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We systematically study the null-test for the growth rate data first presented in [S. Nesseris and
D. Sapone, arXiv:1409.3697.] and we reconstruct it using various combinations of data sets, such as the
fσ8 and HðzÞ or type Ia supernovae data. We perform the reconstruction in two different ways, either by
directly binning thedata or by fitting various dark energy models. We also examine how well the null-test
can be reconstructed by future data by creating mock catalogs based on the cosmological constant model, a
model with strong dark energy perturbations, the fðRÞ and fðGÞ models, and the large void Lemaitre-
Tolman-Bondi model that exhibit different evolution of the matter perturbations. We find that with future
data similar to an LSST-like survey, the null-test will be able to successfully discriminate between these
different cases at the 5σ level.
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I. INTRODUCTION

The late-time accelerated expansion of the Universe
has forced cosmologists to revise our understanding
of the Universe either by introducing a new component
in the Universe called dark energy [1] or by modifying
directly the laws of gravity [2]. Within the framework of
Friedmann-Lemaître-Robertson-Walker (FLRW) cosmol-
ogy, we can account for a phase of accelerated expansion
by simply introducing a cosmological constant (Λ); even
though this model gives rise to severe coincidence and fine-
tuning problems, observations are still consistent with a
dark energy component that has the same characteristics of
the cosmological constant [3,4].
Unfortunately, these experiments are not able to give us

information either on the variation on time of a dark energy
component or on the clustering properties of such a dark
energy component. Moreover, recent observations do not
have a sufficient sensitivity to be able to distinguish between
a dark energy component or a modified gravity model; even
though the two classes of models can be arbitrarily alike, see
[5], it is still important to be able to discard some of the
model that manifests a different behavior.
Furthermore, future experiments have been planned to

collect a large amount of data with high accuracy and it
would be interesting to find tests that are able to confirm
our assumptions. Consistency checks are usually model
independent tests able to determine if the assumptions
made are violated. In this paper we make use of the
consistency check found in [6]. In the latter, we introduced

a new null-test specifically for the growth of matter
perturbations and, as far as we know, this is the first
null-test that accounts for perturbations on the matter fluids.
The evolution of the matter density contrast is governed by
the evolution of the Hubble parameter and by the evolution
of all the other clustering components [7–10]. Hence, it is a
complementary probe for the dark energy because, while
many different dark energy models give the same expan-
sion history they usually differ at perturbation level
(depending on the intrinsic characteristics of the fluid
itself) and they will affect the evolution of the matter
density contrast.
Moreover, as it is well known, modified gravity models

can also be reinterpreted as effective dark energy models
with their own effective perturbed quantities and conse-
quently the growth of matter density will be influenced by
these effective perturbations; see [5]. Hence, it was neces-
sary to find a null-test that accounted for the growth of
matter density fields.
Finally, the paper is organized as follows: in Sec. II

we report the main equations for the growth of matter
density contrast; in Sec. III we review the derivation of the
null-test and generalize it to include modified gravity
models; in Sec. IV we construct the null-test and discuss
its implications. Finally, in Sec. VI we reconstruct the
null-test with a variety of data and in Sec. VII we
summarize our results.

II. EVOLUTION OF MATTER DENSITY
CONTRAST

The growth of matter in the Universe under the
assumption of homogeneity and isotropy is governed by
the second order differential equation:
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where HðaÞ is the Hubble parameter, Ωm0
is the matter

density contrast today, and H0 is the Hubble constant and
where we introduced the effective Newtonian constant
GeffðaÞ that accounts for dark energy perturbations or
for a variety of modified gravity models; see Refs. [11–14].
Under the assumption that the Universe is currently

dominated by a dark energy component with a constant
equation of state and negligible dark energy perturbations,
i.e., GeffðaÞ=GN ¼ 1, then Eq. (1) can be easily solved
analytically. The differential equation (1) has in general two
solutions that correspond to two different physical modes, a
decaying and a growing one, that in a matter dominated
Universe in general relativity (GR) behave as δ ¼ a−3=2 and
as δ ¼ ak, respectively. Since we are only interested in the
latter, we demand that at early times ain ≪ 1, usually
during matter domination, the initial conditions have to be
chosen as δðainÞ≃ain and δ0ðainÞ≃1. WhenGeffðaÞ=GN¼1
wegetGRas a subcase,while in general formodified gravity
theories, the term Geff can be scale and time dependent.
For a flat GRmodel with a constant dark energy equation

of state w, the exact solution of Eq. (1) for the growing
mode is given by [15–17]
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0 ¼ Ωma−3 þ ð1 −ΩmÞa−3ð1þwÞ; ð2Þ

where 2F1ða; b; c; zÞ is a hypergeometric function; see
Ref. [18] for more details. In more general cases, for
instance admitting that the dark energy equation of state
parameter is a function of time, it is impossible to find a
closed form analytical solution for Eq. (1), but in Ref. [19]
it was shown that the growth rate fðaÞ≡ dlnδ

dlna can be
approximated as

fðaÞ ¼ ΩmðaÞγðaÞ ð3Þ

ΩmðaÞ≡ Ωma−3
HðaÞ2=H2

0

ð4Þ

γðaÞ ¼ ln fðaÞ
lnΩmðaÞ

≃ 3ð1 − wÞ
5 − 6w

þ � � � ; ð5Þ

a more general expression for the growth index can be
found in [15]. We should note that the approximation for γ
is valid at first order for a dark energy model with a
constant w, while for ΛCDM (w ¼ −1) we have
γ ¼ 6

11
≃ 0.545. Furthermore, it is easy to convert

Eq. (1) into an equation for the growth rate fðaÞ≡ dlnδ
dlna,

which can be found to be
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with initial conditions fða0Þ ¼ 1 for a0 ≪ 1 (usually
a0 ≃ 10−3).
In later sections we will use the previous equations to

construct a null-test for the growth rate of matter density
perturbations. The null-test is a function of redshift z that,
however, has to be constant for all z under some assump-
tions, e.g., that GR is valid or homogeneity holds [since
Eq. (1) was evaluated under the assumption of homogeneity
and isotropy]. Any deviation from the expected result then
indicates the failure of one or more of the assumptions.
Typical examples in cosmology include the ΩKðzÞ test of
Clarkson et al. [20] or theOm statistic of Shafieloo et al.; see
[21,22]. Also, early examples of null-tests for the growth
datawere shown in Refs. [23] and [24]. However, the former
suffers from the problem that we need to know δðzÞ at
z → ∞, while the latter, known as the Ø test requires some
mild assumptions forGeff. On the contrary, wewill show that
our new null-test does not suffer from any of these problems.
In this paper we expand our work from Ref. [6], creating

a null-test that can be used also for more sophisticated
cosmological models; we also reconstruct our new-null test
with a variety of both real and mock data. The last are
created using different cosmologies in order to test the
validity and the accuracy of our test.

