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Abstract. We review the adiabatic renormalization method for spin-1/2 fields in FLRW
spacetimes, emphasizing its similarities and differences with the scalar case. With it, we obtain a
generic expression for the renormalized expectation value of the stress-energy tensor and analyze
its properties. We particularize this result to de Sitter and radiation-dominated universes,
recovering in the second case the equations of cold matter for late times.

1. Introduction
The renormalization of quantum fields in curved spacetime is an extensively studied issue [1, 2].
When one tries to compute the vacuum expectation value of quantities such as the stress-energy
tensor, new additional ultraviolet divergences appear which are otherwise absent in Minkowski
spacetime. Therefore, one needs to apply a well-motivated renormalization procedure specifically
designed to work in curved spacetime.

One of the most useful for FLRW metrics is adiabatic regularization. In this method, the
divergent terms are identified and subtracted through an expansion in momenta of the field
modes defining the quantum state. By dimensionality, this is equivalent to an expansion in
derivatives of the scale factor, hence the adiabatic denomination. This method was originally
developed for scalar fields [3], and we recently generalized it to deal with spin-1/2 fields [4].
The key difference between both cases is that in the first one, the adiabatic expansion that
identifies the divergent terms is of WKB type, while in the second one it is not. In order to
check the validity of our approach, we renormalized adiabatically the trace and chiral anomalies
and checked that our results were coincident with those obtained with other renormalization
procedures.

In [5], we used this construction to obtain a full renormalized expression for the stress-energy
tensor of a massive spin-1/2 field. We review here this work. After writing the equations of
motion for spin-1/2 and spin-0 fields in a FLRW metric, we show how to obtain the adiabatic
expansion of the fermion field modes and the similarities and differences with the well-known
scalar case. We then renormalize the stress-energy tensor and analyze some of its properties,
including the potential ambiguities associated to the renormalization program. We finally apply
this result to two particular examples: de Sitter and radiation-dominated universes. In the
second case, we obtain that the created particles obey at late-times the state equation of cold
matter.
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2. Basic equations
We first review the basic equations for spin-1/2 and spin-0 fields in the FLRW metric ds2 =
dt2 − a2(t)d~x2. The notation used here is explained in more detail in [5].

2.1. Spin-1/2 fields
A spin-1/2 field ψ of mass m propagating in this metric can be written as

ψ(~x, t) =

∫
d3~k

ei
~k~x√

(2π)3a3

∑
λ

[
B~kλu~kλ(t) +D†~−kλ

v ~−kλ(t)
]
, (1)

where B~kλ and D~kλ are destruction operators, and u~kλ(t) and v~kλ(t) are two time-dependent
spinors defined as

u~kλ(t) =

(
hIk(t)ξλ(~k)

hIIk (t)~σ·
~k
k ξλ(~k)

)
, v~kλ(x) =

(
−hII∗k (t)ξ−λ(~k)

−hI∗k (t)~σ·
~k
k ξ−λ(~k)

)
. (2)

Here, hIk(t) and hIIk (t) are the field modes that define the quantum state, ~σ = (σ1, σ2, σ3) are

the usual Pauli matrices, k ≡ |~k|, and ξλ are two-component helicity eigenstates with λ = ±1.
In this decomposition, the field modes satisfy

hIIk =
ia

k
(∂t + im)hIk , hIk =

ia

k
(∂t − im)hIIk , |hIk|2 + |hIIk |2 = 1 (3)

where the first two are the equations of motion and the third one is the normalization condition.

2.2. Spin-0 field
A scalar field of mass m and coupling ξ to the curvature can be written in this metric as

φ(~x, t) =

∫
d3~k

ei
~k~x√

(2π)3a3

[
A~kfk(t) +A†

−~k
f∗k (t)

]
, (4)

where A~k are destruction operators and fk(t) are the field modes. They satisfy

d2fk
dt2

+

(
k2

a2
+m2 + σ

)
fk = 0 , fkḟ

∗
k − f∗k ḟk = i (5)

with σ ≡ (6ξ − 3/4)(ȧ/a)2 + (6ξ − 3/2)ä/a. The first one is the equation of motion and the
second one is the corresponding normalization condition.

