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Abstract

We consider the problem of testing if a non-negative random variable is

dominated, in the convex order, by the exponential class. Under the null

hypothesis, the variable is harmonic new better than used in expectation

(HNBUE), a well-known class of ageing distributions in reliability theory.

As a test statistic, we propose the L1 norm of a suitable distance between the

empirical and the exponential distributions and we completely determine

its asymptotic properties. The practical performance of our proposal is

illustrated with simulation studies, which show that the asymptotic test has

a good behavior and power even for small sample sizes. Finally, three real

data sets are analyzed.
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1 Introduction

The exponential distribution plays a key role in reliability theory. Its lack of me-

mory makes it the appropriate benchmark to analyze and compare the ageing

properties of other probability distributions. The non-ageing property of an expo-

nential variable essentially means that a used exponential component is as good as

a new one. For this reason, almost all the classes of distributions used in reliability

theory are constructed by means of a suitable comparison with exponential distri-

butions. For instance, the classes NBU (new better than used), NBUE (new better

than used in expectation), IFR (increasing failure rate), IFRA (increasing failure

rate average), among others, are generated by comparing certain characteristics of

the variable of interest with the corresponding ones of an exponential distribution.

The classic book by Barlow and Proschan (1975) [2] provides a detailed study of

these lifetime distributions.

A non-negative random variable X such that 0 < µ := EX < ∞ is said to be

harmonic new better than used in expectation (HNBUE) if the harmonic mean of

its mean residual life function is smaller than µ, that is,

1
1
t

∫ t
0
µ(s)−1 ds

≤ µ, t ≥ 0,

where µ(t) := E(X|X > t). Observe that µ is actually the harmonic mean of µ(t)

for an exponential variable with expectation µ. The class of random variables with

the HNBUE property, denoted in the following by H, is fairly large in reliability

theory because it contains the class of NBUE distributions and, in consequence, it

also includes all IFR, IFRA and NBU distributions.

Taking into account that ageing classes are usually constructed by stochastic

comparisons, the theory of stochastic orders provides the perfect framework to deal
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with specific families of lifetime distributions. Stochastic orders are partial order

relations in the set of probability distribution functions. They compare random

variables in terms of their global size, different notions of dispersion or variability,

uniformity, etc. We refer the reader to the books by Müller and Stoyan (2002)

[16] and Shaked and Shanthikumar (2006) [21]. It is common to include a variable

in an ageing class if it is below (or above) an exponential variable with respect to

a specific stochastic ordering. Therefore, the exponential distribution is always a

boundary member of the corresponding class. The choice of the order depends on

the interests of the researcher and the problem at hand.

One of the most important variability orders is the convex order. Given two

integrable random variables X and Y , it is said that X is less than or equal to

Y in the convex order if E(φ(X)) ≤ E(φ(Y )), for every convex function φ for

which the previous expectations are well defined. In particular, the definition

implies that EX = EY and Var(X) ≤ Var(Y ) (whenever the variables have finite

second moment). Hence, the convex order arranges distributions in terms of their

variability.

It can be easily proved (see Müller and Stoyan (2002) [16, Theorem 1.8.7])

that X ∈ H if and only if X is dominated in the convex order by an exponential

random variable. In particular, since φ(x) = xα (x ≥ 0 and α ≥ 1) is convex, given

X ∈ H with mean µ, we obtain EXα ≤ µαΓ(α + 1), where Γ(·) is Euler’s gamma

function. Therefore, the members of H have finite moments of all orders. Further,

this characterization of the variables in H shows that if X has expectation µ > 0

and distribution function F , then X ∈ H if and only if∫ ∞
t

(Gµ(x)− F (x)) dx ≤ 0, for all t ≥ 0, (1)

where Gµ(x) := 1 − e−x/µ (x > 0) is the distribution function of an exponential
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random variable with mean µ.

In this paper, we focus on the test with null hypothesis

H0 : X ∈ H. (2)

Given C, a class of lifetime distributions for which the exponential distribution is

a boundary member, there is an extensive literature on the test

H0 : X is exponentially distributed.

H1 : X ∈ C, but X is not exponentially distributed.
(3)

For an thorough review of statistical tests for univariate ageing classes we refer

the reader to Lai and Xie (2006) [12, Chapter 7]. The specific case of C = H has

been widely considered (see Berrendero and Cárcamo (2009) [4] and the references

therein). However, note that the test proposed in (2) is a natural first step before

proceeding to (3) with C = H, since in (3) it is implicitly assumed that X has

the HNBUE property, which is always unknown in practice. Therefore, accepting

the null in the problem (2) would allow the practitioner to proceed to (3), a more

specific statistical test to assess if the variable has the exponential distribution.

As far as the authors know, there are no results yet on the test (2). Denuit

et al. (2007) [6] considered an analogous problem for the NBUE assumption.

These authors proposed a Kolmogorov-Smirnov-type test statistic, defining the

discrepancy in terms of the supremum metric. Although there is no clear way of

ranking tests (the achieved power obviously depends on the alternative hypothesis,

see Nikitin (1995) [17]), usually Kolmogorov-Smirnov-type statistics do not achieve

a high power. In this paper we construct a test statistic for the HNBUE hypothesis

in (2) based on an L1 distance.

