the 9 free

parameters summarized in table 1.

An alternative parametrization extensively used in the literature is the so-called

Casas-Ibarra parametrization [50]. This parametrization introduces the matrix R =

iM−1/2mDUPMNSm
−1/2 exploiting the fact that, from eq. (2.7), R has to be (complex)

orthogonal. The main advantage of this parametrization is the ability to easily recover the

Yukawa couplings through the heavy mass eigenvalues M and the low energy observables

UPMNS and m together with the elements of R as mD = −iM1/2Rm1/2U †
PMNS. However,

the physical range of the parameters contained in R can be cumbersome and a physical

interpretation of their values is not immediately transparent, see ref. [51] for a detailed

discussion. Moreover, these relations only hold at tree level.3 Thus, when values of R

are chosen so as to allow sizable low energy phenomenology through large Yukawas and

low M , it is important to check if the pattern displays an approximate B − L symmetry.

Otherwise, loop corrections to the unprotected Weinberg operator, that is to UPMNS and

m, will exceed present constraints even if their values were correct at tree level. For this

reason we rather chose to perform the scan through the parameters summarized in table 1.

2In contrast, neglecting the last term in eq. (2.15) would lead to the more constrained scenario explored

in detail in ref. [44], with a massless neutrino and a mixing pattern in Θ, s and c determined up to an

overall factor from the observed neutrino oscillation parameters. This scenario has also been studied in

refs. [45–49].
3See ref. [52] for a generalization of the Casas-Ibarra approach to loop level.
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Parameter |Ye|×|Yµ| |Ye|−|Yµ| m1 [eV] Λ [GeV] Phases: αe, αµ, δ, α1 & α2 Osc. data

Range (0, 10−4) (−0.1, 0.1) (10−5, 1) (103, 104) (0, 2π) fixed [1]

Table 1. The 9 free parameters of our scan: the modulus and phase of the electron and muon

Yukawas |Ye|, |Yµ|, αe and αµ, the Majorana mass scale Λ, the absolute neutrino mass m1 and the

3 yet unknown CP-violation phases (Dirac and Majorana) in the PMNS mixing matrix: δ, α1 and

α2. The PMNS mixing angles and mass splittings are fixed to their best fit from the global analysis

in ref. [1].

At energies much below the masses of the heavy neutrinos Λ and Λ′ the effects of their

mixing Θ manifest dominantly through deviations from unitarity of the lepton mixing

matrix N . Since any general matrix can be parametrized as the product of an Hermitian

and a Unitary matrix, these deviations from unitarity have been often parametrized as [53]:

N = (I − η)UPMNS (2.17)

where the small Hermitian matrix η (also called ǫ in other works) corresponds to the

coefficient of the only dimension 6 operator obtained at tree level upon integrating out

the heavy right-handed neutrinos in a Seesaw scenario [54] and, in our parametrization it

would be given from eqs. (2.5) and (2.10) by:

η =
1− cos θ

θ2
ΘΘ†. (2.18)

3 Observables

In this section we introduce the list of observables used for our analysis. While a more

comprehensive set could be considered (see for example ref. [27]), we have rather chosen

the most representative of these observables since extending the analysis to the loop level

for the whole set would be cumbersome and the dominant constraints as well as the main

effects pointed out in [24] are contained in a smaller subset. We will thus present both

the 1-loop contributions and the experimental constraints for a total of 13 observables.

The loop amplitudes of the processes have been computed exploiting the Goldstone-boson

equivalence theorem [55] under the assumption that the mass of the extra neutrinos Mi is

larger than the gauge boson masses; i.e. Mi > MW,Z . Thus, we have made the simplifying

assumption that the most relevant loop corrections are those were the loops are mediated

by either the Higgs boson, h, the Goldstone bosons φ± and φ0 or the heavy Majorana neu-

trinos. Indeed, this forces the vertexes to involve the potentially large Yukawa couplings

(the only couplings that can be relevant at the loop level) and the corrections from includ-

ing the transverse components are suppressed by M2
W,Z/M

2
N . The set of 13 independent

observables analyzed in this study is composed of:

• ratios constraining electroweak universality: Rπ
µe, R

π
τµ, R

W
µe, R

W
τµ, R

K
µe, R

K
τµ, R

l
µe, R

l
τµ

• The invisible Z width

• The W mass MW

• 3 rare flavour-changing decays: µ → eγ, τ → µγ and τ → eγ
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W W W

N

l
W

= +
Z Z Z

N

N
Z

Figure 1. 1-loop correction of the new heavy neutrinos to W and Z propagators.

All of them will be determined as a function of the three most precise electroweak mea-

surements: α, MZ and Gµ (GF as measured from µ decay) [56]:

α = (7.2973525698± 0.0000000024)× 10−3,

MZ = (91.1876± 0.0021) GeV, (3.1)

Gµ = (1.1663787± 0.0000006)× 10−5 GeV−2.

All observables will receive contributions from the loop corrections to the W and Z

boson propagators through the diagrams in figure 1. These contributions are encoded in

the flavour-universal corrections δunivW,Z that can be found in eq. (A.21) in the appendix. We

now list the further corrections exclusive to each of the observables considered:

3.1 µ decay, GF and MW

Our input value for GF is determined through µ decay, but this process will receive correc-

tions both at the tree and the loop level (see figure 2). Thus, the value determined from µ

decay, Gµ, is related to GF by:

Γµ =
m5

µG
2
F

192π3

(

1− |θe|2 − |θµ|2 + 2δuniv N
W + δG

)

≡
m5

µG
2
µ

192π3
, (3.2)

with

δG = 2Re[VW
e + VW∗

µ + δCT W
e + δCT W∗

µ + Bµe] (3.3)

and where δuniv N
W is the flavour-universal W propagator correction, δCT W

l and VW
l are the

flavour-dependent lepton propagator and vertex contributions (see eqs. (A.9) and (A.11)

in the appendix), and Bµe encodes the box diagram contribution computed in eq. (A.13)

in the appendix.