III. LAGRANGIAN FORMULATION

In this section we will review the derivation of the null-
test using the Lagrangian formulation and we will expand it
for modified gravity theories. This can be done by again
constructing a Lagrangian for Eq. (1) and with the help of
Noether’s theorem we can find an associated conserved
quantity. If we assume that the Lagrangian can be written as

L ¼ Lða; δðaÞ; δ0ðaÞÞ; ð7Þ

then the Euler-Lagrange equations become

∂L
∂δ − d

da
∂L
∂δ0 ¼ 0: ð8Þ

We can assume a Lagrangian of the form

L ¼ T − V

T ¼ 1

2
f1ða;HðaÞÞδ0ðaÞ2

V ¼ 1

2
f2ða;HðaÞÞδðaÞ2;

where the second and third terms are the “kinetic” and
“potential” terms, respectively, and f1 and f2 are two
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functions that need to be found. Substituting the last
equations in the Euler-Lagrange Eq. (8), we get

δ00ðaÞ þ
�∂af1ða;HÞ

f1ða;HÞ þH0ðaÞ∂Hf1ða;HÞ
f1ða;HÞ

�
δ0ðaÞ

þ f2ða;HÞ
f1ða;HÞ δðaÞ ¼ 0: ð9Þ

Comparing Eq. (9) with Eq. (1) we immediately find that

f1ða;HðaÞÞ ¼ a3HðaÞ=H0

f2ða;HðaÞÞ ¼ −
3ΩmGeffðaÞ=GN

2a2HðaÞ=H0

:

Then the Lagrangian L and the “Hamiltonian” H of the
system become

L ¼ T − V ¼ 1

2
a3HðaÞ=H0δ

0ðaÞ2

þ 3ΩmGeffðaÞ=GN

4a2HðaÞ=H0

δðaÞ2 ð10Þ

H ¼ T þ V ¼ 1

2
a3HðaÞ=H0δ

0ðaÞ2

−
3ΩmGeffðaÞ=GN

4a2HðaÞ=H0

δðaÞ2: ð11Þ

Unfortunately, since the Hamiltonian H explicitly depends
on time, i.e., the scale factor, the energy of the system is not
conserved.
Now that we have obtained the Lagrangian for the

system, we can use Noether’s theorem to find a conserved
quantity that will be later translated into the null-test. So, if
we have an infinitesimal transformationX with a generator

X ¼ αðδÞ ∂
∂δþ

dαðδÞ
da

∂
∂δ0 ð12Þ

dαðδÞ
da

≡ ∂α
∂δ δ

0ðaÞ ¼ α0ðaÞ; ð13Þ

such that

LXL ¼ 0 ð14Þ

then

Σ ¼ αðaÞ ∂L∂δ0 ð15Þ

is a constant of “motion” for the Lagrangian of Eq. (10); see
Ref. [25] for an application in scalar-tensor cosmology and
more details. From Eq. (15) we get that

Σ ¼ a3HðaÞ=H0αðδÞδ0ðaÞ; ð16Þ

while from Eq. (14) we get

α0ðaÞa3HðaÞ=H0δ
0ðaÞ

þ 3ΩmGeffðaÞ=GNδðaÞαðaÞ
2a2HðaÞ=H0

¼ 0: ð17Þ

The latter can be solved in favor of αðaÞ to give

αðaÞ ¼ ce
−
R

a

a0

3ΩmGeff ðxÞ=GN δðxÞ
2x5HðxÞ2=H2

0
δ0ðxÞ dx; ð18Þ

where c is an integration constant and a0 can be chosen to
be either 0 or 1. Then the constraint becomes

Σ ¼ a3HðaÞ=H0δ
0ðaÞe−

R
a

a0

3ΩmGeff ðxÞ=GN δðxÞ
2x5HðxÞ2=H2

0
δ0ðxÞ dx; ð19Þ

where we have redefined Σ to absorb c. Choosing appro-
priately a0 can lead to convenient values for Σ, for example,
for a0 ¼ 1 it is easy to see that Σ ¼ δ0ð1Þ and for a0 ≪ 1

then Σ≃ ðΩma30Þ1=2, while in general we have Σ ¼
a30Hða0Þδ0ða0Þ. We have checked numerically the validity
of Eq. (19) for several different cosmologies and values of
the parameters.
Equation (19) can also be written in terms of the growth

rate fðaÞ≡ dlnδ
dlna. As a consequence, the growth factor can

be found to be δðaÞ ¼ δða0Þe
R

a

a0

fðxÞ
x dx

and Eq. (19) can be
rewritten as

Σ=δða0Þ ¼ a2HðaÞfðaÞe
R

a

a0
ðfðxÞx −3ΩmGeff ðxÞ=GN

2x4HðxÞ2fðxÞ Þdx
: ð20Þ

Taking into account that Σ ¼ a30Hða0Þδ0ða0Þ, we get that
the lhs of the previous equation can be re-expressed as

Σ=δða0Þ ¼ a30Hða0Þδ0ða0Þ=δða0Þ ¼ a20Hða0Þfða0Þ; ð21Þ

so that Eq. (20) becomes

a2HðaÞfðaÞ
a20Hða0Þfða0Þ

e
R

a

a0
ðfðxÞx −3ΩmGeff ðxÞ=GN

2x4HðxÞ2fðxÞ Þdx ¼ 1: ð22Þ

Taking the derivative of Eq. (22) with respect to the scale
factor a, we obtain Eq. (6). This means that Eq. (22) is a
first integral of motion of Eq. (6).
However, observations can measure directly only

fσ8ðaÞ≡ fðaÞσ8ðaÞ, where σ8ðaÞ ¼ σ8ða ¼ 1Þ δðaÞ
δða¼1Þ and

they are not able to give directly δðaÞ; hence, we need to
transform Eq. (19) to be able to test it directly with
observations. Taking into account that

fσ8ðaÞ≡ fðaÞσ8ðaÞ ¼ ξaδ0ðaÞ; ð23Þ

where ξ≡ σ8ða¼1Þ
δða¼1Þ , we have that
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δðaÞ ¼ δða0Þ þ
Z

a
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Then Eq. (19) can be written as

a2HðaÞfσ8ðaÞ
a20Hða0Þfσ8ða0Þ

·

e
−3

2
Ωm

R
a

a0

Geff ðxÞ
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R
x

a0

fσ8ðyÞ
y dy

x4HðxÞ2=H2
0
fσ8ðxÞ

dx ¼ 1: ð25Þ

It is clear that the expressions of Eqs. (22)–(25) have to be
constant for all redshifts z, so in the next section we will use
them to construct a null-test. Any deviation from unity will
imply the presence of new physics or systematics in
the data.

