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Effective-mass theory for the anisotropic exciton in two-dimensional crystals:
Application to phosphorene
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We present a theoretical study of the exciton binding energy for anisotropic two-dimensional crystals. We
obtain analytical expressions from variational wave functions in different limits of the screening length to exciton
size ratio and compare them with numerical solutions, both variational and exact. As an example, we apply these
results to phosphorene, a monolayer of black phosphorous. Aided by density-functional-theory calculations for
the evaluation of the two-dimensional polarizability, our analytical solution for the exciton binding energy gives
a result which compares well with numerical ones and, in turn, with experimental values, as recently reported.
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I. INTRODUCTION

Since the mechanical exfoliation of graphene [1], research
in understanding the properties of two-dimensional (2D) crys-
tals has increased manyfold. Atomically thin, single-layered
materials obtained from transition-metal dichalcogenides [2],
boron nitride [3], bismuth [4], etc. are being extensively studied
for applications as electronic and photoelectronic devices.
Few-layered black phosphorous (BP) is a recent addition to the
list of graphene-inspired materials [5–8]. Apart from having
a sizable band gap which can be tuned by the manipulation
of the number of layers, the atomic structure of BP is highly
anisotropic, which leads to high asymmetry of the electronic
band structure even for few layers. In particular, a single
layer of BP or phosphorene is attracting most of the attention.
The peculiar anisotropic nature of the band gap distinguishes
phosphorene from other 2D crystals, increasing its potential
functionality.

Excitons are a bound state of an electron and a hole, and
play an important role in the optical properties of the material.
Understanding the nature of excitons and their dependence on
the electronic structure of the host material is critical and lends
a deeper perspective of the many-body physics involved in 2D
crystals. The 2D nature of the polarizability of these crystals
introduces an important length scale (screening length) r0.
For distances between charges in the crystal plane, r , that are
greater than r0, the electron-hole binding potential behaves like
in a 3D system, i.e., it goes as ∼1/r . However, for the case
where r is less than r0, the potential is 2D-like, i.e., logarithmic.
This behavior makes excitons in 2D crystals different from
their 3D counterparts [9,10].

Since most common 2D crystals are isotropic, the effect
of anisotropy on the optical properties of these materials
has remained essentially unexplored. The appearance of
phosphorene has, however, changed this view and recent works
address this issue from analytical [8], numerical [11], and
first-principles [7] standpoints. Here we give a detailed account
of a variational approach, introduced by us in Ref. [8], to the
calculation of the exciton binding energy EX in anisotropic 2D
crystals. Several analytical expressions are derived in certain
limits of the 2D interaction potential. The accuracy of our
analytical expressions for EX is tested against both variational

and exact numerical solutions to the actual 2D potential,
finding excellent agreement in a wide and experimentally
relevant range of screening lengths. In particular, the value
of EX for phosphorene, as obtained from our analytical
expression, compares almost exactly to the numerical results.
Furthermore, this value nicely agrees with the recently reported
experimental result [12].

The present work is divided as follows. In Sec. II, we review
the form and limiting behavior of the Coulomb interaction
potential for charged particles in 2D systems. In Sec. III,
we present our variational approach based on an anisotropic
exciton wave function. We first present the analytical result
for EX in the limiting case where the 2D potential reduces
to the standard 3D Coulomb potential ∼1/r for isotropic 2D
systems, and later introduce the anisotropy and rederive the
binding energy for this case. In the same manner, we derive
analytical expressions for the isotropic and anisotropic binding
energies in the opposite limit where the 2D interaction poten-
tial behaves logarithmically. We also compare our analytical
expressions with the numerically solved variational problem
as well as with the exact numerical solution. In Sec. IV, we
propose an alternative variational approach based on Gaussian
orbitals. In Sec. V, after computing the 2D polarizability with
density functional theory (DFT), our analytical approach is
applied to the case of phosphorene. Finally, we present our
conclusions in Sec. VI.

