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We theoretically investigate lasing action in plasmonic crystals incorporating optically pumped four-level gain
media. By using detailed simulations based on a time-domain generalization of the finite-element method, we
show that the excitation of dark plasmonic resonances (via the gain medium) enables accessing the optimal
lasing characteristics of the considered class of systems. Moreover, our study reveals that, in general, arrays
of nanowires feature lower lasing thresholds and larger slope efficiencies than those corresponding to periodic
arrays of subwavelength apertures. These findings are of relevance for further engineering of active devices based

on plasmonic crystals.
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Coherent light generation at the nanoscale is one of the
critical stepping stones for the ultimate control of the light
fields. In this context, plasmonic structures have recently
emerged as versatile platforms for achieving lasing action
at length scales well below the diffraction limit [1-16].
Very recently, it has been demonstrated that plasmon-assisted
lasing action is not restricted to single nanocavity systems,
but can be also observed in structures supporting extended
plasmonic resonances, such as periodic arrays of metallic
nanoparticles [17] and periodic arrays of subwavelength
apertures milled in a metallic film [18]. These works reported
independently on the unique ability of the corresponding
metallic periodic structure (plasmonic crystal) to collect all
the lasing light produced at the nanoscale and emit it to the
far field in the form of a collimated beam. Although in a
closely related context a detailed study of the spatiotemporal
dynamics of lasing in gain-enhanced plasmonic nano-fishnet
structures has been reported [19], a general study that explores
the lasing properties of plasmonic crystals from a unified
perspective is—to our knowledge—still lacking. In this work
we address this issue and present a fundamental theoretical
analysis of the dynamics and steady-state characteristics of
lasing action in plasmonic crystals consisting of periodic arrays
of metallic nanowires and subwavelength apertures embedded
in an optically pumped four-level gain medium.

The insets of Figs. 1(a) and 1(b) render schematic views of
the two model systems under study. For simplicity, we consider
plasmonic crystals displaying one-dimensional periodicity
along the x direction and continuous translational symmetry
along the z direction (see the axes definition in the insets
of Fig. 1). These structures support surface electromagnetic
modes that resemble those decorating their two-dimensionally
periodic counterparts [20] (this is particularly the case for
thin-film plasmonic crystals, as the ones studied below).
Therefore, the considered model systems are able to capture
the fundamental physical phenomena governing the interaction
of those surface modes with a four-level gain medium.

The first analyzed configuration [inset of Fig. 1(a)] consists
of a one-dimensional periodic array (period p) of rectangular
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gold nanowires of width w and height /. The nanowire array is
embedded in a dielectric host of index n;, containing four-level
organic dye molecules, which, when optically pumped, acts as
a gain medium. This active medium extends a distance ¢ above
and below structure. Lossless dielectric regions matching
the host index extend infinitely above and below the active
medium. The whole system is illuminated by a p-polarized
plane wave (i.e., a plane wave with its E-field pointing along
x) incident normally onto the structure. The second structure
under study [inset of Fig. 1(b)] is similar to the above-described
one, but in this case the nanowire array is replaced by a slit
array defined by a periodicity p’ and a height and a width
of the metallic regions given by 4’ and w’, respectively. The
thickness of the active layers is ¢’