Note that testing H0 in (2) amounts to verifying that the function in (1) is not

positive. Hence, as a discrepancy measure we consider the L1 norm of the positive
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part of this function, that is,

θ(X) :=

∫ ∞
0

(∫ ∞
t

(Gµ(x)− F (x)) dx

)
+

dt, (4)

where a+ := max{0, a}. Obviously, θ(X) = 0 if and only if X ∈ H, that is, if H0

holds. Let us also remark that θ(X) is finite if and only if EX2 <∞ (see Lemma

5). In the context of testing for positive quadrant dependence, Scaillet (2005) [19]

suggested the possibility of using a discrepancy measure resembling (4), in the

spirit of Cramér-von Mises-type statistics.

Throughout this paper, X is a positive random variable with finite mean µ > 0

and distribution function F , and X1, . . . , Xn (n ≥ 1) is a random sample from

X. In practice, the unknown terms in (4), µ and F , are substituted by sample

estimates. Consequently, the (normalized) empirical counterpart of (4) is

Tn(X) :=
√
n

∫ ∞
0

(∫ ∞
t

(Gµ̂(x)− Fn(x)) dx

)
+

dt, (5)

where

µ̂ :=
1

n

n∑
i=1

Xi and Fn(x) :=
1

n

n∑
i=1

I{Xi≤x}, x ≥ 0,

are the sample mean and the empirical distribution function, respectively. Here IA

stands for the indicator function of the set A. We denote θ(X) by θ (and Tn(X)

by Tn) when the dependency on X is clear from the context.

Although, for a fixed n, it is almost imposible to derive the exact distribution

of the statistic Tn in (5), in Subsection 2.1 we determine its asymptotic distribu-

tion. We believe the main ideas in this subsection could be important to obtain

other results for similar problems (such as tests for other stochastic orderings). A

positive feature of the methodology is that its implementation is extremely sim-

ple due to a homogeneity property satisfied by the asymptotic distribution of the

statistic. In Subsection 2.2, we prove the strong universal consistency of the test
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Tn. Actually, the statistic satisfies a double consistency property since, for the

HNBUE variables strictly dominated by the exponential distribution, it holds that

Tn → 0 in probability, so in this case, asymptotically, the null is never rejected.

Further, we show that, for a fixed X /∈ H, the probability of accepting H0 usually

tends to zero at an exponential speed. Therefore, the proposed testing procedure

is expected to have a good power. Indeed, this is confirmed by the simulation

studies of Section 3, where we check the practical finite-sample performance of our

proposal. Finally, some real data examples are analyzed in Section 4.

Let us finish this introduction by remarking that all the ideas in this work admit

at least two direct extensions. On the one hand, the results can be easily adapted

to distributions with the HNWUE (harmonic new worse than used in expectation)

property, that is, the distributions that dominate an exponential variable in the

convex order. Further, observe that the exponential distribution is the only one

belonging to both the HNBUE and HNWUE classes. Hence, if for a certain data set

we accept the two hypotheses (the HNBUE and HNWUE property), we conclude

that the data follow an exponential distribution. In other words, applying the

HNBUE test and the HNWUE test we obtain a test for exponentiality. This is

illustrated in Section 4. On the other hand, the test statistic in (5) can be modified

to deal with censored or truncated data, a common problem in practice. It suffices

to use the Kaplan-Meier estimator (see e.g. Lee and Wang (2013) [14]) for the

distribution function F and the Gill (1983) [10] estimator for the mean µ, as in

Denuit et al. (2007) [6, Section 4].
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2 Asymptotic behavior of the test statistic

2.1 The case where the hypothesis H0 is true

In this subsection, we determine the asymptotic distribution of the test statistic

Tn defined in (5) under the null hypothesis in (2). Observe that it can be expressed

as

Tn = ‖(Hn + hn)+‖1, (6)

where ‖ · ‖1 stands for the usual norm in L1 := L1([0,∞)), Hn is the stochastic

process

Hn(t) :=

∫ ∞
t

√
n(Gµ̂(x)−Gµ(x)) dx−

∫ ∞
t

√
n(Fn(x)− F (x)) dx, t ≥ 0, (7)

and hn is the function

hn(t) :=
√
n

∫ ∞
t

(Gµ(x)− F (x)) dx. (8)

The process Hn represents the stochastic part of Tn while hn is deterministic.

