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Abstract. We discuss the λφ4 model in 2- and 3-dimensional non-commutative spaces. The
mapping onto a Hermitian matrix model enables its non-perturbative investigation by Monte
Carlo simulations. The numerical results reveal a phase where stripe patterns dominate. In
d = 3 we show that in this phase the dispersion relation is deformed in the IR regime, in
agreement with the property of UV/IR mixing. This “striped phase” also occurs in d = 2. For
both dimensions we provide evidence that it persists in the simultaneous limit to the continuum
and to infinite volume (“Double Scaling Limit”). This implies the spontaneous breaking of
translation symmetry.

1. Quantum physics in a non-commutative space

Since in standard quantum mechanics the operators of space and momentum coordinates do
not commute, it seems like an obvious idea to “quantise further” by also introducing non-zero
commutators among space coordinates (or among momentum coordinates) in different directions.
Hence it is not surprising that this idea dates back to the 1940s. Its pre-history involves famous
names like Heisenberg, Pauli, Peierls and Oppenheimer, and in 1947 the first papers on this
subject were published [1].

However, the consequences of non-commutative (NC) geometry in quantum field theory are
extremely involved. Here we consider only the simplest case of two NC spatial coordinates, with
a constant non-commutativity “tensor” Θ,

[x̂i, x̂j ] = iΘij = iθǫij , (1.1)

where x̂i are Hermitian operators, i, j ∈ {1, 2}, and θ is the non-commutativity parameter.
In the 1980s deep mathematical work was carried out about the formal formulation of field

theories on such spaces (for a review, see Ref. [2]). Applications were discussed in solid state
physics, in particular related to the quantum Hall effect, see e.g. Ref. [3]. Of course, in this
context one actually deals with the usual geometry, but a magnetic background field B can be
interpreted as θ ∝ 1/B, which leads to NC canonical coordinates.

In the period from 1996 to 1998 a boom of interest in NC field theories set in, which led to
about 3000 papers on this subject up to now [4]. This boom was triggered by the observation
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that low energy string theory can be related to NC field theory [5], following the spirit of the
re-interpretation of the magnetic background field.

Here we are going to address NC field theory as such; no strings attached. A qualitative
difference from usual field theory is its non-locality; fields interact at distinct points over a
characteristic distance ∼

√

‖Θ‖. This entails frightening conceptual problems. On the other
hand, from a very optimistic point of view, this is just what it takes for a proposal to formulate
quantum gravity.

In this regard, we mention a simple Gedankenexperiment: assume some event to be measured
with extremely tiny space-time uncertainties ∆x1, ∆x2, ∆x3, ∆t, on the order of the Planck
length lPlanck ≃ 1.6 · 10−35 m. This requires a huge energy density, so gravitation should be
taken into consideration. In the extreme case this could yield an event horizon, which is larger
than the Heisenberg uncertainties, so the event is invisible. According to Ref. [6], avoiding that
scenario requires

∆x1∆x2 +∆x1∆x3 +∆x2∆x3 ≥ l2Planck ,

(∆x1 +∆x2 +∆x3)∆t ≥ l2Planck . (1.2)

Such space-time uncertainties are characteristic for an NC space. Is this a natural framework
for the conciliation of quantum theory and gravity? We should add, however, that much of the
literature on this subject keeps the time commutative. That deviates from the above consider-
ation, but it may save unitarity and reflection positivity, and it alleviates the problems related
to causality.