From eq. (3.2), we find:

G2
µ = G2

F

(

1− |θe|2 − |θµ|2 + 2δuniv N
W + δG

)

. (3.4)
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Γµ = + +

+ +

µ µ

µ µ

νµ νµ

νµ νµ

W− W−

W−

φ−

h, φ0

φ−

h, φ0

φ−

h, φ0

Nk

Nk Ni Nj

e

νe

e

νe

e

νe

e

νe

2

Figure 2. 1-loop corrections to µ decay.

The second and third terms in eq. (3.4) correspond to the tree level correction, the

fourth term is the universal 1-loop oblique correction which is given in eq. (A.21) of the

appendix. This particular expression, when used in an observable mediated by the Z and

thus corrected through 2δuniv N
Z , leads to a common correction to these observables given

by 1 − |θe|2 − |θµ|2 − 2αT (see eqs. (A.21) and (A.17)). This common dependence on the

tree level and oblique corrections is the source of the cancellation analyzed in ref. [24].

The the W mass is also correlated to GF through

M2
W =

πα√
2GF s2W(1−∆r)

, (3.5)

with ∆r = 0.03639∓0.00036±0.00011 [56]. Thus, the corrections induced at both the tree

and loop levels by the heavy neutrinos from eq. (3.4) can be probed by the measurement

of MW in LEP and Tevatron [56]:

MW = 80.385± 0.015 GeV. (3.6)

3.2 Invisible Z width

The determination of the number of light active neutrinos by LEP through the invisible

width of the Z provides a constraint to heavy neutrino mixing already at the tree level.

Additional loop corrections are induced through the diagrams in figure 3 which lead to:

Γinv =

3
∑

i,j=1

GFM
3
Zρ

24
√
2π

(Zij + Zji) , (3.7)

where ρ encodes the SM loop corrections to the process and

Zij = |Cij |2
(

1 + δunivZ

)

+ 2Re
[

C∗
ij

(

δCT Z
ij + VZ

ij

) ]

, (3.8)

with

Cij =
∑

α=e,µ,τ

U∗
αiUαj . (3.9)
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h

φ0

Nk

νi

νj
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νj
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Nb 2

Figure 3. 1-loop corrections to the invisible decay of the Z.

Rπ
µe =

+

u

d W− µ

νµ u

d µ

νµ

W− φ−

h, φ0

Nk

2

+

u

d W− e

νe u

d e

νe

W− φ−

h, φ0

Nk

2

Figure 4. 1-loop corrections to weak universality ratios.

and δCT Z
ij and VZ

ij the lepton and vertex corrections shown in eqs. (A.10) and (A.12) in

the appendix.

Eq. (3.7) is often used to determine the number of active neutrinos Nν lighter than

MZ/2 as:

Γinv =
GFM

3
ZρNν

12
√
2π

, (3.10)

The measurement by LEP of Γinv = (0.4990± 0.0015) GeV combined with eq. (3.10) leads

to [56]:

Nν = 2.990± 0.007 . (3.11)

We will exploit this result together with eq. (3.7) to derive constraints on Cij and, hence,

on the heavy neutrino mixings.

3.3 Universality ratios

Electroweak coupling universality is strongly constrained through ratios of leptonic decays

of K, π, W or charged leptons. In these ratios many uncertainties cancel and a clean

constraint can be derived. These observables are corrected both at the tree and loop level,

for instance, Rπ
µe = Γ (π− → µνµ) /Γ (π− → eνe) is corrected by the diagrams in figure 4.

Thus, the general expression for the ratio of lepton flavours α and β is given by:

Rαβ = RSM
αβ

1− |θα|2 + 2Re
[

VW
α + δCT W

α

]

1− |θβ |2 + 2Re
[

VW
β + δCT W

β

] , (3.12)
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BR (π+ → e+νe) (1.230± 0.004)× 10−4

BR (π+ → µ+νµ) (99.98770± 0.00004)%

BR (τ− → π−ντ ) (10.83± 0.06)%

BR (K+ → e+νe) (1.581± 0.008)× 10−5

BR (K+ → µ+νµ) (63.55± 0.11)%10−5

BR (τ− → K−ντ ) (7.00± 0.10)× 10−3

BR (W+ → e+νe) (10.71± 0.16)%

BR (W+ → µ+νµ) (10.63± 0.15)%

BR (W+ → τ+ντ ) (11.38± 0.21)%

BR (τ− → µ−νµντ ) (17.41± 0.04)%

BR (τ− → e−νeντ ) (17.83± 0.04)%

τπ± (2.6033± 0.0005)× 10−8 s

τK± (1.2380± 0.0021)× 10−8 s

ττ (290.3± 5.0)× 10−15 s

τµ (2.1969811± 0.0000022)× 10−6 s

mπ± 139.57018± 0.00035 MeV

mK± 493.677± 0.016 MeV

MW 80.385± 0.0015 MeV

me 0.510998928± 0.000000011 MeV

mµ 105.6583715± 0.0000035 MeV

mτ 1776.82± 0.16 MeV

δRπ
µe (−0.374± 0.001)

δRπ
µτ (0.0016± 0.0014)

δRK
µτ (0.0090± 0.0022)

Table 2. Input values used for the constraints on weak universality from ratios of meson and

charged lepton decays.

where RSM
αβ is the SM value for this ratio, for example, for π decay:

RπSM
αβ =





mα

(

m2
π −m2

α

)

mβ

(

m2
π −m2

β

)





2

1

1 + δRπ
αβ

(3.13)

and where δRπ
αβ are the SM radiative corrections to this process [57]. Notice that the

flavour-universal contributions from the W propagator cancel in the ratio.

