
Universidad Autónoma de Madrid
Escuela Politécnica Superior

Departamento de Ingenieŕıa Informática

Feature selection with
Random Forest

and
Gradient Boosting

Master’s thesis presented to apply for the

Master’s degree of Investigation and Innovation in Information and
Communications Technology

By

Álvaro Alonso Liso

under the direction of

José R. Dorronsoro Ibero

Madrid, September 30, 2016

ii

Contents

Contents ii

1 Introduction 1
1.1 Motivation . 1
1.2 Some example problems . 1
1.3 The formal problem . 2
1.4 The state of the art . 3
1.5 Focus of the present work . 3
1.6 Distribution of the work . 4

2 Theory 5
2.1 Supervised Learning . 5

2.1.1 Bias Variance Tradeoff . 5
2.2 Linear Models . 6

2.2.1 Penalty methods . 7
2.3 Trees . 8

2.3.1 Building regression Trees . 9
2.3.2 Stopping learning and pruning . 10
2.3.3 Error estimation and cost . 10
2.3.4 CART Trees . 11
2.3.5 Building a Tree with Scikit . 13

2.4 Bootstrap aggregating (bagging) . 16
2.4.1 Random Forest . 17

2.4.1.1 Bias and Variance . 17
2.4.1.2 Proximity . 18
2.4.1.3 Regularization . 18
2.4.1.4 Cost . 19
2.4.1.5 Building a random forest with Scikit 19

2.5 Boosting methods (boosting) . 20
2.5.1 Gradient Boosting . 20

2.5.1.1 Gradient Boosting problem . 21
2.5.1.2 Gradient descent algorithm . 21
2.5.1.3 Loss functions . 22
2.5.1.4 Regularization . 22
2.5.1.5 Cost . 23
2.5.1.6 Building a gradient boosting regressor with Scikit 23

3 Feature reduction 27
3.1 Dimensionality reduction . 27

3.1.1 PCA . 27
3.1.2 PCA and SVD . 28
3.1.3 Dimensionality reduction . 28

3.2 Feature selection . 29
3.2.1 Formal problem . 29
3.2.2 Filter methods . 31

3.2.2.1 Univariate . 31
3.2.2.2 Multivariate . 31

3.2.3 Wrapper methods . 32

iii

iv Contents

3.2.3.1 Best Subset Selection . 32
3.2.3.2 Forward and Backward Stepwise Selection 33
3.2.3.3 Forward-Stagewise Regression . 33

3.2.4 Embedded methods . 33
3.2.4.1 Feature selection with Linear methods 33
3.2.4.2 Feature selection with Trees . 34

3.2.4.2.1 Feature selection with Scikit 36
3.2.4.3 Feature selection with Random Forest 38

3.2.4.3.1 Alternative definition . 39
3.2.4.3.2 Feature selection with Scikit 39

3.2.4.4 Feature selection with Gradient Boosting 40
3.2.4.4.1 Alternative definition . 40
3.2.4.4.2 Feature selection with Scikit 41

3.2.4.5 Pruning variables with Trees . 42
3.2.4.5.1 Recursive Feature Elimination (RFE) 42
3.2.4.5.2 Boruta . 43
3.2.4.5.3 Subset RFE (SRFE) . 44
3.2.4.5.4 Comparative . 45

4 Experiments 47
4.1 Parameters and methodology . 48
4.2 Bike Sharing problem . 49

4.2.1 Distribution of feature relevance . 50
4.2.2 Pruning the dataset using feature relevance . 51
4.2.3 Searching . 52

4.3 Wind Energy Prediction problem . 54
4.3.1 Distribution of feature relevance . 54
4.3.2 Pruning the dataset with FR . 55
4.3.3 Pruning . 57
4.3.4 Grid Search After Pruning . 63

4.4 Conclusions and further work . 68

Appendix A Code 71
A.1 Code for experiments . 71
A.2 Scikit . 71

A.2.1 Trees common interface . 72
A.2.2 DTR, RFR and GBR interfaces . 72

Appendix B Additional results 73
B.1 Quality of Tree feature relevance as a tool to prune . 73
B.2 Extended grid . 73

B.2.1 BS problem . 74
B.2.2 Sotavento . 75

B.3 Randomness . 76
B.3.1 Stability of the solution . 76

List of Figures

2.1.1 Tradeoff between bias and variance, from [1] . 6
2.3.1 Partition of space, Tree and Tree surface, from [1] . 8
2.3.4 Different Trees . 12
2.4.1 Random Forest bias, variance and mse evolution, from [1] 18

3.2.1 Subset selection error for different methods, taken from [1] 32

4.2.1 BS: DTR, RFR and GBR FR distribution . 51
4.2.2 BS: Pruning with FR . 52
4.3.1 Sotavento: DTR, RFR and GBR (top-down) coefficient distribution 55
4.3.2 Sotavento: DTR, Pruning dataset with FR. Time, train, test and val errors 56
4.3.3 Sotavento: RFR, Pruning dataset with FR. Time, train, test and val errors 56
4.3.4 Sotavento: GBR, Pruning dataset with FR. Time, train, test and val errors 56

A.2.1 Accelerating Random Forests in Scikit slides, from G Louppe 71

B.2.1 BS, grid, egrid, DTR, RFR and GBR FR distribution . 74
B.2.2 BS: DTR, RFR and GBR, distribution of feature relevance for both grids. 75
B.2.3 Sot, grid, egrid, DTR, RFR and GBR FR distribution . 76
B.3.1 Distribution of metric1 (left) and metric2 (right) for permutations of 5 items. 77

v

vi List of Figures

List of Tables

2.4.1 Cost for RFR . 19
2.5.1 Cost for GBR . 23

4.1.1 BS: Grid of parameters for BS problem . 48
4.1.2 Extended grid of parameters for BS problem . 48
4.2.1 BS: Optimal parameters (grid) . 50
4.2.2 BS: Time(s) needed with a pruned dataset to compute the grid 53
4.2.3 BS: Time(s) needed with a pruned dataset to compute the egrid 53
4.3.1 Sotavento: Optimal parameters for Sotavento problem in the grid (random state is 0) 54
4.3.2 Sot, RFE, RFR, λ = 0.5, error pruning the dataset (%) . 59
4.3.3 Sot, RFE, GBR, λ = 0.5, error pruning the dataset (%) . 59
4.3.4 Sot, RFE, RFR, λ = 0.8, error pruning the dataset (%) . 59
4.3.5 Sot, RFE, GBR, λ = 0.8, error pruning the dataset (%) . 59
4.3.6 Sot, RFE, RFR, λ = 0.5, summary error pruning the dataset (%) 60
4.3.7 Sot, RFE, GBR, λ = 0.5, summary error pruning the dataset (%) 60
4.3.8 Sot, RFE, RFR, λ = 0.8, summary error pruning the dataset (%) 60
4.3.9 Sot, RFE, GBR, λ = 0.8, summary error pruning the dataset (%) 60
4.3.10 Sot, SRFE, RFR, λ = 0.5, error pruning the dataset (%) . 61
4.3.11 Sot, SRFE, GBR, λ = 0.5, error pruning the dataset (%) . 61
4.3.12 Sot, SRFE, RFR, λ = 0.8, error pruning the dataset (%) . 61
4.3.13 Sot, SRFE, GBR, λ = 0.8, error pruning the dataset (%) . 61
4.3.14 Sot, SRFE, RFR, λ = 0.5, summary error pruning the dataset (%) 61
4.3.15 Sot, SRFE, GBR, λ = 0.5, summary error pruning the dataset (%) 61
4.3.16 Sot, SRFE, RFR, λ = 0.8 (%), summary error pruning the dataset 61
4.3.17 Sot, SRFE, GBR, λ = 0.8, summary error pruning the dataset (%) 61
4.3.18 Sot, Boruta, RFR, 100 iter, error pruning the dataset (%) 62
4.3.19 Sot, Boruta, GBR, 100 iter, error pruning the dataset (%) 62
4.3.20 Sot, RFR, error using the grid, egrid (%) . 63
4.3.21 Sot, GBR, error using the grid, egrid (%) . 63
4.3.22 Sot, RFE, RFR, λ = 0.5, search in grid with pruned dataset (%) 64
4.3.23 Sot, RFE, GBR, λ = 0.5, search in grid with pruned dataset (%) 64
4.3.24 Sot, RFE, RFR, λ = 0.8, search in grid with pruned dataset (%) 64
4.3.25 Sot, RFE, GBR, λ = 0.8, search in grid with pruned dataset (%) 64
4.3.26 Sot, SRFE, RFR, λ = 0.5, c = 54, search in grid with pruned dataset (%) 64
4.3.27 Sot, SRFE, GBR, λ = 0.5, c = 54, search in grid with pruned dataset (%) 64
4.3.28 Sot, SRFE, RFR, λ = 0.8, c = 54, search in grid with pruned dataset (%) 64
4.3.29 Sot, SRFE, GBR, λ = 0.8, c = 54, search in grid with pruned dataset (%) 64
4.3.30 Sot, Boruta, RFR, 100 iter, search in grid with pruned dataset (%) 65
4.3.31 Sot, Boruta, GBR, 100 iter, search in grid with pruned dataset (%) 65
4.3.32 Sot, RFE, RFR, λ = 0.8, number of parameter set which improve the grid 66
4.3.33 Sot, RFE, GBR, λ = 0.8, number of parameter set which improve the grid 66
4.3.34 Sot, SRFE, RFR, λ = 0.8, number of parameter set which improve the grid 66
4.3.35 Sot, SRFE, GBR, λ = 0.8, number of parameter set which improve the grid 66
4.3.36 Sot, Boruta, RFR, 20 iter, number of parameter set which improve the grid 66
4.3.37 Sot, Boruta, GBR, 20 iter, number of parameter set which improve the grid 66
4.3.38 Sot, RFE, RFR, λ = 0.8, mean and std for the 32 sets of parameters 67
4.3.39 Sot, RFE, GBR, λ = 0.8, mean and std for the 32 sets of parameters 67
4.3.40 Sot, SRFE, RFR, λ = 0.8, mean and std for the 32 sets of parameters 67

vii

viii List of Tables

4.3.41 Sot, SRFE, GBR, λ = 0.8, mean and std for the 32 sets of parameters 67
4.3.42 Sot, Boruta, RFR, 20 iter, mean and std for the 32 sets of parameters 67
4.3.43 Sot, Boruta, GBR, 20 iter, mean and std for the 32 sets of parameters 67

B.1.1 Sot, RFR, Test error pruning the dataset with optimal parameter. 73
B.1.2 Sot, GBR, Test error pruning the dataset with optimal parameter. 73
B.2.1 BS: time(s) for the grid and the extended grid. 75
B.3.1 BS: Metric description. 77
B.3.2 BS: Stability of the rankings. 100 repetitions. 77

Abstract

The objective of the present work is to analyze the problem which arose naturally working
with datasets with a large number of features, which usually forces the data analyst to select
a small subset of all the available features to obtain acceptable training times and reduce
overfitting. The present work studies the usefulness of the feature importance coefficients
given by Trees, Random Forest and Gradient Boosting regressors applied to a problem of
wind energy production.

Acknowledgements

The author is kindly supported by the Catedra IIC Modelado y Prediccion grant under
the supervision of José R. Dorronsoro Ibero.

Chapter 1

Introduction

1.1 Motivation

Nowadays, a vast amount of raw data is produced and stored daily. With the intention
of gaining a deeper understanding of the world, the complex task of analyzing the data
can be partially automated. But even with modern technologies, finding patterns and
extracting knowledge from the raw data can be extremely difficult because of the nature
of the collected and stored material.

It is usual to deal with a large number of samples, each one described with a big
number of features, many of them useless in the process of creation of useful information.
To simplify the extraction, we consider some samples and some variables as redundant.

Once we have accepted the assumption that some data is not relevant, we obtain some
benefits:

• Simplification of models.

• Smaller training times.

• Better generalization.

1.2 Some example problems

A common problem is text classification, such as determining whether a mail is spam or
whether a document is written by a certain person. Usually, documents are interpreted as
a set of words and represented as an array containing the frequency of each word (usually
with certain normalization). Dealing with a range of 2, 000 to 20, 000 words is a common
situation.

For example, although the second Edition of the 20 volumes Oxford English Dictionary
has 171,476 words and a more modern version near 300,000 words (including obsolete
ones), Shakespeare used only 28,829 different words, and 12,493 appeared only once. The
100 most frequently used terms represent the 53.9% of the words.

With this in mind, we have a clear understanding of the reason for simplifying our
initial representation of a text, selecting only a good subset of words. The main problem
is defining what good means. For example, we can be almost sure that the top 100 words
by frequency are completely useless to determine if a text is part of a Shakespeare’s play.
But creating a good model for selecting only a small amount of words is not an easy task.

Hence, we are interested in a procedure to automate the selection of only a small
fraction of the terms.

1

http://www.oxforddictionaries.com/words/how-many-words-are-there-in-the-english-language
http://www.opensourceshakespeare.org/stats/

2 Chapter 1. Introduction

Other common problems are related with modern science. New fields like DNA anal-
ysis have attracted researchers’ interest thanks to the new technology available. In gene
selection, the variables studied represent mRNA in a sample (e.g. tissue biopsy from a
patient). A usual problem is to classify patients as healthy or not, based on the samples.
However, usually only a small amount of samples are available (< 1, 000) because of the
high cost of the analysis, whereas the number of variables extends from 6,000 to 60,000.

More problems appear in modern situations, from fields like medical sciences, city
organization and energy production. The problems we are going to analyze are related
with these two last points. Our first problem will be related with organizing a Bike
Sharing system in a big city (BS problem) , trying to predict the number of bikes rented
using atmospheric variables and dates. The number of variables used is small and quite
easy to interpret, so the problem is useful to understand how feature selection works. Our
second problem is Wind Energy Prediction using atmospheric data (WEP problem). We
work with extensive maps with atmospheric data, like wind speed and temperature, where
probably only a small portion of the data has utility in the process of creating knowledge.

1.3 The formal problem

Each sample from our dataset is described as a vector of features. The size of the dataset
has two dimensions, the number of instances or samples (N , rows) and the number of
features or variables (P , columns). One of the simplest options to reduce our problem is
to remove randomly samples and features. But if the number of samples, N , is reduced
without care, we just remove raw data, which can be dangerous for our learning task
because of the loss of information about a fraction of the space. Removing randomly a
fraction of the total features, P , is not usually a good idea when we deal with a large
number of features because of the lack of interpretability of our random prune.

As we mentioned above, the hypothesis which allows the simplification is the presence
of redundant data. We have to point that we have two clear sources of non relevant data.
One origin is the lack of any type of relation between an attribute and the variable to
predict (e.g.: including the ISBN number, an international number to identify a book, to
predict the price of the book). Other source is the correlation or functional relation of a
set of variables, which adds repeated information (e.g. including the price of a vehicle in
different currencies with a fixed exchange rate to predict the renting price of the car).

To face the problem of a big P , different techniques have appeared during the last
decades. Feature Selection (FS), one of them, selects a subset of features, ranking the
subset with a value of utility. If the number of columns, P , is reduced the data space is
simplified and probably also our model. If we select with care the features to remove, we
can obtain almost no loss, as we will observe in our experiments.

Another option to simplify the problem is using dimensionality reduction methods, as
Principal Component Analysis, (PCA), or Singular Value Decomposition, (SVD), which
extract a combination of features which contain useful information.

Feature selection and dimensionality reduction are completely different. Although both
strategies reduce the number of attributes, a dimensionality reduction method does so by
generating new variables different to the original ones, whereas a feature selection method
removes some variables, but it does not mutate the ones preserved. On the present work,
we will focus on feature selection models.

Feature selection ranks the different variables or sets of variables with the intention
of removing a fraction of them. If the method focuses on variables, one of the simplest
strategies is classifying the features as just useful or not depending on certain parameters

https://www.kaggle.com/c/bike-sharing-demand

1.4. The state of the art 3

(binary ranking). Other is a complete ranking of the features (creating a total order
relationship among them). Using this last focus, we can execute a deep analysis of the
evolution of error when we prune the dataset.

Methods like Random Forest (RF) and Gradient Boosting (GB) generate a ranking of
relevance for the variables, while regressors like Lasso generate a natural binary selection.
Initially, we can think that a complete ranking is a better result than just a binary selection.
However a complete ranking is not always a good option. For example, we can have two
variables highly correlated among them and with the variable to predict which will be
ranked as the best options with a naive filter method. With this configuration, taking
both variables will give us a good result, but just one is a simpler option. Hence, we
should analyze more factors, like the interaction among variables, the evolution of the
error estimation or a complexity limit for our model.

Once we have a better idea of the problem in our hands, we can state the goal of feature
selection:

The study of subsets of features and the measure of its utility for a regression (or
classification) problem.

1.4 The state of the art

Depending on the number of variables involved in the process of selecting a good subset
and the way they are used, we can classify the methods in three groups:

• Filter methods: Select individual variables, usually with a naive strategy and
independently of a predictor. Some examples are filtering using a minimum variance
threshold value or the correlation with the prediction variable.

• Wrapper Methods: Select subsets of variables. Hence, they account for the
interaction among features. They use an external model to rank the subsets. An
example is stepwise regression with a Linear regressor.

• Embedded Methods: Mix both previous models. The algorithms themselves
build a variable importance ranking. Some of the most popular options are Trees
and ensemble methods like RF and GB.

There are many software packages which have been found quite useful to work with
feature selection analysis, but we can point specially three of them:

• Weka: In Java, developed by University of Waikato. GNU GPL license.

• Scikit-Learn: In Python, by INRIA, Google and others. BSD license.

• R packages: Language with good community of developers, core by R Development
Core Team. GNU GPL license.

