

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

Intelligent Distributed Computing VIII. Studies in Computational Intelligence,

Volumen 570. Springer, 2015. 201-208

DOI: http://dx.doi.org/10.1007/978-3-319-10422-5 22

Copyright: © 2015 Springer International Publishing Switzerland

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

Online Gamers Classification using K-means

Fernando Palero, Cristian Ramirez-Atencia, David Camacho

Computer Science Department
Universidad Autónoma de Madrid, Spain.

{fernando.palero,cristian.ramirez}@inv.uam.es, david.camacho@uam.es

http://aida.ii.uam.es

Abstract. In order to achieve flow and increase player retention, it is important
that games difficulty matches player skills. Being able to evaluate how people
play a game is a crucial component for detecting gamers strategies in video-
games. One of the main problems in player strategy detection is whether attributes
selected to define strategies correctly detect the actions of the player. In this paper,
we will study a Real Time Strategy (RTS) game. In RTS the participants make
use of units and structures to secure areas of a map and/or destroy the opponents
resources. We will extract real-time information about the players strategies at
several gameplays through a Web Platform. After gathering enough information,
the model will be evaluated in terms of unsupervised learning (concretely, K-
Means). Finally, we will study the similitude between several gameplays where
players use different strategies.

Keywords: Player Strategies, Video Games, Sliding Windows, K-Means, Real
Time Strategy Game

1 Introduction

Nowadays a wide number of Computer Science researchers are focused on the
develop of intelligence Video Games [1]. Several techniques and methods from
areas such as Artificial Intelligence (AI) or Data Mining (DM) have been applied
to analyse the gamers behaviours [5], to generate intelligent enemies [13], or to
imitate the human behaviour [10], among others. Maybe, one of the most known
applications is related to the development of controllers to automatically define
real behaviour of Non-Player Characters (NPC). In this topic, there are several
works focused on really famous games such as Ms. PacMan [6], or Starcraft
[12]. Other works have been focused on automatic validation levels by finding
the different paths that reach the exit [7].
In the literature we find different applications of gamers strategies detection. One
interesting application is to study how the gamers interact with the Super Mario
Bros game [9] to automatically generate game levels which will enhance player
experience. Other researches [15] have proposed a methodology based on feature
selection and preference machine learning for constructing models to increase the
player satisfaction. In this paper, we present a case study related to the validation
of the attributes that model the players strategies based on an RTS game - for this
research a Tower Defence game, which is a subgenre of RTS game, has been used.
This analysis is based on previous works [8] where 4 player strategies, based on
unit position distributions, were detected using visualization techniques.

With the strategies identified, the next step is to study their evolution over time
and then employ some metric to evaluate whether the attributes modelling them
are well defined or not. The metric adopted in this paper to detect these strategies
is the similitude between them. To analyse how the player strategies evolve, it is
necessary to use a method based on data stream mining. Data stream mining [4]
is the process of analysing ordered sequences of data in real-time. A commonly
employed technique is sliding windows technique (Section 3.1). Finally, to study
the similitude between strategies, a clustering technique (K-Means) is applied [2].
The rest of the paper is structured as follows: section 2 presents a platform for
game data extraction and analysis for the RTS Game considered. Section 3 de-
scribes the methodology used in the data analysis. Section 4 presents some ex-
perimental results. Finally, Section 5 shows the conclusions of this research and
future lines of work.

2 Web Platform Architecture

This section presents a platform architecture based on a RTS game (see Figure
1) that has been developed to study gamers strategies. The platform has been de-
signed using four different modules. The Adaptive Horde Module (AHM) is the
responsible for generating a fix number of variable hordes of enemies in each
wave. The Collector Module (CM) allows to automatically extract data from the
game, and to gather the interaction from the users. The Strategy Detection Mod-
ule (SDM) analyses the state of the gameplay at the beginning of a new horde
and returns a suitable counter-strategy. Finally, the Attribute Validation Module
(AVM) analyses and returns the distributions of the gameplays. With these dis-
tributions, visualization techniques (histograms) have been used to determine the
strategies.
AHM receives from SDM the parameters necessary to generate the enemies in the
different hordes that would appear at each wave. Equation 1 applies the received
parameters to generate the quantity of different enemies types in the hordes within
a gameplay. N represents the number of enemies, βT the percentage of enemies
of type T , W is the current wave and α is a growing factor for the enemies gener-
ation. For α = 0, the number of enemies in the horde is constant in each wave. If
α = 1, the amount of enemies grows linearly and, finally, if α = 2 the horde has a
quadratic growth factor.

