Esta es la versión de autor del artículo publicado en:
This is an author produced version of a paper published in:

DOI: http://dx.doi.org/10.1002/anie.201501550

Copyright: © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

El acceso a la versión del editor puede requerir la suscripción del recurso
Access to the published version may require subscription
Combining novel electron-accepting phthalocyanines and nanorod-like CuO electrodes for p-type dye-sensitized solar cells

Abstract: In the current work, a novel route for the synthesis of two electron-accepting phthalocyanines featuring linkers with different length as sensitizers for p-type dye-sensitized solar cells are reported. Importantly, our devices – based on novel nanorod-like CuO photocathodes – feature efficiencies of 0.191%, which are to date the highest values ever reported for CuO-based DSSCs.

Current developments in p-type DSSCs focuses on exploring novel electrodes and electron acceptors.[1,2] Concerning the former, the most prominent material has been nickel(II) oxide (NiO), despite drawbacks such as low transparency, electrode thickness, and low conductivity.[2] To tackle some of the aforementioned bottlenecks, the preparation of binary NiXO semiconductors, where X is cobalt, has recently evolved as a powerful approach.[3] A viable alternative is based on the long overlooked copper(II) oxide (CuO), whose films feature higher conductivity, better charge carrier mobility, and comparable valence band energy relative to NiO films.[4,5] Still, the most recent report on CuO-based p-type DSSCs is dated from 2008.[6] Very likely, state-of-the-art efficiencies as low as 0.011% resulted in a moderate interest. Recent improvements in the field of CuO-based p-type DSSCs are due to the use of copper delafossite (CuXO2) electrodes with X being aluminum, chromium, or gallium.[7] Higher conductivities as well as lower valence band energies, which cause higher open-circuit voltages (Voc), represent the major benefits of the latter electrodes. Other CuO nanostructures like, for example, nanorods, nanoplates, etc. have never been explored to date. This is where the current work sets in. In particular, we demonstrate for the first time that DSSCs based on nanorod-like CuO electrodes outperform those with nanoparticle-like CuO and perform in a manner similar to those with CuXO2.

Concerning dyes for p-type DSSCs, a myriad of different organic and inorganic sensitizers including triphenylamines,[8] perylenediimides,[9] perylene-bithiophene-triphenylamine triads,[10] porphyrines,[11] and ruthenium complexes,[12] have been designed and probed. Notably, porphyrins have led to the most efficient n-type DSSCs up to date.[13,14] Key merits of porphyrins, and specially of their synthetic related phthalocyanines (Pcs),[15,16] are their exceptional light-harvesting features and their facile functionalization with either electron-donors or electron-acceptors, underlining their potential for DSSCs.

In light of the latter, tuning the physicochemical features of phthalocyanines towards new electron-accepting dyes[17,18] by means of placing electron-withdrawing substituents at their periphery, complements, in the current work, our research regarding nanorod-like CuO electrodes.[19]

![Scheme 1](image_url)

Scheme 1. Conditions: i) Zn(OAc)2, o-DCB/DMF (3:1), 170 °C, Ar, 18h; ii) IBX, DMSO/THF; iii) H3NSO3/H2O followed by NaClO2; iv) propargyl alcohol, Pd(PPh3)4Cl2, CuI, NEt3, THF.

Notably, the synergy of nanorod-like CuO DSSCs and electron-accepting Pcs enables the construction of p-DSSCs with efficiencies as high as 0.103% and 0.191% with iodine- and cobalt-based electrolytes, respectively. The latter represents the highest values ever reported for pure CuO-based DSSCs. The design and the synthesis of two novel zinc phthalocyanines – ZnPc1 and ZnPc2 as shown in Scheme 1 – for the sensitization of CuO nanorods are driven by several incentives. Firstly, six electron-withdrawing alkylsulfonyle groups are attached at the phthalocyanine periphery to render them electron accepting. Secondly, branched rather than linear alkyl chains are used to suppress aggregation on the surface of CuO nanorods. Thirdly,
either directly linked – ZnPc1 – or conjugated – ZnPc2 – carboxylic acid anchoring groups are attached to facilitate charge injection. The synthesis of ZnPc1 and ZnPc2 is accomplished in several steps in moderate yields – see Scheme 1 and Supporting Information (SI) for more details. Starting from a classical statistical condensation of 4,5-bis(2-ethylyxysulfonyl)phthalonitrile 1 and either phthalonitrile 2 or 3, ZnPcs 4 and 5, respectively, are obtained. For ZnPc1, two consecutive oxidation steps were necessary to transform the hydroxymethyl Pc 4 into the corresponding carboxylic acid, namely a reaction with periodinane in DMSO to afford formyl derivative 6 and treatment with NaClO4 in water in the presence of sulfamic acid. In the case of ZnPc2, an initial Sonogashira coupling between monoiodo 5 and propargylic alcohol afforded hydroxypropargyl Pc 7. The latter was oxidized following the same two-step procedure mentioned before. All of the final products and their corresponding intermediates were fully characterized by spectroscopic and electrochemical means.