II. BINDING PARTICLE-HOLE POTENTIALS IN 2D

As originally derived by Keldysh [13], the Coulomb
potential energy created by a point charge at the origin that
electrons feel in 2D layers follows the expression

V2D(r) = − e2

8ε0ε̄r0

[
H0

(
r

r0

)
− Y0

(
r

r0

)]
, (1)

where r0 ≡ dε/(ε1 + ε2) and ε̄ = (ε1 + ε2)/2. Here, d is the
thickness of the 2D material, ε is its bulk dielectric constant,
and ε1 and ε2 are the dielectric constants of the surrounding
media, typically substrate and vacuum. Here, r0 plays the
role of a screening length and sets the boundary between two
different behaviors of the potential. For r < r0, the potential
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FIG. 1. (Color online) Keldysh, 3D Coulomb, logarithmic, and
Cudazzo et al. potentials in log-log scale in a range of distances
spanning several decades around r0.

diverges logarithmically, as if created by line charges. In this
limit, the potential takes the simplified form also given by
Keldysh [13],

V2D(r � r0) ≈ e2

4πε0ε̄

1

r0

[
ln

(
r

2r0

)
+ γ

]
, (2)

where γ is the Euler constant. For r > r0, the potential
becomes the standard Coulomb potential created by point
charges which decays as 1/r ,

V2D(r � r0) ≈ − e2

4πε0ε̄

1

r
. (3)

A very good approximation to the Keldysh potential, fairly
accurate in both limits and simpler to use, was introduced by
Cudazzo et al. [9],

V C
2D(r) = e2

4πε0ε̄

1

r0

{
ln

(
r

r + r0

)
+ [γ − ln(2)]e−r/r0

}
. (4)

It is interesting to compare these four expressions as a
function of the distance r in a range of several orders of
magnitude, both above and below r0. We present such a
comparison in Fig. 1. There the range of validity of each
approximation can be seen, with the Cudazzo et al. expression
being remarkably accurate for all distances.

III. VARIATIONAL WAVE-FUNCTION APPROACH

For generic 2D crystals with electrons and holes present-
ing anisotropic effective masses, me(h)

x �= me(h)
y , we consider

variational solutions for the exciton wave function of the
type [14]

φ(x,y) =
(

2

a2
xλπ

)1/2

exp [−
√

(x/ax)2 + (y/λax)2], (5)

where λ is the variational anisotropy scaling factor relating
the exciton extension along the x direction, ax (which is also
a variational parameter), and the one along the y direction,
ay = λax . With this variational wave function, we can evaluate

the expectation value of the kinetic energy,

Ekin(ax,λ) = �
2

2

∫∫
φ

[
1

μx

∂2φ

∂x2
+ 1

μy

∂2φ

∂y2

]
dxdy

= �
2

4a2
x

(
1

μx

+ 1

λ2μy

)
,

where μx and μy are the reduced effective masses,
memh/(me + mh), along the x and y directions, respectively.
The expectation value of the potential energy is given by

Epot(ax,λ) =
∫∫

V2D(x,y)φ(x,y)2dxdy, (6)

and the variational exciton binding energy is obtained from the
addition of these two quantities,

EX(ax,λ) = Ekin + Epot. (7)

Upon minimization with respect to ax and λ, one obtains
the optimal parameters defining the extension and shape of
the exciton and the actual binding energy EX. Results from
three minimization procedures, i.e., one analytical and two
numerical, are presented in the next section.

A. Analytical results

The integral for the potential energy in Eq. (6) turns out
to be too difficult for an exact variational analytical solution.
The main goal of this section is to make use of the asymptotic
behavior of the Keldysh potential to get analytical expressions
for EX in the limits r � r0 and r � r0, namely, valid for large
and small excitons, respectively.

1. r � r0 limit

We begin by evaluating EX in the isotropic case (λ = 1,
ax = ay = a), considering only the long-range behavior of
the Keldysh potential [see Eq. (3)]. The contribution of the
potential energy to EX is given in this limit by

Epot = − e2

4πε0ε̄

2

a
. (8)

Now minimizing EX(a) with respect to the variational exciton
radius, one obtains

EX = − e2

4πε0ε̄

1

ã
, (9)

where the minimal exciton radius ã is given by

ã = a0ε̄m

2μ
, (10)

and m and a0 = 4πε0
e2

�
2

m
are the free-electron mass and the Bohr

radius, respectively.
For the anisotropic case (λ �= 1), the exciton extension

along the x direction is now given by

ãx(λ) = a0ε̄m

4

(
1

μx

+ 1

λ2μy

)
1

I (λ)
. (11)
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In the previous expression, we find a function of λ defined
through the elliptic integral,