3. Adiabatic expansion
The adiabatic regularization method is based on an expansion in momenta of the field modes (hIk
and hIIk for spin-1/2 fields, and fk for scalars). This construction allows afterwards to identify
and subtract the divergent terms from the original quantity. By dimensionality, this is equivalent
to an expansion in derivatives of the scale factor, i.e. an adiabatic expansion. In any case, the
expansion must recover in the adiabatic limit the solutions

fk(t) ∼
1√
2ω
e−i

∫ t ω(t′)dt′ , hIk(t) ∼
√
ω +m

2ω
e−i

∫ t ω(t′)dt′ hIIk (t) ∼
√
ω −m

2ω
e−i

∫ t ω(t′)dt′

(6)
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with ω ≡
√

(k/a(t))2 +m2. In [4], we found that for spin-1/2 fields, there exists the following
self-consistent expansion for the field modes

hIk(t) ∼
√
ω +m

2ω
F (t)e−i

∫ t′ W (t′)dt′ , hIIk (t) ∼
√
ω −m

2ω
G(t)e−i

∫ t′ W (t′)dt′ (7)

where Ω(t), F (t) and G(t) are time-dependent functions that are expanded adiabatically as

W (t) =
∞∑
n=0

ω(n)(t) , F (t) =
∞∑
n=0

F (n)(t) , G(t) =
∞∑
n=0

G(n)(t) . (8)

Here, the superindex (n) in a function indicates that it is of adiabatic order n, which means
that it contain n derivatives of the scale factor1. Condition (6) imposes that the zeroth order
terms are ω(0)(t) = ω and F (0) = G(0) = 1. The following terms are found by substituting (7)
into (3) and solving iteratively the system of equations order by order. The terms obtained in
this way contain ambiguities, which in any case do not appear in the final expressions of the
renormalized quantities 〈ψ̄ψ〉ren and 〈Tµν〉ren. By simplicity, we can impose at all orders the

additional condition F (n)(m) = G(n)(−m) under the change of mass sign, which eliminates all
the ambiguities. We obtain and display explicit expressions for ω(n), F (n) and G(n) up to fourth
order in [4].

A natural question to ask is what is the relation of this approach to the one used for scalar
fields. For these, the adiabatic expansion of the field modes is of the WKB form [3]

fk(t) =
1√

2χ(t)
e−i

∫ t χ(t′)dt′ , χ(t) =
∞∑
n=0

χ(n) . (9)

We have χ(0) = ω from (6), and the other terms of the expansion are found by solving iteratively
order by order the equation of motion (5) (note that the normalization condition is automatically
satisfied). The key difference between (7) and (9) is that, in the first case, the adiabatic
expansions of the multiplicative and exponent terms are independent, while in the second case
they are not. In fact, one can try to obtain the adiabatic expansion for scalar fields with the
more generic ansatz

fk(t) =
1√
2ω
H(t)e−i

∫ t Ω(t′)dt′ , Ω(t) =

∞∑
i=0

Ω(i)(t) , H(t) =

∞∑
i=0

H(i)(t) (10)

which mimics the one used for fermions in (7). Here, H(0) = 1 and Ω(0) = ω. If we substitute
(10) into (5) and solve iteratively order by order, we find H(n) =

√
ω(1/

√
χ)(n) and Ω(n) = χ(n),

rediscovering this way the scalar WKB-type expansion.
To end with, we note that adiabatic regularization can be extended to spin-1 fields [6]. In

this case, the adiabatic expansion of the field modes turn out to be WKB again.

4. Renormalization of the stress-energy tensor
We now show how to renormalize the vacuum expectation value of the stress-energy tensor of a
spin-1/2 field using the formalism we have explained. As the FLRW universe is homogeneous
and spatially isotropic, we only have two independent components: the 00-component (energy
density) and the ii-component (pressure)

〈T00〉 =
1

2π2a3

∫ ∞
0

dkk2ρk(t) , 〈Tii〉 =
1

2π2a

∫ ∞
0

dkk2pk(t) (11)

1 For example, ȧ is of adiabatic order 1 and äȧ2 is of adiabatic order 4.
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where

ρk = i

(
hIk
∂hI∗k
∂t

+ hIIk
∂hII∗k
∂t
− hI∗k

∂hIk
∂t
− hII∗k

∂hIIk
∂t

)
, pk = −2k

3a
(hIkh

II∗
k + hI∗k h

II
k ) . (12)