We will use Python and Scikit-Learn (from now on Scikit or Sklearn).

1.5 Focus of the present work

The focus of the present work is to analyze the problem of big dimensionality with feature
selection using RF and GB feature relevance, comparing the results with other techniques
and comparing different strategies to find a good subset of features. The project has a
mainly practical orientation motivated by the necessity arose previously in a problem of

http://www.cs.waikato.ac.nz/ml/weka/
http://scikit-learn.org/
http://www.r-project.org/

4 Chapter 1. Introduction

wind energy prediction. Hence we will work with a wind energy dataset, later described.
Our goals are:

• Obtain a good understanding of Trees, RF, GB and their utility.

• Obtain a clear understanding about feature importance with Trees, RF and GB.

• Analyze the distribution and stability of feature relevance for the dataset and its
utility.

• Analyze the feature selection simplification in the search of optimal parameters.

• Analyze the evolution of the error pruning the dataset.

• Find a good strategy for pruning automatically the dataset features.

1.6 Distribution of the work

This first chapter has pretended to be a brief summary of the problem faced in the
following ones, including a statement of the problem, some examples, a formal description
and the focus of the present work.

The second chapter contains some basic regression theory using Linear Meth-
ods, Trees, Random Forest and Gradient Boosting. It does not pretend to be a
complete revision of all the relevant points related to these techniques, but just a resume
of basic theory and useful points which are necessary for understanding feature selection
with them. Besides, it illustrates the theory with a clear explanation of the details of
implementing each method with a modern package like Scikit.

The third chapter presents a basic introduction to dimensionality reduction meth-
ods, basically PCA, and a detailed one for feature selection for the predictors explained
in chapter two. From a practical point of view, we review different techniques from the
three previous approaches to feature selection described above and we focus on the clas-
sical approximation with Linear Methods, Trees, Random Forest and Gradient Boosting,
illustrating the techniques with the Scikit implementation as we did in the theory chapter.

The fourth chapter contains a description of the datasets, the experiments
and the results. We introduce the datasets for both the previous stated problems and we
obtain some results for the goals described above. We initially face the simple BS problem
to exemplify the procedure and compare the obtained results with what we expect. It
will be also useful to illustrate some topics about feature relevance, Trees and its ensemble
methods. Later we confront the WEP problem answering similar questions.

The final chapter is the Appendix, which contains practical and useful information,
like the interfaces of the Scikit classes used, the repository where the code can be found
and other details.

Chapter 2

Theory

The theoretical structure of this chapter follows partially the structure used in [1] to present
the topics. Although the chapter covers basic theory well established, some references have
been found useful. For Trees, reference [3], for Random Forest, references [2], [15], [4], and
for Gradient Boosting, references [10], [11] and [9].

The chapter uses also code from Scikit repository to illustrate the process of building
the different data models.

2.1 Supervised Learning

The problem of supervised learning can be stated in a simple and concise way:

Given a matrix X, make a good prediction (Ŷ) of a vector Y.

The typical problem consists of a dataset of raw data and an explanation of our goal.
With just these ingredients, we have to obtain a good model for prediction.

The selection of our model will be based on the nature of the problem, the assumptions
we make about the data and the results we obtain with a test (or validation) dataset.
To compare our models, we normally split our dataset in a training and a testing dataset
(sometimes the division is given with the problem), although other options, like for example
cross validation, can be applied if we do not have many samples.

2.1.1 Bias Variance Tradeoff

One of the main problems after fitting a model is the evaluation of the model. Normally,
we should use a strategy to avoid overfitting. As stated above, from a practical point of
view, we can use a train dataset to fit our model and a test or validation dataset to check
the quality of our model and avoid a strong fit to the train dataset.

From a theoretical point of view, we can describe how a complex model can produce
overfitting easily. For simplicity, we suppose we have a functional relation, Y = f(X) + ε,
being ε an error with E(ε) = 0 and V ar(ε) = σ2. Then, the prediction error at x can be
expressed for f̂k, an approximation to f , as:

EPEk(x) = E[(Y − f̂k(x))2|X = x] = σ2 + [Bias2(f̂k(x)) + V ar(f̂k(x))]

Biasf (f̂) = E[f̂]− f, V arf (f̂) = E[(f̂ − E[f̂])2]

From the three elements in this expression, the first is a constant whereas the second
and third, which sum the Mean Squared Error (MSE), depend on our model.

5

6 Chapter 2. Theory

Figure 2.1.1: Tradeoff between bias and variance, from [1]

As a general result, when the complexity of the model grows the plain error (bias)
decreases but the noise (variance) increases. The figure 2.1.1 represents this problem. For
example, Trees are prone to overfitting if we do not control their depth.

2.2 Linear Models

With a linear model we predict a variable Y using a vector X = (1, X1, . . . , XP), using a
model

Ŷ = β0 +

P∑
j=1

Xjβj

The variables Xj used can be original variables from the dataset, but we can also
build new variables using a basis expansion of the original variables(X̄1 = X2

1), adding
interaction between variables (X̄2 = X1X2) or another transformation of the variables
(X̄2 = log(max(X2, 1))). So we assume that the model is just linear on the parameters βj .

The simplest and most common strategy to compute the coefficients is the method of
Ordinary Least Squares, (OLS), which selects the coefficients β which minimize the sum
of squares of the differences.

RSS(β) =
N∑
j=0

(yj − xjβj)2

If we have nowX1, . . . , XN training data vectors and we build a matrix X, of dimensions
N x (P + 1) 1 , and a vector to predict Y, of size N x 1, we can write

RSS(β) = (Y −Xβ)T (Y −Xβ)

with unique solution, if XTX is invertible,

β̂ = (XTX)−1XTY

1We add a 1 in the first position for each Xj

2.2. Linear Models 7

We can consider our estimated Ŷ as the orthogonal projection of Y onto the space
generated by the columns of X, Col(X), because our problem, β̂ = arg minβ ||Y−Xβ||2 =

||Y − Ŷ||2, finds the best linear combination of a component of Y, Xβ̂, in Col(X).
If XTX does not have an inverse, OLS coefficients are not unique.

2.2.1 Penalty methods

Sometimes we are also interested on biasing the solution of a Linear Model towards some
other solutions, like preferring small coefficients. One easy way to change the behaviour is
adding a constraints or a penalty on the size of the coefficients of the model.

PRSS(β;α) = RSS(β) + αJ(β)

J(β) shapes the behaviour of the estimator and for α = 0 no penalty is imposed (normal
OLS). Usual elections for J(β) are Lp like norms: Jp(β) =

∑
|β|p. For p = 1 we obtain

Lasso whereas for p = 2 we obtain Ridge regression.
Ridge regression is a type of penalty method. It uses L2 penalty. The problem to

solve is

β̂ = argminβ

N∑
i=1

(yi − β0 −
P∑
j=1

xijβj)
2 + δ

P∑
j=1

β2j

which is an equivalent problem to β̂ = argminβ
∑N

i=1(yi − β0 −
∑P

j=1 xijβj)
2 subject to∑P

j=1 β
2
j ≤ t.

The method depends on the scale so we need to standardize the original dataset. In
matrix form, after centering the columns (on zero), we have:

RSS(δ) = (Y −Xβ)T (Y −Xβ) + δβTβ

⇒ β = (XTX + δI)−1XTY

If we have orthonormal inputs, ridge coefficients are shrunk OLS coefficients: βrdg =
βols

1+δ . Hence Ridge just reduces the size of the coefficient, but it does not remove variables.
Lasso regression is similar to Ridge, but the penalty is L1. The problem to solve is

β̂ = argminβ

N∑
i=1

(yi − β0 −
P∑
j=1

xijβj)
2 + δ

P∑
j=1

|βj |

which is equivalent to β̂ = argminβ
∑N

i=1(yi− β0−
∑P

j=1 xijβj)
2 subject to

∑P
j=1 |βj | ≤ t.

When t is bigger than the sum of OLS coefficients, t0 =
∑
|βolsj |, then the Lasso behaves

as the normal OLS. For the opposite situation, Lasso reduces the coefficients or sets them
to zero. For example, for t = t0

2 the OLS coefficients are shrunk by about 50% more or
less or are set to zero.

The principal difference between Lasso and Ridge is that in the former increasing the
penalty will move a bigger number of the parameters to zero whereas in the latter all
parameters are reduced but are still non zero. This is an advantage of Lasso as setting
parameters to zero removes features. Hence we can consider that Lasso does a natural
binary feature selection.

8 Chapter 2. Theory

2.3 Trees

Trees partition the space of the data, R, into a set of boxes and a set of constant as a
predicted value in each region. The most common strategy to build a Tree is a greedy
recursive binary partitioning approach.

We initially split the space into two disjoint subsets, using a variable and a threshold
value to get the best split 2. Later this same strategy is used with the resulting subsets
until some finishing rule can be applied. At the end of this process we get a partition of the
initial space, R, into a collection of sets R1, R2, . . . , Rh. The model uses a constant cm in
region Rm as predicted value, which is usually computed as the average value (regression)
or the most common label (classification) from all the training samples which belong to
this region. The formal model can be written as a sum with an indicator function for each
region:

f(X) =

h∑
m=1

cmI[X ∈ Rm]

Figures 2.3.1 show an example of a partition.

Figure 2.3.1: Partition of space, Tree and Tree surface, from [1]

In general terms, Trees are quite common as learning strategy and present some ad-
vantages with respect to other models like Linear Models or SVM, such as

• Easy to understand, interpret and visualize.

• They work with categorical and numerical data.

• Great model and not many assumptions.

However they face several drawbacks as

• Overfitting.

• Lack of stability (solved with ensembles).

• It can produce some bias (depending on the building criteria).

2Now, the hard point is defining best.

2.3. Trees 9

2.3.1 Building regression Trees

Algorithms for Trees work most of the times with a greedy top down approach. At each
step, they choose a variable and threshold that best split the data. The meaning of best
depends on the algorithm, but a measure of homogeneity inside each new subset is used.

There are several functions to select the best partition. Some typical are:

• ID3 (or C45): Uses entropy and information gain. We will describe it briefly later.

• CART: Uses square error (regression) or Gini coefficient (classification). This
method is the one we are going to describe and use in deeper detail.

• CHAID (Chi-squared Automatic Interaction Detector): Uses statistical tests
and multilevel branching.

• Conditional Inference Trees: Uses non parametric tests for the splitting thresh-
old.

Perhaps the most common strategy to build a decision Tree is CART. It is the one
we are using on the experiments. The algorithm decides the splitting variables and points.
For regression it uses as criteria the usual minimization of squares metric, whereas for
classification the most common option is the Gini impurity measure. For regression, in
each region, Rm, the predicted value, cm, is just the average of the values yi in the region
while for classification cm is the most common class.

CART obeys the following strategy. Initially, we consider all the data, a splitting
attribute j and split point s. With these, we define the partition

R1(j, s) = {X|Xj < s}, R2(j, s) = {X|Xj > s}
Then we search the values which solve

minj,s[minc1
∑

xi∈R1(j,s)

(yi − c1)2 +minc2
∑

xi∈R2(j,s)

(yi − c2)2]

The cost for determining the best tuple (j, s) can be reasonable, although high because it
requires a complete computation for all the features and possible splitting points belonging
to a grid. Usually the problem is simplified and the unique splitting points considered are
middle points between two consecutive values in the training set. After finding the best
split, we partition the dataset distributing the samples and we continue with the process
until some stopping criterion can be applied. We will analyze with detail CART and its
properties in the following sections.

Other common algorithm is ID3 (Iterative Dichotomizer 3), by Ross Quinlan, or the
improved version C4.5/C5.0. Initially, ID3 starts with the whole dataset S at the root node.
For each variable, it computes the entropy H(S) and selects the attribute and split point
which divides this dataset minimizing the new entropies for each subset (or maximizes the
information gain, IG(A,S)). The procedure is repeated with each descendant node and
every free attribute (non used in an ancestor node). The regression implementation of the
Tree is usually binary and the algorithm considers each possible split of the form xj < tj ,
where as with CART the values tj are normally the points between two consecutive values
from the training dataset. For classification, the Tree usually selects among all the options
of each feature at each node.

Entropy and information gain are defined as:

H(S) =
∑
x∈C

p(x)log2p(x)

10 Chapter 2. Theory

IG(A,S) = H(S)−
∑
t∈T

p(t)H(t)

with S the dataset, C all the classes of S, p(x) the fraction of elements of class x, T the
collection of sets after the split, p(t) the proportion in each subset t of T , and H(t) the
entropy of t.

C4.5 algorithm improves ID3 adding certain features such as, for example, working
natively with continuous variables, missing values or allowing assigning a cost value to
each sample. C4.5 allows also the option of simplifying the obtained predictor pruning the
Tree. C5.0 improves C4.5 reducing the size and complexity of the Trees without hurting
the performance, adding a misclassification costs or adding new strategies for dealing with
dates/times/timestamps.

2.3.2 Stopping learning and pruning

Until now we have been talking about building a Tree assuming as a natural finalizing
criteria achieving a node with just one element (a leaf) or with several elements with the
same value.

However, this strategy will generate a Tree adapted to the training set which will not
generalize well with new elements. On the other hand, a simple Tree like a stump will not
have power enough to deal with complex problems.

To stop the growth of a Tree we must define and adjust the parameters governing the
growth with certain intuition. There are several criteria to stop the growth of Trees, being
usual options maximum depth or minimum number of items per leaf or decision node.
We have also other approaches less common and related to the reduction of the error, as
splitting Tree nodes only if the decrease in error or impurity is above some threshold. In
the Appendix, we attach information about the parameters used in the Tree construction
process with Scikit.

Another way of controlling the size or complexity of the predictor is simplifying it after
the building process. Once a Tree is built, we can be interested in removing some branches
or converting some internal nodes into leaves (including all the nodes assigned to each child
into the new leaf).

In general terms, we can consider two strategies for pruning. With a top down ap-
proach, we remove complete branches collapsing an internal node, which is not the parent
of at least one leaf, into a leaf. With a bottom up strategy, we consider each parent of a
leaf and we compute the increase of error due to the collapse of the node, removing the
option which less error. In a similar way to the growth process, we should fix a criterion
to stop the pruning process.

2.3.3 Error estimation and cost

The process of building a Tree is based on an iterative process of reducing an error function
at each step. Hence, one of the most natural decisions to obtain an error measure is
using the error function of the building process as the estimation. Then, to compute the
error, we can use the estimated error of the building process. However, this usually leads
to an optimistic estimation.

To avoid this, we can split the original dataset into a training and test datasets and
use the test set to estimate, with the same error function or a different one, the predictor
error. For example, for a regression problem we can query each element of the test dataset
and compute the mean value error (sum of absolute differences) or the mean squared error
(sum of squared differences).

2.3. Trees 11

However, for small datasets this can mean a great loss of useful information. One
easy option is using cross validation to obtain a good estimation of the predictor error.
Other option, available if we are going to train several Trees, which is the core of ensemble
methods, is using the out of bag (oob) error.

If we use bootstrapping, oob error can be computed for a sample zi = (xi, yi) building
an ensemble predictor by including only those Trees built with training datasets which
did not include zi. oob error gives us a good estimation of the true error of the learned
estimator, allowing us to use all the data for training the ensemble predictor and oob error
to estimate the optimal parameters.

One of the most important issues related with a data structure, like a Tree, is the cost
of building and querying the model (and perhaps updating). Estimating these values is
difficult, because they will depend on many parameters related with the form of the Tree.
However, we can estimate some values making certain assumptions.

If we assume the binary Tree is balanced (or approximately balanced) the time
cost of querying a value will be O(log2(N)), because for N total samples we will need
only log2(N), at worst, decision nodes to identify an element.

The time cost of building a Tree will depend on the method and stopping criteria.
For a full CART Tree we are minimizing the squared error of partitioning the data in each
feature and in each possible partition (in total O(PN log2(N)) in each node 3. And we
are doing this at most the number of decision nodes in a Tree, which is O(N). Hence
the total cost will be O(PN2 log2(N)). With certain optimization, as sorting initially the
values for each feature and removing not necessary computation, the cost can be reduced
to O(PN log2(N)) 4.

With respect to implementation and memory cost, we cannot obtain general solutions
as they will depend completely on the details of the implementation. For querying, we
just need to hold a reference to the node of the Tree we are using to compare with our
element. For building, with a struct and pointer implementation we will need O(N) times
the memory cost of each struct and (probably) continuous calls to the system for a new
node. With an array implementation and intelligent memory prefetch (strategy used in
Scikit), we can build a Tree in the same array just with references for the children. We
will see some details about a good implementation with Scikit below.

2.3.4 CART Trees

Until this moment we have been talking about CART Trees as if they were ghosts, because
we have not seen any of them. With certain criteria, we should ask ourselves how a CART
Tree is. We are going to use our BS problem to show same examples about Trees built with
CART strategy. We are using Graphviz for each representation. We use the parameters
defined as optimal in the BS problem (details given in the chapter for experiments) and
we employ the whole dataset for training.

The figures (2.3.2a), (2.3.2b), (2.3.2c), (2.3.2d) represent a Tree built with (maximum)
depth 1, 2, 3 and 4 respectively. Each box of the Tree represents a node. Both internal
nodes and leaves contain as fields the measure of error used to build the Tree (mse) and
the number of samples contained.

Non terminal nodes, internal, contain also the split criteria used (the number of samples
refers to the number contained in each of the derived leaves) whereas terminal nodes, leaves,

3For each feature, we will need O(N log2(N)) to order the list of N values . As we have P features, we
will need O(PN log2(N)) for a complete search on each feature and each sample item.

