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Abstract

The use of millimetre wave images has been proposed recently in the biometric field to overcome certain limitations
when using images acquired at visible frequencies. Furthermore, the security community has started using millimetre
wave screening scanners in order to detect concealed objects. We believe we can exploit the use of these devices by
incorporating biometric functionalities. This paper proposes a biometric recognition system based on the information
of the silhouette of the human body, which may be seen as a type of soft biometric trait. To this aim, we report
experimental results on the BIOGIGA database with four feature extraction approaches (contour coordinates, shape
contexts, Fourier descriptors and landmarks) and three classification methods (Euclidean distance, dynamic time
warping and support vector machines). The best configuration of 1.33 % EER is achieved when using contour
coordinates with dynamic time warping.
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1 Introduction
Many biometric characteristics are used to identify indi-
viduals: fingerprint, iris, voice, face, hand, signature etc.
The majority of these biometric traits are acquired with
cameras working at visible frequencies of the electromag-
netic spectrum. Such images are affected, among other
factors, by lighting conditions and body occlusions (e.g.
clothing, make up, hair etc.). To overcome these lim-
itations, researchers have proposed the use of images
acquired at other spectral ranges: X-ray, infrared, millime-
tre (MMW) and submillimetre (SMW) waves [1]. The
images were captured beyond the visible spectrum cir-
cumvent and, to some extent, some of the mentioned
limitations; furthermore, they are more robust to spoofing
than other biometric images/traits [2].
Among the spectral bands out of the visible spectrum,

the millimetre waves (with frequency in the band of
30–300 GHz) present interesting properties that can be
exploited in biometrics: ability to pass through clothing
and other occlusions, innocuous to health, low intrusive-
ness and the recent deployment and rapid progress of
GHz-THz systems in screening applications.
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One example of these GHz-THz systems for screening
applications are the millimetre wave scanners deployed in
several airports such as Los Angeles International Airport,
San Francisco International airport in US or Schiphol
Airport, Fiumicino Airport, in Europe among others.
The MMW scanners have been replacing X-ray scan-
ners throughout the years alleging that since this range
of the spectrum is not ionizing, it is therefore less harm-
ful to the health of human beings. These scanners may
be implemented in active or passive mode, depending on
whether they introduce artificial radiation into the sys-
tem or not. Another important issue to bear in mind
are privacy concerns as these systems can pass through
clothes. To minimize privacy issues, operators are usually
restricted to use generic silhouettes showing the area of
the body where a potential dangerous object may be con-
cealed rather than using real MMW images [3]. Figure 1
shows examples of the output of two MMW active scan-
ners from L3 Communications. The left part of the image
shows a view of the output image provided by the ProVi-
sion scanner in which it is possible to see the real images
from the person. The right part of the image shows the
output provided by the ProVision ATD (automatic target
detection) scanner in which only the silhouette of the body
is depicted. The latter scanner is accepted in both US and
European airports.
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Fig. 1 Images acquired with commercial MMW scanner systems. (Left) Active MMW images of a dressed woman, both acquired by the Provision
L3-Communications screening portal. (Right) General model silhouette showing the specific part of the body where it is likely to have a dangerous
object provided by the Provision ATM. Images are extracted from http://www.sds.l-3com.com/advancedimaging/provision.htm

Apart from the functionality of detecting dangerous
objects, we propose to use also these devices to apply
biometric recognition using the body shape as biometric
trait. We reckon it may not substitute primary biometrics
already deployed but it may be useful for narrowing the
search of possible suspects with very little effort.
In this sense, we propose a biometric system that is

capable of recognizing people by using the informa-
tion of shape or appearance contained in MMW images.
There have been little works on this field. Specifically,
just one working with real data [4], and some oth-
ers based on BIOGIGA database, which is a synthetic
database [5–8].
This shortage of biometric recognition research based

on MMW images is mainly due to the lack of databases
of images of people acquired at 94 GHz. This lack is
a consequence of (i) the privacy concerns these images
present and (ii) most of the imaging systems working at
theMMW/SMWband are either in prototype form or not
easily accessible for research.
In [4], Alefs et al. proposed a holistic recognition