The predicted values of these ratios are computed through eqs. (3.12) and (3.13) with

data form [56, 58] and compared to the experimental measurements of the decay rates in

our global fit. This data is summarized in table 2.
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µ eNk

φ− φ−

γ

+ ...

2

Figure 5. Extra neutrino contributions to the µ → eγ decay.

3.4 Rare decays

The presence of extra heavy neutrinos beyond the three light ones participating in low

energy weak processes induces deviations from unitarity in the PMNS matrix. Thus, the

GIM cancellation [59] suppressing flavour-changing processes does not take place and strong

constraints on the presence of these extra neutrinos can be derived. Moreover, the extra

heavy neutrinos themselves also mediate the flavour-changing processes, such as radiative

leptons decays lα → lβγ in figure 5. The contribution from both the heavy and light

neutrinos is given by:

Γ (lα → lβγ)

Γ (lα → lβνανβ)
=

3α

32π

∣

∣

∣

6
∑

k=1

UαkU
†
kβF (xk)

∣

∣

∣

2

(UU †)αα (UU †)ββ
(3.14)

where xk ≡ M2

k

M2

W

, and F (xk) is given by:

F (xk) ≡
10− 43xk + 78x2k − 49x3k + 4x4k + 18x3k lnxk

3(xk − 1)4
. (3.15)

Thus, for heavy neutrino masses much larger than MW :

Γ (lα → lβγ)

Γ (lα → lβνανβ)
≃ 3α

32π
|θαθ∗β |2(F (∞)− F (0))2. (3.16)

The prediction from eq. (3.14) will be compared with the existing upper bounds from [56]:

BRµe < 5.7× 10−13 , (3.17)

BRτe < 3.3× 10−8 , (3.18)

BRτµ < 4.4× 10−8 . (3.19)

Notice that these bounds are quoted at the 90% CL so they will be rescaled to 1σ to build

the corresponding contribution to the χ2 function.

4 Results

4.1 Constraints from the global fit

With the 13 observables discussed in section 3 we build a χ2 function depending on the

9 parameters listed in table 1. Given the large dimensionality of the parameter space, we

– 12 –



J
H
E
P
1
0
(
2
0
1
5
)
1
3
0

Figure 6. Contours for θe, θµ and θτ at 1σ (red), 90% CL (black) and 2σ (blue). The left panels

are obtained for normal hierarchy and the right for inverted.

make use of Markov chain Monte Carlo (MCMC) techniques for efficient parameter explo-

ration. In particular, we implement importance sampling based on the Likelihood obtained

from the observables through a Metropolis-Hastings algorithm. The range in which the

9 free parameters are varied is also summarized in table 1. We have run simultaneously

5 different chains through the MCMC algorithm and have verified that good convergence

(better than R − 1 < 0.035 [60]) for all parameters has been achieved. The results of the

runs thus provide a good sample of the χ2 values in the preferred regions of the parameter

space and have been used to marginalize over different subsets of the model parameters. In

this way, we will present 2D and 1D frequentist contours on the more phenomenologically

relevant parameters of the model. The post-processing of the chains to derive the allowed

confidence regions has been performed with the MonteCUBES [61] user interface.

In figure 6 we show the results of our MCMC scan for the 2 degrees of freedom con-

straints of different combinations of the heavy-active mixings θα defined in eq. (2.9). The
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θe θµ θτ

1σ 2σ 1σ 2σ 1σ 2σ

NH 0.034+0.009
−0.014 < 0.050 < 3.2 · 10−4 < 0.037 0.018+0.019

−0.013 < 0.049

IH 0.035+0.009
−0.014 < 0.051 < 3.3 · 10−4 < 0.037 < 0.031 < 0.044

Table 3. Constraints on θe, θµ, and θτ for normal and inverted hierarchy.

contours correspond to the 1σ, 90% and 2σ frequentist confidence regions. The upper

panels show the bounds in the two combinations we choose to more directly sample (see

table 1): |θe| × |θµ| and |θe| − |θµ|. The rationale behind this is apparent upon inspection

of figure 6. Indeed, the constraints on the product are more than one order of magnitude

smaller than those derived from the difference of the couplings
√

|θe| × |θµ| ≪ ||θe| − |θµ||,
leading to a very pronounced hyperbolic degeneracy in the panels of the middle row, which

contain the same information directly depicted as a function of θe and θµ. Thus, this

particular choice of sampling parameters allowed to scan the hyperbolic degeneracy much

more efficiently and speed the convergence of the MCMC. This very strong constraint in

|θe| × |θµ| stems from the strong bound on µ → eγ from MEG that, from eq. (3.16), sets a

very stringent limit on |θµθ∗e |.
Finally, the lower panels of figure 6 contain the constraints derived for the mixing

with the τ flavour θτ . Notice that Yτ , and hence θτ , was not a free parameter of the fit

but was rather obtained from the other two Yukawas and the light neutrino masses and

mixings from eq. (2.16). This is the source of the observed correlation between the values

of θe and θτ . Notice also that, since the particular pattern of light neutrino masses plays

an important role in eq. (2.16), the left (normal hierarchy) and right (inverted hierarchy)

panels of figure 6 display different correlations.

