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We study the radiative corrections to the mass of the lightest Higgs boson of the MSSM from three generations of Majorana
neutrinos and sneutrinos. The spectrum of the MSSM is augmented by three right handed neutrinos and their supersymmetric
partners. A seesaw mechanism of type I is used to generate the physical neutrino masses and oscillations that we require to be in
agreement with present neutrino data. We present a full one-loop computation of these Higgs mass corrections and analyze in full
detail their numerical size in terms of both the MSSM and the new (s)neutrino parameters. A critical discussion on the different
possible renormalization schemes and their implications, in particular concerning decoupling, is included.

1. Introduction

In order to account for the impressive experimental data on
neutrino mass differences and neutrino mixing angles [1]
physics beyond the Standard Model (SM) is needed. On the
other hand, after the discovery of a Higgs boson at the Large
Hadron Collider (LHC) [2, 3], the problem of stabilizing the
Higgs mass at the electroweak scale within the SM became
even more relevant. Similarly, the existence of Cold Dark
Matter (CDM) [4] has to be accounted for by an extension
of the SM. Consequently, in order to incorporate neutrino
masses into the SM, to stabilize the Higgs-boson mass scale
and to provide a viable CDM we choose here one of the
most popular extensions of the SM: the simplest version of
a supersymmetric extension of the SM, the Minimal Super-
symmetric Standard Model (MSSM) [5–7], with the addition
of heavy right-handed Majorana neutrinos, and where the
well-known seesaw mechanism of type I [8–13] is imple-
mented to generate the observed small neutrino masses.
From now on we will denote this model by “MSSM-seesaw.”
The lightest Higgs boson in this model can be interpreted as
the Higgs particle discovered at the LHC [14].

In this MSSM-seesaw context, the smallness of the light
neutrino masses, 𝑚] ∼ 𝑚

2
𝐷
/𝑚

𝑀
, appears naturally due to

the induced large suppression by the ratio of the two very
distant mass scales, namely, the Majorana neutrino mass𝑚

𝑀

that represents the new physics scale and the Dirac neutrino
mass 𝑚

𝐷
, which is related to the electroweak scale via the

neutrino Yukawa couplings 𝑌], by𝑚𝐷
= 𝑌]V sin𝛽. The Higgs

sector content in the MSSM-seesaw is as in the MSSM, that
is, composed of two Higgs doublets. tan𝛽 is the ratio of the
two vacuum expectation values, tan𝛽 = V2/V1, and V2 =

V21 + V22 = (174GeV)
2. Small neutrino masses of the order

of 𝑚] ∼ O(0.1) eV can be easily accommodated with large
Yukawa couplings, 𝑌] ∼ O(1), if the new physics scale is very
large, within the range 𝑚

𝑀
∼ 1013–1015 GeV. This is to be

compared with the Dirac neutrino case where, in order to
get similar small neutrino masses, extremely tiny and hence
irrelevant, Yukawa couplings of the order of 𝑌] ∼ 10−12-10−13
are required.

As for all SM fermions, the neutrinos in the MSSM are
accompanied by their respective super partners, the scalar
neutrinos. The hypothesis of Majorana massive (s)neutrinos
is very appealing for various reasons, including the interesting
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possibility of generating satisfactorily baryogenesis via lep-
togenesis [15]. Furthermore, they can produce an interest-
ing phenomenology due to their potentially large Yukawa
couplings to the Higgs sector of the MSSM, such as correc-
tions to the light CP-even Higgs-boson mass, 𝑀

ℎ
[16, 17]

(see also [18–21] for previous evaluations). Further striking
phenomenological implications [22] of the MSSM-seesaw
scenario are the prediction of sizeable rates for lepton flavor
violating processes (within the present experimental reach for
specific areas of themodel parameters [23–31]), nonnegligible
contributions to electric dipole moments of charged leptons
[32–34], and also the occurrence of sneutrino-antisneutrino
oscillations [35] as well as sneutrino flavor-oscillations [36].

It is worth recalling that the seesaw mechanism is not the
only way to generate neutrinomasses in the context of super-
symmetry (see, for instance, [37, 38]). In fact there are many
well-known extensions of the MSSM that can generate small
neutrino masses besides the various types of high and low
scale Seesawmodels (see, e.g., [39] for a review and references
therein). One possible alternative to the addition of right-
handed neutrinos is the incorporation of R-parity violating
interactions to the MSSM, which can introduce the lepton
number violating terms that are needed for the small neutrino
mass generation. Indeed, R-parity violation can be produced
in many ways: spontaneously, explicitly, by bilinear terms,
by trilinear terms, and so forth; see, for example, [40, 41].
Another popular extension of the MSSM is the Next-to-
Minimal-Supersymmetric-Standard-Model (NMSSM) (see,
for instance, the review in [42]), which includes an extra
chiral singlet superfield with zero lepton number, offering
a solution to the so-called 𝜇-problem of the MSSM and
providing an extra tree level mass term to the SM-like Higgs
boson which raises its mass above that of the lightest Higgs
boson of the MSSM. In this NMSSM, as in the MSSM, the
small neutrino masses can be generated either by allowing
for R-parity violating terms or by adding extra chiral singlet
superfields carrying nonvanishing lepton number (like, for
instance, right-handed neutrinos). The 𝜇]SSM [43] can also
solve the 𝜇 problem and generate masses for the neutrinos by
adding to the MSSM right-handed neutrino superfields and
R-parity breaking terms.

It should be noted that each of the above mentioned
extensions of the MSSM leads to different phenomenological
implications, including those in the neutrino and in theHiggs
boson sectors. Our preference for the particular choice of
extended MSSM with three generations of right handed neu-
trinos and sneutrinos, and with a seesaw mechanism of type
I, is mainly because, as we have said above, it is the simplest
extension of the MSSM compatible with neutrino data that
naturally allows for large neutrino Yukawa couplings. It is
precisely this interesting possibility of large neutrino Yukawa
couplings what can induce large radiative corrections to the
lightest Higgs boson mass, and thus the (s)neutrino sector
phenomenology is directly linked to the Higgs sector. Other
extensions of the MSSM could also induce relevant correc-
tions to the Higgs bosonmass from the additional superfields
and the new input parameters associated to the neutrinomass
generation. For instance, within the NMSSM, in addition to
the tree level enhanced Higgs boson mass, one may generate

relevant mass corrections from the TeV-scale right-handed
neutrinos via their interactions with the zero-lepton-number
chiral singlet superfield while having small neutrino Yukawa
couplings [44]. Alternatively, one may also generate relevant
corrections to the Higgs boson mass from TeV-scale right-
handed neutrinos, within the context of the Inverse Seesaw
Models, that allow for large Yukawa couplings but introduce
in addition a small lepton number violating parameter [45].

We are interested here in the indirect effects of Majorana
neutrinos and sneutrinos via their radiative corrections to
the MSSM Higgs boson masses within the MSSM-seesaw
framework. While the initial evaluations and analyses of cor-
rections to 𝑀

ℎ
concentrated on the one-generation case to

analyze the general analytic behavior of this type of contri-
butions, in this paper we investigate the Majorana neutrino
and sneutrino sectors with three generations which can
accommodate the present neutrino data. We will focus here
on the corrections to the lightest𝑀

ℎ
and will present the full

one-loop contributions from the complete three generations
of neutrinos and sneutrinos and without using any approxi-
mation. It should be noted that the extrapolation from the one
generation to the three generations case cannot be trivially
done due to the relevant generation mixing in the latter and,
therefore, the corresponding radiative corrections must be
explicitly and separately computed. A crucial issue of interest
in relation with the present computation is the question of
decoupling of the heavy Majorana mass scales. While it was
shown for the one generation case [16, 17] that this strongly
depends on the choice of the renormalization scheme, no
such scheme could be identified being superior to the other
in all respects. Consequently, we will also comment compara-
tively the advantages and disadvantages of the various renor-
malization schemes in the present case of three generations
where there are severalmass scales involved. On the one hand
it will not be possible to obtain information from a precise
𝑀

ℎ
measurement on the Majorana mass scale. On the other

hand, however, the precise prediction of 𝑀
ℎ
in the presence

ofMajorana (s)neutrinos and the understanding of these cor-
rections in the different schemes (and their respective decou-
pling behavior) used in the𝑀

ℎ
calculations, is desirable.

For the estimates of the total corrections to 𝑀
ℎ
in the

MSSM-seesaw, obviously, the one-loop corrections from the
neutrino/sneutrino sector that we are interested here have
to be added to the existing MSSM corrections. The status of
radiative corrections to 𝑀

ℎ
in the non-]/]̃ sector, that is, in

the MSSM withoutmassive neutrinos, can be summarized as
follows. Full one-loop calculations [46–48] have been supple-
mented by the leading and subleading two-loop corrections;
see [49] and references therein. Together with leading three-
loop corrections [50–53] and the recently added resumma-
tion of logarithmic contributions [54], the current precision
in𝑀

ℎ
is estimated to be ∼2-3GeV [49, 54, 55].

A summary and discussion of the previous estimates of
neutrino/sneutrino radiative corrections to the Higgs mass
parameters can be found in [16], where (as discussed above)
the one-generation case was calculated and analyzed. In this
work, we will consider the more general three generation
MSSM-seesaw scenarios with no universality conditions
imposed and explore the full parameter space, without
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restricting ourselves just to large or small values of any
of the relevant neutrino/sneutrino parameters. In principle,
since the right handed Majorana neutrinos and their SUSY
partners are 𝑆𝑈(2) × 𝑈(1) singlets, there is no a priori reason
why the size of their associated parameters should be related
to the size of the other sector parameters. In the numerical
estimates, we will therefore explore a wide interval for all the
involved neutrino/sneutrino relevant input parameters.

The paper is organized as follows. In Section 2, we sum-
marize the most important ingredients of the MSSM-seesaw
scenario that are needed for the present computation of the
Higgs mass loop corrections.These include, the setting of the
model parameters and the complete list of the Lagrangian
relevant terms. A complete set of the corresponding relevant
Feynman rules in the physical basis is also provided here.
They are collected in Appendix A (to our knowledge, they are
not available in the previous literature). In Section 3 we dis-
cuss the renormalization procedure and emphasize the dif-
ferences between the selected renormalization schemes. The
corresponding analytic analysis can be found in Section 4. A
numerical evaluation and in particular the dependence on the
(hierarchical) Majorana mass scales are given in Section 5.
Finally, our conclusions can be found in Section 6.

2. The MSSM-Seesaw Model

In order to include the proper neutrino masses and oscil-
lations in agreement with present neutrino data (see, for
instance, [56–58]), we employ an extended version of the
MSSM, where three right handed neutrinos and their super-
symmetric partners are included, in addition to the usual
MSSM spectra. A seesawmechanismof type I [8–13] is imple-
mentedwhich requires in addition to theDirac neutrinomass
matrix,𝑚

𝐷
, the introduction of a new3×3 so-calledMajorana

mass matrix, 𝑚
𝑀
. This matrix 𝑚

𝑀
is the responsible for the

Majorana character of the physical neutrinos in this MSSM-
seesaw model.

The terms of the superpotential within theMSSM-seesaw
that are relevant for neutrino and Higgs related physics are
described by [16, 35, 36]

𝑊 = 𝜖
𝑎𝑏

[𝑌
𝑖𝑗

] Ĥ
𝑎

2�̂�
𝑏

𝑖
�̂�
𝑗
−𝑌

𝑖𝑗

𝑙
Ĥ

𝑎

1�̂�
𝑏

𝑖
�̂�
𝑗
+𝜇Ĥ

𝑎

1Ĥ
𝑏

2]

+
1
2
𝑚
𝑖𝑗

𝑀
�̂�
𝑖
�̂�
𝑗
.

(1)

𝑌] is a 3 × 3 complex Yukawa matrix, while𝑚
𝑀
is a complex

symmetric 3 × 3 mass matrix. The indices 𝑖, 𝑗 represent
generations (with 𝑖, 𝑗 = 1, 2, 3), the indices 𝑎, 𝑏 refer to 𝑆𝑈(2)
doublets components, and 𝜖12 = −1. Omitting the generation
indexes, for brevity, the involved superfields are as follows:
�̂� = {]̃∗

𝑅
, (]

𝑅
)
𝑐
} is the new superfield that contains the right-

handed neutrinos ]
𝑅𝑖
and their partners ]̃

𝑅𝑖
, while the other

superfields are as in the MSSM; that is, �̂� contains the 𝑆𝑈(2)
lepton doublet (]

𝐿
, 𝑙
𝐿
) and its superpartner (]̃

𝐿
, �̃�
𝐿
), �̂� contains

the 𝑆𝑈(2) sfermion and fermion singlets {̃𝑙
𝑅
, (𝑙

𝑅
)
𝑐
}, and the

Ĥ1 and Ĥ2 are the Higgs superfields that give masses to the
down and up-type (s)fermions, respectively. Here and in the

following, 𝑓𝑐 refers to the particle-antiparticle conjugate of a
fermion 𝑓 defined as follows:

𝐶 : 𝑓 → 𝑓
𝑐
= 𝐶𝑓

𝑇

, (2)

where 𝐶 and 𝐶 are the particle-antiparticle conjugation and
charge conjugation, respectively.