approach based on the texture information of the MMW
images. Concretely, they exploited the texture information
contained in the torso region of the image through multi-
linear eigenspace techniques. Likewise, they also analysed
the discrimination capability of the face region, evaluat-
ing also the fusion between torso and face but it turned
out that the best performance of the system was achieved
when using only the torso information. On the other hand,
the works by Moreno-Moreno et al. [1, 5, 6] put forward a
biometric system based on geometric measures between
different silhouette landmarks of the contour. It must be
acknowledged that since this work used synthetic MMW

images, there was no point in using texture information of
any part within the silhouette.
We believe the approach developed byMoreno-Moreno

et al. would not be robust enough when applied to real
MMW images. This is because the proposed feature
extraction technique is highly dependent on the accu-
racy of a set of landmarks from the body silhouette.
The reliability of these landmarks is acceptable with the
BIOGIGA images but would drop heavily in real-word
images. This hypothesis was also discussed by Alefs et al.
in [4], in which they argue that landmarks in millimetre-
wave imaging are less robust and have lower location
accuracy.
The latter observation motivates us to search for an

alternative source of information such as the whole con-
tour of the silhouette, more robust to characterize in noisy
images compared to pre-defined landmarks. Wemay treat
the set of contour coordinates as a kind of soft biomet-
rics [9, 10]. Although normally soft biometrics are not
discriminative enough to build a biometric system by
themselves, they may aid a biometric system by either
helping to reach a better decision by fusing hard and soft
information or narrowing down the search by allowing the
system to only compare with those usermodels thatmatch
with the soft biometrics [11]. Furthermore, Dantcheva et
al. [9] bring to the fore that, under certain conditions, a
biometric system may be composed of only a vector of
different soft biometric traits.
There are already some previous works using the whole

contour information of the human silhouette for person
recognition [7, 8]. In the preliminary work presented in
[7], we developed some baseline techniques using contour
coordinates for feature extraction and Euclidean distance
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and dynamic time warping for classification. The follow-
ing work [8] explored some other contour coordinate-
based feature extraction such as Fourier descriptors and
landmarks.
We are aware that, when using real MMW images fed

by commercial scanners, it will be likely to encounter
people with different body positions (scanning posi-
tion) that could worsen the performance of the contour
coordinate-based system. However, there are already lit-
erature proposing approaches to overcome this type of
problems [12, 13]. In [12], a technique is proposed for
pose-invariant representation of objects. This is achieved
by applying multi-dimensional scaling (MDS) to a set of
vertices of the mesh representation of the object. In [13],
a preprocessing stage is put forward in order to register
all silhouettes of hand images to a fixed pose enabling
therefore feature approaches like independent component
analysis.
In this paper, we extend the previous works [7, 8] by

comparing multiple shape descriptors of the body contour
and classifiers. We introduce an additional classification
method, support vector machines, completely different
from the other matching approaches. Our aim here con-
sists of assessing all these features regarding performance,
computational time and robustness.
Figure 2 draws a simple diagram explaining the whole

biometric system we develop in this work. As can be seen,
there are three principal stages: the contour extraction
stage, the feature extraction stage and the comparison
stage. Given two millimetre images, first contours are
extracted; then a chosen feature approach is computed for
each contour and finally a similarity measure between this
pair of features is obtained. In the final stage, the output
score is thresholded to decide whether this pair of subjects
belongs to the same identity or not.
This paper is structured as follows. Section 2 further

comment related works. The database and the procedure
carried out to obtain the contours of people are explained

in Section 3. Section 4 describes the different feature
extraction and classification approaches used to compare
the contours. The evaluation of these methods is per-
formed in Section 5, and conclusions are finally drawn in
Section 6.

2 Related work on shape-based recognition
There are previous works that have used the shape or
appearance of the body to recognize subjects. Please
note that body shape-based recognition techniques are
enclosed within the wide area of object-shape-based
recognition [14, 15].
The lower part of the silhouette of the body is commonly

used in gait-based biometric recognition systems where
signals are extracted from video sequences of people walk-
ing. Such is the case of the work in [16], where they
fused information of the gait biometric trait with some
shape cues such as body weight, width and some body
part proportions. Then in [17, 18], a multimodal system
based on footsteps and gait was built. Likewise, in [19], a
spatial temporal analysis of the lower part of the human
silhouette was used to build a gait recognition system.
In most cases, the silhouette of the people is extracted
through background subtraction techniques.
There are also examples in which the silhouette of the