In figure 7 we show the individual constraints that can be derived on θe, θµ, and θτ
(from top to bottom) for a normal (left) and an inverted (right) hierarchy after marginal-

izing over all other parameters. We generally find a slight improvement of the fit to the

observables considered when some amount of mixing is present. In particular, we find that

non-zero mixing with the electron is preferred at around the 90% CL by our dataset. Mix-

ing with the tau flavour is also favoured for normal hierarchy due the correlations implied

by eq. (2.16). At the 1σ level, mixing with the µ flavour is significantly constrained due

to the preference of some universality bounds (from π and τ decays) for a slightly reduced

coupling to the electron with respect to the muon. Thus, since universality constraints are

corrected by 1−|θα| for each flavour, a non-zero θe is preferred in the fit while θµ is kept at

small values to satisfy the constraint from µ → eγ. Beyond the 1σ level, the mixing with

the electron is allowed to become small and thus the constraint on µ mixing at 2σ is much

weaker than naively expected from the 1σ region. The limits of the 1 and 2σ regions for

the three mixing parameters are summarized in table 3.

In figure 8 we show a comparison of the breakdown of the contributions of the different

observables to the total χ2 for the SM (left panel) and our best fit (middle panel) as well

as the difference of the two (right panel). It can be seen that some of the existing tension
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Figure 7. ∆χ2 (marginalized over all other parameters) for θe, θµ and θτ . Left panels show results

for a normal hierarchy and right panels for inverted hierarchy.

of the SM with the invisible width of the Z can be alleviated by the presence of heavy

neutrino mixings and also the agreement between the kinematic determination of MW and

its SM value from GF , α and MZ is improved. As already discussed, the universality

constraints from π and τ decays are also in better agreement when some mixing with the

electron is present. On the other hand, universality tests from kaon decays rather point

in the opposite direction. Thus, at the end, the preference for non-vanishing heavy-active

mixing is mild and the final improvement of the χ2 with respect to the SM value is 3.7, not

quite reaching the 2σ level. Notice that, even if the number of free parameters in the fit

is rather high, the observables actually depend on the combinations |θe|, |θµ| and |θτ | only
(and Λ when loop corrections are relevant). Thus, the reduction by 3.7 of the χ2 should

be attributed to the introduction of 3 (or 4) new parameters rather than 9.
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χ2(SM) χ2(BF ) ∆χ2(SM)

Figure 8. Contributions from the different observables to the χ2. Left plot shows the SM values.

Middle plot shows the contributions from three right-handed neutrinos in the best-fit point. Right

plot shows ∆χ2
i ≡ χ2

i (SM)− χ2
i (BF ) for every observable i.

Regarding the importance of the loop effects considered, we have performed a second

set of MCMC runs where all loop corrections have been removed. The results of these

simulations are essentially identical to the ones stemming from the full computation. By

adding to the chain output also the value that the T parameter took in the simulations,

we find that its preferred values are ∼ 10−7 − 10−6, negligible with respect to the best fit

values of the tree level contributions. In order to understand this apparent lack of relevance

of the loop corrections and the T parameter in particular, in direct contrast to the results

presented in [24], we will now analyze in further detail the regions of the parameter space

in which T could be relevant and the necessary conditions for the cancellation with the

tree level contributions to take place.

4.2 The T parameter

The leading contributions (not suppressed by the light neutrino or charged lepton masses)

to the T parameter are given by [24]:

αT =
α

8πs2WM2
W





∑

α,β,i,j

(

U∗
αiUαjUβiU

∗
βjfij + U∗

αiUαjU
∗
βiUβjgij

)



 , (4.1)

where

fij =
M2

i M
2
j

M2
i −M2

j

ln
Mi

Mj
and gij =

2MiM
3
j

M2
i −M2

j

ln
Mi

Mj
, (4.2)

and where Mi are the neutrino mass eigenvalues. In [17, 19] it was shown that several of the

most constraining observables, notably the Z decay to charged leptons and sin2 θeffw [62],

– 16 –



J
H
E
P
1
0
(
2
0
1
5
)
1
3
0

depended on the combination:

(NN †)ee(NN †)µµ − 2αT ≃ 1− |θe|2 − |θµ|2 − 2αT. (4.3)

Since from table 3 |θe|2+ |θµ|2 ∼ 10−3, 2αT must be of similar order so as to be competitive

with the tree contribution. From eq. (4.1)

2αT ≃ αΛ2|θα|4
16πs2WM2

W

, (4.4)

where Λ is the mass scale of the heavy neutrinos and θα/
√
2 their mixing with the flavour

states from eq. (2.9). Thus, in order for 2αT ∼ |θα|2 it is necessary that Λ ∼ 10 −
100TeV. And, since |θα|2 ∼ |Yα|2v2EW/2Λ2 ∼ 10−3, then |Yα| ∼ 1− 10, on the very limit of

perturbativity but, a priori, an interesting possibility.