We note that Hn(0) = Hn(∞) = 0, and Hn has differentiable paths a.e. Hence,

Hn looks like a smooth bridge on [0,∞) (see Figures 1 (a), 2 (a) and 3 (a)). It

is also easy to see that the trajectories of Hn belong to L1 (a.s.) if and only

if EX2 < ∞. Consequently, L1 is the natural space to analyze the asymptotic

behavior of Hn. The key to obtain the asymptotic distribution of Tn is to discuss

first the asymptotic behavior of Hn in L1. This is done in Theorem 4 in the

Appendix, which provides the necessary and sufficient integrability condition on

X for Hn to converge in distribution in L1. Based on this asymptotic result and (6),

we obtain the limiting distribution of Tn, which allows us to derive the asymptotic

rejection region for the test (2).
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The role played by the function hn in Tn allows detecting whether the HNBUE

condition is fulfilled or not, since hn(t) goes to infinity for all t such that the condi-

tion (1) does not hold. Further, if X is strictly under the exponential distribution

in the convex order, then hn(t)→ −∞ for all t > 0 and Tn converges to 0, as it is

stated in Corollary 2. These two possibilities can be clearly observed in Figures 2

(b) and 3 (b).

We use the notation “→d” for the usual convergence in distribution of random

variables. Here BF := B ◦ F stands for the F -Brownian bridge, where B is a

standard Brownian bridge on [0, 1].

Theorem 1. For X ∈ H, we have

Tn →d τF :=

∫
I0

(HF (t))+ dt,

where HF is the centered Gaussian process given by

HF (t) := IF (0) (1 + t/µ) e−t/µ − IF (t), t ≥ 0, (9)

IF is the reverse integrated F -Brownian bridge defined by

IF (t) :=

∫ ∞
t

BF (x) dx, t ≥ 0, (10)

and

I0 :=

{
t ∈ [0,∞) :

∫ ∞
t

(Gµ(x)− F (x)) dx = 0

}
. (11)

The following two corollaries are a direct consequence of Theorem 1 and play

a key role in the implementation of the asymptotic test in practice (see Sections 3

and 4).

Corollary 1. If X is exponentially distributed with mean µ, then

Tn →d τ(µ) :=

∫ ∞
0

(
HGµ(t)

)
+

dt. (12)

Moreover, τ is a homogeneous function of degree 2, i.e., τ(µ) = µ2τ(1).
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In Figure 1 (b) we have displayed 30 trajectories of the process HG1 . The

similarity between the trajectories of Hn, when X is exponential, and its limit HG1

is remarkable.

Let us consider the class

H∗ :=

{
X :

∫ ∞
t

(Gµ(x)− F (x)) dx < 0 a.e. in [0,∞)

}
composed of those random variables with the HNBUE property and strictly dom-

inated by the exponential distribution. All the non-exponential HNBUE distribu-

tions used in practice belong to H∗.

Corollary 2. If X ∈ H∗, then Tn → 0 in probability.

2.2 The case where the hypothesis H0 is false

In this subsection we concentrate on the consistency and power of Tn, when X is

not HNBUE. In the next result, we show the strong universal consistency of the

test statistic Tn.

Theorem 2. If X /∈ H has finite mean µ > 0, then Tn →∞ a.s. More precisely:

(a) There exists a constant c > 0 such that lim infn→∞ Tn/
√
n ≥ c a.s.

(b) If EX2 > 2µ2, then lim infn→∞ Tn/
√
n ≥ EX2/2 − µ2 a.s. In particular, if

EX2 =∞, we have that Tn/
√
n→∞ a.s.

The next result concerns the power of the test. We see that the probability of

accepting the null hypothesis for a distribution not belonging to H is controlled

by a parametric part, which is similar to that corresponding to a test of equality

of the mean, plus a nonparametric part which is exponentially bounded.
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Theorem 3. Let X /∈ H be fixed. There exist c1, c2, T > 0 (dependent only on F )

such that for all 0 ≤ t < T and n ≥ 1, it holds

P
(
Tn ≤ t

√
n
)
≤ P (|µ− µ̂| ≥ c1(T − t)) + 2 exp

(
−c2 (T − t)2n

)
.

Actually, with the help of large deviation techniques, we can show this overall

probability usually tends to zero at an exponential speed. We consider the log-

arithmic moment generating function of X, Λ(λ) := log EeλX , λ ∈ R, and the

Fenchel-Legendre transform of Λ(λ), that is, Λ∗(x) := supλ∈R{λx−Λ(λ)}, x ∈ R.

The next corollary, which is a large deviation-type result, follows from Theorem

3 and Cramér’s theorem (see Dembo and Zeitouni (1998) [5, Theorem 2.2.3 and

Remark (c), p.27]).

Corollary 3. Let X /∈ H be fixed. There exist c1, c2, T > 0 (dependent only on

F ) such that, for all 0 ≤ t < T and n ≥ 1,

P
(
Tn ≤ t

√
n
)
≤ 2 exp

(
−n inf

x∈C
Λ∗(x)

)
+ 2 exp

(
−c2 (T − t)2n

)
,

where C := {x ∈ R : |x− µ| ≥ c1(T − t)}. In particular, we have

lim sup
n→∞

1

n
log P

(
Tn ≤ t

√
n
)
≤ −min

{
inf
x∈C

Λ∗(x), c(T − t)2
}
.