person is used solely to recognize subjects. In [20], a
system detected human silhouettes through background
subtraction and modeled the appearance of the individual
based on its colour and its spatial distance. They divided
the silhouette into three different blobs and incorporated
the path length measure, which is the distance from the
top of the head to a given point on the path. Likewise in
[21], they proposed a method to re-identify a subject seen
in the field of one camera who reappears in another cam-
era’s field. They extracted a spectral classification of the
appearance for each person. Then, they propose a new
feature based on colour-position histogram in order to
characterize the silhouette in static images.
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Fig. 2 General scheme of the body shape biometric system. As can be seen, the general scheme is divided into three different stages. First the
extraction of the contours, second the computation of the chosen feature approach and finally the classification stage in which both feature vectors
are compared to obtain a similarity measure
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There are other works in which the silhouette informa-
tion is not used to recognize subjects but with different
motivation. In [22], the silhouette of the body is used to
analyse human movements through Fourier descriptors.
In [23], they were able to recover 3D human configura-
tions through multiple 2D images in conjunction with the
information provided by shape context descriptors [24].
Regarding shape-based recognition applied to other bio-

metrics traits, we may find examples in hand [13, 25–27]
and signature biometrics [28, 29].

3 Database and contour extraction
Due to the unavailability of real MMW image databases,
in this paper, we use a synthetic database called BIOGIGA.
The corpus of the BIOGIGAdatabase consists of synthetic
images at 94 GHz of the body of 50 individuals (25 males
and 25 females). BIOGIGA images are the result of sim-
ulations carried out on corporal models at two types of
scenarios (outdoors and indoors) with two kinds of imag-
ing systems (passive and active). These corporal models
are previously generated using the softwareMakeHuman1
based on body measurements taken from real subjects.
Then, these models are imported to Blender2, which sim-
ulates the effect of the 94-GHz radiation over the human
models. A more detailed description of the generation of
the BIOGIGA database can be found in [5, 6, 30].
In this paper, only passive images at outdoor scenarios

are considered similarly as the previous work using a real
database [4]. This subset of the database is comprised of
50 subjects, with 6 images per user. Three of them are
simulated with clothes, and the other three are simulated
without clothes to analyse the effect of clothing and have
some variability between images from the same person.

Pose rotation is also considered in the images, having two
images with 10°, two images with 0° and two images with
−10°. Figure 3 shows some images from a single subject
of the database. As can be seen, images with and with-
out clothes are very similar as the 94-GHz band is almost
transparent to clothes; however, the pixel intensity is a bit
darker in the images with clothes and small parts of the
clothes are still noticeable in the waist and neck. The pose
rotation is also observed.
Regarding the contour extraction, the first processing

step is to binarize the images, separating the background
from the body. A characteristic of the images simulated
by passive systems is the different grey level presented in
different parts of the body. For instance, the abdomen is
much darker than the feet. This fact hinders the segmen-
tation process and hence the binarization. This problem
is overcome by performing the segmentation in two steps:
(i) border detection, and (ii) morphological operations.
A Canny border detector is first applied to the image.

The parameters of this detector have been empirically
tuned (0.0005 for the low threshold, 0.10 for the high
threshold and 2.5 for the standard deviation of the
Gaussian filter). Then, the image is divided into four
different bands due to the difference of intensity level
between them: head, arms, from arms to calves and
feet (see Fig. 4 left). After that, the closing operation is
applied to each band to join any part of the silhouette
that remains open after the Canny border detector stage.
The closing operation is a type of morphological opera-
tion which implies the consecutive use of the dilatation
and erosion with a defined structural element. Different
structural elements have been used for the different band
(disk for the upper bands and rectangular for the lower

Fig. 3 Passive outdoor images. Synthetic images of one user simulated at 94 GHz with a passive system and outdoors contained in BIOGIGA
database [5]. The figure shows the three different camera angles available (10°, 0° and −10°) and images with clothes and without clothes
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Input Image Segmentation Contour Extraction

Fig. 4 Contour images. Main steps followed in our system to extract the contour. From left to right: original image, binarized image (through Canny
detector and morphological operations applied to the different bands as depicted in the original image) and contour extraction

bands). Once the closing operation is applied to each
band, we concatenate the resulting bands to create the
improved silhouette. Finally, another set of morphological
closing operations removes spurious irregularities to this
improved silhouette and leads to the final contour of the
human body, which is used in the following experimen-
tal sections. Figure 4 shows an example of the process of
segmentation and contour extraction for user 1.

