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On visual distances for spectrum-type

functional data

A. Cholaquidisa 1, A. Cuevasb 2 and R. Fraimana 3

Abstract

A functional distance H, based on the Hausdorff metric between
the function hypographs, is proposed for the space E of non-negative
real upper semicontinuous functions on a compact interval. The main
goal of the paper is to show that the space (E ,H) is particularly suit-
able in some statistical problems with functional data which involve
functions with very wiggly graphs and narrow, sharp peaks. A typical
example is given by spectrograms, either obtained by magnetic reso-
nance or by mass spectrometry. On the theoretical side, we show that
(E ,H) is a complete, separable locally compact space and that the H-
convergence of a sequence of functions implies the convergence of the
respective maximum values of these functions. The probabilistic and
statistical implications of these results are discussed in particular, re-
garding the consistency of k-NN classifiers for supervised classification
problems with functional data in H. On the practical side, we provide
the results of a small simulation study and check also the performance
of our method in two real data problems of supervised classification
involving mass spectra.

Key words: Supervised classification, functional data analysis, Hausdorff
metric.

1 Introduction: the choice of a suitable functional distance

The statistical analysis of problems where the sample data are functions
is often called Functional Data Analysis (FDA). This is a relatively new
statistical field which involves several specific challenges, most of them are
associated with the infinite-dimensional nature of the data.

We are concerned here with one of these specific challenges, namely, the
choice of a suitable distance criterion between the data. In what follows,
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unless otherwise stated, we will consider problems where the sample data are
real functions x(t), t ∈ [0, 1].

Not surprisingly, a considerable part of the current FDA theory has been
developed assuming that the data functions belong to the space L2[0, 1],
that is, the distance between two data x1 and x2 is given by d2(x1, x2) =

(
∫ 1

0
(x1(t)−x2(t))2dt)1/2. This distance presents obvious advantages, derived

from the fact that L2[0, 1] is a Hilbert space. Thus, some extremely im-
portant tools, as the existence of orthogonal bases (and the corresponding
expansions for the data in orthogonal series) are available in L2[0, 1]. As
a useful by-product, some crucial methodologies, such as Principal Compo-
nents Analysis or Linear Regression (and even Partial Least Squares), can
be partially adapted to the functional setting.

Another widely used metric is associated with the supremum norm ‖x‖∞ =
supt |x(t)|, which is well-defined in the space C[0, 1] of real continuous func-
tions x : [0, 1] → R; thus the metric is d∞(x1, x2) = supt |x1(t) − x2(t)| for
x1, x2 ∈ C[0, 1]. Although the Hilbert structure is lost here, the advantages
of the supremum metric are also well-known: first, d∞ is easy to interpret in
terms of vertical distance between the functions. Second, the structure of the
space of probability measures on (C[0, 1], ‖ · ‖∞) is also well understood, and
carefully analyzed, for example, in the classical book by Billingsley (1968).

For general accounts on the FDA theory we refer to the books by Bosq
(2000), Bosq and Blanke (2007), Ramsay and Silverman (2002, 2005), Ferraty
and Vieu (2006), Horváth and Kokoszka (2012) and the recent survey paper
by Cuevas (2014).

1.1 Our proposal: its practical motivation

In what follows we analyze, from both the theoretical and practical point of
view, a metric between functions especially aimed at capturing the “visual
distance” between the graphs. This metric will be particularly suitable in
FDA problems where the data are functions with wiggly graphs showing
very sharp peaks. In those situations the classical metrics (d2 or d∞) could
be unsuccessful in capturing a “practically meaningful” notion of distance
between the graphs. For example, a small lateral shift in a very sharp peak
(perhaps due to a registration error) could lead to an enormous d∞-distance.
Likewise, if two graphs differ in just one such narrow peak, the d2-distance
between them might be very small, which could be unsuitable in many cases.

The spectrograms, either obtained from magnetic resonance (1H-NMR or
13C-NMR) or by mass spectrometry, provide a good example of such situa-
tions. Just as an example to motivate our point, let us consider the 13C-NMR
spectrum of a compound, namely the o-xylene (C8H10); see Figure 1, left.
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It shows the typical spiky pattern, with sharp and narrow peaks, strongly
localized (we will consider below other examples of much more complex or-
ganic compounds were the peaks are present but not all the information is
concentrated around them). The peaks in this spectrum are located at the
points 136.42, 129.63, 125.85, 19.66 ppm. This information has been obtained
from the data base http://sdbs.db.aist.go.jp, (National Institute of Ad-
vanced Industrial Science and Technology, date of access August 23, 2015).
Now, we might want to consider the 13C-NMR spectrum of another closely
related compound, the m-xylene, an isomer of the previous one: see the right
panel of Figure 1. Although the general aspect of both spectra is very sim-
ilar, there are clearly some differences. In the case of m-xylene, the peaks
are located at 137.74, 129.96, 128.21, 126.13, 21.31 ppm. A “reasonable”
metric defined to measure the distance between these graphics should pro-
vide a small value (thus reflecting their close affinity), by taking into account
their “visual” proximity, that is, the distance between the graphics in all
directions (not only in the vertical one). Moreover, for this type of graphics,
we would also like to detect the presence of additional very narrow peaks
(far away from the others), contributing a small area but carrying a relevant
information on the compound. The d2 distance does not seem useful for such
purpose. See also the Figure 2 below and the discussion following definition
(1).

Figure 1: 13C-NMR spectra of the o-xylene (left) and m-xylene.

As explained in depth by Coombes et al. (2007), in order to reach mean-
ingful conclusions, handling of spectrum data needs a crucial pre-processing
stage. This typically includes, among others, the following steps: remove
random noise, normalization, peaks detection (to identify locations on the
scale that correspond to specific molecules) and peak matching (to match
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peaks in different samples, that correspond to the same peak). For this
purpose, there is an increasing amount of software available. In particular,
several packages can be downloaded from the web page of the software R

(http://www.r-project.org/) in order to deal with spectrum-type data;
for example, MALDIquant, readMzXmlData and aLFQ. This paper could be
seen as a further suggestion in this line of research.

