Search for first generation scalar leptoquarks in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

ATLAS Collaboration

1. Introduction

Similarities between leptons and quarks in the Standard Model (SM) suggest that they might be a part of some symmetry at energy scales above the electroweak symmetry breaking scale. In this type of symmetry, transitions between leptons and quarks, mediated by a new type of gauge boson, a leptoquark (LQ), may occur. LQs are putative color-triplet bosons with spin 0 or 1, and fractional electric charge [1]. They are predicted in many extensions of the SM, such as Grand Unification models, and possess both quark and lepton quantum numbers. The Yukawa coupling λ_{LQ}^{-l-q} of a leptoquark to a lepton and a quark, and the branching ratio (β) to a charged lepton, are model dependent. In pp collisions, if λ_{LQ}^{-l-q} is of the order of the electroweak coupling strength, leptoquarks are predominantly produced in pairs via the strong interaction. At the LHC, the pair production cross section is dominated by gluon fusion for LQ masses $m_{LQ} \lesssim 1$ TeV, whereas at higher masses it is dominated by quark-antiquark annihilation. Under these assumptions, the production rate for scalar LQs depends only on the known QCD coupling constant and the unknown LQ mass, and has been calculated at up to next-to-leading order. It is usually assumed that leptoquarks only couple to one generation of SM isospin multiplet to accommodate experimental constraints on flavor-changing neutral currents, and lepton and baryon number violation [2]. Consequently, they are classified as first, second, or third generation according to the fermion generation to which they couple [3]. Lower mass limits on the first generation LQs already exist from searches of LQ produced in pairs at the LHC [4,5], Tevatron [6] and LEP [7]. Limits on single LQ production come from HERA [8] and other experiments [9].

In this Letter we present updated results on a search for the pair production of first generation scalar leptoquarks in pp collisions at $\sqrt{s} = 7$ TeV. The search is performed with a dataset corresponding to an integrated luminosity of 1.030 ± 0.035 fb$^{-1}$ [10] of data collected by the ATLAS detector at the LHC from March 2011 to July 2011. We search for leptoquarks in two different final states. In the first one both LQs decay into an electron and a quark, while in the second final state one of the LQs decays into an electron and a quark and the other LQ decays into an electron–neutrino and a quark. These result in two different experimental signatures. One such signature is the production of two electrons and two jets and the other one comprises one electron, two jets, and missing transverse momentum (the magnitude of which is denoted as E_{T}^{miss}). The results from the two final states are combined and presented in the m_{LQ} versus β plane, where β is the branching ratio for a single LQ to decay into a charged lepton and a quark.

2. The ATLAS detector

The ATLAS detector [11] is a general-purpose particle detector with cylindrical geometry,\(^1\) which consists of several subdetectors
surrounding the interaction point, and providing nearly 4τ coverage in solid angle. The location of the interaction point and momenta of charged particles are determined by the multi-layer silicon pixel and strip detectors covering |η| < 2.5 in pseudorapidity η, and a transition radiation tracker extending to |η| < 2.0, which are inside a superconducting solenoid producing a field of 2 T. The tracking system is surrounded by a high-granularity liquid-argon (LAr) sampling electromagnetic calorimeter with coverage up to |η| < 3.2. An iron-scintillator tile hadronic calorimeter provides coverage in the range |η| < 1.7. In the end-cap and forward regions LAr calorimeters provide both electromagnetic and hadronic measurements and cover the region 1.5 < |η| < 4.9. The muon spectrometer, consisting of precision tracking detectors and superconducting toroids, is located outside the calorimeters.

We perform the search in the data sample selected by a three-level trigger requiring at least one high transverse energy (ET) electron. The trigger is fully efficient for electrons with ET > 30 GeV, as measured in an inclusive Z → ee control sample [12].

3. Simulated samples

Samples of Monte Carlo (MC) events are used to devise selection criteria and validate background predictions. Background and signal samples are processed through the full ATLAS detector simulation based on GEANT4 [13], followed by the same reconstruction algorithms as used for collision data. The effects from in-time and out-of-time proton–proton collisions are included in the MC simulation. In the simulated samples, an event weight is applied to the average number of additional proton–proton collisions occurring in the same bunch crossing (event pile-up), to ensure that the number of interactions per bunch crossing, amounting to an average of 6, is well modeled.