4 Shape-based body comparison
In what follows, we aim to describe the last two stages
of the scheme drawn in Fig. 2. Within the feature extrac-
tion and the classification stage, several techniquesmay be
applied. In this section, we proceed to outline every tech-
nique proposed for both the feature extraction and the
classification stage.

4.1 Shape descriptors
We have selected four different approaches for the fea-
ture extraction stage: (i) contour coordinates themselves,
(ii) shape contexts [24], (iii) Fourier descriptors of the
coordinates [31] and (iv) silhouette landmarks [6].

4.1.1 Contour coordinates (CC)
Contour coordinates are used as the baseline feature
approach. Once the silhouette is computed, the contour

(the external boundary of the silhouette) is extracted start-
ing from the upper middle point of the head in clockwise
direction (see Fig. 4 right). By concatenating the x and y
coordinate of every single point of the contour following
the aforementioned order, we obtain a 2×N matrix which
describes the contour of the subject, being N the number
of points of the contour.
The original resolution of the contours (N) extracted

from the MMW images is approximately 2800 points.
Through subsampling techniques, different contour reso-
lutions ranging from 100 points up to 2800 points are used
and analysed in the following sections.

4.1.2 Shape contexts (SC)
Shape context descriptors were first introduced by
Belongie et al. [24]. This technique characterizes each
point in the shape considering the relative distance and
angle to the rest of the points of the shape.
The basic idea of shape contexts is illustrated in Fig. 5,

which shows an example of a shape context descriptor
for two points in the eight digit shape. Note that the log-
polar histogram used in this case with 12× 5 dimensions,
where 12 accounts for the number of angular bins and 5
accounts for the number of radial bins. Dark colours mean
a high density of points within a bin, while lighter colours
imply less density of points. In both cases, the majority

Fig. 5 Shape context example. Example of the computation of a shape context descriptor for two single points within the eight digit shape. Image
(a) and (c) represent a point within the eight digit shape and its respective log-polar histogram while image (b) and (d) a different point within the
same digit and its associated log-polar histogram. Images extracted from [35]
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of the shape points are quite distant from the point being
characterized.
To obtain the shape context descriptor of the contour,

we need to compute the shape context descriptor for every
single point of the contour. This means that every sin-
gle point of the contour is no longer described by its x
and y coordinate but by a (N × r_bins × θ_bins) vector,
which gives an account of the distribution of the remain-
ing points of the contour with respect to that particular
one. As a result, the shape context descriptor of a shape
with N points form a vector of size N × r_bins × θ_bins.
We decide to use the same configuration of parameters the
author originally proposed, this is 5 r_bins and 12 θ_bins.
In order to compute the similarity between two shape

contexts, different distance methods may be applied.

4.1.3 Fourier descriptors (FD)
Although Fourier descriptors [31] are a 40-year-old tech-
nique, they are still considered as a good description tool
[15].
These descriptors are simple to compute and robust

against translations and rotations. To apply this technique
to our system, first contour coordinates are converted into
complex numbers. Secondly, we apply the discrete Fourier
transform to these complex numbers to obtain the Fourier
descriptors.
With the resulting DFT, we may recover the original

trajectory with varying precision depending on the num-
ber of Fourier coefficients used. If, instead of using all
Fourier descriptors, we use only the first P coefficients,
we will have an approximation of the contour. Bearing
in mind that high-frequency components account for
fine detail and low-frequency components determine the
global shape, keeping only the first P coefficients will
smooth the shape.

4.1.4 Landmarks (LM)
The last feature approach implies the use of landmark
points along the contour. These landmarks consist of a
reduced set of key points, obtained automatically as in [6].
Figure 6 shows an example of the situation of these 14
points. In particular, they mark the most singular parts
of the human silhouette, among them: head, neck, hands,
underarms, waist, hip, pubis and feet. Each landmark is
characterized by its position coordinates (x and y).
In this work, we evaluate the results obtained with

landmarks as features and compare them with the results
achieved with the other approaches. Note that the dimen-
sionality of these features is much smaller compared to the
other approaches.