3 A Monte Carlo study

The purpose of this section is to illustrate the practical behavior of the HNBUE test

based on the statistic Tn defined in (5). The construction of the rejection region

for the null hypothesis given in (2) relies on the results stated in Corollaries 1 and

2 in Subsection 2.1. The key idea is that, since the discrepancy measure θ(X)

in (4) is 0 if and only if X ∈ H, then we should reject this hypothesis if the
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α 0.01 0.025 0.05 0.1

c1,α 2.307952 1.928978 1.628628 1.292343

Table 1: Approximate (1− α)-quantiles of τ(1)

normalized empirical counterpart of θ(X), Tn, is too large. Specifically, for a fixed

significance level 0 < α < 1, we reject H0 : X ∈ H if Tn > cµ,α, where µ = EX and

cµ,α denotes the (1− α)-quantile of the distribution τ(µ) defined in (12) (that is,

P(τ(µ) > cµ,α) = α).

Since τ(µ) = µ2 τ(1), the rejection region of H0 in (2) becomes {Tn > µ2 c1,α}.

Thus, carrying out this HNBUE test, which amounts to checking the condition

Tn > µ2 c1,α, is extremely fast from a computational viewpoint. In practice, the

unknown mean µ is approximated by µ̂, the sample mean of X. Due to the

involved expression of τ(1) (see Corollary 1), we have approximated its (1 − α)-

quantile, c1,α, by sampling 50000 times from τ(1) and computing the corresponding

sample quantile. In Table 1 we show the approximate values of c1,α for the usual

significance levels α.

We have computed the proportion of rejections of the null hypothesis in (2)

for different probability distributions. In Tables 2 and 3 we display the results for

some HNBUE and non-HNBUE distributions, respectively. The number of Monte

Carlo samples is 5000 in all cases. The significance level is fixed as α = 0.05.

We considered three different values of n: 50, 100 and 200. The distributions

considered and their probability densities are:

- the exponential distribution with mean µ > 0:

f(x) =
1

µ
e−x/µ, x > 0;
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- the Weibull distribution with shape parameter a > 0 and scale parameter 1:

f(x) = a xa−1 e−x
a

, x > 0;

- the gamma distribution with shape parameter a > 0 and scale parameter 1:

f(x) =
1

Γ(a)
xa−1 e−x, x > 0;

- a mixture of two exponential distributions with means µ1 and µ2 and mixing

parameter π ∈ (0, 1):

f(x) = π
1

µ1

e−x/µ1 + (1− π)
1

µ2

e−x/µ2 , x > 0;

- the linear failure rate (LFR) distribution with shape parameter a > 0 and scale

parameter 1:

f(x) = (1 + ax)e−(x+ax
2/2), x > 0;

- the generalized Pareto distribution with shape parameter a > 0 and scale param-

eter 1:

f(x) = (1 + ax)−(1/a+1), x > 0.

In Table 2 we observe that for the exponential distribution, the “boundary”

between HNBUE and non-HNBUE distributions, we achieve a proportion of H0

rejections close to the nominal value α = 0.05, even when the sample size is

moderately low. For the rest of the three HNBUE distributions, which are strictly

dominated by the exponential one, the power is clearly below the significance level

and diminishes as n increases, as expected taking into account Corollary 2.

Table 3 shows that any departure from the HNBUE hypothesis automatically

translates into an increase of the power with respect to α = 0.05. As we could
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Distribution n Power

Exponential(1) 50 0.0478
100 0.0510
200 0.0534

Weibull(a = 1.1 , 1) 50 0.0064
100 0.0046
200 0.0018

Gamma(a = 1.1 , 1) 50 0.0278
100 0.0204
200 0.0148

LFR(a = 0.1) 50 0.0106
100 0.0072
200 0.0014

Table 2: Proportion of H0 : X ∈ H rejections for some HNBUE distributions.

expect, the power also increases with the sample size and when the discrepancy

of the distribution with respect to the exponential is larger. The proposed test

shows a good performance when the sample size is relatively low, although the

construction of the rejection region is based on the asymptotic distribution of the

test statistic.

4 Analysis of real data sets

In this section, we illustrate the practical implementation of the proposed method-

ology by discussing the convex domination (with respect to the exponential class)

of three sets of real data from very different contexts.
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Distribution n Power

Weibull(a = 0.9 , 1) 50 0.1728
100 0.2728
200 0.4492

Weibull(a = 0.7 , 1) 50 0.7552
100 0.9608
200 0.9986

Gamma(a = 0.9 , 1) 50 0.0982
100 0.1376
200 0.1930

Gamma(a = 0.7 , 1) 50 0.3336
100 0.5628
200 0.8104

Mixture of exponentials 50 0.0616
µ1 = 1, µ2 = 1.5 100 0.0862
π = 0.9 200 0.1064

Mixture of exponentials 50 0.1680
µ1 = 1, µ2 = 2 100 0.2626
π = 0.8 200 0.3898

Mixture of exponentials 50 0.4636
µ1 = 1, µ2 = 3 100 0.7044
π = 0.7 200 0.9284

Mixture of exponentials 50 0.0692
µ1 = 1, µ2 = 0.5 100 0.0762
π = 0.9 200 0.1118

Pareto(a = 0.2) 50 0.3702
100 0.5918
200 0.8198

Pareto(a = 0.4) 50 0.7344
100 0.9288
200 0.9964

Table 3: Proportion of H0 : X ∈ H rejections for non-HNBUE distributions.
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4.1 Chandra Orion Ultradeep Project (COUP)

At X-ray wavelengths of light, young stars may be violently variable on rapid

timescales, due to explosive releases of energy at the stellar surface. These stellar

flares occur when magnetic fields from the interior of the star erupt on the surface,

and plasma trapped in magnetic loops is heated to X-ray emitting temperatures.