4Scikit documentation includes a good summary of the main details for Trees.

http://bigocheatsheet.com/
http://scikit-learn.org/stable/modules/tree.html

12 Chapter 2. Theory

(a) Tree of depth 1

(b) Tree of depth 2

(c) Tree of depth 3

(d) Tree of depth 4

(a) Different roots

(a) Different roots

Figure 2.3.4: Different Trees

2.3. Trees 13

contain also the estimated value for the node (the number of samples refers to the number
of samples of the training set).

The first thing we observe is that Trees are complete when the depth is the stopping
criterion, so our estimations about cost are precise. In general terms, for problems with a
large number of items the parameter depth is usually the stopping criterion. We should
also restrict the value if we obtain a quite large Tree (overfitting).

The second thing we observe is the randomness. As we observe, the splitting criteria
is different for each Tree. Although it is also clear that some features appear with more
frequency and with higher positions in the Tree, we cannot assure which one will be taken.
The figures (2.3.3a) and (2.3.4a) show us than even the root node can be different. In
general terms, the process of building a Tree involves two different sources of randomness.
The first one is the nature of the training set because sometimes we just use a random
subset of all the dataset to train and the remaining part for testing purposes (or we use
bootstrap in a bagging method). The second source is the number of features to consider
when searching for the best split at each node (as in Random Forest). We can avoid both
sources using always the same dataset for training and all the features when computing
a splitting node. Another option is allowing random options, but using and documenting
the seed of the random generator. We have used this second option. However despite
Decision Trees Regressors suffers from certain lack of stability as estimators, Random
Forest Regressors and Gradient Boosting Regressors are robust and the results obtained
will be stable.

2.3.5 Building a Tree with Scikit

Scikit code can be quite useful to illustrate the process of building a Tree. Unluckily, the
recent code from the repository includes some extra complexities as the use of Cython to
achieve a good performance in real environments, making a bit more difficult to follow the
logical process of building a Tree. However previous versions of the Tree building process
(commit (a4d4bb6) and previous) are much simpler. The following code, taken from the
public repository of Scikit and corresponding to an early commit (a4d4bb6) for the class
Tree, shows us the simplicity of the process.

The Tree building process is quite simple. DecisionTreeRegressor is derived from
BaseDecisionTree. When DecisionTreeRegressor, the public class, is called, it initializes
some variables and calls BaseDecisionTree to do the same. BaseDecisionTree has a fit
method which builds a Tree instantiating a Tree class which contains the core build func-
tion. Only the Tree class, which we attach partially, is necessary to understand the process
of building a Tree.

We explain step to step the process of building a Tree. Some parts of the code have
been striped for the sake of brevity.

1 class Tree(object):

""" Struct -of-arrays representation of a binary decision tree.

3
The binary tree is represented as a number of parallel arrays.

5 The i-th element of each array holds information about the

node i.

7 ----------

node_count : Number of nodes (internal nodes + leaves) in the tree.

9 children :

children[i, 0] holds the node id of the left child of node i.

11 children[i, 1] holds the node id of the right child of node i.

For leaves children[i, 0] == children[i, 1] == Tree.LEAF == -1.

13 feature : The feature to split on (only internal nodes).

threshold : The threshold of each node (only for internal nodes).

15 value : Contains the constant prediction value of each node.

http://github.com/scikit-learn/scikit-learn

14 Chapter 2. Theory

best_error : The error of the (best) split.

17 For leaves init_error == best_error.

init_error : The initial error of the node (before splitting).

19 For leaves init_error == best_error.

n_samples : The number of samples at each node.

21 """

def _add_split_node (...):

23 """ Add a splitting node to the tree. The new node registers itself as

the child of its parent. """

25
def _add_leaf (...):

27 """ Add a leaf to the tree. The new node registers itself as the

child of its parent. """

29
def build (...):

31 # Recursive algorithm

def recursive_partition (...):

As stated in the docstring, the binary Tree is represented as a number of parallel arrays
in which the rest of the methods operate (previous versions used a simpler structure with
Leaf, Node and Tree classes, but the code was ported to arrays for performance reasons and
this version is easy to understand and gives good details about a practical implementation).
The main function is build, which has a function recursive partition nested. build method
calls recursive partition with the root node of the Tree.

The code for recursive partition is also easy to understand:

1 def recursive_partition (...):

Split samples

3 if depth < max_depth and n_node_samples >= min_samples_split

and n_node_samples >= 2 * min_samples_leaf:

5 feature , threshold , best_error , init_error = find_split (...)

else:

7 feature = -1

init_error = _tree._error_at_leaf (...)

9 value = criterion.init_value ()

Current node is leaf

11 if feature == -1:

self._add_leaf (...)

13
Current node is internal node (= split node)

15 else:

Split and and recurse

17 split = X[:, feature] <= threshold

19 node_id = self._add_split_node (...)

21 # left child recursion

recursive_partition (...)

23
right child recursion

25 recursive_partition (...)

The initial steps are determining if the node is going to be a leaf or an internal node.
Later for the former situation creates a leaf and for the latter splits the data using the
threshold and applies recursive partition to each of the new partitions.

For performance reasons, the function which computes the split, find split, is imple-
mented in Cython. The code is not so easy to follow because it is a low level language
(mix of C and Python) and uses heavily C pointers. We attach a simplified version of the
Cython code.

1 def _find_best_split (...):

""" Find the best dimension and threshold that minimises the error."""

3 # break early if the node is pure

...

5 # Features to consider: all or just a fraction?

...

2.3. Trees 15

7
best_error = initial_error

9
Look for the best split

11 for feature_idx from 0 <= feature_idx < max_features:

Get i-th col of X (X_i) and X_sorted (X_argsorted_i)

13 ...

15 # Consider splits between two consecutive samples

while True:

17 # Better split than the best so far?

...

19
Only consider splits that respect min_leaf

21 ...

23 error = criterion.eval()

if error < best_error:

25 # Threshold is the middle point

t = X_i[X_argsorted_i[a]] + \

27 ((X_i[X_argsorted_i[b]] - X_i[X_argsorted_i[a]]) / 2.0)

best_i = i

29 best_t = t

best_error = error

31 ...

33 # Proceed to the next interval

...

35
return best_i , best_t , best_error , initial_error

In general terms, the find best split implementation of the function find split makes an
exhaustive search through all the possible splits (first through each feature and later for
each possible value of each feature) to get the best one. Possible values for each feature
are the middle point between two consecutive item values. We should note the existence of
another find split function, find best random split, which adds certain randomness to the
computation of the best threshold value. Code can be consulted in the _tree.pyx file of
the repository.

The last point to observe is the estimation of the error of a split, criterion function, and
the values of both initial error and best error. The following MSE Cython class, derived
from RegressionCriterion, computes the impurity value of a split.

cdef class MSE(RegressionCriterion):

2 """ Mean squared error impurity criterion.

4 MSE = var_left + var_right

"""

6 cdef double eval(self):

...

8 for k from 0 <= k < n_outputs:

total += var_left[k]

10 total += var_right[k]

12 return total / n_outputs

As we observe, the function just adds the MSE of the target points at each side of the
split point. The docstring of the class RegressionCriterion gives us a clearer information
about the process, giving us the expression for the left and right variance, which is what
we expected.

cdef class RegressionCriterion(Criterion):

2 """ Abstract criterion for regression. Computes variance of the

target values left and right of the split point.

4
Computation is linear in ‘n_samples ‘ by using

6

16 Chapter 2. Theory

var = \sum_i^n (y_i - y_bar) ** 2

8 = (\ sum_i^n y_i ** 2) - n_samples y_bar ** 2

"""

The description included above contains all the details for understanding a real and
practical implementation of Tree construction. Modern implementation of Scikit is similar,
but most of the code has been ported to Cython.

2.4 Bootstrap aggregating (bagging)

Bootstrap aggregating, also abbreviated bagging, is an ensemble strategy to improve the
stability and precision of other learning algorithms decreasing both variance and over-
fitting 5.

Bagging uses base estimators to build another estimator, inheriting some properties
from the base estimators and improving some weakness from them. The methodology uses
some randomness, like bootstrap or random split points, to build different estimators and
reduce the dependence among them. Different bagging methods use different strategies to
compute the new predictors.

For example, Random Forest uses bootstrapping and selects a random subset of avail-
able features at each splitting point for searching the best option. We will describe the
method deeper later. We have also other techniques less common like perfect Random
Forest 6 , which selects randomly the variable and splitting point, or TWIX 7 , which
builds an ensemble predictor not creating completely new Trees, but copying the current
Tree at each splitting node and using each reasonable option. Reference [4] contains a good
summary of bagging and more references for the mentioned methods.

In general terms, each base estimator of a bagging predictor adds a value. For a
classification problem, the bagging estimator returns the class with the majority of the
votes. For regression, it returns an average value.

So, why does it work?. Modern human societies are complex social structures in
which people have social and economic interactions. Our homo economicus soul drives
our lives towards attempts to maximize our utility and our profit, usually confronting
other humans. As a consequence, political economics is at the heart of any modern society,
pretending to substitute the primitive war for resources for a new war of words for resources.
During the last pair of centuries, we have seen then end of absolutism and enlightened
despotism, being democracy crowned as the new state of the art technology in human
organization. In parallel, the world has growth and improves as never before. Why?

Democracy is a type of human bagging. If we assume that a group of independent
people has to decide between two options, only one of them is correct and that each voter
has a probability greater than 0.5 of taking the correct decision, the aggregate result will
converge to 1 as the number of independent voters is increased 8 9. In general terms,
Condorcet’s theorem applies to Bernoulli random variables. Then, for example, if we have
a classification problem and we have a dataset with n samples, once we have fixed the Tree
parameters (so we have a success rate of p > 0.5 for each Tree), Condorcet’s theorem gives

5Bagging was presented in 1994 by Breiman to improve the prediction accuracy by aggregating simple
estimators.

6Perfect Random Forest by Cutler et al.
7Trees WIth eXtra splits (TWIX) by Potapov et al.
8Condorcet’s jury theorem.
9Quite strong assumption in many cases. A more real approach is the one described by Arrow’s impos-

sibility theorem being not so optimistic.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.232.2940&rep=rep1&type=pdf
http://www.theusrus.de/Talks/Talks/TWIX.pdf
https://en.wikipedia.org/wiki/Condorcet%27s_jury_theorem
https://en.wikipedia.org/wiki/Arrow%27s_impossibility_theorem
https://en.wikipedia.org/wiki/Arrow%27s_impossibility_theorem

2.4. Bootstrap aggregating (bagging) 17

us the probability of a correct decision by majority, P (n, p), for p ≈ 1
2 and p > 1

2 :

P (n, p) =
1

2
+ a(n)(p− 1

2
) +O

(
(p− 1

2
)3
)
≈ 1

2
+ k
√
n(p− 1

2
)

where a(n) = k
√
n+O(1

n3/2).
To estimate the error we can use any metric of error from the base estimators. We

just need to aggregate the error generated by each one. In our situation, we will use Trees
as predictors and we will aggregate them with equal weight (Random Forest). As we have
mentioned above, out of bag error is a quite useful technique to obtain an estimation of
the error allowing us to use the whole training set for the ensemble method.

2.4.1 Random Forest

Random Forest is a bagging estimator built with Trees as base estimators. It builds and
averages a large collection of non strongly correlated Trees. In general, bagging works
well for high variance and low bias base methods as Trees, so Random Forest has good
properties and performance. For a regression problem, we fit many regression Trees to a
(perhaps bootstrap versions of) the train data and average the result.

Then, for regression, we use the usual predictor 10

frf (x) =
1

M

M∑
k=1

T (x; θk)

For classification, Random Forest chooses the class with the majority of the votes.
Despite a Random Forest has many parameters to tune, it can be used with good results

with a default or common sense selection of parameters. This simple use makes Random
Forests a great tool, allowing to obtain decent estimation with an easy to interpret and
understand methodology.

2.4.1.1 Bias and Variance

If we fix a distribution for generating the bootstrapped training set and the random selec-
tion of features at each internal node, each Tree is i.d. (identically distributed), and then
the expectation of a Random Forest is the one of any Tree. The figure 2.4.1 shows the
variance, bias and mse evolution for a typical forest, as the number of estimators growth.

Formally, Random forests cannot overfit the data. However we should avoid using a
large number of estimators, as it increases the computational and memory cost.

Trees have high variance, so a bagging strategy greatly improves the performance.
From a formal point of view, an average of M i.i.d. (independent and identically dis-
tributed) Trees, with individual variance σ2, has variance 1

M σ
2. However, the Trees for

Random Forest are built only identically distributed but with correlation, ρ, so the variance
of Random Forest is 11

ρσ2 +
1− ρ
M

σ2

From a practical point of view, when we train many Trees (M increases) only the first
term survives. Hence, the variance depends on the pairwise correlation, ρ. Random forest
decreases the variance reducing the correlation using two strategies:

10T (x; θk) is a Tree predictor with parameters θk = ∪Jkj {(R
k
j , δ

k
j)} , i.e {Rkj }

Jk
1 is partition of the space

and we have constants {δkj }
Jk
1 as predicted value given by the Tree in the region.

11From [1], section 15.2.

18 Chapter 2. Theory

Figure 2.4.1: Random Forest bias, variance and mse evolution, from [1]

• First, Random Forest does random selection of the picked variables at each internal
node of the Tree during the building process. It selects m ≤ P variables randomly
as options for splitting. Typical values for m are

√
P , or [P3].

• Second, Random Forest uses a (different) subset of the training set for each Tree
(bootstrap). If we sample the original dataset uniformly and with replacement, ap-
proximately 2/3 of the samples are unique and 1/3 repeated. Hence each Tree focuses
on a fraction of the space.

2.4.1.2 Proximity

Random Forest can be used to build a measure of proximity between a pair of samples. For
a simple Tree, T (x, θ) and two sample element, x1 and x2, we can define a binary function
lf(x1, x2, θ) which determines if both elements belong to the same leaf. Then a similarity
function for a forest of M Trees is built using the mean:

lf(x1, x2) =
1

M

M∑
k=1

lf(x1, x2, θk)

With this strategy, we can use a forest to discard some samples or even cluster the train
dataset. Although the metric lf(x1, x2, θ) is simple, we can improve it to build better
measures of proximity using, for example, the depth of the internal node at which they
separate when they are queried to the Tree.

2.4.1.3 Regularization

In general terms, Random Forest does not overfit to the training dataset. However, we
should take certain guidance choosing the parameters for each Tree to reduce the cost and
avoid non optimal performance. We should choose initially the parameters for the Trees,
like depth or the fraction of features considered at each splitting point, with the idea of
a small bias. We usually choose big Trees (compared to Gradient Boosting) and a small

2.4. Bootstrap aggregating (bagging) 19

fraction of features (< 0.5) at branching points. It is a good idea to avoid bigger number
of features and Trees with a single sample at leaves, despite the error estimation.

After having a good idea of the parameters for Trees, we can determine the optimal
number of estimators using oob error or any other error estimation procedure. Random
Forest can be expanded adding new Trees to the previous forest, instead of computing a
complete new forest.

2.4.1.4 Cost

To estimate the cost we just need to aggregate the cost of the base estimators.
In general terms, Random Forest uses independent Trees so the cost will be the cost of

a Tree multiplied by the number of estimators.
We can summarize the cost in table (2.4.1), where N is the number of samples, P is

the number of features and M is the number of estimators.

Method Build Time Build Memory Query Time Query Memory

DTR BTTree BMTree QTTree QMTree

O(N · P · log2(N) O(N) O(log2(N)) O(1)

RFR M ·BTTree M ·BMTree M ·QTTree M ·QMTree

O(M ·N · P · log2(N) O(M ·N) O(M · log2(N) O(M)

Table 2.4.1: Cost for RFR

This previous estimation is based on a sequential approach. However, Random Forest
allows a very easy parallelization as the process of construction of each Tree is independent.
Hence we can divide the cost by a constant.

2.4.1.5 Building a random forest with Scikit

As in the previous situation with Trees, Scikit code can be quite useful to illustrate the
process of building a forest. However, the recent code from the repository can be a bit
difficult to read because of parallelization. Previous versions of the forest building process
(commit (c78b1d2) and previous) follow a very simple sequential process in Python. The
following code, taken from the public repository of Scikit and corresponding to the commit
(c78b1d2) is useful to illustrate.

The forest building process is much simpler than the Tree one. RandomForestRe-
gressor is derived from ForestRegressor, which itself is derived from BaseForest. This last
one has BaseEnsemble as a father class. BaseForest has a fit method which builds a forest,
which uses the make estimator() derived from BaseEnsemble to build a Tree.

The following code contains partially the interface of the BaseForest class.

1 class BaseForest(BaseEnsemble , SelectorMixin):

def fit(self , X, y):

3 """ Build a forest of trees from the training set (X, y)."""7

...

5 for i in xrange(self.n_estimators):

tree = self._make_estimator ()

7 if self.bootstrap:

indices = self.random_state.randint (...)

9 tree.fit (...)

else:

11 tree.fit (...)

...

The code builds n Tree estimators with a loop, allowing the user to make bootstrap in
the process to reduce the dependence of the Trees.

20 Chapter 2. Theory

Modern implementation, in Python, has a parallel process with certain improvements
as warm start, which reuses the estimators of the previous call to the fit method and
adds more Trees (by default RandomForestRegressor just fits a new forest), or weighted
samples, which allows to add certain control in the process of building each Tree (splits
which create child nodes with net negative (or zero) weight are ignored).

The code can be consulted on the repository, as it only adds practical improvements
for performance reasons.

2.5 Boosting methods (boosting)

Boosting is an ensemble strategy for reducing both bias and variance of learning
predictors 12.

As bagging, boosting uses base estimators to build another estimator, inheriting some
properties from the base estimator and improving some weakness from it. However the
idea is a bit more complicated.