#EnemiesT = βT NWα (1)

CM extracts data from the RTS game, which in this approach is related to the
Unit Data (UD). UD provides information about the units (in this case towers)
based on their features (i.e. position, the unit type, its strength, etc). All this gath-
ered information is then passed to a database module to be stored, and will be
recovered in other modules to be analysed.
SDM is responsible for carrying out the analysis of the data gathered by CM. It
works based on two basic processes: the first process recovers the units informa-
tion from a data window stored in the database, and the second one calculates
both the distributions of X, Y and the euclidean distances from the units to the
entry point.
Finally, AVM, which works off-line, is responsible for carrying out the valida-
tion of the attributes. In a first phase, the distributions that have been calculated

Fig. 1. Framework Architecture based on the RTS game platform

in SDM are normalized and labelled, and the attributes that help to identify the
strategy are obtained from the unsupervised method K-means (see section 3.2).
These labels will be used to identify the cluster where the instances have been
assigned. Then, in a second phase, the similitude between gameplays strategies
is studied (see section 3.3).

3 Description of the data analysis procedure

Three main techniques have been used to achieve the players strategies analysed.
The first one is based on a sliding-window technique that is used to gather data
and create instances of features. The second one is based on K-means clustering
to group distributions by labels. The last technique studies the similitude between
the distributions. This section describes these methods.

3.1 Sliding-Window Technique

The most popular approach to deal with data stream involves the use of sliding
windows [14]. Sliding-Windows provides a way to divide the data stream into
a set of examples to analyse. The procedure for using sliding windows for data
stream mining is shown in Algorithm 1. The input of the algorithm is the samples
set from the RTS Game. One sample corresponds to one window, and the size
of the window is dynamic and changes according to the life time of the wave.
The life of a wave is defined as the time between the apparition of its first horde
and the disappearance of its last horde. With the size of the windows defined, in

each iteration of the algorithm a new window is analysed and the distribution of
coordinates X, the distribution of coordinates Y and the distribution of euclidean
distances from the units to the exit are returned.

Algorithm 1: This algorithm is an adaptation of [4]
Parameter: S: a data stream of exampleW: window of examples
Result: C: the distribution of the coordinate X, the distribution of the coordinate Y and the

distribution of the euclidean distance from the units to the exit from the window
W

1 Initialize windowW
2 forall the example xi ∈ S do
3 W←W∪{xi}

4 build C usingW
5 end

3.2 K-Means Clustering

K-means algorithm is used to partition the input data set into k partitions. How-
ever, K-Means algorithm has two problems. The first one, in contrast to other
algorithms, is that K-Means cannot be used with arbitrary distance functions or
on non-numerical data. And the second one, K-Means algorithm cannot guaran-
tee finding the best space partition. To solve the first problem we use the euclidean
distance and transform all dataset to numerical data. For the second, we execute
the algorithm using always the same ’k’ several times (see Algorithm 2) and then
we choose the best result returned. For this selection, we use two metrics: intra-
cluster distance and inter-cluster distance. Intra-cluster [11] distance measures
(equation 2) the average of the distances between the points and its respective
cluster centroids. In the equation 2 we can see the intra-cluster metre, where N
is the number of instances of data extracted from the game, K is the number of
clusters, and zi is the centroid of cluster Ci.

intra(x,zi) =
1
N

K∑
i=1

∑
x∈Ci

‖x− zi‖
2 (2)

inter(zi,z j) = min‖zi − z j‖
2; i = 1,2, ...,K −1; j = i + 1, ...,K; (3)

Inter-cluster distance (equation 3) measures the distance between cluster centres.
To choose the result that makes a good partition of the data space, it is necessary
to minimize the intra-cluster distance and maximize the inter-cluster [3] distance
measure. The aim is to minimize the validity measure (equation 4).

validity(x,zi,z j) =
intra(x,zi)
inter(zi,z j)

(4)

3.3 Distribution Similitude

The differentW that compose the strategies are labelled by groups with K-Means
to study the similitude between distributions. Equation 5 represents the similitude

Algorithm 2: Algorithm to choose the best K-Means partitioning
Parameter:W: window of examples
Result: C: data labelled in the windowW

1 Initialize windowW
2 k=4
3 vecValidity← []
4 for j = 1 to 10 do
5 labels← KMeans(k,W)
6 validity←CalculateValidity(labels,W)
7 vecValidity(i)← validity
8 end
9 vecK(k)← min(vecValidity)

between two distributions D1 and D2. In this equation, wi represents the wave
number, and D1(wi) and D2(wi) indicate the group of the distribution in wi. The
similitude is calculated dividing the number of the label coincidences from the
distributions (D1(wi) and D2(wi)) between the number of waves.

