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RESUMEN

Resumen Los analizadores sintácticos están presentes en la mayoría de los

sistemas informáticos y suponen una pieza fundamental en el proceso de

tratamiento de los datos entrantes. Al mismo tiempo, constituyen el punto de

entrada para muchos ataques pues, a menudo, estos analizadores son capaces

de procesar lenguajes mucho más expresivos de lo requerido por el protocolo

en cuestión. Al ser más complejos de lo requerido, mayor es la probabilidad de

contener errores que den lugar a importantes vulnerabilidades.

Para lidiar con este problema se han desarrollado diversas herramientas que

permiten la generación automática de estos analizadores para determinados tipos

de lenguages. Este es el caso de Bison, que permite generar analizadores sintácticos

para lenguajes LALR(1); y ANTLR, para lenguajes LL(*). Sin embargo, estos

programas también permiten al usuario introducir código arbitrario como método

para aumentar la capacidad del analizador y es aquí donde surgen la mayoría de

las vulnerabilidades.

En ocasiones, este incremento de la capacidad del analizador podría evitarse

llevando a cabo pequeñas modificaciones en el protocolo. En otros casos la

capacidad del lenguaje es suficiente y es la falta de conocimientos formales la que

lleva a una extensión inecesaria (y contraproducente desde el punto de vista de la

seguridad) de la capacidad del analizador.

Este es el caso de algunos aspectos comunes de los protocolos de red como

secuencias de datos cuya longitud viene indicada previamente o campos que
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emplean un delimitador definido en otro. Sorprendentemente, para muchos de

estos aspectos, la literatura contiene aseveraciones vagas o incluso contradictorias

acerca de la capacidad requerida por parte del analizador.

En este documento afrontamos este problema desde el punto de vista de la

teoría de lenguajes formales. Definiremos límites a nivel formal sobre la capacidad

requerida para analizar determinados lenguajes estableciendo así el punto de

partida para futuras investigaciones. Los resultados positivos aportados están

respaldados por la implementación, empleando Flex y Bison, de un analizador

sintáctico para el protocolo HTTP, que será descrito al final de este trabajo.

Palabras clave lenguajes independientes de contexto, generadores de anal-

izadores sintácticos, validación de entradas
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ABSTRACT

Abstract Parsers are a fundamental building block in the data processing

pipeline of software systems. At the same time, they are also an important entry

point for attacks, which is attributed to the fact that, very often, these parsers

are able to process languages that are more expressive than what is required by

the protocol. Since they are more complex than needed then the probability of

containing errors, which lead to important vulnerabilities, increases.

As an attempt of solving this problem tools for generating such parsers,

for certain languages, have been developed. This is the case of Bison, which

allows to generate parser for LALR(1) languages; and ANTLR, for LL(*) ones.

However, these programs allow the user to introduce handwritten code as a

mechanism to augment the capabilities of the parser and it is here where most of

the vulnerabilities rely on.

Sometimes, this increment of the parser’s capabilities could be avoided by

making small changes in the protocol. Others, the parser is already able to parse

the protocol and it is the lack of formal knowledge which leads to a unnecessary

(and counterproductive from the point of view of security) increase of the parser’s

capabilities.

This is the case of some common features in network protocols such as content

length fields or dynamically defined delimiters. Surprisingly, for a number of

idioms that are common in network protocols, the literature contains vague or

contradictory statements about what that required expressiveness would be.
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In this document we approach this question from the point of view of formal

language theory, laying a foundation for further research on the parsing problem.

The positive results given on this work are backed up by the implementation of a

HTTP parser, using Flex and Bison, described at the end of this paper.

Keywords context-free languages, parser generator, input validator
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1INTRODUCTION

1.1 Motivation
Parsers are a fundamental building block in the data processing pipeline of

software systems. The creation of parsers is a common activity, which is facilitated

by so-called parser generators such as Bison or ANTLR. Most parser generators

take as input grammar rules that are decorated with so-called semantic actions.

Semantics actions are performed as the input is being parsed. While the grammar

rules are restricted to generate an efficiently parseable subclass of context-free

languages (LALR(1) for Bison, LL(*) for ANTLR)1, the semantic actions allow for

the execution of arbitrary code.

Typically, semantic actions are used to produce output, construct a data

structure like an abstract syntax tree and also, through the use of code assertions,

control the parser behavior. Controlling the behavior allows the parser to recognize

languages beyond the class of context-free languages (e.g. the language an bn cn is

easily parsed by adding an integer variable that semantic actions can manipulate).

The downside is that the expressiveness of semantic actions make parsers prone

to vulnerabilities and form the entry point for attacks [31, 19, 11].

There is a dispute in the literature, especially in that on network protocol

parsing, about the extent to which the expressiveness added by semantic actions

is actually required. Some authors suggest that they are necessary because

“network protocols often have features that cannot be expressed in a context-
1 https://en.wikipedia.org/wiki/Comparison_of_parser_generators
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1. INTRODUCTION

free grammar” [12]. Other authors suggest that they are merely required for

conciseness of expression, because “it is possible to rewrite these grammars to

[ . . . ] be context-free, but the resulting specification is much more awkward” [9].

But even in cases where the discussion is more specific about technical details (“As

long as the length-field has constant width, it is theoretically possible to describe

arrays and padding with a context-free grammar.” [25]), the arguments made

are not backed up by any formalization or proof. As a consequence, the dispute

remains open, and users find little guidance for creating a sufficiently expressive,

yet not overpowered and unnecessarily vulnerable, parser for a given task.

1.2 Goal of the project
The main goal of this document is to throw some light over the dispute

mentioned before by approaching the problem from the point of view of formal

language theory. Namely, we ask the question of which common network protocol

features can be recognized without making use of semantic actions, i.e., which

can be expressed in terms of parser generator input files without writing any code

beyond the bare grammar. Note that by asking this question we do not perform an

analysis of the full parsing process, but consider only the task of input validation;

we leave a formal analysis of the task of filling a data structure to future work.

Once a network feature has been proved to be context-free, people writing

parsers for such feature will certainly know that it can be done without using

semantic actions. By writing a parser without semantic actions, no handwritten

code is added to it and thus, it should be considered safe as long as the parser

generator is considered as so.

By the other hand, efforts inverted in parsers’ security should focus on features

that have been proved to not be context-free. Ideally, these features may be

reconsidered in order to make them context-free which will drastically reduce the

number of vulnerabilities found on network software systems.

We give an answer for number idioms for which we found contradictory

statements in the literature: content length fields, selector fields for message types,

chunked messages and dynamically defined delimiters. Our answer takes two

aspects into account:
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1.3. Structure of the document

1. From the point of view of formal language theory, we investigate which of

these idioms can be expressed in terms of a context free (or even regular)

language. We also investigate this question for an intersection of context-

free languages, which corresponds to running multiple input validators in

parallel and isolated from each other.

2. From a practical point of view, we investigate how concisely these idioms can

be expressed in the input language of a widely used parser generator: Bison.

For this, we implement an input validator for a subset of HTTP without

using semantic actions beyond the ones that are strictly necessary according

to our language-theoretical development.