The historic motivation, however, was different. People hoped that washing out the space-
time points in this way1 could remove (or at least weaken) the notorious UV divergences in
quantum field theory, and avoid (or simplify) renormalisation. This turned out to be wrong:
renormalisation is not getting easier, but much harder due to non-commutativity. First of all, in
planar diagrams of a perturbative expansion, the UV divergences simply persist [7]. Second, in
the non-planar diagrams they tend to “mix” with IR divergences. This type of singularities does
not occur in the commutative world, and it is very difficult to deal with. For a simple intuitive
picture, we start again from the Heisenberg uncertainty ∆xi ∼ 1/∆pi, and we combine it with

∆xi ∼ Θij/∆xj ∼ Θij∆pj (i 6= j) . (1.3)

Therefore an attempt to squeeze ∆pi → 0 makes ∆pj diverge. Due to such mixed singularities,
the renormalisation of multi-loop diagrams is mysterious. Hence it is highly motivated to adopt
a fully non-perturbative approach.

In many models, the lattice regularisation enables the non-perturbative treatment of quantum
field theory. So let us introduce a lattice structure also on the NC plane of eq. (1.1) (this concept
is reviewed in Ref. [8]). This is achieved — at least in a fuzzy form — if we impose the operator
identity

exp
(

i
2π

a
x̂i

)

= 1̂1 . (1.4)

For lattice spacing a we expect periodicity of the (commutative) momentum components over
the Brillouin zone,

exp
(

i
∑

i

kix̂i

)

= exp
(

i
∑

i

(ki +
2π

a
)x̂i

)

, i = 1, 2 . (1.5)

1 Some people denote it as “pointless geometry”.
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Multiplication with the inverse factor exp(−i∑j kj x̂j) from the right, and applying the Baker-
Campbell-Hausdorff formula, leads to

1̂1 = 1̂1 exp
( iπ

a
θ(k2 − k1)

)

⇒ θ

2a
ki ∈ Z . (1.6)

Therefore, in contrast to the commutative space, the NC lattice is automatically periodic.

If we now assume periodicity over the lattice volume N × N , we have discrete momenta
k(n) = 2π

aN n, n ∈ Z
2, and we arrive at the relation

θ =
1

π
Na2 . (1.7)

In order to keep θ finite, in particular for θ = const., we have to take the limits to the continuum,
a→ 0, and to infinite volume, Na→∞, simultaneously. This is the Double Scaling Limit,

a → 0
N → ∞

}

such that Na2 = const. , (1.8)

which leads to a NC plane of infinite extent. Clearly, this requirement is again related to the
property of UV/IR mixing. Taking these limits differently, one would usually end up with θ = 0
or θ = ∞, which are both (different) cases of commutative field theory. For a consistent study
of NC field theory, we have to follow the instruction (1.8).

2. The non-commutative λφ4 model

2.1. Formulation

NC field theory can be formulated such that the fields are functions of the standard
(commutative) coordinates xµ, if all field multiplications are performed by star products (or
Moyal products). A prototype reads

φ(x) ⋆ ψ(x) := φ(x) exp
( i

2

←
∂ µΘµν

→
∂ ν

)

ψ(x) (2.1)

(for instance [xµ, xν ]⋆ = iΘµν). This can be justified with a plane wave decomposition.
For bilinear terms under a space-time integral (without boundary terms) the star product is

equivalent to a simple product, because of the anti-symmetry of Θ. Hence the action of the λφ4

model in NC Euclidean space can be written as

S[φ] =

∫

ddx
[1

2
∂µφ∂µφ+

m2

2
φ2 +

λ

4
φ ⋆ φ ⋆ φ ⋆ φ

]

. (2.2)

This shows that the parameter λ does not only determine the strength of the self-interaction,
but also the extent of NC effects.

The perturbative expansion of this model has been discussed extensively in the literature.
Regarding the 1-loop diagrams, there is a planar contribution, which takes the standard form [7],
as we mentioned before. On the other hand, the non-planar diagrams pick up a phase factor
due to the non-commutativity. For the moment, let us introduce a momentum cutoff Λ. Then
the 1-loop integrals and their leading divergences in d = 4 take the form [9]

planar :

∫

ddk
1

k2 +m2
∝ Λ2 , non-planar :

∫

ddk
exp(ikµΘµνpν)

k2 +m2
∝ 1

1/Λ2 + pµΘµνpν
.