S imilitude(D1,D2) =
#{iε{1 . . .#Waves}|D1(wi) = D2(wi)}

#Waves
(5)

4 Experimental Results

We have studied the similitude between the strategies detected in the previous
work [8] (Zigzag, Horizontal, Grouped and Vertical distributions). In this new
approach, we are interested in calculating the similitude between strategies. For
this purpose, we have previously analysed and labelled the gameplays dataset
according to the strategies identified. With this experiment we determine if the
features selected to distinguish the strategies are adequate.

4.1 Distributions Similitude Comparison

Sliding-window technique has been used to extract the ten wave distribution of a
gameplay. The distributions are grouped by labels that are assigned by K-Means
algorithm. We choose a k = 4 for K-Means that corresponds to the number of
strategies found in the previous work. Finally, we use these labelled groups to
study the similitude between strategies distributions, using equation 5 for this
purpose. With these groups we have obtained a table of similitude (table 1).
In table 1, it is appreciated that similitude between different gampeplays using
Zigzag distribution is low. The same happens with Grouped distributions. This
means that these kind of strategies are difficult to identify. Moreover, different
distributions could be included inside this strategy, so it is necessary to take more
samples. On the other hand, the similitude between gameplays using Horizontal
or Vertical distributions is high. This implies that these strategies are well identi-
fied by the employed attributes (units positions distributions).
Looking at the similitude between different strategies, we observe that Zigzag
distributions can be confused with other distributions, as the similitude values

Game ID 1 2 3 4 5 6 7 8 9 10 11 12

Distribution Z Z Z G G G H H H V V V

1 Z 1 0,6 0,1 0,1 0 0,5 0,6 0,5 0,5 0,5 0,5 0,5
2 Z 0,6 1 0 0,2 0 0,4 0,4 0,4 0,4 0,4 0,4 0,4
3 Z 0,1 0 1 0,1 0,1 0,1 0 0 0,1 0 0 0,1
4 G 0,1 0,2 0,1 1 0,7 0,3 0,2 0,2 0,3 0,1 0,1 0,3
5 G 0 0 0,1 0,7 1 0,1 0 0 0,1 0 0 0,1
6 G 0,5 0,4 0,1 0,3 0,1 1 0,9 0,9 1 0,8 0,8 1
7 H 0,6 0,4 0 0,2 0 0,9 1 0,9 0,9 0,8 0,8 0,9
8 H 0,5 0,4 0 0,2 0 0,9 0,9 1 0,9 0,8 0,8 0,9
9 H 0,5 0,4 0,1 0,3 0,1 1 0,9 0,9 1 0,8 0,8 1
10 V 0,5 0,4 0 0,1 0 0,8 0,8 0,8 0,8 1 1 0,8
11 V 0,5 0,4 0 0,1 0 0,8 0,8 0,8 0,8 1 1 0,8
12 V 0,5 0,4 0,1 0,3 0,1 1 0,9 0,9 1 0,8 0,8 1

Table 1. Similitude between distributions, where Z is the Zigzag distribution, G is the Grouped
distribution, H is the Horizontal distribution and V is the Vertical distribution.

between two gameplays using Zigzag distributions are similar to those using a
Zigzag distribution and other type of distribution. This confirms the aforemen-
tioned inclusion of strategies inside Zigzag distributions. For Grouped distribu-
tions, the same problem appears.
Finally, comparing the similitude of gameplays using Horizontal and Vertical dis-
tributions, we can appreciate that these similitude values are high in all cases.This
happens because the metric that we use to generate the features does not consider
the orientation of the distribution. We can observe that Vertical distribution is the
inverse of Horizontal distribution. In Vertical distribution, we can see that the unit
distribution along the axis X is one bin. However, in Horizontal distribution, we
have this behaviour in the Y axis.
In conclusion, we find that the attributes based on the units positions distributions
is not very effective to identify player strategies. We only can distinguish between
linear (Horizontal or Vertical) distribution or not linear. It is necessary to use more
attributes that help to improve this model.