To compute the optical response of the considered ac-
tive systems we use a numerical framework based on a
time-dependent generalization of the finite element method
(FEM—more details can be found in Refs. [21,22]). This
ab-initio semiclassical approach is based on solving the field
equation for the potential vector, A(r,t), V x [(1/1o)V X
Al + €. 9*A /31> = 0P/3t, where P = P(r,?) is the time-
dependent part of the polarization (the time-independent
contributions to the polarization are accounted for through the
parameter €,). Within the metallic regions of the system, P(r,)
is computed through the conventional Drude-Lorentz form,
taking the corresponding parameter values from a fit to avail-
able experimental data [23]. Inside the active medium, P(r,?)
has two different contributions, P(r,t) = P,(r,7) + P.(r,?).
These contributions arise from the stimulated absorption
[P,(r,?)] and emission [P, (r,?)] of photons in the gain medium.
In the particular case of a gain medium including four-level
quantum emitters (with absorption and emission electronic
transitions centered at w, and w,, respectively), the dynamics
of P;(r,t) (i = a,e) is governed by the following Lorentzian
equation, 82P,»/8t2 + 2F,8Pl/8[ + a)lzP, = —0;AN;E; with
I'; and o; being the half linewidth and coupling strength
of the corresponding transition. E; = —0A;/d¢ is the lo-
cal electric field. The functions AN; = AN;(r,t) repre-
sent the population inversion densities of the absorption
and emission transitions, AN,(r,t) = N3(r,t) — Ny(r,t) and
AN,(r,t) = Na(r,t) — Ni(r,t). N;(r,t) (with j =0,...,3)
are the population densities of each of the energy levels
of the quantum emitters. The temporal evolution of these
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FIG. 1. (Color online) Passive spectral response of the studied
array of nanowires (a) and slits (b). Solid blue, red, and green
lines in both panels render, respectively, the computed absorption,
transmission, and reflection obtained for normal incidence. The
dashed vertical lines in each panel mark the location of the bright
(Ap) and dark (Ap and A),) plasmonic modes supported by each
structure. Dashed green lines in both panels display the reflection
spectra for an incident angle of 1°. The insets show schematic views
of the considered systems, including the definition of the reference
system and the geometrical parameters.

populations is, in turn, determined by the following rate
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where 7, are the nonradiative decays between the jth and kth
energy levels.

Thus, by solving the coupled set of nonlinear equations
given by Eqgs. (1)—(4), together with the field equation for
A(r,t) and the Lorentzian equation for P(r,z), we obtain
the whole spatiotemporal dynamics of the studied systems,
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including all the characteristics of their eventual laser emis-
sion. To that end, and in order to reduce the computational
requirements of this problem, we introduce the following
two additional steps. First, we exploit the fact that two
characteristic frequencies of the system are known (namely,
w, and w,). This allows us to introduce the following ansatz
on the functional form of the potential vector, A(r,t) =
A, (r,t)exp(—iw,t) + A.(r,t) exp(—iw,t), where A;(r,t) are
slowly varying complex amplitudes. We also assume that
a similar expansion holds for P(r,7). Note that the above
ansatz for A(r,t) does not impose any constraint on the
spatial profile of the modes in the system or their harmonic
oscillation frequencies [24]. In addition, this ansatz allows us
to track separately the time evolution of the pump and emitted
fields. Second, we rewrite Eqs. (1)—(4) in their so-called
weak form [25]. By construction, the weak form makes the
considered set of coupled nonlinear equations ideally suited
to be solved with a FEM method [26]. This fact brings all the
benefits of the adaptative meshing inherent to FEM methods to
time-domain simulations of active plasmonic systems. On top
of that, the application of periodic boundary conditions in this
approach allows filtering the k-Bloch states that lie within the
gain spectrum, and, thus, to reduce the significant complexity
that characterizes many-mode gain competition phenomena.

Figures 1(a) and 1(b) (main panels) summarize the passive
spectral response of the considered structures (i.e., the re-
sponse obtained for a negligible density of organic molecules
in the host dielectric). The geometrical parameters defining
the nanowire array are p = 434 nm, w = 122 nm, 4 = 75 nm,
and r = 187 nm, whereas those corresponding to the slit array
are p’ = 436 nm, w’ = 380 nm, A’ = 75 nm, and t' = 208 nm.
To allow a meaningful comparison between both systems, we
have chosen the same value of the metal thickness 7 = &, and
a value of the ratio ¢’/ such that both systems feature the same
amount of gain material. The rest of the geometrical parameters
have been optimized to tune the resonance observed in the
spectra at A &~ 710 nm to the stimulated emission from the
gain medium described below. In both cases, the refractive
index of the host medium is n;, = 1.62. The above described
structures have been also designed so that there are no
transversal-electric-polarized modes within the absorption and
emission linewidths. Therefore, we expect the polarization of
the corresponding laser emission to be transversal-magnetic
(i.e., laser light will be emitted with the same polarization
of both the pump and the plasmonic resonances supported
by the considered structures). Note that the three-dimensional
counterparts of the class of systems analyzed in this work could
feature polarization mixing effects that could, in turn, modify
the laser light polarization with respect to that of the pump or
the plasmonic resonances of the system.