Most boosting algorithms iterate through a learning process using weak estimators at
each step and adding them to a stronger one built by aggregating the previous steps. The
difference with bagging is that the new learners focus mainly in the samples which have
been incorrectly classified (or estimated) in the previous steps. Different boosting methods
use different strategies for computing the new predictors.

For example, Gradient Boosting uses the residual of each prediction as a guide to
orientate the growth of the following learner. We will describe the method deeper later.

On the other hand, AdaBoost fits a sequence of weak predictors on slightly modified
versions of the original dataset. The changes in the dataset at each step are weights
w1, w2, . . . , wN applied to each of the training element. During the first step, the weights
are wi = 1

N . At each posterior step, the weights are recomputed and the wrongly classified
samples (or those with bigger error in the regression problem) have their weights increased.
Reference [1] includes a good description of AdaBoost in chapter 10.

So, why does it work?. The idea behind boosting is simple: once you know how to do
something, focus on the fields where you are not proficient enough. Instead of using weak
learners to estimate our whole dataset, we should focus with each learner in a different
part of the dataset. Hence, as we build our strong learner, each new weak learner added
should focus on improving the previous elements with the bigger prediction error.

If we have compared bagging with democracy, we can compare boosting with a tech-
nocracy where each expert (weak learner) from the government (strong learner) focuses on
a concrete area for learning and ruling purposes.

To estimate the error we can use any metric of error from the base estimators. In
our situation, we will use Trees as predictors and we will aggregate them. As we have
mentioned above, both out of bag and a validation set are quite useful techniques.

2.5.1 Gradient Boosting

Gradient boosting is a boosting method which uses weak predictors, as Trees, to build a
model step to step minimizing the residual from the previous steps.

With Gradient Boosting, if we want to predict y using a sequence of functions fk(x)
and a differentiable metric for the error, as the usual mean square error metric (y−f(x))2,
we build a sequence of approximations which increase their quality at each step. At each

12Boosting is born from a problem proposed at the end of the 80s: Can a set of weak learners create a
single strong learner?. Later AdaBoost and Gradient Boosting gave a successful answer.

2.5. Boosting methods (boosting) 21

step, k, a small function, hk, improves the previous approximation fk−1 = h1 + . . .+ hk−1
approximating the residual from the previous step, i.e. hk solves the problem arg minh((y−
fk−1)− h)2.

2.5.1.1 Gradient Boosting problem

For the general regression problem, we need a differentiable function L 13 . Each weak
predictor is a Tree 14. Our model is then defined as a sum of weak learners, hk(x) =
T (x, θk), in which each of them improves the previous steps:

fM (x) =
M∑
k=1

hk(x) =
M∑
k=1

T (x, θk)

Each of the Trees solves the problem of learning the residual from the previous steps.
For a dataset with N samples then

θ̂k = arg min
θ

N∑
i=1

L(yi, fk−1(xi) + T (xi, θ))

The model is easy to understand, but not so easy to solve at first sight. However,
using normal optimization procedures, an approximation strategy for computing θ̂k can be
obtained. The error obtained using fk(x) as an approximation is

L(fk) =

N∑
i=1

L(yi, fk(xi))

As we observe, we only need the value of the function fk for the N sample points, so we
can interpret fk as vector fk ∈ RN , i.e. f = (f(x1), . . . , f(xN)) ∈ RN . With this approach:

f̂ = arg min
f

L(f)

Then we can use normal approximation procedures estimating each step hk, because

fM =
M∑
k=1

hk

2.5.1.2 Gradient descent algorithm

Gradient descent can be used to approximate our solution to the previous problem. The
components of the gradient of L, gk, are

gik =

[
∂L(x, y)

∂y

]
y=fk−1(xi),x=xi

Then, we fit a tree to −gk as an approximation to hk.

As usual with a gradient descent estimation, we can use a scalar value, pk, to adjust
the step given by the gradient.

13As the previously stated L(x, y) = (x− y)2

14Defined by θk = ∪Jkj {(R
k
j , δ

k
j)} , i.e {Rkj }

Jk
1 is partition of the space and we have constants {δkj }

Jk
1 ,

associated to each partition, as predicted value given by the Tree in the region.

22 Chapter 2. Theory

We can compute an optimal step, pk, as

pk = arg min
p

L(fk−1 − pgk)

fk = fk−1 + pkhk

This value allows us to get the best adjust at each step.

2.5.1.3 Loss functions

Previously we have used as error function the usual squared difference. However, it is
common to consider different metrics for computing the error and guide the boosting
process. We include some examples of loss functions, taken from [10].

• Least square (LS): L(y, f) = 1
2(y − f)2

• Least absolute deviation (LAD): L(y, f) = |y − f |.

• M regression:

L(y, f) =

{
1
2(y − f)2 if |y − f | ≤ δ
δ(|y − f | − δ

2) if |y − f | > δ

• Two class logistic: L(y, f) = log(1 + exp(−2yf)), y ∈ −1, 1

• Multi class logistic: L({yk, fk}N1) = −
∑
yk log(pk(x)), where yk = 1 iff k ∈ Class(k),

pk(x) = Pr(yk = 1|x).

For simple error functions, L, the computation of hk and pk is easy. For example, for
the usual least square (LS) we obtain L′(y, f) = y − f , so it produces the usual iterative
fit to the residuals at each step. For the least absolute deviation (LAD), for y 6= f we have
L′(y, f) = sign(y − f), so it produces a change which modifies the previous estimation on
the direction of the current error. Optimal values for pm can be also computed.

Concrete details, like the exact expression of the gradient, pm and pseudo code for each
concrete implementation can be found in above mentioned reference, [10].

2.5.1.4 Regularization

In contrast with Random Forest, Gradient Boosting tends to overfit. If we fit the training
set too closely we can experience a quite strong overfitting. To avoid this problem, there
are many regularization techniques. The simplest strategy is limiting the number of trained
Trees used in the predictor. High values of M reduce the error on the training set but also
cause easily overfitting. For selecting the adequate number we usually employ a validation
set, cross validation or oob error.

Other technique is controlling the complexity of each Tree. For example, the depth of
the built Trees. In [1], it is recommended to take a depth of 2 or 3 levels. In comparison,
Random Forest takes deeper Trees. Other parameters as the minimum number of splitting
samples per internal node can be used.

Other common methodology is applying a shrinkage parameter α in the update process.

Fm+1(x) = Fm(x)− αpmgm(x)

Using a learning rate like α < 0.1 improves model generalization empirically, but also
increases the number of iterations needed to obtain a good solution.

2.5. Boosting methods (boosting) 23

Another option is using a subsample of the original dataset drawn at random at each
step (bootstrap). Using a fraction γ < 1 of the dataset makes the algorithm faster, reduces
overfitting and makes the models easier. In reference [11], Friedman obtained good results
with 0.5 < γ < 0.85.

2.5.1.5 Cost

To estimate the cost we just need to aggregate the cost of the base estimators.
For Gradient Boosting, each Tree is built using the previous estimation and the residual

obtained from the aggregated predictor. Hence, the cost will be the sum of computing the
Tree (simpler than the one of Random Forest) and predicting the error used to train the
following Tree.

We can summarize the cost in table (2.5.1), where N is the number of samples, P is
the number of features and M is the number of estimators.

Method Build Time Build Memory Query Time Query Memory

DTR BTTree BMTree QTTree QMTree

O(N · P · log2(N) O(N) O(log2(N)) O(1)

GBR M ·BTTree +O(M ·N) ·QTTree M ·BMTree M ·QTTree M ·QMTree

O(M ·N · P · log2(N) O(M ·N) O(M · log2(N)) O(M)

Table 2.5.1: Cost for GBR

In contrast with Random Forest, Gradient Boosting does not allow a easy parallelization
as each regressor tries to improve the errors from the previous one.

2.5.1.6 Building a gradient boosting regressor with Scikit

As in the previous situations, Scikit illustrates the process of building a regressor. The
recent code from the repository has included some improvements and has been ported to
Cython. The following code, taken from the public repository of Scikit and corresponding
to the commit (eb8a2c9) is useful to illustrate the process because it is very easy to follow.

The gradient boosting regressor building process is simpler than the Tree one. Gradi-
entBoostingRegressor is derived from GradientBoostingBase, which itself is derived from
BaseEstimator.

GradientBoostingBase has a fit method which builds a regressor.
The following code contains partially the interface and code of the GradientBoosting-

Base class.

class GradientBoostingBase(BaseEstimator):

2 ...

def fit(self , X, y):

4 ...

self.init.fit(X, y)

6 self.trees = [self.init]

y_pred = self._predict(X)

8 for i in xrange(self.n_iter):

residual = y - y_pred

10 tree = DecisionTreeRegressor (...)

tree.fit(X, residual)

12 self.trees.append(tree)

y_pred = self._predict (...)

14
def _predict (...):

16 if old_pred is not None:

return old_pred + learn_rate * self.trees [-1]. predict(X)

18 else:

24 Chapter 2. Theory

y = np.zeros ((X.shape [0],), dtype=np.float64)

20 for i, tree in enumerate(self.trees):

if i == 0:

22 y += tree.predict(X)

else:

24 y += learn_rate * tree.predict(X)

return y

The code requires some explanation. The process of building a regressor needs two
functions, a fitter and a predictor (which is used in the fitter). We first explain the fitter.
After some initialization steps we have omitted and which assign a value to self.init (like
MedianPredictor or MeanPredictor), we create and fit a initial estimator which is added
to Trees, our list of estimators, and we create a initial prediction of the target y, y pred.
As our initial estimator is probably not good enough we build a list of new ones in which
the target to fit is the residual value. Inside the loop, a new Tree is fit to the residual of
the previous estimators, given by the predictor, and is added to the list of our Trees.

The predictor computes how good is our estimator (which is the list of Trees). The
function is easy to understand, because it just adds to the last predicted y value a small
amount to improve the estimation. learn rate ∗ self.trees[−1].predict(X) is a fraction
(learn rate < 1) of the last estimation of the residual.

This early version has been improved in posterior commits adding a more general
approach. The commit (24a1b3a) generalizes the previous approach. In this commit
GradientBoostingRegressor derives from BaseGradientBoosting, which itself derives from
BaseEnsemble.

The code for BaseGradientBoosting, simplified, is attached below.

1 class BaseGradientBoosting(BaseEnsemble):

...

3 def fit(self , X, y, monitor=None):

loss = LOSS_FUNCTIONS[self.loss]()

5 if self.init is None:

self.init = loss.init_estimator ()

7 # fit initial model

...

9 # init predictions

...

11 # perform boosting iterations

for i in xrange(self.n_estimators):

13 # subsampling

...

15 residual = loss.negative_gradient(y, y_pred)

induce regression tree on residuals

17 tree = _build_tree (...)

update tree leafs

19 loss.update_terminal_regions (...)

add tree to ensemble

21 self.estimators_.append(tree)

update out -of -bag predictions and deviance

23 ...

return self

25
def _predict(self , X, old_pred=None):

27 if old_pred is not None:

return old_pred + self.learn_rate * \

29 self.estimators_ [-1]. predict(X).ravel ()

else:

31 y = self.init.predict(X)

for tree in self.estimators_:

33 y += self.learn_rate * tree.predict(X).ravel()

return y

The code is quite similar but adds new features, like using different ways of computing
the residual. For example, the classes LeastSquaresError, LeastAbsoluteError, Binomi-
alDeviance which contain the method negative gradient to compute the gradient. The

2.5. Boosting methods (boosting) 25

new implementation allows also subsampling, oob and modification of the leaves for al-
ready built Trees. The complete code can be read in the repository.

Modern version of Gradient Boosting regression, partially in Cython, includes many
more features and error functions.

26 Chapter 2. Theory

Chapter 3

Feature reduction

3.1 Dimensionality reduction

As we have stated in the introductory chapter, we have two different strategies to reduce the
number of features, and then the magnitude of our problem. On one hand, feature selection
selects a good subset of features, ignoring those features which have been not picked.
However, feature selection does not apply any transformation to the chosen variables and
can lose some information. On the other hand, dimensionality reduction does not select
any subset of data but transforms the original data from an initial high dimensional space
to a smaller one, summarizing and extracting information from the whole dataset.

There are many dimensionality reduction methods, and they are classified attending to
the type of transformation used and the type of information used to classify or predict. For
example, PCA (Principal Component Analysis) is a linear transformation which creates
new features using the directions of maximum variance. Other technique as LDA (Linear
Discrimination Analysis) is a good selection if we have a classification problem and the
means and variances are the main information to identify the classes. Both methods can be
used with a non linear transformation using the kernel trick (e.g. Kernel PCA). There are
also non linear methods, as LLE (Locally Linear Embedding) or LTSA (Local Tangent
Space Alignment).

3.1.1 PCA

PCA is a transformation which converts an initial collection of variables into a list of
linearly uncorrelated variables. Each component of this new transformed list represents
the vector which contains the largest variance once removed the previous elements from
the list.

The idea behind reducing features with PCA is that if the main information for predic-
tion is included in the variance, by removing the smaller components, the loss of information
is small. The fraction of total variance associated to each principal component can be used
as criterion to prune the new set of features.

Formally, we consider a matrix X with zero mean columns, N rows and P columns.
The PCA transformation is a set of vectors wk which converts each row xi to a new vector
of components given by:

tk,i = xiwk

The unit vectors wk are computed to maximize the fraction of total variance each new
variable represents.

27

https://en.wikipedia.org/wiki/Principal_component_analysis
http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-4389.pdf
https://www.cs.nyu.edu/~roweis/lle/papers/lleintro.pdf
https://arxiv.org/pdf/cs/0212008.pdf

28 Chapter 3. Feature reduction

Formally the problem can be stated as follow. For the first component the optimization
problem is:

w1 = arg max
||w||=1

||Xw||2 = arg max
||w||=1

wTXTXw = arg max
w

wTXTXw

wTw

This last quantity is the Rayleigh quotient , so the solution is the eigenvector associated
with the biggest eigenvalue. The rest of the principal components can be obtained with a
similar procedure, after removing the previous components. For example, for the second
component:

X2 = X−
∑

Xwkw
T
k

w2 = arg max
||w||=1

||X2w||2 = arg max
w

wTX2
TX2w

wTw

In general terms, the Rayleigh quotient problem indicates that the principal components
of X are given by the eigenvectors of XTX.

Hence, one procedure to compute PCA is normalizing the variables and computing the
covariance matrix, the eigenvalues and the eigenvectors of this matrix. Later we orthonor-
malize the eigenvectors space with Gram Schmidt to build a matrix W with the XTX
eigenvectors as columns. Other procedure is SVD.

3.1.2 PCA and SVD

Singular Value Decomposition (SVD) is a type of matrix factorization. The SVD of an
N × P real matrix, X, is a factorization

X = UDVT

with

• U an N ×N orthogonal matrix.

• D an N × P diagonal rectagular matrix with values ≥ 0 on the diagonal.

• VT an P × P orthogonal matrix.

The elements of D are the singular values of X and they are usually included in descending
order. As U and VT are orthogonal, the columns of each are an orthogonal basis for the
space of columns.

The factorization of XTX can be written, given the decomposition X = UDVT , as:

XTX = (UDVT)T (UDVT) = (VDUT)(UDVT) = VD2VT

As we observe, we obtain the eigenvector decomposition of XTX, being D2 the matrix of
eigenvalues and V the matrix of eigenvectors (W).

3.1.3 Dimensionality reduction

The PCA transformation can be written in matrix form as T = XW, where W is the
matrix of weights which transforms the original dataset into another. If we are interested
in reducing the number of features, we can use a truncated version of W, obtaining a
truncated version of T with l columns Tl. The matrix Tl can also be computed preserving
only the largest l eigenvalues from the SVD decomposition.

https://en.wikipedia.org/wiki/Rayleigh_quotient

3.2. Feature selection 29

As stated above, PCA preserves the maximum amount of variance from the original
dataset. Hence, in general, we cannot affirm that PCA is a good technique for feature
reduction if the main information is not the variance. However, some results have been
obtained regarding dimensionality reduction accuracy. For example, if we assume that
our data has the form X = S + N, being the useful information S Gaussian and N a
Gaussian noise, with a covariance matrix multiple of the identity, PCA optimizes the
mutual information metric between the simplified and original data. Unfortunately, many
results about information preservation make assumptions which are difficult to consider as
true and hence we usually experience a loss of information if we only consider a fraction of
the principal components.

However, there are a few situations in which PCA can be a good solution. On one
hand, the variance can be the main information for a problem. One easy example is a
classification problem, where the members of each class have (almost) constant values
in all excepting one variable. On the other hand, PCA generates a list of uncorrelated
variables, which can simplify or improve the execution of a learning method.

Some efforts have been made to design a feature selection strategy with PCA. In [28],
a feature selection algorithm is designed using PCA and KNN to conserve those variables
which hold a bigger fraction of the variance, getting good results with a face motion
problem.

3.2 Feature selection

In this chapter we are going to describe several methods for feature selection. Although the
field has been broadly studied and there are well known results (for example for selecting
and testing coefficients for Linear Regression), it has been attracting continuous interest
and research. Hence, it is easy to find recent contributions which add a new focus to the
traditional ones. Some good references to acquire a general idea about feature selection
are [12], for a general vision, and [13], for a focus on bioinformatics.

This chapter describes some basic techniques such as testing hypothesis for a Linear
regressor, but the focus is put on Trees, Random Forest and Gradient Boosting predictors.

As we stated in the introductory chapter, selection techniques are based on the idea of
redundant information for a prediction task. The hypothesis we make is the existence of a
few number of variables which can be used to represent the main part of the information,
making possible to remove a large fraction of the included variables without a major loss
in our prediction accuracy.

