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Beyond universality: Parametrizing ultracold complex-mediated reactions
using statistical assumptions
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We have calculated accurate quantum reactive and elastic cross sections for the prototypical barrierless reaction
D+ + H2(v = 0, j = 0) using a modified hyperspherical scattering method. The considered kinetic energy ranges
from the ultracold to the Langevin regimes. A reaction rate coefficient practically constant in no less than eight
orders of magnitude is obtained. The availability of accurate results for this system allows one to test the quantum
theory by Jachymski et al. [K. Jachymski, M. Krych, P. S. Julienne, and Z. Idziaszek, Phys. Rev. Lett. 110,
213202 (2013)] in a nonuniversal case. The short-range reaction probability is rationalized using statistical
model assumptions and related to a statistical factor. This provides a means to estimate one of the parameters
that characterizes ultracold processes from first principles.
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The increasing availability of cold and ultracold samples
of atoms and molecules has sprung great interest in chemical
reactions at very low temperatures [1–5]. Although new ex-
perimental approaches [5] appear highly promising, advances
in the field are hampered by technical problems in producing
most molecules at low temperatures and high enough densities.
In contrast to neutral species, ions can be easily trapped
and cooled. The technology of Coulomb crystals in radio-
frequency ion traps [6] and the possibility of combining them
with traps for neutrals or with slow molecular beams [7,8]
promise great progress in the analysis of ion-neutral reactions
in the near future.

Theoretical simulations employing standard ab initio ap-
proaches are not feasible for most of the systems thus far
considered. For heavy systems (more convenient experimen-
tally) there are no potential energy surfaces (PESs) accurate
enough to describe processes near thresholds. Additionally,
most of exact dynamical treatments face insurmountable
problems in such regimes. However, in contrast to short-range
(SR) chemical interactions, those occurring at long range
(LR) can be more easily calculated. Moreover, theoretical
approaches based only on the knowledge of the LR part
of the PES have been able to describe recent experimental
findings nearly quantitatively [1,9]. Indeed, processes at very
low collision energies favor LR interactions, leading to the
idea of universality in extreme cases [10]: the result of the
collision depends exclusively on the LR behavior and not
on the details of the PES. In this regard, recently proposed
LR parametrization procedures [9,11–13] are very appealing.
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Fitting experimental data, these models are able to predict
nonmeasured values providing some insight into the under-
lying interactions. In particular, the approach by Jachymski
et al., based on multichannel quantum-defect theory (MQDT),
provides analytical expressions which can be easily compared
with experimental data [9,14,15]. The model has been recently
applied to a variety of systems [9,16,17]. In particular, for the
Penning ionization of Ar by He(3S) [5], the rate coefficients
have been fitted in a wide range of collision energies using only
two parameters [9]. However, the parameters of the model are
phenomenological and they had not been determined before
from first principles.

In this work, we present accurate calculations for the reac-
tive collision D+ + H2(v = 0, j = 0) using the hyperspherical
reactive scattering method [18]. We consider collision energies
that range from the ultracold regime, where only one partial
wave is open, to the Langevin regime where many of them
contribute. These calculations allow us to test the model
by Jachymsky et al. [9,14] by comparison with accurate
theoretical results in a realistic atom + diatom system,
providing a way to estimate one of the parameters using simple
statistical model assumptions, which do not require performing
any quantum reactive scattering calculation.

The H+ + H2 system is the prototype of ion-molecule
reactions, which are usually nearly barrierless and exhibit large
cross sections due to their LR, ∝ − Cn/R

n, n = 4, potentials.
At energies below ≈1.7 eV, the proton exchange is the only
reactive channel, and the process can be described on the
ground adiabatic PES [19–22]. Since the PES is characterized
by a deep well or complex (≈4.5 eV), as illustrated in
Fig. 1, rigorous statistical models [23,24] have been applied
to this reaction and isotopic variants in the low and thermal
energy regimes [20,24–27] in good agreement with accurate
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FIG. 1. (Color online) Sketch of the intrinsic reaction path and
the rovibrational states involved in the reaction at the studied energies.
A(E) and B(E) are the number of incoming and outgoing channels,
respectively (1 and 3 for J = 0).

calculations. Specifically, the D+ + H2 → H+ + HD reaction
features a small exoergicity (difference of zero-point energies).
Experiments to determine state-specific rate coefficients at
energies as low as 12 K [28] have been carried out, and lower
temperatures are expected to be feasible soon [29].