4.1.5 Landmarks with shape contexts (LM-SC)
Although this last approach is not a new descriptor, we
believe the combination of these two approaches may

Fig. 6 Landmarks. Set of 14 points (landmarks) describing the
silhouette of user 1

lead to a better understanding of the silhouette while
keeping a reasonable dimensionality of the feature vector.
For this aim, we compute the shape context descriptor
to each of the 14 landmarks. In this way, we describe
the silhouette not through the set of 14 landmarks but
through a histogram describing the context of each point
of the contour.

4.2 Similarity computation
Regarding the classification stage, the Euclidean distance
(ED) and the dynamic time warping (DTW) algorithm are
proposed as similarity distances and, as a proper classifier,
support vector machines (SVM) are used.

4.2.1 Baseline technique: Euclidean distance (ED)
This simple approach consists in computing a dissimi-
larity measure between the contour coordinates of two
silhouette images. The only restriction of this method
is the fact that distances need to be computed between
sequences of the same length. Therefore, a normalization
of the length of the sequences must be applied. This nor-
malization is achieved by interpolating or truncating each
sequence to the average length of all sequences. Then, the
Euclidean distance between the two normalized contours
is computed.

4.2.2 Dynamic programming: dynamic timewarping (DTW)
The goal of DTW is to find an elastic match among
samples of a pair of sequences.
In this work, DTW is used to obtain the optimal

alignment between two sequences of points that min-
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imizes the cumulative distance between them. This
is achieved through non-linear mapping and certain
constraints between these two sequences.
These points may be defined (i) by the coordinates

x and y in the case of contour coordinates or (ii) by
60-dimensional vectors of shape contexts. The DTWalgo-
rithm is the same in both cases. In each iteration, the
algorithm computes the Euclidean distance between a
point from the first sequence and a point from the sec-
ond sequence. The resulting DTW distance d is finally
transformed to a similarity measure with an exponential
normalization: score = exp(− d

K ), where K is a normaliza-
tion factor that takes into account the number of aligned
points between the sequences.

4.2.3 Support vectormachines (SVM)
Regarding the SVM configurations, it must be noted that
experiments are developed only for the protocol 3:1, in
which three images for training are used.
Besides, as the feature vector for the support vector

machines must be of fixed length, some operations are

first applied to the features in order to meet this require-
ment. Concretely, for contour coordinates, we first apply
PCA independently to each dimension (x and y). Then,
we select the first 30 components of each projected vec-
tor and finally we concatenate them obtaining a vector
of 60 components. In the case of shape contexts, we
subsampled the contour down to 50 points and then
obtained the shape contexts features for this subset,
obtaining a vector of 300 components. In what concerns
Fourier descriptors, contours are previously normalized
to zero mean and then, once computed the Fourier
descriptors, the performance of the system using dif-
ferent number of frequency components was assessed
and we chose the 20 low frequency components. Lastly,
for landmarks and shape contexts over landmarks, we
only concatenate all points in a single vector (14-vector
for landmarks and 840-vector for landmarks over shape
contexts).
We empirically prove that a polynomial kernel of grade

3 improves with respect to other kernels for all feature
approaches.

Fig. 7 Results. Performance in terms of % EER of the 15 different approaches for 2800 point contours and for protocols 1:1, 2:1 and 3:1. CC contour
coordinates, SC shape contexts, FD Fourier descriptors, LM landmarks, LM-SC shape contexts over landmarks, ED Euclidean distance, DTW dynamic
time warping and SVM support vector machine. SVM approaches are only tested with protocol 3:1
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5 Experiments
This section describes the experimental work carried
out to analyse the performance of the different fea-
ture and classification approaches described in Section 4.
The aforementioned methods are tested with the con-
tour coordinates of the BIOGIGA database previously
described in Section 3.
In this work, three different experimental protocols are

considered: (i) protocol 1:1 (P1:1), (ii) protocol 2:1 (P2:1)
and (iii) protocol 3:1 (P3:1), where the first number refers
to the number of training images considered per user, and
the second number to the number of test images per user
(one in all cases). In order to have the most challeng-
ing scenario with severe mismatch between enrolment
and testing regarding clothes, the database is divided into
two sets, where the images with clothes are used for the
training set and the images without clothes are used for
the test set. Both training and test images present vari-
ability in pose rotation; each set has images with 10°, 0°
and −10°.
When having 2 or 3 images for training, the fusion of

the information contained in the images is carried out at
the score level, i.e. all single comparisons between training
and test are done image by image, and then the scores are
fused using the sum rule [32].

