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LIST OF ABBREVIATIONS 

 

BCC Bovine Chromaffin Cell 

BK Big conductance K+ channels 

DMEM Dulbecco’s Modified Eagle’s Medium 

ER Endoplasmic reticulum 

Fura-2AM Fura-2 acetoxymethyl ester  

S1P Sphingosine-1-phosphate  

SERCA Sarco-endoplasmic Reticulum Calcium ATPase 

TG Thapsigargin 

TTX Tetrodotoxin 

VACC Voltage-activated Calcium Channels 
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ABSTRACT 

In searching for druggable synthetic lipids as potential modulators of synaptic transmission and 

plasticity, we synthesized sulfoglycolipid IG20 that stimulates neuritic outgrowth. Here we have 

explored its effects on ion channels and exocytosis in bovine chromaffin cells (BCCs). IG20 

augmented the rate of basal catecholamine release. Such effect did not depend on Ca2+ mobilization 

from intracellular stores; rather, IG20-elicited secretion entirely dependent on Ca2+ entry through L-

subtype voltage-activated Ca2+ channels. Those channels were recruited by cell depolarization 

mediated by IG20 likely through its ability to enhance the recruitment of Na+ channels at more 

hyperpolarizing potentials. Confocal imaging with fluorescent derivative IG20-NBD revealed its rapid 

incorporation and confinement into the plasmalemma, supporting the idea that IG20 effects are exerted 

through a plasmalemmal-delimited mechanism. Thus, synthetic IG20 seems to mimic several 

physiological effects of endogenous lipids such as regulation of ion channels, Ca2+ signaling, and 

exocytosis. Therefore, sulfoglycolipid IG20 may become a pharmacological tool to investigate the role 

of the lipid environment on neuronal excitability, ion channels, neurotransmitter release, synaptic 

efficacy, and neuronal plasticity. It may also inspire the synthesis of druggable sulfoglycolipids aimed 

at increasing synaptic plasticity and efficacy in neurodegenerative diseases and traumatic brain – 

spinal cord injury. 

 

 

 

Keywords: Compound IG20; exocytosis; sodium channel; calcium channel; sulfoglycolipid; 
chromaffin cell 
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INTRODUCTION 

It is known that cholesterol, sphingolipids, and phospholipids with saturated acyl tails coalesce to form 

tightly packed aggregates known as lipid rafts (Simons & Ikonen 1997). The only morphologically 

identifiable raft-like domain is the caveola. Association with the protein caveolin causes the 

cholesterol- and sphingolipid-enriched regions of the membrane to bulge into the cell forming flask-

shaped pits (Razani et al. 2002). Interaction of ion channel proteins with caveolin appears to regulate 

channel function either directly by altering the channel kinetics or indirectly by affecting trafficking 

and surface expression (Jiao et al. 2008, Lee et al. 2009). Raft-enriched lipids such as cholesterol and 

sphingolipids can also exert effects on channel activity either through direct protein-lipid interactions 

(Epshtein et al. 2009) or by influencing the physical characteristics of the bilayer (Andersen & Koeppe 

2007). The ability of ion channels to associate with specific lipid domains is thus likely to be an 

important regulatory aspect of channel physiology (Dart 2010). 

One such physiological process is the membrane fusion (exocytosis) and fission (endocytosis) 

mechanisms underlying the Ca2+-dependent release of neurotransmitters and hormones (Ceccarelli & 

Hurlbut 1980, Henkel & Almers 1996). These processes are regulated by sphingosine and ceramide. 

Thus, ceramidase has been shown to regulate the trafficking and exocytosis of synaptic vesicles 

(Rohrbough et al. 2004) and sphingomielinase modulates dopamine release from mesencephalic 

neurons (Blochl & Sirrenberg 1996) and PC12 cells (Jeon et al. 2005) as well as glutamate release 

from developing cerebellar neurons (Numakawa et al. 2003). Furthermore, sphingosine-1-phosphate 

(S1P) is involved in glutamate release from hippocampal neurons (Kajimoto et al. 2007) and 

facilitates spontaneous transmitter release at the frog neuromuscular junction (Brailoiu et al. 2002). 

Also, sphingosine activates synaptic vesicle exocytosis (Darios et al. 2009) and enhances exocytosis 

and endocytosis in bovine chromaffin cells (BCCs) (Rosa et al. 2010). 

Glycolipids are sugar-attached lipids that are predominantly located in the outer plasmalemma layer. 

Their sulfation introduces negative charges that are determinants for interactions with proteic receptors 

and ion channels. They contribute to the regulation of myriad physiological functions such as cell 

differentiation, development, immune responses, cell adhesion, or blood clotting (Honke 2013) as well 

as to ion channel regulation (Dart 2010). Additionally, the sulfoglycolipid sulfatide plays a critical role 

in the regulation of oligodendrocytes  differentiation and the maintenance of myelin and axonal 

structure (Marcus et al. 2006). It also contributes to the stabilization of the axoglial junction between 

the myelin loop and the axolemma at the paranode region (Girault & Peles 2002) as well as to the 

location of Na+ and K+ channels in this region (Ishibashi et al. 2002). Altered sphingolipid metabolism 

has been found in some sphingolipidoses, diabetes, atherosclerosis, and cancer (Delgado et al. 2007). 

Furthermore, changes in brain levels of sulfatides have been recently reported to occur in patients with 

early Alzheimer’s disease (Han et al. 2002). These findings have been the starting point for an 

increased interest in drug development to interfere with sphingolipid metabolism to treat those 
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diseases. In this context, during the last years our laboratory has been engaged in the synthesis of 

various families of glycolipids and sulfoglycolipids that exhibit antimitotic activity in melanoma and 

glioma cells (Garcia-Alvarez et al. 2007, Doncel-Perez et al. 2013).  

Recently, we synthesized a new family of sulfoglycolipids that promote neuritic growth and 

myelination and additionally, they act as inhibitors of astroglia and microglia proliferation (Nieto-

Sampedro et al. 2012). The lead of this family is compound IG20, a sulfoglycolipid with a molecular 

structure that reminds that of endogenous sulfatide (Fig. 1). The present work was planned to test the 

hypothesis that IG20 could regulate the exocytotic release of neurotransmitters, as done by its parent 

endogenous lipidic compounds described above. We found that indeed, IG20 enhanced the release of 

catecholamines from BCCs through an exocytotic mechanism that depended on extracellular Ca2+. 

This response was due to cell depolarization and the firing of action potentials that augmented 

cytosolic Ca2+ concentrations ([Ca2+]c) and the exocytotic release of catecholamine. Theses effects 

seemed to be plasmalemmal-delimited because fluorescent IG20 was markedly confined to the cell 

membrane.  