IV. THE NULL-TEST

In this section we will use Eqs. (22)–(25) and assume
Geff=GN ¼ 1 to construct a new null-test for the growth
data. Since this equation only holds for GR with the FLRW
metric, deviations point to either new physics or system-
atics in the data. We have explicitly tested in the case of
w ¼ const., where the analytical solution is known, that
Eqs. (22)–(25) are valid at all redshifts.
In order to create our null-test, we implement

Eqs. (22)–(25). We now have two equivalent forms of
the null-test:

OðzÞ ¼ a2HðaÞfðaÞ
a20Hða0Þfða0Þ

e
R

a

a0
ðfðxÞx − 3Ωm

2x4HðxÞ2fðxÞÞdx ð26Þ

OðzÞ ¼ a2HðaÞfσ8ðaÞ
a20Hða0Þfσ8ða0Þ

× e
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2
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R
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R
x

a0

fσ8ðyÞ
y dy

x4HðxÞ2=H2
0
fσ8ðxÞ

dx
: ð27Þ

Both forms are totally equivalent: Eq. (26) is expressed in
terms of the growth rate fðaÞ, which is not a direct
measurable quantity but it makes the expression for the
null-test much simpler and it will be useful (as it will be
clear later on) for testing directly specific models; Eq. (27)
is written in terms of direct measurable quantities and it will
be extremely useful to test the data. It is clear that in both
cases we should have OðzÞ ¼ 1 at all redshifts, and any
deviation from unity could be due to several reasons:

(i) Detection of modified gravity and nonconstant Geff .
(ii) New physics or a presence of shear or strong dark

energy perturbations.
(iii) Deviation from the FLRW metric and homogeneity.
(iv) Tension betweenHðzÞ (obtained directly or derived)

and fσ8 data.
In the next section we will test the above expression with

the help of mocks based on different models.

V. COSMOLOGICAL MODELS

In this section we schematically report the different
cosmologies used to create mocks catalogs.

A. wCDM model

If the Universe is filled by a dark energy component,
with constant equation of state parameter w, then the
Hubble equation can be written as

HðaÞ2=H2
0 ¼ Ωma−3 þ ð1 −ΩmÞa−3ð1þwÞ: ð28Þ

If the dark energy component is not a cosmological
constant, i.e., if w ≠ −1, then dark energy is able to cluster.
The scale at which this dark energy component can cluster
depends on the intrinsic characteristic of the fluid itself,
namely, pressure perturbations δp that are related to the
sound speed and anisotropic stress σ that is usually related
to the viscosity of the fluid (see [7–10]). If dark energy is
able to cluster at sufficiently small scales then Eq. (1) needs
to be modified to account for the dark energy perturbations
that will be an extra source term to the gravitational
potential. Since Eq. (1) has been evaluated on the limit
of small scales, dark energy has to have a small value of the
sound speed and zero viscosity term. In order to create
mock catalogs for the fσ8ðaÞ we modify Eq. (1) by using
the function

QðaÞ ¼ 1þ 1 −Ωm0

Ωm0

1þ w
1 − 3w

a−3w; ð29Þ

which will act as a modified Newton’s constant, i.e.,
GeffðaÞ=GN ≡QðaÞ. Equation (29) describes the amount
of the dark energy perturbations and it has been evaluated
under the assumption of zero dark energy sound speed and
zero anisotropic stress, [7]. If we set w ¼ −1 then we
recover the ΛCDM model, i.e., with zero perturbations. In
this case our default parameters for the mocks
are ðΩm; w; σ8Þ ¼ ð0.3;−0.8; 0.8Þ.

B. f ðRÞ model

Since we are interested in examining the effect of the fσ8
data on the null-test, we choose an fðRÞ model that is
exactly ΛCDM at the background level, but is significantly
different at the perturbations level. This way, we can
disentangle the effects of the modified gravity, GeffðaÞ,
from the background acceleration. One such degenerate
model was studied in Ref. [26], where the fðRÞ action was
found to be

S ¼ 1

8πGN

Z
d4x

ffiffiffiffiffiffi−gp ðfðRÞ=2þ SmÞ; ð30Þ

where Sm is the action term for the matter fields and
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fðRÞ ¼ R − 2Λþ αH2
0

�
Λ

R − 3Λ

�
b

× 2F1

�
b;
3

2
þ b;

13

6
þ 2b;

Λ
R − 3Λ

�
; ð31Þ

where b ¼ 1
12
ð−7þ ffiffiffiffiffi

73
p Þ and the parameter α is dimen-

sionless and determines how strong the effects of the
modified gravity are. We should note that with this
Lagrangian we can recover GR at early times (a ≪ 1),
i.e., Geff=GN ∼ 1 or f0ðRÞ ∼ 1, and that it passes all criteria
for viability of fðRÞmodels, as shown in Ref. [26]. For this
model we have by construction

HðaÞ2 ¼ H2
0ðΩma−3 þ 1 −ΩmÞ; ð32Þ

while Newton’s constant is [12]

Geff=GN ¼ 1

F

1þ 4 k2

a2 m

1þ 3 k2

a2 m
; ð33Þ

m≡ F;R

F
; ð34Þ

F≡ f;R ¼ ∂f
∂R : ð35Þ

In this case our default parameters for the mocks are
ðΩm; σ8Þ ¼ ð0.3; 0.8Þ and we also considered the two
different cases α ¼ ð0.002; 0.2Þ.

C. Gauss-Bonnet model

Another interesting case are the fðGÞmodels, whereG is
the Gauss-Bonnet term G≡ R2 − 4RμνRμν þ RμνσρRμνσρ.
Again, we are primarily interested in the effects of the
modification of gravity, so we will use the fðGÞ degenerate
model of Ref. [26] that is exactly ΛCDM at the background
level. Then the action is given by [26]

S ¼ 1

8πGN

Z
d4x

ffiffiffiffiffiffi−gp ðR=2þ fðGÞÞ þ Sm; ð36Þ

where

fðGÞ¼−3H2
0ð1−ΩmÞþαH2

0G
Z

aðGÞHðGÞ=H0

G2
dG: ð37Þ

In the last equation the first term corresponds to the
cosmological constant; we have neglected a term that
was just proportional to G as it does not contribute in
the field equations. The cosmological perturbations of the
fðGÞ models were studied in Ref. [27], where it was shown
that the growth factor for the matter perturbations δm
satisfies the evolution equation (using the subhorizon
approximation k ≫ aH):

δ̈m þ C1ðk; aÞ_δm þ C2ðk; aÞδm ≃ 0; ð38Þ
where the functions C1ðk; aÞ and C2ðk; aÞ where first
derived in [27] and are given in Appendix B of Ref. [26]

for completeness. In the GR limit Eq. (38) reduces to

δ̈m þ 2H _δm − 3

2
Ωma−3δm ¼ 0 ð39Þ

so comparing these two expressions we can define an
effective Newton’s constant:

Geffðk; aÞ=GN ¼ C2ðk; aÞ
− 3

2
Ωma−3

; ð40Þ

which is valid only under the subhorizon approximation
k ≫ aH.
Even though these models suffer from instabilities in the

matter density perturbations during the matter era as shown
in [27], we still use them to make mocks since they exhibit
rich phenomenology due to the presence of the second term
containing C1ðk; aÞ in Eq. (38). This makes them ideal
candidates for our null-test, as C1ðk; aÞ cannot be described
by a single Geff term and thus will produce deviations from
unity. In this case our default parameters for the mocks
are ðΩm; α; σ8Þ ¼ ð0.3; 0.02; 0.8Þ.