Our study yields the following results.

• We show that languages with unbounded length fields are not context-free

nor can be expressed as a finite intersection of context-free languages, while

languages with fixed-size length fields are even regular and allow for a

concise representation using context-free grammars.

• We show that languages with resource type field are context-free and allow

for a natural representation using context-free grammars.

• We conclude that chunked messages are CfL under the same constraints as

content length fields.

• We remark that languages with dynamically defined delimiters of

unbounded length are not context-free. Even though languages with a

dynamically defined delimiter of fixed size are even regular, we show that

they cannot be represented concisely in a context-free grammar.

In summary, the contribution of this paper is to investigate, for the first time,

the expressiveness required for recognizing several idioms that are common in

network protocols. It thereby helps lay the formal foundations of a research area

of growing importance.

1.3 Structure of the document
The remainder of this paper is structured as follows. Chapter 2 describes the

state of the art and describes concepts that will be used throughout the document,

Languages and Security 3
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Chapter 3 discusses the case of content length fields, whereas Chapter 4 considers

the remaining idioms. We outline an HTTP input validator in Chapter 5 and

conclude the document with a brief analysis of recent related work, comparing it

with ours.

4 Languages and Security



2STATE OF THE ART

2.1 Language’s theory
We begin this chapter with some definitions related to formal languages theory

[17] that will be used throughout the document.

An alphabet Σ is a nonempty finite set of symbols. A word w is a finite sequence

of symbols of Σ where the empty sequence is denoted by ε. A language is a set of

words and the set of all words over Σ is denoted Σ∗.

A language may be defined by enumerating its components or by providing a

list of rules which describes how the words of the language are composed.

We denote by |w| the length of a word w. Further define (w)i as the i-th symbol

of w if 1 ≤ i ≤ |w| and ε otherwise. Hence, w = (w)1 . . . (w)|w|.

Since languages are sets, they can be combined to produce new languages.

Concatenation of two languages L12 = L1 · L2 is defined as the set of words

obtained by concatenating a word of the first language with a word of the second

one, preserving the order. Formally we write

L1 · L2 = {w1 · w2 | w1 ∈ L1, w2 ∈ L2}

Boolean operations as intersection and union are defined as usual

L1 ∩ L2 = {w | w ∈ L1 ∧ w ∈ L2}; L1 ∪ L2 = {w | w ∈ L1 ∨ w ∈ L2}

Languages and Security 5



2. STATE OF THE ART

There are two important operations left that are applied over languages and

which are related with the concatenation. The Kleene star of a set consists of

words obtained by concatenation of an arbitrary number of words of the language,

including the concatenation of 0 words which produces the empty word ε. In

a similar way the Kleene plus is defined by making the number of concatenated

words strictly positive. By abuse of notation we often write w+ and w∗ to denote

{w}+ and {w}∗, respectively.

Given a nonempty subset S of Σ and i ∈ N, Si is defined to be the empty set,

∅, if i = 0 otherwise Si = {w | |w| = i and (w)j ∈ S for all j}. When S = {a}
we abuse notation and write ai to denote the word (not the language) such that

{ai} = Si.

Within the context of languages theory, a grammar is a set of production rules

describing how to form strings. The set of generated strings is a language.

Therefore, a grammar is usually thought of as a language generator. Formally, a

grammar is a tuple G = (V,Σ, S, R) where V is a finite set of variables, Σ is a finite

set of terminal symbols, S is the axiom or starting symbol and R is a finite set of rules.

Each rule is of the form X -> Y which means that for any occurrence of X

(known as the left part for obvious reasons), Y (known as the right part) can be

produced. Terminal symbols are those that may appear in a string and for which

there is no rule for having them as a left part. Thus Σ is also known as the

alphabet of the produced language. Respectively non-terminal symbols are the rest

of variables which cannot appear in a string but are used to build up the grammar.

The four rules given in 2.1 define a grammar where S and A are non-terminal

symbols while a and b are terminals. A is also the axiom of the grammar.

A→ aA A→ aS S → baS S → b (2.1)

To generate a string in the language we start with a string consisting of only

the start symbol. Any production rule may be applied if its left part appears in

the current string (for the first step the left part should be the start symbol). When

applying a rule, the first occurrence in the given string of the left part of the rule is

removed. In its place, the right part of the rule is written. The process continues

until there are no non-terminal symbols left.

An example of derivation of a string for the grammar 2.1 is

6 Languages and Security



2.2. LangSec: Language-theoretic Security

Example:
A⇒ aA⇒ aaA⇒ aaaS ⇒ aaabaS ⇒ aaababaS ⇒ aaababab

so the word “aaababab” belongs to the language generated by the grammar. ♦

In the example we have implicitly defined a step as the binary relation⇒ on

(V ∪ Σ)∗ given by u⇒ v if there exists a rule X → w of G such that u = αX β and

v = αw β for some α, β ∈ (V ∪ Σ)∗. To extend this concept we define u ⇒∗ v if

there exists a step sequence u0 ⇒ u1 ⇒ . . . ⇒ un such that u0 = u and un = v. A

step sequence u⇒∗ w is called a derivation whenever u = S and w ∈ Σ∗.

The language generated by a grammar G is formally defined as

L(G) = {w ∈ Σ∗ | S ⇒∗G w} .

A grammar is said to be context free if and only if the left part of each rule

consists of a single non-terminal symbol. The grammar given in 2.1 is context

free. To illustrate the difference we present the grammar 2.2 as an example of a

context-sensitive grammar.

A→ aS A→ bS aS → aaS aS → bS bS → aS S → b (2.2)

The following example shows a derivation of a string for the grammar 2.2

Example:
A⇒ aS ⇒ aaS ⇒ abS ⇒ abb

so the word “abb” belongs to the language generated by the grammar. ♦

A language L is said to be context-free, or CfL for short, if there exists a context-

free grammar G such that L = L(G).

The size of a grammar is the sum of the sizes of its production rules, where the

size of a rule (X,w) is given by 1 + |w|.

2.2 LangSec: Language-theoretic Security
Amongst the field of informatics system’s security, langsec [3] is a branch of

investigation that aims to improve the safety of these systems by tackling the

problem from a theoretical point of view. Thus, the messages entering the system

Languages and Security 7



2. STATE OF THE ART

are treated as words from a formal language and the grammar associated with

said language becomes the primary defense weapon against hostile inputs.

To date there have been many and varied attempts to solve the recent "epidemic

of insecurity" [9, 25, 23, 27]. Practically all of these attempts have gone through

the development of programs in order to automatically generate the code of the

parser, thus trying to avoid the entry of errors on behalf of the programmer.

Facing the lack of sufficiently satisfactory results, LangSec considers that the

only path to guarantee the system’s safety implies defining a formal language that

recognizes the valid entries and so diminishes the problem of input handling by

creating a recognizer for that language

Nonetheless, far from being an "Ivory Tower" theory, LangSec is very focused

on the achievement of practical results. Based on solid theoretical principles, it

develops efficient tools in order to address these and other problems:

• Every element of an informatics system has to accept certain entries and

reject those that are badly molded. The problem that arises is usually caused

by the fact that this task is completed in an uncontrolled manner and doesn’t

follow any logic, performing small trials which are scattered throughout the

program.