The vacuum state is defined as B~k,λ|0〉 = D~k,λ|0〉 = 0. Both quantities in (11) contain quartic,

quadratic and logarithmic ultraviolet divergences. To renormalize them, we must first expand
their integrands adiabatically

ρk = ρ
(0)
k + ρ

(1)
k + ρ

(2)
k + ρ

(3)
k + ρ

(4)
k + . . . , pk = p

(0)
k + p

(1)
k + p

(2)
k + p

(3)
k + p

(4)
k + . . . (13)

where here ρ
(n)
k and p

(n)
k are of nth adiabatic order (note that ρ

(odd)
k = 0 = p

(odd)
k ). The different

terms of the expansion are found by substituting (7) into (12), and are written explicitly in
[5]. After this, we must subtract the terms of the expansion that cause the divergences. As for
scalar fields [3, 1, 2], we must subtract up to fourth adiabatic order. Therefore, if we define the
adiabatic subtraction terms as

〈T00〉(n)
Ad ≡

1

2π2a3

∫ ∞
0

dkk2ρ
(n)
k , 〈Tii〉(n)

Ad ≡
1

2π2a

∫ ∞
0

dkk2p
(n)
k , (14)

the renormalized stress-energy tensor is

〈Tµν〉ren ≡ 〈Tµν〉 − 〈Tµν〉(0)
Ad − 〈Tµν〉

(2)
Ad − 〈Tµν〉

(4)
Ad . (15)

We now analyze some of its properties.

4.1. Finite fourth-order subtraction terms
One finds that the fourth-order subtraction term can be written as

〈Tµν〉(4)
Ad =

2

2880π2

[
−1

2
(1)Hµν +

11

2
(3)Hµν

]
, (16)

where (1)Hµν and (3)Hµν are covariant geometric tensors of fourth adiabatic order [5]. This
tensor is mass-independent and finite. Therefore, one could naturally ask if it is really necessary
to subtract this term in (15). However, for an arbitrary spacetime, the fourth adiabatic order do
contain ultraviolet divergences, they just disappear accidentally for spatially flat FLRW metrics
[7]. Therefore, by consistency, we must also subtract in this case the fourth adiabatic order.
Note that this is similar to the renormalization of a scalar field with conformal coupling ξ = 1/6:
in this case the fourth order subtraction term is also finite, but we must subtract it anyway [1].

4.2. Conservation
The renormalized tensor is conserved, ∇µ 〈Tµν〉ren = 0 as a consequence of the independent

conservation laws ∇µ 〈Tµν〉(n)
Ad = 0, for n = 0, 2, 4.

4.3. Ambiguities and compatibility with other renormalization procedures
In the curved space renormalization program for the stress-energy tensor, there are in general
four types of divergent subtraction terms that generate intrinsic ambiguities: m4gµν , m2Gµν
(where Gµν is the Einstein tensor), (1)Hµν , and (2)Hµν (where (2)Hµν is another fourth-order
curvature tensor) [2, 8]. We have checked in [5] that our renormalized tensor obeys this property.
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In particular, in our FLRW spacetime, (2)Hµν is proportional to (1)Hµν . Therefore, the most
generic fourth-order subtraction term is, from (16),

〈Tµν〉(4)
Ad =

2

2880π2

[
c1

(1)Hµν +
11

2
(3)Hµν

]
(17)

where c1 is an arbitrary coefficient. The different renormalization procedures can only potentially
differ in the value of this coefficient. As we have seen, adiabatic regularization in particular leads
to c1 = −1/2. This ambiguity disappears for spacetime backgrounds for which the tensor (1)Hµν

vanishes, such as de Sitter and radiation-dominated universes analyzed below. For more generic
scale factors, this term rapidly vanishes at late-times.

From (16), the trace anomaly obtained by adiabatic regularization is〈
Tµµ
〉
ren

=
〈
Tµµ
〉(4)

Ad
=

2

2880π2

[
−11

2

(
RµνR

µν − 1

3
R2

)
+ 32R

]
. (18)

This is in exact agreement with the conformal anomaly for spin-1/2 fields computed by
point-splitting, zeta function, and dimensional regularization [2]. However, note that if one
considers the general expression (17) instead of (16), the numerical coefficient of 2R is actually
proportional to c1. Therefore, although we have not obtained the full renormalized stress-energy
tensor with all these procedures, we know that they will yield c1 = −1/2.