The rest of this paper is organized as follows: the study of the proposed
visual metric (including the definition, computation and topological proper-
ties of the distance) is considered in Section 2. In Section 3 we focus on some
theoretical aspects of the use of this metric in the supervised classification
problem. A small simulation study is provided in Section 4. Two real data
examples of mass spectra classification are considered in Section 5. Finally,
some concluding remarks are given in Section 6. The proofs are given in an
appendix.

2 A visual, Hausdorff-based distance for non-negative functions

The starting point is the standard definition (see, e.g., Rockafellar and Wets
(2009), p. 117) of the Hausdorff (or Pompeiu-Hausdorff) distance between
two compact non-empty sets, A,C ⊂ Rd:

dH(A,C) = inf{ε > 0 : A ⊂ B(C, ε), C ⊂ B(A, ε)}

= max

{
max
a∈A

d(a, C), max
c∈C

d(c, A)

}
,

where B(A, ε) denotes the ε-parallel set B(A, ε) = ∪x∈AB(x, ε) and B(x, ε)
denotes (with a slight notational abuse) the closed ball centered at x with
radius ε; the open ball will be denoted B̊(x, ε). Also, d(a, C) = inf{‖a− c‖ :
c ∈ C}.

Unlike other notions of proximity between sets, dH is a true metric (i.e.
it has the properties of identifiability, symmetry and triangular inequality)
in the class of compact non-empty sets. The Hausdorff distance has been
extensively used in different problems of image analysis (especially in pattern
recognition), which appear in the literature under different names (shape
comparison, object matching, etc.). The strong intuitive motivation behind
the definition of dH has motivated the study of other variants of the same idea
as well as other closely associated notions. Some references are Huttenlocher
et al. (1993), Dubuisson and Jain (1994), Sim et al. (1999).

However, our aim here is rather to use the Hausdorff metric as a tool for
defining distance between functions, very much in the spirit of some ideas in
approximation theory; see, for example, Sendov (1990).
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The basic idea behind the metric we are going to consider is quite simple:
given two non-negative functions f and g, defined on [0, 1], the distance
between f and g is measured in terms of the Hausdorff metric between the
corresponding hypographs. However, we must take care of some technical
aspects in order to properly establish this definition.

Let us recall that a function f : [0, 1] → R is said to be upper semicon-
tinuous at x0 if lim supx→x0 f(x) ≤ f(x0). A function f is said to be upper
semicontinuous (USC) if it fulfils the above condition at every point x0.

Given a non-negative function f defined on [0, 1], the hypograph of f is
the set

Hf =
{

(x, y) ⊂ R2 : x ∈ [0, 1], 0 ≤ y ≤ f(x)
}
.

Denote by E the space of non-negative USC functions defined on [0, 1]. The
following proposition, whose proof can be found in Natanson (1960), estab-
lishes some useful properties of USC functions.

Proposition 1. Let f : [0, 1]→ R be a non-negative USC function.

1) Let K ⊂ [0, 1] be a compact set. Then, there exists z ∈ K such that
supx∈K f(x) = f(z).

2) The hypograph Hf is compact.

We are now ready to define our visual metric: for f , g ∈ E we define

H(f, g) = dH(Hf , Hg). (1)

It is easily seen that this is a true metric in E . In particular, if dH(Hf , Hg) =
0, the USC assumption guarantees that we must have f = g.

Let us denote by (E ,H) the space of USC non-negative functions endowed
with the metric (1).

Figure 2 aims at illustrating the heuristic meaning of the H-metric be-
tween two spectrum-type curves f1 (solid line) and f2 (dotted line). In this
case, the distance H(f1, f2) = 0.077 is the length of the double arrow joining
two close peaks in the curves. The corresponding values for the “classical”
distances are d∞(f1, f2) = 0.952, d2(f1, f2) = 0.119. So, H succeeds in re-
flecting the visual proximity between both curves.

Remark 1. In order to gain some additional insight on the meaning of the
distance H and their relations with other usual metrics, let us note that

(a) Convergence in H does not imply pointwise convergence. Consider
f(x) = I[0,1](x) and the sequence fn(x) = nx if x < 1/n and fn(x) = 1
if x ∈ [1/n, 1]. It is clear that H(fn, f) → 0 but fn(0) 9 f(0). The
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Figure 2: H(f1, f2) corresponds to the length of the double arrow joining
both curves.

reciprocal implication is not true either. Take f(x) = 0 ∀x ∈ [0, 1] and
fn(x) = xn(1 − xn). We have fn(x) → 0 for all x but H(fn, f0) → 0
where f0(1) = 1/4 and f0(x) = 0 for x ∈ [0, 1).

(b) Convergence in Lp does not imply convergence in H: consider fn(x) =
I[0,1/n] and f(x) = 0 ∀x ∈ [0, 1]. The reciprocal is also false: take
Ini (x) = I[ i−1

2n
, i
2n ](x) i = 1, . . . , 2n, and the functions

fn(x) =
2n−2∑
k=1

In2k(x) and f(x) = I[0,1](x),

it is clear that H(f, fn) = 1/2n+1, however, for all p,
∫ 1

0
|fn(x) −

f(x)|pdx = 1/2.

(c) A natural question is: why to use USC functions? Since in many appli-
cations, the functional data appear as continuous functions, one might
think that we might restrict our discussion to the continuous case. How-
ever there are, at least, good reasons for considering USC functions:
first, in some practical examples (though not, typically, in the case of
spectra) one has to deal with non-continuous samples and, especially,
with jump discontinuities. Second, we need upper semicontinuity to
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get a complete space (which in turn is essential for a more convenient
mathematical handling). Take for example the sequence of functions
fn(x) = xn for x ∈ [0, 1]. This is a Cauchy sequence in our space
(E ,H), but clearly does not converge to any continuous function on
[0,1]. Hence, we need to enlarge the space to include USC if we want
to get completeness.