We see that a finite Θ does indeed allow us to take the limit Λ → ∞ in the non-planar part.
However, then a singularity emerges for external momentum p→ 0, which illustrates the UV/IR
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mixing. Moreover, even at finite p, the limit Θ → 0 is not smooth; therefore the meaning of
a truncated expansion in small ‖Θ‖ is questionable. Finally we also confirm that the opposite
limit Θ→∞ is commutative, but different from Θ = 0.

Now we consider d = 3, so that the scalar field φ(~x, t) lives on a NC plane (x1, x2), plus a
commutative Euclidean time t. We assume a lattice structure, for the NC plane as described in
Section 1, and for the time in a regular form. The action on a N2 × T lattice can be mapped
(with identical algebras) onto a matrix model with twisted boundary conditions [10],

S[φ̄] = Tr

T
∑

t=1

[ 1

2

2
∑

i=1

(

Γiφ̄(t)Γ
†
i − φ̄(t)

)2
+

1

2

(

φ̄(t+ 1)− φ̄(t)
)2

+
m2

2
φ̄2(t) +

λ

4
φ̄4(t)

]

, (2.3)

where φ̄(t) are Hermitian N ×N matrices, located at t = 1, . . . , T (we are using lattice units).
The kinetic term has the standard lattice form in time direction, but in the NC plane it is
constructed by means of so-called twist eaters Γi. They arrange for a shift by one lattice unit,
if they obey the ’t Hooft-Weyl algebra

ΓiΓj = ZjiΓjΓi . (2.4)

Here the twisted boundary conditions enter, and we choose the corresponding phase factor as

Z21 = Z∗
12 = exp

(

iπ(N + 1)/N
)

, (2.5)

where the size N is assumed to be odd. Then we insert a unitary solution for Γ1 and Γ2, which
is known as clock- and shift-matrix (they are written down explicitly e.g. in Refs. [10,11]). The
crucial property, however, is relation (2.4).

2.2. Phase diagram

Some years ago, Gubser and Sondhi performed a 1-loop calculation in the Hartree-Fock
approximation [12] and conjectured the following properties of the phase diagram of the NC
λφ4 model in d = 3 and 4:

• At small θ, there is an Ising-type phase transition between a disordered and a uniform phase
at some critical value m2

c < 0 (a strongly negative parameter m2 can be interpreted as low
temperature).

• At large θ and somem2
c < 0, there is another phase transition, but now between a disordered

and a striped phase.

Further considerations were added with Renormalisation Group techniques [13], and with
the Cornwall-Jackiw-Tomboulis effective action approach [14]. They are consistent with the
qualitative picture by Gubser and Sondhi.

A quantitative study was based on Monte Carlo simulations, which probed the phase
diagram in the (m2, λ) plane, for the 3d matrix formulation described in Subsection 2.1,
at N = T = 15 . . . 45 [11]. Thus the picture by Gubser and Sondhi is converted into a
uniform/disordered transition at small λ, and a striped/disordered transition at large λ. This is
in fact observed, as the phase diagram in Figure 1 shows. Figure 2 adds the features of typical
configurations in the four sectors (after mapping back the matrices to a lattice scalar field).

The phases, and their transitions, were identified with the momentum dependent order
parameter

M(k) =
1

NT
max

N

2π
|~p|=k

∣

∣

∣

∑

t

φ̃(~p, t)
∣

∣

∣
. (2.6)

XIV Mexican Workshop on Particles and Fields IOP Publishing
Journal of Physics: Conference Series 651 (2015) 012003 doi:10.1088/1742-6596/651/1/012003

4



N = 15N = 25N = 35N = 45

phasestripeduniformp
hase disordered phase

N2�
N2 m2

8007006005004003002001000

0-100-200-300-400
Figure 1. The phase diagram of the 3d λφ4 model on an NC plane but with a commutative
Euclidean time coordinate. The ordered regime — at strongly negative N2m2 — is divided into
phases of uniform and of striped order.