 

EXPERIMENTAL PROCEDURES 

Isolation and culture of bovine chromaffin cells 

All experiments were carried out in accordance with the guidelines established by the National 

Council on Animal Care and were approved by the local Animal Care Committee of the Universidad 

Autónoma de Madrid in accordance with the code of ethics and guidelines established by European 

Community Directive (2010/63/EU) and Spanish legislation (RD53/2013). Adrenal glands were 

obtained from a local slaughterhouse under the supervision of the local veterinary service. Chromaffin 

cells were isolated as decribed (Moro et al. 1990). Cells were suspended in Dulbecco’s Modified 

Eagle’s Medium (DMEM) supplemented with 5% fetal bovine serum, 50 IU/mL penicillin and 50 

µg/mL streptomycin. For catecholamine release measurements from cell populations, cells were plated 

on 5-cm diameter Petri dishes at 5x106 cells per dish. For studies of patch-clamp, changes in [Ca2+]c, 

amperometry, and fluorescent IG20, cells were plated on 1-cm-diameter glass coverslips (Labbox, 

Barcelona, Spain) at low density (5×104 cells per coverslip). Cultures were maintained in an incubator 

at 37 °C in a water-saturated atmosphere with 5% CO2. Cells were used 1–4 days after plating. All 

experiments in this study were performed at room temperature (24 ± 2oC). 

 

Online amperometric recording of quantal catecholamine release at the single-cell level 

Carbon fibre microelectrodes were built and calibrated as previously described (Machado et al. 2008). 

The potentiostat was homemade (UAM workshop, Madrid, Spain) and was connected to an interface 

(PowerLab/4SP, ADInstruments, Oxford, UK) that digitised the signal at 10 kHz sending it to a 

personal computer that displayed it within the Pulse v8.74 software (HEKA Elektronik). A 700 mV 
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potential was applied to the electrode with respect to an AgCl ground electrode. The coverslips were 

mounted in a chamber on a Nikon Diaphot inverted microscope used to localise the target cell, which 

was continuously perifused by means of a five-way perifusion system with a common outlet driven by 

electrically controlled valves, with a Tyrode solution composed of (in mM) 137 NaCl, 1 MgCl2, 5 

KCl, 2 CaCl2, 10 HEPES and 10 glucose (pH 7.4, NaOH). The high K+solutions were prepared by 

replacing equiosmolar concentrations of NaCl with KCl. At the time of experiment performance, 

proper amounts of drug stock solutions were freshly dissolved into the Tyrode solution. These 

experiments were performed on cells from 1 to 4 days after culture. 

 

Online amperometric recording of burst catecholamine release from perifused populations of 

BCCs 

Cells were scrapped off carefully from the bottom of the Petri dish (5 × 106 cells per dish) with a 

rubber policeman and centrifuged at 120xg for 10 min. The cell pellet was resuspended in 200 µl of 

Krebs-HEPES solution (composition in mM: 144 NaCl, 5.9 KCl, 1.2 MgCl2, 2 CaCl2, 11 glucose, and 

10 HEPES, pH 7.3 with NaOH). Cells suspended were trapped in a microchamber and perifused at a 

rate of 2 ml/min. The liquid flowing from the perifusion chamber reached an electrochemical detector 

model VA 641 (Metrohm, Herisau, Switzerland) placed just at the outlet of the microchamber, which 

monitors online the amount of catecholamine secreted under the amperometric mode. This 

amperometric strategy permits the online recording of reproducible catecholamine release responses 

during long time periods of 30–60 min. Catecholamines are oxidised at +0.65 V and the oxidation 

current was recorded on a PC computer (Borges et al. 1986). 

 

Measurement of calcium in single-cells with fura-2AM 

To measure the changes in [Ca2+]c BCCs were incubated in DMEM containing the calcium probe fura-

2 acetoxymethyl ester (fura-2AM; 10 µM) for 1 h at 37 °C. After this incubation period, the coverslips 

were mounted in a chamber and cells were washed with Tyrode solution. The setup for fluorescence 

recordings was composed of a Leica DMI 4000 B inverted microscope (Leica Microsystems; 

Barcelona, Spain) equipped with an oil immersion objective (Leica 40× Plan Apo; numerical aperture 

1.25). Once the cells were placed on the microscope, they were continuously perifused by means of a 

five-way perifusion system at 1 ml/min with a common electrically controlled valves with Tyrode 

solution. Fura-2AM was excited alternatively at 340 ± 10 nm and 387 ± 10 nm using a Küber CODIX 

xenon arc lamp (Leica). Emitted fluorescence was collected through a 540 ± 20 nm emission filter, 

and measured with an intensified charge coupled device camera. Fluorescence images (Hamamatsu 

camera controller C10600 Orca R2) were generated at 1-s intervals.  
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Whole-cell current recordings 

All recordings were obtained under the whole-cell mode of the patch-clamp technique in its 

perforated-patch configuration. To reach the perforated-patch configuration we used 100 mg/ml 

amphotericin B. For current recordings, the external cell perifusion solution had the following 

composition (in mM): 137 NaCl, 5 KCl, 1 MgCl2, 2 CaCl2, 10 glucose, 10 Hepes (pH 7.4 with NaOH). 

Recording started when the access resistance decreased below 30 MΩ, which usually happened within 

10 min after sealing. Series resistance was compensated by 80% and monitored throughout the 

experiment. The external solutions were rapidly exchanged using electronically driven miniature 

solenoid valves (The Lee Company, Westbrook, CO) coupled to a multi-barrel concentration-clamp 

device with a common outlet. The flow rate was 1 ml/min and was regulated by gravity.  

The intracellular solution used for the recording of inward Na+ currents (INa) and Ca2+ current (ICa) 

contained (in mM): 10 NaCl, 100 Cs-glutamate, 20 TEA, 14 EGTA, 5 Mg-ATP, 0,3 Na-GTP, 20 

HEPES (pH 7,2 with CsOH). For recordings of outward K+ currents (IK), the intracellular 

solution used contained (in mM): 120 K-glutamate, 10 NaCl, 20 HEPES, 14 EGTA, 5 Mg-

ATP, and 0,3 Na-GTP (pH 7.2 with KOH).  Electrophysiological data on ion currents were 

acquired with an EPC-9 amplifier under the control of Pulse software (HEKA Elektronik).  

To monitor the resting membrane potential (Vm), recordings were made under the current-clamp 

mode of the patch-clamp technique. Only cells with their initial resting Vm between -50 and -80 mV 

were tested. We considered that the cell was healthy when a depolarization above -50 mV fire some 

action potentials. The pipette-filling solution was as for IK recording. 