The dominant backgrounds to the leptoquark signal include W and Z boson production in association with one or more jets, single and pair production of top quarks, QCD multi-jet (MJ) and diboson processes. The ALPGEN [14] generator is used for the simulation of the W, Z boson production in association with n partons. This program is interfaced to HERWIG [15] and JIMMY [16] to model parton showers and multiple parton interactions, respectively. The MLM [14] jet-parton matching scheme is used to form inclusive W/Z + jets MC samples. MC@NLO [17] is used to estimate single and pair production of top quarks. Diboson events are generated using HERWIG, and scaled to next-to-leading (NLO) cross section predictions [17,18].

4. Object identification

This search is based on selecting events with a high ET electron, two high pt jets, and an additional electron or large Etmiss. Electron candidates are reconstructed as energy deposits in the electromagnetic calorimeter. Electrons are required to have a shower profile consistent with that expected for this particle, and to have a track pointing to the energy deposit in the calorimeter. The pattern of the energy deposits on the first layer of the EM calorimeter is used to reject hadrons, while contamination from photon conversions is reduced by requiring a hit in the first layer of the pixel detector [22]. In addition to these criteria, we require electrons to have a transverse energy ET > 30 GeV and fall within a well instrumented region of the detector. Further rejection against hadrons is achieved by requiring the electron candidates to be isolated from additional energy deposits in the calorimeter by requiring that ET/E < 0.1, where ET is the transverse energy in a cone of radius ΔR = √((Δη)² + (Δφ)²) = 0.2 centered on the electron track, excluding the electron contribution, and corrected for the energy from event pile-up and the electron energy leakage inside the cone.

Jets are defined as localized energy deposits in the calorimeter and are reconstructed using the anti-k T algorithm [23] with a distance parameter of 0.4 and by performing a four-vector sum over calorimeter clusters. Reconstructed jets are corrected for the non-compensating calorimeter response, upstream material and other effects by using pt- and η-dependent correction factors derived from MC and validated with test-beam and collision data [24]. We further require that jets satisfy ET > 30 GeV, |η| < 2.8 and are separated from electrons passing the above selection within ΔR > 0.4. Selected jets must also pass quality requirements to reject jets arising from electronic noise bursts, cosmic rays and beam background, originating mainly from beam-gas events and beam-halo events [25].

The presence of neutrinos is inferred from the missing transverse momentum pTmiss (and its magnitude Emiss) [26]. pTmiss is defined as the negative vector sum of the transverse momenta of reconstructed electrons, muons and jets, as well as calorimeter clusters not associated to reconstructed objects.

Corrections are made to the simulated samples to ensure a good description of the energy resolution and the trigger and reconstruction efficiencies. These are determined in control data samples and applied to both simulated background and signal samples. These corrections change the total expected yields by less than 2%.

5. Event selection

We define event selections to create samples with high signal and background acceptance. Events are selected to be consistent with the LQ→eeq→eeqQ decays. In the eejj topology we require two electrons and at least two jets as defined in Section 4 and an invariant mass of the electron pair mee > 40 GeV. In the evjj topology, one electron, at least two jets and Emiss > 30 GeV are required, together with a requirement on the transverse mass of the electron and the pTmiss, mT = (pTmiss² + pTmiss²(1 − cos(Δφ))) > 40 GeV, where Δφ is the angle between the electron pT and pTmiss. In addition, we require that Δφ(jet, pTmiss) > 4.5 x (1 − Emiss/45 GeV) in the evjj channel for events with Emiss < 45 GeV to reduce residual contamination from MJ events. Events with additional identified electrons as defined in Section 4 or muons with pt > 30 GeV and |η| < 2.4 are rejected.

After all the selection criteria are applied the signal acceptance is of 70% for a LQ signal of mlQ = 600 GeV for both channels, but the sample is still dominated by background events.

6. Background determination

The MJ background estimate is derived directly from data, whereas MC samples are used to predict the other backgrounds. We verify the shape of the V + jets (V = W±, Z) and top quark background prediction using control regions, which are defined to enhance either the V + jets or the top quark production contribution, while keeping a negligible LQ signal contamination. These control regions are also used to derive the final normalization of the V + jets and top quark backgrounds.