The deep ultracold regime, governed by Wigner laws [30],
is described in terms of the scattering length. The latter largely
varies with slight changes of the interaction potential. Due
to inaccuracies in the state-of-the-art electronic calculations,
only for very particular atom + atom systems [31–33] has
it been possible to reproduce the experimental scattering
length theoretically. As atom + diatom systems are even more
complicated, it is difficult to assess the accuracy of calculations
for ultracold energies. In the spirit of the work by Gribakin
et al. [34], we can consider our study as an effort to determine
a “characteristic” scattering length. Besides, assuming that the
interaction of the system is reasonably described by the current
PES, we can use our results to test recent methodologies, like
the approach in Refs. [9,14].

In the (ultra)cold regime both accurate descriptions of
the LR interactions and dynamical propagations up to very
large distances are two strict requirements. The PES by
Velilla et al. [35], which includes the LR interactions in the
functional form, satisfies the first requirement. The dominant
contributions involve the charge quadrupole, ∝ − R−3, and
the charge-induced dipole, ∝−R−4, interactions. However,
only the latter contributes to collisions in j = 0.1 The
second requirement is fully satisfied by the hyperspherical
quantum reactive scattering method developed by Launay
et al. [18,36], recently modified to allow the inclusion of LR
interactions [37,38]. These modifications are used here for the
first time allowing the propagations up to 105–106 a.u. which
are required for a n = 4 potential.

The reaction cross section, σr(E), in the 10−7–150 K energy
range is plotted in Fig. 2 and compared with the Langevin

1The integral 〈j = 0|P2|j = 0〉, where P2(cos θ ) is the second order
Legendre polynomial, is null, and the contributions from ∼R−3 and
anisotropic polarization terms vanish [35].
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FIG. 2. (Color online) Calculated reaction and elastic total cross
section for the collision D+ + H2 (v = 0, j = 0) compared with the
Langevin prediction. The inset shows the comparison of the reaction
cross sections with the experimental data [28] and the result of the
statistically corrected Langevin model.

model (LM) expression for the cross section, σL(E) =
2π (C4/E)1/2. The LM is commonly used to rationalize
collisions in the regime where many partial waves are open. We
have determined the value C4 = 2.71 a.u. using the effective
potential as a function of R which results from averaging
the PES V (R,r,θ ) over r and θ Jacobi coordinates, with the
(v = 0, j = 0) probability distribution. The LM implies here
that once the centrifugal barrier is overcome, the system is
captured in the complex which subsequently decomposes into
the H+ + HD arrangement channel with unit probability. The
LM regime can be associated with the high energy part of the
plot (above 1 K, with five partial waves opened). The calculated
cross sections are found smaller than the LM prediction in
this energy range. Indeed, only a fraction of the complexes
decompose into the products.

We can improve the LM using statistical model arguments,
which are being revisited in the field of cold collisions [39,40].
In complex mediated reactions, the statistical ansatz [23,24],
P J

r (E) ≈ P J
capt(E) × P→prod(E), can be applied, where P J

r (E)
is the reaction probability for a given initial rovibrational state
and total angular momentum, J (orbital, l, plus rotational,
j ), P J

capt(E) is the probability for the reagents to be captured
in the complex, and P→prod(E) is the statistical factor, i.e.,
the probability of emerging into the product arrangement
channel when the complex decomposes. If there is a complete
randomization of the energy in the complex, the statistical
factor will be independent of the initial state of the reagents,
only subject to conservation of energy, J , and parity. Roughly
speaking, the fraction of complexes which decompose into
the reactants or products is proportional to the respective
number of scattering channels energetically available, denoted
with A(E) and B(E), respectively, considering all of them
as equiprobable. Accordingly, the statistical factor can be
approximated by P→prod(E) = B(E)/[A(E) + B(E)]. At the
considered energies, only three HD rovibrational states are
open, as shown in Fig. 1, and for J � 2 we find that A(E) = 1
and B(E) = 6, and P→prod = 6/7(≈86%). For J = 0 and
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FIG. 3. (Color online) Reaction and elastic partial cross sections at the indicated J (= l) values for the D+ + H2 (v = 0, j = 0) collision
in the cold and ultracold regimes.