2.1 Computational aspects

As mentioned above, the Hausdorff distance has some applications in image
processing. Hence its numerical calculation has motivated some interest in
the literature. See Nutanong et al. (2011) and Alt et al. (2003), just to
mention a couple of recent references. The Matlab function HausdorffDist

computes the Hausdorff distance between two finite sets of points in R2.
We are concerned here with the particular case in which the sets are the
hypographs of functions, especially when these functions are specified only by
their values in a given grid of [0, 1]. Our aim here is to approximate the value
of H(f, g) in such cases, which arise very often in practical applications. First
let us observe that, given two functions f and g in E , from the definitions of H
and dH we have: H(f, g) ≤ dH(∂Hf , ∂Hg). However, the boundaries ∂Hf and
∂Hg do play a relevant role in the calculation of H(f, g). In fact, the following
proposition shows that we can restrict the calculation to appropriate subsets
of these boundaries.

Proposition 2. Let f, g ∈ E, then

H(f, g) = max

 sup{
x=(x1,x2)∈∂Hg

g(x1)≥f(x1)

} d
(
x, ∂Hf

)
, sup{

y=(y1,y2)∈∂Hf

f(y1)>g(y1)

} d
(
y, ∂Hg

) .

The proofs of all results are given in the Appendix. In particular, the
proof of Proposition 2, will require Lemma A1 whose proof can also be
found in the Appendix.

An algorithm to compute H

If we have αfn = (t1, f(t1)), . . . , (tn, f(tn)) and αgn = (t1, g(t1)), . . . , (tn, g(tn)),
and if we assume that f and g are continuous, then Proposition 2, together
with Proposition A1 in the Appendix, gives us a simple algorithm of order
n2 to approximate H(f, g). Just compute

H̃(f, g) = max

{
max

{i:g(ti)>f(ti)}
d
(
(ti, g(ti)), α

f
n

)
, max
{i:f(ti)>g(ti)}

d
(
(ti, f(ti)), α

g
n

)}
,
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where, if {i : g(ti) > f(ti)} = ∅ then max{i:g(ti)>f(ti)} d
(
(ti, g(ti)), α

f
n

)
= 0 and

if {i : f(ti) > g(ti)} = ∅, then max{i:f(ti)>g(ti)} d
(
(ti, f(ti)), α

g
n

)
= 0. From

Lemma A1, if maxi |ti+1 − ti| → 0 then H̃(f, g)→ H(f, g).

2.2 Some related literature

The distance H has been considered in Cuevas and Fraiman (1998) in the
context of density estimation: in particular, convergence rates are obtained,
under some smoothness conditions, for H(f̂n, f), where f̂n denotes a sequence
of kernel density estimators of the density f .

Different versions of the same idea are considered in Rockafellar and Wets
(2009), p. 282. They are defined in terms of epigraphs (rather than hy-
pographs) and are therefore applied to lower semicontinuous (rather than
upper semicontinuous) functions. Some relevant applications are given in
the framework of optimization theory to give bounds for approximately op-
timal solutions of convex lower semicontinuous functions.

Another related approach to the idea of defining the distance between
two functions in terms of the distance between their graphs is considered in
Sendov (1990) for the so-called segment functions. Holá (1992) extends these
ideas to the setting of multifunctions.

2.3 Topological properties of (E ,H)

The metric space is particularly “well-behaving” in some important aspects
that are summarized next.

Theorem 1. (a) The space (E ,H) is complete and separable. Also, any
bounded and closed set in (E ,H) is compact. In particular, (E ,H) is locally
compact.

(b) Let fn, f ∈ E such that H(fn, f)→ 0 then;

max
x∈[0,1]

f(x) = lim
n→+∞

max
x∈[0,1]

fn(x).

The proof of this result is given in the Appendix. Let us now briefly
comment on the meaning and usefulness of these properties.

(i) Among the three properties established in Theorem 1 (a), completeness
is perhaps the most basic one. It is essential to study convergence
of sequences or series in (E ,H) by just looking at the corresponding
Cauchy property. This property is also required in the proof of some
key results as Banach’s fixed point theorem for contraction mappings;
see Grandas and Dugudji (2003)
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(ii) Separability is a most crucial property in a metric space in order to
define on it well-behaving probability measures. A nice discussion on
this topic can be found in Ledoux and Talagrand (1991), pp. 38-39.
Although this discussion applies, in principle, to Banach spaces, the
main arguments can be also translated to a metric space. For example,
separability is required to ensure that a probability measure P defined
on (E ,H) is tight, in the sense that for all ε > 0 there exists a compact
set K ⊂ E such that P (K) > 1−ε. This is a far-reaching property, that
can be found in the basis of many standard probability calculations.
Thus, the separability property allows us to express any E-valued ran-
dom element as a limit of a sequence of simple (finite-valued) random
elements. Also, separability is needed to guarantee a proper behaviour
of product measurable structures: in particular, the Borel σ-algebra of
the product space is the product of the individual Borel σ-algebras of
the factors; see Proposition 1.5 in Folland (1999). Also, let us recall
that separability of a metric space is equivalent to the property that this
space is second-countable (e.g., Folland (1999), pp. 116-118), which is
important in many probability arguments: for example, to show that
any probability measure in a locally compact metric space is a Radon
measure, see Folland (1999), Th. 7.8.

Finally, separability is also required for the consistency theorem for
k-NN classification rules mentioned in Subsection 3.

(iii) As for local compactness, let us recall that, in the case of Banach spaces,
this property is equivalent to the finite-dimensionality of the space. In
our case, we don’t have a vector structure, so that we only have a
metric space (not a normed one). However, the local compactness
allows us to use some “natural” properties that we often use in the
finite-dimensional spaces. For example, to show that any real integrable
function defined on E can be approximated by a sequence of continuous
compact-supported functions (see Folland (1999), Proposition 7.9). An
application of this can be found in Section 3.