The superfields �̂�, �̂�, and �̂� can be chosen such that𝑌
𝑙
and

𝑚
𝑀
are real and nonnegative diagonal 3×3matrices, whereas

𝑌], in contrast, is a general complex 3 × 3 matrix.
The additional sneutrinos ]̃

𝑅𝑖
induce new relevant terms

in the soft SUSY-breaking potential. Following [16, 35, 36] it
can be written as

𝑉
]̃
soft = (𝑚

2
�̃�
)
𝑖𝑗

]̃∗
𝐿 𝑖
]̃
𝐿𝑗

+ (𝑚
2
�̃�
)
𝑖𝑗

]̃
𝑅𝑖
]̃∗
𝑅𝑗

+ (𝐴
𝑖𝑗

]𝐻
2
2 ]̃𝐿 𝑖 ]̃

∗

𝑅𝑗
+ (𝑚

2
𝐵
)
𝑖𝑗

]̃∗
𝑅𝑖
]̃∗
𝑅𝑗

+ h.c.) ,

(3)

where𝑚2
�̃�
,𝑚2

�̃�
are 3×3Hermitianmatrices in the flavor space,

𝐴] is a 3 × 3 generic complex matrix, and 𝑚
2
𝐵
is a complex

symmetric matrix.
After the Higgs fields develop a vacuum expectation

value, the charged lepton and Dirac neutrino mass matrix
elements can be written as

𝑚
𝑖𝑗

𝑙
= 𝑌

𝑖𝑗

𝑙
V1,

𝑚
𝑖𝑗

𝐷
= 𝑌

𝑖𝑗

] V2,
(4)

where V
𝑖
are the vacuum expectation values (vev) of the 𝐻

𝑖

fields, V1 = V cos𝛽, V2 = V sin𝛽, and V2 = 2𝑀2
𝑊
/𝑔

2
= 2𝑀2

𝑍
/

(𝑔
2
+ 𝑔

2
) = (174GeV)

2. 𝑀
𝑊

and 𝑀
𝑍
denote the masses of

the𝑊 and 𝑍 boson, respectively.
Finally, startingwith the superpotential of (1), the Yukawa

couplings of the neutrinos and their corresponding mass
terms can be derived:

−Lmass −LYukawa =
1
2
∑

𝑖𝑗

[
𝜕
2
𝑊(𝜙)

𝜕𝜙
𝑖
𝜕𝜙

𝑗

𝜓
𝑖
𝜓
𝑗
+ h.c.] , (5)

where 𝜓
𝑖
are the two component fermion field superpartners

of the corresponding scalar component 𝜙
𝑖
of the super fields.

2.1. Neutrino Mass and Interaction Lagrangians. After the
Higgs field develops a vacuum expectation value, the mass
Lagrangian of neutrinos in the MSSM-seesaw model with
three generations of ]

𝐿
and ]

𝑅
is given by

−L
]
mass = ]

𝑅𝑖
𝑚
†

𝐷𝑖𝑗
]
𝐿𝑗

+ ]
𝐿 𝑖
𝑚
𝐷𝑖𝑗
]
𝑅𝑗

+
1
2
(]
𝑅𝑖
)
𝑐

𝑚
𝑀𝑖𝑗

]
𝑅𝑗

+
1
2
]
𝑅𝑖
𝑚
†

𝑀𝑖𝑗
(]

𝑅𝑗
)
𝑐

,

(6)

where we have used again the notations 𝑖, 𝑗 for generation
indexes and 𝑚

𝐷
and 𝑚

𝑀
are the Dirac and Majorana mass

matrices, respectively, which have been introduced in the
previous section (4).
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Notice that the particle-antiparticle conjugation operator
𝐶 flips the chirality of a particle and changes all the quantum
numbers of it. Then, it changes a left handed neutrino by a
right handed antineutrino and a right handed neutrino by a
left handed antineutrino. Following (2),

𝐶 : ]
𝐿
→ (]

𝐿
)
𝑐
= (]𝑐)

𝑅
,

𝐶 : ]
𝑅
→ (]

𝑅
)
𝑐
= (]𝑐)

𝐿
.

(7)

If a neutrino is aMajorana fermion it is invariant under𝐶. As
a result, ]𝑐 = ].

L]
mass of (6) can be rewritten in a more compact form:

−L
]
mass =

1
2
(]

𝐿
, (]

𝑅
)
𝑐
)
𝑖

𝑀
]
𝑖𝑗
(
(]
𝐿
)
𝑐

]
𝑅

)

𝑗

+ h.c., (8)

where

𝑀
]
= (

0 𝑚
𝐷

𝑚
𝑇

𝐷
𝑚
𝑀

) (9)

is a 6 × 6 complex symmetric matrix which can be diagonal-
ized by an unitary matrix 𝑈:

𝑈
𝑇
𝑀

]
𝑈 = �̂�

]
= diag (𝑚

𝑛1
, 𝑚

𝑛2
, 𝑚

𝑛3
, 𝑚

𝑛4
, 𝑚

𝑛5
, 𝑚

𝑛6
) . (10)

Here, the diagonal elements of �̂�], 𝑚
𝑛𝑖
, are the nonnegative

square roots of the eigenvalues of (𝑀]
)
†
𝑀

].
The interaction eigenstates are the left and right handed

components of the neutrino fields, ]
𝐿 𝑖

and ]
𝑅𝑖

(with 𝑖 =

1, 2, 3), and are related to the mass eigenstates 𝑛
𝑗
(with 𝑗 =

1, . . . , 6) in the following way:

(]
𝐿
)
𝑐

𝑖
= 𝑈

𝑖𝑗
𝑃
𝑅
𝑛
𝑗
,

]
𝑅𝑖

= 𝑈
𝑖+3,𝑗𝑃𝑅𝑛𝑗,

(11)

where here and from now onwe shorten the notation to𝑈
𝑖𝑗
≡

𝑈
𝑖,𝑗
. Similarly for the 𝐶-conjugate relations,

]
𝐿 𝑖

= 𝑈
∗

𝑖𝑗
𝑃
𝐿
𝑛
𝑗
,

(]
𝑅
)
𝑐

𝑖
= 𝑈

∗

𝑖+3,𝑗𝑃𝐿𝑛𝑗.
(12)

In the seesaw limit, that is, if ‖𝑚
𝐷
‖ ≪ ‖𝑚

𝑀
‖ (the Euclidean

matrix norm is defined by ‖𝐴‖ = [tr(𝐴†
𝐴)]

1/2
= [Σ

𝑖𝑗
|𝑎
𝑖𝑗
|
2
]
1/2

for a matrix 𝐴 whose elements are given by 𝑎
𝑖𝑗
), an analytic

perturbative diagonalization in blocks can be performed by
expanding in powers of the dimensionless parameter matrix
𝜉 = 𝑚

𝐷
𝑚
−1
𝑀
. This allows us to separate the light sector from

the heavy sector by the introduction of a 6 × 6 matrix:

�̂�
]
= (

(1 −
1
2
𝜉
∗
𝜉
𝑇
) 𝜉

∗
(1 −

1
2
𝜉
𝑇
𝜉
∗
)

−𝜉
𝑇
(1 −

1
2
𝜉
∗
𝜉
𝑇
) (1 −

1
2
𝜉
𝑇
𝜉
∗
)

)

+O (𝜉
4
) .

(13)

Two independent blocks of 3 × 3 neutrino mass matrices
are obtained once this �̂�] matrix is inserted in (10):

𝑚] = −𝑚
𝐷
𝜉
𝑇
+O (𝑚

𝐷
𝜉
3
) ≃ −𝑚

𝐷
𝑚
−1
𝑀
𝑚
𝑇

𝐷
, (14)

𝑚
𝑁

= 𝑚
𝑀

+O (𝑚
𝐷
𝜉) ≃ 𝑚

𝑀
. (15)

Thematrix𝑚
𝑁
of (15) is already diagonal and its diagonal

elements 𝑚
𝑁1
, 𝑚

𝑁2
, and 𝑚

𝑁3
are approximately the three

respective Majorana masses,𝑚
𝑀1

,𝑚
𝑀2

, and𝑚
𝑀3

. The diago-
nalization of thematrix𝑚] of (14) is performed as usual by the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) unitary matrix
[59, 60], 𝑈PMNS given by

𝑈PMNS

= (

𝑐12𝑐13 𝑠12𝑐13 𝑠13𝑒
−𝑖𝛿

−𝑠12𝑐23 − 𝑐12𝑠23𝑠13𝑒
𝑖𝛿

𝑐12𝑐23 − 𝑠12𝑠23𝑠13𝑒
𝑖𝛿

𝑠23𝑐13

𝑠12𝑠23 − 𝑐12𝑐23𝑠13𝑒
𝑖𝛿

−𝑐12𝑠23 − 𝑠12𝑐23𝑠13𝑒
𝑖𝛿

𝑐23𝑐13

)𝑉,

(16)

where

𝑉 = diag (𝑒−𝑖𝜙1/2, 𝑒−𝑖𝜙2/2, 1) , (17)

and the notations 𝑐
𝑖𝑗
≡ cos 𝜃

𝑖𝑗
and 𝑠

𝑖𝑗
≡ sin 𝜃

𝑖𝑗
have been used.

Here, 𝜃
𝑖𝑗
are the mixing angles of the light neutrinos, 𝛿 is the

Dirac phase, and 𝜙1,2 are the two Majorana phases.
As a result, the mass eigenvalues 𝑚

𝑛𝑗
corresponding to

light Majorana neutrinos (]) and heavy Majorana neutrinos
(𝑁) are given, respectively, by

𝑚
diag
] = 𝑈

𝑇

PMNS𝑚]𝑈PMNS = diag (𝑚]1 , 𝑚]2 , 𝑚]3) , (18)

𝑚
diag
𝑁

= diag (𝑚
𝑁1

, 𝑚
𝑁2

, 𝑚
𝑁3

)

≃ diag (𝑚
𝑀1

, 𝑚
𝑀2

, 𝑚
𝑀3

) .

(19)

In this work, in order to make contact with the experi-
mental data, we have used the Casas-Ibarra parametrization
[61], which provides a simple way to reconstruct the Dirac
mass matrix by using as inputs the physical light 𝑚]𝑖 and
heavy𝑚

𝑁𝑖
neutrino masses, the 𝑈PMNS matrix, and a general

complex and orthogonal matrix 𝑅:

𝑚
𝑇

𝐷
= 𝑖√𝑚

diag
𝑁

𝑅√𝑚
diag
] 𝑈

†

PMNS,
(20)

where 𝑅
𝑇
𝑅 = 𝑅𝑅

𝑇
= 1 and where we have considered the

following parametrization:

𝑅 = (

𝑐2𝑐3 −𝑐1𝑠3 − 𝑠1𝑠2𝑐3 𝑠1𝑠3 − 𝑐1𝑠2𝑐3

𝑐2𝑠3 𝑐1𝑐3 − 𝑠1𝑠2𝑠3 −𝑠1𝑐3 − 𝑐1𝑠2𝑠3

𝑠2 𝑠1𝑐2 𝑐1𝑐2

), (21)

where 𝑐
𝑖
≡ cos 𝜃

𝑖
, 𝑠
𝑖
≡ sin 𝜃

𝑖
, and 𝜃1, 𝜃2 and 𝜃3 are arbitrary

complex angles.
Thus, our set of input values consist of 𝑚

𝑀1
, 𝑚

𝑀2
, 𝑚

𝑀3
,

and 𝜃
𝑖
and for𝑚]1 ,𝑚]2 ,𝑚]3 , and𝑈PMNS weuse their suggested

values from the experimental data used. For the numerical
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estimates in this work we will use the following input values
for the light neutrinomass squared differences and the angles
in the 𝑈PMNS matrix:

Δ𝑚
2
21 = 7.50× 10−5 eV2

,


Δ𝑚

2
32

= 2.42× 10−3 eV2

,

sin2 (2𝜃12) = 0.857,

sin2 (2𝜃23) = 0.95,

sin2 (2𝜃13) = 0.098,

𝛿 = 𝜙1 = 𝜙2 = 0.

(22)

Notice that Δ𝑚2
32 > 0 for light neutrinos with a normal hier-

archy and Δ𝑚
2
32 < 0 for an inverted light neutrino hierarchy.

These values are compatible with the present experimental
data. Specifically, the recent global fit NuFIT 1.3 (2014) [57]
sets

sin2𝜃12 = 0.304+0.012
−0.012,

Δ𝑚
2
21 = 7.50+0.19

−0.17 × 10−5 eV2
,

sin2𝜃23 = 0.451+0.001
−0.001,

Δ𝑚
2
31 = 2.458+0.002

−0.002 × 10−3 eV2
(NH) ,

sin2𝜃13 = 0.0219+0.0010
−0.0011,

Δ𝑚
2
32 = − 2.448+0.047

−0.047 × 10−3 eV2
(IH) ,

(23)

where NH and IH refer to the normal hierarchy and inverted
hierarchy cases for the light neutrinos, respectively.

The interaction Lagrangian of the MSSM neutral Higgs
bosons with the three ]

𝐿
and three ]

𝑅
neutrinos is given, in

compact form, by

L
Higgs
]𝐿]𝑅 = −

𝑔

2𝑀
𝑊
sin𝛽

(]
𝑅
𝑚
†

𝐷
]
𝐿
+ ]

𝐿
𝑚
𝐷
]
𝑅
)

⋅ (𝐻 sin𝛼+ ℎ cos𝛼)

−
𝑖𝑔

2𝑀
𝑊
sin𝛽

(]
𝑅
𝑚
†

𝐷
]
𝐿
− ]

𝐿
𝑚
𝐷
]
𝑅
)𝐴

⋅ cos𝛽.

(24)

Here𝛼 is the angle that diagonalizes the CP-evenHiggs sector
at the tree level.

By using (11) and (12) the interaction Lagrangian in (24)
can be expressed in terms of the neutrino mass eigenstates
𝑛
𝑖
= (𝑛1, . . . , 𝑛6):

L
Higgs
𝑛𝑗𝑛𝑖

=
−𝑔

2𝑀
𝑊
sin𝛽

⋅ 𝑛
𝑗
[𝑈

∗

𝑙+3,𝑗 (𝑚
†

𝐷
)
𝑙𝑚

𝑈
∗

𝑚𝑖
𝑃
𝐿
+𝑈

𝑙𝑗
(𝑚

𝐷
)
𝑙𝑚

𝑈
𝑚+3,𝑖𝑃𝑅]

⋅ 𝑛
𝑖 (𝐻 sin𝛼+ ℎ cos𝛼) −

𝑖𝑔

2𝑀
𝑊
sin𝛽

⋅ 𝑛
𝑗
[𝑈

∗

𝑙+3,𝑗 (𝑚
†

𝐷
)
𝑙𝑚

𝑈
∗

𝑚𝑖
𝑃
𝐿
−𝑈

𝑙𝑗
(𝑚

𝐷
)
𝑙𝑚

𝑈
𝑚+3,𝑖𝑃𝑅]

⋅ 𝑛
𝑖
𝐴 cos𝛽,

(25)

where 𝑗 and 𝑖 indexes run from 1 to 6 and 𝑙 and𝑚 indexes run
from 1 to 3.