D. LTB model

Alternatives to Λ for explaining the current acceleration
are inhomogeneous universe models in which the effective
acceleration is caused by our special position as observers
inside a huge underdense region of space. One of the
simplest models to study the effect of such large inhomo-
geneities is the spherically symmetric Lemaitre-Tolman-
Bondi (LTB) model [28–30]. In this large void model, the
metric is given by

ds2 ¼ −dt2 þ X2ðr; tÞdr2 þ A2ðr; tÞdΩ2; ð41Þ
where dΩ2 ¼ dθ2 þ sin2 θdϕ2 and the equivalent of the
scale factor now depends on both time and the radial

TABLE I. fσ8ðzÞ measurements from different surveys.

Index z fσ8ðzÞ References

1 0.02 0.360� 0.040 [44]
2 0.067 0.423� 0.055 [45]
3 0.25 0.3512� 0.0583 [46]
4 0.37 0.4602� 0.0378 [46]
5 0.30 0.407� 0.055 [47]
6 0.40 0.419� 0.041 [47]
7 0.50 0.427� 0.043 [47]
8 0.60 0.433� 0.067 [47]
9 0.17 0.510� 0.060 [48]
10 0.35 0.440� 0.050 [48]
11 0.77 0.490� 0.018 [48,49]
12 0.44 0.413� 0.080 [50]
13 0.60 0.390� 0.063 [50]
14 0.73 0.437� 0.072 [50]
15 0.80 0.470� 0.080 [51]
16 0.35 0.445� 0.097 [52]
17 0.32 0.384� 0.095 [53]
18 0.57 0.423� 0.052 [54]
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coordinate r. We can find a relationship between Xðr; tÞ
and Aðr; tÞ using the 0 − r component of the Einstein
equations: Xðr; tÞ ¼ A0ðr; tÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kðrÞp
where a prime

denotes a derivative with respect to coordinate r and
kðrÞ is an arbitrary function that plays the role of the
spatial curvature parameter.
To find the growth index in LTB cosmologies we must

study linear perturbation theory in inhomogeneous uni-
verses. Because of the loss of a degree of symmetry, the
decomposition theorem no longer holds. This means that,
in general, our perturbations will no longer decouple into
scalar, vector, and tensor modes. A study of the perturba-
tion equations in this scenario using a 1þ 1þ 2 decom-
position of spacetime can be found in [31]. However, if the
normalized shear ε ¼ ðHT −HLÞ=ð2HT þHLÞ is small,1

as observations seem to confirm [32,33], we can use the
Arnowitt-Deser-Misner formalism and express our per-
turbed LTB metric as

ds2 ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΨÞγijdxidxj; ð42Þ

where γij ¼ diagfX2ðr; tÞ; A2ðr; tÞ; A2ðr; tÞ sin2 θg. Within
this formalism, the growing mode of the density contrast is
given by [33]

δðr; tÞ ¼ Aðr; tÞ
r 2F1

�
1; 2;

7

2
; u

�
; ð43Þ

where u ¼ kðrÞAðr; tÞ=FðrÞ and FðrÞ ¼ H2
0ðrÞΩMðrÞr3

specifies the local matter density today.
We can now calculate the growth rate of density

perturbations, noting that here the matter density parameter
ΩMðrÞ is a function of redshift via both time t and the radial
coordinate r. In LTB models, this is, in principle, an
arbitrary function that must be chosen appropriately in
each case. In the case of the constrained Garcia-Bellido-
Haugbolle model [34,35] the parameters are given by

ΩMðrÞ ¼ 1þ ðΩð0Þ
M − 1Þ 1 − tanh½ðr − r0Þ=2Δr�

1þ tanh½r0=Δr�
ð44Þ

H0ðrÞ ¼ H0

�
1

1 −ΩMðrÞ
− ΩMðrÞ
ð1 −ΩMðrÞÞ3=2

×arcsinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −ΩMðrÞ
ΩMðrÞ

s �
; ð45Þ

TABLE II. HðzÞ measurements from different surveys using
passively evolving galaxies and radial BAO.

Index z HðzÞ References

1 0.090 69� 12 [40]
2 0.170 83� 8 [40]
3 0.179 75� 4 [40]
4 0.199 75� 5 [40]
5 0.270 77� 14 [40]
6 0.352 83� 14 [40]
7 0.400 95� 17 [40]
8 0.480 97� 62 [40]
9 0.593 104� 13 [48]
10 0.680 92� 8 [40]
11 0.781 105� 12 [40]
12 0.875 125� 17 [40]
13 0.880 90� 40 [40]
14 0.900 117� 23 [40]
15 1.037 154� 20 [40]
16 1.300 168� 17 [40]
17 1.430 177� 18 [40]
18 1.530 140� 14 [40]
19 1.750 202� 40 [40]
20 0.240 79.69� 2.32 [41]
21 0.430 86.45� 3.27 [41]
22 0.440 82.60� 7.80 [42]
23 0.570 96.80� 3.40 [55]
24 0.600 87.90� 6.10 [42]
25 0.730 97.30� 7.00 [42]
26 2.36 226.0� 8.00 [43]
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FIG. 1 (color online). The results for the null-test with the
binning method for the actual data with four bins (red triangle)
and three bins (black circle), using HðzÞ and fσ8ðzÞ.

TABLE III. Null-test OðzÞ with the corresponding 1σ errors
using actual data divided in four and three bins with the
corresponding confidence level.