The Chandra X-ray Observatory (http://chandra.harvard.edu), a telescope de-

signed to detect X-ray emission from very hot regions of the universe, provides an

excellent record of these flares. In the Chandra Orion Ultradeep Project, the Orion

Nebula region of young stars was observed for nearly two weeks continuously in

January 2003. The COUP study revealed 1616 individual X-ray sources (Getman

et al. (2005a) [7]). The analysis of these emissions is important, for instance, to

discriminate the nature of the X-ray source (see Getman et al. (2005b) [8]).

We first consider the 208 inter-arrival times (in seconds) of the photons in the

COUP series 263 (available, for instance, at http://astrostatistics.psu.edu/

datasets/Chandra_flares.html). This corresponds to a source not exhibiting

flares and was classified as extragalactic, since this type of sources are isotropically

distributed (Getman et al. (2005b) [8]). The sample mean for these data is

µ̂ = 4071.48 seconds and the value of the test statistic is Tn = 555527.3. The

resulting p-value of the HNBUE test is 0.781, so we accept that the data follow

a HNBUE distribution (which includes the exponential as a boundary case). We

have also carried out the analogous testing procedure to determine whether the

distribution of photon inter-arrivals dominates the exponential distribution in the

convex order. For the test H0 : X is HNWUE, we have obtained a p-value of

0.615, so we cannot reject this null hypothesis. Since the exponential is the unique

distribution which is HNBUE and HNWUE simultaneously, we conclude that the
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exponential hypothesis cannot be rejected. Indeed, we have also performed the

exponentiality test (3) with C = H using the test statistic ∆̂2 and the rejection

region proposed in Berrendero and Cárcamo (2009) [4]. We obtained a p-value

of 0.575, which indicates that the inter-arrival times of photons are exponentially

distributed (see Figure 4). This agrees with the classification of this COUP data

series as an apparently constant X-ray source.

The results are different for the COUP series 551, which corresponds to a faint

flaring Orion star. There is a variability in the photon arrival rate: periods with

few photons are suddenly interrupted by stellar flares. Here the sample mean is

µ̂ = 1284.25 seconds. The resulting p-values of the HNBUE and HNWUE tests

are less than 0.00002 and 0.984, respectively, so the data are HNWUE, but not

HNBUE (see Figure 5). Therefore, they are not exponential.

4.2 Compressor failures

Rausand and Høyland (2004) [18, p. 235], report failure time data for a compressor

at a Norwegian process plant. The data were the 90 critical failure times (in

operating days) of the compressor from 1968 until 1989 (see Figure 6). The sample

mean is µ̂ = 70.83 days, the HNBUE test statistic is Tn = 3091.39 (p-value

< 0.00002) and the value of the HNWUE test statistic is 0.108 (p-value 0.92).

Consequently, the data from this second set are strictly HNWUE. This is due to

the fact that there is a group of failures that have occurred within short intervals

but, for the rest of the data, the time between failures apparently increases with

the time in operation.
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4.3 Wind speed

In the context of wind energy production, it is necessary to characterize the wind

in locations surrounding a wind turbine. This is used to calculate the optimal

cut-in and cut-out speed of the turbine and its likely power output. The Weibull

distribution is commonly used to fit the probability distribution of the wind speed

in a specific location (see, e.g., Seguro and Lambert (2000) [20]). Then the Weibull

scale and shape parameters can be interpreted in terms of certain weather or

geographical characteristics of the location. For instance, for typical wind speed

distributions over a homogeneous terrain the shape parameter usually has a value

between 2 and 3. Thus, we would expect the distribution of wind speed to be

strictly dominated by the exponential in the convex order.

The Green Grid Report studies the financial viability of installing a wind farm

on the Eyre Peninsula (Australia). As part of the study, wind speed data were

recorded at several stations of the Australian Bureau of Meteorology (BoM) on

the peninsula. We have considered the 2009 hourly wind speeds (in m/s) of the

Whyalla Aero BoM station (available at http://www.oz-energy-analysis.org).