• Every time that an unspecific entry is accepted and processed, the program

must engage more resources than those strictly required. This generally

implies the storage of more memory, in accordance with the characteristics

of the entry, which entails an open door for the attackers. If we restrict the

capacities of our program to what is really essential, we reduce the amount

of possible error points.

• Some protocols are too complex, which leads to the consequent use of

complex parsers that tend to be full of errors.

• The formats that can be imitated by attackers are the biggest threat due to

the fact that it is not possible to distinguish a valid message from an attack.

If the accepted messages’ language could be so broad that it could contain

attacks, it would be impossible to reach a minimum level of security.

8 Languages and Security



2.3. Parser generators

2.3 Parser generators
A parser generator is a tool that accepts a file specifying a grammar as input

and thus produces a program, written in a certain programming language. This

program, when compiled, produces a parser for the given grammar. Most parser

generators define their own language to write grammars, which tends to be very

restrictive.

We can find a huge variety of parser generators [5] with different capabilities

in terms of the types of languages that can be accepted by their generated parsers.

They also differ in the language in which the parser is written and the format used

to describe the grammars. However, there is one thing all these parsers have in

common; they use semantic actions.

By semantic action we mean snippets of arbitrary handwritten code that will

be executed by the parser under certain conditions while parsing an input.

One of the most known parser generators is Bison, which is usually combined

with Flex, where semantic actions are related to a rule and are performed once

its rule has been used to reduce the input. Table 2.1 contains a brief overview of

some other parser generators, showing that semantic actions are common amongst

them.

2.3.1 Safeness
Most network software systems have to parse untrusted inputs that may be

attacks. An attacker will try to make the system hang or crash by exploiting its

vulnerabilities. From a theoretical point of view, a parser is said to be safe when

there are no vulnerabilities and thus it cannot be attacked. Since this definition

cannot be achieved in practice, we consider a parser as safe when we have reasons

to expect the parser to not have vulnerabilities.

Writing a parser (or any application in general) by hand is an error prone task

which makes the resulting parser extremely vulnerable. Parser generators try to

solve this problem by providing a way to automatically build safe and bug-free

parsers from a given description of the grammar that must be parsed.

Once the parser generator has been extensively used (such is the case of Flex

and Bison, for example) it can be considered safe as long as the original bugs have

been fixed and no others have been detected recently.

Languages and Security 9



2. STATE OF THE ART

Name Use of semantic actions

ANTLR4
Semantic actions are pieces of arbitrary code

surrounded by curly braces which can be used in a
number of places within the grammar. [26]

APG Under the name of Callbacks, handwritten functions are
defined to be executed after a rule is used. [30]

Beaver Same as Bison, semantic actions are specified after each
rule. [14]

DRAGON

Each production rule includes an optional method’s
name to be called once the rule is used. This method

should be implemented by the user in the target
language. [21]

Irony

There are no semantic actions but the input itself is a
piece of C# code. This tool may be seen as a library that

facilitates the process of parsing but handwritten C#
code may be used everywhere. [2]

Hammer Same situation as the previous one but using C code.
[27]

Table 2.1: Semantic actions in different parser generators

However, as soon as we add handwritten code to the parser (which is done

through semantic actions), we can no longer assume that the parser is safe. Even

if the parser generator can be trusted, the user may add vulnerabilities within its

handwritten code.

2.3.2 Flex and Bison
It is worth focusing on these two tools since these are the ones that are used

during the implementation of our HTTP input validator, described at Chapter

5. In this section we will not describe their inner workings, instead we give an

overview of how they work.

Both tools receive input files with a certain format, describing what the user

wants the parser to do and produces a C code which, when compiled, performs

the expected parsing.

10 Languages and Security



2.3. Parser generators

Flex

This tool is also referenced to as the lexer. It accepts as input a file describing

which tokens should be detected, given as regular expressions, and generates a

C program to do it. Figure 2.1 shows an example of a Flex’s input whose goal

is to generate a tokenizer which detects any non-empty sequence of digits as a

“NUMBER”; any non-empty sequence of letters as a “WORD” and carriage returns

and new lines as so. Any other symbol will be identified as “OTHER”.

[0-9]^+ {return NUMBER;}
[a-zA-Z]^+ {return WORD;}
"\n" {return CARRIAGE_RETURN;}
"\r" {return NEW_LINE;}
. {return OTHER;}

Figure 2.1: Example of a set of rules defined in Flex.

The C program will read the input trying to find the longest string that matches

one of the rules. When it is found, the C code written with the rule is executed.

The last rule matches anything that doesn’t match any of the previous ones.

By abuse of notation, the code shown in Figure 2.1 is usually called lexer and

referred to as the program that performs the division of the input into tokens,

ignoring the step of producing a C program which implements this procedure.

Bison

Bison is a parser generator which is accepts a grammar as input and produces a

C program that checks whether a given message could have been generated by

the grammar or not. It is important to take into account that during this process

semantic actions are performed.

When used in combination with Flex, the generated parser will split the

message into tokens, according to the rules defined within the lexer, and then

check if the result follows the given grammar. Thus, the terminal symbols that

appear in the Bison’s grammar are the tokens detected by Flex. Figure 2.2 shows

an example of a grammar. This grammar represents all those messages composed

by a “WORD” followed by a non-empty and arbitrarily large list of “NUMBER”s,

each one in a different row.

The importance of context-free grammars (and respectively, context-free

languages) comes from the fact that as long as a language is context-free it can be
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axiom: WORD S {}
S: NEW_LINE NUMBER S {}
| NEW_LINE NUMBER {}

Figure 2.2: Example of Bison’s grammar.

parsed with a context-free grammar and thus with Flex and Bison without using

semantic actions.

2.4 Fuzz testing
Fuzz testing or fuzzing is a software testing technique based on providing

invalid, unexpected or random data to the inputs of a computer program looking

for crashes, hangs and any kind of memory leak. Basically, it is a form of random

testing.

Fuzzing can be employed as white-, gray- or black-box testing. The fuzzer

(program that performs the fuzzing over a target) feeds the target program with

arbitrary inputs and monitors the program behavior until a memory leak is found.

While the target is not crashing, the fuzzer performs small variations to the input

to explore different paths.

One of the most famous fuzzers is American Fuzzy Lop (American Fuzzy Lop for

short) [32] which employs a new type of compile-time instrumentation and genetic

algorithms to automatically discover interesting inputs. For cases when the source

code of the target is available, AFL incorporates a compiler which allows AFL to

perform fuzzying while monitoring the internals of the program. Figure 2.3 shows

a running instance of AFL.

2.5 Input validation
Within the context of computer science, the concept of parsing refers to

the process of analyzing a string, filling certain data structure and extracting

information from it, according to a given grammar.