Remark 2. Let us observe that the local compactness does not hold for (E , ‖·
‖∞). In order to see this, observe that for every ε > 0, the sequence fn(x) =
εxn is included in the ball (with the distance ‖ · ‖∞) centered at the null
function, of radius ε. However, this sequence does not have any convergent
subsequence; indeed, the only possible limit would be the function f0(x) = 0
for x ∈ [0, 1), f0(1) = ε, but ‖fn − f0‖∞ = ε for all n.
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3 Applications to classification of functional data

We will briefly consider here some theoretical aspects of the supervised classi-
fication problem, focusing especially on the case of k-NN (nearest neighbors)
classifiers.

The (functional) supervised classification problem
We focus on the problem of supervised classification with functional data;

see e.g., Báıllo et al. (2011a) for an overview. More precisely, we are con-
cerned with statistical problems for which the available data consist of an
iid “training sample” Dn = ((X1, Y1), . . . , (Xn, Yn)). The Xi = {Xi(t) : t ∈
[0, 1]} are independent trajectories, belonging to a function space X , drawn
from a stochastic process X := {X(t) : t ∈ [0, 1]} which can be observed
from two probability distributions, P0 and P1 (often referred to as “popula-
tions” in statistical language). The Yi are binary random variables indicating
the membership of the trajectory Xi to P0 or P1, that is, the population from
which the observation Xi has been drawn. It is assumed that the conditional
distributions of X|Y = i, i = 0, 1 (that is, P0 and P1) are different.

k-NN classifiers: why to use them in the functional setting
In a model of this type, the aim is typically to classify (either in P0

or in P1) a new observation X, for which the corresponding value of Y is
unknown. A classification rule (or classifier) is a measurable function g :
X → {0, 1} defined on the space X of trajectories. Usually, the classification
rules are constructed using the information provided by the training sample
data (Xi, Yi).

In this work we will limit ourselves to use the k-NN classifiers: an obser-
vation x is classified into P0 if the majority among the k observations Xi (in
the training sample) closest to x, fulfils Yi = 0; ties are randomly broken. Of
course, “closest” refer to some metric defined in the space X on which the Xi

take values: each metric leads to a different k-NN classification rule. In the
functional infinite dimensional case, the choice of this metric is particularly
relevant. The values k = kn are the smoothing parameters, similar to others
which appear in non-parametric procedures: see Devroye et al. (1996) for
background. As we will see below, they must fulfil some minimal conditions
regarding the speed of convergence to infinity. Of course, the choice of k for
any specific sample size n can have some influence on the performance of the
k-NN classifier. However, as we will see in Section 5, the choice of the metric
in the “feature space” (where X takes values) can be even more important.

The reasons for choosing k-NN classifiers can be summarized in the fol-
lowing terms: simplicity, ease of interpretability, good general performance
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and generality. Indeed, k-NN is a sort of all-purposes “benchmark proce-
dure”, not so easy to beat in practice. The available experience (see Báıllo
et al. (2011, 2011a), Galeano et al. (2014) and references therein) suggests
that, k-NN classifiers tend to show a stable performance, not far from the
best method found in every specific problem. Moreover, they have a sound
intuitive basis, so they are easily interpretable in all cases (unlike other clas-
sification methods) and they can be used in very general settings, when X
takes values in any metric space. We now consider some theoretical issues
regarding consistency of k-NN classifiers in the framework of our space (E ,H).

The notion of consistency
Let us denote by gn a sequence of k-NN classifiers defined in the usual

way, as indicated at the end of the previous subsection. We will say that
this sequence is weakly consistent (see, e.g., Devroye et al. (1996) for more
details) if the misclassification probability Ln = P(gn(X) 6= Y |Dn) converges
(in probability, as n→∞) to the optimal value L∗ = P(g∗(X) 6= Y ), which
corresponds to the optimal rule g∗(x) = I{η(x)>1/2}, where η(x) = E(Y |X =
x) = P(Y = 1|X = x). It is readily seen that the weak consistency condition
is equivalent to

E(Ln) −→ E(L∗).

In the finite dimensional case, that is when random variable X takes
values in Rd, it is well-known from a classical result due to Stone (1977),
that any sequence of k-NN classifiers is (weakly) consistent provided that
k → ∞ and k/n → 0. This result is universal, in the sense that it does not
impose any condition of the distribution of the random pair (X, Y ).

The infinite-dimensional case. The Besicovitch condition
Let (X, Y ) be the random element generating the data in a supervised

functional classification problem, where X is E-valued and Y takes values in
{0, 1}. Denote by µ the distribution of X, µ(E) = P(X ∈ E).

It is natural to ask whether the above mentioned universal consistency of
the finite-dimensional k-NN classifiers still holds for the functional (infinite-
dimensional) case. The answer is negative. There is, however, an additional
technical condition which (together with k → ∞, k/n → 0), ensures weak
consistency for the k-NN functional classifiers. While this condition is not
in general trivial to check, it always holds whenever the regression function
η(x) = E(Y |X = x) is continuous. The corresponding theory has been first
developed by Cérou and Guyader (2006). In particular, the mentioned suffi-
cient condition for consistency established by these authors is the following
differentiability-type assumption (on the distribution of (X, Y )), called Besi-
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covitch condition:

lim
δ→0

1

µ
(
B(X, δ)

) ∫
B(X,δ)

|η(X)− η(x)|dµ(x) = 0, in probability. (2)

Here, B(X, δ) denotes the closed δ-ball centered at X = X(t) in the space of
trajectories of the process X = X(t). A weaker, slightly simpler version of
this property, almost identical to the conclusion of Lebesgue differentiation
theorem, would be as follows,

lim
δ→0

1

µ
(
B(X, δ)

) ∫
B(X,δ)

η(x)dµ(x) = η(X), in probability. (3)

Conditions (2) and (3) are clearly reminiscent of the conclusion of the clas-
sical Lebesgue Differentiation Theorem (see (Folland, 1999, p. 98)). Clearly
(2) implies (3). It can be also seen that the µ-a.s. continuity of η is a sufficient
condition for (2).