This redundant information can have two origins:

• Non informative features: They do not add any additional information about the
variable to predict.

• Informative features: They are relevant for the prediction, but their information can
be provided by other features.

3.2.1 Formal problem

The formal problem can be stated as:

Given a dataset with N samples and P features per sample, find a way to produce a
new dataset with N samples and Q features per sample, with Q < P , which holds most of
the information from the original dataset.

30 Chapter 3. Feature reduction

Most of the times, the expression holds most of the information refers to the ability to
predict another variable, although other options as maintaining proximity (for clustering)
or another type of relation between samples can be used 1.

The ideal, but not elegant, way of finding the best subset of features is an exhaustive
search: We build all the subsets of features 2 and we test them to minimize a validation
error (or another type of error estimation). Obviously, the method is only reasonable for
small datasets with a small number of features.

Most of the times, we cannot afford the previous cost. Then, we should simplify our
brute force quest for a cleverer one. The idea behind the complete search is assigning a
quality number to each of the subsets of parameters to rank them and take the subset
with the higher quality. Then a good framework, in certain degree, should imitate this
procedure but without a complete analysis of all the possibilities.

Depending on the procedure to analyze the space of parameters, we have different
techniques. Some methods look in the space of features assigning a quality value to sets
of features, but not to variables individually, using a greedy approach. Other methods
analyze each feature alone and later evaluate a set of parameters assigning the sum of the
quality of each feature they include 3.

Depending on the procedure we follow to analyze the space of parameters, we can
classify the methods in 3 groups, as described in the introductory chapter.

Filter methods use simple metrics like error measures or information proximity to
score each subset using only the dataset. Usual metrics are mutual information, Pearson
correlation and variance thresholds. They are usually fast but they produce an option
which is not optimal to any learning method in concrete.

Wrapper methods use a model to score sets of parameters and an algorithm to build
a new one using the previous estimation. A set of features is selected and a model trained
and tested computing its error. The quality of the parameters is related to this error.
In general terms, wrapper methods are more cost intensive than filter methods, but they
usually provide a better option for certain learning strategies.

Embedded methods select the features in the building process, so the elected vari-
ables are biased towards that model. Some examples are Lasso and Trees algorithms. This
approach has usually a higher cost than the previous ones.

To measure the quality of a set of parameters, techniques like cross validation or a
train/validation/test split of the original dataset can be used.

However, the first point to clarify is what we understand as the best possible set of
parameters. As we usually expect certain benefits from simplifying our dataset, we should
understand that sometimes the expected profits are incompatible 4.

Hence we need to fix a list of preferences. Most of the times we are mainly interested
on the quality of the prediction, so this will be our main criteria. However, sometimes we
focus also on other factors, as for example the length of the set of parameters or certain
restrictions about different types of parameters. Then our strategy should not only penalize
the error but also the number of included features and their nature.

If we are interested in ranking the relevance of the features from our dataset, we are

1 We can be interested in estimating the importance of variables even with no variable to predict. For
example, for clustering, representation, Usually filter methods, like variance thresholds, smoothness
criteria or proximity measures are used.

2In general, if we have p features then we have 2p possible subsets of features.
3In this second situation we are building a measure on the space of S = {0, 1}p and defining the measure

on singleton sets. The measure is extended naturally using σ (finite) additivity to the rest of the space.
4In not many words, we usually want a huge simplification with almost no loss of information, which is

impossible.

3.2. Feature selection 31

also interested in discovering the stability of the distribution, because the results will
depend on the data used to train and the set of parameters or details used for the ranking
process. Some methods, such as Trees and ensemble methods based on Trees, use certain
randomness during the building process which can affect the obtained results. Hence, an
analysis of both the dependence of the parameters and the stability of the results could be
necessary.

3.2.2 Filter methods

The section will describe briefly some filter methods which can be useful as a naive approx-
imation to the feature selection problem. Although the strategy they employ is simple,
they are sometime quite useful, as our examples will illustrate, and are used as an initial
step before using other techniques.

3.2.2.1 Univariate

A statistic, like the variance or the frequency, of our initial dataset is the most simple
strategy for selecting variables.

For example, if we remember our initial Shakespeare’s plays problem where we are
classifying documents, we can be interested in removing those words which are very frequent
(e.g. stop words like prepositions or common verbs like to be or want). Although the
strategy is simple, this technique can simplify the problem allowing us to focus onto more
difficult details with the security of avoiding any loss of information.

Other possible statistic is the variance. Using our previous example again, if we are
given a collection of texts about Venice (including The merchant of Venice among them)
it seems reasonable to find the word Venice many times, but not to find the word Shylock
(the Jewish moneylender) in many of them. Hence, it seems reasonable to think that some
terms with high variance, like proper names from characters, are going to be useful to
classify the texts.

3.2.2.2 Multivariate

If we are facing a prediction problem, we are interested in using our target variable to
measure the quality of our features.

One of the simplest strategies is measuring the correlation between each attribute
and the variable to predict. For (linear) correlation we have the usual Pearson correlation
coefficient for variable i ∈ {1, . . . , P}, defined and approximated as

R(i) =
cov(Xi, Y)√

var(Xi)var(Y)
−→ R(i) =

∑N
k=1(xk,i − x̄i)(yk − ȳ)√∑N

k=1(xk,i − x̄i)
∑N

k=1(yk − ȳ)

The use of R(i) can only measure the linear dependency between an attribute and the
variable to predict.

Other useful approach is mutual information, which ranks the relation between the
target and each variable. It is defined by

MI(i) =

∫ ∫
p(xi, y) log

p(xi, y)

p(xi)p(y)
dxdy −→MI(i) =

∑∑
p̄(xi, y) log

p̄(xi, y)

p̄(xi)p̄(y)

where p̄ is the approximate probability. For continuous variables, we can approximate the
densities (e.g. Parzen Windows) or discretize the values.

32 Chapter 3. Feature reduction

Other common strategy for a classification problems is entropy (or information gain)
measure. We have described it when we explained ID3 algorithm.

Multivariate criteria are useful when some variable alone influences the predicted value.
For example, if we want to analyze the utility of some variables to predict the price of a
second hand car, we can expect attributes like age or mileage to correlate alone with the
price of the vehicles, whereas others like the RGB rear view mirror color to be unrelated.

3.2.3 Wrapper methods

Although filter methods can offer a good result in some situations, most of the times we
do not have simple situations as the ones exposed above. Wrapper methods deal with
more complex situations offering better performance than filter methods, but they are
computationally more intense.

Wrapper methods are built with two main ingredients: a prediction model and a feature
selection strategy. Many times, the model used is a common OLS predictor, although other
options as Trees are also usual.

Most wrapper methods are based on the simple idea of adding or removing features to
a previous selection of variables. The basic idea is to design an iterative strategy which
changes slightly the previous decision set with the idea of reducing the error from our
selection.

The difference among them is the strategy for modifying the previous sets of included
features. Greedy approaches are common. For example, Forward/Backward Selection
adds/removes a feature in each step, trying to improve an error measure. Other techniques,
such as simulated annealing, contain a slightly more complex strategy. The following
methods, taken from reference [1], give us an idea.

Figure 3.2.1: Subset selection error for different methods, taken from [1]

3.2.3.1 Best Subset Selection

Best subset gets the best subset with a fixed k size (k ∈ {0, 1, 2, . . . , P}). There is a
reasonable algorithm to apply this strategy to datasets of < 40 features with OLS. When
we use a linear model, the error function is clearly decreasing as the model complexity (k)
increases 5. Then, we usually choose the set of features using a validation set. In contrast
with the following methods, the sequence of optimal sets of features is not nested.

5Clearly (Y −
∑h+1
k=0 βkXk)2 ≤ (Y −

∑h
k=0 βkXk)2, as we can make βh+1 = 0

3.2. Feature selection 33

3.2.3.2 Forward and Backward Stepwise Selection

The most common wrapper strategy is a greedy approach, producing a nested sequence of
sets of variables. Both Forward Stepwise Selection (FSS) and Backward Forward Stepwise
Selection (FSS) use a linear model. Forward Stepwise fits initially a constant (β0), and
then adds into the predictor the best variable at that step. Backward Stepwise starts with
the entire model, and step by step deletes the feature which is less useful. Usual strategies
for expanding/pruning a linear predictor are adding/dropping the variable which produces
the better error change or the one with the best statistical (usually t or z) score. Common
strategies for controlling the process are using a validation set or, sometimes, the training
error.

3.2.3.3 Forward-Stagewise Regression

Forward Stagewise Regression (FS) follows a similar strategy. As in the previous case, the
most common predictor is a linear model. Initially it sets a constant (β0) equal to the
mean of y. After that, the algorithm gets the variable most correlated with the residuals
and fits the increased model to them. The process iterates and finishes when the remaining
variables do not have any correlation with the residuals.

3.2.4 Embedded methods

In embedded methods, in contrast with filter methods, which do not use a learning model,
or wrapper methods, which use a learning model to rank the subsets of features with a
greedy approach, the learning model and the feature ranking cannot be separated, i.e. the
hypothesis model plays a main role. Hence the selected model will be used to classify
the different embedded methods. Linear models, Trees and ensemble methods are good
examples.

3.2.4.1 Feature selection with Linear methods

For a general linear problem for Y :

Ŷ =

P∑
k=0

βkXk

where Y = Ŷ + ε, being ε the error, we want to select a subset of features which still makes
our estimator accurate.

For that we can use some properties from the solution. If we do not make any as-
sumption about the distribution of the error ε, we cannot infer the distribution of β̂, the
estimator of β, or σ̂2, the estimator of σ2. However, for a sample large enough, with the
Central Limit Theorem we can deduce 6

(β̂ − β)→d N(0, σ2(XTX)−1)

(σ̂2 − σ2)→d N(0, E(ε4)− (σ2)2)

For finite samples, we can infer some results for β̂, σ̂2 and s2 (normalized variance).

β̂ = (XTX)−1XTY

6Hastie, [1], chapter 3, is a good reference.

34 Chapter 3. Feature reduction

s2 =
(y −Xβ)T (y −Xβ)

N − P − 1
, σ̂2 =

N − P − 1

n
s2

being β̂ and s2 unbiased under E(ε) = 0. Under normality assumption for ε

(β̂ − β) ∼ N(0, σ2(XTX)−1)

s2 ∼ σ2

N − P − 1
χ2
N−P−1

being β̂ and s2 independent, which is useful to build a test. Once we know the distribution
of the coefficients we can build a test to check if statistically βj = 0.

Under normality assumption (or near normality) we have different options. For exam-
ple, the simplest option is an individual zero test for each coefficient. To test βj = 0 we
use

tj =
β̂j

σ̂
√

[(XTX)−1]jj
∼ tN−P−1

For blocks of variables we can use the Wald test. To test a set of Q linear relations
between the coefficients using a matrix R (QxP matrix)

• H0 : Rβ = r

• H1 : Rβ 6= r

we use the normality of
√
n(β̂n − β)→d N(0, V) to build

(Rβ̂n − r)T (R(V̂n/n)RT)−1(Rβ̂n − r)→d χ2
Q

If we prefer a simple, but powerful, test to check the inclusion of some variables in
a model, we can use a F(isher) test. The F distribution is built by the ratio of two
independent χ2 variables, normalized using the degrees of freedom. For two models, m1

and m2, where m1 is nested in m2, i.e. m1 has p1 parameters and m2 has the same p1
parameters and p2 − p1 additional ones 7. For that we build the F statistic:

F =

RSS1−RSS2
p2−p1
RSS2

N−P2+1

being RSSi the sum of squared residuals for model i. If we assume (null hypothesis) that
m2 does not add a statistically significant improvement over m1, then F will be distributed
as a F distribution with p2 − p1, N − p2 + 1 degrees of freedom.

3.2.4.2 Feature selection with Trees

In general terms, we have two different frameworks for measuring the relevance of a variable
with a Tree. On one hand, we have the decrease of impurity measures, which are usually
used during the building process of a Tree. On the other hand, we have the decrease of
accuracy measures, which are based on the idea of noising or permuting variables with the
intention of observing the loss of accuracy of the new predictor compared with the original
one.

We analyze first the decrease of impurity measures.

7For example, m2 can be the full model. However, if we are using a wrapper method the F statistic can
be useful to discover if we gain adding an individual variable.

3.2. Feature selection 35

The process of building a Tree involves splitting the dataset using a feature and a
splitting point with the intention of reducing certain impurity or error measure. This
metric can be used to give an estimation of the relevance of each feature, as those variables
chosen at initial steps (and near the root) will be more important.

For ID3 Trees, a common used metric for the importance is the mutual information
between feature Xi and the outputs Y :

MI(Xi, Y) = H(Y)−H(Y |Xi) = H(Xi)−H(Xi|Y)

H(Xi) =
∑
j

p(xij)I(xij) = −
∑
j

p(xij) log p(xij)

H(Y |Xi) =
∑
j,k

p(xij , yk)log
p(xij)

p(xij , yk)

being H the entropy function, I the information content (defined in Chapter 2). Usually
only a fraction of the features is included into the Tree and with different positions within
it, so it behaves as an embedded selection method.

For CART Trees, we have two common options. For classification problems, Gini
impurity ∆GI(t) is used, being defined as

∆GI(t) = Pt ·GI(t)− Pl ·GI(tl)− Pr ·GI(tr)

where GI(t) is the Gini index, defined as

GI(t) = 1−
∑
k

p(k|t)2

where p(k|t) is the rate of correct classification for class k at node t, GI(tl) and GI(tr)
are the Gini index at the left and right side respectively and Pt, Pl and Pr are the number
of samples before the split, after the split at the left node and after the split at the right
node respectively.

For regression, MSE error is the usual option. Mean square error, MSE, is defined as

MSE(t) = V arl(t) + V arr(t)

where V arl(t) and V arr(t) are the errors for the left and right children at node t. Usually
V ari(t) are computed during training time as:

V ari(t) =
∑

(ȳ − yk)2

where the sum is for all the sample included at the i side at node t and ȳ is the average
value of all the training sample at this side, which is the predicted value at each leave.

For a collection of Trees, Breiman proposed Mean Decrease Impurity importance (MDI)
which estimates the importance of a variable Xm adding the weighted impurity decline for
all nodes where the variable Xm is used, averaged over all the Trees in the collection:

Imp(Xm) =
1

N

∑
T

∑
t∈T,v(st)=Xm

p(t)∆i(st, t)

where i(t) is the impurity measure, p(t) is the proportion of samples reaching t and v(st)
is the variable used splitting st. We will see later other measures of relevance for ensemble
methods with Trees.

36 Chapter 3. Feature reduction

We analyze now the decrease of accuracy measures.

The most common measure of relevance using the decrease of accuracy framework is the
permutation loss of accuracy, proposed originally by Breiman. The core idea is to permute
the values of each feature individually and measure the increase of error obtained. For non
relevant variables, the permutation should have almost no effect whereas for important
ones the error is expected to increase. The most common implementation trains a Tree
(or ensemble method) and assigns as relevance to each variable the difference of accuracy
normalized between the predictor applied to a original dataset and a dataset resulted
permuting each variable, step by step.

This method is not implemented in Scikit, but an example code is given below to
illustrate the idea.

1 def _permutation_relevance(self , X, Y, error):

rel = []

3 method = DecisionTreeRegressor () // or RFR or GBR

method.fit(X.train , Y.train)

5 initial = error(Y.test , method.predict(X.test))

for k in range(X.shape [1]):

7 Xt = X.test.copy()

np.random.shuffle(Xt[:, k])

9 final = error(Y.test , method.predict(Xt))

rel.append ((final -initial)/initial)

11 return [item/sum(rel) for item in rel]

With ensemble methods, test error is usually substituted by oob error.

Other common option is noising a variable (for example with a Gaussian noise), with the
intention of determining the importance of the corrupted variable. Clearly, those variables
which are near the root or are used many times in the internal nodes of the Tree will
produce a bigger increase of the error when they are modified. An example is given later
for Random Forest.

3.2.4.2.1 Feature selection with Scikit
Feature relevance is a functionality available in most implementation of regression Trees,
as Scikit. However, Scikit has been moving towards efficiency which usually means loss of
simplicity. For class Tree, feature relevance was added in commit (ca9472c), and refactored
in posterior commits like commit (aeb94c6) in which the computation is parallelized.
Details about the computation can also change between different implementations slightly.
The following code, which is the first commit with the feature importance functionality, is
useful to illustrate the computation.

1 def feature_importances(self):

""" Compute the feature importances of all features.

3 The importance I of a feature is computed as the (normalized) total

reduction of error brought by that feature.

5
I(f) = \sum_{nodes A for which f is used} n_samples(A) * \Delta err

7 """

tree = self.tree_

9 importances = np.zeros(self.n_features_)

11 for node in xrange(tree.node_count):

if tree.children[node , 0] == tree.children[node , 1] == Tree.LEAF:

13 continue

else:

15 importances[tree.feature[node]] += \

tree.n_samples[node] * (tree.init_error[node] - tree.best_error[

node])

17
importances /= np.sum(importances)

19
return importances

3.2. Feature selection 37

Some explanation should be given about the code. For this implementation, a binary
Tree is a struct of arrays. The i element of each array holds information about the cor-
responding node. For example, the struct holds information about the number of nodes
(internal and leaves), an array of children (each item of the array is an array which con-
tains the index to each of the children, if they exist), the feature and threshold used in
the node to split, the initial error of the node (before splitting) and the best error (after
splitting). There are also some extra details which are not necessary for this explanation.
The concrete details can be found in the source code.