 

Experiments with fluorescent IG20-NBD 

We used confocal microscopy with green light (480-510 nm) to visualize cells exposed to IG20-NBD 

and blue light (350-461 nm) to see the nuclear probe Hoechst. Then, we first preincubated the cells 

with Hoechst for 5 min so we could focus the microscope and after that, we applied 10 µM IG20-NBD 

dissolved in Tyrode solution; at the same time we took sequential images in the Z-axis. The setup for 

fluorescence recordings was composed of a Leica TCS SP2 confocal microscope with a x100 

objective (spatial resolution based in this objective and the scanner characteristics was estimated in 

60–80 nm for 2–3 pixel separations). This system allows for z-axis reconstruction with theoretical z 

slice of about 0.5 mm thick and sequential mode studies in double labeling experiments.  

 

Statistical analysis 

Analysis of amperometric recordings from single BBCs was carried out using IgorPro software 

(version 4.0.8; Wavemetrics, OR, USA). A rule was drawn at 10 pA, and only the spikes going above 

the threshold amplitude were considered. Total amperometric quantal charge (calculated by integrating 

the amperometric current over time during the stimulus duration) and the number and area of 

individual amperometric spikes > 10 pA were calculated by using a macro written in IgorPro software 
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(Mosharov & Sulzer 2005).  

Data analysis of amperometric recordings in BBC populations (peak amplitudes in nA or areas in pC) 

were performed using Origin Pro software (version 8.6; OriginLab Corporation, Northampton, MA, 

USA). Results are expressed as mean ± SEM throughout. 

Data analysis of ion currents and cell excitability were performed using the GraphPad Prism (version 

5.01; GraphPad Software, San Diego, CA, USA).  

Student’s t-test was used to determine statistical significance between means when n values followed a 

normal distribution. When n values were non- parametric Mann-Whitney test was used. *P < 0.05 was 

taken as the limit of significance; ** and *** show a statistical significance of P < 0.01 and P < 0.001, 

respectively. 

 

Materials and chemicals 

IG20 was synthesized at our laboratories as previously described (Garcia-Alvarez et al. 2007); the 

compound was dissolved in distilled water, and 10 mM stock solution was stored in aliquots at -20ºC. 

The synthesis of fluorescent IG20-NBD started with a Fisher-type glycosylation of N-trifluoro-acetyl-

D-glucosamine (Wolfrom & Conigliaro 1969) with oleic alcohol followed by regioselective sulfation 

using SO3-pyridine complex. Removal of trifluoroacetyl group and subsequent amidation reaction 

with acid (Ludolph & Waldmann 2003), bearing a C6 linker and the NBD fluorophore, lead to IG20-

NBD, that was dissolved in DMSO and stored at the concentration of 10 mM at -20ºC. DMEM and 

nifedipine were purchased from SIGMA-Aldrich (Madrid, Spain). The calcium binding probe fura-

2AM was purchased from Invitrogen (Eugene, OR, USA). Thapsigargin was purchased from Abcam 

Biochemicals® (Cambridge, UK).   
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RESULTS 

IG20 augments basal secretion and K+-elicited secretion in populations of BCCs 

BCCs (5×106) trapped in a microchamber and perifused at 2 ml/min with a saline solution containing 2 

mM Ca2+, revealed a stable rate of basal catecholamine release at around 10-20 nA. When challenged 

with a 35K+- solution (saline containing 35 mM K+, low Na+, 2 mM Ca2+) given for 10 s every 3 min, 

cells responded with a transient surge of catecholamines that depending on the cell batch and culture, 

varied between 200 and 600 nA spike amplitudes. However, within the same batch of cells, repeated 

35K+ pulses gave rise to quite reproducible spike responses along periods of 30-60 min. This 

permitted the exploration of the effects of a given IG20 concentration within the same cell batch, by 

giving first a set of 35K+ pulses (control responses) followed by another set in the presence of the 

compound, and a final set after its washout. At 1 µM, IG20 caused a tiny elevation of such basal 

secretion and a gradual increase of the 35K+ responses that although they gradually declined, they 

however remained elevated by the end of the experiment (Fig. 2A). At 3 and 10 µM, IG20 caused 

more pronounced elevations of basal secretion and superimposed on this, a gradual potentiation of the 

35K+ responses was once more observed (Fig 2B,C). The instauration of these responses and their 

reversal were also gradual. Pooled normalized data indicated a concentration-dependent effect of IG20 

in enhancing the 35K+ responses (Fig. 2D). 

Effects on basal secretion were further explored by cell exposure to IG20 under resting conditions and 

between two sets of 35K+ pulses. Of interest was the pronounced elevation of basal secretion after a 30 

s delay of adding 10 µM IG20, and the considerable enhancement of the 35K+ responses following its 

washout (Fig. 2E). Pooled results graphed in Fig. 2F show that areas of the basal secretion curves in 

µC were augmented by 3 and 10 µM IG20 in a concentration-dependent manner. 

Next we explored whether IG20 elicited the same or distinct relative potentiation of the K+-responses 

when cells were challenged with different K+ concentrations, namely 17.7 mM (17.7K+), 35 mM 

(35K+), or 100 mM (100K+). Fig. 3A,B,C shows example records of the K+-elicited secretion 

transients before and during cell perifusion with 10 µM IG20. Note the elevation of basal secretion 

and superimposed on it, the enhanced K+ secretory responses. Averaged data plotted in Fig. 3D show 

that the potentiation by 10 µM IG20 of the K+-elicited secretion depended on its concentration, 4.7-

fold at 17.7 mM K+, 2.8-fold at 35 mM, and 1.6-fold at 100 mM. 

 

IG20 augments the rate of basal quantal catecholamine release and potentiates the K+-elicited 

secretion at the single-cell level 

 On-line recording of single-vesicle release of catecholamine was monitored with a carbon fibre 

microelectrode placed onto the surface of a single BCC and connected to an amperometer. Upon a few 

minutes of cell perifusion with a saline solution containing 2 mM Ca2+, spontaneous spikes were rarely 

seen (Fig. 4A); this example cell, however, responded with a spike burst upon the application of a 

35K+ challenge at the end of the experiment, indicating its viability. The cell of Fig 4B was initially 
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stimulated with a 35K+ pulse. IG20 (10 µM) was given 2 min before the application of the second 

35K+ pulse; after a delay of about 30 s the cell begun to fire secretory spikes at increasing frequency 

that subsequently decreased. Of note was the drastic potentiation of secretion evoked by the second 

35K+ challenge (that was applied immediately after IG20 removal) with respect the initial 35K+ pulse. 