As shown in Figure 1, the absorption and fluorescence spectra of ZnPc1 and ZnPc2 are 25 nm red-shifted compared to those seen for a tetra-tert-butyl-ZnPc (ttb-ZnPc) reference and exhibit slightly lower extinction coefficients. In addition, ZnPc1 and ZnPc2 show split Q-bands – see Table S1 – as a result of their asymmetric functionalization.

Next, cyclic voltammetric experiments were performed to probe the electron accepting character of ZnPc1 and ZnPc2 – Figure S1. Four quasi-reversible reductions at -0.94, -1.45, -1.82, -2.06 V for ZnPc1 and at -0.94, -1.36, -1.82, -2.03 V for ZnPc2 are complemented by one quasi-reversible oxidations at +0.72 V for ZnPc1 and +0.77 V for ZnPc2 – all values versus Fc/Fc0. When compared with ttb-ZnPc, which reveals its lowest reduction at -1.4 V and lowest oxidation at +0.1 V, ZnPc1 and ZnPc2 render better electron acceptors but poorer electron donors. From the aforementioned, we determined LUMO energies for ZnPc1 and ZnPc2 of -0.30 V versus NHE.[21] Considering that the redox potential of the I/I3 and Co2+/Co3+ couples are 0.34 and 0.22 V versus NHE,[22] respectively, ZnPc1 and ZnPc2 should be effectively regenerated in p-type DSSCs – Figure S2. Moreover, the low lying HOMOs, that is, +1.36 V (ZnPc1) and +1.41 V (ZnPc2) versus NHE, implies an efficient electron flow from the valence band (VB) of CuO into the corresponding HOMOs – vide infra.

![Figure 1. Absorption and fluorescence (inset) spectra of ZnPc1 (black), ZnPc2 (dark grey), and ttb-ZnPc (light grey) in EIOH (2.3 x 10^{-4}M).](image)

Next, we assembled cells consisting of nanorod-like CuO as p-type electrodes and ZnPc1 / ZnPc2 as photosensitizers. In particular, electrodes were prepared by doctor-blading a paste of nanorod-like CuO diluted with ethylcellulose in ethanol followed by sintering at 300°C – see SI for more details.[23] Crack-free mesoporous morphology and rod-like shapes of CuO after calcination were corroborated by scanning electron microscopy – Figure S3. The Fermi level energy of 0.55 V was determined in Kelvin Probe microscopic experiments. As an approximation, we used the latter in agreement with the literature as the VB energy.[24] Furthermore, diffuse reflectance assays were used to determine a band-gap energy (Eg) of around 1.61 eV – Figure S4.[25] With this information in hand, we calculated the energy position of the conduction band (CB) via ECB = EVB - Eg as -1.06 V vs. NHE. Figure S2 illustrates an energy diagram, in which the use of our ZnPc1 and ZnPc2 in p-type DSSCs is illustrated. Firstly, the HOMOs are placed 0.81 V (ZnPc1) and 0.86 V (ZnPc2) below the VB of the electrode. Such driving forces ensure an efficient electron flow from the electrode to the photoexcited ZnPcs. Secondly, upon excitation, recombinations between the LUMOs and the CB is unlikely. Finally, the electrolyte levels are 0.5 to 0.6 V below those of the corresponding LUMOs – vide supra – ensuring efficient dye regeneration. P-type DSSCs were completed with Pt as counter electrodes and either with LiI/LiI2 (1 M:0.4 M) in a 50:50 (v/v) mixture of acetonitrile/3-methoxypropionitrile or with Co2+/Co3+ (0.01 M:0.1 M) of [Co(dtb-bpy)3][PF6]2 as electrolytes – see SI for details.

The photocurrent density versus applied voltage (J-V) and the incident photon-to-current efficiency (IPCE) spectra are shown in Figures 2 and 4, respectively, and the photoelectric behavior of the devices is gathered in Table 1. The time dependences of the adsorption kinetics are important. For example, the efficiency (η) starts to rise before plateauing at around 60 minutes of ZnPc uptake – Figure S5. The same trends are observed for the short-circuit current densities (Jsc) and the open-circuit voltages (Voc). Similar concentrations of 1.38 x 10^{-8} and 1.39 x 10^{-8} M/cm2 were derived for ZnPc1 and ZnPc2, respectively, in desorption experiments, which ensures comparability of the figures-of-merit.