With the previous details in mind, we can understand the code easily. The for instruc-
tion loops all the nodes, ignoring the leaves (if section) and adding to the feature used in
each node the error given by the formula (else section):

importances[tree.feature[node]] +=

tree.n_samples[node] *

(tree.init_error[node] - tree.best_error[node])

The value importances is an array which contains the importance of each feature
and tree.feature[node] is the feature used in node. The values tree.n samples[node],
tree.init error[node] and tree.best error[node] give the number of samples, initial error
(before splitting) and best error (after splitting) values for the node respectively. The final
step is normalization. The errors are computed using different metrics.

• Classification

– Gini

– Entropy

• Regression

– MSE

– Other MSE: Friedman MSE.

In another implementation like commit (83bedfd), the possibility to use another for-
mula for computing the relevance is shown directly in the function.

def compute_feature_importances(tree , n_features , method=’gini’):

2 """ Computes the importance of each feature (aka variable).

4 The following ‘method ‘s are supported:

6 * gini : The difference of the initial error and the error of the

split times the number of samples that passed the node.

8 * squared : The empirical improvement in squared error.

"""

10 gini = lambda tree , node: (tree.n_samples[node] * \

(tree.init_error[node] - tree.best_error[node]))

12 squared = lambda tree , node: (tree.init_error[node] - \

tree.best_error[node]) ** 2.0

14 method = {

’gini’: gini ,

16 ’squared ’: squared

}[method]

18 importances = np.zeros ((n_features ,), dtype=np.float64)

for node in xrange(tree.node_count):

20 if (tree.children[node , 0]

== tree.children[node , 1]

22 == Tree.LEAF):

continue

24 else:

importances[tree.feature[node]] += method(tree , node)

38 Chapter 3. Feature reduction

26
importances /= np.sum(importances)

28 return importances

Although the code has been refactored, it follows the same logical flow and includes
the possibility of choosing between the previous metric for relevance (Gini) and a new one
(squared) which is basically the squared improvement of error in a node.

Modern implementation of feature importance in Scikit is slightly different. The im-
plementation uses Cython and is parallelized, although the core idea is the same (we loop
through all the internal nodes computing a metric which measures, in certain degree, the
impurity or error of the node and we average the results obtained for all nodes). The main
expression which computes the importance is a bit different because allows weights.

importances[node.feature] +=

(node.weighted_n_samples * node.impurity -

left.weighted_n_samples * left.impurity -

right.weighted_n_samples * right.impurity)

Impurity is an array with the size of list of nodes, where impurity[i] holds the value
of the splitting criterion at node i. The impurity is computed using functions as the ones
described above. A new metric has been added to compute the internal error, related to
the original Friedman paper about Boosting Methods. The formula for Friedman MSE is:

diff = mean left−mean right

improvement =
n left ∗ n right ∗ diff2

n left+ n right

3.2.4.3 Feature selection with Random Forest

Random Forest is a bagging (bootstrap aggregation) technique, so the feature relevance
can be derived naturally from the base estimators, the Trees. In general terms, if V IT (p)
represents the feature importance measure for Tree and variable p and we build a collection
of Trees {Tk}Mk=1 with importance V ITk(p), we can build the feature relevance equivalent
metric for Random Forest as an average:

V IRF =
1

M

M∑
k=1

V ITk

Then, we can deduce easily information from V IRF , as each V IT is identically dis-
tributed as a consequence of bootstrap and random selection of some variables at the
splitting points. Hence, using the Central Limit Theorem we can still deduce convergence.
Hence for M Trees with σ2 as variance,

V̂ IRF =
V IRF

σ̂√
M

is distributed asymptotically standard normal 8 . We can use the z score with V̂ IRF to
check if the variable importance is null easily.

However, as described in [18], this strategy can be unsuccessful, because as the authors
checked, with variable permutation metric the resulting test has undesirable properties
(like the power of the test not increasing with the sample size).

8As seen in [18]

3.2. Feature selection 39

3.2.4.3.1 Alternative definition

Apart from the previous inherited definition, new feature relevance metrics can be de-
fined for RF because of the greater stability of the method. In general terms, whereas
the Tree based feature relevance measures use mainly, for stability reasons, the error of
classification/regression for assessing an importance value to each attribute, ensemble rele-
vance measures can use also some type of noising strategy for each feature and compare the
resulting error with the original one. This approach was started in the original Random
Forest description by Breiman.

Breiman in his original paper about Random Forest, [2], defined an alternative proposal
for variable importance different to the Tree impurity or error measures. Formally, if we
have p variables, after each Tree is constructed the p variable is randomly permuted and the
resulting oob error computed. The relevance of a variable is defined then as the difference
of oob errors normalized.

Another option is proposed by Gilles Louppe et al., [16], which uses MDI (Mean De-
crease Impurity), described above, and obtains certain theoretical results. Louppe assumes
some simplifications:

• V = {V1, . . . , Vn} are categorical variables, Y is categorical output

• We have an infinite ensemble of Trees.

• The variables used to split are selected randomly among those not still used.

• No binary partitions: each internal node is split in as many branches branches as
possible (size(∪iXij) branches for a node splitting with variable j).

With these hypothesis and an asymptotic sample size he obtains a decomposition of the
mutual information of all the variables as the sum of all the importance.

P∑
k=1

Imp(Xk) = I(X1, . . . , XP , Y)

In the paper by Ishwaran, [19], we can see a good analytical framework which assumes
a more realistic basis. He adopts a simpler definition of variable importance using the loss
of accuracy strategy: the prediction difference under noising and without noising. From a
more formal point of view, we define noising a variable v adopting the following procedure:

We drop an sample, x, in the Tree until either a terminal node or a internal node
depending on v is reached. In the second situation, the right or left options are selected
with equal probability and the item is randomly dropped until a leaf.

This random strategy is designed to create two new (random) Trees which have lower
accuracy than the original one. If we call this new Trees T 1

v and T 2
v , the prediction per-

formance of T iv is related to the position of v, so when a variable v appears high near the
root, the difference between T and T iv is bigger.

At the moment of writing the present thesis, there are not any complete comparison of
different feature relevance for Random Forest and their properties.

3.2.4.3.2 Feature selection with Scikit
Scikit has also a feature relevance computation procedure for Random Forest. As in the
previous situation, Scikit has been moving towards efficiency with the associated complex-
ity. For class Forest, feature relevance was added in commit (ca9472c), and refactored

40 Chapter 3. Feature reduction

in posterior commits. Details about the computation can also change between different
implementations slightly. The following code, which is the first commit with the feature
importance functionality, is useful to illustrate the computation.

def feature_importances(self):

2 """ Compute the mean feature importances over the trees in the forest."""

importances = np.zeros(self.estimators_ [0]. n_features_)

4
for tree in self.estimators_:

6 importances += tree.feature_importances ()

8 importances /= self.n_estimators

10 return importances

The previous code is self explanatory, because the importance is computed as the
average of importance of each Tree.

Modern implementation of feature importance in Scikit is slightly different. The im-
plementation is parallelized but the idea is the same.

def feature_importances_(self):

2 """ Return the feature importances (the higher , the more important the

feature). """

if self.estimators_ is None or len(self.estimators_) == 0:

4 raise NotFittedError("Estimator not fitted , "

"call ‘fit ‘ before ‘feature_importances_ ‘.")

6
all_importances = Parallel(n_jobs=self.n_jobs ,

8 backend="threading")(

delayed(getattr)(tree , ’feature_importances_ ’)

10 for tree in self.estimators_)

12 return sum(all_importances) / len(self.estimators_)

3.2.4.4 Feature selection with Gradient Boosting

Gradient Boosting is a boosting technique, so the feature relevance can be derived naturally
from the base estimators, the Trees. In general terms, if V IT (p) represents the feature
importance measure for Tree and variable p and we build a collection of Trees {Tk}Mk=1

with importance V ITk(p), we can build the feature relevance equivalent metric for the
Gradient Boosting estimator F =

∑
γkTk as an average:

V IGB =
1

M

M∑
k=1

V ITk

which is the RF expression. We can add also a factor (perhaps a normalization of γk)
as we expect more important contributions γkTk to be also more important defining the
relevance.

Sadly, the Trees resulting from a boosting process are not identically distributed. As a
consequence, (a simple version of a) Central Limit Theorem cannot apply and we do not

have an easy estimation of the distribution of V̂ IGB.

3.2.4.4.1 Alternative definition
Alternative feature selection metrics for gradient boosting follow a similar pattern to the
ones described for Random Forest. Hence those ideas which are useful to Random Forest
also apply to Gradient Boosting methods.

Apart from the error measure, Friedman, at [10], describes for a single Tree a measure
of relevance which is useful to small Trees, such as those built with GB.

3.2. Feature selection 41

For a single decision Tree Tk, the importance is defined as

(V IT)2(p) =
M∑
k=1

dk · I(p, k)

where I(p, k) is a binary function which returns 1 if node k splits with variable p and dk is
an impurity measure. Then, for GBR it is defined as the average for all Trees.

3.2.4.4.2 Feature selection with Scikit
Scikit has also a feature relevance computation functionality for Gradient Boosting. As in
the previous situation, initial commits of Scikit are easier to understand. For class Gradi-
entBoostingRegressor, feature relevance was added in commit (8a57c4e), and refactored
in posterior commits. Details about the computation can also change between different
implementations slightly. The following code, which is the first commit with the feature
importance functionality, is useful to illustrate the computation.

def variable_importance(self):

2 ...

for tree in self.trees:

4 vi = VariableImportance(self.n_features)

vi.visit_nonterminal_region(tree)

6 variable_importance += vi.variable_importance

variable_importance /= len(self.trees)

8 variable_importance = 100.0 * (variable_importance /

variable_importance.max())

10 return variable_importance

12 class VariableImportance(object):

...

14 def visit_nonterminal_region(self , node):

if node.is_leaf:

16 return

else:

18 # do stuff

#print node.initial_error , node. best_error

20 feature = node.feature

error_improvement = (node.initial_error - node.best_error) / node.

initial_error

22 self.variable_importance[feature] += error_improvement ** 2.0

24 # tail recursion

self.visit_nonterminal_region(node.left)

26 self.visit_nonterminal_region(node.right)

In general terms, the variable importance method loops through all the Trees comput-
ing the feature relevance (using the VariableImportance class) and later it normalizes the
value to be returned. VariableImportance computes the importance of each feature for a
given Tree visiting each node of the Tree in a recursive manner, skipping the leaves. It
computes the relevance as the sum of squared error improvements, given by

error improvement =
node.initial error − node.best error

node.initial error

The meaning of these variables has been given above for decision Trees.
Modern implementation of feature importance in Scikit is a bit different (it uses stages,

collection of Trees, for the aggregation). However, the main implementation idea is the
same.

1 def feature_importances_(self):

""" Return the feature importances (the higher , the more important the

feature """

3

42 Chapter 3. Feature reduction

for stage in self.estimators_:

5 stage_sum = sum(tree.feature_importances_

for tree in stage) / len(stage)

7 total_sum += stage_sum

9 importances = total_sum / len(self.estimators_)

return importances

3.2.4.5 Pruning variables with Trees

Trees and their ensemble methods can become our chainsaw to prune variables. If we
have a dataset with N samples and P features, we are interested in designing a strategy
to remove the less informative variables, with the intention of simplifying the models,
reducing training time and memory and improving generalization.

For example, a simple approach can be defining a ranking of features with an error
measure (for example, using oob or a validation set). We can define a sequence pk associated
to the error of the dataset which contains the k most relevant features. Then, we can define
a criteria to choose a good value of k, preferably without computing the whole sequence.
This approach is based on the idea of assigning a quality measure to each singleton set of
features and extending the measure in a natural way. However, a more general approach
can be taken without supposing the quality is a measure, which complies with additivity,
at the cost of a more complex selection strategy.

The simple wrapper methods described previously give us good strategies for performing
the search, although they perform a complete step to step search. Hence we need better
strategies to deal with usual problems, such as P � 1 or P � N and not many resources
for a deep search process. In this section we are going to present some advanced techniques
to deal with the problem of large number of features with good results.

Although some methods are described to be used for RF or GB, they can be used with
both ensemble method without any problem.

3.2.4.5.1 Recursive Feature Elimination (RFE)
Our first strategy, described in reference [20], defines a good methodology for variable
selection with RFR, using a recursive selection approach. The authors use RFR
for classification of microarray data and develop a new wrapper algorithm of feature
selection, using the attribute relevance given by RFR, which produces small subsets of
variables and preserves prediction quality. Using simulated and real datasets they show
that recursive selection with RFR has a performance similar to LDA, KNN or SVM and
the technique obtains good reduction and results.

The idea is simple. RFR are fit at each step after removing a fraction of the variables
with the lowest importance. The finally selected variables are those within a range of
the smallest oob error. However, oob error is biased down, so it cannot be considered an
estimation of the error of the estimator. The authors propose using bootstrap to estimate
the correct error.

During all the process, we use the initially computed feature relevance, i.e. after each
pruning step feature distribution is not computed again. The authors use as variable
importance the permutation loss of accuracy.

The proposed algorithm analyzes all RF estimators derived from removing, step by
step, a fraction of variables (the less important ones). As a default value, the authors
propose removing at each step the 20% of the lowest features in the ranking. Hence, if
we prune at each step the (100 · λ)%, with λ ∈ [0, 1], we need approximately the following
number of steps:

3.2. Feature selection 43

nsteps ≈
log2(

1
P)

log2(λ)
= log2(P) · 1

log2(1/λ)

As we observe we are multiplying a small value log2(P), compared with the number of
features P 9, with a value fλ = 1

log2(1/λ)
which is also small for practical elections of λ 10.

As a consequence, for a dataset with approximately 1000 features and λ = 0.5 we will need
only to train 10 RF, with decreasing cost, and for λ = 0.8, we will need 31 steps, which is
still a good value compared with a naive approach of adding constant blocks of variables.
For a bigger dataset with 16, 000 features and λ = 0.5 we will need 14 steps, whereas for
λ = 0.8 we will need 44 steps.

The methods builds a predictor with the new pruned dataset at each step with a
logarithm distribution in the number of features included (for example with λk ·P variables
each dataset, for k ∈ {1, . . . , [logλ 1

P]}), so the analysis is biased towards small datasets.

The time cost of computing a new RFR with each step is reduced also (because the
cost for a Tree is linear in the P). Hence, if the prune the 100λ%, with λ ∈ [0, 1], and C
is the time cost for the whole dataset we need in total

Cprune ≈
nsteps∑
j=0

λjC <

∞∑
j=0

λjC =
C

1− λ

Then, for λ = 0.5, the time cost is Cprune < 2C and for λ = 0.8 we need Cprune < 5C.

Finally, after computing all the RF estimators, we analyze the oob error and we choose
the estimator with the lowest number of variables with an error within α standard devia-
tions of the smallest error rate. For α = 0, we choose the collection of variables with the
smallest oob error, whereas α ≥ 0 can allow better generalization. The authors find that
α ≥ 0 shows similar error rates to α = 0, with the advantage of a much smaller set of
variables chosen.

3.2.4.5.2 Boruta
Another wrapper around a RF classification problem is Boruta, described in [23]. It re-
moves step by step the features which are less relevant using a test criterion comparing
the original features which newly added variables (shadow variables) obtained from the
shuffle of some of the original attributes. The relevance of these new variables can be > 0
as a consequence of the process. Then, the feature importance of these shadow variables
is used as a threshold for the rest using an approximation to a statistical z test.

The algorithm, as described by the authors in the original paper 11:

1. Extend the problem by adding copies of all variables, duplicating then the number of features.

2. Shuffle the added attributes.

3. Run a RFR on the extended information system and gather the Z scores computed.

4. Find the maximum Z score among shadow attributes (MZSA), and then assign a hit to every
attribute that scored better than MZSA.

5. For each attribute with undetermined importance perform a two-sided test of equality with the
MZSA.

6. Deem the attributes which have importance significantly lower than MZSA as unimportant and
permanently remove them from the information system.

7. Deem the attributes which have importance significantly higher than MZSA as important.

9For example, log2(1, 000) ≈ 10 and log2(16, 000) ≈ 14
10For example, for λ = 0.8, fλ ≈ 3.1 and for λ = 0.5, fλ = 1
11Taken from [23] directly

44 Chapter 3. Feature reduction

8. Remove all shadow attributes.

9. Repeat the procedure until the importance is assigned for all the attributes, or the algorithm has
reached the previously set limit of the random forest runs.

This procedure is repeated several times (iterations) classifying the features as relevant,
non relevant or ambiguous. The time cost for the statistical tests and per iteration is
approximately linear in both parameters, O(PN).

In contrast with the previously exposed techniques, Boruta does not allow us to choose
the size of the final set of features. Boruta tries to find all the relevant attributes, instead
of looking for the optimal set with a certain size. Hence, we can define Boruta as an all
relevant features strategy, because it uses those features better than a random one.

However, some modification can be made 12. For example, instead of using the maxi-
mum of the shadow score, a percentage of the score can be used. With this small modifi-
cation we can control the number of variables we discard and adjust the final set of chosen
variables.

Other possible gain is to use some correction to the z test (e.g. a Bonferroni correction).
The author of the Python implementation for Boruta, in [27], included this additional ideas
to improve the original algorithm.

3.2.4.5.3 Subset RFE (SRFE)
Another strategy, described in reference [22], is Subset Recursive Feature Selection (SRFE)
which defines a good wrapper algorithm for variable selection with GBR with an approach
similar to a recursive pruning (RFE). The authors define a backward elimination technique
a bit different from the previous one. The idea is randomly partition the data in disjoint
subsets with a fixed amount of features and training an estimator with each selection of
features. In each step a fraction of the features is removed, using a metric like oob or
validation error 13 and the surviving features are merged. The process is repeated until a
finishing criterion can apply.