In the cell of Fig. 4C, IG20 was applied for a short period of time (30 s) to prevent the alteration of 

basal secretion. When the second 35K+ pulse was applied on top of IG20, a notable potentiation of 

secretion was produced, in comparison with the first and third 35K+ pulses.  

Cumulative basal secretion calculated as the number of spikes present in 5-s segments of the traces, is 

graphed in Fig. 4D; while spikes were practically absent in control cells, those exposed to 10 µM IG20 

begun to fire secretory spikes after an initial delay of about 20 s, that reached a plateau of about 30 

spikes after 2 min. IG20 also augmented the 35K+ responses from 10 to about 15 spikes (Fig. 4E). 

 

Effects of tetrodotoxin, nifedipine, cadmium and thapsigargin on IG20 elicited secretion  at the 

single-cell level 

The removal of Ca2+ from the saline solution perifusing the cell of Fig. 5A during 3 min, and its 

subsequent perifusion for an additional 3-min period with saline solution containing 2 mM Ca2+, did 

not generate any secretory activity. This cell was viable, as proven by the burst of spikes produced by 

a 35K+ pulse given at the end of the experiment. The cell of Fig. 5B was subjected to a similar 

protocol but with a major difference: it was initially perifused with a saline solution deprived of Ca2+ 

but containing 10 µM IG20. The switching of this solution to another containing 2 mM Ca2+ (but not 

IG20) immediately generated a sharp and sustained secretory response that gradually declined along 

the 3-min period of Ca2+ reintroduction. The cell of Fig. 5C was subjected to a similar protocol with a 

new element namely, the presence of 3 µM nifedipine in both the Ca2+-free and the Ca2+-containing 

saline solutions. Under these conditions, the simultaneous exposure to nifedipine and IG20 during the 

period of perifusion with Ca2+-free saline, abolished the later secretory response elicited by Ca2+ 

reintroduction. Pooled data summarized in Fig. 5D indicate that the total secretion elicited by Ca2+ 

reintroduction in cells previously exposed to IG20 was abolished by 200 µM Cd2+ or 3 µM nifedipine, 

suggesting that such response was due to Ca2+ entry through voltage-activated calcium channels 

(VACCs) of the L-subtype (α1D, Cav1.3). 

We also tested the effects of tetrodotoxin (TTX; 1 µM) on the secretory effects of IG20 added to a 

saline solution containing 2 mM Ca2+. Under these conditions, the control secretory effects of IG20 

during 2 min of cell perifusion were 18.5+4.4 spikes and 14.6+8.4 pC of total secretion. TTX reduced 

by about 90% this response (Fig. 5E). 

Whether the endoplasmic reticulum (ER) Ca2+ store contributed to the secretory effects of IG20 was 

explored using thapsigargin to deplete such store. Cells were perifused with a saline solution 

containing 2 mM Ca2+ and 1 µM thapsigargin for 5 min. Then IG20 was given in a solution containing 

Ca2+ but no thapsigargin (this compound is known to irreversibly block the sarco-endoplasmic 
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reticulum Ca2+ ATPase (SERCA; (Lytton et al. 1991)). Fig. 5F shows that total secretion elicited by 

IG20 in control cells (37.3+5.8 pC) was reduced to 27.1+7.1 pC in cells pretreated with thapsigargin; 

this reduction, however, did not reach the level of statistical significance.   

 

Effects of IG20 on cytosolic calcium concentrations 

The secretory response elicited by Ca2+ reintroduction in BCCs exposed to IG20 should be 

accompanied by an elevation of [Ca2+]c. This was tested in single BCCs loaded with fura-2AM. The 

two example cells of Fig. 6A initially responded with sharp transient elevations of [Ca2+]c upon their 

challenging with a 5-s 35K+ pulse. After baseline recovery, the control cell in panel A was perifused 

during 6 min with 0Ca2+ saline solution while the cell in panel B was perifused with this same solution 

during 3 min followed by another 3-min period with Ca2+-free solution containing 10 µM IG20. Then, 

Ca2+ at 2 mM was reintroduced; this evoked a tiny elevation of basal [Ca2+]c in the control cell, while a 

pronounced elevation of [Ca2+]c was produced in the cell previously exposed to IG20. Pooled results 

of cells subjected to this protocol, normalized as % of the initial 35K+ responses, are graphed in Fig. 

6C. Both, the mean amplitude and area of the [Ca2+]c responses were augmented 2.5- and 3-fold in the 

cells exposed to IG20, with respect control cells. 

The possible contribution of Ca2+ release from the ER store was tested in a second series of 

experiments that included control cells and other cells treated with 1 µM thapsigargin applied during 

the period in between the initial 35K+ pulse and the final application of 10 µM IG20. These cells were 

perifused with saline containing 2 mM Ca2+ along the experiment. The cell of Fig. 6D responded with 

an initial sharp [Ca2+]c transient upon 35K+ stimulation; the [Ca2+]c had recovered baseline when IG20 

perifusion generated an initial fast [Ca2+]c elevation that later on rose more slowly to reach a peak and 

then slowly decline. The cell in Fig. 6E equally responded to 35K+ with a sharp [Ca2+]c transient; its 

subsequent exposure to 1 µM thapsigargin produced a mild but sustained elevation of basal [Ca2+]c due 

to ER Ca2+ release and ER Ca2+ depletion (Rasmussen et al. 1978). The subsequent addition of IG20 

produced a [Ca2+]c transient that gradually rose to a peak and then decayed. Pooled normalized data 

graphed in Fig. 6F shows that IG20 caused 1.5-fold higher increase of the Ca2+ peak amplitude and 

2.5-fold higher increase of the [Ca2+]c area in thapsigargin-treated cells, with respect to control cells. 

We also made experiments with the application first of a K+ pulse and then after 3 min to allow 

baseline recovery, IG20 was applied for 1 min and another K+ pulse was applied. Although peak 

[Ca2+]c transients were unchanged, IG20 elicited a 1.5-fold increase of the normalized [Ca2+]c area 

(0.99±0.1 in the control K+ challenge and 1.49±0.13 in the K+ challenge after IG20 treatment; n=18 

cells, P<0.05). 

 

Effects of IG20 on cell excitability and ion channel currents 

Blockade of the secretory effects of IG20 elicited by Cd2+ and nifedipine suggests that Ca2+ entry 

through L-subtype of VACCs is implicated in such response. The opening of these channels requires 
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membrane depolarization and thus, it was predicted that IG20 had the potential to cause cell 

depolarization. This was tested using the perforated-patch configuration of the patch-clamp technique 

under the current-clamp mode. 

The initial resting membrane potential (Vm) of the example BCC shown in Fig. 7A was about -80 

mV. No spontaneous action potentials were observed, a property typical of BCCs (Orozco et al. 2006). 