5 Conclusions & Future Work

This work provides an evaluation of the attributes used to identify strategies in
gameplays. To achieve this purpose, a framework based on an RTS platform has
been designed, and the strategies detected in a previous work based on the units
positions distributions have been employed. The experiment carried out tries to
determine if the attributes selected to identify the players strategies are suffi-
ciently descriptive. For this purpose, we have used K-means to group strategies.
Latter these groups have been used to calculate the similitude between gameplays.
From the similitude study, we have concluded that the attributes employed to
detect players strategies have low performance. We have found that the actual
attributes identifies linear distributions (Horizontal or Vertical), but they are not
good at discriminating not linear distributions (Grouped or Zigzag), due to it is
necessary to use more attributes.
In future works, it will be necessary to use more features to perform a better clas-
sification and study more unsupervised techniques, such as spectral clustering, to

determine which do a best data partitioning. Moreover, we could apply Online
Learning, so the attributes are updated every time new data is gathered.

References

1. Alayed, H., Frangoudes, F., Neuman, C.: Behavioral-based cheating detec-
tion in online first person shooters using machine learning techniques. In:
Computational Intelligence in Games (CIG), 2013 IEEE Conference on. pp.
1–8. IEEE (2013)

2. Alsabti, K., Ranka, S., Singh, V.: An efficient k-means clustering algorithm.
Association for the Advancement of Artificial Intelligence (1997)

3. Bello-Orgaz, G., Menendez, H., Camacho, D.: Adaptive k-means algorithm
for overlapped graph clustering. International Journal of Neural Systems
22(05), 1–19 (2012)

4. Brzezinski, D.: Mining Data Streams with Concept Drift. Master’s thesis,
Poznan University of Technology (2010)

5. Dey, R., Child, C.: QL-BT: Enhancing behaviour tree design and implemen-
tation with Q-learning. In: Computational Intelligence in Games (CIG), 2013
IEEE Conference on. pp. 1–8. IEEE (2013)

6. Gagne, D.J., Congdon, C.B.: Fright: A flexible rule-based intelligent ghost
team for Ms. Pac-Man. In: Computational Intelligence and Games (CIG),
2012 IEEE Conference on. pp. 273–280. IEEE (2012)

7. Gonzalez-Pardo, A., Palero, F., Camacho, D.: An empirical study on collec-
tive intelligence algorithms for vide games problem-solving. Computing and
Informatics In press (2014)

8. Palero, F., Gonzalez-Pardo, A., Camacho, D.: Simple Gamer Interaction
Analysis through Tower Defence Games (2014), submited

9. Pedersen, C., Togelius, J., Yannakakis, G.N.: Modeling player experience in
Super Mario Bros. In: Computational Intelligence and Games, 2009. CIG
2009. IEEE Symposium on. pp. 132–139. IEEE (2009)

10. Polceanu, M.: MirrorBot: Using human-inspired mirroring behavior to pass
a Turing test. In: Computational Intelligence in Games (CIG), 2013 IEEE
Conference on. pp. 1–8. IEEE (2013)

11. Ray, S., Turi, R.H.: Determination of number of clusters in k-means clus-
tering and application in colour image segmentation. In: Proceedings of the
4th international conference on advances in pattern recognition and digital
techniques. pp. 137–143 (1999)

12. Synnaeve, G., Bessiere, P.: A Bayesian model for RTS units control applied
to StarCraft. In: Computational Intelligence and Games (CIG), 2011 IEEE
Conference on. pp. 190–196. IEEE (2011)

13. Traish, J.M., Tulip, J.R.: Towards adaptive online RTS AI with NEAT. In:
Computational Intelligence and Games (CIG), 2012 IEEE Conference on.
pp. 430–437. IEEE (2012)

14. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams
using ensemble classifiers. In: Proceedings of the Ninth ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining. pp. 226–
235. KDD ’03, ACM, New York, NY, USA (2003)

15. Yannakakis, G.N., Hallam, J.: Feature selection for capturing the experience
of fun. In Proceedings of the Artificial Intelligence and Interactive Digital
Entertainment 7, 37–42 (2007)