The V + jets and top quark control regions are defined by applying additional selection criteria on mτ and mT to the selected sample. The remaining signal contamination is reduced by applying an upper threshold to the summed transverse momentum in the event, ST, defined as the scalar sum of the pt of the two
leading jets and the transverse energy of the two electrons in the eejj channel. In the \(S_T \) definition in the \(e\nu jj \) channel, the second electron \(E_T \) is substituted by the \(E_{\text{miss}} \).

In the eejj topology we define two control regions (i) \(Z + \text{jets} \): formed by events with at least two jets and in which the two electrons are required to have an invariant mass within a \(Z \) mass window \(81 < m_{ee} < 101 \text{ GeV} \), and (ii) \(tt \): events with at least two jets and exactly one electron and one muon [27], defined as in Section 4. In the evjj topology we define three control regions (iii) \(W + 2 \text{jets} \): events with exactly two jets, an electron and \(E_{\text{miss}} \) such that the transverse mass of the electron and the \(E_{\text{miss}} \) is in the region of the \(W \) Jacobian peak, \(40 < m_T < 120 \text{ GeV} \), and an \(S_T < 225 \text{ GeV} \) requirement to limit the presence of signal events, (iv) \(W + 3 \text{jets} \): as in (iii) but with three or more jets, and (v) \(tt \): events with at least 4 jets, where the thresholds on the first and second jets are raised to 50 \text{ GeV} and 40 \text{ GeV}, respectively.

To estimate the MJ background, we perform fits to the \(m_{ee} \) distribution in the eejj channel, and to the \(E_{\text{miss}} \) distribution in the evjj channel. In these fits, the relative fraction of the MJ background is a free parameter. Templates for the MJ background distributions are derived from MJ enhanced samples, which are formed using electron candidates passing relaxed selection requirements but failing the nominal electron identification criteria described in Section 4. The MJ enhanced samples are corrected to remove the residual contamination from real electrons. In the eejj channel, the fits are applied to the sample selected following the criteria of Section 5, as well as to control regions (i) and (ii), and the \(W + \text{jets} \) background is estimated together with the MJ background. In the evjj channel, the fits are applied to the selected sample as well as to control regions (iii)–(v).

We observe 5615 data events in the eejj channel and 76855 data events in the evjj channel, with SM expectations of \(5600 \pm 1000 \) and \(74000 \pm 11000 \), respectively. For \(m_{LQ} = 600 \text{ GeV} \), we expect \(7.5 \pm 0.5 \) signal events in the eejj channel and \(4.5 \pm 0.2 \) signal events in the evjj channel. The aforementioned uncertainties fully account for (the dominant) systematic and statistical uncertainties.

7. Likelihood analysis

We use a likelihood ratio method to separate signal and SM background. The likelihoods are constructed separately for background (\(L_B \)) and signal (\(L_S \)) hypotheses from a set of discriminating variables as follows:

\[
L_B \equiv \prod_i \left(1 - b_i(x_i) \right), \quad L_S \equiv \prod_i s_i(x_i),
\]

where \(b_i, s_i \) are the probabilities of the \(i \)-th input variable from the normalized

Fig. 1. Data and SM background comparisons of the input LLR variables for the eejj channel. (a) Invariant mass of the two electrons in the event; (b) Average LQ mass resulting from the best (electron, jet) combinations in each event, and (c) \(S_T \). The stacked distributions show the various background contributions, and data are indicated by the points with error bars. The 600 GeV LQ signal is also shown for \(\beta = 1.0 \). The solid line (band) in the lower plots shows the Gaussian statistical (statistical + systematic) significance of the difference between data and the prediction.
summed background and signal distributions respectively, and x_j is the value of that variable for the j-th event in a given sample. Separate L_S distributions are created for several signal mass points, allowing mass-dependent optimization. Using the aforementioned quantities, a likelihood ratio is defined as $LLR = \log\left(\frac{L_S}{L_B}\right)$ and is used as the final variable to determine whether or not there is a LQ signal present in our data.