Furthermore, notice that the second term in eq. (4.1) has the typical structure in the

elements of the mixing matrix U of L-violating processes, such as, for example, neutrinoless

double β decay. Indeed, this term stems from the correction to the Z propagator with two

neutrinos running in the loop and a Majorana mass insertion and it is easy to see that it

vanishes in the limit of exactly conserved Lepton number, taking all ǫi and µj to zero. Thus,

if B −L is approximately conserved, the first term in eq. (4.1) dominates the contribution

to T . However, it can be shown that the matrix fij is positive semi-definite for three extra

heavy neutrinos or less4 and can then be diagonalized as fij =
∑

k VikλkV
∗
jk, where V is a

Unitary matrix and λk ≥ 0. Thus, if B − L is approximately conserved:

αT ∼ α

8πs2WM2
W

∑

α,β,i

∣

∣

∣

∣

∣

∑

k

U∗
αiUβiVik

√

λk

∣

∣

∣

∣

∣

2

≥ 0. (4.5)

But from eq. (4.3) T < 0 is mandatory so as to have the cancellation between T and |θα|2
discussed in [24]. Thus, significant violations of B − L are necessary so that the second

term in eq. (4.1), which is allowed to be negative, can dominate over the first.

Notice that, for arbitrary values of the B−L-violating parameters ǫi and µj , eq. (2.8)

is a completely general parametrization of a type-I Seesaw mechanism with three extra

right-handed neutrinos. But, given eq. (2.12), only µ1 and µ3 are allowed to be sizable

given the present constraints on the light neutrino masses and mixings. If |µ1| ≫ Λ,Λ′, µ3

a negative T can indeed be obtained:

T ≃ v4EW
32πs2WM2

Wµ2
1

(

∑

α

|Yα|2
)2

(

3− 4 log
(µ1

Λ

))

. (4.6)

If both µ1 and µ3 are simultaneously included and dominate over the L-conserving Λ and

Λ′ then T is given by:

T ≃ v4EW
64πs2WM2

W

(

∑

α

|Yα|2
)2 6µµ1 −

(

3µ2
1 + µ2

)

log
(

µ+µ1

µ−µ1

)

µ3µ1

, (4.7)

4Preliminary explorations indicate that this argument can be generalized to more extra heavy neutrinos.
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where µ =
√

µ2
1 + 4µ2

3. In this limit, negative values of T are also easily accessible. How-

ever, the price to pay is high, the approximate B − L symmetry protecting the Weinberg

operator despite the Yukawas at the very border of perturbativity and the low Seesaw

scale, has been strongly broken by µ1 and µ3. While this does not induce any dangerous

corrections to neutrino masses at tree level, and hence when working with the Casas-Ibarra

parametrization as in ref. [24] the correct masses and mixings seem to be recovered, loop

corrections need to also be taken into account since no protecting symmetry can now sup-

press them. Indeed, the loop contributions mediated by µ1 and µ3 to the light neutrino

masses are found to be [43, 63–66]:

∆mναβ
=

YαYβ
32π2µ

(

3M2
Zf(MZ) +M2

hf(Mh)
)

, (4.8)

with:

f(M) =
(µ+ µ1)

2 log
(µ+µ1

2M

)

(µ+ µ1)
2 − 4M2

− (µ− µ1)
2 log

(µ−µ1

2M

)

(µ− µ1)
2 − 4M2

. (4.9)

These corrections can indeed be sizable and in figure 9 we show the values that the loop

contribution to the light neutrino masses take in order to recover a given value for −2αT

for different values of µ1 and µ3. From inspection of eq. (4.9), the limit of vanishing µ1

would render f(M) = 0, keeping under control the loop corrections to neutrino masses.5

However, from eq. (4.7), |µ1| > 1.9|µ3| is necessary for T < 0. Indeed, as can be seen

in figure 9, if −2αT ∼ 10−3 so as to implement the cancellation between tree and loop

level contributions, corrections to the light neutrino masses ranging from ∼ 100 keV to

∼ 100MeV, far exceeding present constraints, would be obtained. Thus, we conclude

that, while the qualitatively important cancellations described in ref. [24] can in principle

take place and affect the constraints on the heavy-active neutrino mixing for Yα ∼ 1 and

Λ ∼ 10TeV, in practice large violations of the protecting B − L symmetry would be

required, leading to too large radiative corrections to light neutrino masses.

5 Conclusions

In this work we have analyzed in detail the importance of loop corrections when deriving

constraints on the mixing between the SM flavour eigenstates and the new heavy neutrinos

introduced in Seesaw mechanisms. Although naively the expectation is that radiative

corrections involving these new states would be irrelevant given their weaker-than-weak

interactions due to their singlet nature and, a priori, suppressed mixings with the SM

neutrinos, Seesaw models allow Yukawa couplings to be sizable, even order one. Thus,

loop corrections involving Yukawa vertexes, when the loops involve the heavy neutrinos

and the Higgs or the W and Z Goldstones, can indeed be sizable as shown in ref. [24]. In

that work, it was shown that, for the low scale Seesaw mechanisms characterized by large

Yukawas and low (electroweak) Seesaw scale, the contribution of the new degrees of freedom

5In this limit with µ3 ≫ Λ,Λ′, L-symmetry is recovered with two degenerate neutrinos with mass µ3

that form a Dirac pair. Hence, the symmetry ensures the stability of ν masses at loop level but conversely

drives T to positive values.
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Figure 9. T parameter versus 1-loop correction to mν for different values of the L-violating

parameters µ1 and µ3.

to the oblique parameters could indeed become as important as the tree level effects in some

regions of the parameter space. Moreover, it was observed that several observables shared

a common dependence between the T parameter and the tree level contribution, stemming

from the modification by these effects of the muon decay through which GF is determined

and subsequently used as input for other observables. Thus, a partial cancellation between

these tree and loop level contributions can significantly relax the bounds derived from these

observables. Indeed, in ref. [24] a good fit with sizable mixing was obtained in which the

most stringent limits were avoided through this partial cancellation while standing tensions

between the SM and some observables like the invisible width of the Z were alleviated.