The gauge interactions of ]
𝐿
(the ]

𝑅
have no interactions

since they are singlets) with the neutral gauge boson 𝑍 are
given, in compact form, by

L
𝑍

]𝐿]𝐿 = −
𝑔

2𝑐
𝑊

(]
𝐿
𝛾
𝜇]
𝐿
) 𝑍

𝜇
. (26)

When expressed in terms of the physical neutrino basis it
gives

L
𝑍

𝑛𝑗𝑛𝑖
= −

𝑔

2𝑐
𝑊

(𝑛
𝑗
𝑈
𝑚𝑗
𝑈
∗

𝑚𝑖
𝛾
𝜇
𝑃
𝐿
𝑛
𝑖
)𝑍

𝜇
, (27)

where the indexes 𝑖 and 𝑗 run from 1 to 6 and 𝑚 runs from 1
to 3.

2.2. Sneutrino Mass and Interaction Lagrangians. Following
[36], we will express the sneutrino mass terms in a compact
6 × 6 matrix form by defining two six-dimensional vectors
𝜙
𝐿
= (]̃𝐿 ]̃∗

𝐿
)
𝑇 and 𝜙

𝑁
= (�̃� �̃�

∗
)
𝑇

= (]̃∗
𝑅

]̃
𝑅)
𝑇. In this new

basis, the mass Lagrangian of the sneutrinos has the form

−Lmass =
1
2
(𝜙

†

𝐿
𝜙
†

𝑁
)(

𝑀
2
𝐿𝐿

𝑀
2
𝐿𝑁

(𝑀
2
𝐿𝑁

)
†

𝑀
2
𝑁𝑁

)(
𝜙
𝐿

𝜙
𝑁

)

=
1
2
(]̃∗𝑇
𝐿

]̃𝑇
𝐿

]̃𝑇
𝑅

]̃∗𝑇
𝑅

)𝑀
2
]̃ (

]̃
𝐿

]̃∗
𝐿

]̃∗
𝑅

]̃
𝑅

),

(28)

where 𝑀
2
𝐿𝐿

and 𝑀
2
𝑁𝑁

are 6 × 6 Hermitian matrices while
𝑀

2
𝐿𝑁

is a 6 × 6 complex matrix and the three of them can
be expressed in blocks of 3 × 3 matrices as follows:

𝑀
2
𝐴𝐵

= (
𝑀

2
𝐴
†
𝐵

𝑀
2∗
𝐴
𝑇
𝐵

𝑀
2
𝐴
𝑇
𝐵

𝑀
2∗
𝐴
†
𝐵

) , (29)

where the subscripts 𝐴, 𝐵 stand for 𝐿 and/or𝑁. The matrices
𝑀

2
𝐴
†
𝐵
and 𝑀

2
𝐴
𝑇
𝐵
for 𝐴 ̸= 𝐵 are general complex matrices

with no restrictions, but 𝑀2
𝐴
†
𝐴
and 𝑀

2
𝐴
𝑇
𝐴
, for 𝐴 = 𝐿,𝑁, are
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3 × 3 Hermitian matrices and complex symmetric matrices,
respectively.

The expressions of the different blocks of matrices that
enter in the complete 12 × 12 sneutrino mass matrix 𝑀

2
]̃ are

the following:

𝑀
2
𝐿𝐿

= (

𝑚
2
�̃�
+ 𝑚

∗

𝐷
𝑚
𝑇

𝐷
+
1
2
𝑀

2
𝑍
cos 2𝛽 0

0 𝑚
2∗
�̃�

+ 𝑚
𝐷
𝑚
†

𝐷
+
1
2
𝑀

2
𝑍
cos 2𝛽

) ,

(30)

𝑀
2
𝑁𝑁

= (

𝑚
2
�̃�
+ 𝑚

†

𝐷
𝑚
𝐷
+ 𝑚

†

𝑀
𝑚
𝑀

2𝑏∗] 𝑚
∗

𝑀

2𝑏]𝑚𝑀
𝑚

2∗
�̃�

+ 𝑚
𝑇

𝐷
𝑚
∗

𝐷
+ 𝑚

𝑇

𝑀
𝑚
∗

𝑀

) , (31)

𝑀
2
𝐿𝑁

= (

𝑚
∗

𝐷
𝑚
𝑀

𝑚
∗

𝐷
(𝑎
∗

] − 𝜇
∗ cot𝛽)

𝑚
𝐷
(𝑎] − 𝜇 cot𝛽) 𝑚

𝐷
𝑚
∗

𝑀

) , (32)

where we have assumed

𝑚
2
𝐵
= 𝑏]𝑚𝑀

,

𝐴] = 𝑎]𝑌]

(33)

with the convention of

𝑌] =
𝑔𝑚

𝐷

√2𝑀
𝑊
sin𝛽

. (34)

We have to diagonalize the sneutrino mass matrix in (28)
in order to obtain the twelve mass eigenstates. This matrix is
hermitian, so it can be diagonalized by 12×12 unitary matrix
�̃� as follows:

�̃�
†
𝑀

2
]̃ �̃� = 𝑀

2
𝑛
= diag (𝑚2

𝑛1
, . . . , 𝑚

2
𝑛12

) . (35)

The relations between the interaction eigenstates and the
mass eigenstates are then given by

]̃
𝐿 𝑖

= �̃�
𝑖𝑗
𝑛
𝑗
,

]̃∗
𝐿 𝑖

= �̃�
𝑖+3,𝑗𝑛𝑗,

]̃∗
𝑅𝑖

= �̃�
𝑖+6,𝑗𝑛𝑗,

]̃
𝑅𝑖

= �̃�
𝑖+9,𝑗𝑛𝑗,

(36)

where 𝑖 runs from 1 to 3 and 𝑗 from 1 to 12. Again we shorten
the notation to �̃�

𝑖𝑗
≡ �̃�

𝑖,𝑗
.

Finally, the contributions from the 𝐹-terms, the𝐷-terms,
and the soft SUSY breaking terms to the interactions of the
sneutrinos with theMSSM neutral Higgs bosons are given by

L
𝐹-terms
int-]̃-Higgs =

𝑔

2𝑀
𝑊
sin𝛽

(𝐻 cos𝛼− ℎ sin𝛼)

⋅ [𝜇
∗]̃𝑇

𝐿
𝑚
𝐷
]̃∗
𝑅
+𝜇]̃∗𝑇

𝐿
𝑚
∗

𝐷
]̃
𝑅
] − 𝑖

⋅
𝑔

2𝑀
𝑊

𝐴[𝜇
∗]̃𝑇

𝐿
𝑚
𝐷
]̃∗
𝑅
−𝜇]̃∗𝑇

𝐿
𝑚
∗

𝐷
]̃
𝑅
]

−
𝑔

𝑀
𝑊
sin𝛽

(𝐻 sin𝛼+ ℎ cos𝛼) []̃𝑇
𝑅
𝑚
†

𝐷
𝑚
𝐷
]̃∗
𝑅

+ ]̃𝑇
𝐿
𝑚
𝐷
𝑚
†

𝐷
]̃∗
𝐿
] −

𝑔
2

4𝑀2
𝑊
sin2𝛽

(𝐻
2sin2𝛼

+ ℎ
2cos2𝛼+ 2𝐻ℎ sin𝛼 cos𝛼+𝐴

2cos2𝛽)

⋅ []̃𝑇
𝑅
𝑚
†

𝐷
𝑚
𝐷
]̃∗
𝑅
+ ]̃𝑇

𝐿
𝑚
𝐷
𝑚
†

𝐷
]̃∗
𝐿
]

−
𝑔

2𝑀
𝑊
sin𝛽

(𝐻 sin𝛼+ ℎ cos𝛼) []̃∗𝑇
𝐿

𝑚
∗

𝐷
𝑚
𝑀
]̃∗
𝑅

+ ]̃𝑇
𝐿
𝑚
𝐷
𝑚
∗

𝑀
]̃
𝑅
] + 𝑖

𝑔 cos𝛽
2𝑀

𝑊
sin𝛽

𝐴 []̃∗𝑇
𝐿

𝑚
∗

𝐷
𝑚
𝑀
]̃∗
𝑅

− ]̃𝑇
𝐿
𝑚
𝐷
𝑚
∗

𝑀
]̃
𝑅
] ,

L
𝐷-terms
int-]̃-Higgs = −

𝑔𝑀
𝑍

2𝑐
𝑊

(𝐻 cos (𝛼 +𝛽) − ℎ sin (𝛼 + 𝛽))

⋅ ]̃∗𝑇
𝐿
]̃
𝐿
−

𝑔
2

8𝑐2
𝑊

(𝐻
2 cos 2𝛼− ℎ

2 cos 2𝛼

− 2𝐻ℎ sin 2𝛼−𝐴
2 cos 2𝛽) ]̃∗𝑇

𝐿
]̃
𝐿
,

L
soft-terms
int-]̃-Higgs = −

1
√2

(𝐻 sin𝛼+ ℎ cos𝛼) []̃𝑇
𝐿
𝐴]]̃

∗

𝑅

+ ]̃∗𝑇
𝐿

𝐴
∗

]]̃𝑅] − 𝑖
cos𝛽
√2

𝐴[]̃𝑇
𝐿
𝐴]]̃

∗

𝑅
− ]̃∗𝑇

𝐿
𝐴
∗

]]̃𝑅] .

(37)

By using the rotations given in (36), the previous Lagran-
gians of (37) can be expressed in terms of the physical
sneutrino basis 𝑛

𝑗
(𝑗 = 1, . . . , 12). We have omitted to write

them here for brevity. The derived Feynman Rules for both
neutrinos and sneutrinos are collected in Appendix A.

3. Radiative Corrections to the Higgs Mass

Contrary to the SM, in the MSSM two Higgs doublets are
required,H1 andH2, which can be decomposed as

H1 = (
𝐻

0
1

𝐻
−

1
) = (

V1 +
1
√2

(𝜙
0
1 − 𝑖𝜒

0
1)

−𝜙
−

1

),

H2 = (
𝐻
+

2

𝐻
0
2
) = (

𝜙
+

2

V2 +
1
√2

(𝜙
0
2 + 𝑖𝜒

0
2)
) .

(38)



Advances in High Energy Physics 7

TheHiggs spectrumcontains twoCP-evenneutral bosons
(ℎ,𝐻), one CP-odd neutral boson (𝐴), two charged bosons
(𝐻

±
), and three unphysical Goldstone bosons (𝐺, 𝐺

±
) and is

related to the components ofH1 andH2 via the orthogonal
transformations:

(
𝐻

ℎ
) = (

cos𝛼 sin𝛼

− sin𝛼 cos𝛼
)(

𝜙
0
1

𝜙
0
2
) ,

(
𝐺

𝐴
) = (

cos𝛽 sin𝛽

− sin𝛽 cos𝛽
)(

𝜒
0
1

𝜒
0
2
) ,

(
𝐺
±

𝐻
±
) = (

cos𝛽 sin𝛽

− sin𝛽 cos𝛽
)(

𝜙
±

1

𝜙
±

2
) ,

(39)

where

tan𝛽 =
V2
V1

. (40)

In the Feynmandiagrammatic (FD) approach and assum-
ing CP conservation, the higher-order corrected CP-even
Higgs boson masses in the MSSM are derived by finding
the poles of the (ℎ,𝐻)-propagator matrix. The inverse of this
matrix is given by

(ΔHiggs)
−1

= − 𝑖(

𝑝
2
− 𝑚

2
𝐻,tree + Σ̂

𝐻𝐻
(𝑝

2
) Σ̂

ℎ𝐻
(𝑝

2
)

Σ̂
ℎ𝐻

(𝑝
2
) 𝑝

2
− 𝑚

2
ℎ,tree + Σ̂

ℎℎ
(𝑝

2
)

) ,

(41)

where the tree level masses of the CP-even Higgs bosons are
given by

𝑚
2
𝐻,ℎ,tree =

1
2
(𝑀

2
𝐴
+𝑀

2
𝑍

±√(𝑀2
𝐴
+ 𝑀2

𝑍
)
2
− 4𝑀2

𝑍
𝑀2

𝐴
cos2 2𝛽) ,

(42)

and Σ̂ denotes the renormalized self-energy. The poles of the
propagator ΔHiggs are obtained by solving the equation

[𝑝
2
−𝑚

2
ℎ,tree + Σ̂

ℎℎ
(𝑝

2
)] [𝑝

2
−𝑚

2
𝐻,tree + Σ̂

𝐻𝐻
(𝑝

2
)]

− [Σ̂
ℎ𝐻

(𝑝
2
)]

2
= 0.

(43)

It has been shown [16] that the mixing between these
two Higgs bosons can be neglected in a good approximation
for the neutrino/sneutrino contributions. Moreover, if the
one-loop contributions due to neutrinos and sneutrinos are
small in comparison with the pure MSSM contributions, the
correction to the light CP-even Higgs boson mass from the
neutrino/sneutrino sector can be can be approximated by

Δ𝑀
ℎ
≃ −

Σ̂
]/]̃
ℎℎ

(𝑀
2
ℎ
)

2𝑀
ℎ

. (44)

Here Σ̂]/]̃
ℎℎ

denotes the one-loop corrections to the renormal-
ized Higgs-boson self-energy from the neutrinos/sneutrinos

sector and 𝑀
ℎ
denotes the higher-order corrected light

CP-even Higgs boson mass, calculated with the help
of FeynHiggs [49, 54, 62–65]. In this way Δ𝑀

ℎ
approxi-

mates the new corrections arising from the new neutrino/
sneutrino sectors with respect to the MSSM corrected Higgs
mass, as shown in [16]. It should be noted that the two class
of mass corrections, the ones from theMSSM sectors and the
ones from the new neutrino/sneutrino sectors, are separately
renormalizable. Therefore, in this paper we will use (44) in
order to compute the one-loop radiative corrections to the
lightest Higgs boson mass.