By performing separate eigenmode calculations, we found
that the resonance observed in the spectra of Figs. 1(a) and 1(b)
at A &~ 710 nm corresponds, in both structures, to a mode of
plasmonic nature (the computed wavelength of that eigen-
mode, Ap, is marked by a vertical dashed line). In the case of
the slit array, an additional resonant peak appears in the spectra
at 2 &~ 790 nm. This resonance can be ascribed to the excitation
of a Fabry-Perot mode residing inside the slits [20]. Notably,
our eigenmode analysis also reveals that both nanowire arrays
and slit arrays support an additional class of plasmonic modes
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[located Xp =~ 744 nm; see corresponding dashed lines in
Figs. 1(a) and 1(b)], whose modal symmetry prevents them to
be excited by normally incident radiation [27,28]. Figure 1 also
illustrates the spectral response at non-normal incidence (for
clarity, only the reflection spectra are displayed). As observed,
even a slight deviation of 1° from the normal incident condition
leads to the excitation of the dark-mode resonances of the
system. The results for the slit array also reveal that, in addition
to the above-mentioned dark mode at A p, there exists another
dark mode at A}, ~ 760 nm. By examining the corresponding
field profile, we found that this mode is the counterpart in our
system of the short-range surface plasmon polariton arising in
flat metallic films [29]. Due to the large ohmic losses featured
by this mode, it does not play any significant role in the
analysis of the lasing dynamics of the system. For definiteness,
in the rest of this work we focus on the case of normal
incidence.

We carried out a series of numerical experiments in
the active counterparts of the structures described above.
In these calculations, the emission wavelength of the four-
level emitters, A., was varied continuously from A, = Ap
to A, = Ap (note that A, = Ap is the case considered in
previous works [17,18]). We chose the following parameters
for the emitters: A, = 680 nm, 757 = 500 ps, T3 = 170 =
100 fs, I'y =T, =1/(20f1s), 0, =3.14 x 10~ cm?, and
0, = 2.43 x 107! cm?. These values model accurately the
electronic properties of Rhodamine dye molecules [30]. We
also chose a realistic value of the total density of molecules
Nt = 3 x 10" cm™3. Following Refs. [13,31], in order to
account for the strong nonradiative quenching of the emitters
located close to the metal surfaces, a gap of 10 nm in the active
medium is assumed around the metallic regions of the studied
systems. We have checked that varying the size of this gap does
not have any significant influence on the fundamental findings
reported in this work. Finally, the wavelength and amplitude
of the external optical pump were fixed to A, = A, and
|Epump| = 0.75 Eo, respectively (Ey is the so-called saturation
electric field, a magnitude that only depends on the specific
properties of the considered gain medium [32]).