By using Bison (with or without flex), input validation can only be done by

using semantic actions since the data structure have to be defined by the user and

so filled “manually” by adding the proper code to implement this task.
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Figure 2.3: Example of American Fuzzy Lop running over the program “parser_fuzz”

However, throughout this document, we restrict ourselves to input validation,

which is slightly different from parsing. Input validation consists in determining

whether a string is correct or not according to a given grammar. Parsers also

perform input validation indirectly since messages not matching the rules are

rejected and only the correct ones are used to fill some data structure. Thus, parser

generators are also used to generate input validators.
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3FORMAL ANALYSIS OF CONTENT
LENGTH FIELDS

Content length fields are elements of network protocols such as HTTP and DNS

that determine the length of subsequent arrays. As an example, consider the

following HTTP POST message.

POST /1/notification/list HTTP/1.1\r\n
Content-Length: 47\r\n\r\n
{"header":{},"query":{"count":100},"answer":{}}\r\n

Here, the content length field begins after the keyword Content-Length:

and terminates before the carriage return/newline \r\n. Its content, i.e. 47,

describes the length of the body of the message, which is the string that follows

the double \r\n and that ends with \r\n. In the case of the HTTP protocol, the

content length field may be of arbitrary size; in other cases, such as the RDLENGTH

field of the DNS protocol [6], the content length field has fixed size.

In this section we characterize content length fields from the point of view

of formal language theory. We begin by a formalization that aims to capture

their essence, and then characterize the class of languages that are required for

expressing them in the bounded and unbounded cases.
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3.1 Modeling Content Length Fields
For modeling content length fields, we will work with formal languages over

an alphabet Σ. For the example of HTTP, Σ would be the ASCII character set.

We define the size of the content length field as the number of digits composing

the number that represents the length. As shown next, when modeling content

length fields there are slightly differences depending on the boundary of the size

of the length field.

3.1.1 Fixed Size
For describing content length fields of finite size n > 0 we define the language

LF as follows:

LF (n) = {w x | w ∈ Bn, |x| =
∑n−1

i=0 (w)i+1 · bi} .

Here B = {0, . . . , b − 1} ⊆ Σ for b > 1. Intuitively, LF (n) represents the same

number twice, using two different encodings: first b-ary as w and then unary as x,

where the relationship between both encodings is given by

|x| =
n−1∑
i=0

(w)i+1 · bi .

For example, the word 11abc consists of the binary representation of 3 =

(1 · 21) + (1 · 20) followed by a word (abc) of length 3.

Remark 1. The entire development of this section remains valid when choosing a length

encoding in which the most significant digit comes first, e.g., as in big endian encodings.

3.1.2 Unbounded Size
For describing content length fields of unbounded (and unknown) size, observe

that any overlap in the alphabets Σ and B for describing content and its length,

respectively, introduces ambiguity as to where the content length field ends. A

common approach to remove such ambiguities is to use a delimiter, which is a

special symbol ] ∈ Σ \B that marks the end of the content length field. We extend

the definition of LF (n) to account for such delimiters:

L]F (n) = {w ] x | w ∈ Bn, |x| =
∑n−1

i=0 (w)i+1 · bi} .
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We are now in position to define a language for describing content length fields

of arbitrary and unbounded size:

L∞ =
⋃
i>0

L]F (i) .

Observe that L]F (n) is finite for every n but L∞ is not.

3.2 Analysis of Unbounded-Size Content Length Fields
We now show that L∞ is not a context-free language. This implies that every

input validator based on CfL (like Bison, etc.) has to rely on semantics actions to

deal with unbounded content length fields. We obtain this result as a corollary of

a more general result, namely that L∞ is not even a finite intersection of CfLs.

Teorema 2. L∞ is not a finite intersection of context-free languages.

The generalization from context-free languages to finite intersections of context-

free languages is

1. practically relevant, because the intersection of languages, e.g. L1 ∩ L2, can be

validated by running validators for L1 and L2 and taking the conjunction of

their return values. If the validators for L1, L2 are “trusted” then so should

be the input validator for L1 ∩ L2. This means that we can build trusted

input validator for languages beyond CfL, which departs from some claims

emerging in the security literature [28].

2. non-trivial, because CfL are not closed under intersection: Consider L1 =

{an bn ci | i, n ≥ 0} and L2 = {ai bn cn | i, n ≥ 0}. Their intersection

L1 ∩ L2 = {an bn cn | n ≥ 0} is a textbook example for a language that

is not context-free.

3.2.1 Proof Sketch
For the proof sketch, we need to introduce semilinear languages as a tool: a

subset of Nn, with n > 0, is called semilinear, if it can be expressed as a finite union

of linear sets. A set S ⊆ Nn is called linear if there exists~b ∈ Nn and a finite subset

{~p1, . . . , ~pm} of Nn such that S = {~b+ λ1 ~p1 + · · ·+ λm ~pm | λ1, . . . , λm ∈ N}.

Let w = 〈w1, . . . , wn〉 be a tuple of n words. Define a mapping fw : Nn →
w∗1 . . . w

∗
n by fw(i1, . . . , in) = wi11 . . . w

in
n , that is, the output of fw is a word in which
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the i-th component of w is repeated a number of times that corresponds to the

i-the input to f . We define the preimage of fw and liftings of fw from elements to

subsets of Nn in the natural way.

The following result by Latteux [20] establishes a fundamental correspondence

between languages that can be expressed as the intersection of CfLs and semilinear

sets.

Proposition 3 ([20]). Let w = 〈w1, . . . , wn〉, n > 0, and L ⊆ w∗1 . . . w
∗
n:

f−1
w (L) is semilinear if and only if L is the intersection of a finite number of CfLs.

Since L∞ * w∗1 . . . w
∗
n, Proposition 3 does not directly apply to L∞. However, as

the following lemma shows, it does apply to the subset of words in L∞ where the

content length consists exclusively of 1’s and the message’s body is obtained by

repeating the non-delimiter symbol a. With a 6= ], this subset is formally given by

L∠(a) = L∞ ∩ 1∗]∗a∗ .

Lemma 4. L∠(a) is not a finite intersection of context-free languages.

The proof of Lemma 4 relies on the observation that

L∠(a) = {w ] aval | w ∈ 1n, val =
∑n−1

i=0 b
i} .

It is routine to check that
∑n−1

i=0 b
i = (bi − 1)/(b− 1), which gives us the following

representation of the preimage of fw:

f−1
w (L∠(a)) =

{(
i, 1,

bi − 1

b− 1

)
| i ∈ N

}
. (3.1)

For showing that this set is not semilinear we make use of the facts that (a) the third

component grows exponentially in i, and (b) f−1
w is infinite. Using the definition of

semi-linear set, we take two elements in (b) and we construct a third one. We then

show that those three elements violate (a) unless they all coincide. The full proof

details are given in Appendix A.

With this, the statement of Theorem 2 follows immediately: Assume to the

contrary that L∞ is a finite intersection of context-free languages. Since 1∗]∗a∗ is

context free, L∠(a) is also a finite intersection of CfLs, which contradicts Lemma 4.
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3.2.2 Beyond Length Constraints
Our definitions of LF (n) and L∞ do not put any constraints on the structure

of the word w that follows the length field and the delimiter (if any). In practice,

however, the word w may need to satisfy constraints beyond those on its length,

such as containment in a specific language.