![Figure 2. Current density versus applied potential under 1 sun and AM 1.5 (solid line) and dark (dashed line) conditions for ZnPc1 (black) and ZnPc2 (dark grey) devices with iodine-based electrolyte. Inset – IPCE spectra of both kind of devices compared to a non-sensitized cell (light grey).](image)
Comparable conditions, in terms of dye loading, electrode thickness, and electrolyte composition, as well as differences in J_{sc}s and IPCEs point to a linker-dependent injection and/or recombination processes. ZnPc2 features the carboxylic linker connected via a carbon-carbon triple bond, while the linker is directly connected in ZnPc1 – see Scheme 1. In general, the nature of the linker determines both the dye-electrode distance and the orientation of the dye relative to the surface.[26] Both seem to govern the injection and recombination kinetics, while thermodynamic differences between ZnPc1 and ZnPc2 are ruled out – vide supra.

Table 1. Device performance under 1 sun and AM 1.5 conditions for ZnPc1 and ZnPc2.

<table>
<thead>
<tr>
<th>Dye/Electrolyte</th>
<th>V_{oc} [mV]</th>
<th>J_{sc} [mA/cm²]</th>
<th>FF</th>
<th>η [%]</th>
<th>IPCE [%] at 670nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnPc1 / I$_2$I$_3$</td>
<td>93</td>
<td>1.93</td>
<td>0.38</td>
<td>0.067</td>
<td>15.4</td>
</tr>
<tr>
<td>ZnPc2 / I$_2$I$_3$</td>
<td>102</td>
<td>2.78</td>
<td>0.36</td>
<td>0.103</td>
<td>27.4</td>
</tr>
<tr>
<td>ZnPc1 / Co$^{2+}$:Co$^{3+}$</td>
<td>224</td>
<td>1.99</td>
<td>0.32</td>
<td>0.141</td>
<td>14.9</td>
</tr>
<tr>
<td>ZnPc2 / Co$^{2+}$:Co$^{3+}$</td>
<td>251</td>
<td>2.35</td>
<td>0.32</td>
<td>0.191</td>
<td>20.5</td>
</tr>
</tbody>
</table>

Considering the CuO electrode opaqueness we turned to electrochemical impedance spectroscopy (EIS). Applying different voltages to change between short-circuit current density and open-circuit voltage conditions assists in probing the aforementioned processes in p-type DSSCs.[27,28] As an illustration, the Nyquist plots under V_{oc} and J_{sc} conditions are shown in Figure S6. Here, two semicircles, which relate to the resistance across the platinum/electrolyte interface in the high frequency region and the dye/electrode/electrolyte interface in the low frequency region are discernable.[27] From the corresponding electrical circuit model, which is illustrated in Figure S7, the resistances and capacitances are derived – Figure 3 and Table S2.

EIS measurements under dark conditions give insights into recombination processes between the electrode and the electrolyte.[27] Figure 3 documents that the recombination resistance ($R_{recombination}$) increases with decreasing voltage. Within the voltage range, slightly lower resistances towards recombination with the I$_2$I$_3$ redox couple are noted for ZnPc2 devices. In the latter, larger dye to electrode distances facilitate interactions with the redox couple, as the electrode surface is more exposed to the polyiodide species. A closer look at the IPCE spectra in Figure 2 substantiates this trend. Here, ZnPc2 devices feature in the high-energy region, which is dominated by excitation of CuO and/or the redox couple, slightly higher IPCEs (≤ 2%) compared to devices made of ZnPc1.

EIS measurements under illumination illustrate that several different contributions impact the charge-transfer resistance (R_{CT}). Besides electrode to electrolyte recombination processes, charge injection from the electrode to the dye and charge transport throughout the electrode play major roles.[26] Again, a linear increase of R_{CT} with decreasing voltage is noted before it plateaus at around J_{sc} conditions – Figure 3. A similar trend has recently been reported for NiO-based DSSCs.[26]

Overall, ZnPc2 devices give rise to lower R_{CT}s throughout the entire voltage range relative to ZnPc1 devices, indicating better charge injection and charge transport in the former. At V_{oc} conditions, the recombination across the electrode/electrolyte interface dominates due to the lack of external currents. In line with EIS observations in the dark, the resistance towards recombination with I$_2$I$_3$ is lower for ZnPc2 (40.8 Ω) than for ZnPc1 (61.8 Ω). At J_{sc} and under forward conditions, the absence of recombination facilitates establishing the relation between R_{CT} and the charge injection, that is, from the electrode to the dye. From a comparison between ZnPc1 (506.3 Ω) and ZnPc2 (266.4 Ω), a nearly two times lower R_{CT} permits to better charge injection for the latter. The IPCE spectra are helpful in this regard, since photocurrents at around 670 nm – due to dye excitation – are nearly twice as high for ZnPc2. The lack of photoactivity of the electrolyte in the low-energy region only leaves contributions from the charge injection to rationalize the superior performance of devices featuring ZnPc2.