x1
x2

4035302520151050

4035302520151050 x1
x2

4035302520151050

4035302520151050

x1
x2

4035302520151050

4035302520151050 x1
x2

4035302520151050

4035302520151050
Figure 2. Typical configuration of the 3d λφ4 model at N = T = 45: we show the NC plane,
and dark/bright areas correspond to the two signs of φ. The examples on the left (right) refer
to low (high) λ, and the upper (lower) plots were obtained at weakly (strongly) negative m2.
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For k = 0 this is the magnetisation, and for finite k it captures the possible dominance of a “stripe
pattern”, e.g. with k parallel stripes, rotated in a suitable way (if two non-zero components of
~p are involved, the pattern is actually of a checker-board type).

Far from the transition lines, M(k) indicates the phase unambiguously. The transition is
identified best by varying m2 < 0 at fixed λ, and searching for a peak in the connected two-
point function

〈M(k)2〉con = 〈M(k)2〉 − 〈M(k)〉2 . (2.7)

This provides accurate results for the critical values m2
c . For all λ values that we considered,

this transition appears to be of second order.
On the other hand, the transition uniform/striped inside the ordered regime is rather hard

to explore, as the uncertainty band in Figure 1 shows. Here we studied the thermal cycle, which
reveals a clear hysteresis effect [11]; this is characteristic for a first order transition.

Next we considered the correlation functions close to the order/disorder transition, in the
disordered regime (where finite size effects are harmless). Figure 3 refers to the spatial
separation, and shows that the correlator

C(x1, 0) = 〈φ(~0; t)φ(x1, 0; t)〉 (2.8)

has an unusual shape, both close to the uniform and close to the striped phase. The decay is
fast, but not exponential; it is NC distorted.

x1
C(x 1;0
)

35302520151050

10.10.010.001
x1

C(x 1;0
)

35302520151050

10.10.010.001
Figure 3. The correlation function C(x1, 0) for spatial separation, given in eq. (2.8). Both
plots were obtained in the disordered phase, close to the ordering transition, at N = T = 35.
On the left the parameters are N2λ = 70, N2m2 = −17.5 (close to the uniform phase), and on
the right N2λ = 3500, N2m2 = −140 (close to the striped phase). In both cases, the decay is
fast, but not exponential.

Nevertheless we can evaluate the energy based on the temporal correlation function. Here we
first transform the spatial part of the configurations to momentum space, and we consider

G(τ) = 〈φ̃(~p, t) φ̃(~p, t+ τ)〉 . (2.9)

Now we do find an exponential decay — respectively a cosh function behaviour at finite T —
as Figure 4 illustrates for the example ~p = ~0.

This leads to the dispersion relation E2(~p 2) shown in Figure 5, now for N = T = 55. In fact,
the energy minimum is located at non-zero ~p, which is a clear indication that we are close to the
striped phase; decreasing m2 then leads to the condensation of a corresponding striped pattern.
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�
G(�)

35302520151050

1
0.1

0.01
Figure 4. The temporal correlation function G(τ), given in eq. (2.9), measured at N = T = 35,
N2λ = 350, N2m2 = −140. The data agree very well with a cosh-fit.

It is evident that this pattern is non-uniform, but for the exact structure of the stripes various
options are in close competition.

At very small momenta, the dispersion relation is consistent with the expected IR divergence.

~p 2
E2

0.50.40.30.20.10

0.60.50.40.30.20.10
Figure 5. The dispersion relation E2(~p 2) determined at N = T = 55, m2 = −15, λ = 50
(close to the striped phase). The energy takes its minimum at finite momentum, which leads to
a striped pattern at somewhat lower m2. A 4-parameter fit [11] is consistent with the trend to
an IR divergence in infinite volume.