The sample mean wind speed is µ̂ = 5.094 m/s and the maximum likelihood

estimators (m.l.e.) of the Weibull shape and scale parameters fitted to these data

are 1.996 and 5.735 respectively. The HNBUE test statistic is Tn = 0.01 (p-value

0.9395) and the HNWUE test statistic is 835.5 (p-value < 0.00002). Consequently,

the distribution of these wind speed data is strictly dominated in the convex order

by the exponential distribution, as Figure 7 clearly reflects.
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5 Appendix: Proofs and technical results

Let us introduce some notation. In the sequel, Lp := {X : EXp < ∞} (p > 0) is

the usual Lp space. Also, we consider the Lorenz space

L4,2 := {X : Λ4,2(X) <∞} ,

where

Λ4,2(X) :=

∫ ∞
0

t
√

P(X > t) dt

(see Ledoux and Talagrand (2002) [13, p. 279]). It can be shown that, for all ε > 0,

L4+ε ⊂ L4,2 ⊂ L4 (see for instance Grafakos (2008) [9, Section 1.4]). Therefore,

the condition Λ4,2(X) <∞ is slightly stronger than EX4 <∞.

To obtain the limiting distribution of Hn defined in (7), note that Hn = Gn−In,

where

Gn(t) :=

∫ ∞
t

√
n(Gµ̂(x)−Gµ(x)) dx,

In(t) :=

∫ ∞
t

√
n(Fn(x)− F (x)) dx.

(13)

The asymptotic behavior in L1 of Gn defined in (13) is clarified in Lemma 1.

Lemma 1. Assume that X ∈ L4/3 and let us consider the process

G̃n(t) :=
√
n(µ− µ̂) (1 + t/µ) e−t/µ, t ≥ 0. (14)

The processes Gn and G̃n are a.s. asymptotically equivalent in L1, that is, ‖Gn −

G̃n‖1 → 0, a.s., as n→∞.

Proof. By the mean value theorem, we can write

Gn(t) =
√
n(µ− µ̂) (1 + t/µt) e

−t/µt , (15)
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where µt is a point between µ and µ̂. From (15) and using again the mean value

theorem, we get a.s.

‖Gn − G̃n‖1 =
√
n|µ− µ̂|

∫ ∞
0

∣∣(1 + t/µ) e−t/µ − (1 + t/µt) e
−t/µt

∣∣ dt

≤
√
n(µ− µ̂)2

∫ ∞
0

t2

ξ3t
e−t/ξt dt,

(16)

where ξt is another point between µ and µ̂. Now, we have∫ ∞
0

t2

ξ3t
e−t/ξt dt ≤ 1

min{µ, µ̂}3

∫ ∞
0

t2e−t/max{µ,µ̂} dt

= 2

(
max{µ, µ̂}
min{µ, µ̂}

)3

.

(17)

Since µ̂→ µ a.s., we conclude that the bound of the integral in (17) converges to

2 a.s. Finally, the conclusion follows by (16) and the Kolmogorov, Marcinkiewicz

and Zygmund strong law of large numbers (see Kallemberg (1997) [11, Theorem

3.23]), as

√
n(µ− µ̂)2 =

(
1

n3/4

n∑
i=1

(Xi − µ)

)2

→ 0 a.s.

whenever E|X|4/3 <∞.

Next we consider the empirical process associated to X, that is

En(t) :=
√
n(Fn(t)− F (t)), t ≥ 0, n ≥ 1.

Lemma 2. It holds that En →w BF in W 1 if and only if X ∈ L4,2, where

W 1 :=

{
f ∈ L1 : ‖f‖W 1 :=

∫ ∞
0

(1 + t)|f(t)| dt <∞
}
. (18)

Proof. First note that En =
∑n

i=1Xi/
√
n, where X1, . . . ,Xn are independent copies

of the process X(t) = P(X > t) − I{X>t}, t ≥ 0. We observe that W 1 =

L1([0,∞),A, µ), with dµ(t) = (1 + t)dt, and A the Lebesgue σ-algebra on [0,∞),

and that ([0,∞),A, µ) is σ-finite. Then, we conclude that X satisfies the CLT in
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W 1 if and only if
∫∞
0

√
EX(t)2 dµ(t) < ∞ (see Araujo and Giné (1980) [1, Exer-

cise 14, p. 205]). It is easy to check that this integrability condition amounts to

Λ4,2(X) < ∞. Finally, the limiting Gaussian process of En is BF because they

have the same covariance function.

We are ready to state and prove the key asymptotic result of this work in which

“→w in L1” stands for the weak convergence in L1.

Theorem 4. The following assertions are equivalent:

(a) X ∈ L4,2.

(b) Hn →w HF in L1, where the process HF is defined in (9).

Proof. Assume (a) is satisfied. By Lemma 1, and taking into account van der

Vaart (1998) [22, Theorem 18.10], the asymptotic distribution in L1 of Hn is the

same of that of the process H̃n = G̃n− In, where G̃n and In are defined in (14) and

(13), respectively. Moreover, observe that H̃n = ρ(En), where En is the empirical

process and ρ is the functional defined by

ρ(f)(t) = (1 + t/µ) e−t/µ
∫ ∞
0

f(x) dx−
∫ ∞
t

f(x) dx, t ≥ 0. (19)

It is readily checked that ρ is a continuous mapping from W 1 onto L1. Therefore,

Lemma 2 joint with the continuous mapping theorem (see for instance Van der

Vaart (1998) [22, Theorem 18.11]) imply that H̃n = ρ(En)→w ρ(BF ) = HF in L1,

and, consequently Hn →w HF in L1, and (b) follows.