We have extended the analysis performed in ref. [24] to include also vertex corrections

and not only oblique parameters, since the sizable contributions from the heavy Yukawas

do not vanish when taking the light neutrinos and charged lepton masses to zero. We find

that, all in all, the oblique parameters do tend to dominate over the other loop corrections

and their contribution could be sizable in some part of the parameter space. However,

our MCMC scan shows no preference for any sizable loop corrections and the partial can-

cellation found in [24] is not reproduced. We then studied in detail the values of the T

parameter preferred by data through our MCMC scan and saw that they were not only

negligible, but always positive in our results. Indeed, for the cancellation between tree level

contributions and the T parameter to take place, the latter must have negative values. We

thus studied the necessary conditions for sizable negative values of the T parameter and

realized that, not only sizable Yukawas and relatively low Seesaw scales are required, but

also large violations of B − L. We then identified the only parameters in the mass matrix

with three extra heavy neutrinos that could provide the necessary B−L violation required

for T to be negative and competitive with tree level contributions, while keeping neutrino
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masses within their current bounds despite the large Yukawas, low Seesaw scale and loss of

protecting B−L symmetry. Finally, we studied how these parameters would contribute to

neutrino masses at loop level and found that, for the size of T required for the cancellation

to take place, light neutrino masses would range from 10 keV to 100MeV, effectively ruling

out this possibility.

We conclude that loop level corrections are only relevant in a small fraction of the

Seesaw parameter space characterized by large Yukawa couplings and low Seesaw scale and

that these corrections tend to strengthen the tree level contributions unless large deviations

from B−L are present. If B−L is approximately conserved, data thus prefer regions of the

parameter space where these loops are irrelevant. On the other hand, if B − L is strongly

violated, the cancellation discussed in ref. [24] can indeed provide a good fit to data with

a very relevant role of the loop contributions. However, these large violations of B − L at

loop level also lead to too large contributions to the light neutrino masses and hence this

possibility is ruled out. We therefore conclude that loop corrections can safely be neglected

in analyses of the heavy neutrino mixings in Seesaw mechanisms.

Finally we have also obtained relevant constraints on this mixing when B − L is an

approximate symmetry, so as to recover the correct neutrino masses and mixings observed

in neutrino oscillation searches. We find a mild (∼ 90% CL) preference for non-zero mixing

with the e flavours with a best fit at θe = 0.034+0.009
−0.014 or θe = 0.035+0.009

−0.014 for normal and

inverted mass hierarchy respectively. In the case of normal hierarchy, this preference also

induces non-zero mixing with the τ flavour θτ = 0.018+0.019
−0.013 so as to recover the correct

pattern of neutrino masses and mixings. On the other hand, small θµ is preferred so as to

keep µ → eγ at acceptable levels in presence of non-zero θe. At the 2σ level the following

upper bounds are found: θe < 0.051, θµ < 0.037 and θτ < 0.049.
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A Loop corrections

In this appendix we list the self-energies, counterterms and diagrams that enter in the

renormalization of the observables studied in section 3.

Lepton-flavour-dependent counterterms: δCT W
α and δCT Z . The unrenormalized

charged lepton fields l0Lα can be written in terms of the renormalized l̂Lα ones as

l0Lα =

(

δαβ +
1

2
δZ l

αβ

)

l̂Lβ . (A.1)

The most general expression for the lβ → lα transition amplitude between fermionic

Dirac states can be written as follows:

Σlep
αβ

(

/p
)

= /pPLΣ
L
αβ

(

p2
)

+ /pPRΣ
R
αβ

(

p2
)

+ PLΣ
D
αβ

(

p2
)

+ PRΣ
D∗
αβ

(

p2
)

, (A.2)

where ΣL = ΣL† and ΣR = ΣR†. In the physical observables only the Hermitian part of

δZ l appears and it is given by

δZ lep
αβ ≡ 1

2

(

δZ l
αβ + δZ l∗

βα

)

(A.3)

= −ΣL
αβ

(

m2
β

)

−mβ

[

mβ

(

ΣL′
αβ

(

m2
β

)

+ΣR′
αβ

(

m2
β

)

)

+
(

ΣD′
αβ

(

m2
β

)

+ΣD∗′
αβ

(

m2
β

)

)]

,

with Σ′
(

p2
)

≡ dΣ
(

p2
)

/dp2. Therefore, the heavy neutrino contribution to δZ lep can be

obtained simply computing

l±α l±βNk

φ±

= iΣlep
αβ(/p) ⇒

Σlep
αβ(/p) =− α

8πs2WM2
W

6
∑

k=4

{

M2
kUβkU

∗
αk

[

(PLmβ + PRmα)B0(p
2,M2

k ,M
2
W )

+ /p

(

PR
mαmβ

M2
k

+ PL

)

B1(p
2,M2

k ,M
2
W )

]

}

,

(A.4)

where Bi (and later Bij , Cij , Di and Dij) are the Passarino-Veltman integrals [67] using

the notation from ref. [68].