3.1. Renormalized Higgs Boson Self-Energy. At one-loop level,
the renormalized self-energies can be expressed through the
unrenormalized self-energies, Σ(𝑝2

), the field renormaliza-
tion constants, 𝛿𝑍, and the mass counterterms, 𝛿𝑚2:

Σ̂
ℎℎ

(𝑝
2
) = Σ

ℎℎ
(𝑝

2
) + 𝛿𝑍

ℎℎ
(𝑝

2
−𝑚

2
ℎ,tree) − 𝛿𝑚

2
ℎ
, (45a)

Σ̂
ℎ𝐻

(𝑝
2
) = Σ

ℎ𝐻
(𝑝

2
)

+ 𝛿𝑍
ℎ𝐻

(𝑝
2
−
1
2
(𝑚

2
ℎ,tree +𝑚

2
𝐻,tree))

− 𝛿𝑚
2
ℎ𝐻

,

(45b)

Σ̂
𝐻𝐻

(𝑝
2
) = Σ

𝐻𝐻
(𝑝

2
) + 𝛿𝑍

𝐻𝐻
(𝑝

2
−𝑚

2
𝐻,tree)

− 𝛿𝑚
2
𝐻
.

(45c)

Themass counterterms arise from theHiggs potential.We
introduce the following counterterms:

𝑀
2
𝑍
→ 𝑀

2
𝑍
+ 𝛿𝑀

2
𝑍
,

𝑇
ℎ
→ 𝑇

ℎ
+ 𝛿𝑇

ℎ
,

𝑀
2
𝑊

→ 𝑀
2
𝑊

+ 𝛿𝑀
2
𝑊
,

𝑇
𝐻

→ 𝑇
𝐻
+ 𝛿𝑇

𝐻
,

𝑀
2
𝐴
→ 𝑀

2
𝐴
+ 𝛿𝑀

2
𝐴
,

tan𝛽 → tan𝛽 (1+ 𝛿 tan𝛽) .

(46)

𝑀
𝐴
denotes themass of the CP-oddHiggs boson and𝑇

ℎ,𝐻
are

the tadpoles in the Higgs potential, that is, the terms linear in
the fields ℎ,𝐻, respectively.

Choosing 𝛿𝑀
2
𝑍
, 𝛿𝑀2

𝑊
, 𝛿𝑇

ℎ
, 𝛿𝑇

𝐻
, 𝛿𝑀2

𝐴
, and 𝛿 tan𝛽 as

independent counterterms, we can express the Higgs mass
counterterms as follows:

𝛿𝑚
2
ℎ
= 𝛿𝑀

2
𝐴
cos2 (𝛼 −𝛽) + 𝛿𝑀

2
𝑍
sin2 (𝛼 + 𝛽)

+
𝑒

2𝑀
𝑊
𝑠
𝑊

(𝛿𝑇
𝐻
cos (𝛼 − 𝛽) sin2 (𝛼 −𝛽)

+ 𝛿𝑇
ℎ
sin (𝛼 − 𝛽) (1+ cos2 (𝛼 − 𝛽))) + 𝛿

⋅ tan𝛽𝑀
2
𝑍
sin 2𝛽 sin 2 (𝛼 +𝛽) ,

(47a)
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𝛿𝑚
2
ℎ𝐻

=
1

2
(𝛿𝑀

2
𝐴
sin 2 (𝛼 − 𝛽)

− 𝛿𝑀
2
𝑍
sin 2 (𝛼 + 𝛽))

+
𝑒

2𝑀
𝑊
𝑠
𝑊

(𝛿𝑇
𝐻
sin3 (𝛼 − 𝛽)

− 𝛿𝑇
ℎ
cos3 (𝛼 − 𝛽)) − 𝛿 tan𝛽 sin𝛽 cos𝛽

⋅ (𝑀
2
𝐴
cos 2 (𝛼 − 𝛽)

+𝑀
2
𝑍
cos 2 (𝛼 +𝛽)) ,

(47b)

𝛿𝑚
2
𝐻

= 𝛿𝑀
2
𝐴
sin2 (𝛼 −𝛽) + 𝛿𝑀

2
𝑍
cos2 (𝛼 + 𝛽)

−
𝑒

2𝑀
𝑊
𝑠
𝑊

(𝛿𝑇
𝐻
cos (𝛼 −𝛽) (1+ sin2 (𝛼 −𝛽))

+ 𝛿𝑇
ℎ
sin (𝛼 −𝛽) cos2 (𝛼 − 𝛽)) − 𝛿 tan𝛽𝑀

2
𝑍

⋅ sin 2𝛽 sin 2 (𝛼 + 𝛽) ,

(47c)

where we have used the tree level relation 𝑀
2
𝐴
sin 2(𝛼 − 𝛽) =

𝑀
2
𝑍
sin 2(𝛼 + 𝛽).
On the other hand, the field renormalization constants

read

(
𝐻

ℎ
) → (

1 +
1
2
𝛿𝑍

𝐻𝐻

1
2
𝛿𝑍

ℎ𝐻

1
2
𝛿𝑍

ℎ𝐻
1 +

1
2
𝛿𝑍

ℎℎ

)(
𝐻

ℎ
) . (48)

If we choose to give one renormalization constant to each
Higgs doublet,

H1 → (1+ 1
2
𝛿𝑍H1

)H1,

H2 → (1+ 1
2
𝛿𝑍H2

)H2,

(49)

we obtain the relations

𝛿𝑍
ℎℎ

= sin2 𝛼 𝛿𝑍H1
+ cos2 𝛼 𝛿𝑍H2

(50a)

𝛿𝑍
ℎ𝐻

= sin𝛼 cos𝛼 (𝛿𝑍H2
− 𝛿𝑍H1

) , (50b)

𝛿𝑍
𝐻𝐻

= cos2 𝛼 𝛿𝑍H1
+ sin2 𝛼 𝛿𝑍H2

. (50c)

Using the renormalization of the vacuum expectation values
V
𝑖
of the Higgs doublets,

V1 → (1+ 1
2
𝛿𝑍H1

) (V1 + 𝛿V1) ,

V2 → (1+ 1
2
𝛿𝑍H2

) (V2 + 𝛿V2) ,
(51)

the tan𝛽 counterterm can be expressed in terms of the field
renormalization constants:

𝛿 tan𝛽 =
1
2
(𝛿𝑍H2

− 𝛿𝑍H1
) . (52)

This last relation is based on the fact that the divergent
parts of 𝛿V1/V1 and 𝛿V2/V2 are equal, so one can set

𝛿V1
V1

−
𝛿V2
V2

= 0. (53)

The validity of this equation has been discussed in [66].

3.2. Renormalization Conditions. Since there are six inde-
pendent counterterms, six renormalization conditions are
needed. For the masses, we choose an on-shell renormaliza-
tion condition:

ReΣ̂
𝑍𝑍

(𝑀
2
𝑍
) = 0,

ReΣ̂
𝑊𝑊

(𝑀
2
𝑊
) = 0,

ReΣ̂
𝐴𝐴

(𝑀
2
𝐴
) = 0,

(54)

which sets the mass counterterms to

𝛿𝑀
2
𝑍
= ReΣ

𝑍𝑍
(𝑀

2
𝑍
) ,

𝛿𝑀
2
𝑊

= ReΣ
𝑊𝑊

(𝑀
2
𝑊
) ,

𝛿𝑀
2
𝐴
= ReΣ (𝑀

2
𝐴
) ,

(55)

where the gauge bosons self-energies are to be understood as
the transverse parts of the full self-energies.

The tadpole condition requires that the tadpole coeffi-
cients must vanish in all orders, implying at the one-loop
level,

𝑇
ℎ,𝐻(1) + 𝛿𝑇

ℎ,𝐻
= 0, (56)

so we choose the tadpole counterterms as

𝛿𝑇
ℎ
= −𝑇

ℎ(1),

𝛿𝑇
𝐻

= −𝑇
𝐻(1),

(57)

where 𝑇
ℎ,𝐻(1) denotes the one loop contributions to the

respective Higgs tadpole graph.
On the other hand, tan𝛽 is just a Lagrangian parameter,

and it is not a directly measurable quantity. Therefore, there
is no obvious relation of this parameter to a specific physical
observable which would favor a particular renormalization
scheme. Furthermore, the choice of one particular renormal-
ization scheme sets the actual definition of tan𝛽, its physical
meaning, and its relation to observables, as it happens within
the SM for the weak mixing angle 𝜃

𝑊
.

3.3. Renormalization Schemes for tan𝛽. There are different
possible renormalization schemes for tan𝛽, as has been
extensively discussed in the literature; see, for instance, the
discussion in [67, 68]. Notice that, due to the relation in
(52), the renormalization scheme for tan𝛽 is closely related
to the scheme for the field renormalization constants 𝛿𝑍H1
and 𝛿𝑍H2

. Next, we will review some different choices for
the renormalization of tan𝛽 that have been considered previ-
ously in the literature and discuss their respective advantages
and disadvantages.
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3.3.1.𝐷𝑅 Scheme. One possibility is to use the field countert-
erms to remove just the terms proportional to the divergence
in dimensional reduction. This defines the most frequently
used scheme, the so-called DR scheme:

𝛿𝑍
DR
H1

= − [ReΣ
𝐻𝐻

]
div
𝛼=0 ,

(58a)

𝛿𝑍
DR
H2

= − [ReΣ
ℎℎ
]
div
𝛼=0 ,

(58b)

wherewe have used the notationΣ

≡ 𝜕Σ/𝜕𝑝

2. Following (52),
the tan𝛽 counterterm is then given by

𝛿 tan𝛽
DR

=
1
2
(𝛿𝑍

DR
H2

− 𝛿𝑍
DR
H1

) . (58c)

The notation [ ]
div used here means that one takes just the

terms that are proportional to the divergence Δ, which is
defined, as it is usual in dimensional regularization/reduc-
tion, by

Δ ≡
2
𝜖
− 𝛾

𝐸
+ log (4𝜋) , (59)

where 𝜖 is related to the dimension 𝑑 by 𝑑 = 4 − 𝜖 and 𝛾
𝐸

is the Euler constant. Notice that we have not specified the
particular momentum 𝑝

2 at which Σ
 is evaluated in (58a),

(58b), and (58c) because these [ ]
div terms are not𝑝2-depend-

ent.
In this scheme, there is still a remaining dependence of

the renormalized Green functions on the renormalization
scale 𝜇DR, which has to be fixed to a “proper” value. This
choice will be discussed in more detail in the following.

The DR scheme is often used in the literature, because
it is process independent and numerically stable by avoiding
threshold effects, although it induces a gauge dependence on
the tan𝛽 parameter already at one-loop level [68]. It was also
shown in [68] that for the particular case of 𝑅

𝜉
gauges the 𝜉

dependence cancels at one-loop resulting in a gauge invariant
result. Nevertheless, this numerical stability could be lost in
presence of large scales, such as the Majorana mass, since
large logarithmic corrections, proportional to log(𝑚2

𝑀
/𝜇

2
DR),

could appear, and in these cases decoupling should be added
“by hand.”

3.3.2. Modified𝐷𝑅 Scheme (𝑚𝐷𝑅). In models where there is
one mass scale much larger than the rest of the mass scales,
the remaining dependence on the 𝜇DR scale in theDR scheme
is associatedwith the large scale. In our case of study, the large
scale is the Majorana mass (or Majorana masses in the case
they are different for each of the three generations), and this
will give rise to new terms in the radiative corrections involv-
ing the neutrino Yukawa coupling that are proportional to
log(𝑚2

𝑀
/𝜇

2
DR) as well as numerically smaller nonlogarithmic

terms. These logarithmic terms can give large contributions
for large Majorana masses, worsening the convergence of the
perturbative expansion.

However, these terms can be absorbed in the tan𝛽 and
field counterterms including not only the terms proportional
to the divergence Δ but also those large logarithms. This

choice defines the modified DR scheme (mDR), which sets
the tan𝛽 and field counterterms as follows [16]:

𝛿𝑍
mDR
H1

= − [ReΣ
𝐻𝐻

]
mdiv
𝛼=0 , (60a)

𝛿𝑍
mDR
H2

= − [ReΣ
ℎℎ
]
mdiv
𝛼=0 , (60b)

𝛿 tan𝛽
mDR

=
1
2
(𝛿𝑍

mDR
H2

− 𝛿𝑍
mDR
H1

) , (60c)

where the notation [ ]
mdiv means that one now takes only the

terms proportional to Δ
𝑚

≡ Δ − log(𝑚2
𝑀
/𝜇

2
DR). One can see

that if there is only one large scale, this scheme corresponds
effectively to the choice 𝜇DR = 𝑚

𝑀
in theDR scheme; namely,

Σ̂
ℎℎ

(𝑝
2
)
mDR

= Σ̂
ℎℎ

(𝑝
2
)
DR𝜇DR=𝑚𝑀

. (61)

In a general type I seesaw with three generations, however,
there will be different Majorana masses,𝑚

𝑀1
,𝑚

𝑀2
, and𝑚

𝑀3
,

so the choice of the “proper” renormalization scale 𝜇DR
becomes more involved. Besides, there are also new addi-
tional (soft) mass scales from the sneutrino sector, which can
be different for the three generations, and these could also a
priori enter in a nonnegligible way into the renormalization
procedure. This will be discussed in more detail below.

This scheme conserves the good properties that the DR
scheme has, but is safe from large logarithmic contributions
(while leaving the smaller nonlogarithmic contributions
untouched). Consequently, this option is often used in the lit-
erature when a large scale is present in the problem.Onewell-
known example is the loop corrections to the beta function
in QCD with massive fermions. In fact such a modified DR
scheme was precisely first proposed in that QCD context in
order to implement properly the matching conditions when
crossing through the various thresholds, which relate the
value of the strong coupling constant for the case of 𝑛

𝑓
+ 1

active flavors with the one with 𝑛
𝑓
active flavors. In this QCD

case the matching scale is chosen to be precisely the mass of
this fermion “+1” that is crossed by (see, for instance, [69]).