As mentioned above, Cérou and Guyader (2006, Th. 2) have proved that
condition (2) together with k → ∞ and k/n → 0, ensures the weak consis-
tency of a sequence of k-NN classifiers when X takes values in a separable
metric space. On the other hand, Abraham et al. (2006) have used (3) as
a sufficient condition for the consistency of kernel classification rules. They
also need some supplementary conditions on the sequence h = hn of smooth-
ing parameters and the space E : they require that the existence of a sequence
of non-decreasing totally bounded subsets, Fk ⊂ E , such that µ(∪kFk) = 1
and a condition that relates the bandwidth h with the metric entropy of the
subsets Fk.

The following result shows that, in our case, the consistency holds for a
class of “regular” distributions which is dense in the space of all distribu-
tions. In other words, the result shows that the assumption of continuity for
the regression function η(x) (which guarantees consistency for k-NN classi-
fiers) is in fact not very restrictive, as any possible distribution for (X, Y )
may be arbitrarily approximated by another one which fulfils this continuity
condition.

Proposition 3. Let us consider a binary supervised classification problem
based on observations from (X, Y ), where X is E-valued and Y is the binary
variable indicating the class (0 or 1). Let gn be a sequence of k-NN classifiers
such that k →∞ and k/n→ 0.

Whatever the distribution Q of (X, Y ) there is another distribution P ,
arbitrarily close to Q in the weak topology, under which the regression func-
tion η(x) = P(Y = 1|X = x) is continuous with compact support and the
sequence gn is weakly consistent.
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4 Some simulations

A simulation experiment has been carried out to illustrate a simple situation
in which our “visual distance” could be especially suitable. The underlying
model is very simple: the functional data are just “corrupted” trajectories of
the absolute value of a Brownian Bridge (absBB) on [0, 1]. In the population
P0 the absBB trajectories are perturbed by just adding to them a spiky
function identically null on [0, 1] except for a triangular peak with basis 0.04
and height 1, whose center is randomly chosen on the interval [0, a1] for some
a1 ≤ 1/2. The trajectories from P1 are similarly constructed except that the
center of the noise peak is randomly selected on [a2, 1] for some 1/2 ≤ a2 ≤ 1.

We have performed this experiment for two choices of (a1, a2). The first
case (Model 1, Table 4 left) corresponds to the choice a1 = a2 = 1/2. In the
second one (Model 2, Table 4 right), we have taken a1 = 1/3, a2 = 2/3.

Figure 3 shows two trajectories drawn from Model 1, (in solid line, the
trajectory drawn from P0).

In both examples the training samples are of size 100 (50 trajectories
drawn from each population). The outputs of the tables correspond to the
average missclassification proportions (over 500 trajectories) of test samples
of size 100 (50 generated from each population). The trajectories are dis-
cretized on a grid of 100 equispaced points.

As for the choice of k, we have checked a reasonable range (according to
the sample size) of values, in order to check “robustness” with respect to k.
We limit ourselves to odd values of k, from 3 to 9, just to avoid ties in the
classifier output.

k H d2 d∞
3 .144 .454 .363
5 .188 .486 .450
7 .222 .496 .483
9 .249 .499 .494

k H d2 d∞
3 .031 .421 .275
5 .046 .473 .396
7 .062 .491 .459
9 .077 .497 .485

Table 1: Misclassification rates over 500 replications for different values of k
under Model 1 (left panel) and Model 2 (right).

The results are self-explanatory: the classical distances have almost no
discriminatory power in this example. The narrow noisy peaks are not suit-
able for them. This is in sharp contrast with the much better performance
of the H-distance.
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Figure 3: Two random trajectories drawn from Model 1: in solid line under P0, in dashed
line under P1.

5 Real data examples

We will consider here two examples of binary classification based on func-
tional data corresponding to mass spectra. The ovarian cancer data is a
bio-medical example. Hence the samples drawn from P0 and P1 correspond,
respectively, to a control,“healthy” group and to a “patients group”; the aim
is to assign a new coming individual with spectrum x to one of these groups.
The second example concerns food science: the goal is to investigate the ca-
pacity of mass spectra in order to discriminate between two varieties of coffee
beans.

In both cases we have performed a similar experiment: the cross-validation
(leave-one-out) proportions of correct classification have been computed for
k-NN classifiers based on three different distances: the L2-metric, d2, the
supremum metric d∞ and our Hausdorff-based distance H.

The main goal of this study is just to check the possible usefulness of
the “visual” distance H when compared with the classical choices d2 and
d∞. In principle, the idea was to handle the functional data themselves
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(or rather their available discretized versions) avoiding the use of dimension
reduction techniques via linear projections (principal components, partial
least squares) or variable selection methods.In these examples, the available
sample sizes are quite modest (especially in the second one). So the results
must be interpreted with caution, just as useful hints of the performance of
our proposal in real data problems. Obviously more research is needed.

5.1 The ovarian cancer data

These data correspond to mass spectra from blood samples of 216 women:
95 belong to the control group (CG) and the remaining 121 suffer from an
ovarian cancer condition (OC). The use of mass spectra as a diagnostic tool
in this situation is based on the fact that some proteins produced by cancer
cells tend to be different (either in amount or in type) from that of the normal
cells. These differences could be hopefully detected via mass spectrometry.
We refer to Banks and Petricoin (2003) for a previous analysis of these data
with a detailed discussion of their medical aspects. See also Cuesta-Albertos
et. al. (2006) for further statistical analysis of these data. The raw data
were defined on finite grids (of sizes varying between 320.000 and 360.000)
on the interval [700, 12000]. In order to facilitate the computational treat-
ment we did some pre-processing: first, we have restricted ourselves to the
interval mass charge [7000, 9500], where most peaks were concentrated. Sec-
ond, we denoised the data by defining the spectra as 0 at those points for
which the value was smaller than 5 (this value was chosen after trying with
several others). Third, in order to have all the spectra defined in a common
equispaced grid (we took a grid of size 20001), we have smoothed them via
a Nadaraya-Watson procedure. Finally, every function has been divided by
its maximum, in order to have all the values scaled in the common interval
[0, 1]. This amounts to assume that the location of the peaks are important,
but not the corresponding heights.