Similarly, the unrenormalized neutrino fields ν0Lj can also be written in terms of the

renormalized ones ν̂Lj as

ν0Li =

(

δij +
1

2
δZν

ij

)

ν̂Lj . (A.5)

The transition amplitude between two Majorana states reads

Σneu
ij

(

/p
)

= /pPLΣ
L
ij

(

p2
)

+ /pPRΣ
L∗
ij

(

p2
)

+ PLΣ
M
ij

(

p2
)

+ PRΣ
M∗
ij

(

p2
)

, (A.6)
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where ΣL = ΣR∗ and ΣM = ΣMt. In the Majorana case, the Hermitian part of δZν can be

written as

δZneu
ij ≡ 1

2

(

δZν
ij + δZν∗

ji

)

(A.7)

= −ΣL
ij

(

m2
j

)

−mj

[

mj

(

ΣL′
ij

(

m2
j

)

+ΣL∗′
ij

(

m2
j

)

)

+
(

ΣM ′
ij

(

m2
j

)

+ΣM∗′
ij

(

m2
j

)

)]

.

Analogously to the charged lepton case, δZneu can thus be obtained from the heavy neutrino

contribution to the neutrino self energy:

νi νjNk

φ0, H

= iΣneu
ij (/p) ⇒

Σneu
ij (/p) =− α

16πs2WM2
W

6
∑

k=4

{

/pPL

(

MjC
∗
jk +MkCjk

)

(MiC
∗
ki +MkCki)

×
[

B1(p
2,M2

k ,M
2
Z) +B1(p

2,M2
k ,M

2
h)
]

+ /pPR

(

MjCjk +MkC
∗
jk

)

(MiCki +MkC
∗
ki)

×
[

B1(p
2,M2

k ,M
2
Z) +B1(p

2,M2
k ,M

2
h)
]

+ PLMk

(

MjCjk +MkC
∗
jk

)

(MkCki +MiC
∗
ki)

×
[

B0(p
2,M2

k ,M
2
Z)−B0(p

2,M2
k ,M

2
h)
]

+ PRMk

(

MjC
∗
jk +MkCjk

)

(MkC
∗
ki +MiCki)

×
[

B0(p
2,M2

k ,M
2
Z)−B0(p

2,M2
k ,M

2
h)
]

}

.

(A.8)

Finally, the lepton-flavour-dependent combinations that will correct and cancel the

divergences of 1-loop corrections to the vertex Wνlα and Zνν are respectively:

δCT W
α =

3
∑

i=1

Uαi

2





3
∑

β=1

δZ lep
βαU

∗
βi +

6
∑

j=1

U∗
αjδZ

neu
ij



 (A.9)

δCT Z =
6

∑

k=1

(

δZneu
ik Ckj + δZneu

kj Cik

)

(A.10)
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Vertex interferences: VW
α and VZ

ij .

W±
µ

h, φ0

φ±

Nk

νi

l±α

= iT V
Wνilα

⇒

VW
α ≡

∑3
i=1 T

∗
0 T

V
Wνilα

∑3
i=1 |T0|2

(A.11)

=
α

8πs2WM2
W

3
∑

i=1

6
∑

k=4

M2
kUαiU

∗
αkC

∗
ki

[

C00(0, 0,M
2
h ,M

2
k ,M

2
W ) + C00(0, 0,M

2
Z ,M

2
k ,M

2
W )

]

,

up to higher order corrections and where T0 is the corresponding tree level amplitude.

+

Zµ

h

φ0

Nk

νi

νj

Zµ

Nr

Nk

h, φ0

νi

νj

= iT V
Zνiνj ⇒

VZ
ij ≡

T ∗
0 T

V
Zνiνj

|T0|2
(A.12)

=
α

16πs2WM2
W

[

6
∑

k,r=4

{

− 2CkjCirMkMr

(

CrkMkMr

[

C0(0,M
2
Z ,M

2
h ,M

2
k ,M

2
r )

+ C0(0,M
2
Z ,M

2
Z ,M

2
k ,M

2
r )
]

+ Ckr

[

M2
Z

(

C22(0,M
2
Z ,M

2
h ,M

2
k ,M

2
r )

+ C22(0,M
2
Z ,M

2
Z ,M

2
k ,M

2
r )− C21(0,M

2
Z ,M

2
h ,M

2
k ,M

2
r )− C21(0,M

2
Z ,M

2
Z ,M

2
k ,M

2
r )
)

+ 2
(

C00(0,M
2
Z ,M

2
Z ,M

2
k ,M

2
r ) + C00(0,M

2
Z ,M

2
h ,M

2
k ,M

2
r )
)

]

)

}

+
6

∑

k=4

[

4CkjCikM
2
k

(

C00(0,M
2
Z ,M

2
k ,M

2
h ,M

2
Z) + C00(0,M

2
Z ,M

2
k ,M

2
Z ,M

2
h)
)

]

]

,

up to higher order corrections and where T0 is the corresponding tree level amplitude.
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Box contribution to µ decay: Bαβ.

= iTB
αβ ⇒

l±α l±β

νj νi

φ±

φ0 , h

NkNr

Bαβ ≡
∑3

i,j=1 T
∗
0 T

B
αβ

∑3
i,j=1 |T0|2

=
1

5

g2

(16π)2M2
W

3
∑

i,j=1

6
∑

k,r=4

CikCjrUβkU
∗
βiU

∗
αrUαjM

2
rM

2
k

{

20
[

D00(M
2
h) +D00(M

2
Z)

]

+m2
α

[

3
(

D12(M
2
h) +D12(M

2
Z)

)

+ 2
(

D13(M
2
h) +D13(M

2
Z)

)

+ 3
(

D2(M
2
h) +D2(M

2
Z)

)

+ 2
(

D3(M
2
h) +D3(M

2
Z)

)

]

}

, (A.13)

up to higher order corrections and where T0 is the corresponding tree level amplitude and

using the simplified notation Dij(M
2) → Dij(0, 0, 0,M

2
r ,M

2,M2
k ,M

2
W ). Apart from the

explicit sum over final state neutrinos in eq. (A.13), the integral over the phase space is to

be understood in both the numerator and denominator.