Conversely, let us assume that (b) holds. This implies that X ∈ L2 since this

is the necessary and sufficient condition for Hn to have its trajectories in L1 a.s.

Further, G̃n can be expressed as a normalized sum in the following way

G̃n(t) = 1/
√
n

n∑
i=1

(1 + t/µ) e−t/µ(µ−Xi). (20)
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Using the equality EFY (Y − t)+ =
∫∞
t

(1 − FY (x)) dx, which is satisfied for any

integrable variable Y with distribution function FY , we have

In(t) =
√
n [EF (X − t)+ − EFn(X − t)+]

=
1√
n

n∑
i=1

[E(Xi − t)+ − (Xi − t)+] .
(21)

From (20) and (21), we obtain H̃n =
∑n

i=1Yi/
√
n, where the Yi (i = 1, . . . , n)

are n independent copies of the centered process

Y(t) := (1 + t/µ) e−t/µ(µ−X) + (X − t)+ − E(X − t)+, t ≥ 0. (22)

By hypothesis (and Lemma 1), we have that H̃n →w HF in L1. Hence, we have∫ ∞
0

√
EY(t)2 dt <∞ (23)

and HF is a centered Gaussian process (see Araujo and Giné (1980) [1, Exercise

14, p. 205]). Finally, from (22), Cauchy’s inequality, and taking the square root,

for t ≥ 0 we obtain√
E(X − t)2+ ≤

√
EY(t)2 + E(X − t)+ +

√
2EX2(1 + t/µ) e−t/(2µ).

Taking into account (23) and the fact that
∫∞
0

E(X − t)+ dt = EX2/2 < ∞, we

conclude that the function
√

E(X − t)2+, for t ≥ 0, belongs to L1. Finally,

t2 P(X > 2t) ≤
∫
{X−t>t}

(X − t)2 dP ≤ E(X − t)2+,

and therefore Λ4,2(X) <∞. Thus, X ∈ L4,2 and the proof is complete.

Remark 1. By del Barrio et al. (1999) [3, Theorem 2.1], En →w BF in L1 if and

only if Λ2,1(X) :=
∫∞
0

√
P(X > t) dt <∞. However, this result cannot be directly

applied to derive the limiting distribution of Hn since the mapping ρ defined in
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(19) is not continuous from L1 to L1. Note also that the constant 1 in the weight

function 1 + t that defines W 1 in (18) is necessary to ensure that the convergence

in W 1 implies the convergence in L1.

Lemma 3. Let X ∈ H. For n ≥ 1, consider the sequence of functionals ξn :

L1 −→ R given by

ξn(f) :=

∫ ∞
0

(f + hn)+, (24)

where the function hn (dependent on X) is defined in (8). If fn → f in L1, then

ξn(fn)→ ξ0(f), where ξ0(f) :=
∫
I0
f+ and the set I0 is defined in (11).

Proof. Since hn ≡ 0 on I0, we have

|ξn(fn)− ξ0(f)| ≤
∫
I0

|fn − f |+
∫
Ic0

(fn + hn)+

≤
∫
I0

|fn − f |+
∫
Ic0

(fn − f)+ +

∫
Ic0

(f + hn)+

≤
∫ ∞
0

|fn − f |+
∫
Ic0

(f + hn)+. (25)

The first integral in (25) goes to 0 because fn → f in L1. Also, taking into account

that X ∈ H, we have that (f +hn)+ decreases to 0 on the set Ic0 (as n increases to

infinity). Therefore, by the monotone convergence theorem, the second integral in

(25) converges to 0, and we conclude that |ξn(fn)− ξ0(f)| → 0 (as n→∞).

Proof of Theorem 1. Note that if X ∈ H, then X ∈ L4,2. Observe also that

Tn = ξn(Hn), with Hn and ξn defined in (7) and (24), respectively. Therefore, using

Theorem 4, Lemma 3 and an extended version of the continuous mapping theorem

(see Van der Vaart (1998) [22, Theorem 18.11]), we obtain Tn →d ξ0(HF ) = τF . �

Remark 2. If X ∈ H, it can be checked that I0 ⊆ {t ∈ [0,∞) : F (t) = Gµ(t)},

the set of crossing points of the two distribution functions.
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In the following lemma ‖ · ‖∞ stands for the supremum norm on [0,∞).

Lemma 4. Let us consider X /∈ H with finite mean µ > 0. There exist positive

constants a, b, c > 0 such that

Tn ≥ c
√
n− (An +Bn),

where An := a
√
n |µ− µ̂| and Bn := b

√
n‖Fn − F‖∞.

Proof. We rewrite Tn in terms of integrals on [0, t] in the following way:

Tn =

∫ ∞
0

(Gr
n + Irn + hrn)+, (26)

where, for t ≥ 0,

Gr
n(t) :=

∫ t

0

√
n(Gµ(x)−Gµ̂(x)) dx,

Irn(t) :=

∫ t

0

√
n(Fn(x)− F (x)) dx,

hrn(t) :=

∫ t

0

√
n(F (x)−Gµ(x)) dx.