The results of our analysis are shown in Table 2 below.

k H d2 d∞
3 .125 .092 .125
5 .079 .092 .116
7 .083 .088 .125
9 .143 .111 .143

Table 2: Classification error rates for the ovarian cancer data using k-NN
classifiers based on three different distances.
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We have kept the same values of k considered in the simulation study. It
can be seen that in all cases the ”optimum” is either k = 5 or k = 7 and,
for these choices, the Hausdorff based distance clearly outperforms the other
two metrics d2 and d∞.

5.2 The coffee data

These data consist of 28 mass spectra (discretized in a grid of 286 values)
corresponding to coffee beans of two varieties, Arabica and Robusta. The
respective sample sizes are 15 and 13. These data are available from the web
page http://www.cs.ucr.edu/~eamonn/time_series_data/ of the Univer-
sity of California, Riverside. In this case the pre-processing consisted only
on a rescaling of both axes to fit the data on [0, 1]2.

k H d2 d∞
3 .071 .071 .036
5 .036 .179 0
7 .107 .214 .036
9 .071 .25 .036

Table 3: Classification error rates for the coffee data using k-NN classifiers
based on three different distances.

In this case the H-based classifiers are outperformed by those based on
the supremum distance d∞ but are clearly better than those based on d2. It
is curious to note the unstable behavior of d2, which is almost competitive in
the cancer example but gets the worst performance both in the simulation
study and in the coffee data example. On the other hand, d∞ ranked clearly
the last one in the cancer example. The H-based methodology is never the
worst one in the considered examples. Again, more detailed experiments are
needed to confirm or refute this provisory findings.

6 Concluding remarks

The choice of a distance is particularly relevant when dealing with functional
data. Not only some classifiers (as those of k-NN type or others based on
depth measures) are defined in terms of distances, but also the theoretical
properties (regarding consistency, convergence rates or asymptotic distribu-
tions) must be necessarily established in terms of a given distance in the
sample space. Of course, in the finite-dimensional case, the use of different
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norms in the Euclidean sample space can lead to different results in a clas-
sification problem. However, the case for considering different norms in this
finite-dimensional situation is not very strong, due to the well-known fact
that all the norms are equivalent in finite-dimensional normed spaces.

Our generic suggestion here is to consider geometrically motivated dis-
tances in functional data. The specific proposal we make, H(f, g) is just
one possibility; several other alternatives might be considered. The book by
Rockafellar and Wets (2009) could suggest some ideas in this regard. While
our theoretical and practical results with the distance H are encouraging, it
is also quite clear that this metric suffers from some limitations: first, we are
restricted to non-negative functions. Second, the extension of this idea to
functions of several variables would probably involve considerable computa-
tional difficulties. Third, much more theoretical development is needed; in
particular, the study of probability measures on the space (E ,H) is essential
if we want to use theoretical models combined with the distance H. In fact,
this need for a deeper mathematical development is a common feature for
most chapters of the, still young, FDA theory.

Appendix

Proof of Proposition 2
To prove this Proposition we first must prove an auxiliary result:

Lemma A1. If f, g ∈ E, then there exist u ∈ ∂Hf and v ∈ ∂Hg such that

H(f, g) = d(u,Hg) = d(v,Hf ) = ‖u− v‖. (4)

Proof. We have, by definition of H:

H(f, g) = dH(Hf , Hg) = max

{
sup
a∈Hf

d(a,Hg), sup
b∈Hg

d(b,Hf )

}
.

Assume H(f, g) > 0. Otherwise the result is trivial. Let us suppose by
contradiction that there is no pair (u, v) ∈ ∂Hf×∂Hg such that (4) is fulfilled.
In any case, the compactness of Hf and Hg guarantees the existence of x =
(x1, x2) and y = (y1, y2) fulfilling (4) but, according to our contradiction
argument, either x or y must be an interior point. For example, if x ∈
int(Hf ), then 0 < x1 < 1. We will see that d

(
(x1, f(x1)), Hg) ≥ H(f, g). For

every t ∈ [0, 1] such that |t − x1| < H(f, g) let us denote ut = (t, ut2) and
vt = (t, vt2) the intersection points of ∂B(x,H(f, g)) and the line x1 = t; with
ut2 < vt2. From the assumption on x, d(x,Hg) = H(f, g). This entails that

B̊
(
x,H(f, g)

)
∩Hg = ∅ and, since Hg is a hypograph (which implies that if
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(a, b) ∈ Hg then the segment joining (a, b) and (a, 0) is included in Hg) it
is clear that g(t) ≤ ut2, for all t ∈ [0, 1] with |t − x1| < H(f, g). Therefore,
if we move upwards the point x = (x1, x2) to (x1, f(x1)) (recall that from
the USC assumption, x2 ≤ f(x1)), we have B̊

(
(x1, f(x1)),H(f, g)

)
∩Hg = ∅

and then d
(
(x1, f(x1)), Hg

)
≥ H(f, g). We cannot have d

(
(x1, f(x1)), Hg

)
>

H(f, g) since (x1, f(x1)) ∈ Hf and H(f, g) = dH(Hf , Hg). So, we must have
d
(
(x1, f(x1)), Hg

)
= H(f, g) with u := (x1, f(x1)) ∈ ∂Hf . As a consequence,

we must also have a point v ∈ ∂Hg such that ‖u − v‖ = H(f, g). This
contradicts the assumption we made about the non-existence of such a pair
(u, v).

We now prove Proposition 2.

Proof. Let us denote

d = max

 sup{
x=(x1,x2)∈∂Hg

g(x1)≥f(x1)

} d
(
x, ∂Hf

)
, sup{

y=(y1,y2)∈∂Hf

f(y1)>g(y1)

} d
(
y, ∂Hg

) .