Finally, we would like to comment some recent results that give insight into the equivalence
between adiabatic regularization and Schwinger-DeWitt approaches. In [9], the sixth-order

contribution of the renormalized stress-energy tensor for scalar fields 〈Tµν〉(6)
Ad is computed

analytically. This is a good approximation to the full tensor in the limit of high masses. In
[10], this term is computed for spin-0, spin-1/2 and spin-1 fields using the Schwinger-DeWitt
approach, obtaining for spin-0 fields the same result as in [9]. We have computed this term for
spin-1/2 fields with the adiabatic regularization method described here, obtaining also the same
result as in [10].

5. Examples
We now apply the formalism developed in the last sections to two particular scale factors: de
Sitter and radiation-dominated universes. One must first solve the equations of motion (3).
In practice, one can choose a set of two particular solutions (hIk,p, h

II
k,p) correctly normalized

(|hIk,p|2 + |hIIk,p|2 = 1) and then construct the full general solution with the Bogolubov-type
rotation

hIk = Ekh
I
k,p + Fkh

II∗
k,p , hIIk = Ekh

II
k,p − FkhI∗k,p . (19)

Here, Ek and Fk are constants that must obey the following three conditions:

(i) We require |Ek|2 + |Fk|2 = 1 so that the generic solution is also normalized.

(ii) In the limit k →∞ the physical solutions must recover (6).

(iii) The constants must not add extra ultraviolet divergences to 〈Tµν〉, so that the subtraction
terms cancel all the divergences.

We now see an example of how this works below.

5.1. de Sitter spacetime
For de Sitter spacetime a(t) = eHt with H a constant, the general solution to the field equations
can be conveniently expressed, using the technique of equation (19), in terms of Hankel functions

hIk,p = i

√
πk

4H
e
πm
2H
−Ht

2 H
(1)
1
2
−im

H

(
k

H
e−Ht

)
, hIIk,p =

√
πk

4H
e
πm
2H
−Ht

2 H
(1)

− 1
2
−im

H

(
k

H
e−Ht

)
. (20)
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Condition (ii) leads to Ek ∼ 1 and Fk ∼ 0 in the limit k → ∞, and condition (iii) leads to
|Ek|2 − |Fk|2 = 1 + O(k−8). In this case, due to the symmetries of de Sitter spacetime, there
exists the preferred quantum state Ek = 1, Fk = 0. This determines a vacuum for spin one-
half fields analogous to the Bunch-Davies vacuum [11] for scalar fields. With this choice, the
stress-energy tensor can be computed analytically [4, 5].

5.2. Radiation-dominated Universe
For the scale factor a(t) = a0t

1/2, the spin-1/2 equations of motion (3) admit as a solution

hIk,p =
N√
a(t)

Wκ, 1
4
(i2mt) , hIIk,p =

Nk

2ma(t)3/2

[
Wκ, 1

4
(i2mt) +

(
κ− 3

4

)
Wκ−1, 1

4
(i2mt)

]
(21)

Here, Wκ,1/4 are Whittaker functions, κ = 1
4−ik

2/(a2
02m), and N = (a

1/2
0 /(2m)1/4)e−(πk2/4a20m).

Condition (ii) gives Ek ∼ 1 and Fk ∼ 0 for k →∞, while condition (iii) gives |Ek|2− |Fk|2 =
1 +O(k−5) [5]. However, in contrast with Sitter spacetime, the absence of extra symmetries in
the radiation-dominated universe does not helps us to fix a natural quantum state. Nevertheless,
we can make generic predictions of the behavior of the renormalized stress-energy tensor at early
and late times even without specifying the choice of constants. We have [5]:

• For late times (t >> m−1):
〈
T 00
〉
ren
∼ ρ0m

a3
and

〈
T ii
〉
ren
∼ 0.

• For early times (t << m−1):
〈
T 00
〉
ren
∼ ρ0r

a4
and

〈
T ii
〉
ren
∼ 1

3

〈
T 00
〉
ren

.

Here, ρ0m and ρ0r are finite and positive constants. Therefore, at late and early times we get
the classical equations of radiation and cold matter respectively.

6. Conclusions
In this work, we have obtained the renormalized expectation value of the stress-energy tensor
for spin-1/2 fields within the framework of adiabatic regularization and studied its properties.
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