J = 1 the statistical factors are 3/4 (75%) and 5/6 (≈83%),
respectively. If the collision energy is high enough for many
partial waves to contribute but low enough for the total number
of channels to stay the same, P→prod(E) ≈ 6/7, and

σr(E) ≈ P→prod σL(E). (1)

Therefore, 6/7 appears naturally as a statistical factor to correct
the LM expression. When the number of product channels is
large enough, B � A, then P→prod ≈ 1 and the result is σL(E).
More accurate statistical implementations, which evaluate
A(E) and B(E) as capture probabilities [23,24], lead to similar
conclusions.

The inset of Fig. 2 compares the calculated reaction
cross section with the experimental data from Ref. [28].
The corrected LM result is also shown and found to be
in very good agreement with both the experiment and the
present calculations. The similarity of the theoretical results
with the experiment is remarkable considering that the latter
was performed with n-H2 [21] and lends credence to the
predictive power of QM calculations on state-of-the-art PESs
for atom + diatom systems ab initio in the Langevin regime.

The cross sections at much lower kinetic energies are
also shown in Fig. 2. In the zero-energy limit, Wigner
threshold laws [30,41] state that the elastic and the total-loss
(inelastic + reaction) cross sections associated with each
partial wave, l, vary ∼E2l and ∼El−1/2, respectively. However,
for a potential with n = 4, the threshold law for elastic
scattering becomes ∼E for any l > 0 [30,41,42]. The ultracold
cross sections, shown in Fig. 3 for the four lowest partial
waves, comply with these laws (there are no open inelastic
channels). The limiting behaviors for l = 0 are reflected in
the total reaction (∼E−1/2) and total elastic (constant) cross
sections in the lowest energy region of Fig. 2, where only the
s wave is open.

For n = 4 the energy dependence of the LM coincides with
the Wigner threshold law (∼E−1/2). Remarkably, the absolute
values of accurate and LM cross sections in the ultracold limit
are nearly the same, σr ≈ 1.07σL(E). Therefore, the reaction
rate coefficient (not shown) is practically constant in no less
than eight orders of magnitude, and small variations can be

further smoothed out with the Boltzmann averaging. In what
follows, we will try to rationalize this classical Langevin
behavior in the ultracold regime.

Very recently, quantal versions of the LM have been
proposed [14,43] under the assumption that all the flux that
reaches the SR region leads to reaction. In the n = 4 case, these
universal models conclude that the zero-energy limit of σr is
given by 2σL(E), and not by σL(E) as we have approximately
obtained. Therefore our system is not universal. The formalism
in Ref. [9] is able to deal with systems where the short-range
reaction probability, P re, is <1. It provides expressions for
the complex (energy-dependent) scattering length ãl(k) =
αl(k) − iβl(k) in terms of the MQDT functions (where k is
the relative wave number). This allows us to parametrize
ãl(k) using two real parameters, y and s, together with
the mean scattering length [34], ā = (2μC4)1/2/� (≈99.7 a0

in this case). Specifically, the dimensionless parameter 0 �
y � 1 characterizes the flux that is lost from the incoming
channel at SR, according to P re = 4y/(1 + y)2. The Langevin
assumption or universal case corresponds to y = 1. The
dimensionless scattering length s = tan(φ) is related to an
entrance channel phase φ [9,14,42].

In terms of these parameters, the small k behavior of the
real and imaginary parts of the complex scattering length for
the lowest partial waves (l = 0–3) is given by2

α0(k) → ā
s(1 − y2)

1 + s2y2
, β0(k) → y(1 + s2) ā

1 + s2y2
, (2)

α1(k) → −kā2 π

15
, β1(k) → y(1 + s2) k2ā3

9(s2 + y2)
, (3)

α2(k) → −kā2 π

105
, β2(k) → y(1 + s2) k4ā5

2025(1 + s2y2)
, (4)

α3(k) → −kā2 π

315
, β3(k) → y(1 + s2) k6ā7

2 480 625(s2 + y2)
. (5)

2Equations (2) and (3) were kindly provided by the authors of
Ref. [9]; Eqs. (4) and (5) were deduced by the authors of this work
following Refs. [9,42].
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FIG. 4. (Color online) Real and imaginary parts of the scattering
length, ãl(k) = αl(k) − iβl(k), obtained in the calculations for the
four lowest partial waves. The absolute value of α, mostly negative,
is plotted. The values for J = 1, 2, and 3 (in continuous lines) are
compared with the predictions from the model in Ref. [9] (in dashed
lines), calculated using Eqs. (3)–(5), assuming for s and y the same
values that have been obtained for J = 0.