After a delay of about 2 min, IG20 at 10 µM began to depolarize the cell to reach a plateau at about -

40 mV. Superimposed on this plateau, a discharge of intermittent action potentials was produced. At 

an expanded scale these action potential exhibited an overshoot at around 10 mV and the typical 

afterhyperpolarisation. Pooled data from 9 BCCs (Fig. 7B) indicated an initial Vm  of -70+8 mV; the 

resting Vm was reduced to -40+5 mV in the presence of IG20 (p<0.001). Of interest was an 

experiment performed in current-clamped cells showing that TTX (1 µM) did not affect the 

depolarizing effect of IG20 (Fig. 7B). 

To inquire into the possible mechanism underlying the depolarizing effect of IG20, a study of the 

whole-cell currents through Na+ channels (INa), VACCs (ICa), and K+ channels (IK) was performed 

using the perforated-patch configuration of the patch-clamp technique under the voltage-clamp mode. 

Fig. 7C shows two INa traces generated by test depolarizing pulses to -30 mV, applied from a holding 

potential of -80 mV. After 30-s of cell perifusion with 10 µM IG20, INa amplitude increased near 3-

fold. The complete I-V curves for INa averaged from 18 cells are graphed in Fig. 7D. Control INa had a 

threshold potential at -50 mV, peaked at -10 mV, and had a reversal potential at around +70 mV. In 

the presence of IG20 the current amplitude increased at hyperpolarising voltages in such a manner that 

in the range -50 to -10 mV the I-V curve was shifted to the left by around 10 mV and the peak current 

was significantly enhanced by 133%  at -40 mV, 89% at -30 mV, and 30% at -20 mV. 

Fig. 7E shows example paired ICa traces obtained from BCCs voltage-clamped at -80 mV, using 2 mM 

external Ca2+ as charge carrier. ICa traces generated by test pulses to 0 mV were quite similar before 

and during cell perifusion with 10 µM IG20. Overlapping full I-V curves plotted in Fig. 7F exhibit a 

threshold voltage for ICa activation at -40 mV, with peak current at around -10 mV and a reversal 

potential at around +60 mV. 

The effect of IG20 on IK was explored in cells voltage-clamped at -80 mV and stimulated with a two-

steps depolarizing pulse, first to 10 mV for 10 ms and subsequently to +120 mV for 400 ms. The first 

step served to stimulate Ca2+ entry and activate the Ca2+-dependent component of IK (mostly due to 

BK channels in BCCs) (Marty & Neher 1985). Thus, with this protocol (Fig. 8A) we could study 

within the same cell the voltage-dependent component of IK (IK(V)) and its Ca2+-dependent component 

(IK(Ca)). Fig. 8B shows two example IK traces obtained in a BCC before (control) and during its 

perifusion during 1 min with 10 µM IG20; the IK(Ca) was enhanced by IG20 while the IK(V) was 

unaffected. The time course for the effects of IG20 on IK(Ca) of the cell of Fig. 8B is displayed in Fig. 

8C; IG20 augmented gradually this current component to reach a plateau after a minute. Quantitative 

data from 12 cells are graphed in Fig. 8D. Normalised peak IK(Ca) was augmented by 25% in the 
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presence of IG20 (p<0.001). Paxilline (1 µM), a selective blocker of BK channels (Knaus et al. 1994) 

counteracted the potentiating effect of IG20 and further reduced IK(Ca) by 25%  with respect to control. 

IK(Ca) was further reduced by 200 µM Cd2+ to 60+4% of control (Fig. 8D). 

 

 

Insertion of fluorescent IG20 into the plasmalemma 

Sulfoglycolipid IG20 contains a polar sugar moiety containing a negatively charged OSO3
- group with 

an oleoyl lipophilic chain (Fig. 1). This chain may favour its insertion into the plasmalemma; 

nevertheless, the polar moiety may preclude its penetration into the cell. This was tested with the 

fluorescent derivative IG20-NBD. Worth of note is the fact that this compound triggered 

catecholamine release at the single-cell level, very much as the parent compound IG20 did (data not 

shown).  

We first performed experiments to study the time course of plasmalemmal staining with IG20-NBD. 

Fig. 9A displays a temporal sequence of confocal micrographs taken from a BCC before its exposure 

to IG20-NBD (10 µM) and at different times of cell exposure to the compound. A tiny fluorescent 

labelling of the plasmalemma was apparent after 1.20 min, exhibiting a patchy distribution of IG20-

NBD. This patchy accumulation of IG20-NBD was gradually growing with exposure time to the dye, 

to reach near confluence at 8 min. In two additional experiments done with different cell batches, cells 

with a clear-cut patchy ring alternated with others showing more diffuse fluorescence.  

Fig. 9B shows a Z-axis sequence of confocal images taken from a BCC after 8 min exposure to 10 µM 

IG20-NBD. From top to bottom, images clearly show that fluorescence is located at the plasmalemma, 

showing a nitid ring at intermediate equatorial planes. The thick fluorescence ring observed in some 

regions (around 2 µm) could be due to IG20 being incorporated gradually into the cell through an 

endocytotic mechanism. Disperse fluorescence spots were seen at the bottom planes, probably due to 

the area of contact of the cell with the glass coverslip.  

 

 

DISCUSSION 

Central in this study was the finding that the novel synthetic sulfoglycolipid IG20 triggered the release 

of catecholamine from BCCs. This was true in experiments done in cell populations (Fig. 2E,F) as 

well as in those executed at the single-cell level (Fig. 4B). This release was surely exocytotic in nature 

because it was abolished in Ca2+-free saline and re-established upon Ca2+ reintroduction (Fig. 5B). 

Ca2+ entry was required for the IG20 secretory effects and this was achieved through the VACC 

pathway, as indicated by its suppression with Cd2+ (Fig. 5D). BCCs express L- as well as N-, and PQ-

subtype of VACCs (Garcia et al. 2006) and thus the question arose on whether all channel subtypes 

contributed to the IG20 secretory effects. The fact nifedipine caused a drastic inhibition of the 
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response (Fig. 5C,D) indicated L channels were the preferred Ca2+ entry pathway triggering exocytosis 

from BCCs exposed to IG20. An explanation for this may rest in the fact N and PQ channels promptly 

inactivate upon BCCs depolarisation, while L channels do not (Villarroya et al. 1999). 