3.3.3. On-Shell Scheme. An on-shell (OS) renormalization
requires the derivative of the renormalized self-energy to can-
cel at the physical mass:

ReΣ̂
ℎℎ

(𝑚
2
ℎ
) = 0, (62a)

ReΣ̂
𝐻𝐻

(𝑚
2
𝐻
) = 0. (62b)

At one loop level, the physical masses in (62a) and (62b)
can be consistently replaced by the corresponding tree mas-
ses, so the field renormalization constants are set to

𝛿𝑍
OS
ℎℎ

= −ReΣ (𝑝2
=𝑚

2
ℎ,tree) , (63a)

𝛿𝑍
OS
𝐻𝐻

= −ReΣ (𝑝2
=𝑚

2
𝐻,tree) . (63b)
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Using (50a), (50b), and (50c), we can write the following
relations:

𝛿𝑍
OS
H1

=
1

cos 2𝛼
(sin2 𝛼Re Σ̂

ℎℎ
(𝑚

2
ℎ,tree)

− cos2 𝛼Re Σ̂
𝐻𝐻

(𝑚
2
𝐻,tree)) ,

(64a)

𝛿𝑍
OS
H2

=
1

cos 2𝛼
(−cos2 𝛼Re Σ̂

ℎℎ
(𝑚

2
ℎ,tree)

+ sin2 𝛼Re Σ̂
𝐻𝐻

(𝑚
2
𝐻,tree)) ,

(64b)

which yields for the tan𝛽 counterterm, using (52),

𝛿 tan𝛽
OS

=
−1

2 cos 2𝛼
(ReΣ̂

ℎℎ
(𝑚

2
ℎ,tree) −ReΣ̂

𝐻𝐻
(𝑚

2
𝐻,tree)) .

(65)

Although this OS scheme is interesting due to its intuitive
physical interpretation and its decoupling properties, it can
lead to large corrections to the Higgs boson self-energy,
which could spoil the convergence of the perturbative expan-
sion [67, 68]. Moreover, it also induces gauge dependence
at one-loop level and, contrary to the DR scheme, and this
dependence remains even if one chooses the class of 𝑅

𝜉

gauges [68].

3.3.4. Decoupling Scheme (DEC). As we will see explicitly in
the next section, the mDR scheme removes the large loga-
rithmic terms, but there are still nonlogarithmic finite terms
present, which can give nondecoupling effects. It has been
recently proposed [17] that those finite terms can be removed
by hand, forcing the decoupling to happen. This decoupling
(DEC) scheme is defined as

𝛿𝑍
DEC
H1

= − [ReΣ
𝐻𝐻

(𝑝
2
)]
𝛼=0,𝑝2=0 , (66a)

𝛿𝑍
DEC
H2

= − [ReΣ
ℎℎ

(𝑝
2
)]
𝛼=0,𝑝2=0 , (66b)

𝛿 tan𝛽
DEC

=
1
2
(𝛿𝑍

DEC
H2

− 𝛿𝑍
DEC
H1

) . (66c)

The convenience of this scheme in the context of effective
field theories has been discussed in [17]. The advantage
of this scheme is that, by construction, it implements the
proper matching between the high energy theory and the
intermediate energy effective theory. However, we prefer here
not to use an effective field theory approach where the heavy
degrees are explicitly integrated out (like the possible use
of a derived one-loop effective potential), because we do
not want to assume in the present computation any specific
intermediate low energy effective theory, but we wish simply
to ensure that the final low energy effective theory where
all the non-SM particles are decoupled is indeed the SM as
expected. Consequently, in our analysis we perform the one-
loop computation in the full high energy theory including
explicitly the heavy particleswith several differentmass scales
involved (using an appropriate renormalization scheme) and
use these masses as input parameters that will be varied in

the posterior numerical analysis within a wide range from
high to low energies. Correspondingly, the disadvantage of
theDEC scheme is that, by assuming theMSSMas the explicit
intermediate low energy effective theory, any dependence
on the heavy neutrinos/sneutrinos is by construction fully
removed already at the intermediate (SUSY) energy scales.

3.3.5. Higgs Mass Scheme (HM). Another possibility is to de-
mand that some physical quantity, for example, the mass𝑚

𝐻
,

is given at one loop level by its tree level expression:

𝑚
2
𝐻,1 loop = 𝑚

2
𝐻,tree + Σ̂

𝐻𝐻
(𝑝

2
=𝑚

2
𝐻,tree) = 𝑚

2
𝐻,tree. (67)

This condition defines theHiggsmass (HM) scheme and fixes,
from (47c), the tan𝛽 counterterm to

𝛿 tan𝛽
HM

=
1

𝑀2
𝑍
sin 2𝛽 sin 2 (𝛼 + 𝛽)

{𝛿𝑀
2
𝐴

⋅ sin2 (𝛼 − 𝛽) + 𝛿𝑀
2
𝑍
cos2 (𝛼 +𝛽) −Σ

𝐻𝐻
(𝑚

2
𝐻,tree)

−
𝑒

2𝑀
𝑊
𝑠
𝑊

(𝛿𝑇
𝐻
cos (𝛼 − 𝛽) (1+ sin2 (𝛼 − 𝛽))

+ 𝛿𝑇
ℎ
sin (𝛼 − 𝛽) cos2 (𝛼 − 𝛽))} .

(68)

The HM scheme, as any other scheme that is defined
in terms of physical masses, provides manifestly a gauge-
independent definition of tan𝛽 [68]. However, it is not
numerically stable either, as has been shown in [68], so
the convergence of the perturbative expansion is again not
ensured.

4. Analytic Results and Analysis of
the Relevant Terms

In this section we discuss the calculation of the higher-order
corrections to the light Higgs boson mass and in particular
discuss analytically the decoupling behavior of the various
schemes in the case of three generations of (s)neutrinos.
Going from the one generation to the three generations case,
due to the appearance of relevant generation mixing, the cor-
responding radiative corrections cannot be trivially extrapo-
lated and they must be explicitly and separately computed.

We have used the Feynman diagrammatic (FD) approach
to calculate the one-loop corrections from the neutrino/sneu-
trino sector to the MSSM Higgs boson masses. The full one-
loop neutrino and sneutrino corrections to the self-energies,
Σ
]/]̃
ℎℎ

and Σ
]/]̃
𝐻𝐻

, entering the computation have been evaluated
with the help of FeynArts [70–75] and FormCalc [76]. The
relevant Feynman rules for the present computation with
three generations of Majorana neutrinos and sneutrinos
have been derived from the Lagrangians of Section 2 and
expressed in terms of the physical basis. The results are
collected in Appendix A (to our knowledge, they are not
available in the previous literature). These Feynman rules
have also been inserted into a new model file which is
available upon request.
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Figure 1: Generic one-loop Feynman-diagrams contributing to the
computation of the one-loop new corrections to the Higgs boson
mass form neutrinos and sneutrinos. Here 𝜙 = ℎ,𝐻,𝐴.

The generic one-loop Feynman diagrams that enter in the
computation of the renormalized self-energies are collected
in Figure 1.They include the two-point (one-point) diagrams
in the Higgs self-energies (tadpoles) and the two-point
diagrams in the 𝑍 boson self-energy. Here the notation is as
follows: 𝜙 refers to all physical neutral Higgs bosons, ℎ, 𝐻,
and𝐴; 𝑛

𝑖
(where 𝑖 = 1, . . . , 6) refers to all physical neutrinos;

𝑛
𝑖
(where 𝑖 = 1, . . . , 12) refers to all physical sneutrinos; and

𝑍 refers to the 𝑍 gauge boson.
Following a similar analysis here as the one performed in

[16] for the one generation case, it is illustrative to expand
the renormalized self-energy in powers (notice that only even
powers of𝑚

𝐷
are present in this expansion [16]) of𝑚

𝐷
:

Σ̂
]/]̃

(𝑝
2
) = (Σ̂

]/]̃
(𝑝

2
))
𝑚

0
𝐷

+ (Σ̂
]/]̃

(𝑝
2
))
𝑚

2
𝐷

+ (Σ̂
]/]̃

(𝑝
2
))
𝑚

4
𝐷

+ ⋅ ⋅ ⋅ ,

(69)

where (Σ̂
]/]̃

(𝑝
2
))
𝑚
𝑛

𝐷

means O(𝑚
𝑛

𝐷
) terms in the expansion of

Σ̂
]/]̃

(𝑝
2
) in powers of 𝑚

𝐷
. For the present case with three

generations 𝑚
2
𝐷

represents shortly products of two Dirac
matrices, such as 𝑚

†

𝐷
𝑚
𝐷
or 𝑚

𝐷
𝑚
𝑇

𝐷
; equivalently, 𝑚4

𝐷
refers

to combinations of four matrices.
The first term in this expansion is independent of both

𝑚
𝐷
and𝑚

𝑀
and represents, therefore, the pure gauge contri-

bution (i.e., the result for 𝑌] = 0), which is already present
in the MSSM. On the other hand, the term proportional to
𝑚

4
𝐷
is actually of order O(𝑚

4
𝐷
/𝑚

2
𝑀
) (see [16] for details), so

it is suppressed by the Majorana mass; higher order terms in
this expansion are also suppressed by inverse powers of the
Majoranamass.Thus, the new relevant contributions, coming
from the neutrino and sneutrino sectors are those governed
by the Yukawa couplings and can arise only from the order
O(𝑚

2
𝐷
) terms. Thus we have

(Σ̂
]/]̃

(𝑝
2
))full = (Σ̂

]/]̃
(𝑝

2
))gauge

+ (Σ̂
]/]̃

(𝑝
2
))Yukawa ,

(70a)

(Σ̂
]/]̃

(𝑝
2
))gauge = (Σ̂

]/]̃
(𝑝

2
))
𝑚

0
𝐷

, (70b)

(Σ̂
]/]̃

(𝑝
2
))Yukawa = (Σ̂

]/]̃
(𝑝

2
))
𝑚

2
𝐷

+O(
𝑚

4
𝐷

𝑚2
𝑀

) . (70c)

In the one generation case, the Dirac mass is related to the
light, 𝑚], and heavy, 𝑚

𝑁
, neutrino physical masses by [16]

𝑚
2
𝐷

= −𝑚]𝑚𝑁
≈ −𝑚]𝑚𝑀

. In the three generations case, a
similar functional dependence of 𝑚2

𝐷
with the physical mas-

ses in𝑚
diag
] and in𝑚

diag
𝑁

is found, as it is explicitelymanifested
in the parametrization of (20). This means that the Yukawa
contribution in (70c), being proportional to 𝑚

2
𝐷
, grows with

the Majorana masses, therefore leading to potential nonde-
coupling effects with respect to these masses. The question
now is whether such a term is present in the renormalized
self-energy and, in that case, if it is numerically relevant.
This issue was first analyzed for the one generation case in
[16], and recently in [17], showing that the presence and rele-
vance of the O(𝑚

2
𝐷
) term in (70c) depend on the chosen

renormalization scheme for tan𝛽.
In order to better understand where these differences

come from, it is interesting to look first for theO(𝑚
2
𝐷
) terms in

the bare self-energy, where the choice of the renormalization
scheme does not enter. We will focus here on the lightest
CP-even Higgs boson self-energy, but the conclusions will
be the same for the full (ℎ,𝐻) system. By computing the
one-loop contributions from the ℎℎ diagrams in Figure 1
we have obtained the following analytical result for the
O(𝑚

2
𝐷
) contributions from three generations of neutrinos and

sneutrinos to the bare self-energy:

(Σ
]/]̃
ℎℎ

(𝑝
2
))
𝑚

2
𝐷

=
𝑔
2

64𝜋2𝑀2
𝑊
sin2 𝛽

3
∑

𝑖=1
(𝑚

†

𝐷
𝑚
𝐷
)
𝑖𝑖
{[Δ

+ 1− log
𝑚

2
𝑀𝑖

𝜇2
DR

] ((𝑝
2
−𝑀

2
𝑍
) 2cos2 𝛼−𝑀

2
𝑍
sin2 𝛽

⋅ (cos2 𝛼 (4− 3cot2 𝛽) + 2 sin 2𝛼 cot𝛽− sin2 𝛼))

+[Δ− log
𝑚

2
𝑀𝑖

𝜇2
DR

] (4𝑚2
SUSYcos

2
𝛼)} .

(71)

In this expression, for shortness, we have set 𝑎] = 𝑏] = 𝜇 = 0,
and we have considered the most simple case with just one
single soft mass scale in the slepton sector, 𝑚

�̃� 𝑖
= 𝑚

�̃�𝑗
=:

𝑚SUSY, with 𝑖 = 1, 2, 3. Δ is defined in (59) and 𝜇DR is again
the renormalization scale. The corresponding result for the
Σ
𝐻𝐻

is obtained from the above formula by replacing cos𝛼 →

sin𝛼, sin𝛼 → −cos𝛼.
First of all, it should be noted that the result in (71) is a

pure O(𝑌
2
] ) radiative correction with an overall factor given

by

𝑔
2

64𝜋2𝑀2
𝑊
sin2 𝛽

3
∑

𝑖=1
(𝑚

†

𝐷
𝑚
𝐷
)
𝑖𝑖
=

1
32𝜋2

3
∑

𝑖=1
(𝑌

†

]𝑌])𝑖𝑖
. (72)
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Secondly, a good check of our computation in (71) is that by
setting to zero all the entries in the𝑚

𝐷𝑖𝑗
matrix except for one

in the diagonal (for instance,𝑚
𝐷11

)we recover the result of the
one generation case, in full agreement with the expressions in
Appendix A of [17] (with𝑚

𝐷11
= 𝑚

𝐷
and𝑚

𝑀1
= 𝑚

𝑀
).