(27)

If X /∈ H, there exists t0 > 0 such that
∫ t0
0

(F (x)−Gµ(x)) dx > 0. By continuity,

there exist ε, δ > 0 such that∫ t

0

(F (x)−Gµ(x)) dx > ε, for all t ∈ I := (t0, t0 + δ). (28)

From (26), (27) and (28), we have

Tn ≥
∫
I

hrn −
∫
I

|Gr
n| −

∫
I

|Irn|

≥ εδ
√
n−

∫
I

|Gr
n| −

∫
I

|Irn|.
(29)

Therefore, we set c := εδ. It is easy to check that there exists a point µt between
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µ and µ̂ such that∫
I

|Gr
n| =

∫
I

√
n
∣∣µ̂(1− e−t/µ̂)− µ(1− e−t/µ)

∣∣ dt

=
√
n|µ̂− µ|

∫
I

[
1− e−t/µt(1 + t/µt)

]
dt

≤ δ
√
n|µ̂− µ|.

(30)

Hence, we set a := δ. Finally, using Fubini’s theorem∫
I

|Irn| ≤
∫
I

∫ t

0

√
n|Fn(x)− F (x)| dx dt

≤ δ

∫ t0+δ

0

√
n|Fn(x)− F (x)| dx

≤ δ(t0 + δ)
√
n‖Fn − F‖∞.

(31)

Setting b := δ(t0 + δ), the conclusion of the lemma follows by (29), (30) and

(31).

Lemma 5. The functional θ(X) defined in (4) satisfies

|θ(X)− EX2/2| ≤ µ2. (32)

In particular, ∣∣∣∣∣ Tn√n − 1

2n

n∑
i=1

X2
i

∣∣∣∣∣ ≤ µ̂2. (33)

Proof. We first have

θ(X) ≤
∫ ∞
0

∫ ∞
t

(1− F (x)) dx dt+

∫ ∞
0

∫ ∞
t

(1−Gµ(x)) dx dt

=

∫ ∞
0

x(1− F (x)) dx+

∫ ∞
0

x(1−Gµ(x)) dx

=
EX2

2
+ µ2.

To check the other inequality in (32), it is enough to use the fact that a ≤ a+. Fi-

nally, (33) is a direct consequence of (32) since Tn/
√
n is the empirical counterpart

of θ(X).

24



Proof of Theorem 2. Using Lemma 4 and its notation, we have that Tn ≥
√
nCn,

where Cn := c− a |µ− µ̂| − b ‖Fn−F‖∞. By the strong law of large numbers and

Glivenko-Cantelli theorem, we have that Cn → c a.s. and part (a) holds.

Finally, from (33), we obtain

Tn ≥
√
n

(
1

2n

n∑
i=1

X2
i − µ̂2

)
.

Therefore, part (b) follows from the strong law of large numbers. �

Proof of Theorem 3. Following the same notation as in Lemma 4, we select T :=

c > 0, and for 0 ≤ t < T , we have

P
(
Tn ≤ t

√
n
)
≤ P

(
An +Bn ≥ (T − t)

√
n
)

= P

(
|µ− µ̂| ≥ T − t

2a

)
+ P

(
‖Fn − F‖∞ ≥

T − t
2b

)
.

Finally, the conclusion follows by the Dvoretsky-Kiefer-Wolfowitz inequality (see

Massart (1990) [15]). �
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Figure 2: 30 trajectories of the processes (a) Hn and (b) Hn + hn, with n = 100,

for the HNBUE distribution Weibull (a = 1.3, 1).
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Figure 3: 30 trajectories of the processes (a) Hn and (b) Hn + hn, with n = 100,

for the non-HNBUE distribution Weibull (a = 0.7, 1).
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Figure 4: Plots for inter-arrival times of photons in the COUP 263 data: (a)

empirical and exponential exp(µ̂) distribution functions; (b) the corresponding

reverse integrated survival functions
∫∞
t

(1− F̂ (x)) dx, for F̂ = Fn and F̂ = Gµ̂.
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Figure 5: Plots for inter-arrival times of photons in the COUP 551 data: (a)

empirical and exponential exp(µ̂) distribution functions; (b) the corresponding

reverse integrated survival functions
∫∞
t

(1− F̂ (x)) dx, for F̂ = Fn and F̂ = Gµ̂.
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Figure 6: Plots for the times between failures of a compressor in a Norwegian

process plant: (a) empirical and exponential exp(µ̂) distribution functions; (b) the

corresponding reverse integrated survival functions
∫∞
t

(1 − F̂ (x)) dx, for F̂ = Fn

and F̂ = Gµ̂.
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Figure 7: Plots for the wind speeds in the Eyre Peninsula: (a) empirical, expo-

nential exp(µ̂) and Weibull (with m.l.e. parameters) distribution functions; (b)

the reverse integrated survival functions
∫∞
t

(1 − F̂ (x)) dx corresponding to the

estimated distribution functions F̂ plotted in (a).
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