In general terms, the authors get good accuracy with a greedy elimination rate such as
25% or 50%, although slightly better results are obtained with smaller rates (2%).

The cost of the operation will depend on the prune rate and the fixed size of the subsets.
As a defaults value, the author proposes removing at each step a fixed amount of the less
relevant features and sets of 30 features. Hence, if the prune rate is 100λ%, with λ ∈ [0, 1],
and we take sets of 0 < c < P features we need approximately the same nsteps and Cprune
values as a simple recursive pruning. However, with this strategy we will need to compute
at each step j of the nsteps steps a total of dλjPc e ensemble estimators. At the end we will
need to compute a total

nest ≈
nsteps∑
j=1

λjP

c
=
∞∑
j=1

λjP

c
· I(

λjP

c
> 1) <

P

c

1

1− λ

clearly not all of them with the same cost. On the other hand, we just needed to compute
nsteps with a simple recursive schema. As an example, if we work with 1, 000 variables and
a fixed size of a c = 20, for λ = 0.5 we need nest ≤ 100, whereas for λ = 0.8 we need
nest ≤ 250. With a recursive feature selection strategy we needed nest ≤ 10 and nest ≤ 14
respectively.

12The authors provided an R implementation. An improved Python one is publicly available also.
13The authors propose the method for internet search ranking, so they propose a metric like NDCG@k.

In our situation we should use oob or validation error.

3.2. Feature selection 45

We should notice that the cost can be bigger, as in each step the dataset should be
prepared and many ensembles should be computed and used for prediction, but with small
(c variables) subsets of features. However, although all the previous can be considered as
a big drawback compared to a simple recursive elimination, this methodology can become
an advantage if we are dealing with a large number of features and we are able to work
only with small fractions of them because of limitation of resources (for example a huge
problem with ≥ 106 features can be managed easily in blocks of 1, 000 variables without
problems with the memory).

Initially, we expect a similar behaviour to a plain recursive prune, as we are pruning the
less informative variables. However, at each step we are not keeping necessarily the best
variables using the initial ranking, but the best resulting from small competitions among
random subgroups of them, a fact which adds certain randomness to the selection reducing
the possible masking among related variables. At the end of the process, the results can
be approximately similar to a recursive prune for small final datasets, depending on the
fixed values c and λ.

As we can observe, this strategy is really a meta wrapper algorithm, as the core idea of
the strategy can be applied to any other algorithm, like for example Boruta.

3.2.4.5.4 Comparative
From the previous section, we observe that there are two different strategies for pruning
the dataset:

• Linear order procedures: They use the total order given by the feature importance
of the features to select a small amount of them depending on their importance.

• Statistical procedures: They add some new features, usually generated from permut-
ing the existing ones, and use statistical methodologies to compare.

As we have seen, not only the focus and assumptions are different but also the time/mem-
ory resources needed. In general terms, the idea behind linear procedures is keeping the
best fraction of features once decided the final size or performance expected, whereas with
statistical procedures is keeping all the relevant features, usually requiring a higher number
of iterations than in the previous situation.

For example, linear procedures such as RFE and SRFE prune the dataset using a
logarithm grid of sizes and they are easy and fast to tune and compute. They also allow
obtaining different final sizes to have an idea of the performance, being also possible to
implement an automatic rule. On the other hand, statistical methods, such as Boruta, offer
the possibility of keeping all the relevant variables (using a statistical procedure which gives
us all those features which are more important than an artificially generated one) and hence
liberates the user from the task of determining the correct size. However, if the size is also
an important issue, some parameters from the statistical tests can be usually tuned to
modify the final number of conserved variables.

46 Chapter 3. Feature reduction

Chapter 4

Experiments

In this chapter we are going to solve the initial questions presented in the introductory
chapter. For that, we have used two different problems to analyze the utility of feature
selection from a practical point of view:

• Bike Sharing problem (BS).

• Numerical Weather Prediction problem (WEP).

The first problem uses a dataset from the Laboratory of Artificial Intelligence and
Decision Support (LIAAD) (University of Porto) and it is available at UCI repository. It
deals with the usual problem in the modern days of building a good bike sharing system
in a big city.

New bike sharing systems, like the one available in big European cities as London or
Madrid, automate the whole process of rental and return. Data from each collection point
is generated automatically, including information about the duration of travel, initial and
final position, date and other details.

Although this problem includes a big number of samples, the number of variables is
small (≤ 20) and they have a quite simple meaning, so this problem will be useful to
understand Feature Relevance (FR) with predictors such as Decission Tree Regressors
(DTR), Random Forest Regressors (RFR) and Gradient Boosting Regressors (GBR).
Hence, it will be our toy example to show the effect of a manual and naive pruning (one
variable at each step) on the accuracy of the prediction.

The second problem uses data from the European Centre for Medium-Range Weather
Forecasts (ECMWF) and deals with the problem of forecasting wind energy production in
Sotavento (Galicia, Spain), using a grid of atmospheric variables.

In contrast with the previous situation, this second problem includes still a big number
of samples but also a big number of features, and their real meaning is a bit harder to
understand because of the size of the problem. Hence, this problem will be useful to show
how to face a real situation and the utility of the pruning strategies defined in the previous
chapter.

47

48 Chapter 4. Experiments

4.1 Parameters and methodology

Clearly, the grid of parameters chosen for our study will affect the results obtained. Because
our intention is not to obtain the best set of parameters for any of the estimators but to
compare the accuracy of the different pruning strategies defined, we are going to use a
simple grid. The grid used for both BS and WEP experiments is defined in table (4.1.1)
(from now on, it will be called simply grid).

However, as we will observe later, sometimes the performance of the predictor with a
pruned dataset is superior to the accuracy of the same predictor with the entire dataset.
Hence we will use a secondary grid, defined in (4.1.2) (from now on, it will be called extended
grid or egrid), to compare the new accuracy with the one we could obtain with a bigger
grid. This second grid contains the initial one as a subset and duplicates the number of
options for each parameter. Then for RFR and GBR while the normal grid contains 32 sets
of parameters, the extended grid contains 25 · 32 = 1024 sets of parameters. The random
state parameter has been fixed to 0 for all the experiments. A brief explanation of each
parameter can be found in the Appendix. The Appendix contains also a brief representation
of the distribution of error and time cost for each grid and for each regressor.

The Feature Relevance (FR) metrics used for the estimators are the ones included in
Scikit and defined in detail in the theory chapter.

Problem Splitter max depth max features min s split min s leaf n estimators

DTR best [5, 10, None] [0.3, 0.4, 0.5] [4, 8, 16] [2, 4, 8]

RFR best [5, 10] [0.3, 0.5] [4, 8] [2, 4] [200, 400]

GBR ls [2, 4] [0.3, 0.5] [4, 8] [2, 4] [200, 400]

Table 4.1.1: BS: Grid of parameters for BS problem

Problem Splitter max depth max features

DTR [best, random] [5, 6, 8, 10, 12, None] [0.3, 0.4, 0.5, 0.6, 0.7, 0.8]

RFR best [5, 8, 10, 12] [0.3, 0.4, 0.5, 0.6]

GBR ls [2, 4, 6, 8] [0.3, 0.4, 0.5, 0.6]

Problem min s split min s leaf n estimators

DTR [4, 8, 16, 32, 64, 128] [2, 4, 8, 16, 32, 64]

RFR [4, 8, 16, 32] [2, 4, 8, 16] [200, 400, 600, 800]

GBR [4, 8, 16, 32] [2, 4, 8, 16] [200, 400, 600, 800]

Table 4.1.2: Extended grid of parameters for BS problem

The topics covered for the BS problem are:

• Presentation of the problem.

• Graphical linear block pruning using FR (backward stepwise selection).

• Time cost of searching in a pruned dataset.

The topics covered for the WEP problem are:

• Presentation of the problem.

• Graphical linear block pruning using FR (backward stepwise selection).

• Analytical comparative of RFE, SRFE and Boruta.

• Quality of the search in a pruned dataset.

4.2. Bike Sharing problem 49

4.2 Bike Sharing problem

The BS problem can be stated as follow:

Given some environmental and seasonal conditions, like the day of the week, the month,
the season, the weather and probability of rain, predict the number of bikes rented.

The dataset we are going to use is derived from two year of real data (2011 and 2012)
from Capital Bike share system, Washington D.C., USA and available at UCI . The data
is aggregated on hourly and daily basis and then the weather and seasonal information,
obtained from an external weather forecaster is added.

Besides, the public dataset includes two files, one with daily aggregation and a second
one with hourly aggregation. We have used the one with hourly aggregation because we
wanted to add also the time variable hour and the problem is still easy to manage with all
the samples. The daily aggregation includes 731 instances with 15 variables. The hourly
aggregation includes 17379 instances with 16 variables.

The info file from the repository gives us a good description of the variables:

1. dteday : date

2. season : season (1:spring, 2:summer, 3:fall, 4:winter)

3. yr : year (0: 2011, 1:2012)

4. mnth : month (1 to 12)

5. hr : hour (0 to 23). Only in hourly aggregation

6. holiday : weather day is holiday or not

7. weekday : day of the week

8. workingday : if day is neither weekend nor holiday is 1, otherwise is 0.

9. weathersit :

• 1: Clear, Few clouds, Partly cloudy, Partly cloudy

• 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist

• 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds

• 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog

10. temp : Normalized temperature in Celsius. The values are divided by 41 (max)

11. atemp: Normalized feeling temperature in Celsius. The values are divided by 50 (max)

12. hum: Normalized humidity. The values are divided by 100 (max)

13. windspeed: Normalized wind speed. The values are divided by 67 (max)

14. casual: count of casual users

15. registered: count of registered users

16. cnt: count of total rental bikes including both casual and registered

The dataset we have used in the experiments is a small modification of the above
described. We can summarize the changes as:

• dteday is now the number of days since the initial day of the system (instead of a
date)

• We use cnt as value to predict and we remove casual and registered.

• We normalize the data in the interval (0, 1) with a linear transformation.

In general terms, we know that cnt = casual + registered. As we are interested in
predicting only one variable we have chosen cnt for the general prediction problem and we
have removed the other two options, which could have been also good elections. However,
we still use and want to understand the meaning of both variables, casual and registered,

http://capitalbikeshare.com/system-data
http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
http://www.freemeteo.com

50 Chapter 4. Experiments

because the degree to which each feature affects each the previous variables will be different
and will help us to visualize the degree of influence.

For example, registered will be more related with variables like dteday, year or month,
whereas casual probably has a strongly relation with environmental factors like weathersit,
temp, hum, windspeed and also with periodical factors like holiday or workingday.

We have used several methods to compute the total number of bikes rented. To deter-
mine the optimal values for each method we have split randomly the original dataset in
three smaller ones of equal size, each one used for training, validation and testing respec-
tively. The collection of optimal parameters for the grid is given in table (4.2.1).

Problem Splitter max depth max features min s split min s leaf n estimators

DTR best None 0.5 4 4

RFR best 10 0.5 4 2 200

GBR ls 4 0.5 8 2 200

Table 4.2.1: BS: Optimal parameters (grid)

4.2.1 Distribution of feature relevance

This section shows the feature relevance distribution for the BS problem. The
BS problem has a main variable to predict, cnt, but as we have stated above includes also
other two variables, casual and registered, which can be useful to illustrate the feature
relevance. Hence, we have three prediction problem, which we name using the variable to
predict. Each row of images in figure (4.2.1) contains the feature relevance for the variable
casual, registered and cnt respectively. The images contain the feature relevance for all
the set of parameters of the (standard) grid in blue, and the feature relevance for the best
set of parameters in red.

Considering each regressor, the first (left) image of each row corresponds to the
FR of a DTR regressor. In general we observe that the distribution is not stable, obtaining
a different feature relevance distribution for different sets of parameters. The second
and third images correspond to the FR of a RFR and GBR regressor respectively. In
opposition to the previous situation, we can state that the feature relevance is stable and
we can take any parameter to obtain a relevance distribution of each variable.

Considering each prediction problem, the feature relevance distribution for the
casual problem is a bit different to the one we obtain for registered and cnt. In these
last two situations, the distributions are similar (especially for RFR and GBR). Hence, as
cnt = registered+casual, we can state that registered has a deeper effect in the relevance
distribution of cnt (both problems are similar).

Apart from the previous analysis about the stability of the distributions, we can ana-
lyze if the obtained results agree with our sense of importance. For all the distributions,
then main variable is 5 (hour). As we expect, this variable will condition heavily the
number of riders. For the casual problem, the main variables are 5 (hour), 7 (weekday),
8 (workingday), 10 (temp) and 11(atemp), 12(hum), which as we expect will affect the
number of casual riders. For the registered problem, the main variables are the same, but
the importance of the non hour variables is much smaller. The cnt problem is a mixed
situation of both previous.

4.2. Bike Sharing problem 51

Figure 4.2.1: BS: DTR, RFR and GBR FR distribution (left-right).
For casual, registered, cnt problem (top-down).

4.2.2 Pruning the dataset using feature relevance

This section shows the evolution of the error pruning the dataset features for
the BS problem. One of our pretensions is using feature relevance to prune the original
dataset, removing the less informative columns and comparing the results with the original
problem. For that, we have analyzed the evolution of the time and error after removing
some features. For pruning the dataset, we have removed in each step the 10% 1 of the
initial number of features and compute the time needed (used to train and predict three
times, the errors) and the errors for the train, test and validation datasets 2.

Each row of images in figure (4.2.2) represents DTR, RFR and GBR respectively (top-
down). Each column the time and the train, test and validation errors respectively (left-
right). Each of the images contains the evolution of time or errors for each dataset for
all the parameters in the standard grid. The red curve shows the best set of parameters
whereas the black one averages for all the parameters. Each error graph in a row of
graphs can be interpreted from left to right as adding features to an initial
feature (hour variable) or from right to left as pruning the initial dataset.

The first image (top and left) in figure (4.2.2) shows us the evolution of the time with
a DTR regressor. In general terms we observe a non very regular behaviour and a bigger

1In each step we remove 0, 1 or 2 variables.
2Train, test and validation datasets are generated after shuffling the original dataset, with a fixed seed,

and dividing the resulting new dataset into three new datasets of equal size. Then each new dataset has 1
3

of the original one. The initial dataset if shuffled because of the time related variables.

52 Chapter 4. Experiments

cost in time as we add more features. The main reason for this non regularity can be the
non similarity between different feature relevance distributions and the Scikit strategy for
reducing computation. Besides, in each step we can be removing different variables and
a different number of them (0, 1 or 2). This behaviour still persists for RFR and GBR,
but it is much smoother. The rest of images in the same row show us the train, test and
validation error respectively. For similar reasons the behaviour is more complex that the
one we obtain for RFR and GBR, which is threaded using subsets of parameters from our
grid.

The second row of images, corresponding to RFR, shows a smoother behaviour. As a
consequence of the stability of the feature relevance distribution, each of the curves follows
a similar path. Besides, in the error graphs we observe a threaded conduct. The main
reason for that is the stopping criterion. Some configuration parameters for the Trees
act stopping the growth in most of the leaves whereas others are scarcely used to create
a leave. Hence those sets of parameters which share similar stopping criteria will have
similar structure despite the other parameters. As a consequence their errors and quality
as predictors will be similar.

The third row of images, corresponding to GBR, is similar to RFR.

With both ensemble estimators, RFR and GBR, with the 40% of the initial features we
obtain in test (third image of the row) approximately a similar error to the one we obtain
with all the variables. In fact with GBR we only need the 20%. Hence we can obtain a
near optimal result with just a fraction of time and memory resources 3.

Figure 4.2.2: BS: Pruning dataset with FR. Time, train, test and val errors (left-right).
For DTR, RFR, GBR (top-down).

4.2.3 Searching

Our last point to analyze with the BS problem is the utility of pruning for parameter
search. Until this moment we have pruned the dataset to discover the evolution of time
and error, but we have not used the pruned dataset to obtain any gain. Bearing in mind

3More precise details about the exact meaning of near optimal will be given for our WEP problem.

4.2. Bike Sharing problem 53

that we can obtain a good prediction error with 20% or 40% of our variables, we are going
to prune our dataset keeping only round(0.2 ∗ 13) = 3 and round(0.4 ∗ 13) = 5 variables
and analyze the new times for computing the grid and the error for prediction.

Our variables will be, in order, 5 (hour), 8 (workingday), 11 (atemp), 10 (temp) and 12
(hum). We now have three problems: the normal BS problem, the restricted BS problem
with only columns {5,8,11,10,12} and the super restricted BS problem with only {5,8,11}
columns.

As we observe in tables (4.2.2) and (4.2.3), with obtain decent reductions of times for
both the grid and the egrid 4 , especially for GBR.

Method {5,8,11} {5,8,11,10,12} All

DTR 0.118 0.120 0.220

RFR 8.554 9.741 14.753

GBR 3.326 4.71 10.845

Table 4.2.2: BS: Time(s) needed with a
pruned dataset to compute the grid

Method {5,8,11} {5,8,11,10,12} All

DTR 1.523 2.124 4.227

RFR 460.213 554.458 852.523

GBR 228.272 343.378 773.453

Table 4.2.3: BS: Time(s) needed with a
pruned dataset to compute the egrid

As we expected from our theoretical analysis, the reduction is approximately linear in
the number of features. Although the reduction of times is modest (a factor of the original
value in the interval (0.3, 0.5)) and we cannot avoid a careful selection of the parameters
when searching using a grid, we can halve easily the time needed in our toy example just
running a simple GBR, with any clever set of parameters from our grid, removing those
variables with a relevance under a threshold value (keeping for example the 20% of them)
and running the search in our pruned dataset, being the accuracy result of this search at
least as good as the accuracy of the predictor with our seed and the whole dataset, as we
will see in the following section.