The case H(f, g) = 0 is trivial, so let us assume H(f, g) > 0. We will first see
that H(f, g) ≤ d. Since Hf and Hg are compact, there are two possibilities:

1) there exists x ∈ Hg such that H(f, g) = d(x, ∂Hf ), or

2) there exists y ∈ Hf such that H(f, g) = d(y, ∂Hg).

Let us suppose that we are in the first case. By Lemma A1 we can assume
that x = (x1, x2) ∈ ∂Hg. Since H(f, g) > 0 and Hf is a hypograph it must
be g(x1) > f(x1), then x ∈

{
x = (x1, x2) ∈ ∂Hg : g(x1) ≥ f(x1)

}
from where

it follows that H(f, g) ≤ d. If we are in case 2, again by Lemma A1, we can
assume y = (y1, y2) ∈ ∂Hf , as H(f, g) > 0 and Hg is a hypograph it must be
f(y1) > g(y1), then y ∈

{
y = (y1, y2) ∈ ∂Hf : f(y1) > g(y1)

}
. from where

it follows that H(f, g) ≤ d. The inequality H(f, g) ≥ d follows directly from
the definition of H.

We also use the following proposition in the algorithm to calculate H(f, g)
for f and g continuous.

Proposition A1. Let f, g ∈ E be continuous functions, let u and v be the
points of Lemma A1. Then, there exist t ∈ [0, 1] and s ∈ [0, 1] such that
u = (t, f(t)) and v = (s, g(s)).
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Proof. Again, assume H(f, g) > 0. By Lemma A1 u ∈ ∂Hf , v ∈ ∂Hg,
and H(f, g) = ‖u − v‖. So it is enough to prove that u =

(
t, f(t)

)
and

v =
(
s, g(s)

)
. Since f is continuous and u ∈ ∂Hf , there are four possibilities:

(and the same holds for v ∈ ∂Hg) :

1. u is in the left border: u = (0, u2) with u2 < f(0).

2. u is in the right border: u = (1, u2) with u2 < f(1).

3. u is in the lower border: u = (u1, 0) with 0 ≤ u1 ≤ 1.

4. u is in the upper border: 0 ≤ u1 ≤ 1 y u2 = f(u1).

We now prove that u can only be in Case 4. It is clear that Case 3 is
not possible because both functions are non-negative. Cases 1 and 2 are also
excluded following the ideas used in Lemma A1. For example, let us suppose
that we are in Case 1 (see Figure 4). First observe that B̊

(
(0, f(0)),H(f, g)

)
∩

Hg = ∅; otherwise there would exist (t1, t2) ∈ B̊
(
(0, f(0)),H(f, g)

)
∩Hg, then,

the segment joining the points (t1, 0) and (t1, t2) (which is included in Hg)

intersects B̊
(
u,H(f, g)

)
. But this contradicts H(f, g) = dH(Hf , Hg). So

we conclude d
(
(0, f(0)), Hg

)
≥ H(f, g). However d

(
(0, f(0)), Hg

)
> H(f, g)

leads to a contradiction with the definition of H(f, g). Also, d(u,Hg) =
d
(
(0, f(0)), Hg

)
leads to another contradiction. Indeed, if this were the case,

we would have two points ((0, u2) and (0, f(0))) on the vertical axis x1 = 0
which are equidistant to the hypograph Hg. Then we have three possibilities:

(a) u2 < g(0) < f(0). This contradicts d(u,Hg) = d
(
(0, f(0)), Hg

)
, since

all the points (0, u3) with u2 < u3 < g(0) belong to Hg.
(b) g(0) ≤ u2: this contradicts the continuity of g since Hg must have

a point in the boundary of B
(
(0, f(0)), d((0, f(0)), Hg)

)
and no point in the

open ball B̊
(
(0, u2), d

(
(0, u2), Hg

))
.

(c) g(0) ≥ f(0): this is not compatible with d(u,Hg) = d
(
(0, f(0)), Hg

)
.

Proof of Theorem 1.
(a) To state the local compactness we will in fact prove a slightly stronger

property: we will show that any closed and bounded set in (E ,H) is compact.
Indeed, this would imply that the closed balls are compact. Since the family
of balls with center at a given point is a local base, the local compactness
will follow.

Since we are in a metric space compactness is equivalent to sequential
compactness. Let us take {fn} ⊂ E a bounded sequence; we will prove
that this sequence has necessarily a convergent subsequence. To see this,
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(0,f(0))

(0,u )2

f

Figure 4: We cannot have d(u,Hg) = d
(
(0, f(0)), Hg

)
with u = (0, u2) and

u2 < f(0).

note that the corresponding sequence of compact sets Hfn is bounded. So
it has convergent subsequence, which we may denote again by Hfn , in the
Hausdorff metric (since the closed and bounded sets are compact in the space
of compact sets with the Hausdorff metric). Denote by C the limit of that
subsequence. Therefore it is enough to prove that

if
{
Hfn

}
n

is fulfils Hfn → C for some compact set C, then there

exists a USC function f : [0, 1]→ [0,∞), such that C = Hf . (5)

Let us take (x, y) ∈ C and (xn, yn) ∈ Hfn converging to (x, y); note that
there exists at least one such sequence because dH(Hfn , C)→ 0. Now, since
the Hfn are hypographs the vertical segment [(xn, 0), (xn, yn)] joining the
points (xn, 0) and (xn, yn) is included in Hfn . So Hfn → C, implies[(

x, 0
)
,
(
x, lim sup fn(xn)

)]
⊂ C. (6)

Indeed, since Hfn is a hypograph, fn(xn) ≥ yn. Then if we take lim sup we
obtain y ≤ lim sup fn(xn) and

{
(x, z) : 0 ≤ z ≤ lim sup f(xn)

}
⊂ C.

Let us now define f : [0, 1]→ [0,∞) by

f(x) = sup
{xn}:xn→x

lim sup fn(xn).