Flavour-universal corrections to the gauge boson propagators: δuniv N

W and

δuniv N

Z . We label ΣWW and ΣZZ the terms proportional to gµν in the W and Z self-

energies respectively. Notice that the SM contribution has been subtracted from the total

self-energy, as we are interested in the contribution stemming from the new extra neutrinos.

W± W±

Ni

l±α

= iΣtot
WW (p2) ⇒

ΣN
WW (p2) ≡Σtot

WW (p2)− ΣSM
WW (p2) (A.14)

=− α

4πs2W

∑

α=e,µ,τ

{ 6
∑

i=1

|Uαi|2
[

2B00(p
2,M2

i ,m
2
α) + p2

(

B1(p
2,M2

i ,m
2
α)

+B11(p
2,M2

i ,m
2
α)
)]

− 2B00(p
2, 0,m2

α)−p2
(

B1(p
2, 0,m2

α) +B11(p
2, 0,m2

α)
)

}
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Z Z

Ni

Nj

= iΣtot
ZZ(p

2) ⇒

ΣN
ZZ(p

2) ≡Σtot
ZZ(p

2)− ΣSM
ZZ(p

2)

=− α

8πs2Wc2W

{

∑

α,β

6
∑

i,j=1

[

UαiU
∗
αjUβjU

∗
βiMiMjB0(p

2,M2
i ,M

2
j ) + UαjU

∗
αiUβiU

∗
βj

×
(

2B00(p
2,M2

i ,M
2
j ) + p2

(

B1(p
2,M2

i ,M
2
j ) +B11(p

2,M2
i ,M

2
j )
)

)

]

− 3
[

2B00(p
2, 0, 0) + p2

(

B1(p
2, 0, 0) +B11(p

2, 0, 0)
)

]

}

(A.15)

Notice that both in eq. (A.14) and in eq. (A.15) the sums run over all neutrino mass

eigenstates (heavy and light) so here Mi can represent both the heavy or the light neutrino

masses.

The oblique universal corrections to the electroweak observables can be written as a

combination of the three following independent parameters [30, 31]:

αS =
4s2Wc2W
M2

Z

[

Σ̂N
ZZ(0) + Σ̂N

γγ(M
2
Z)−

c2W − s2W
cWsW

Σ̂N
Zγ(M

2
Z)

]

, (A.16)

αT =
Σ̂N
ZZ(0)

M2
Z

− Σ̂N
WW (0)

M2
W

, (A.17)

αU = 4s2Wc2W

[

1

c2W

Σ̂N
WW (0)

M2
W

− Σ̂N
ZZ(0)

M2
Z

+
s2W
c2W

Σ̂N
γγ(M

2
Z)

M2
Z

− 2sW
cW

Σ̂N
Zγ(M

2
Z)

M2
Z

]

. (A.18)

and the renormalized self energies are given by:

Σ̂N
WW

(

p2
)

= ΣN
WW

(

p2
)

− ΣN
WW

(

M2
W

)

+ (p2 −M2
W )

[

c2W
s2W

R− ΣN ′
γγ(0)

]

,

Σ̂N
ZZ

(

p2
)

= ΣN
ZZ

(

p2
)

− ΣN
ZZ

(

M2
Z

)

+ (p2 −M2
Z)

[(

c2W
s2W

− 1

)

R− ΣN ′
γγ(0)

]

,

Σ̂N
Zγ

(

p2
)

= ΣN
Zγ

(

p2
)

− ΣN
Zγ (0)− p2

cW
sW

R,

Σ̂N
γγ

(

p2
)

= ΣN
γγ

(

p2
)

− p2ΣN ′
γγ (0) , (A.19)

with

R =
ΣN
ZZ

(

M2
Z

)

M2
Z

− ΣN
WW

(

M2
W

)

M2
W

− 2sW
cW

ΣN
Zγ (0)

M2
Z

(A.20)

Notice that, in the on-shell renormalization scheme Σ̂N
WW

(

M2
W

)

= Σ̂N
ZZ

(

M2
Z

)

= Σ̂N
Zγ (0) =

Σ̂N
γγ (0) = 0. Moreover, there is no contribution to the propagator of the photon from
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the extra heavy neutrinos and therefore ΣN
γγ and Σ̂N

γγ can be set to zero in the previous

equations. In addition, there is no correction to ΣZγ either, so that ΣN
Zγ can be set to zero

too. The universal oblique counterterms presented in section 3 can thus be written as:

δuniv N
W =

ΣN
WW (0)− ΣN

WW

(

M2
W

)

M2
W

− c2W
s2W

R =
Σ̂N
WW (0)

M2
W

=
1

2s2W
αS − c2W

s2W
αT − cos 2θW

4s4W
αU

δuniv N
Z =

ΣN
ZZ (0)− ΣN

ZZ

(

M2
Z

)

M2
Z

+
1

2

(

1− c2W
s2W

)

R =
Σ̂N
ZZ (0)

M2
Z

=
1

2s2W
αS +

(

1− c2W
s2W

)

αT − cos 2θW
4s4W

αU. (A.21)
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