2.3. Double Scaling Limit

So far we have been dealing with lattice units. In order to take a continuum limit, we have
to introduce a scale, i.e. we need a dimensional reference quantity. For this reason, we
extrapolate the (broad) linear regime in the dispersion relation E(|~p|) down to ~p = ~0. This
linear extrapolation deviates from the dispersion at small momenta, but it defines an effective
mass Meff , according to

E2 =M2
eff + ~p 2 . (2.10)
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We are going to investigate the behaviour if m2 approaches m2
c from above. Hence it is

convenient to define
∆m2 := m2 −m2

c . (2.11)

At fixed λ, and for ∆m2 & 0, we observed the proportionality relation

M2
eff |λ=const. ∝ ∆m2 , (2.12)

as Figure 6 shows for λ = 50, as an example.

N = 45N = 35N = 25N = 15

m2
M2 e�

-4-6-8-10-12-14-16

3.532.521.510.50-0.5
Figure 6. The effective mass squared, M2

eff , obtained by the extrapolation (2.10) of the
dispersion relation. We see that M2

eff depends linearly on m2 resp. on ∆m2. The plot refers to
λ = 50, where M2

eff vanishes at m2
c = −15.01(8).

Now we can take a continuum limit by keeping the effective mass in dimensional units,
Meff/a, fixed. For simplicity we set this ratio to 1, hence a = M−1

eff is the dimensional lattice
spacing. Therefore, the DSL condition θ ∝ Na2 = const. is implemented by increasing N , and
simultaneously decreasing m2 so that it approaches m2

c from above, in such a manner that

N ∆m2 = const. . (2.13)

Now we can re-consider the dispersion relation in dimensional units. The rest energy diverges
like E(|~p| → 0)/a ∝

√
N [11], which confirms the UV/IR mixing also dimensionally. For a

broad range of finite momenta |~p|/a, Figure 7 shows that the dispersion relation stabilises if we
approach the DSL, and that the energy minimum is obtained around the dimensional momentum

~p 2/a2 . 0.1 M2
eff . (2.14)

This tells us that the striped phase persists in the DSL, where stripes of finite width dominate.
This observation implies the spontaneous breaking of translation and rotation symmetry in the
striped phase of the 3d phase diagram.

That phenomenon leads to a tricky question: does the same happen also in d = 2 ? The next
section will be devoted to this issue.

3. Does translation symmetry break in d = 2 ?

The Mermin-Wagner Theorem [15] tells us that usually a continuous global symmetry cannot
break spontaneously in d = 2. At first sight this seems to imply that the striped phase cannot
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N = 77N = 55N = 45

(~p=a) 2
(E(~p)=a)2

0.60.50.40.30.20.10

1.61.51.41.31.21.110.90.8
Figure 7. Dispersion relation in dimensional units, at λ = 50 and N ∆m2 ≃ 100. Both axes
are given in units of M2

eff . We see that the dispersion stabilises, so it is possible to take a DSL
next to the striped phase, with a finite width of the stripes to be formed at m2 < m2

c .

occur in the NC plane. However, the proof for this theorem is based on assumptions of standard
quantum field theory, like locality — this does not hold on the NC plane.

Still, Gubser and Sondhi did not expect a striped phase in d = 2 [12]. They presented a
consideration how the Mermin-Wagner Theorem could be extended even to NC field theory.
They used an effective action approach of the Brazovskii-type, where the kinetic term is of
quartic order in the momentum, which should make the exclusion of spontaneous symmetry
breaking stronger. On the other hand, the effective action approach of Ref. [16] seems to affirm
a striped phase.

From the numerical side, a striped phase in the NC λφ4 model has been manifestly observed
also in d = 2 [11,17,18]. However, this does not prove its existence in the DSL — it could also
be an artifact of the lattice and of finite volume. The fate of this phase in the DSL has been
investigated numerically only very recently [19].