For capturing such constraints consider a language LC∞, which is defined along

the lines of L∞, but with the message’s body w ∈ C, for an infinite context-free

language C (instead of the less restrictive w ∈ Σ∗ used in the definition of L∞). We

have the following theorem.

Teorema 5. LC∞ is not context-free

For the proof of Theorem 5 assume that LC∞ is context-free. Construct from LC∞ a

new language La∞ by replacing w ∈ C by a|w|. This replacement can be realized by

a so-called sequential transducer mapping which, in our case, is a mapping from 2Σ∗

into 2Σ∗ . Sequential transducers are an input-output automata based formalism:

while the automaton reads from its input tape, it outputs symbols on its output

tape. In our setting, the automaton outputs what it reads until the first occurrence

of ‘]’. After outputting ‘]’ the automaton outputs ‘a’ for each symbols it reads.

A detailed definition of sequential transducers is found in the book of Ginsburg

[17] where he also shows that context-free languages are closed under sequential

transducers mapping [17, Theorem 3.3.1]. We thus conclude that La∞ is a context-

free language. We can now replace L∠(a) by La∞ in the proof of Lemma 4 and

obtain a contradiction to the initial assumption that LC∞ is context-free.

3.3 Analysis of Fixed-Size Content Length Fields
Languages L(n) with finite-size content length fields are finite, hence regular

and thus also context-free. Next, we study the size of specifications for L(n). In

terms of finite state automata, all automata describing L(n) grow exponentially

in n. This is because for all automata deciding L(n) there cannot be less than

exponentially many reachable states after reading the first n symbols. For

otherwise, two distinct numbers are not distinguished by the automaton, hence

it cannot decide L(n). We conclude that the encoding of L(n) by a finite state

automaton is not useful for practice purposes. However, when L(n) is specified
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using context-free grammars, we show in this section that it admits a much more

compact encoding.

Teorema 6. Let n > 0, there exists a CfG G(n) of size O(n) such that L(G(n)) = LF (n).

Proof. We prove the statement by defining the grammar G(n). For simplicity of

presentation we assume that length fields are encoded in binary, i.e. b = 2 in the

definition of LF (n). The generalization to any b > 2 is tedious but straightforward.

The intuition behind the first set of rules of G(n) is to scan the length field from

left to right and generate a symbol Fi whenever there is a 1 at position i. I.e., the

symbol Fi represents the number 2i. Zeroes are ignored.

S → Xn X0 → ε

{Xi → 0 Xi−1 | 1 ≤ i ≤ n} {Xi → 1 Xi−1 Fi−1 | 1 ≤ i ≤ n}

The intuition behind the next rules is to translate the binary encoding of the length

field, given by the Fis, for i > 0, into a unary encoding of the length field, given

by the terminal symbols. The role of those rules is better understood considering

parse tree instead of derivations. In order to avoid cluttering, we do not recall

here the definition of parse tree [18]. Each Fi yields parse trees that all have the

same shape as shown in the Figure 3.1 for the case F3. Thus if the root of the tree

is labeled Fi it has 2i leaves.

F3

F2

F1

F0

p

F0

i

F1

F0

z

F0

z

F2

F1

F0

a

F0

z

F1

F0

z

F0

y

Figure 3.1: Parse tree of the 23 = 8 symbol word “pizzazzy”. (“pizzazzy” scores you 49 points
at Scrabble R©).

Each of those symbols corresponds to one symbol of the payload that follows.

{Fj → Fj−1 Fj−1 | 1 ≤ j ≤ n} {F0 → c | c ∈ Σ}

It follows by construction that L(G(n)) = LF (n). Inspecting the definition shows

that the size of the rules of each set is fixed and independent from n while the

number of rules on each set is exactly n so the size of G(n) is O(n).
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Example: The derivation below shows that 11abc ∈ LF (2) is also contained in

L(Gf (2)).

S ⇒ X2 ⇒ 1X1F1 ⇒ 11X0F0F1 ⇒ 11F0F1 ⇒ 11F0F0F0 ⇒∗ 11abc

♦
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4FORMAL ANALYSIS OF SELECTORS,
CHUNKS, ANDDYNAMICDELIMITERS

In this section we perform a formal analysis of idioms that are commonly

encountered in network protocols and about which there are ambiguous

statements in the literature: Selector fields, chunks, and dynamic delimiters.

4.1 Selector Fields
We illustrate selector fields using the example of the record type field of the

DNS protocol. If the field QTYPE has type A, the body of the message is a 32-bit

IPv4 address, whereas if it has type AAAA, the body is a 128-bit IPv6 address.

example.com A 12.34.56.78
example.com AAAA 0123:4567:89ab:cdef:0123:4567:89ab:cdef

That is, depending on the type of the selector field, the IP address that matches the

domain “example.com” has IPv4 or IPv6 format. A similar selector field is used

in the HTTP protocol to specify whether the message is a response or a request,

which affects the possible header fields.

Selector fields hence mandate the parser to use different subsets of grammar

rules when parsing the message body. They have been claimed to yield awkward

specification in terms of grammars [25]. Here, we argue that selector fields can

actually be encoded in a natural way.
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4.1.1 Selector Fields as a Grammar
As a starting point we assume a finite set of n > 0 words wi ∈ Σi, for 1 ≤ i ≤ n,

specifying the selectors such as A or AAAA. We further assume a set of n grammars

Gi = (Vi,Σi, Si, Ri) specifying the language of the message body associated to the

selector wi.

Without loss of generality, assume that the non-terminal symbols of the

grammars Gi for the individual message bodies are pairwise disjoint, i.e., Vi∩Vj =

∅, for all distinct i, j. Then the grammar G = (V,Σ, S, R) given by

• V = {S}∪
⋃
i=1 Vi where S is a fresh nonterminal that is also the start variable,

• Σ =
⋃n
i=1 Σi, and

• R = {S → wi Si} ∪
⋃n
i=1 Ri

is a natural account for the context-free language L(G) =
⋃n
i=1{wi} · L(Gi) that

specifies the relationship between selector fields and their content.

Example: The simplified DNS messages given to illustrate selector fields can be parsed

by using the grammar from Figure 4.1. This grammar has been built under the assumption

that a valid domain is a non-empty string where any symbol whose hexadecimal ASCII

code is between 0x21 and 0x7E is allowed.

S → DOMAIN IP
DOMAIN → [0x21,0x7E]+
IP → ’A’ IPv4

| ’AAAA’ IPv6
IPv4 → ([0-9][0-9]’.’){4}
IPv6 → ([0-9a-f]{4}’.’){8}

Figure 4.1: Grammar for parsing the selector field of a simplified version of DNS protocol.

A derivation of a message for this grammar will be

S ⇒ DOMAIN IP⇒ example.com IP⇒ example.com A IPv4⇒ example.com A 12.34.56.78
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4.2 ChunkedMessages
HTTP supports a transfer mechanism in which data is sent in a series of chunks.