Figure 2(a) renders the time evolution of the w, compo-
nent of the E-field amplitude (spatially averaged over the
computational domain), (|E.(r,7)|), as computed for three
representative values of A.. Only the calculations for the
nanowire array are shown (similar results were obtained for
the slit array). As expected for a large enough amplitude of
the optical pump, all cases display the canonical signatures of
lasing dynamics [33], characterized by sudden spikes of the
signal that settle down to steady-state values for long times. In
the analyzed configuration, the steady state has already been
reached at ¢ ~ 350 ps for all considered A.. These results show
an unexpected nonmonotonic dependence with A, of both the
steady-state values of the field amplitude (|E.(r,%4s)|) and
the lasing onset time fy (defined as the time at which the
first lasing spike occurs). This nonmonotonic dependence is
more clearly visualized in Fig. 2(b), where the results for
(|Ee(r,t545)|) and fy calculated for a larger number of X, values
are displayed. Due to the presence of two plasmonic modes
in the system, the steady-state field amplitude (the onset time)
displays two local maxima (minima) appearing when A, is
tuned to Ap or Ap [see vertical dashed lines in Fig. 2(b)].
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FIG. 2. (Color online) (a) Time evolution of the w, component
of the calculated E-field (spatially averaged over the computational
domain), (|E.(r,t)|), for three different values of the emission
wavelength: A, = 710 nm (green line), A, = 725 nm (red line),
Ao = 744 nm (blue line). The wavelength and amplitude of the
pump field are, respectively, A, = 680 nm and |[Epymp| = 0.75E¢ (Ey
is the saturation electric field of the gain medium). The displayed
results correspond to the nanowire array considered in Fig. 1(a). (b)
Computed steady-state values for (|E,(r,?)|) (green triangles, left y
axis) and lasing onset times (blue squares, right y axis) as a function
of the emission wavelength A,, as obtained for the same system as
in (a).

Notably, the case A, = Ap displays a larger (smaller) value
of (|E.(r,%5:)|) (fo) than A, = Ap. For intermediate values of
Xe, we observe how the mode competition between the bright
and dark modes introduces (at A, ~ 722 nm) a qualitative
change of the dependence of both (|E.(r,#,s)|) and 7y on the
emission wavelength. The signatures of this class of mode
competition at the subwavelength scale are also manifested in
time domain through a sudden change of the corresponding E-
field amplitude oscillations [see the change of behavior of the
red line in Fig. 1(a) at # ~ 200 ps]. Similar mode competition
phenomena at the subwavelength scale have been recently
reported in Ref. [19] in the case of nanoplasmonic fishnet
structures. The important point to realize is that a configuration
in which the emission from the active medium is tuned to the
main resonant feature of the spectrum (i.e., A, = Ap) does not
enable accessing the optimal lasing characteristics of this class
of systems. As deduced from the above results, the optimal
lasing regime is instead associated to the excitation (via the
stimulated emission from the gain medium) of dark plasmonic
resonances and, therefore, occurs when A, = A p. Much in the
same way as occurs in the case of lasing action assisted by
dark Fano modes in photonic crystals [34], laser photons can
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FIG. 3. (Color online) Computed steady-state  values for
(|E.(r,t)|?) as a function of |Epump|2, as obtained for the nanowire
array (blue circles) and the slit array (red squares). The geometrical
parameters of both structures are optimized so that the corresponding
dark plasmonic resonances are tuned to the emission wavelength
A, = 710 nm of the gain medium. The inset shows the time evolution
of the lasing field calculated with |Epym,|* = 0.5 EZ.

be emitted from the sides of the system (i.e., emitted in the
plane of periodicity), or, alternatively, in the vertical direction
(normal to the plane of periodicity) by perturbing the perfectly
periodic lattice of the considered plasmonic crystals.

Next, we compared the lasing characteristics of nanowire
arrays and slit arrays operating at their corresponding optimal
regimes. To do that, and in view of above conclusions, we
fixed ., = 710 nm and optimized the geometrical parameters
of both structures so that A, is tuned to the dark plasmonic
resonance supported by each structure. Specifically, in the rest
of the Rapid Communication, we assume the set of parameters
t =200 nm, w =122 nm, A =75 nm, and p =410 nm
for the nanowire array, and # = 224 nm, w’ = 380 nm,
h' =75 nm, and p’ =410 nm for the slit array (note that,
as in the previous case, the amount of gain material is the
same in both structures). The rest of parameters, including
the ones defining the gain medium, are the same as in the
previous calculations. Figure 3 shows the corresponding
steady-state values for (|E,(r,7)|?) as a function of |Epump|2,
as obtained for the nanowire array (blue circles) and the slit
array (red squares). The linear dependence observed above
the threshold corroborates that the two analyzed systems are
indeed lasing. For illustration, the inset of Fig. 3 renders the
time evolution of (|E,(r,7)|) calculated for |Epump|* = 0.5 EZ.
Importantly, as seen in Fig. 3, the nanowire array features a
lower threshold and a significantly larger slope efficiency (by
a factor larger than 2) than those obtained for the slit array.
In this context, we point out that, as shown in Ref. [35], the
inclusion of (amplified) spontaneous emission would result
in the emergence of noise in the emitted laser signal. We do
not, however, expect that those effects can change the above
conclusion on the comparison of the slope efficiencies.