Figure 3. Resistance versus applied voltage for ZnPc1 (black) and ZnPc2 (grey) devices under dark (squares) and illumination (circles) conditions.

Additional device properties, namely the chemical capacitance (C_{C}), the charge collection efficiency (η_{cc}), the effective diffusion length (L_{diff}), and the effective diffusion coefficient (D_{eff}) have been determined for all devices and are summarized in Figure S8.[28,30] Briefly, C_{C} directly correlates with the density of injected holes at the electrode. A higher rate of charge injection increases the hole density, affording higher V_{oc} and J_{sc}.[31] In agreement with this notion is the fact that higher V_{oc}s, higher C_{C}s, and superior charge injections were observed for ZnPc2. This also explains the improved ηs in devices with ZnPc2, since charge injection across the electrode/dye interface is twice as efficient. This is also reflected in longer L_{diff}s and higher D_{eff}s compared to ZnPc1 devices.

Figure 4. Current density versus applied potential under 1 sun and AM 1.5 (solid line) and dark (dashed line) conditions for ZnPc1 (black) and ZnPc2 (grey) devices with cobalt-based electrolyte. Inset – IPCE spectra for both kind of devices. Please note that the IPCE of the non-sensitized device is not shown, since a maximum of only 0.13% at 400 nm was measured.
The major bottleneck of our devices evolves around the low V_{oc}, since J_{sc}s are comparable to CuXO$_2$ based DSSCs.[1] Using cobalt d-tert-butyl bipyrindine hexafluorophosphate [Co(dbt-bpy)]$_2$PF$_6$ as electrolyte is the most efficient way to overcome this limitation.[2] Under 1 sun illumination and AM 1.5 conditions, ZnPc2 DSSCs reveal higher V_{oc}s and J_{sc}s (251 mV and 2.35 mA/cm2) than ZnPc1 DSSCs (224 mV and 1.99 mA/cm2) – Figure 4 and Table 1. Importantly, IPCEs for ZnPc2 at 670 nm are nearly 5.5% higher than for ZnPc1. More relevant, V_{oc}s increase by almost 150% when comparing cobalt-based devices with iodine-based devices leading to η of 0.191% for ZnPc2 and 0.141% for ZnPc1. EIS assays under V_{oc} and J_{sc} conditions are also in line with the trends noted for devices with iodine-based electrolytes – Figure S9 and Table S3. ZnPc2 devices reveal in comparison to ZnPc1 ones a slightly higher recombination with the electrolyte, as well as a better charge injection.

In conclusion, two novel electron accepting ZnPs – ZnPc1 and ZnPc2 – which differ in their linker length, were synthesized and characterized by means of steady-state photophysical as well as electrochemical techniques. Both ZnPcs present significant absorption cross sections throughout the visible part of the solar spectrum and excellent electron accepting behavior. These features prompted us to use them as photosensitizers in p-DSSCs based on nanorod-like CuO electrodes, which have never been explored. To this end, devices featuring ZnPc1 and ZnPc2 were measured under either 1 sun and AM 1.5 conditions or dark conditions, yielding maximum efficiencies of up to 0.103% and 0.191% for iodine- and cobalt-based electrolytes, respectively. These values represent the highest ever reported efficiencies for pure CuO p-type DSSCs. Furthermore, EIS assays corroborate that ZnPc2, featuring a carboxyethyl chain as a more suitable photosensitizer than ZnPc1, in which the carboxylic acid anchor is directly linked to the macrocycle. The presence of the ethynyl bridge enhances the electronic coupling between ZnPc and CuO, providing an optimum balance between charge injection and charge recombination. Future research will be focused on further optimization and EIS characterization of p-type CuO devices, as well as the improvement of electron-accepting ZnPcs for p-type DSSC applications.

Acknowledgments

The authors thank the German Science Council (DFG) for the financial support in the framework of the Cluster of Excellence ‘Advanced Materials (EAM), the MINECO Spain (CTQ2014-52689/BQU), the Comunidad de Madrid (FOTOCARBON, S2013/MIT-2841), and the European Union within the FP7-ENERGY-2012-1 nr. 309194-2, GLOBALSOL.

Keywords: Acceptor zinc phthalocyanines • CuO nanorods • CuO electrodes • p-type DSSC • Electrochemical impedance spectroscopy

[20] Please notice that for the synthesis of 4 a deprotection step is necessary after the cyclotrimerization reaction. For details see SI.
The longer the better: Novel electron accepting zinc phthalocyanines, which feature different linker lengths, in combination with nanorod-like CuO electrodes yield efficiencies of up to 0.191% in p-type DSSCs.

Oliver Langmar, Carolina R. Ganivet, Annkatrin Lennert, Rubén D. Costa, Gema de la Torre, Tomás Torres, and Dirk M. Guldi*