Chunked transfer is indicated by the header Transfer-Encoding: chunked,

signaling that the message is split into and thus requires a special treatment. Each

chunk contains a variable length field with the size of the chunk.

HTTP/1.1 200 OK\r\n
Date: Mon, 22 Mar 2004 11:15:03 GMT\r\n
Content-Type: text/html\r\n
Transfer-Encoding: chunked\r\n
\r\n
29\r\n
<html><body><p>The file you requested is \r\n
5\r\n
3,400\r\n
23\r\n
bytes long\r\n
0\r\n
\r\n

4.2.1 Modeling and Analysis of Chunked Transfer Encoding
To model chunked messages, we define the languages Lc∞ and LcF relying on

the definitions given in Section 3.1:

Lc∞ = (L∞)+, LcF (n) = (LF (n))+ .

The difference between these two languages rely on the definition of the length

indicator of each chunk.

Teorema 7. The language Lc∞ is not a finite intersection of CfLs. The language LcF (n)

is regular for all n > 0 and there exists a grammar GcF (n) of size O(n) such that

L(GcF (n)) = LcF (n).

Proof. The languages LF and L∞ have already been studied in Section 3.1; here

we focus on the + operator. To this end, let a ∈ Σ be such that a 6= 1 and a 6= ].

One can easily see that

L∠(a) = Lc∞ ∩ 1∗]∗a∗ .

It is worth pointing out that with the previous intersection we are just considering

the first chunk of each message. If the language Lc∞ is a finite intersection of CfLs

Languages and Security 25



4. FORMAL ANALYSIS OF SELECTORS, CHUNKS, ANDDYNAMICDELIMITERS

then L∠(a) will also be a finite intersection of CfLs, which leads to a contradiction

with Lemma 4.

Next, we exhibit a grammar for the language LcF (n) which is regular since

LF (n) is a finite language. Let G(n) be a context-free grammar for the language

LF (n) and let SG be its start symbol. Following Theorem 6, the size of G(n) is O(n).

Finally, the grammar GcF (n) is defined by adding to G(n) a fresh start variable S

and the following two rules which intuitively concatenate LF (n) with itself one or

more times:

S → SG and S → SG S .

Clearly, L(GcF )(n) = LcF (n) = (LF (n))+ and the size of GcF (n) is O(n).

4.3 Dynamically DefinedDelimiters
Some protocols, such as the MIME protocol, allow to split messages into

multiple parts that are separated by user-defined delimiters. We start with the

following example [8].

MIME-Version: 1.0
Content-type: multipart/mixed; boundary="Mydelimiter"

This is the preamble. It is to be ignored.
-Mydelimiter

This is implicitly typed plain ASCII text.
-Mydelimiter
Content-type: text/plain; charset=us-ascii

This is explicitly typed plain ASCII text.

-Mydelimiter-
This is the epilogue.

In the above example, the delimiter is first declared, boundary="Mydelimiter",

and then Mydelimiter is used three times, the first two times as --Mydelimiter

the last time as --Mydelimiter--. The challenge in parsing such message is

to match correctly the declared delimiter with all its subsequent occurrences.

Typically, it is done using semantic actions, where the delimiter is stored in a

table whenever declared and then table lookups are used to identify all the sub-
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sequent occurrences. The same situation occurs with user-defined variables in a

programming language.

4.3.1 Modeling and Analysis of Dynamically definedDelimiters
We now study parsing with user-defined delimiters assuming semantic actions

are prescribed. Consider the language given by Ld = {ww | w ∈ Σ∗}. Intuitively,

Ld captures a use-define relation where the first w corresponds to the declaration

while the second corresponds to the use. Because the language Ld is a classical

example of a language that is not context-free, we conclude that user-defined

delimiters are not context-free.

However, by restricting the language to delimiters of fixed size, say n, we

obtain a finite (and thus regular) language of all possible delimiters. Turning back

to the language Ld, the restriction yields the following subset of Ld:

Ld(n) = {ww | |w| = n} .

Although Ld(n) is regular, the following theorem, due to Y. Filmus [16], shows

it has no “compact” representation when specified as a context-free grammar. This

implies it has no “compact” representation by a finite state automaton either.

Teorema 8. Let Ld(n) ⊆ Σ∗ with |Σ| = t > 2 be given by {ww | |w| = n}. Every

context-free grammar for Ld(n) has size

Ω

(
tn/4√

2n

)

Recall that f(n) = Ω(g(n)) means that f is lower-bounded by g for sufficiently

large n, which implies that context-free grammars for L(n) eventually exhibit

exponential growth in n.
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5AN INPUT VALIDATOR FORHTTP
WRITTEN IN BISON

In this section we demonstrate that an input validator for a large subset of HTTP

can be written using the parser generator Bison (and Flex), which relies on context-

free grammar rules. Our goal is to explore the practical implications of avoiding

semantic actions wherever possible, so that the resulting input validator is safe

(under the assumption that the parser generator is). We discuss two aspects of

our grammar, namely content length fields and selector fields, whose theoretical

properties we analyzed in Chapter 3 and Section 4.1, respectively.

5.1 Content Length Field
HTTP features content-length fields of variable, unbounded size. Following

Theorem 2 it is not possible to validate unbounded content-length fields while

entirely avoiding semantic actions. We see two approaches to tackle this issue:

1. To define an arbitrary but sufficiently large upper bound on the size of the

length field and then run several input validators, one for each size. The

output of the validator will be the disjunction of these validators’ outputs.

This approach has the advantage of avoiding semantic actions and the

disadvantage of rejecting valid messages that are too large.

2. To create a parser that outputs the size of the content length field by using

just one semantic action (a print statement) and then generate a context-free
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grammar to validate the content length field according to that value. This

approach has the advantage of being able to validate messages of unbounded

size and the disadvantage of making (limited) use of semantic actions.

We choose the second approach which is divided into two steps. In the first one,

we compute the size n of the content length field. With that information, we know

by Theorem 6 that the resulting language is context-free. Thus, in the second

step we automatically generate a grammar that corresponds to G(n) defined in

Section 3.3.

5.1.1 Computing the Size of the Length Field
Figure 5.1 shows the parser that outputs the size of the content length field

where “yyleng” is a Flex internal variable containing the length of the last match.

The role of the print statement is to output the size of the content length field.

(?i:Content-length:" "[0-9]+"\r\n")
↪→ {printf("%lu\n",yyleng - 18);}

"\r\n\r\n" {exit(0);}
"\r" {}
"\n" {}
. {}

Figure 5.1: Parser to extract the size of the content length field.

We may consider this parser to be safe since the handwritten code added to

Flex is not interacting directly with the input. As long as we considerer Flex as a

safe tool we know the type of variable which is “yyleng” and we know that it will

store a value bigger than 18. Thus, the parser is printing a positive number and

should be errors-free.

The “exit(0)” command is used to make the parser stop once the headers of the

message have been read, avoiding the possibility of finding a matching string in

the body of the message.