I (λ) ≡ 1

2π

∫ 2π

0
dθ

1√
1 + (λ2 − 1) cos2 θ

= 1

π

[
K(1 − 1/λ2)

λ
+ K(1 − λ2)

]
, (12)

where the function K is the complete elliptic integral of the
first kind. Defining now μxy as

μxy(λ) ≡ 2

(
1

μx

+ 1

λ2μy

)−1

I (λ), (13)

the exciton extension along the x axis can now be written as

ãx(λ) = a0

2

ε̄m

μxy(λ)
. (14)

The exciton extension along the y direction is thus

ãy(λ) = a0ε̄m

4

(
1

μx

+ 1

λ2μy

)
λ

I (λ)
= a0

2

ε̄m λ

μxy(λ)
(15)

and the λ-dependent binding energy of the exciton now
becomes

EX(λ) = − e2

4πε0ε̄

I (λ)

ãx(λ)
. (16)

We now define

IE(λ) ≡ (λ2 − 1)dI (λ)/dλ + λI (λ)

= 1

π

[
E(1 − 1/λ2) + E(1 − λ2)

λ

]
, (17)

where E is the complete elliptic integral of the second kind.
We can see that the minimal λ, λ̃, satisfies, in general, the
following equation:

μx

μy

= λ3 IE(λ) − λI (λ)

I (λ) − λIE(λ)
, (18)

which has no analytical solution for λ. However, it can be
shown [14] that for λ � 1,

λ̃ ≈
(

μx

μy

)1/3

. (19)

Finally, notice that the results obtained in this section will be
valid as long as the exciton extension in both x and y directions
is much larger than r0. The consistency of this approximation
for given experimental parameters (r0, μx , μy , and ε̄) has to
be checked a posteriori.

2. r � r0 limit

As r → 0, the logarithmic behavior of the Keldysh potential
dominates. The potential energy in 2D now takes the form
given in Eq. (2). In the isotropic case, the exciton radius is
now given by

ã =
√

ε̄m

μ
a0r0 (20)

and the binding energy of the exciton is

EX = e2

4πε0ε̄

1

r0

[
3

2
+ ln

(
ã

4r0

)]
. (21)

For an anisotropic system, the λ-dependent exciton exten-
sion along the x direction is given by

ãx(λ) =
√

a0r0
ε̄m

2

(
1

μx

+ 1

λ2μy

)
. (22)

Using now a different definition for μxy ,

μxy(λ) ≡ 2

(
1

μx

+ 1

λ2μy

)−1

, (23)

the exciton x extension now becomes

ãx(λ) =
√

a0r0
ε̄m

μxy(λ)
. (24)

Again, taking into account that ay = λax , the λ-dependent
minimal exciton extension along the y direction is

ãy(λ) =
√

a0r0
ε̄mλ2

μxy(λ)
. (25)

Finally, we obtain the exciton energy for this case,

EX(λ) = e2

4πε0ε̄

1

r0

{
3

2
+ ln

[
ãx(λ)

4r0

λ + 1

2

]}
, (26)

where the minimal λ is

λ̃ =
(

μx

μy

)1/3

. (27)

Again notice that this result will be valid as long as the x and
y minimal extensions of the excitonic wave function are small
compared to r0.

Finally, for completeness, we present an analytical expres-
sion for the exciton binding energy using the Cudazzo potential
in the isotropic case,

EX = e2

4πε0ε̄

{
a0m

2μã2
+ 4[γ − ln(2)]

r0

(ã + 2r0)2

− 1

r0

[
γ + ln

(
2r0

ã

)]

+ ã − 2r0

ãr0
e2r0/ãEi

(−2r0

ã

) }
, (28)

where Ei is the exponential integral function. We have only
been able to obtain a working analytical expression for ã (too
cumbersome to be shown here) in the limit r0 � a0 where the
above expression is actually useful.