Finally, to obtain further insight into the physical origin
of the above results, we apply to this problem a simple
phenomenological model based on a spatially averaged for-
mulation of the laser rate equations [31,36]. This model
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provides analytical expressions of the basic characteristics
of a plasmonic laser in terms of a small set of effective
parameters of the system. Specifically, within this approach,
the expressions for the laser slope efficiency (G, ) and the laser
pump-rate threshold (Ry,), derived from the dependence of
the photon-number on the external pump rate, can be written
as G, = Q/w, and Ry, = w,S,/(QT'vgno,1s1), respectively.
Here Q stands for the Q factor of the considered modes, S,
is the total area of the active media in the system, and v,
is the group velocity of the plasmonic mode under analysis.
The parameter I' is the so-called confinement factor that
quantifies the degree of overlap between the mode profile and
the active regions featured by the system, whereas n provides
a measure of the spatial-hole burning effects present in the
lasing regime in the analyzed structures (detailed expressions
for both magnitudes can be found in Refs. [31,36]).

For definiteness, in the following we focus on the ap-
plication of this model to the numerical results shown in
Fig. 3 (a completely similar analysis applies to the results of
Fig. 2). To do that, we first computed the Q factor of the dark
mode supported by the nanowire and slit arrays considered
in Fig. 3, and obtained Q = 215 and Q = 130, respectively.
Then, using the simple expression for G, provided above, we
found that the applied model predicts slope efficiencies of
G,=8.1x10""sand G, = 4.9 x 10~ s for the nanowire
array and slit array lasers, respectively. For comparison, the full
numerics yields G, = 9.2 x 10~ s for the nanowire array,
and G, = 4.8 x 10~ s for the slit array. The good quantitative
agreement between model and full numerics demonstrates that
the observed larger slope efficiency of the nanowire array can
be exclusively ascribed to the larger Q factor of its dark mode.

Next, using the steady-state field and population inversion
distributions obtained from our full laser simulations, we
computed the three parameters I', 1, and v, entering the
analytical expression for Ry, given above. From those values,
together with the corresponding Q factors and active material
parameters, we obtained Ry = 2.1 x 10*! s™'m™! for the
nanowire array and Ry, = 3.0 x 10*' s™'m~! for the slit array.
Importantly, in both structures we numerically found similar
values of v,, I', and 5. This suggests that the physical origin of
the smaller lasing threshold displayed by the nanowire array
can be also ascribed to the larger Q factor featured by the
dark mode decorating that system. We note here that the
model results for Ry, show only qualitative agreement with
the full numerics, which predicts Ry, = 1.14 x 10*' s~ 'm™!
and Ry, = 1.48 x 10%! s7'm~! for the nanowire array and the
slit array, respectively. This points to the fact that, although
in this class of systems a phenomenological model can be
used to unveil qualitatively the physical origin of the observed
lasing behavior, a full ab-initio nonlinear approach is needed
to obtain accurate predictions of all lasing characteristics.

In conclusion, we have presented a unified theoretical study
of lasing action in plasmonic crystals. We have found that dark
modes in plasmonic crystals enable accessing the optimal las-
ing characteristics of this class of systems. In addition, by com-
paring lasing action assisted by dark modes in both nanowire
arrays and slit arrays, we have shown that nanowire arrays
feature smaller thresholds and larger lasing slope efficiencies
that those corresponding to slit arrays. These results could
be of importance for further development of novel large-area
light-emitting structures based on active plasmonic crystals.
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