5.1.2 Generating Validators for Fixed-size Content Length Fields
Once the size n of the content length field is known, we can compute the

grammar corresponding to G(n) described in Section 3.3. The main difference is

that HTTP relies on a decimal encoding of message length, which requires us to
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generalize the grammar rules to account for 10 digits:

{Xi → j Xi−1 (Fi−1)j | 0 ≤ j ≤ 9} (5.1)

Figure 5.2 contains code for automatically generating these rules, for 1 ≤ i ≤ n.

The outer loop iterates over the values of i. The second loop iterates over the

j-values while the inner loop writes the symbol (Fi−1) j times. The rules

for i in ‘seq 2 $size‘
do

number=$i"_request"
echo "X$number: ’0’ X$((i-1))_request {}" >> $OUTPUT
for j in ‘seq 1 9‘
do

echo -n " | ’$j’ X$((i-1))_request " >> $OUTPUT
for k in ‘seq 1 $j‘
do

echo -n "F$number " >> $OUTPUT
done
echo "{}" >> $OUTPUT

done
echo "" >> $OUTPUT

done

Figure 5.2: Bash code to generate the rules of Equation (5.1).

{Fj → Fj−1 . . . Fj−1 | 1 ≤ j ≤ n} , (5.2)

also generalize their counterparts from G(n) to decimal encoding by replacing

each Fj by ten Fj−1 symbols instead of two. This is carried out by the code given

at Figure 5.3. It remains to account for the rules

{F0 → c | c ∈ Σ} , (5.3)

which are implemented by the code shown in Figure 5.4. Any symbol that

may appear in the body of a HTTP message must be matched by the non-

terminal symbol MCHAR. Since the lexer distinguishes among several symbols

and returns a different token for each of them, the rule MCHAR needs to account

for all of them. For the sake of simplicity we have used the start conditions

of Flex, which allows us to change the rules available in the lexer at runtime.

Thus, when the validator is done with the headers, all rules from the lexer but

“carriage return”, “new line”, and “others” are disabled by using the function

void read_msg() {BEGIN(MSG); where “BEGIN” is a Flex’s function and

“MSG” is a start condition defined within the lexer.
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for i in ‘seq 2 $size‘
do

if [ $i -eq 2 ]
then
echo "F2_request: MCHAR MCHAR MCHAR MCHAR MCHAR MCHAR

↪→ MCHAR MCHAR MCHAR MCHAR {}" >> $OUTPUT
else

request=$i"_request"
echo "F$request: F$((i-1))_request F$((i-1))_request

F$((i-1))_request F$((i-1))_request F$((i-1))_request
F$((i-1))_request F$((i-1))_request F$((i-1))_request
F$((i-1))_request F$((i-1))_request {}" >> $OUTPUT

fi
done

Figure 5.3: Bash code to generate rules of Equation (5.2).

echo "X1_request: ’0’ CARRIAGE_RETURN NEW_LINE
↪→ headers_request {read_msg();}" >> $OUTPUT

echo " | ’1’ CARRIAGE_RETURN NEW_LINE headers_request {
↪→ read_msg();} MCHAR {}" >> $OUTPUT

[...]
echo " | ’8’ CARRIAGE_RETURN NEW_LINE headers_request {

↪→ read_msg();} MCHAR MCHAR MCHAR MCHAR MCHAR MCHAR
↪→ MCHAR MCHAR {}" >> $OUTPUT

echo " | ’9’ CARRIAGE_RETURN NEW_LINE headers_request {
↪→ read_msg();} MCHAR MCHAR MCHAR MCHAR MCHAR MCHAR
↪→ MCHAR MCHAR MCHAR {}" >> $OUTPUT

echo "/* DEFINING TYPES OF DATA */" >> $OUTPUT
echo "MCHAR: CHAR {}" >> $OUTPUT
echo " | CARRIAGE_RETURN {} " >> $OUTPUT
echo " | NEW_LINE {}" >> $OUTPUT

Figure 5.4: Bash code generating rules for terminals, given by Equation (5.3)
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5.2 Selector Fields
HTTP distinguishes between requests and responses, which requires choosing

among two different grammars. As explained in Section 4.1 this idiom is context-

free so it can be implemented with Bison without semantic actions. However, in

HTTP there is no explicit field indicating whether the message is a request or a

response. Nevertheless, the distinction can be automatically made by Bison as

shown in Figure 5.5. Thus, Bison keeps reading the input without knowing if it

is a request or a response until, at some point, only one of the rules “status_line”

or “request_line” matches the input. From this point, Bison knows which type of

message is reading.

axiom: status_line | request_line {YYACCEPT;}
status_line: HTTP VERSION SPACE STATUS_CODE SPACE

↪→ STATUS_PHRASE CARRIAGE_RETURN NEW_LINE
↪→ headers_response {}

request_line: METHOD SPACE request-uri SPACE HTTP VERSION
↪→ CARRIAGE_RETURN NEW_LINE headers_request {}

Figure 5.5: Detecting whether themessage is a request or a response.

5.3 Multiple Headers
A feature of the HTTP protocol we omitted to discuss so far is the fact that

some header fields can only appear up to one time per message. This restriction

is easy to implement by generating an additional parser that detects when one

of these headers appears twice; as soon as this parser detects a duplicate field,

the message is rejected. Figure 5.6 shows how this parser can be implemented

with Flex. Although it contains semantic actions we consider it to be safe since

the handwritten C code is not interacting with the user’s input and it is not using

dynamic memory.

The variables “http_date1”, “http_date2” and “http_date3” used in Figure 5.6

are defined within Flex as the regular expressions matching the three different

formats for writing a date. Figure 5.7 shows the definition of “http_date1” as an

example of the three mentioned formats.
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("C"|"c")("O"|"o")("N"|"n")("T"|"t")("E"|"e")("N"|"n")("T"|
↪→ "t")"-"("L"|"l")("E"|"e")("N"|"n")("G"|"g")("T"|"t")(
↪→ "H"|"h")":"(" ")*[0-9]+"\r\n"(.+"\r\n")*("C"|"c")("O"
↪→ |"o")("N"|"n")("T"|"t")("E"|"e")("N"|"n")("T"|"t")"-"
↪→ ("L"|"l")("E"|"e")("N"|"n")("G"|"g")("T"|"t")("H"|"h"
↪→ )":"(" ")*[0-9]+"\r\n" {
exit(-1);

}

("D"|"d")("A"|"a")("T"|"t")("E"|"e")":"(" ")*({http_date1
↪→ }|{http_date2}|{http_date3})"\r\n"(.+"\r\n")*("D"|"d"
↪→ )("A"|"a")("T"|"t")("E"|"e")":"(" ")*({http_date1}|{
↪→ http_date2}|{http_date3}) {
exit(-1);

}

("E"|"e")("X"|"x")("P"|"p")("I"|"i")("R"|"r")("E"|"e")("S"|
↪→ "s")":"(" ")*({http_date1}|{http_date2}|{http_date3})
↪→ "\r\n"(.+"\r\n")*("E"|"e")("X"|"x")("P"|"p")("I"|"i")
↪→ ("R"|"r")("E"|"e")("S"|"s")":"(" ")*({http_date1}|{
↪→ http_date2}|{http_date3}) {
exit(-1);

}

"\n" {}
"\r" {}
"\r\n\r\n" {exit(0);}
. {}

Figure 5.6: Detecting when a field is duplicated.

wkday ("Mon"|"Tue"|"Wed"|"Thu"|"Fri"|"Sat"|"Sun")
two_digit ([0-9][0-9])
four_digit ([0-9][0-9][0-9][0-9])
time ({two_digit}":"{two_digit}":"{two_digit})
date1 ({two_digit}" "{month}" "{four_digit})
http_date1 ({wkday}", "{date1}" "{time}" GMT")

Figure 5.7: Definition of “http_date1”.