B. Numerical optimization and exact solution

To validate and test the accuracy of the limiting analytical
expressions given in the previous section, we now use the wave
function in Eq. (5) to numerically compute the potential energy
given by Eq. (6) for the exact Keldysh potential. We also solve,
numerically as well, the 2D Schrödinger equation for the same
potential, which will give us the exact value of EX (down to
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FIG. 2. (Color online) Binding energies (in Ryd) for the isotropic
exciton computed in different ways: Numerical optimization of the
variational wave function in Eq. (5) (solid line), numerical solution of
the Schrödinger equation (circles), analytical variational expression
valid for large values of r0 [Eq. (21)] (dashed line), and expression in
Eq. (28) obtained for the Cudazzo et al. potential (dot-dashed line).

the required numerical precision). Exciton binding energies for
the isotropic case (λ = 1) are presented in Fig. 2 as a function
of the screening length r0. For comparison, we take ε̄ = 1, i.e.,
the 2D crystal is suspended in vacuum, and μx = μy = m/2.
Thus, according to Eq. (9), Ex = −2 Ryd (where Ryd is the
Rydberg energy 13.6 eV) for r0 = 0. The numerical variational
result compares very well with the exact numerical value in
the large range of explored screening lengths. For r0 � a0, the
analytical solution in Eq. (21) works fairly well. There the size
of the exciton is smaller than r0 and the 1/r contribution to the
Keldysh potential is negligible. As expected, the analytical so-
lution starts to fail as r0 → a0 since there the size of the exciton
becomes comparable to r0 and the long-range 1/r contribution
to the Keldysh potential becomes dominant. [One should keep
in mind that the limit of validity of the analytical result, as
shown in Eq. (20), depends on the values of ε̄ and μ.] We also
compare with the result given by Eq. (28), obtained using the
approximate expression to the potential in Eq. (4). This ex-
pression, although not as friendly as the previous one, extends
the limit of validity of our analytical results down to r0 ≈ a0.

The results for the anisotropic case are presented in Fig. 3
for r0 = 20a0 and r0 = 400a0 as a function of the anisotropy
ratio μx

μy
(notice a difference of one order of magnitude in

the energy scales of each plot). Once again, there is close
agreement between the analytical solution [Eq. (26)], the
numerical optimization, and the exact numerical solution for
large r0, while for the smaller value, the analytical solution
visibly deviates from the other two.

An important prediction of our analytical results is the
relation between the anisotropy in the exciton extension and
the effective masses: λ̃ = ãy

ãx
∼ (μx

μy
)1/3, which becomes exact

in the limit of small excitons. To test this relation, we fitted the
optimal value of the variational parameter λ̃ to the law

λ̃ = C(r0)

(
μx

μy

)α(r0)

(29)
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FIG. 3. (Color online) Exciton binding energy as a function of
the anisotropy as obtained from the analytical and the numerical
approaches for (a) r0 = 20a0 and (b) r0 = 400a0.

for a large range of r0. The results of this fit are presented
in Fig. 4. They confirm our analytical results and recover the
exact 1/3 exponent in the limit of large r0.

Finally, we provide a comparison between the exact
and variational wave functions for several values of r0 in
the isotropic limit (see Fig. 5). Note that the distance is
rescaled with the optimal radius and the amplitude of the
wave function with the normalization constant A = ( 2

a2
xπ

)1/2.
This representation illustrates to what extent the exact and
variational wave functions satisfy similar scaling relations.
Note that at r = 0, the exact wave functions do not show
the prominent cusp of a 1s Slater-type orbital. This softened
behavior at the origin suggests than a combination of Gaussian
functions may capture more accurately this feature of the wave
function, as shown in the next section.

IV. GAUSSIAN-BASIS VARIATIONAL METHOD

We have found that in the limit of very small r0, the binding
energy is very sensitive to small changes in r0. Furthermore,

245421-4



EFFECTIVE-MASS THEORY FOR THE ANISOTROPIC . . . PHYSICAL REVIEW B 91, 245421 (2015)

1e-05 0.0001 0.001 0.01 0.1 1 10 100 1000
r0/a0

0

0.25

0.5

0.75

1

1.25

1.5

C

C
α

0

0.25

0.5

0.75

1

1.25

1.5

α

1/3

FIG. 4. (Color online) Parameters of the fit in expression (29) as
a function of r0: C(r0) (left axis) and α(r0) (right axis).

the numerical solution of the Schrödinger equation requires a
very fine mesh to reproduce the bound state in such a limit. On
the other hand, the analytical result found in the 1/r limit of
the potential constitutes an isolated point and thus cannot be
easily extended to small but finite values of r0. It is therefore
interesting to find an alternative numerical method to study
anisotropic excitons in the limit of small r0. Moreover, as we
have presented in Fig. 5, the behavior of the exciton exact
wave functions for different values of the screening length
r0 resembles a 1s Gaussian more than a Slater-type orbital.
Gaussian-type orbitals (GTOs) are very efficient basis sets used
intensively in quantum chemistry and solid-state calculations.