The result in (71) shows, most importantly, that the bare
self-energy has a nonnegligible O(𝑚

2
𝐷
) term, which grows

logarithmically with the Majorana masses. Nevertheless, as
we have already said, we will analyze whether such a term is
present or not in the renormalized self-energy. If one assumes
that the Yukawa contribution from neutrinos/sneutrinos to
the bare self-energy is approximated by the previous result in
(71), one arrives at the following O(𝑚

2
𝐷
) expressions for the

tan𝛽 counterterms in the various schemes:

(𝛿 tan𝛽
DR

)
𝑚

2
𝐷

= −
𝑔
2

64𝜋2𝑀2
𝑊
sin2 𝛽

⋅

3
∑

𝑖=1
(𝑚

†

𝐷
𝑚
𝐷
)
𝑖𝑖
[Δ] ,

(𝛿 tan𝛽
mDR

)
𝑚

2
𝐷

= −
𝑔
2

64𝜋2𝑀2
𝑊
sin2𝛽

⋅

3
∑

𝑖=1
(𝑚

†

𝐷
𝑚
𝐷
)
𝑖𝑖
[Δ− log

𝑚
2
𝑀𝑖

𝜇2
DR

] ,

(𝛿 tan𝛽
OS

)
𝑚

2
𝐷

= (𝛿 tan𝛽
DEC

)
𝑚

2
𝐷

= (𝛿 tan𝛽
HM

)
𝑚

2
𝐷

= −
𝑔
2

64𝜋2𝑀2
𝑊
sin2𝛽

⋅

3
∑

𝑖=1
(𝑚

†

𝐷
𝑚
𝐷
)
𝑖𝑖
[Δ+ 1− log

𝑚
2
𝑀𝑖

𝜇2
DR

] .

(73)

Then, one can easily find the relation among the correspond-
ing renormalized tan𝛽 values, at this same level of approxi-
mation. Using, for instance, the renormalized value in the OS
scheme, tan𝛽

OS, which is 𝜇DR independent, as the reference
value to be compared with in this illustrative exercise, we get

(tan𝛽
OS

)
𝑚

2
𝐷

= (tan𝛽
DEC

)
𝑚

2
𝐷

= (tan𝛽
HM

)
𝑚

2
𝐷

,

(tan𝛽
DR

)
𝑚

2
𝐷

− (tan𝛽
OS

)
𝑚

2
𝐷

= −
𝑔
2 tan𝛽

64𝜋2𝑀2
𝑊
sin2𝛽

3
∑

𝑖=1
(𝑚

†

𝐷
𝑚
𝐷
)
𝑖𝑖
[1− log

𝑚
2
𝑀𝑖

𝜇2
DR

] ,

(tan𝛽
mDR

)
𝑚

2
𝐷

− (tan𝛽
OS

)
𝑚

2
𝐷

= −
𝑔
2 tan𝛽

64𝜋2𝑀2
𝑊
sin2𝛽

3
∑

𝑖=1
(𝑚

†

𝐷
𝑚
𝐷
)
𝑖𝑖
[1] .

(74)

Finally, using the computed expressions at O(𝑚
2
𝐷
) of the bare

self-energy and the counterterms one obtains the renor-
malized self-energy at this same order. In the case of the DR
scheme we get

(Σ̂
]/]̃DR
ℎℎ

(𝑝
2
))

𝑚
2
𝐷

=
𝑔
2

64𝜋2𝑀2
𝑊
sin2𝛽

3
∑

𝑖=1
(𝑚

†

𝐷
𝑚
𝐷
)
𝑖𝑖

⋅ [1− log
𝑚

2
𝑀𝑖

𝜇2
DR

] [−2𝑀2
𝐴
cos2 (𝛼 − 𝛽) cos2𝛽+ 2𝑝2

⋅ cos2𝛼−𝑀
2
𝑍
sin𝛽 sin (𝛼 +𝛽)

⋅ (2 (1+ cos2𝛽) cos𝛼− sin 2𝛽 sin𝛼)] ,

(75)

which can be rewritten in terms of𝑚
ℎ,tree simply as

(Σ̂
]/]̃DR
ℎℎ

(𝑝
2
))

𝑚
2
𝐷

=
𝑔
2

64𝜋2𝑀2
𝑊
sin2𝛽

⋅

3
∑

𝑖=1
(𝑚

†

𝐷
𝑚
𝐷
)
𝑖𝑖
[1− log

𝑚
2
𝑀𝑖

𝜇2
DR

]

⋅ [(𝑝
2
−𝑚

2
ℎ,tree) 2cos

2
𝛼

−𝑀
2
𝑍
sin 2𝛽 sin 2 (𝛼 + 𝛽)] .

(76)

Notice that there are no terms proportional to𝑚
2
SUSY in (76),

since they are cancelled by the 𝛿𝑇
ℎ
, 𝛿𝑇

𝐻
, 𝛿𝑀2

𝐴
, and 𝛿𝑀

2
𝑍

counterterms. We have numerically studied the accuracy of
these approximate O(𝑚

2
𝐷
) results, both for the renormalized

self-energy and the finite contribution in the bare self-energy,
and compared with their corresponding full results. We have
found that they constitute extremely good approximations,
leading to relative differences below 10−4 with respect to
the full expressions for all the explored parameter space
(including for nonzero values of 𝑎], 𝑏], and 𝜇).

It is also straight forward to check that by setting properly
the 𝑚

𝐷
matrix entries in (75) and (76) we recover again the

proper results for the one generation case, in agreement with
[16, 17].

Similarly, one can derive the corresponding O(𝑚
2
𝐷
) ex-

pressions in the other considered schemes. In the mDR we
get

(Σ̂
]/]̃mDR
ℎℎ

(𝑝
2
))

𝑚
2
𝐷

=
𝑔
2

64𝜋2𝑀2
𝑊
sin2𝛽

⋅

3
∑

𝑖=1
(𝑚

†

𝐷
𝑚
𝐷
)
𝑖𝑖
[1] [(𝑝2

−𝑚
2
ℎ,tree) 2cos

2
𝛼

−𝑀
2
𝑍
sin 2𝛽 sin 2 (𝛼 + 𝛽)] .

(77)
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Figure 2: Comparison among the various schemes. (a) The renormalized self-energies evaluated at 𝑝2
= 𝑚

2
ℎ,tree in the OS, DEC, and mDR

as functions of 𝑀
𝐴
, for 𝑚

𝑀1,2,3
= 1012 GeV, 𝑚]1 = 0.01 eV, and 𝑚

�̃�1,2,3
= (700, 900, 1000)GeV. (b) The predictions of the mass differences

Δ
𝑥

= Δ𝑀
𝑥

ℎ
− Δ𝑀

mDR
ℎ

, for 𝑥 = DR (dashed lines) and OS and DEC (solid lines), as functions of 𝜇DR and for several choices of the Majorana
masses, (𝑚

𝑀1
, 𝑚

𝑀2
, 𝑚

𝑀3
) (GeV): (1014, 1014, 1014) (in light blue); (1012, 1013, 1014) (in purple), and (1013, 1014, 1015) (in green). The rest of

input parameters are fixed as in (79). Δ𝑀
ℎ
is defined in (44).

And in theOS, DEC, andHMwe get the expected decoupling
behavior at this order, in agreement with the results for the
one generation case in [16, 17]

(Σ̂
]/]̃ OS
ℎℎ

(𝑝
2
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𝑚

2
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= (Σ̂
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(𝑝
2
))
𝑚
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= (Σ̂
]/]̃ HM
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(𝑝
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𝑚

2
𝐷

=
𝑔
2

64𝜋2𝑀2
𝑊
sin2𝛽

⋅

3
∑

𝑖=1
(𝑚

†

𝐷
𝑚
𝐷
)
𝑖𝑖
[0] [(𝑝2

−𝑚
2
ℎ,tree) 2cos

2
𝛼

−𝑀
2
𝑍
sin 2𝛽 sin 2 (𝛼 +𝛽)] .

(78)

In summary, in this section we have analyzed the relevant
differences among the various schemes for tan𝛽 and the
wave function renormalizations, and these differences have
been understood in terms ofO(𝑚

2
𝐷
) contributions to the self-

energies. Once we have set clearly these differences, it is a
simple exercise to find the prediction in one scheme and then
extract from it the prediction in another scheme.

We illustrate numerically the most relevant differences
among the various schemes in Figure 2. (a) displays the renor-
malized self-energies in three schemes that are 𝜇DR indepen-
dent: OS, DEC, andmDR. In all the cases we plot the full one-
loop result from neutrinos and sneutrinos evaluated at the
tree Higgs mass, 𝑝2

= 𝑚
2
ℎ,tree, as a function of 𝑀

𝐴
. In this

example the instabilities that are found in the OS scheme
are clearly visible, in comparison with the stability of the

mDR and DEC schemes. These “dips” are due to thresholds
encountered in the loop diagrams and, as can be seen in
Figure 2, appear at 𝑀

𝐴
values approximately twice each one

of the soft SUSY-breaking parameters 𝑚
�̃� 𝑖
. We have checked

that these “dips” are indeed very narrow and profound. For
aritrary close values to threshold they go to−∞due to the fact
that the imaginary part of the standard one-loop 𝐵0 function
[77] is not differentiable at threshold.These instabilities occur
as long as width effects are not taken into account.We also see
that, for the input values in this plot, the numerical values for
the renormalized self-energies of the OS, DEC, and mDR are
quite close to each other. In particular, in the region out of the
dips, theOS andDECvalues are practically identical.We have
also checked that the numerical results in the HM scheme
(not shown) alsomanifest instabilities and, furthermore, they
turn out to be substantially different than in the other 𝜇DR
independent schemes. This difference of the HM has been
studied in [17] in the one generation case and it has been
understood in terms of the substantially different contribu-
tions in the pure gauge part, that is, of O(𝑚

0
𝐷
), which are

numerically relevant. For instance, comparing the HM with
the DEC approximate results for the mass correction in [17],
the first one is a factor of (cos2 2𝛽)−1 larger than the last one
(for tan𝛽 = 2, e.g., this yields a factor of 2.8). We have found
agreement with this numerical factor in our numerical results
for Σ̂]/]̃ HM

ℎℎ
(𝑚

2
ℎ,tree), in the region out of the instabilities.

Figure 2(b) compares the predictions for the Higgs mass
correction among the different renormalization schemes in
various examples with different choices for the Majorana
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masses and their hierarchies. Again the full one-loop renor-
malized self-energies are considered and the simple formula
for the Higgs mass correction in (44) is used. In this plot we
have chosen themDRas the reference scheme to be compared
with, such thatΔ𝑥 = Δ𝑀

𝑥

ℎ
−Δ𝑀

mDR
ℎ

represents the difference
in the prediction of the mass correction in the scheme 𝑥

with respect to the prediction in the mDR scheme. Firstly,
we have found again that the results of the OS and the DEC
schemes are practically indistinguishable. We also see that,
for the input values explored in this plot, the predictions in
these OS and DEC schemes differ from the predictions in the
mDR scheme in 1GeV at most, and this largest difference is
for the case when the heaviest Majorana mass is at the largest
considered value of 1015 GeV. The comparison with the DR
scheme, whose result is 𝜇DR dependent, shows that, in order
to get a prediction close to the other schemes, within say a
1 GeV interval, a value of 𝜇DR at the near proximity of the
highest Majorana mass should be chosen.

5. Numerical Analysis of Δ𝑀
ℎ

In this final section we show some numerical results for the
one-loop corrections to the light Higgs boson mass, Δ𝑀

ℎ

(via (44)). Using the DEC scheme, the OS scheme or another
scheme that decouples the heavy mass scales completely
would yield small effects (except where the numerical insta-
bilities occur as demonstrated in Section 3.3). Since every
scheme, however, has its advantages and disadvantages as
discussed in Section 3.3 we choose here to use the mDR
scheme. The numerical results in other schemes can be
inferred from these by using the results in the previous
section. While by definition not showing full decoupling, the
mDR combines several of the desired properties: stability,
perturbativity, and gauge invariance at the one-loop level.
Besides, this scheme is safe of large logarithms introduced by
the large Majorana scales. The fact that the nonlogarithmic
finite terms are not removed in this scheme translates into a
finite contribution of O(𝑚

2
𝐷
) which will leave a nonvanishing

radiative contribution from the neutrinos and sneutrinos into
the Higgs mass correction. Furthermore, we are interested
in different scenarios where the Majorana masses can range
from the extreme large values of order 1014-1015 GeV down
to low values of order 103 GeV and, correspondingly, we will
explore these scenarios keeping explicitly the contributions
from ]/]̃ particles. Consequently, the numerical analysis is
performed as a function of all relevant parameters that will
be varied in a wide range: the masses of the light neutrinos,
the masses of the heavy Majorana neutrinos, and the mixing
provided by the 𝑅 matrix in the case of three generations, as
well as theMSSM parameters. Unless stated otherwise, we set
the parameters to the following reference values:

𝑚
𝑀1

= 𝑚
𝑀2

= 𝑚
𝑀3

≡ 𝑚
𝑀

= 1014 GeV,

𝑚]1 = 0.1 eV,

𝑚
�̃�1

= 𝑚
�̃�2

= 𝑚
�̃�3

≡ 𝑚
�̃�
= 2 TeV,

𝑀
𝐴
= 500GeV,

𝑚
�̃�1

= 𝑚
�̃�2

= 𝑚
�̃�3

≡ 𝑚
�̃�
= 2 TeV,

𝜇 = 500GeV,

𝑎] = 2 TeV,

tan𝛽 = 2,

𝑏] = 2 TeV,

𝑅 = 1.

(79)

Themasses of the other two light neutrinos are obtained from
𝑚]1 and themass differences given in (22), implying that these
light neutrinos of our reference case are quasidegenerate.

We assume that the otherMSSMparameters, in particular
from the top/scalar top sector, which do not affect our results,
give a corrected Higgs mass of𝑀

ℎ
∼ 125GeV. Here it should

be noted that in the non(s)neutrino part of the calculation a
DR renormalization of tan𝛽 and the wave function of the two
Higgs doublets has been used (with 𝜇DR = 𝑚

𝑡
). The choice of

a different renormalization scale in the estimate of𝑀
ℎ
within

the MSSM has been discussed at length in the literature (see,
for instance, [67, 68]), but it is not relevant for the present
work given the fact that we are using this𝑀

ℎ
as a given value

(fixed here to 125GeV) and we are estimating just the shift
Δ𝑀

ℎ
with respect to this value due to the new sectors ]/]̃

(given by (44)).
Two different scenarios for the mass hierarchy of the light

neutrinos can be set, the normal hierarchy (NH) case and the
inverted hierarchy (IH) case.