Our calculations yield the S matrix as a function of the
energy for each total angular momentum J and hence l (for
j = 0), which allows us to calculate directly ãl(k) using the
elastic element of the S matrix [44].

Figure 4 depicts the energy dependence of α and β for
J = 0–3. The limiting behaviors are in perfect agreement with
the threshold laws and the power of the dependence on k in
Eqs. (2)–(5).

To extract the model parameters s and y from the scattering
results, let us consider first the case l = 0. Using the values
α0 and β0 at the lowest energy given by our calculations
and solving Eqs. (2) for y and s, we obtain y(l = 0) = 0.35
and s(l = 0) = −0.82, which leads to P re(l = 0) = 77%. The
parametrization for higher values of l is not straightforward.
The real part, αl(k), is independent on s(l) and y(l), and with
the sole expression of βl(k) it is not possible to solve for the
values of the two parameters.

Analogous to the procedure of Ref. [9], assuming that y

and s do not depend on l, we can introduce y(l = 0) and
s(l = 0) in Eqs. (3)–(5) and compare the resulting values of βl

with those obtained in the scattering calculations. The ratios of
the calculated and parametrized values of βl are 0.4, 1.4, and
0.7 for l = 1, l = 2, and l = 3, respectively. The agreement
can be considered good on average, taken into account the
oscillations of this ratio about 1. As for the real parts αl ,
given by Eqs. (3)–(5), they can be directly compared with our

scattering results. The agreement (within 1%) is very good,
which can be deemed as a test of the theory and serves to
ensure the convergence of the scattering calculations. These
expressions depend only on ā (not on s or y) and they can be
considered as really universal.

According to Ref. [9], when the dependence of P re with the
energy and l is weak, the expression

σr(E) ≈ P reσL(E) (6)

is valid in the Langevin regime, P re being the same value which
governs the ultracold behavior. The fact that σr(E)/σL(E) has
an average value of 0.78 in the range 1–150 K, very close to
the P re(l = 0) = 0.77 obtained at ultracold energies, indicates
a weak dependence of P re with l and energy and hence
the validity of the assumption of constant parameters made
above.

Therefore, Eq. (1), obtained from the statistical hypothesis,
and Eq. (6), from Ref. [9], are both valid in the Langevin
regime. This leads to the equivalence of the fraction of captured
flux that reacts, P re, and the fraction of formed complexes
which decompose to give the products, P→prod, and thus a
way to estimate the P re. In fact, 6/7 (≈86%) is a rough
estimate of P re = 77%, and only requires counting states. A
more accurate estimate can be obtained using the ab initio
QM values of σr(E) in the Langevin region to calculate
σr(E)/σL(E). This second way to estimate P re does not require
the system to behave statistically and is more general. Finally,
the fact that our calculations are expected to be quantitative
in the Langevin regime leads to an interesting conclusion: we
have found a way to estimate P re, and through it y, one of
the parameters which characterize the experimental ultracold
behavior, while working at much higher energies where
state-of-the-art ab initio reaction dynamics is quantitative and
require less demanding QM calculations.

In summary, accurate scattering calculations have allowed
us to test the quantum theory by Jachymsky et al. [9,14,15].
On average, the same P re describes the ultracold and the
Langevin regimes. We have found a link between P re and the
statistical factor of the statistical approach to reactions [23].
Apart from physical insight, our analysis provides ways to
estimate the parameter y, which characterizes the experimental
ultracold behavior, using ab initio reaction dynamics at much
higher energies, where such methodology is assumed to be
quantitative.

The authors are greatly indebted to K. Jachymski, A.
Simoni, and T. González-Lezana for fruitful discussions.
Spanish MINECO (Grants CSD2009-00038 and CTQ2012-
37404-C02) are gratefully acknowledged.
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Phys. 127, 174109 (2007).
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