Since {fn} is bounded, f is well defined as a real-valued function. Let
us prove that C = Hf . Since C is closed, we have, by (6), Hf ⊂ C.
Moreover, if (x, y) ∈ C, taking (xn, yn) → (x, y) with (xn, yn) ∈ Hfn ,
f(x) ≥ lim sup fn(xn) ≥ lim sup yn = y, we obtain (x, y) ∈ Hf .

It remains to prove that f is USC. Suppose by contradiction that there
exists a ∈ [0, 1] such that lim supx→a f(x) > f(a). Then, we can take a
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constant δ > 0 and a sequence xn → a, xn 6= a for all n such that f(xn) >
f(a) + δ for n large enough, say n > n0. By the definition of f , for every
xn we can take a sequence zkn →k xn (dependent on n), such that f(xn) =
limzkn→kxn lim sup fk(z

k
n).

Given ε > 0, for every n > n0 let us take take an increasing sequence
k(n) > n0 with∣∣zk(n)n − xn

∣∣ < 1

n
and

∣∣fk(n)(zk(n)n )− lim sup fk(z
k
n)
∣∣ < ε,

that is,
∣∣fk(n)(zk(n)n )−f(xn)

∣∣ < ε. But as z
k(n)
n →n a this contradicts f(xn) >

f(a) + δ for n > n0.
Completeness follows directly from the fact that the space of compact

sets endowed with the Hausdorff metric is complete, together with (5).
To prove separability, let Pn be the set of all partitions of [0, 1] defined

by 0 = x0 < x1 < · · · < xn−1 < xn = 1 where the xi are rational numbers.
Denote P = ∪nPn. Note that P in numerable.

Given a partition P ∈ Pn and a set q0, . . . , qn−1 of rational numbers, let
us define

fP(x) =


q0 if x ∈ [0, x1)

qi if x ∈ (xi, xi+1) 1 ≤ i ≤ n− 3

qn−1 if x ∈ (xn−1, 1]

max{qi, qi+1} if x = xi 1 ≤ i ≤ n− 2

(7)

It is immediately seen that this function is USC and bounded. Let us see that
the (numerable) set of all functions defined by 7, for all possible partitions
P and rational values qi is dense in E with respect to H. Let f be a non-
negative USC function and take ε > 0. Consider P ∈ Pn a partition of the
form 0 = x0 < x1 < · · · < xn−1 < xn = 1 where xi are rational numbers
and such that maxi=0,...,n−1 |xi+1 − xi| < ε/2. By Proposition 1 there exists
fi = maxx∈[xi,xi+1] f(x). Let us take q0, . . . , qn−1 rational numbers such that
qi > fi and qi − fi < ε/2 for all i. For this partition and this set of rational
numbers let us define fP as in (7). Now we claim that H(fP , f) ≤ ε. Indeed, it
is clear that fP(x) > f(x) for all x ∈ [0, 1] so that Hf ⊂ HfP , and H(fP , f) =
supz∈HfP

d(z,Hf ). Given z = (z1, z2) ∈ HfP , there exists 0 ≤ i0 ≤ n− 1 such

that xi0 ≤ z1 ≤ xi0+1. Now, choose t such that xi0 ≤ t ≤ xi0+1 and fi0 = f(t).
We have z2 < f(t) + ε/2 and then d(z,Hf ) < ε. Since z was an arbitrary
point in HfP we finally get supz∈HfP

d(z,Hf ) ≤ ε.

(b) By Proposition 1 (i) we know that there exists z ∈ [0, 1] such that
f(z) = maxx∈[0,1] f(x). As H(fn, f) → 0 there exist xn = (xn1 , x

n
2 ) ∈ Hfn
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such that xn → (z, f(z)). Then, xn2 ≤ fn(xn1 ) ≤ maxx∈[0,1] fn(x) and, since
xn2 → f(z), we obtain

max
x∈[0,1]

f(x) = f(z) ≤ lim inf
n→+∞

max
x∈[0,1]

fn(x) ≤ lim sup
n→+∞

max
x∈[0,1]

fn(x).

Finally, let us prove that lim supn maxx∈[0,1] fn(x) ≤ maxx∈[0,1] f(x). Denote
z0 = lim supn maxx∈[0,1] fn(x). There exists xn ∈ [0, 1] such that fn(xn)→ z0
with fn(xn) = maxx∈[0,1] fn(x). Taking if necessary a subsequence, we can
assume that xn → x0 ∈ [0, 1]. Since (x0, z0) ∈ Hf we have f(x0) ≥ z0 then
maxx∈[0,1] f(x) ≥ z0.

Proof of Proposition 3.

Proof. This result is just a direct corollary from Th. 2 in Cérou and Guyader
(2006) (recall that the continuity of η(x) is a sufficient condition for (2)),
combined with the fact that the regression function ηQ(x) = P(Y = 1|X = x)
(i.e., the regression function under Q) can be approximated by a continuous
compact supported function; we use here the local compactness of E (see
Folland (1999), Proposition 7.9). Indeed, note that the joint distribution of
(X, Y ) is completely determined by η(x) = P(Y = 1|X = x) and by the
marginal distribution µ of X. Then, given Q, one can construct P by just
approximating ηQ(x) = P(Y = 1|X = x) by a continuous compact-supported
function ηP (x) which, without loss of generality, can be taken 0 ≤ ηP ≤ 1.
Then, the distribution P determined by ηP and the marginal distribution µ
of X is arbitrarily close to Q (just taking ηP close enough to η). Indeed, given
any Borel set C ⊂ E × {0, 1}, consider the sets C0 = {x ∈ E : (x, 0) ∈ C}
and C1 = {x ∈ E : (x, 1) ∈ C}. Then,

Q(C) =

∫
C0

(1− ηQ(x))dµ(x) +

∫
C1

ηQ(x)dµ(x),

and

P (C) =

∫
C0

(1− ηP (x))dµ(x) +

∫
C1

ηP (x)dµ(x),

which can be made arbitrarily close.
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