(i) Normal hierarchy (NH) is as follows:
]1 is the lightest neutrino, and its mass will be our
input value. The mass of the other two neutrinos are
fixed by the experimental mass differences:

𝑚
NH
]2 = √𝑚2

]1 + Δ𝑚2
21,

𝑚
NH
]3 = √𝑚2

]1 + Δ𝑚2
21 + Δ𝑚2

32.

(80)

(ii) Inverted hierarchy (IH) is as follows:
]3 is the lightest neutrino, and its mass will be our
input value.Themass of the other two neutrinos again
is fixed by the experimental mass differences:

𝑚
IH
]1 = √𝑚2

]3 − Δ𝑚2
21 − Δ𝑚2

32,

𝑚
IH
]2 = √𝑚2

]3 − Δ𝑚2
32,

(81)

withΔ𝑚
2
21 andΔ𝑚

2
32 are given in Section 2.Thedefault choice

used below is the NH case, and the IH case will be especially
indicated.

Notice thatwe are using theCasas-Ibarra parametrization
(20) that provides a prediction of the full 3×3 V2𝑌] (i.e.,𝑚𝐷

)
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Figure 3: (a)Δ𝑀
ℎ
as a function of𝑚

𝑀
for the one generation case. (b)Δ𝑀

ℎ
as a function of the scale𝑚

𝑀
for the degenerate three generations

case. The rest of the model parameters are set as in (79).

matrix in terms of the input parameters of the light sector,
𝑚]𝑖 and 𝜃

𝑖𝑗
, and of the heavy sector, 𝑚

𝑀𝑖
and 𝜃

𝑖
, and the last

two can take in principle any value. Therefore the size of the
Yukawa couplings that we are generating is related directly
to these parameters, and in consequence they can be large
and even nonperturbative. In order to ensure that𝑌] is inside
the perturbative region, for every set of input parameters we
first check that all of the entries of the Yukawa matrix fulfill a
perturbative condition that we set here to


(𝑌])𝑖𝑗



2

4𝜋
< 1.5; (82)

otherwise, the point in the parameter space is rejected.

5.1. Relation with the One-Generation Case. As a first check
of our three generations code, we have reproduced with
this code the same behavior of the Higgs mass correction,
Δ𝑀

ℎ
, with the Majorana mass as in the one generation case

[16]. The connection with the one generation case is done
by setting the corresponding absent entries in the Dirac
mass matrix to zero. For this analysis, the mass of the light
and heavy Majorana neutrinos has been set to 0.1 eV and
1014 GeV, respectively. The result for the one-generation case
delivered in such a way is shown in Figure 3(a). In Figure 3(b)
it is shown the behavior of the three generations case with
three equaly heavy neutrino masses; that is, 𝑚

𝑀𝑖
= 𝑚

𝑀
.

As expected, we obtain that the Higgs mass corrections
in the three generations case are three times the ones of
the one generation case. Notice that we have separated the
contributions to the full mass correction coming from the
gauge and the Yukawa parts, according to (70a)

Δ𝑀
ℎ
= (Δ𝑀

ℎ
)gauge + (Δ𝑀

ℎ
)Yukawa , (83)

where (Δ𝑀
ℎ
)gauge corresponds to setting all the Yukawa cou-

plings to zero and (Δ𝑀
ℎ
)Yukawa is the remaining contribution.

Within our approximation of (44), they are related to the
renormalized self-energy as follows:

(Δ𝑀
ℎ
)gauge = −

Σ̂
]/]̃
gauge (𝑀

2
ℎ
)

2𝑀
ℎ

, (84a)

(Δ𝑀
ℎ
)Yukawa = −

Σ̂
]/]̃
Yukawa (𝑀

2
ℎ
)

2𝑀
ℎ

≡ Δ̂𝑀
ℎ
. (84b)

It should also be noted that, similarly to the one generation
case, the full mass correction changes from positive values in
the low 𝑚

𝑀
region to negative values in the region of large

𝑚
𝑀

≳ 1014 GeV. In particular, for the reference values in (79),
it is Δ𝑀

ℎ
= −0.25GeV.

As mentioned before, the gauge part of the Higgs mass
correction represents the common part with the MSSM, and
therefore in the following, wewill focus the discussionmainly
on the Yukawa part which is the new contribution, denoted
here and from now on shortly as Δ̂𝑀

ℎ
.

5.2. Sensitivity of the Higgs Mass Correction to the Relevant
SUSY Parameters. We next study the effects on Δ𝑀

ℎ
of the

other parameters entering the calculation: tan𝛽, 𝑀
𝐴
, 𝑚

�̃� 𝑖
,

𝑚
�̃�𝑖
, 𝑎], 𝑏], and 𝜇. In order to explore these behaviours of

Δ𝑀
ℎ
with the relevantMSSMparameters in presence of three

Majorana neutrinos and their SUSY partners, we run with
one of the parameters while the others are set to the reference
values given in (79).

The behaviour of the one-loop corrections to the lightest
Higgs boson mass in the mDR scheme with these relevant
parameters is shown in Figures 4 and 5.

We start with the analysis of the behaviour with tan𝛽,
which is shown in Figure 4. In (a) the behavior of the fullmass
correction as well as the gauge and Yukawa parts is shown.
In (b) we focus on the Yukawa contribution to the mass cor-
rection. The biggest negative correction Δ̂𝑀

ℎ
is obtained for
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Figure 6: Δ̂𝑀
ℎ
(blue) and Σ𝑚]𝑖 (purple) as a function of the lightest

neutrino mass, 𝑚]1 for a normal hierarchy (solid) and 𝑚]3 for an
inverted hierarchy (dashed). The rest of the model parameters are
set as in (79).

the lowest considered value of tan𝛽 = 2; so in the following,
motivating tan𝛽 = 2 as our reference value. The numerical
results for other choices of tan𝛽 in the remaining plots of this
work can be easily inferred from this plot on the right.

The dependence on the pseudoscalar Higgs boson mass
is analyzed in Figure 5. For 𝑀

𝐴
larger than 200GeV the

behavior with 𝑀
𝐴
is nearly flat. The dependence on the soft

SUSY-breaking mass of the “left handed” 𝑆𝑈(2) doublet,𝑚
�̃�
,

is also flat as shown in Figure 5. The behavior with the soft
mass of the “right handed” sector𝑚

�̃�
in a range similar to the

other soft SUSY-breaking parameters is shown in Figure 5.
In addition, also values of 𝑚

�̃�
closer to 𝑚

𝑀𝑖
are explored in

this figure. The correction to the Higgs boson ℎ mass stays
flat with 𝑚

�̃�
up to about 𝑚

�̃�
∼ 1013 GeV. Above this mass

scale the correction grows rapidly, reaching Δ𝑀
ℎ
∼ −1GeV

at𝑚
�̃�
∼ 1014 GeV, in agreement with the results found for the

one generation case in [16].
We have also checked that the behavior of Δ𝑀

ℎ
with

the remaining parameters, 𝑎], 𝑏], and 𝜇, in the intervals
−1000GeV < 𝑎] < 1000GeV, 100GeV < 𝑏] < 104 GeV,
and −1000GeV < 𝜇 < 1000GeV is also flat as in the case
of the low mass values of 𝑚

�̃�
. The behaviors of Δ̂𝑀

ℎ
with all

these parameters agree as well with the results obtained in the
one-generation case [16].

5.3. Sensitivity of the Higgs Mass Corrections to the Light
Neutrinos. In this section we analyze the sensitivity of the
mass correction to the mass hierarchy of the light neutrinos.
Here we investigate the two cases of NH and IH, where the
values of the rest of the parameters are fixed to the ones of
our reference scenario given in (79).

Figure 6 shows the behavior of the Yukawa part of the
mass correction with the mass of the lightest neutrino, ]1 and
]3, for theNH (solid lines) and IH (dashed lines), respectively.
We show the Yukawa contribution to the mass correction
(vertical left axis) as well as the sum of the three neutrino
masses (vertical right axis) for each value as a function of

the lightest neutrinomass.We conclude that, even though the
numerical result of Δ̂𝑀

ℎ
for both hierarchies are quite similar,

the Higgs mass corrections found in the IH case are slightly
bigger than the ones of the NH case.

5.4. Sensitivity of the Higgs Mass Corrections to the Heavy
Neutrino Masses. In this section the behaviors of the mass
correction with the masses of the heavy Majorana neutrinos
as well as with the 𝑅 matrix are analyzed. As mentioned
before, 𝑅matrix of (20) parametrizes the mixing in the heavy
neutrino sector.

First of all, we show the results for the degenerate heavy
neutrino scenario where the three heavy Majorana neutrinos
have all the same mass, that is, 𝑚

𝑀1
= 𝑚

𝑀2
= 𝑚

𝑀3
=

𝑚
𝑀
. The mass of the lightest neutrino as well as the SUSY

parameters is set to the reference values given in (79). In
Figure 7(a) we show the behaviour of the full mass correction
Δ𝑀

ℎ
with the commonMajorana𝑚

𝑀
. We have separated the

contribution to the mass correction coming from the neu-
trino and sneutrino sectors in order to show the remarkable
cancellation between the two parts that it is happening. It can
also be seen that the behavior of the total Δ𝑀

ℎ
with 𝑚

𝑀
at

very large 𝑚
𝑀

≳ 1014 GeV is dominated by the neutrino
contributions. It should be noted that the same result as in
Figure 7 is obtained for any other real 𝑅 matrix different
from the reference value 𝑅 = 1. This independence on the
particular real 𝑅 value can be understood from the fact that,
as we have mentioned before, Δ̂𝑀

ℎ
∝ 𝑚

†

𝐷
𝑚
𝐷
, and with the

definition of𝑚
𝐷
given in (20), we find

𝑚
†

𝐷
𝑚
𝐷

= √𝑚
diag
𝑁

𝑅
∗√𝑚

diag
] 𝑈

𝑇

PMNS𝑈
∗

PMNS
√𝑚

diag
] 𝑅

𝑇√𝑚
diag
𝑁

= √𝑚
diag
𝑁

𝑅
∗
𝑚

diag
] 𝑅

𝑇√𝑚
diag
𝑁

.

(85)

As the three light neutrinos in (79) are quasidegenerate,
𝑚

diag
] ≈ 𝑚]11, and since here 𝑅 is a real and orthogonal

matrix, then (85) becomes independent on 𝑅; that is,

𝑚
†

𝐷
𝑚
𝐷
≈ 𝑚]1

√𝑚
diag
𝑁

𝑅𝑅
𝑇√𝑚

diag
𝑁

= 𝑚]1𝑚
diag
𝑁

. (86)

In contrast, when a complex 𝑅 matrix is implemented, the
result in (86) is no longer true and Δ̂𝑀

ℎ
grows with the size of

bothRe(𝜃
𝑖
) and Im(𝜃

𝑖
), as can be seen in Figure 7(b).Therewe

plot Δ̂𝑀
ℎ
for three different values 𝜃1 = (0, 𝜋/2𝑒𝑖𝜋/8, 𝜋/2𝑒𝑖𝜋/4)

while the other two angles, that is, 𝜃2 and 𝜃3, are set to zero.
We have checked that similar growing behaviors with the
other complex 𝜃2,3 angles are found.

Next we study the case where there is a hierarchy between
the three heavy Majorana neutrino masses. First we consider
the simplest case of 𝑅 = 1 and analyze the behavior with the
heaviest Majorana mass, chosen here to be 𝑚

𝑀3
, while the

other two masses are fixed to 𝑚
𝑀1

= 1010 GeV and 𝑚
𝑀2

=

1011 GeV. Figure 8 compares the behavior of Δ̂𝑀
ℎ
with 𝑚

𝑀3
in both degenerate and hierarchical cases. This figure shows
that the size of the correction Δ̂𝑀

ℎ
in the hierarchical case
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Figure 7: (a) Δ𝑀
ℎ
as a function of𝑚
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Figure 8: Δ̂𝑀
ℎ
as a function of 𝑚

𝑀3
for hierarchical (blue) and

degenerate (grey) heavy neutrinos. The rest of input parameters are
set to the reference values in (79).

is dominated by the heaviest Majorana mass, 𝑚
𝑀3

, in this
example. Furthermore, the obtained Higgs mass correction
for a given𝑚

𝑀3
value is smaller than the corresponding mass

correction in the degenerate case with the common𝑚
𝑀
fixed

to this same value, that is, for𝑚
𝑀

= 𝑚
𝑀3

.
In order to perform a complete analysis with hierarchical

heavy neutrinos, we have scanned the Majorana masses𝑚
𝑀1

and 𝑚
𝑀2

in the range 1012 ⩽ 𝑚
𝑀1,2

⩽ 1014 GeV for two dif-
ferent values of 𝑚

𝑀3
. As a result, we have obtained the two

contour plots that are shown in Figure 9. Due to the fact
that we are assuming in practice that the light neutrinos are
quasidegenerate and that there is nomixing among the heavy

Majorana neutrinos (𝑅 = 1), the behavior of the Higgs mass
correction is symmetric in all the three Majorana masses
and consequently, the biggest correction is obtained when
the three masses are equal and set to the highest value, that
is, 1014 GeV in these plots. We have checked that once the
value of 𝑚

𝑀3
lies below 1012 GeV there is no appreciable

sensitivity to that mass, so the result will be the same as in
Figure 9(a). Similarly to the previous degenerate case, there
is not sensitivity to the choice of the real 𝑅 matrix in the
hierarchical case either, as can be understood from the result
in (86) that also holds here. Therefore, the results in Figure 9
are valid for all values of real 𝑅.