Data

Four bins Three bins

z OðzÞ � σOðzÞ σs z OðzÞ � σOðzÞ σs
0.101 1.000� 0.076 0 0.135 1.000� 0.066 0
0.304 0.889� 0.041 2.740 0.405 0.974� 0.039 0.656
0.506 0.896� 0.038 2.744 0.675 0.986� 0.035 0.395
0.709 0.963� 0.037 0.9901 � � � � � � � � �

1We now have two different expansion rates, HTðr; tÞ ¼ _A=A
and HLðr; tÞ ¼ _A0=A0, corresponding to the transverse and along
the line of sight expansion rates, respectively.
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with

r0 ¼ 3.0 Gpc; Δr¼ r0; h0 ¼ 0.71; Ωð0Þ
M ¼ 0.19;

ð46Þ
where these values have been chosen to best fit the
supernovae and baryon acoustic oscillation (BAO) data
[32,36]. Within this model, the growth function, i.e., the
logarithmic derivative of the density contrast, is given
by [15]

fðzÞ ¼ Ω1=2
m ðzÞP

−5=2
−1=2½Ω−1=2

m ðzÞ�
P−5=2
1=2 ½Ω−1=2

m ðzÞ�
; ð47Þ

where Pm
l ðuÞ are the associated Legendre polynomials and

ΩmðzÞ is the fraction of matter density to critical density, as
a function of redshift.2 This function (47) is identical to the
instantaneous growth function of matter density in an open
universe, where the local matter density ΩM is given by
ΩmðzÞ at that redshift. This is a good approximation only in
LTB models with small cosmic shear; see Ref. [37].

VI. DATA ANALYSIS

In this section we present the analysis implemented for
the null-test and we describe the data we used.

A. Binning the data

We reconstruct the null-test OðzÞ by using different
cosmological measurements. In order to reconstruct
Eq. (25) we need four independent observables: the
Hubble parameter HðzÞ, the fσ8ðzÞ, σ8ðz ¼ 0Þ, and
Ωm0

h2. To be more specific, we use the fσ8 data from
different experiments and collected by Refs [38,39], and we
reported them in Table I, and the Hubble parameters values
measured from passively evolving galaxies data given in
Moresco et al. [40] and the values of the Hubble parameters

using radial BAO from different experiments [41,42] and
[43]; we report the values in Table II.
The binning technique to measure OðzÞ consists of

evaluating it in several redshift bins by directly computing
the HðzÞ values and by using the fσ8ðzÞ values measured
by different experiments. The Hubble parameter catalog
contains nH ¼ 26 data spanned from redshift 0.1 up to
z ¼ 2.36, whereas the growth rate catalog contains nfσ8 ¼
18 data points from z ¼ 0.02 up to z ¼ 0.8. Since the
growth measurements reach only up to z ¼ 0.8 we are
forced to discard the last nine data points for HðzÞ (as we
want to avoid having too wide bins). Because the number of
data for both catalogs is quite small the choice of the bins is
quite restricted. We decided to opt for two different binnig
techniques: first we chose four and then three bins, both
equally spaced, and we evaluate the observables at the
mean redshift of the bins; we report the values to Table III.
It is important to notice that, in order for the consistency

check O to hold, we need to evaluate quantities at the
same redshift. We show the results in Fig. 1. As can be seen
from the figure, the number of bins affects the results; in the
four-bins case the null-test O is far from unity, implying
that the actual data do not give a ΛCDM scenario as at
redshift ∼0.5 the reference cosmology is at almost 3σs
away. However, in the three-bins case the data predict a
ΛCDM scenario already at 1σ. The reason why we have
such different results is due to the number of data points we
are considering. At the moment, we have few data
especially for the growth factor and also not uniformly
distributed, leaving some bins with only two points and
making the binning technique not fully reliable.

B. Mock catalogs

As mentioned before, we also use mock catalogs based
on different cosmologies to testOðzÞ for two main reasons:
first, to evaluate howmuch the errors on the null-test will be
with future experiments; second, to examine the validity
and the generality of the null-test OðzÞ.
We used different cosmologies to evaluate the mock

catalogs: (1) wCDM with w ¼ −1 to recover the ΛCDM
limit and another set of data using w ¼ −0.8, which allows
perturbations in the dark energy sector; (2) fðRÞ model

TABLE IV. Null-testOðzÞ with 1σ errors for the five cosmologies used in this work. We also show the confidence level for each test at
each redshift; values less then 1 indicate that the null-test is consistent with unity at 1σ; if it is larger it corresponds to the number of
sigmas that the null-test is away from unity.

Mock

ΛCDM wCDM fðRÞ fðGÞ LTB

z OðzÞ � σOðzÞ σs OðzÞ � σOðzÞ σs OðzÞ � σOðzÞ σs OðzÞ � σOðzÞ σs OðzÞ � σOðzÞ σs
0.1 1.000� 0.010 0 1.000� 0.010 0 1.000� 0.010 0 1.000� 0.009 0 1.000� 0.010 0
0.3 0.994� 0.013 0.447 0.971� 0.013 2.302 0.975� 0.013 1.924 0.983� 0.012 1.428 1.327� 0.035 9.191
0.5 0.989� 0.022 0.498 0.970� 0.021 1.421 0.978� 0.022 0.987 0.958� 0.020 2.154 1.612� 0.085 7.250
0.7 0.979� 0.032 0.637 0.962� 0.031 1.203 0.964� 0.032 1.111 0.885� 0.027 4.205 1.941� 0.153 6.151

2The matter density in the LTB model is given by
ρðr; tÞ ¼ F0ðrÞ=A0ðr; tÞA2ðr; tÞ. Note that this is different from
ΩMðrÞ ¼ FðrÞ=A3ðr; t0ÞH2

0ðrÞ, which gives the mass radial
function today; see Ref. [34].
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with ðΩm; σ8Þ ¼ ð0.3; 0.8Þ and also considering the two
different cases α ¼ ð0.002; 0.2Þ; (3) fðGÞ model with
ðΩm; α; σ8Þ ¼ ð0.3; 0.02; 0.8Þ; and (4) LTB model with

ðr0;Δr; r0; h0;Ωð0Þ
M Þ ¼ ð3.0 Gpc; 3.0 Gpc; 0.71; 0.19Þ.

The details of the models can be found in Sec. V. We
created two different catalogs for each cosmology: the
Hubble parameter and the fσ8ðzÞ. Since we are more
interested in testing the consistency check OðzÞ rather than
worrying about systematics in the data, we evaluated the
Hubble and growth parameters uniformly distributed in the
range z ∈ ½0; 2� divided into 20 equally spaced bins of step
dz ¼ 0.1; the HðzÞ and the fσ8ðzÞ were estimated as its
theoretical value plus a Gaussian error (that can be negative
or positive) and constant errors of 0.2 and 0.006, respec-
tively; the values of the errors were obtained using the
Fisher matrix approach and having in mind a setup similar
to Euclid-like and LSST-like surveys [56,57], i.e., evalu-
ating the sensitivity that a future survey will have to
measure the Hubble parameter and the growth of matter.