The prompt increase of basal secretion upon addition of IG20 (Fig. 2B,C) seems apparently 

contradictory with the longer duration of the potentiating effects of the compound on the K+ responses 

(Fig. 3B). It is also puzzling that during IG20 perifusion, the enhanced basal secretion was gradually 

decaying yet the potentiated K+ response remained (Figs. 2B and 3B). This could find an explanation 

in the fact K+-elicited [Ca2+]c elevations are contributed not only by Ca2+ entry through VACCs but 

also by Ca2+-induced Ca2+ release in BCCs (Alonso et al. 1999). This additional factor may not be 

present in the case of IG20 that causes a milder [Ca2+]c elevation in comparison with K+ (Fig. 6B). 

IG20 triggered secretion by itself and additionally, the compound also augmented the response elicited 

by depolarising K+ solutions both in cell populations (Fig. 2D) an at the single-cell level (Fig. 4C,E). 

The fact such potentiation was lesser the greater the K+ concentration (Fig. 4D), indicated that IG20 

itself could be eliciting cell depolarisation, thus explaining its ability to stimulate Ca2+ entry through L 

channels. These depolarising effects with superimposed action potentials were clearly demonstrated by 

the current-clamp experiments summarised in Fig. 7A,B. 

More complicated could be to find the mechanism underlying the depolarising action of IG20. For 

instance, Na+ channel modulation in cardiac myocytes elicited by agonists of α1-adrenergic receptors 

or general anaesthetics such as halothane develop slowly and is  mediated by intracellular messengers 

(Terzic et al. 1993, Weigt et al. 1998). In this study, the drastic blockade of secretion by TTX (Fig. 

5D) strongly suggests that voltage-activated Na+ channels are involved in the secretory effects of 

IG20. This is supported by the observation that IG20 shifted the I-V curve for INa to the left (Fig. 7D), 

implying that Na+ channels were more prone to be opened at more hyperpolarising potentials. At the 

end, this effect could remind that of veratridine that also augments the fraction of Na+ channel opening 

but through a different mechanism namely, the delay of Na+ channel inactivation (Ota et al. 1973). 

This augments Na+ entry into BCCs (Kilpatrick et al. 1981), causes cell depolarisation (Lopez et al. 

1995), opening of VACCs, increased Ca2+ entry (Kilpatrick et al. 1981), [Ca2+]c oscillations (Maroto et 

al. 1994, Maroto et al. 1996, Lopez et al. 1995, Novalbos et al. 1999), and augmented secretion 

(Kilpatrick et al. 1981, Conceicao et al. 1998). However, IG20 did not elicit [Ca2+]c oscillations (Fig. 

6) neither it caused delayed inactivation of Na+ channels (not shown). Thus, although at the end it 

causes cell depolarisation, enhanced Ca2+ entry and secretion as veratridine do, nevertheless IG20 

could have those effects through a different mechanism namely, the opening of Na+ channels at more 

hyperpolarising potentials. However, this sole action may not explain the depolarising effect of IG20 

because it was not affected by TTX (Fig. 7B). An alternative explanation is that in addition of shifting 

the fast-inactivating Nav channels expressed by CCs (Nav1.3 and Nav1.7; (Vandael et al. 2015a, 

Vandael et al. 2015b), IG20 may activate some non-inactivating Na+ channel which may sustain 

resting Vm and thus cause cell depolarization. 
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Although IG20 is water soluble, its long lipidic chain could facilitate its insertion into the plasma 

membrane (Fig. 1). On the other hand, its polar sulphated D-glucopyranoside moiety (Fig. 1) 

precluded its penetration into the cell cytosol, thus remaining confined to the cell plasma membrane as 

illustrated by the experiments with fluorescent IG20-NBD (Fig. 9). This insertion of IG20 into the 

plasmalemma was time dependent, suggesting that the compound underwent a gradual accumulation 

(Fig. 9A). This is compatible with the secretory effects of IG20 at the single-cell level that were 

initiated after 30 s and developed gradually along a 2-3 min perifusion period (Fig. 4D). Also, in cell 

populations the potentiation of the secretory responses elicited by K+ developed gradually (Fig. 2B). 

This was also the case for the gradual augmentation of IK elicited by IG20 (Fig. 8C). Another 

observation compatible with the stable insertion of IG20 into the plasmalemma was the slow 

reversibility of its effects upon its washout for instance, on secretion at the single-cell level (Fig. 5C). 

This was also observed in current-clamp experiments where IG20 elicited a gradual depolarisation that 

reversed very slowly upon its washout (Fig. 7A). 

One may consider that a sulfoglycolipid such as IG20 that is inserted into the plasmalemma, could 

behave as an ionophore such as A23187 or even as a detergent such as digitonin. However, the 

reversible augmentation of catecholamine release (Figs. 2E, 4B), the potentiation of K+-elicited 

secretion (Figs. 3D, 4E), the blockade of such responses by nifedipine and cadmium (Fig 5D), the 

partial depolarization elicited by IG20 in current-clamped cells (Fig. 7D), all require an intact 

hyperpolarized plasma membrane which is incompatible with the concept of ionophore or detergent. 

Furthermore, the reversibility of the effects and the fact the K+ secretory response after a period of 

IG20 remains intact (Fig. 5C), further strengthen our view that in BCCs IG20 does not act as an 

ionophore or detergent chemical. 

The plasmalemmal accumulation of IG20 could modify the rearrangement of endogenous lipids to 

regulate, for instance, the availability of Na+ channels and increase their opening probability at more 

depolarising potentials (Fig. 7D). This is in line with some observations on the regulation of lipid 

rearrangement of various subtypes of Na+ channels. For instance, the stimulation of β-adrenergic 

receptors in the heart augments current density through Na+ channels of the Nav1.5 subtype, as a result 

of an interaction with the lipid raft caveolin-3; this lipid raft protein promotes the recruitment of 

Nav1.5-containing caveolae to the surface membrane (Balijepalli & Kamp 2008, Dart 2010). Two 

additional examples are the trafficking of epithelial Na+ channels (ENaC) to the apical membrane in 

lipid rafts, in cells of mouse cortical collecting ducts (Hill et al. 2007) and the regulation of the activity 

of those channels by caveolin (Lee et al. 2009). Finally, mouse ventricular myocytes form a 

macromolecular signalling complex with caveolin-3 and a number of signalling molecules of the β-

adrenergic receptor pathway (Balijepalli et al. 2006, Calaghan & White 2006). 