Finally we analyze the imprints of the mixing of the hier-
archical heavy neutrinos in Δ̂𝑀

ℎ
when a complex 𝑅 matrix

is implemented. Figure 10 shows the Δ̂𝑀
ℎ
contours in the

general case of three Majorana masses,𝑚
𝑀1,2,3

, and when one
of the three 𝜃

𝑖
angles is fixed to 3𝜋/4𝑒𝑖𝜋/4 while the other two

are set to zero. As before, the biggest correction is obtained
when all the three Majorana masses are degenerate and have
their biggest considered value of 1014 GeV. The symmetry
shown in Figure 10 with respect to the three masses𝑚

𝑀1,2,3
is

a consequence of the quasi degeneracy assumed of the three
light neutrinos. When the three 𝜃

𝑖
angles are nonzero and

complex, Δ̂𝑀
ℎ
becomes considerably larger than in the real

case, as can be seen in Figure 11 where we have chosen as
an illustrative example, 𝜃1 = 3𝜋/8𝑒𝑖𝜋/4, 𝜃2 = 𝜋/2𝑒𝑖𝜋/5, and
𝜃3 = 3𝜋/4𝑒𝑖𝜋/7. The larger the arguments of the angles 𝜃

𝑖
are,

the larger Δ̂𝑀
ℎ
becomes. However, the size of these 𝜃

𝑖
, as well

as the size of the𝑚
𝑀𝑖
, are constrained by perturbativity of the

Yukawa coupling. In this context it should be remembered
that large corrections for Δ̂𝑀

ℎ
would not be reliable within

the approximation used here of (44).
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Figure 9: Δ̂𝑀
ℎ
as a function of 𝑚

𝑀1
and 𝑚

𝑀2
in the hierarchical heavy neutrinos scenario. (a) With 𝑚

𝑀3
= 1012 GeV. (b) With 𝑚

𝑀3
=

1014 GeV. The rest of input parameters are set to the reference values in (79).

6. Conclusions

In this paper we have presented the full one-loop radiative
corrections to the renormalized CP-even Higgs boson self-
energies and to the lightest Higgs boson mass, 𝑀

ℎ
, from the

three generations in the neutrino-sneutrino sector within the
context of the MSSM-seesaw. This work extends and com-
pletes the previous calculation in the simplified one-gen-
eration case [16].Themost interesting features in thisMSSM-
seesaw are that the neutrinos, contrary to other fermions, are
assumed to be Majorana particles and that the origin for the
light neutrinomasses, again in contrast to the other fermions,
is generated by means of the seesaw mechanism with the
addition of heavy right handedneutrinoswith largeMajorana
masses.

As a by-product, we have included here the complete set
of Feynman rules in this MSSM-seesaw for the three-gen-
eration (s)neutrino case relevant to this work (again extend-
ing and completing [16]). This includes the vertices for the
interactions of the neutrinos and sneutrinos with the Higgs
sector and with the𝑍 boson.These Feynman rules have been
presented in terms of all the physical masses and mixing
angles of the particles involved, in particular in themass eigen
basis of the light and heavy Majorana neutrinos, as well as
their light and heavy SUSY partners.

Our computation is a complete one-loop calculation in
the Feynman diagrammatic approch without any simplifying

assumptions. The corresponding analytical results are also
presented in terms of the physical neutrinos, sneutrinos, 𝑍,
and Higgs bosons masses.

In particular we have discussed the renormalization of
tan𝛽 and the wave function of the two Higgs doublets in the
case of three generations of (s)neutrinos. As was discussed
previously in the literature (in the one-generation case), the
dependence of the prediction of Δ𝑀

ℎ
on the Majorana mass

scales depends strongly on the choice of the tan𝛽 renor-
malization. Various schemes have been analyzed, where each
scheme exhibits advantages and disadvantages. Particularly,
the “modified DR” scheme (mDR) was contrasted to other
schemes, like the “more physical” OS and HM schemes
and the “decoupling” scheme (DEC). The latter one leads,
hence its name, to a full decoupling of the heavy Majorana
mass scales in Δ̂𝑀

ℎ
, which we confirm here for the three

generations case. Regarding the comparison with the “more
physical” schemes, like OS and HM, we have seen that they
can lead to potentially unstable numerical behavior in certain
regions of the MSSM-seesaw parameter space. Therefore
the convergence of the perturbative expansion may not be
ensured in the presence of heavy scales. We have also found
that the use of the “more traditional” DR scheme is not
convenient either, since there is an extremely high sensitivity
to the choice of the 𝜇DR scale. When this 𝜇DR scale is set to
the high Majorana scale, then the large logarithmic contri-
butions disappear and one reaches a more stable result. The



20 Advances in High Energy Physics

mM3
= 1012 GeV

mM3
= 1012 GeV

mM3
= 1012 GeV

𝜃1 ≠ 0

𝜃2 ≠ 0

𝜃3 ≠ 0

1012 1013 1014
1012

1013

1014

m
M

2
(G

eV
)

mM1
(GeV)

1012 1013 1014
1012

1013

1014

m
M

2
(G

eV
)

mM1
(GeV)

1012 1013 1014
1012

1013

1014

m
M

2
(G

eV
)

mM1
(GeV)

Δ̂Mh (GeV)

−10−3 −10−2 −0.1 −1−2 −5−0.5

1012 1013 1014
1012

1013

1014

m
M

2
(G

eV
)

mM1
(GeV)

mM3
= 1014 GeV

mM3
= 1014 GeV

mM3
= 1014 GeV

𝜃1 ≠ 0

𝜃2 ≠ 0

𝜃3 ≠ 0

1012 1013 1014
1012

1013

1014

m
M

2
(G

eV
)

mM1
(GeV)

1012 1013 1014
1012

1013

1014

m
M

2
(G

eV
)

mM1
(GeV)

Δ̂Mh (GeV)

−10−3 −10−2 −0.1 −1−2 −5−0.5

Figure 10: Δ̂𝑀
ℎ
contour lines in the (𝑚

𝑀1
, 𝑚

𝑀2
) plane for two values of 𝑚

𝑀3
and for a single complex nonvanishing 𝜃

𝑖
angle. Left panels:

with𝑚
𝑀3

= 1012 GeV. Right panels: with𝑚
𝑀3

= 1014 GeV. Top panels: 𝜃1 = 3𝜋/4𝑒𝑖𝜋/4, 𝜃2 = 𝜃3 = 0. Middle panels: 𝜃2 = 3𝜋/4𝑒𝑖𝜋/4, 𝜃1 = 𝜃3 = 0.
Bottom panels: 𝜃3 = 3𝜋/4𝑒𝑖𝜋/4, 𝜃1 = 𝜃2 = 0. The rest of input parameters are set to the reference values in (79).
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Figure 11: Δ̂𝑀
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= 1012 GeV. (b) 𝑚
𝑀3

= 1014 GeV. The rest of input parameters are set to the reference values in
(79).

absence of large logarithmic contributions, log(𝑚
𝑀𝑖

/𝜇DR), is
automatically implemented in the mDR scheme. This mDR
scheme, by construction not exhibiting complete decoupling
behavior, leads to numerically stable predictions for Δ𝑀

ℎ
,

gauge invariant to one-loop, while exhibiting a residual
dependence of Δ𝑀

ℎ
on the heavy Majorana mass scales. The

analytic structure of those terms in the mDR scheme as well
as in the OS and the DR scheme has been derived and fully
analyzed here for the three-generation case.

Finally, in order to cover several scenarios and hierar-
chies, in the numerical investigation we have analyzed the
neutrino/sneutrino corrections to the renormalized CP-even
Higgs self-energies and Δ𝑀

ℎ
with respect to all the involved

masses and parameters: 𝑚
𝑀𝑖
, tan𝛽, 𝑀

𝐴
, 𝑚

�̃� 𝑖
, 𝑚

�̃�𝑖
, 𝑎], 𝑚]𝑖 ,

𝜃
𝑖
, and 𝑏]. These analyses have been performed in the mDR

scheme. A clear prescription has also been presented to pass
from this scheme to the other introduced schemes (where,
by definition, the DEC scheme would lead to very small
effects). We have ensured that our numerical scenarios are
in agreement with experimental data by using the Casas-
Ibarra parametrization of the neutrino sector and choosing
the relevant values, for example, of neutrinomass differences,
according to the most recent experimental results. We have
investigated both the normal and the inverted hierarchy.

The pure gauge contributions, which are already present
in the MSSM and grow with tan𝛽, can amount about Δ𝑀

ℎ
∼

150MeV, in the low tan𝛽 ∼ 2 region of interest here, that
is, about half of the current experimental uncertainty. These
corrections arise from the sneutrino sector only and thus are
independent of the assumed hierarchy in the neutrino sector.
The remaining contributions, Δ̂𝑀

ℎ
, which are sensitive to the

heavy neutrinos/sneutrinos via the Yukawa couplings in the
mDR scheme, are larger than the pure gauge contributions
in presence of very heavy scales and are in contrast larger
at the lower values of tan𝛽. We have studied the size of the
corrections Δ𝑀

ℎ
with respect to the Majorana mass scales

(where no dependence would have been found in the DEC
scheme). The largest corrections are found in the degenerate
case and for the largest allowed Majorana mass values. In
the present work these maximum values have been set to
1015 GeV in order to respect the perturbativity condition on
the Yukawa couplings. In the large region of 1014 GeV ≲

𝑚
𝑀

≲ 1015 GeV we find negative corrections of up to Δ𝑀
ℎ
∼

O(−5)GeV. We have also found that the corrections in the
three generations case are generally larger than in the one
generation case. Particularly, we have checked that, for the
degenerate Majorana masses scenario with no generation
mixing, the corrections are indeed approximately three times
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larger. Finally, the dominant corrections in this work are
found to be proportional to the square of the neutrino Dirac
mass scale, specifically to 𝑚

†

𝐷
𝑚
𝐷
, and therefore they can

be enhanced when complex 𝜃
𝑖
parameters are taken into

account. However, the above commented perturbativity
requirements on the Yukawa of couplings will always restrict
the size of the mass correction.

Appendix

A. New Feynman Rules

In this Appendix we collect the Feynman rules derived from
the interaction Lagrangian terms of Section 2 within the
MSSM-seesaw that are relevant for the present work. They
represent the interactions between the neutrinos and sneu-
trinos with the MSSM neutral Higgs bosons and between
the neutrinos and sneutrinos with 𝑍 gauge bosons. All the
Feynman rules are written here in the physical basis. Here
𝑐
𝑊

≡ cos 𝜃
𝑊

and we have shortened the notation as in (11);
that is, 𝑈

𝑖𝑗
≡ 𝑈

𝑖,𝑗
, �̃�

𝑖𝑗
≡ �̃�

𝑖,𝑗
.

A.1. Neutrinos. Three-point couplings of two Majorana neu-
trinos to one MSSM Higgs boson and of two Majorana neu-
trinos to the 𝑍 gauge boson are as follows:

(i)

h
ni

nj

𝑖𝑉
𝐿

ℎ𝑛𝑖𝑛𝑗
𝑃
𝐿
+ 𝑖𝑉

𝑅

ℎ𝑛𝑖𝑛𝑗
𝑃
𝑅

= −
𝑖𝑔 cos𝛼

2𝑀
𝑊
sin𝛽

(𝑈
∗

𝑚+3,𝑖 (𝑚
†

𝐷
)
𝑚𝑛

𝑈
∗

𝑛𝑗
𝑃
𝐿

+𝑈
𝑚𝑖

(𝑚
𝐷
)
𝑚𝑛

𝑈
𝑛+3,𝑗𝑃𝑅) + (𝑖←→𝑗) ,

(A.1)

(ii)

H

ni

nj

𝑖𝑉
𝐿

𝐻𝑛𝑖𝑛𝑗
𝑃
𝐿
+ 𝑖𝑉

𝑅

𝐻𝑛𝑖𝑛𝑗
𝑃
𝑅

= −
𝑖𝑔 sin𝛼

2𝑀
𝑊
sin𝛽

(𝑈
∗

𝑚+3,𝑖 (𝑚
†

𝐷
)
𝑚𝑛

𝑈
∗

𝑛𝑗
𝑃
𝐿

+𝑈
𝑚𝑖

(𝑚
𝐷
)
𝑚𝑛

𝑈
𝑛+3,𝑗𝑃𝑅) + (𝑖←→𝑗) ,

(A.2)

(iii)

A
ni

nj

𝑖𝑉
𝐿

𝐴𝑛𝑖𝑛𝑗
𝑃
𝐿
+ 𝑖𝑉

𝑅

𝐴𝑛𝑖𝑛𝑗
𝑃
𝑅

=
𝑔 cos𝛽

2𝑀
𝑊
sin𝛽

(𝑈
∗

𝑚+3,𝑖 (𝑚
†

𝐷
)
𝑚𝑛

𝑈
∗

𝑛𝑗
𝑃
𝐿

−𝑈
𝑚𝑖

(𝑚
𝐷
)
𝑚𝑛

𝑈
𝑛+3,𝑗𝑃𝑅) + (𝑖←→𝑗) ,

(A.3)

(iv)

Z𝜇
ni

nj

𝑖𝑉
𝐿

𝑍𝑛𝑖𝑛𝑗
𝛾
𝜇
𝑃
𝐿
=

−𝑖𝑔

2𝑐
𝑊

(𝑈
𝑚𝑖
𝑈
∗

𝑚𝑗
) 𝛾

𝜇
𝑃
𝐿
+ (𝑖←→𝑗) . (A.4)

A.2. Sneutrinos. Three-point couplings of two sneutrinos to
one MSSM Higgs boson and of two sneutrinos to the 𝑍

gauge boson are as follows (all the couplings not shown here
vanish):

(i)
ñi

ñj

h

𝑖𝑉
ℎ𝑛𝑖𝑛𝑗

=
𝑖 cos𝛼
√2

{�̃�
𝑚𝑖

(𝐴])𝑚𝑛 �̃�𝑛+6,𝑗
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sin𝛽
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(A.5)
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(ii)
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(A.6)
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ñi

ñj
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Four-point couplings of two neutrinos to two MSSM
Higgs bosons and two neutrinos to two 𝑍 gauge bosons are
as follows (all the couplings not shown vanish):
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ñi
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(A.9)
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(iii)
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(iv)
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