The Gaussian-basis functions {χp} follow the expression

χp = e−(αp
x x2+α

p
y y2). (30)

Here, the index p is an integer that has been chosen to
run from 1 to 4 and the exponents α are coefficients that
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FIG. 5. (Color online) Exact (dashed lines) and variational (solid
line) wave functions for r0 = 0.1,1,10,100. The x axis is rescaled with
the variational extension of the exciton and the amplitude with the
normalization constant of the variational wave function A = ( 2

a2
xπ

)1/2.

have to be optimized to minimize the ground-state energy
obtained by the variational method. Unlike the conventional
Gaussian approach, the anisotropy of the problem introduces
two coefficients α

p
x ,α

p
y per GTO. We limit variational freedom,

assuming that the anisotropy is identical for the four basis
functions,

αp
y = καp

x . (31)

In this equation, κ is a constant that does not depend on p so
we reduce the number of exponents that we have to optimize
from eight to four. The variational wave function in the GTO
basis is given by

φG(x,y) =
4∑

p=1

Cpχp. (32)

For fixed values of αp, the energy is computed by generalized
diagonalization of a 4 × 4 matrix. The matrix elements of the
kinetic energy are

H kin
pq = π

Mpq

(
1

μx

α
p
x α

q
x

α
p
x + α

q
x

+ 1

μy

α
p
y α

q
y

α
p
y + α

q
y

)
. (33)

The matrix elements of the potential energy are computed by
numerical integration,

H pot
pq =

∫∫
V K

2D(x,y)χpχqdxdy, (34)

and the overlap matrix is

Spq = π

Mpq

, (35)

where Mpq =
√

(αp
x + α

q
x )(αp

y + α
q
y ).

The binding energy and the optimal wave function are
obtained by numerically minimizing the energy with respect
to the five variational parameters. Efficient optimization of
the energy requires a careful choice of the initial guess for
the values of the exponents αp. In our case, we choose the
optimal values for a 1s orbital of a “2D hydrogen atom,” taking
μx = μy = m and r0 approaching zero. Once these optimal
exponents are obtained, r0 is changed slightly and the problem
is solved again, this time using the exponents α obtained in the
previous step. The procedure continues until the ground-state
energy for r0 = 10a0 is reached.

Fixing r0 = 10a0 and μx = m, the effective mass along
the y axis, μy , is varied from 1 to 40m. In this case, the
initial guess for the exponents is the last set of coefficients α

obtained when changing r0. A comparison between the values
of the ground-state energy as a function of μy variationally
obtained with those computed by numerical solution of the
Schrödinger equation with the Keldysh potential can be seen
in Fig. 6.

In Fig. 7, the length scales a
p
x = 1/

√
α

p
x of the whole set

of optimal GTOs are plotted vs μy . κ is also plotted in Fig. 8
against μy . In Fig. 9, we show a log-log representation of κ vs
μy where a linear fitting has been made.
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FIG. 6. (Color online) Ground-state energies obtained using the
Gaussian variational method (continuous lines) and the numerical
solution of the Schrödinger equation (circles) as a function of the
effective mass μy .

V. APPLICATION TO PHOSPHORENE

A paramount example of an anisotropic 2D crystal is
phosphorene [5,6,8], where the effective masses along the x

and y directions can differ by even an order of magnitude.
From the start, we have chosen to express the 2D potential
constant in terms of the bulk dielectric constant ε and the
effective thickness of the 2D crystal d [see Eq. (1)]. Equivalent
expressions for the 2D potential, which rely on the evaluation
of the actual 2D polarizability of the 2D crystal, χ , have
recently been proposed [9–11]. These are probably more
appropriate for actual crystals, although it has also been shown
that Eq. (1) works well as long as ε is taken as the in-plane
component of the bulk dielectric tensor [10] of the 3D crystal.
Here we will compare both possibilities.