Lipid regulation of large-conductance voltage- and Ca2+-activated K+ channels (BK; KCa1.1) has also 

been documented. Thus, in smooth muscle cells of rabbit pulmonary arteries, BK channels are 

activated by arachidonic acid and miristic acid (Kirber et al. 1992). Furthermore, fatty acids and 
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negatively charged single-chain lipids decrease their activity (Clarke et al. 2003). Additionally, 

docosahexaenoic acid (Hoshi et al. 2013) and cerebrosides (Zhang et al. 2014) directly activate BK 

channels. Exogenous IG20 could mimick the effects of these endogenous lipids to enhance IK(Ca)  in 

BBCs (Fig. 8). The resting Vm in mouse and rat CCs is set by K+ channels that are not the BK. For 

instance, TASK1 (Inoue et al. 2008) and SK channels (Vandael et al. 2012) are proven to set the 

resting Vm and action potentials of CCs. Modulation of those channels by IG20 (and by endogenous 

lipids, as commented above), could explain the initial depolarising effects of IG20. 

The scheme of Fig. 10 summarizes the proposed sequence of steps underlying the mechanism 

involved in the exocytotic release of catecholamine from BCCs exposed to IG20: the compound 

inserts into the plasma membrane through its lipophilic moiety (1) but can not enter the cytosol 

because of its hydrophilic sulphate sugar moiety (2); this causes membrane depolarization by as yet 

undefined regulation of ion channels and the recruitment of Na+ channels at more hyperpolarising 

potentials (3) to elicit superimposed action potentials (4) that will cause the opening of VACCs of the 

L-subtype (5), augmented Ca2+ entry and the elevation of [Ca2+]c (6); this will finally lead to the 

exocytotic release of catecholamine (7) as well as to the activation of BK channels (8) that may be 

responsible of the afterhyperpolarisation of IG20-elicited action potentials (4). 

In conclusion, novel synthetic sulfoglycolipid IG20 triggers the secretion of catecholamine and 

potentiates the secretory response to K+ depolarisation. It seems this effect is initiated by a lipid type 

modulation of as yet undefined channels that causes Na+ channel recruitment and ensuing action 

potentials. Although at this stage we do not know how IG20 acts to enhance Na+ channel recruitment, 

its sulfoglycolipid nature indicates it could be mimicking the modulation of Na+ channel kinetics by 

lipid rearrangement at the plasma membrane upon cell stimulation. IG20 belongs to a new family of 

sulfoglycolipids synthesised at our laboratory that promote neuritic growth and myelination (Nieto-

Sampedro et al. 2012). Thus, it is plausible that the Ca2+ and exocytotic signals generated by IG20 here 

described, could contribute to the plasticity action of this sulfoglycolipid. In fact, preliminary results 

indicate that IG20 exerts neuroprotection in rat hippocampal slices challenged with veratridine, 

glutamate, or combined olygomycin-rotenone. Therefore, by mimicking and/or causing a 

redistribution of endogenous plasmalemmal sulfatide, an IG20-like sulfoglycolipid drug could  

represent a new therapeutic strategy to improve neurotransmission. This may find potential therapeutic 

applications in various CNS diseases where neurotransmission is impaired i.e. Alzheimer’s disease 

where altered endogenous sulfatide levels have been recently described at early disease stages  (Han et 

al. 2002). 
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FIGURE LEGENDS 

Figure 1. Biosynthetic pathway of endogenous sulfatide (B) from ceramide (A) and molecular 

structure of the synthetic sulfoglycolipid IG20 (oleoyl 2-N-acetyl-2-amino-2-deoxy-6-O-

(oxosulfonyl)-alpha-D-glucopyranoside)(C) 

 

Figure 2. IG20 augments the rate of basal catecholamine release and potentiates the K+-evoked 

release in populations of bovine chromaffin cells (BCCs). Cells trapped in a 

microchamber (5x106) were perifused at 2 ml/min with a Krebs-Hepes solution at room 

temperature. The rate of catecholamine release was amperometrically monitored online in 

the perifusion solution that passed through an electrochemical detector. Once baseline 

secretion stabilised, cells were challenged with 10-s pulses of a K+-enriched solution (35 

mM K+, low-Na+, 2 mM Ca2+; 35K+), applied at 3-min intervals. The release of 

catecholamine is expressed in the ordinates of the corresponding panels in nA of the 

current generated by the oxidation of the catecholamine. IG20 was present at the 

concentrations and during the time lapse indicated by the horizontal bars below each 

trace. D shows pooled data normalized as % of the pre-IG20 perifusion (C, control 

secretion during the third K+ pulse) in each individual batch of cells. Data are means + 

SEM of the number of cell batches (n) and cultures (N) shown in parentheses. *p<0.05, 

***p<0.001 with respect to control. E, example trace to illustrate the augmentation of 

secretion elicited by IG20 in the absence of 35K+ stimulation. F, total enhanced basal 

secretion elicited by IG20 (ordinate in µC). ***p<0.001 with respect to 3 mM IG20  

(Student t test).  

 

Figure 3. Greater facilitation of secretion elicited by IG20 when using lower K+ concentrations, 

with respect to higher K+ concentrations, in perifused BCC populations. Experimental 

protocols are as in Fig. 2C. A,B,C are original traces of experiments done with 17.7 mM 

K+ (17.7K+), 35 mM K+ (35K+), or 100 mM K+ (100K+), respectively, repeatedly applied 

during 10-s at 3 min intervals, as indicated by dots at the bottom of each trace. IG20 was 

applied during the time period indicated by the horizontal bars below each trace. D, 

pooled data on peak secretion normalized as 100% (control, C) of the response before 

adding IG20. Data are means + SEM of the number of cell batches (n) and cultures (N) 

displayed in parentheses. ***p<0.001 with respect to control (Student t test). 
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Figure 4. Effects of 10 µM IG20 on the spontaneous and K+-elicited secretory spike events 

monitored amperometrically at the single-cell level with a carbon fibre microelectrode. A, 

example record showing no spontaneous events during a 5-min period of cell perifusion 

with Tyrode containing 2 mM Ca2+, and the spike burst generated by the K+ pulse (35 

mM K+, low-Na+, 2 mM Ca2+) applied at the end of the experiment (bottom horizontal 

bar). B, example record obtained in a BCC showing the initial K+-evoked burst of 

secretory spikes over baseline elevation, the increasing number of spikes elicited by IG20 

after a 30-40 s delay (bottom horizontal line), and the spike burst generated by K+ at the 

end of the experiment. C, protocol similar to the experiment of panel B, showing the 

enhanced 35K+ secretion after 30-s pre-exposure to IG20. D, cumulative secretion 

expressed as spike number counted at 5-s intervals (ordinate) versus time (abscissa), in 

control BCCs and cells exposed to IG20. E, pooled data on the facilitation of IG20 of 

quantal secretion elicited by K+, expressed as cumulative spike number (ordinate) counted 

as in D. Data in D and E are means + SEM of the number of cells (n) and cultures (N) 

given in parentheses. Data passed the normality test so Student’s t-test was used. *p<0,05 

and **p<0.01with respect to control. 