The matrix model formulation corresponds to the description in Subsection 2.1, where the
time direction collapses to one site. Figure 8 shows the phase diagram in d = 2. We see that
the vertical axis needs a scaling factor N3/2, which differs from the 3d case (cf. Figure 1). If m2

is scaled in this way, we observe a convincing stabilisation of the order/disorder transition line
for N ≥ 19.

Figure 9 shows again typical configurations in the four sectors of this phase diagram, in
analogy to the Figure 2, but now with a four-stripe pattern. The transition was again detected
with the order parameter (2.6). Figure 10 gives examples how the uniform or striped order
parameter rises for decreasing m2, and how the corresponding connected correlator exhibits a
peak at the transition.

Now we consider also here the correlation function. In d = 3 we focused on the correlation
in time direction in order to extract the dispersion relation and to introduce the effective mass
Meff , as a scale for the DSL. This is not available anymore in d = 2, so now we have to deal with
the spatial correlation, and its unusual decay behaviour. Figure 11 shows an example in the
disordered phase, but next to the the striped phase — for slightly lower m2 a 4-stripe pattern
will condense (like the example in Figure 9 on the bottom at the right).

Our concept is as follows: we decrease m2 down towards m2
c , and we increase the matrix size

N at the same time, such that the decay of the correlator stabilises down to the first dip. This
replaces the usual reference to the exponential decay. The difference ∆m2, defined in eq. (2.11),
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-50

 0

 0  100  200  300  400  500  600  700
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2

N2λ

Phase Diagram

Uniform Phase

Striped Phase

Disordered Phase

N=13
N=19
N=25
N=35
N=45

Figure 8. The phase diagram of the 2d NC λφ4 model. In contrast to the 3d case, the vertical
axis has to be chosen as N3/2m2. Then the transition line between disorder and the ordered
phases stabilises at N ≥ 19.

introduces a scale, which translates — with a suitable exponent — into the scale of the DSL,

a2 ∝ (∆m2)σ . (3.1)

The exponent σ has to be identified, then we can address the question whether or not it is
possible to take a DSL and keep close to the striped phase. If this can (cannot) be done, this is
evidence for the existence (absence) of the striped phase in the continuum and infinite volume
limit of this model.

To tackle this question, we first choose a normalisation by setting the lattice spacing for
N = 35 to a = 1. Thus the DSL converts a lattice distance x into the dimensional distance

ax =

√

35

N
x . (3.2)

This distance should be compatible up to the first correlation dip for increasing N .
In analogy to the “dimensionless temperature”, which is often used near a phase transition,

(T − Tc)/Tc, we adjust the dimension by the suitable power of m2
c , such that the DSL can be

written as

Na2 = N
(∆m2)σ

(m2
c)

1−σ
. (3.3)

Now let us consider two matrix sizes N1 and N2; we want to identify the mass shifts ∆m2
1 and

∆m2
2 which correspond to the same trajectory towards the DSL. We fix λ to the same value,

so that the dimensionless term λθ remains constant. We fine-tune the mass shifts such that
they lead to the same short-distance correlation decay. This is illustrated for three examples in
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m2=0.0, N=35, N2λ=125
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m2=-0.14, N=35, N2λ=240
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m2=-0.57, N=35, N2λ=125
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m2=-0.84, N=35, N2λ=240
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Figure 9. Typical configurations in four sectors of the phase diagram in Figure 8, analogous to
Figure 2. The upper plots are in the disordered phase, next to the uniform and to the striped
phase, respectively. The lower plots are examples for uniform and for striped ordering.

Figure 12. Once these values ∆m2
i (i = 1, 2), and the corresponding critical values m2

c,i, are
determined, we extract the exponent σ from

σ =
ln(m2

1,c/m
2
2,c)

ln(∆m2
1,c/∆m

2
2,c) + ln(m2

1,c/m
2
2,c)

. (3.4)

This has to be done for a variety of pairs N1, N2, and the crucial question is whether or not a
stable σ-value is obtained.