C. Binning the mock catalogs

In what follows we report the results obtained by binning
the data in the mock catalogs that we created using different
cosmologies. We use the null-test valid for the ΛCDM
model given by Eq. (27) and we analyze the mocks. In
practice we ask ourselves the following: if the Universe is
different fromΛCDM, how accurately we can test it? As we
are analyzing mocks created using a cosmology different
from the ΛCDM we expect the null-test to fail, i.e., to be
different from unity at all the redshifts.
To analyze the mock data we decided to use two different

binning: first, we used four bins from redshift 0 until
redshift 0.8 to compare them with the results from the
actual data; second, we used ten bins using all the data, i.e.,
we extended our analysis up to z ¼ 2.0. As both catalogs
contain the same number of points and they are uniformly
distributed, the mean redshift in each bin will be the same
for each cosmology. In Table IV we report the values of the

OðzÞ for the different cosmologies in the four-bins case. In
the same table, next to each value of the null-test, we
present the confidence level, i.e., how many sigmas the
values of the null-test are from unity; if the value is smaller
than 1 then the value of the null-testOðzÞ is within 1σ close
to unity; if the value is larger than 1, then the value
corresponds to the number of sigmas that the null-test is
away from unity.
In Fig. 2 we show the result for four cosmologies3 and in

Table IV we report the values found for the null-test, the
corresponding errors and the confidence level.
If we test the ΛCDM mock catalogs, we get a result that

is consistent with 1 already at 1σ, see Tab. IV; when we use
a different mock catalog, for instance the wCDM one,OðzÞ
is less than 1 at more than 2σs at almost any redshift, which
is the result that we would expect as the growth of the
matter density contrast increases because of the dark energy
perturbations. Using the fðRÞ mocks the null-test gives
values closer to unity indicating that it will be more difficult
to differentiate the ΛCDM and the fðRÞ model; this is due
to the fact that the fðRÞ model used in this paper has a
Hubble parameter that is exactly ΛCDM and an α of 0.002;
hence, the modification to the growth fσ8ðzÞ is small.
When we use the mocks from fðGÞ and LTB cosmologies,
both models giving substantially different behavior of the
Hubble parameter and the growth of matter density con-
trast, the deviation from unity of the null-testOðzÞ becomes
more evident; in fact we found that the fðGÞ can be ruled
out at more than 4σs and the LTB at more than 9σs. The
results up to z ¼ 2 can be found in Table V.

D. Model testing

An interesting alternative to binning is to fit the data,
either real or mock, to the ΛCDM and wCDM models and
then reconstruct the null-test OðzÞ. In Fig. 3 we show the
results of reconstructing the null-test with the real data

0.0 0.2 0.4 0.6 0.8
0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

z

O
z

0.0 0.2 0.4 0.6 0.8

1.0

1.5

2.0

2.5

z

O
z

FIG. 2 (color online). The results for the null-test by binning the mock catalogs for theHðzÞ and fσ8 data. Left panel: the wCDMwith
dark energy perturbations (cyan circle), the fðRÞ (red square), and the fðGÞ (purple diamond). Right panel: the LTB model.

3We excluded ΛCDM for the sake of space.
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fitted by the ΛCDM (left) and wCDM (right) models,
respectively. Clearly, the null-test as reconstructed with the
real data seems to be compatible with unity at the
1.5σ level.
Next, we will also test how well the null-test will be

reconstructed with future data. For this, we also consider
the different cosmologies mentioned in a previous section
and fit the mocks with both the ΛCDM and wCDM
models. The reason for this is that we want to make a
direct test of the standard cosmological model with as few
extra assumptions as possible. We should stress that in this
case any deviation from unity implies a breakdown of
either the fundamental assumptions of the standard cos-
mological model, i.e., homogeneity, the validity of GR,
etc., or that the dark energy (DE) models used are not a
good description of the data.
In Fig. 4 we show the results for the null-test for the

ΛCDM (left) and wCDM (right) using ΛCDM mocks (first
row) and the DE perturbations (second row) for the HðzÞ
and fσ8 data. In Fig. 5 we show the results for the null-test
for theΛCDMmodel for the mockHðzÞ and fσ8 data based
on the fðRÞ model for α ¼ 0.002 (first row left) and α ¼
0.2 (first row right). On the second row we show the results
for the fðGÞ HðzÞ and fσ8 data for the ΛCDM model (left)
and wCDM (right) models, respectively. Finally, in Fig. 6
we show the results for the null-test for the LTB HðzÞ and
fσ8 mocks fitted with the ΛCDM (left) and wCDM (right).
We find that the OðzÞ null-test will be particularly

successful at detecting deviations from GR at high signifi-
cance ð≳5σÞ, especially of the fðRÞ and fðGÞ types
(Fig. 5), but also deviations from the Friedmann–
Robertson–Walker metric (Fig. 6). This is due to the fact
that these models have significantly different evolution for
the matter density perturbations, which is encoded in the
Geff and can be detected by the null-test.

1. Alternative data and theories

As an extra check we also use alternative data instead of
just the HðzÞ, namely, the supernovae type Ia (SnIa) to
reconstruct the Hubble parameter. In particular, we used the
latest Union 2.14 set of 580 SnIa data of Suzuki et al. [58]
that spans from redshift 0.015 up to 1.4.
The results for this reconstruction are shown in Fig. 8 for

the ΛCDM and in Fig. 9 for the wCDM. We find that they
are in excellent agreement with that of theHðzÞ data shown
earlier, thus eliminating any possibility of bias due to the
use of the particular data used to reconstruct the Hubble
expansion history.
Finally, we also consider fðRÞ models in the

reconstruction of the null-test. Specifically, in Fig. 10 we
show the results for the null-test for the fðRÞ model for the
real SnIa and fσ8 data (left) and the HðzÞ and fσ8 data
(right). Again, the results are in good agreement, thus
demonstrating that the null-test is not particularly sensitive
on the model used.

E. Validity of the growth rate data used
with the null-test

It should be noted that, unfortunately, none of the fσ8ðzÞ
data used in this analysis has been evaluated in a com-
pletely model independent manner. Usually, an underlying
cosmology has to be considered in order to extract
information about the growth rate parameter, and most
of the time this cosmology is the ΛCDM. Another
limitation of the fσ8 data is that part of the measurement
comes from a range of wave numbers that falls into the
nonlinear regime, with the typical scales ranging from 30

TABLE V. Null-test OðzÞ with 1σ errors for the five cosmologies used in this work up to z ¼ 2.0. We also show the confidence level
for each test at each redshift; values less then 1 indicate that the null-test is consistent with unity at 1σ; if it is larger it corresponds to the
number of sigmas that the null-test is away from unity.