The following discriminating variables, selected to give the best separation between signal and background, are used. For the $eejj$ channel, we use $m_{ee}, S_T = E_{T1} + E_{T2} + p_{T1} + p_{T2}$ and the average invariant LQ mass m_{LQ}. For the $e\nu jj$ topology, we use $m_T(e, E_{miss}), S_T$, the transverse LQ mass $m_{LQ}^{T}(jet, E_{miss})$ and the invariant LQ mass $m_{LQ}(e, jet)$. To obtain the LQ masses, we calculate the invariant mass of the electron-jet system and the transverse mass of the E_{miss}-jet system. Since the LQs are produced in pairs, there are two possible mass combinations for the electron-jet and E_{miss}-jet pairs, and the combination giving the smallest mass difference is used. In the $eejj$ channel, two possible electron-jet combinations arise from this procedure, and we take their average m_{LQ} for the analysis. The discriminating variables are shown in Figs. 1 and 2 for the $eejj$ and the $e\nu jj$ channels, respectively.

8. Systematic uncertainties

Systematic uncertainties affect both background normalizations and shapes of the input distributions into the LLR. We consider systematic uncertainties from a variety of sources. These are described as follows.

The jet energy scale (JES) and resolution (JER) uncertainties are considered independently, and applied by varying the JES (JER) within its uncertainty of 4% to 6.5% (14%) depending on the jet p_T and η [28,29] for all simulated events. These variations are also propagated to the E_{miss} in the $e\nu jj$ channel. The resulting uncertainties for the $m_{LQ} = 600$ GeV signal and background are 5% (8%) and 11% for the $eejj$ ($e\nu jj$) final state.

Systematic uncertainties on the electron energy scale (1.6%) and resolution (0.6%), and on the electron trigger, reconstruction and identification efficiencies are derived by varying the selection criteria defining the Drell–Yan control sample used for the various measurements [12]. In addition, a 1% uncertainty is included to account for the efficiency of the isolation requirement. They lead to total signal and background yield uncertainties of 8% and 5% (3.5%), respectively, for the $eejj$ ($e\nu jj$) channel and for a signal of mass $m_{LQ} = 600$ GeV.
The systematic uncertainty for the production model of $V + \text{jets}$ is taken to be the largest difference between the nominal data-driven prediction using ALPGEN and that obtained by using SHERPA [30], giving an uncertainty of 1.5% and 3% for the eejj and the evjj channels, respectively.

The systematic uncertainty for the $t\bar{t}$ production model is evaluated by comparing the yields between events generated with MC@NLO and those generated with various alternate samples. These include samples generated with POWHEG [31], a different top mass (170 GeV and 175 GeV instead of the nominal value), and a different amount of initial and final state-radiation (ISR/FSR). The result is an uncertainty in the $t\bar{t}$ yield of 10% and 15% for the single electron and dielectron analyses, respectively.

Systematic uncertainties are determined for the MJ backgrounds by comparing results from alternative normalizations to those from the methods described earlier. The largest variation is taken, resulting in an uncertainty of 20% and 28% in the MJ normalization for the evjj and the eejj channels, respectively. An uncertainty of 3.7% [10] on the integrated luminosity is applied to both diboson and single top background yields, as well as to expected signal yields.

Finally, further uncertainties on the simulated background contributions originate from finite statistics in the MC samples used.
These range from 2%–9%, depending on the LQ mass under consideration. Additional signal uncertainties considered arise from the choice of the PDF, which results in an uncertainty on the signal acceptance of 1%–8% for LQ masses between 300 GeV and 700 GeV, and from ISR/FSR effects, resulting in an uncertainty of 2% for both channels.

9. Results

The LLR distributions for data, backgrounds and a LQ signal assuming $m_{LQ} = 600$ GeV are shown in Fig. 3 for both channels. The observed and predicted event yields requiring $LLR > 0$ for the major background sources, as well as the expected signal, are shown in Table 1. We do not observe any excess of events at high LLR values where signal is expected, indicating no evidence of scalar LQ pair production. Given the absence of signal we determine 95% CL upper bounds on the cross section for LQ pair production as a function of mass are shown in Fig. 4 for both the $eejj$ and the νjj channels for $\beta = 1.0$ and $\beta = 0.5$, respectively. These are translated into lower observed (expected) limits on leptoquark masses of $m > 660$ (587) GeV when assuming its branching fraction to a charged lepton to be equal to 1.0 and 0.5, respectively. These are the most stringent limits to date arising from direct searches for leptoquarks.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSTM CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINEVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRCIES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSF, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINESVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRCIES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSF, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