λ N1 N2 σ

0.222
35 45 0.152(7)
35 55 0.156(6)
45 55 0.161(11)

0.286
25 35 0.161(9)
25 45 0.167(7)
35 45 0.178(23)

0.4 25 35 0.147(13)

Table 1. The σ-values obtained for various pairs of sizes N1, N2 after tuning ∆m2 such that
the short-distance decay of the correlation function coincides.
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Figure 10. The order parameters 〈M(0)〉 and 〈M(4)〉, as defined in eq. (2.6), for the 2d NC
λφ4 model. We keep N and λ fixed and show the dependence on m2. Above we see that for
small (large) λ and decreasing m2 the disorder turns into a uniform (4-stripe) pattern. Below
we show examples where the 2-point functions of these order parameters have a peak, which
allows us to identify the critical value m2

c .
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Figure 11. The correlation function 〈φ(0,0)φ(x1,0)〉 near the striped phase, at (N3/2m2, N2λ) =

(−118, 272). For somewhat lower m2 a 4-stripe pattern condenses.
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Figure 12. Three examples for “matched correlation functions”: at fixed λ, but for different
sizes N , the parameter ∆m2 = m2 −m2

c is tuned such that the correlation decay down to the
first dip has the same slope. Then the distance in physical units — as given in eq. (3.2) —
agrees. In this way we identify ∆m2 values to be inserted in eq. (3.4), which determines the
exponent σ.

There are practical constraints for these evaluations: λ has to be large enough to be close
to the striped (not uniform) phase for the smaller N involved. On the other hand, for the
larger N the product N2λ should not be too large — otherwise we run to the far right in the
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Figure 13. An illustration of the values given in Table 1. We see a clear trend to a plateau
value of σ = 0.16(1).

phase diagram in Figure 8, where the effective potential forms a landscape of many deep valleys
(meta-stable local minima), so reliable simulations are more and more difficult to achieve (the
trouble starts already with the thermalisation).

Still a numerically accessible window could be found, and we give our results for three λ
values in Table 1 and Figure 13. We considered the uncertainties which affect σ (errors in ∆m2

i
and in m2

c,i), but the precision is sufficient to confirm a clear trend towards a stable exponent

σ = 0.16(1) . (3.5)

Thus we can indeed approach the DSL consistently, running to the right in the phase diagram
in Figure 8, while staying in the vicinity of the striped phase. This implies that the latter does
persist in the DSL. Hence in the NC world translation symmetry can indeed break spontaneously,
even in d = 2.

4. Conclusions

We have studied the λφ4 model in d = 3 [11] and in d = 2 [19]. In both cases, the spaces
include a non-commutative plane. In order to explore this model beyond perturbation theory,
we introduced a (fuzzy) lattice regularisation and mapped the theory onto a Hermitian matrix
model, following Ref. [10]. This enables Monte Carlo simulations, which were performed with a
Metropolis algorithm.2

For both dimensions we observed that a strongly negative bare mass parameter m2 enforces
some order.

• If λ is small, so that non-commutativity effects are weak, this order is the uniform
magnetisation, as in the commutative variant of this model.

• If λ is large, so that non-commutativity effects are strongly amplified, this order is “striped”.
That phase does not occur in the commutative case.

2 There have been related studies of the λφ4 model on a fuzzy sphere instead of a NC plane [20]. Also in that
case Monte Carlo simulations were performed after the mapping onto a Hermitian matrix model. However, the
non-commutativity relation differs from the form (1.1) that we have discussed here.
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In both dimensions we gave numerical evidence that the striped phase persists in the Double
Scaling Limit, which extrapolates simultaneously to the continuum and to infinite volume, while
keeping the non-commutativity parameter θ fixed. This indicates the spontaneous breaking of
translation and rotation symmetry in this limit.

For the 2d case this might appear surprising due to the Mermin-Wagner Theorem. However,
this theorem does not apply to non-commutative field theory, since it assumes locality and an
IR regular behaviour.
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