Mock

ΛCDM wCDM fðRÞ fðGÞ LTB

z OðzÞ � σOðzÞ σs OðzÞ � σOðzÞ σs OðzÞ � σOðzÞ σs OðzÞ � σOðzÞ σs OðzÞ � σOðzÞ σs
0.1 1.000� 0.010 0 1.000� 0.010 0 1.000� 0.010 0 1.000� 0.009 0 1.000� 0.010 0
0.3 0.994� 0.013 0.447 0.971� 0.013 2.302 0.975� 0.013 1.924 0.983� 0.012 1.428 1.327� 0.035 9.191
0.5 0.989� 0.022 0.498 0.970� 0.021 1.421 0.978� 0.022 0.987 0.958� 0.020 2.154 1.612� 0.085 7.250
0.7 0.979� 0.032 0.637 0.962� 0.031 1.203 0.964� 0.032 1.111 0.885� 0.027 4.205 1.941� 0.153 6.151
0.9 0.980� 0.045 0.460 0.951� 0.041 1.196 0.950� 0.043 1.166 0.850� 0.036 4.203 2.218� 0.234 5.213
1.1 0.961� 0.055 0.707 0.947� 0.052 1.032 0.935� 0.054 1.205 0.801� 0.043 4.597 2.552� 0.338 4.596
1.3 0.968� 0.068 0.464 0.949� 0.062 0.821 0.915� 0.064 1.329 0.784� 0.052 4.139 2.969� 0.472 4.171
1.5 0.960� 0.079 0.504 0.945� 0.073 0.755 0.927� 0.076 0.955 0.781� 0.062 3.550 3.371� 0.624 3.798
1.7 0.955� 0.091 0.492 0.919� 0.081 0.996 0.931� 0.088 0.781 0.751� 0.069 3.612 3.78� 0.797 3.483
1.9 0.943� 0.101 0.557 0.928� 0.093 0.770 0.903� 0.097 1.003 0.749� 0.079 3.189 3.970� 0.942 3.152

4The SnIa data can be found in http://supernova.lbl.gov/Union/
and in [58].
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up to 200 Mpc=h, which expressed as a wave number is
k ¼ 0.03–0.2 h=Mpc. The maximum wave number that we
can reach before entering into the nonlinear regime depends
on the redshift of the measurements; starting from
kmax ¼ 0.1 h=Mpc at z ¼ 0 up to kmax ¼ 0.2 h=Mpc at
high redshifts (above 1).
Most surveys [44,46] already do take into account

nonlinearities via the nonlinear BAO diffusion. The latter
is usually treated as a “nuisance” parameter, which will be
marginalized over as it does not depend on the cosmology,

and by doing so the cosmological information comes only
from the linear part of the power spectrum. Moreover,
the growth rate fðzÞ ¼ d ln δ=d ln a is a linear quantity
because it is directly proportional to the velocity perturba-
tions δ0 with no scale dependence. Clearly, there is still a lot
room for improvement in order to have completely model
independent and better measurements of the growth index.
It should be stressed, however, that this problem with
the data could potentially be resolved in the near future if
the data can be created with more model independent
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FIG. 4. The results for the null-test for the ΛCDM (left) and wCDM (right) using ΛCDM mocks (first row) and the DE perturbations
(second row) for the HðzÞ and fσ8 data.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.90

0.95

1.00

1.05

1.10

z

O
z

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.90

0.95

1.00

1.05

1.10

z

O
z

FIG. 3. The results for the null-test for the ΛCDM (left) and wCDM (right) using actual data for the HðzÞ and fσ8 data.
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techniques, thus alleviating this constraint from our
null-test.

F. Tension in the data

In this subsection we will briefly discuss another issue,
that of the potential problem that the HðzÞ data might
originate from a different cosmology but the growth fσ8
data has been evaluated under the assumption of ΛCDM.
For instance, the later time scale independent growth could

be generated by fðRÞ gravity theory, but some of the
analysis assumed the coherent growth and then what it is
measuring is the mean fσ8ðzÞ in the valid k bins. Above all,
uncertainties due to the nonlinear or nonperturbed terms
prevail through those measurements and, as a result, we are
not able to test anything other than simple GR models.
Therefore, if one wants to constrain a specific theoretical
model, such as fðRÞ or fðGÞ, he or she should analyze the
data based upon the model dependent method.
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FIG. 6. The results for the null-test for the LTB HðzÞ and fσ8 mocks fitted with the ΛCDM (left) and wCDM (right).
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FIG. 5. The results for the null-test for the ΛCDMmodel for the mockHðzÞ and fσ8 data based on the fðRÞmodel for α ¼ 0.002 (first
row left) and α ¼ 0.2 (first row right). On the second row we show the results for the fðGÞHðzÞ and fσ8 data for the ΛCDMmodel (left)
and wCDM (right) models, respectively.
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However, our test is very sensitive to variations of
cosmologies or, in other terms, tensions in the data, as
in this particular case. An interesting game test is the
following: Let us imagine we have a data set of HðzÞ

measured in a model independent way and it favors a
wCDM model; then we have a different data set of fσ8ðzÞ
measured assuming a model (in this case ΛCDM), so these
data are clearly biased as they will favor a ΛCDM model
rather than the true underlying cosmology (which is wCDM
with perturbations also in the dark energy sector). So we
can think to use these two different data sets with the null-
test: in practice, in order to quantify the sensitivity of our
null-test, we use a mock catalog for H(z) using the wCDM
model and another mock catalog used for fσ8ðzÞ using the
ΛCDM model. We notice that the null-test deviates from
unity at the level of about 10% (O ∼ 1.1) and an average of
about 4.0%.
We can also ask how much fσ8ðzÞ itself deviates using

the wrong cosmology and test which is more sensitive. We
find that for fσ8ðzÞ for the two different cosmologies, i.e.,
for ΛCDM and wCDM, the difference between the fσ8ðzÞ
evaluated using two different cosmologies is of about 2–5%
and an average of about 2.4%.
We can also have a closer look at the errors on the null-

test mixing up two different cosmologies. Implementing
the full error propagation analysis we realize that the errors
remain basically unchanged when we mix up the two
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FIG. 7 (color online). TheOðzÞ for three different cosmologies:
black dashed line for ΛCDMmock catalogs (light gray area is the
error), black dot-dashed line for wCDM mock catalogs (light
yellow area is the error), and black dotted line for the mixing
cosmology, i.e., using HðzÞ mock under for wCDM and fσ8ðzÞ
mock for ΛCDM (light cyan area is the error).
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FIG. 8. The results for the null-test for the ΛCDM for the real data (left) and the mock data (right) for the SnIa and fσ8 data.
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FIG. 9. The results for the null-test for the wCDM for the real data (left) and the mock data (right) for the SnIa and fσ8 data.
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different cosmologies; the reason is that the error propa-
gation formula does not change and the important quan-
tities are the errors on the measured quantity, i.e., HðzÞ,
fσ8ðzÞ, ωm, and σ8. In Fig. 7 we plot the null-test using
ΛCDM and wCDM mock catalogs and the null-test mixing
the cosmologies.