As shown in Ref. [9], the screening length r0 depends on
the polarizability χ as r0 ≡ 2πχ . The polarizability for 2D
materials can be computed using the expression

ε(L) = 1 + 4πχ

L
, (36)
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FIG. 7. (Color online) Coefficients ap
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x obtained vs μy .
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FIG. 8. Representation of the coefficient κ = αp
y /αp

x vs μy/μx .

where L is the distance between layers in a 3D layered
structure. As can be seen, the dielectric function ε tends to unity
as the interlayer distance L tends to infinity. We have computed
the dielectric function at different interlayer distances within
the density-functional-theory framework using the Perdew-
Burke-Ernzerhof (PBE) functional [15] and norm-conserving
Troullier-Martins (TM) pseudopotentials as available in the
SIESTA package [16]. The atomic and electronic structures
have been duly converged on all parameters. SIESTA calculates
the imaginary part of the dielectric function from which the
real part of it is obtained using the Kramers-Kronig relations.
In order to account for the underestimated band gap, the
scissor approximation, as implemented in SIESTA, has been
utilized. The scissor shift of 1.2505 eV was made to match our
previously reported band-gap value of 2.15 eV [8]. While more
elegant approaches to the gap problem of phosphorene have
been reported in the literature [7], the scissor approximation
suffices for our purpose here.

Using the plane-averaged static dielectric function
calculated with SIESTA (see Fig. 10), a value of χ in the vicinity
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FIG. 9. (Color online) Log-log representation of the coefficient
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x obtained for different values of r0 (circles) and its linear

fitting (continuous line) vs μy/μx .
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FIG. 10. (Color online) (a) Real part of the x and y components
of the dielectric constant (evaluated at zero frequency) for different
values of the interlayer distance L in a 3D black phosphorous
structure. (b) Polarizability as obtained from Eq. (36) for different
values of L after averaging on the plane.

of 3.8 Å is obtained. This value for χ yields a screening length
of r0 = 23.2 Å. From the numerical variational solution we
obtain an exciton extension of ãx = 11.7 Å and ãy = 5.9 Å
along the x and y directions, respectively. Since these values
are smaller than r0, the use of the analytical expressions
obtained in the logarithmic limit of the potential is justified.
Also this was expected from Fig. 2 and, in particular, from
the comparison shown in Fig. 3 for anisotropic cases. There it
can be seen that already for r0 = 20a0, the deviation between
the analytical result and the numerical ones is less than 10%
for a ratio μy/μx ≈ 7 (which corresponds to phosphorene).
Using now Eqs. (22)–(27), we obtain an exciton binding
energy for phosphorene in vacuum of EX = 0.61 eV, while
the numerical variational value is EX = 0.78 eV. This result is
remarkably close to a recently reported experimental value of
≈0.9 eV. The agreement is somewhat surprising since this has
been measured for phosphorene on a SiO substrate [12]. A
more recent experiment, however, reports a smaller value for
EX, which is maybe more expected due to the screening of the
substrate [17].

Similarly, we can use the value of r0 obtained from the real
part of the bulk ε (at zero frequency) and the thickness d of the

FIG. 11. (Color online) Exciton binding energy (in eV) as a
function of the thickness when all of the other parameters (effective
mass, bulk dielectric constant, and screening length) correspond to
phosphorene. The horizontal line marks the value obtained using the
actual 2D polarizability of phosphorene.

monolayer. Since the thickness is somewhat undetermined,
we have computed the binding energy for varying d, as shown
in Fig. 11. It can be observed that the binding energy of the
monolayer computed using the microscopically derived χ

matches the binding energy obtained using r0 ≡ dε/(ε1 + ε2)
for d ≈ 7 Å, which certainly can be considered the thickness
of phosphorene.

VI. CONCLUSIONS

We have shown that a variational approach to the exciton
binding energy in anisotropic 2D crystals can give excellent
results when compared to numerical approaches. Furthermore,
we have studied the range of validity of analytical solutions to
the variational approach and found that these can give highly
satisfactory results in a range of values of screening lengths
which is relevant for actual 2D crystals such as phosphorene.
We have computed the exciton binding energy in this case
and found a very good agreement with a recently reported
experimental result [12]. As long as the screening length to
exciton size is large, our analytical results can be trivially used
to predict the exciton binding energy of any 2D crystal.
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