Molecular Resolvent Operator for H_2^+ molecule

R. E. F. Silva*, F. Catoire†, P. Rivière*, H. Bachau*, and F. Martín*,

* Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain
† Centre des Lasers Intenses et Applications CNRS-CEA-Univ. Bordeaux I, 351 Cours de la Libération, Talence F-33405, France

Synopsis We present a theoretical method to extract photoelectron and nuclear kinetic energy spectra of molecules under intense ultrashort laser pulses. The method is applied to H_2^+ photoionization and dissociation within a 3D model of the H_2^+ molecule [1]. This method is an extension to molecules of the resolvent technique originally proposed for atoms [2], which was recently implemented to extract absolute values of photoelectron and nuclear kinetic energy spectra [3, 4].

One of the most valuable informations that we can extract from a theoretical solution of the Time-Dependent Schrödinger equation (TDSE) is the spectra of the fragments. In a molecule we can have different fragments and the usually calculated spectra are the photoelectron spectra and the nuclear kinetic energy release. These two spectra can provide more information in a correlated spectra [5]. In this work we have extended the resolvent technique to molecules within a 3D model of the H_2^+ molecule [1]. To achieve that we propose a factorization of the resolvent operator into an electronic resolvent operator and a nuclear resolvent operator, where the first one selects a given electronic state and the second one extracts the probability associated to a given vibronic energy [4].

\[\hat{R} = \hat{R}_N \hat{R}_{ele} \] (1)

This method allows to extract differential probability densities for the different ionization and dissociation channels in the Born-Oppenheimer approximation.

We have studied the multiphoton ionization of the H_2^+ molecule with low intensities of the laser field and we are able to obtain fully differential spectra both in nuclear and electronic energy and also angular distributions. With a fully differential spectra we are capable of providing a much more complete description of the dynamics behind photoionization and photodissociation. Our results have been successfully compared with those previously obtained in the literature [6].

![Figure 1. KER spectra resulting from a pulse with central frequencies $\omega = 0.6$ a.u. The pulse duration is indicated in the figure. We have used relatively low intensities (10^{12} W/cm2). We also show the results from Ref. [6] (dashed lines).](image)

References

* E-mail: rui.silva@uam.es