VII. CONCLUSIONS

In this paper we have reconstructed the null-test, which
can be used to probe potential deviations from ΛCDM and
was first presented in Ref. [6], by using theHðzÞ, SnIa, and
fσ8 data. We performed the reconstruction in two different
ways: by directly binning the data and by fitting the data to
various dark energy models like the ΛCDM and wCDM
and then calculating the null-test. We find that both
methods have different advantages; the former uses as
few assumptions as possible while the latter directly tests
the standard cosmological model.
We have also generalized the null-test and extended it for

modified gravity models and models with strong DE
perturbations, by taking into account the Geff term in
Eq. (1). We have explicitly checked that when this term
is taken into account, the null-test is constant as expected
for modified gravity models. This allows us to verify that
deviations from unity in the original version of the null-test
presented in Ref. [6] can indeed also be attributed to
modifications of gravity.
We have found that deviations from unity could be due to

several reasons, either new physics including modifications
of gravity and strong dark energy perturbations, or break-
downs of one of the basic assumptions of the standard
cosmological model, i.e., deviation from the FLRW metric
and homogeneity or, finally, a possible tension between
HðzÞ (obtained directly or derived) and the fσ8 data. In all
cases due to the nature of the null-tests and that they have to
be constant at all redshifts, it is enough to a have a
statistically significant deviation at one redshift to detect
one of the above reasons. A possible limitation at the
moment is that the null-test cannot tell us which of the
above reasons would be responsible for that deviation,

though. However, our growth null-test will be extremely
useful if joined with other null-tests, like the ΩKðzÞ
presented in [20] that is able to test the assumptions of
homogeneity and isotropy of the Universe.
We also examined how well the null-test can be

reconstructed by future data by creating mock catalogs
based on a LSST-like survey and on the ΛCDM model, a
model with strong DE perturbations, the fðRÞ and fðGÞ
models, and the large void LTB model that exhibit different
evolution of the matter perturbations. This was done so as
to examine how well our null-test can be reconstructed
using the data from upcoming surveys.
Our results were presented in Figs. 1–10. We found that

when reconstructed with real data the null-test is consistent
with unity at the 2σ level,with both the binning and themodel
testing methods. However, when we reconstruct it with the
mock data based on the specifications of a LSST-like survey
and variousmodels that go beyond theΛCDM, i.e., the fðRÞ,
fðGÞmodels and theLTB,we find that the null-test can detect
deviations from unity at the 5σ and also 9σ level.
Overall, the novelty of our null-test is that it can directly

test the fundamental assumptions of the standard cosmo-
logical model with as few assumptions as possible.
Therefore, it will definitely prove to be an invaluable tool
in the near future given the plethora of upcoming surveys
that will produce high quality data.
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APPENDIX: NULL-TEST FOR THE BINNING METHOD

In this section we report the null-test in terms of redshift z that we used for binning the data and its derivatives with
respect to four observables to evaluate the propagated error. The null-test O becomes

OðzÞ ¼ ð1þ z0Þ2HðzÞ
ð1þ zÞ2Hðz0Þ

fσ8ðzÞ
fσ8ðz0Þ

exp

�
3

2
Ωm0

H2
0

Z
z

z0

ð1þ xÞ2
HðxÞ2fσ8ðxÞ

�
σ8ð0Þ

δðz0Þ
δðz ¼ 0Þ −

Z
x

z0

fσ8ðyÞ
1þ y

dy

�
dx

�
; ðA1Þ

we chose z0 to be equal to the first redshift available;
hence, all the quantities like Hðz0Þ and fσ8ðz0Þ are
the first binned values of the data. Equation (A1)
depends also on H0, which is in general a complicated
parameter to measure; for this reason we use instead
Ωm0

H2
0 ¼ 1002Ωm0

h2 ¼ 104ωm where ωm is a parameter
given by cosmic microwave background experiments
and easy to measure with great accuracy. It is also
important to notice that when z0 approaches 0 we have
that Hðz0Þ ∼H0; however, this term should never be

thought of as the real Hubble constant (like the one
appearing in the exponent) but it has to be considered
as the value of the Hubble parameter at the lowest
redshift because the only true Hubble constant, i.e., that
comes directly from the theory, is the one appearing in
the exponent.
For the sake of completeness we also write the deriv-

atives of Eq. (A1) with respect to the four observables that
will be used to evaluate the propagated error on the quantity
OðzÞ and these are

∂ logOðzÞ
∂HðzÞ ¼ 1

HðzÞ − 3 × 104Ωm0
h2

Z
z

0

ð1þ xÞ2
HðxÞ3fσ8ðxÞ

�
σ8ðz ¼ 0Þ −

Z
x

0

fσ8ðyÞ
1þ y

dy

�
dx ðA2Þ

∂ logOðzÞ
∂fσ8ðzÞ ¼ −

1

fσ8ðzÞ
þ 3

2
× 104Ωm0

h2
Z

z

0

ð1þ xÞ2
HðxÞ2fσ8ðxÞ2

�
−σ8ðz ¼ 0Þ þ

Z
x

0

fσ8ðyÞ
1þ y

dy − fσ8ðxÞ logð1þ xÞ
�
dx ðA3Þ

∂ logOðzÞ
∂σ8ðz ¼ 0Þ ¼

3

2
× 104Ωm0

h2
Z

z

0

ð1þ xÞ2
HðxÞ2fσ8ðxÞ

dx ðA4Þ

∂ logOðzÞ
∂Ωm0

h2
¼ 3

2
× 104Ωm0

h2
Z

z

0

ð1þ xÞ2
HðxÞ2fσ8ðxÞ

�
σ8ðz ¼ 0Þ −

Z
x

0

fσ8ðyÞ
1þ y

dy

�
dx: ðA5Þ

Then the final errors on OðzÞ will be given by

σOðzÞ
jOðzÞj ¼

�∂ logOðzÞ
∂HðzÞ

�
2

σ2HðzÞ þ
�∂ logOðzÞ

∂fσ8ðzÞ
�

2

σ2fσ8ðzÞ þ
�∂ logOðzÞ

∂Ωm0
h2

�
2

σ2Ωm0
h2 þ

� ∂ logOðzÞ
∂σ8ðz ¼ 0Þ

�
2

σ2σ8ðz¼0Þ

s
: ðA6Þ
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