As mentioned in Section 4, experiments based on DTW
are analysed with all contours having their original size.
ED experiments are carried out with contours normalized
to the same size.

5.1 Results
The first experiment carried out compares the perfor-
mance of the different approaches. Bearing in mind that
there are five different feature extraction approaches and
three different classification approaches, we have 15 pos-
sible system configurations. Figure 7a shows the perfor-
mance in terms of equal error rate (EER) for each of these
approaches and the three protocols considered (P1:1, P2:1
and P3:1).
First, from Fig. 7 we observe that the EER of the system

decreases as the number of training images increases. It
is also worth noting the outstanding improvement of per-
formance when applying DTW algorithm to the contour
coordinates and shape context approaches (especially in
P3:1) compared to the baseline Euclidean distance. Apply-
ing DTW to the Fourier descriptors does not result in
better performance compared to ED since these trans-
formed features are already resampled to have the same
dimension. In the case of landmarks or shape contexts
over landmark feature approaches, it is not worth applying

Fig. 8 DET curves for ED classifier. CC contour coordinates, SC shape contexts, FD Fourier descriptors, LM landmarks, LM-SC shape contexts over
landmarks, ED Euclidean distance, DTW dynamic time warping and SVM support vector machine
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DTW to a feature vector of such a small dimensionality
and with a fixed number of points. Regarding the average
performance between all protocols, the best approaches
are CC-DTW (6 %), LM-SC-ED (5.50 %), FD-ED (5.41 %),
LM-ED (4.91 %) and SC-DTW (3.96 %). The best individ-
ual result is achieved for CC-DTW and for P3:1, obtaining
a 1.33 % of EER. However, considering the other two
protocols, it can be seen that the performance of the CC-
DTW approach is worse compared to other cases. For
example, the SC-DTW produces lower EER rates for pro-
tocols 1:1 and 2:1. For the case of FD-ED approach, we
observe that we obtain similar EER regardless of the num-
ber of training images so it can be deduced that although
FD-ED does not achieve the best results, as expected, this
approach is robust against variations in pose. Regarding
the LM-ED approach, we see that using a vector with a
dimensionality quite smaller than the vectors used in any
of the previous approaches, produces comparable results
to the best approaches. However, as was already men-
tioned in Section 1, in a real database, we believe the
localization of these keypoints would not be as robust as
in this synthetic database.
From Fig. 7, we also conclude that support vector

machines do not improve the best EER obtained for each

feature approach with P3:1 except the FD and the LM-
SC approaches. Concretely, we obtain a very promising
performance of 3.33 % for the first 20 low frequency
components when using SVM (using the complete set
of Fourier descriptors does not help to obtain low error
rates). Likewise, it seems that with the LM-SC SVM con-
figuration, we can obtain reasonable results (3.17 % of
EER). This latter approach may overcome the downsides
of the landmark features when using real MMW images.
Bearing in mind that neighbour points should have simi-
lar shape context descriptors, we may relax the landmark
accuracy and use the shape contexts over these landmarks
instead.
Figures 8, 9 and 10 plot the different DET curves,

analysing each classifier separately: Fig. 8 for the Euclidean
distance classifier; Fig. 9 for the DTW algorithm and
Fig. 10 for the support vector machines. Comparing
Figs. 8 and 9, we can clearly notice the improvement of
CC and SC approaches when applying the DTW algo-
rithm. In summary, we conclude that the usage of ED
is suitable for features such as LM. DTW achieves the
best performance for CC and SC descriptors, whereas
FD and LM-SC performs well in conjunction with the
SVM classifier.