 

Figure 5. Augmentation of basal secretion elicited by IG20 depends on Ca2+ entry through voltage-

activated Ca2+ channels (VACCs). As in Fig. 4, quantal catecholamine release from single 

BCCs was recorded with a carbon fibre microelectrode and amperometry. A, cell first 

perifused with a nominal Ca2+-free saline (0Ca2+) followed by 2 mM Ca2+ reintroduction 

(2Ca2+) and a final 35K+ pulse, as indicated by horizontal bars at the bottom. B, cell 

initially perifused with 0Ca2+ and IG20 and subsequently with 2Ca2+ in the absence of 

IG20 (bottom lines). C, cell perifused with nifedipine throughout, initially in 0Ca2+ and 

IG20 and then with 2Ca2+ plus nifedipine but not IG20, and a final 35K+ challenge in 

2Ca2+ without nifedipine. D, pooled results of experiments with the protocols A, B and C 

and additionally with other experiments using Cd2+ instead of nifedipine. E, secretory 

effects of IG20 (10 µM) given with saline containing 2 mM Ca2+ in the absence (control 

secretion) expressed as spike number and total secretion, or in the presence of TTX (1 

µM) given 1 min before and during the 2-min exposure to IG20. F, pooled data of 

experiments performed with cells pretreated with 1 mM thapsigargin in 2Ca2+ during 5 

min followed by IG20 treatment at 10 mM. Total secretion (ordinates) in D and E were 

calculated as the summatory of spike areas during the Ca2+ reintroduction period. Data in 

D and E are means + SEM of the number of experiments (n) and cultures (N) shown in 

parentheses. Data failed the normality test so Mann-Whitney test was used.*p<0.05, 

***p<0.001 with respect to control (Ca2+ reintroduction without any treatment). 
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Figure 6.  IG20 augments the cytosolic Ca2+ concentration ([Ca2+]c) in fura-2AM-loaded BCCs. 

These experiments were performed following protocols reminding those used to study 

secretion at the single-cell level (see Fig. 5). A, example fluorescence trace in a cell first 

challenged with a 35K+ pulse (35 mM K+, low Na+, 2 mM Ca2+) followed by a 6-min 

period of Ca2+ deprivation (0Ca2+) and Ca2+ reintroduction, as indicated by bottom 

horizontal bars. B, example trace in a cell with a protocol similar to A in which the 6 min-

period in 0Ca2+ had two parts: 3 min of initial perifusion in 0Ca2+ and 3 min in 0Ca2+ 

containing 10 µM IG20, as indicated; the Ca2+ was reintroduced in the absence of IG20 

(2Ca2+). C, pooled averaged data on peak and area of the [Ca2+]c elevations in control 

cells (C) and IG20-treated cells. D and E, example traces from two cells perifused with 

2Ca2+, first challenged with 35K+ pulses and subsequently perifused with Ca2+-containing 

saline in the absence (control) or the presence of 1 mM thapsigargin, and finally exposed 

to IG20, as indicated by the bottom horizontal bars. F, pooled results from experiments as 

those in D and E, on peaks and areas of the [Ca2+]c elevations produced by IG20 in 

control cells (D) and thapsigargin-treated cells (E). Data in panels C and F were 

normalized as % of the initial K+ response within each cell; they are means + SEM of the 

number of cells indicated in parentheses. *p<0.05, ***p<0.001 with respect their 

respective control Data did not fit D’Agostino and Pearson normality test so the Mann-

Whitney test was used. 

 

Figure 7.  IG20 causes cell depolarization and shifts the I-V curves for Na+ currents (INa) to the left, 

but does not affect Ca2+ currents (ICa). These experiments were performed with the patch-

clamp technique under the perforated-patch configuration. A, original trace on the 

membrane potential (Em) of a current-clamped BCC, exposed to IG20 during the time 

period indicated by the top horizontal bar. B, pooled data on the depolarizing effects of 

IG20 (ordinate, in mV) and the lack of effect of TTX (1 mM) on this depolarisation. C, 

original whole-cell INa current traces obtained from a BCC before (control) or 30 s after 

IG20 perifusion, using the voltage-clamp protocol shown on the top. D, pooled results of 

I-V curves for INa (ordinate) obtained with sequential series of test depolarising pulses 

given in 10 mV steps (abscissa). E, original ICa current obtained from a voltage-clamped 

cell before and 30 s after IG20 exposure, generated by applying the protocol shown on 

the top. F, pooled data on I-V ICa curves generated by sequential application of 

depolarising pulses to voltage-clamped cells, given at 10-mV steps (abscissa). Data in B, 

D, and F are means ± SEM of the number of experiments and cultures shown in 

parentheses. **p < 0.01 and *** P < 0.001 with respect to basal or control. 
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Figure 8.  IG20 augments the Ca2+-dependent component of the whole-cell K+ current (IK(Ca)), but 

not the voltage-dependent component (IK(V)) in voltage-clamped BCCs. A, protocol used 

to stimulate the cells. B, IK currents with their Ca2+-dependent and voltage-dependent 

components before (control) and 2 min after exposure to IG20. C, time course of IK in an 

example cell before (control) and in the presence of IG20. D, pooled results of data from 

BCCs exposed to IG20 alone, or in the presence of 1 µM paxilline or 100 mM Cd2+. Data 

are means ± SEM of the number of cells and cultures indicated in parentheses.  

 

Figure 9. Fluorescent IG20-NBD accumulates in the plasma membrane and does not penetrate into 

BCCs. A, Time course of IG20-NBD (10 µM) accumulation into the plasma membrane 

of a cell before (pre-application, top image) and during its application during the times 

shown in each fluorescence micrograph using fluorescence confocal microscopy. B, 

sequential confocal microscopy images (left to right, top to bottom) taken on the Z axis, 8 

min after cell incubation with IG20-NBD.  Note the nitid accumulation of fluorescence at 

equatorial planes. 

 

Figure 10. Scheme summarising the proposed sequence of events leading to augmentation or 

exocytotic release of catecholamine from bovine chromaffin cells (BCCs). IG20 inserts 

into the plasma membrane through its lipophilic moiety (1) but can not enter the cytosol 

because of its hydrophilic sulphate sugar moiety (2); this causes an initial cell 

depolarization and the subsequent recruitment of Na+ channels at more hyperpolarizing 

potentials (3) to elicit TTX-sensitive superimposed action potentials (4) that will cause 

the opening of VACCs of the L-subtype (5), augmented Ca2+ entry and the elevation of 

[Ca2+]c (6); this will finally lead to the exocytotic release of catecholamine (7) as well as 

to the activation of BK channels (8) that may be responsible of the afterhyperpolarization 

of action potentials (4).  
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