34 Languages and Security



5.4. Evaluation

The rule "\r\n\r\n" {exit(0);} at the end of Figure 5.6 makes the parser

stop when the end of the headers sections is reached. Thus, the body of the

message will not be parsed.

5.4 Evaluation
We perform a micro-evaluation of our input validator according to two criteria,

namely accuracy and safety:

• For evaluating accuracy we run the validator on 50 valid HTTP packets

captured using Wireshark. Our packets contain both requests and responses.

All of the valid packets were accepted as valid.

We have also hand-crafted invalid messages. For example, to violate message

length constraints we modify the value of message length fields in otherwise

valid messages. In all cases the validator rejected the message. Moreover,

starting from two valid messages (a response and a request) we have

exchanged fields that can only appear in one type of messages. Again,

we observe that the resulting messages were rejected.

• To support the claim that our HTTP validator is safe, we ran the fuzzer afl

on the generated code. After 6 hours, afl completed 14 cycles and explored

more than 500 paths by doing more than 34 millions of executions without

finding any bug.

We leave the evaluation of the performance of the generated validator for future

work since it is out of the scope of this paper. However, we point out that the

performance is entirely inherited from Bison and Flex.
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6RELATEDWORK

In this section we will focus entirely at recent effort in the context of parser

generators for network protocols and put those works in perspective relative

to ours. We start with BinPac [25] which is part of a larger project called “The

Bro Network Security Monitor”1. Binpac implements a parser generator from

scratch. We believe that the strength of our approach is in using a tool like Bison

(in combination with Flex) that are widely used and have been around for a

long time. By further abstaining ourselves to use semantic actions, the resulting

parser implementation contains only generated C code that is free of potentially

vulnerable user code. The above discussion applies equally to FlowSifter [23],

Ultrapac [22], Nail [7] and Gapa [9] since they follow the approach of BinPac by

re-implementing a parser generator from scratch. Among the previous parser

generators, Gapa and Nail stands out. Gapa strives for safety by making a priority

that the resulting parser is safe in the sense that the implementation is written in a

memory-safe language. Even though using a memory-safe language is certainly

better for safety it does not prevent runtime error (after all, dividing by zero

remains always possible). Nail also aim at safety since it does not require the

developer to write semantic actions as the authors identify them as potential

vulnerabilities. We also prescribe semantics actions. Another line of work [12]

relies on the use of the so-called attribute grammars, an extension of context-free

grammar that equips rules with attributes that can be accessed and manipulated.

For the parser generator, the authors use Bison and encode the attribute aspect

of grammars through semantic actions. Since semantic actions are user-defined
1https://www.bro.org/
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the resulting parser is potentially vulnerable. This departs from our no semantic

action approach. None of the aforementioned work study the underlying formal

language questions as we have done in this work. At best, the authors conjecture

results but no rigorous evidence is given.
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Proof of Lemma 4. According to Proposition 3, if L∠(a) is a finite intersection of

context-free languages then the set f−1
w (L∠(a)) is semilinear, which implies that it

is a finite union of linear sets. Since the set is infinite, at least one of the linear sets

must be infinite. We call this set S. Any element in S will have the form defined in

3.1 so define ~x, ~y ∈ S as follows:

~x =

(
ix, 1,

bix − 1

b− 1

)
, ~y =

(
iy, 1,

biy − 1

b− 1

)
.

Let δ = iy − ix, we write

~y =

(
ix + δ, 1,

bix+δ − 1

b− 1

)
.

Without loss of generality, assume δ > 0 (for otherwise swap ~x and ~y). Next define

∆ = ~y − ~x =

(
δ, 0,

bix(bδ − 1)

b− 1

)
.

Let ~z = ~x+ 2∆:

~z =

(
ix + 2δ, 1,

bix − 1 + 2bix(bδ − 1)

b− 1

)
=

(
ix + 2δ, 1,

bix(2bδ − 1)− 1

b− 1

)
. (A.1)

Since the set S is linear we find that ~z ∈ S so we can write:

~z =

(
iz, 1,

biz − 1

b− 1

)
which means that iz = ix + 2δ obtaining:

~z =

(
ix + 2δ, 1,

bix+2δ − 1

b− 1

)
. (A.2)
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Let us now derive a contradiction using (A.1) and (A.2). For this, we start by

deriving the following equivalence:

bix(2bδ − 1) = bix+2δ iff 2bδ − 1 = b2δ .

Applying the change of variable t = bδ we obtain

2t− 1 = t2 iff t2 − 2t+ 1 = 0 .

Solving the equation give us t = 1 iff δ = 0. So the vector ~z obtained basing on the

linearity of the set S will belong to S if and only if ~z = ~y = ~x. We conclude that the

set S is not infinite, in fact, if it is linear then it contains only one element. Thus

the set f−1
w (L∠(a)) can not be written as a finite union of linear set so the language

L∠(a) is not a finite intersection of context-free languages.
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GLOSSARY

American Fuzzy Lop Tool for fuzzing a program looking for bugs, hangs or any

kind of memory leak. 12

Chunked messages Feature present in some protocols that allows a message to

be sent as a series of small messages. Each small message sent is known as a

chunk. 24

Content-Length Field Field present in many protocols whose value describes the

size of some part of the message. 15

Context free Grammar A grammar is said to be context free it each production

rule has a left part composed by just a non terminal symbol. 7

Grammar A grammar is a set of production rules describing how to form strings. 6

HTTP Hypertext Transfer Protocol. Application protocol for distributed,

collaborative, hypermedia information systems. 3

Input validation Process of analyzing an input to detect whether it matches a

given grammar or not. 12

LangSec Branch of investigation that aims to improve the safety of these systems

by tackling the problem from a theoretical point of view. 7

Language A language is a set of words. 5
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GLOSSARY

Parser Generator Program which takes a formal description of a grammar (e.g.

in BNF ) and outputs source code for a parser which will recognize valid

strings obeying that grammar and perform associated actions. 8

Parsing Process of analyzing an input and filling a data structure with its contents

according to a given grammar. 12

Selector field Field that appears in a number of protocols describing the format

used to write some part of the message. 23

Semantic action Arbitrary handwritten code written in the target language and

used by parser generators to increase the capabilities of the resulting parser.

These actions are perform while parsing an input. 1
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