Fig. 9 DET curves for DTW classifier. CC contour coordinates, SC shape contexts, FD Fourier descriptors, LM landmarks, LM-SC shape contexts over
landmarks, ED Euclidean distance, DTW dynamic time warping and SVM support vector machine
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Fig. 10 DET curves for SVM classifier. CC contour coordinates, SC shape contexts, FD Fourier descriptors, LM landmarks, LM-SC shape contexts over
landmarks, ED Euclidean distance, DTW dynamic time warping and SVM support vector machine

We have also assessed the computation cost of each
approach (Intel i7-3770 CPU @ 3.4 GHz RAM 8 GB in
Matlab R2012b). Figure 11 depicts the time in seconds
spent during all the process, taking into account the time
needed to compute the features and the time to com-
pare a pair of feature vectors. The main conclusion we
can extract from this time comparison is the fact that
DTW algorithm implies an increment of the computa-
tional time mainly for high dimensional feature vectors
like CC, SC and FD. This fact is magnified when dealing
with shape context features, mainly caused by the larger
dimensionality of this vector.
The computational time of the best approaches (CC-

DTW and LM-SC-SVM) concerning robustness and per-
formance is in both cases under 1.5 s, amount of time that
would be feasible within the screening scanner system.

5.2 Effect of contour resolution
A second experiment is carried out to analyse the effect
of the contour size in the recognition performance, for
the cases of contour coordinates and shape contexts using
DTW. Figure 12a, b represents the performance of the sys-
tem against the resolution of the contour. Considering the
case of CC-DTW, it is very interesting to note a notable

drop of EER when dealing with a contour resolution of
more than 500 points. Even though the EER obtained
with the largest resolution (2800 points) is slightly bet-
ter that the EER obtained with 500 points, there is a
big difference in terms of computational time between
using a 2800-CC-DTW approach rather than a 500-CC-
DTWone. Concretely, the computational time drops from
1.48 to 0.81 s when reducing the resolution of the contour
from 2800 points down to 500 points. This is an important
issue to bear in mind for real-time applications.
Conversely, when using shape context descriptors, the

EER drops as the resolution of the contour increases but
there is no clear knee point as in the previous case. In this
case, we need to find a tradeoff between a suitable EER
and a reasonable amount of time.

6 Conclusions
In this paper, a complete body shape biometric system
has been developed for MMW body images using the
BIOGIGA database. The use of MMW images instead
of images acquired at other spectral bands presents
some advantages, mainly the transparency of clothing
at that frequency, allowing extracting easily the con-
tours from the images. Different approaches have been
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Fig. 11 Computational time. of all proposed approaches. This value reflects the amount of time needed to carry out the comparison of two MMW
images, from feature extraction to classification. CC contour coordinates, SC shape contexts, FD Fourier descriptors, LM landmarks, LM-SC shape
contexts over landmarks, ED Euclidean distance, DTW dynamic time warping and SVM support vector machine

analysed ranging from naive approaches such as con-
tour coordinates for the feature extraction stage or the
Euclidean distance for the classification stage to complex
schemes such as shape contexts or Fourier descriptors for
the feature extraction stage or the dynamic time warping
algorithm and support vector machines for the classifica-
tion stage.

The best result is obtained when using the DTW
algorithm directly to the coordinates for the contours
(CC-DTW) with the highest resolution for protocol 3:1
(1.33 % EER).
However, whenworking with images extracted from real

MMW sensors in which the contour extraction stage may
bemore difficult due to the presence of noise, illumination

a) b)

Fig. 12 Influence of the resolution of the contour. Effect of the resolution with shape contexts (a) and contour coordinates (b) from 100 points up to
2800 points
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variation and so forth, we believe approaches such as SC-
LM may be more robust than the CC as SC-LM approach
uses richer information.
It is known that fusing complementary information

would lead to a better performance of the system. To this
aim, we propose for future work the fusion of some of
the feature descriptors explained in this work or even fus-
ing information with the previous system [5] based on
geometrical distances between landmarks. Also, future
research will explore this system using real MMW images.
Besides, for future work, it would be interesting to assess

the influence of using an image-to-class distance instead
of the image-to-image distance that we have used in the
experiments. There exists an interesting approach named
image to class dynamic time warping (I2C-DTW) [33, 34]
that manages to find an optimal warping path between an
image and a class considering both the time dimension
and the within-class dimension.

Endnotes
1http://makehuman.org/
2http://blender.org/

Abbreviations
DFT: discrete Fourier transform; sDTW: dynamic time warping; ED: Euclidean
distance; EER: equal error rate; FD: Fourier descriptors; GHz: gigahertz; LM:
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