P. Frampton, T. Kephart, Phys. Rev. D 42 (1990) 3892;
E. Witten, Nucl. Phys. B 258 (1985) 75;

128 State Research Center Institute for High Energy Physics, Protvino, Russia

129 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

129 Physics Department, University of Regina, Regina SK, Canada

131 Ritsumeikan University, Kusatsu, Shiga, Japan

133 [3] INEN Sezione di Roma Tor Vergata, [4] Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

136 DSM/BFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France

137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States

138 Department of Physics, University of Washington, Seattle, WA, United States

139 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

139 Department of Physics, Shinsu University, Nagano, Japan

139 Fachbereich Physik, Universität Siegen, Siegen, Germany

142 Department of Physics, Simon Fraser University, Burnaby BC, Canada

143 SLAC National Accelerator Laboratory, Stanford, CA, United States

144 [11] Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; [12] Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

145 [13] Department of Physics, University of Johannesburg, Johannesburg; [14] School of Physics, University of the Witwatersrand, Johannesburg, South Africa

146 [15] Department of Physics, Stockholm University; [16] The Oskar Klein Centre, Stockholm, Sweden

147 Physics Department, Royal Institute of Technology, Stockholm, Sweden

147 Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, United States

148 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

149 School of Physics, University of Sydney, Sydney, Australia

150 Institute of Physics, Academia Sinica, Taipei, Taiwan

151 Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel

152 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

153 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

155 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

156 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

158 Department of Physics, University of Toronto, Toronto ON, Canada

159 [17] TRIUMF, Vancouver BC; [18] Department of Physics and Astronomy, York University, Toronto ON, Canada

160 Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennozai, Tsukuba, Ibaraki 305-8571, Japan

161 Science and Technology Center, Tufts University, Medford, MA, United States

162 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

163 Departament of Physics and Astronomy, University of California Irvine, Irvine, CA, United States

165 Department of Physics, University of Illinois, Urbana, IL, United States

166 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica y Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

168 Department of Physics, University of British Columbia, Vancouver BC, Canada

169 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

170 Waseda University, Tokyo, Japan

171 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

172 Department of Physics, University of Wisconsin, Madison, WI, United States

173 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

174 Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany

175 Dipartimento di Fisica, Università Roma Tre, Roma, Italy

176 Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

177 Institute of Physics, Academia Sinica, Taipei, Taiwan

178 [22] Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

179 Department of Physics, Shanghai Jiao Tong University, Shanghai, China

180 [23] Science and Technology Center, Tufts University, Medford, MA, United States

181 [24] Department of Physics, Simon Fraser University, Burnaby BC, Canada

182 [25] Section de Physique, Université de Genève, Geneva, Switzerland

184 Also at Laboratório de Instrumentação e Física Experimental de Partículas – LIP, Lisboa, Portugal.

185 Also at Faculdade de Ciências e CNFNUL, Universidade de Lisboa, Lisboa, Portugal.

186 Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.

187 Also at TRUMF, Vancouver BC, Canada.

188 Also at Department of Physics, California State University, Fresno, CA, United States.

189 Also at Fermilab, Batavia, IL, United States.

190 Also at Department of Physics, University of Coimbra, Coimbra, Portugal.

191 Also at Università di Napoli Parthenope, Napoli, Italy.

192 Also at Institute of Particle Physics (IPP), Canada.

193 Also at Department of Physics, Middle East Technical University, Ankara, Turkey.

194 Also at Louisiana Tech University, Ruston, LA, United States.

195 Also at Department of Physics and Astronomy, University College London, London, United Kingdom.

196 Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada.

197 Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

198 Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.

199 Also at Manhattan College, New York, NY, United States.

200 Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.

201 Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.

202 Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.

203 Also at High Energy Physics Group, Shandong University, China.

204 Also at Section de Physique, Université de Genève, Geneva, Switzerland.

205 Also at Laboratório de Instrumentação e Física Experimental de Partículas – LIP, Lisboa, Portugal.
* Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.

x Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.

y Also at California Institute of Technology, Pasadena, CA, United States.

z Also at Institute of Physics, Jagiellonian University, Krakow, Poland.

aa Also at Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.

ab Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.

ac Also at Department of Physics, Oxford University, Oxford, United Kingdom.

ad Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

ae Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.

af Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France.

ag Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.

* Deceased.