After this informal description of feature relevance with DTR, RFR and GBR and the
utility and evolution of errors in a pruned dataset, we are going to use the techniques
described in the previous chapter to obtain a more analytical approach with our WEP
problem.

4Parallelized with 8 threads.

54 Chapter 4. Experiments

4.3 Wind Energy Prediction problem

We will work with the Numerical Weather Prediction (NWP) system of the European
Centre for Medium-Range Weather Forecasts (ECMWF). It currently provides variable
forecasts over a global world grid with a 0.125 resolution although we work on a 0.25
aggregated one. To predict wind energy of Sotavento we consider a 15 × 9 rectangular
sub grid approximately centered on the Sotavento site (43.34 N, 7.86 W). The ECMWF
meteorological variables used will be the following:

1. U100, the x wind component at 100 m height.

2. V100, the y wind component at 100 m.

3. P, the pressure at surface level.

4. T, the temperature at 2 m.

5. Us, the x wind component at surface level.

6. Vs, the y wind component at surface level.

7. v100, the wind norm at 100 m.

8. vs, the wind norm at surface level.

We point out that surface and 100m height refers to the geopotential of the grid point for
which these variables are provided; in turn, the grid node geopotential is that of the concrete
orography model used, which may or may not coincide with the actual geographical point
with the same coordinates. Input dimensions are thus quite large, 15× 9× 8 = 1080. We
will work with data for the years 2011, 2012 and 2013. Wind energy data for Sotavento
can be obtained through their web site. We normalize productions to the [0, 1] interval by
dividing them by the rate power of Sotavento (i.e., the maximum power the farm would
provide). In other words, at each hour we will work with the percentage of energy actually
produced with respect to the maximum possible values. While hourly values are available
for wind energy, NWP forecasts are available only every three hours, starting at UTC hour
00. Thus, in every year we will approximately have (24/3) · 365 = 2920 patterns. In what
follows we will refer to this as the Sotavento problem 5.

The parameters used are given in table (4.3.1). To determine the optimal values for
each method we have used the year 2011 to train the method (training set), the year 2012
to determine the optimal parameters (validation set) and the year 2013 to estimate the test
error (test set). As stated previously, we have used a simple grid of parameters because our
intention is to show the power of feature selection supposing we have a huge dataset and
we cannot compute a big number of parameter configuration for practical reasons. Some
results concerning the extended grid are also given.

Problem Splitter max depth max features min s split min s leaf n estimators

DTR best 5 0.4 4 8

RFR best 10 0.3 8 2 400

GBR ls 4 0.5 4 4 200

Table 4.3.1: Sotavento: Optimal parameters for Sotavento problem in the grid (random
state is 0)

4.3.1 Distribution of feature relevance

The first point to study is the distribution of relevance and their stability. The figure
(4.3.1) show the distribution of relevance for DTR, RFR and GBR respectively.

5Description taken from [24].

4.3. Wind Energy Prediction problem 55

For the first image in each row, as in the previous situation, the red curve is the one
associated with the best set of parameters, whereas the blue ones represent all the sets of
parameters from the grid (simultaneously, it is not a mean). The x axis is the list of 1080
features whereas the y represents the feature relevance associated to each of them 6 . In
general terms, we can affirm that RFR shows the most stable distribution, while the ones
from DTR and GBR depend more on the parameters.

The second and third images in each row show us the mean feature relevance distri-
bution for the 8 variables and the 135 geographical point for the optimal set of parameters.
The second image contains the feature relevance for each one of the eight previously defined
atmospherical attributes associated (the components of pressure, temperature and wind)
aggregating the 135 geographical points for each variable, in the order defined above. The
most relevant feature is v100, the wind norm at 100m. The third image contains the rele-
vance of each of the 135 geographical point from the physical grid aggregating the relevance
of all the (8) features for this point.

Figure 4.3.1: Sotavento: DTR, RFR and GBR (top-down) coefficient distribution

4.3.2 Pruning the dataset with FR

As stated previously, our main idea is using feature relevance to prune the original dataset
with the intention of simplifying the original problem. For that, we have analyzed the
evolution of the time and error after removing blocks of features.

6The variable at position 135 · i + j, i = 0, . . . , 7 and j = 0, . . . , 134 represents the i variable at the j
point of the grid.

56 Chapter 4. Experiments

The figures (4.3.2), (4.3.3) and (4.3.4) show us the evolution of time and error for each
member of the standard grid when we prune the original dataset. The first image of each
row represents the time evolution, while the following three depict the training, testing and
validation error evolution respectively. Each of the curves represents a set of parameters
from the (standard) grid. The red one is the optimal set of parameters from the grid and
the black one the mean from all the curves.

Figure 4.3.2: Sotavento: DTR, Pruning dataset with FR. Time, train, test and val errors

Figure 4.3.3: Sotavento: RFR, Pruning dataset with FR. Time, train, test and val errors

Figure 4.3.4: Sotavento: GBR, Pruning dataset with FR. Time, train, test and val errors

4.3. Wind Energy Prediction problem 57

Each predictor technique (DTR, RFR and GBR) contains eight images. The first line
for each method contains the evolution when we prune the interval of variables [0, 100%]
with blocks of 10% of the features (approximately we prune 108 variables at each step).
The second line represents the interval [0, 20%] (i.e. we work with only the 20% of the
most relevant variables, ignoring the 80% less relevant), pruning in each step 1% of the
variables (approximately 10 attributes at each step). Each graph can be interpreted
from left to right as adding features to an initial set of variables or from right
to left as pruning the initial dataset.

The first images (left) in the first block of images, (4.3.2), from DTR shows us the
evolution of the time. DTR times show some noise consequence of the elected features
and the building process from Scikit (optimized to reduce cost). The rest of images in the
same row show us the train, test and validation error respectively. For DTR the evolution
in the interval [0, 20%] is a bit chaotic, but later it stabilizes.

The second block images, (4.3.3), from RFR shows a smoother behaviour. As we
expected the time evolution is linear. In the error graphs we observe a threaded conduct
as a consequence of the stopping criteria. As stated above, those sets of parameters which
share similar stopping criteria will have similar structure despite the other parameters.
Hence, their errors and quality as predictors will be similar. From a practical point of
view, we observe in the second row of graphs as the test and validation errors achieve
certain stability at 10% of the features. From the first row of images, we can observe that
the test and validation errors are approximately a monotone increasing function .

The third row of images, (4.3.4), corresponding to GBR is similar to RFR. We should
point however some differences: the threaded behaviour is bigger and the testing and
validation error a bit more chaotic. In the second row of images, we observe that the
testing error seems to stabilize at 20% of the features and the validation error at 15%.
Here the analysis is more complex than in the previous situation as we do not have a
smooth pattern.

As we observe, whereas we cannot obtain any general result for DTR as a consequence
of the lack of stability in the error curves, we can obtain a general approximately decreasing
behaviour for RFR (specially) and GBR in [0, 20%] for any seed, which will be useful to
prune the dataset in the following section.

4.3.3 Pruning

In the previous sections, we have analyzed the distribution of relevance and the loss of
accuracy pruning the datasets with a collection of parameters and increasing steps. With
this information for a dataset and predictor, we can prune the original data and obtain
a simpler version of the predictor. However, in a practical environment we do not have
neither the time nor the resources to execute an analysis about the distribution of features
for different parameters and the evolution of the error when pruning features. Hence, our
intention is to compare the techniques to prune the dataset automatically. Our candidates
are the strategies defined at the end of the previous chapter.

1. Recursive Feature Elimination (RFE)

2. Subset RFE

3. Boruta

This section and the following contains the main ideas of the present thesis:

• Prune the original dataset with an algorithm which computes the best subset of features to simplify
the construction of a predictor and improve its accuracy.

• Prune the original dataset with an algorithm which computes the best subset of features to perform
a seach of parameters and build the best possible predictor.

58 Chapter 4. Experiments

Here best can have different meanings, because each of the techniques attacks the
problem with different hypothesis. For example, RFE and Subset RFE get the best subset
of variables of a fixed size (best here means with the bigger amount of relevance). On
the other hand, statistical procedures like Boruta compute the subsets of all the relevant
variables (i.e. all those features more relevant than a random one).

Once we know from the previous section that the general behaviour of the test and
validation error is approximately uniformly decreasing in the interval [0, 20%], we have
selected a simple parameter set from the standard grid to obtain more numerical results.
The parameter set is:

{random_state : 0, n_estimators : 200, max_depth : 10 for RFR and 4 for GBR,

max_features : 0.3, min_samples_split : 8, min_samples_leaf : 4}

From now on, this parameter set will be name seed, and it will be used to obtain the
feature relevance distribution used for pruning the dataset features. Results for any other
parameter set from the grid can be consulted in the repository added in the Appendix.

RFE

As we know, the main idea of Recursive Feature Elimination (RFE) is to build a sequence
of datasets, each one containing a fraction of the features of the previous one, and errors
associated with each simplified version of the dataset.

We are going to use a slightly modified version of the previous strategy. We use the
validation dataset to choose the optimal new training dataset, instead of oob error. Besides,
we are using a regression problem (instead of the classification of genes described in [20])
and we are using MSE impurity as a function for variable importance, instead of loss of
accuracy from permutations.

We have used two pruning percentages, λ = 0.5 and λ = 0.8. For Sotavento dataset
and RFR we obtain the results from tables (4.3.2) and (4.3.4) respectively, whereas for
GBR we obtain the results from tables (4.3.3) and (4.3.5) respectively.

We analyze initially RFR. Depending on whether we prefer small dataset sizes or good
predictor quality, we define the threshold value α 7. If we use as criteria the one described
in [20] 8 , observing table (4.3.2) we obtain that we should accept the 1.5625% of the
features for λ = 0.5, i.e. only 16 features, and observing table (4.3.4) the 1.801% of the
features for λ = 0.8, i.e. only 19 features. If we use instead a more conservative value
as α = 0 std (the value which minimizes the validation error), we need the 12.5% of the
features for λ = 0.5, i.e. only 135 features, and the 16.777% of the features for λ = 0.8,
i.e. only 181 features.

We analyze now GBR. With α = 1, from table (4.3.3) we obtain that we should accept
the 1.5625% of the features for λ = 0.5 (16 features) and from table (4.3.5) we observe
that we need the 1.441% of the features for λ = 0.8 (15 features). If we use instead a more
conservative value as α = 0 std, we obtain we need the 12.5% of the features for λ = 0.5
(135 features), and the 8.590% of the features for λ = 0.8 (92 features). As we observe
from the monotony trend of the Perc std column, the behaviour of GBR is a bit more
complex than RFR.

Then, for λ = 0.5, we can summarize the results in tables (4.3.6) and (4.3.7). For
λ = 0.8, we can summarize the results in tables (4.3.8) and (4.3.9). The tables include for

7Fraction of the standard deviation of validation error, within the minimum, allowed.
8Which is considering the dataset with the smallest number of features within one standard deviation

from the minimum validation error, α = 1.

4.3. Wind Energy Prediction problem 59

Percentage Num var Train Test Val Perc std

100 1080 3.296 7.675 6.601 0.142
50 540 3.305 7.676 6.562 0.043
25 270 3.404 7.666 6.550 0.012

12.500 135 3.536 7.685 6.545 0
6.250 67 3.707 7.727 6.589 0.113
3.125 33 3.932 7.796 6.725 0.456
1.562 16 4.193 7.898 6.930 0.975
0.781 8 4.721 8.001 7.148 1.527
0.391 4 5.469 8.430 7.595 2.659
0.195 2 5.552 8.496 7.563 2.576

Table 4.3.2: Sot, RFE, RFR, λ = 0.5,
error pruning the dataset (%)

Percentage Num var Train Test Val Perc std

100 1080 2.469 7.679 6.586 0.019
50 540 2.524 7.629 6.580 0.005
25 270 2.641 7.729 6.697 0.267

12.500 135 2.768 7.709 6.578 0
6.250 67 3.001 7.823 6.731 0.343
3.125 33 3.279 7.922 6.698 0.268
1.562 16 3.764 8.231 6.931 0.791
0.781 8 4.337 8.153 7.093 1.156
0.391 4 5.290 8.550 7.749 2.626
0.195 2 5.515 8.710 7.814 2.771

Table 4.3.3: Sot, RFE, GBR, λ = 0.5,
error pruning the dataset (%)

Percentage Num var Train Test Val Perc std

100 1080 3.296 7.675 6.601 0.218
80 864 3.300 7.695 6.581 0.166
64 691 3.310 7.702 6.588 0.186

51.200 552 3.327 7.663 6.572 0.145
40.960 442 3.347 7.688 6.539 0.060
32.768 353 3.371 7.680 6.551 0.092
26.214 283 3.383 7.667 6.538 0.060
20.972 226 3.433 7.650 6.532 0.044
16.777 181 3.469 7.661 6.515 0
13.422 144 3.540 7.661 6.525 0.026
10.737 115 3.577 7.684 6.533 0.047
8.590 92 3.628 7.696 6.564 0.124
6.872 74 3.690 7.699 6.579 0.163
5.498 59 3.780 7.719 6.646 0.331
4.398 47 3.818 7.750 6.664 0.377
3.518 37 3.909 7.842 6.732 0.549
2.815 30 3.942 7.801 6.732 0.548
2.252 24 4.020 7.788 6.778 0.665
1.801 19 4.102 7.789 6.823 0.777
1.441 15 4.335 7.911 6.999 1.222
1.153 12 4.461 7.938 6.997 1.217
0.922 9 4.521 7.942 7.081 1.430
0.738 7 4.785 8.047 7.185 1.693
0.590 6 4.983 8.301 7.496 2.478
0.472 5 5.396 8.398 7.618 2.785
0.378 4 5.469 8.430 7.595 2.728
0.302 3 5.431 8.441 7.575 2.678
0.242 2 5.552 8.496 7.563 2.646
0.193 2 5.552 8.496 7.563 2.646

Table 4.3.4: Sot, RFE, RFR, λ = 0.8,
error pruning the dataset (%)

Percentage Num var Train Test Val Perc std

100 1080 2.469 7.679 6.586 0.096
80 864 2.469 7.679 6.586 0.096
64 691 2.510 7.639 6.680 0.325

51.200 552 2.545 7.681 6.613 0.160
40.960 442 2.572 7.757 6.652 0.255
32.768 353 2.592 7.613 6.551 0.010
26.214 283 2.603 7.632 6.651 0.253
20.972 226 2.667 7.790 6.663 0.282
16.777 181 2.719 7.680 6.615 0.166
13.422 144 2.733 7.706 6.689 0.346
10.737 115 2.739 7.853 6.612 0.158
8.590 92 2.825 7.833 6.547 0
6.872 74 2.914 8.026 6.716 0.412
5.498 59 3.087 7.846 6.748 0.490
4.398 47 3.202 7.958 6.768 0.537
3.518 37 3.310 7.858 6.682 0.327
2.815 30 3.356 7.996 6.782 0.572
2.252 24 3.498 8.077 6.894 0.844
1.801 19 3.599 8.209 6.920 0.908
1.441 15 3.824 8.155 6.925 0.920
1.153 12 4.070 8.127 7.027 1.169
0.922 9 4.181 8.208 7.050 1.226
0.738 7 4.500 8.270 7.232 1.668
0.590 6 4.679 8.341 7.362 1.985
0.472 5 5.118 8.595 7.514 2.356
0.378 4 5.290 8.550 7.749 2.929
0.302 3 5.351 8.597 7.734 2.892
0.242 2 5.515 8.710 7.814 3.086
0.193 2 5.515 8.710 7.814 3.086

Table 4.3.5: Sot, RFE, GBR, λ = 0.8,
error pruning the dataset (%)

60 Chapter 4. Experiments

reference the error rates obtained witht the whole dataset and the selected set of parameters
(seed row).

α Num var Train Test Val

1 16 4.193 7.898 6.930

0.5 33 3.932 7.796 6.725

0.25 67 3.707 7.727 6.589

0 135 3.536 7.685 6.545

seed 1080 3.296 7.675 6.601

Table 4.3.6: Sot, RFE, RFR, λ = 0.5,
summary error pruning the dataset (%)

α Num var Train Test Val

1 16 3.764 8.231 6.931

0.5 33 3.279 7.922 6.698

0.25 135 2.768 7.709 6.578

0 135 2.768 7.709 6.578

seed 1080 2.469 7.679 6.586

Table 4.3.7: Sot, RFE, GBR, λ = 0.5,
summary error pruning the dataset (%)

α Num var Train Test Val

1 19 4.102 7.789 6.823

0.5 47 3.818 7.750 6.664

0.25 74 6.664 7.699 6.579

0 181 3.469 7.661 6.515

seed 1080 3.296 7.675 6.601

Table 4.3.8: Sot, RFE, RFR, λ = 0.8,
summary error pruning the dataset (%)

α Num var Train Test Val

1 15 3.824 8.155 6.925

0.5 37 3.310 7.858 6.682

0.25 115 2.825 7.833 6.547

0 115 2.825 7.833 6.547

seed 1080 2.469 7.679 6.586

Table 4.3.9: Sot, RFE, GBR, λ = 0.8,
summary error pruning the dataset (%)

These results depend on the seed taken, especially for GBR. However, as we know from
our analysis above about pruning the dataset in the interval [0, 20%] in blocks of 1%, the
results follow the same monotone trend with any seed taken from our grid. Detailed results
can be consulted in the repository from the Appendix.

Subset RFE (SRFE)

As we mentioned in the previous chapter, SRFE is technique based on the same idea of
RFE: prune recursively the dataset features. The main difference is that SRFE divides
the initial dataset in smaller ones (randomly) and performs a normal RFE in all of them,
adding hence an additional source of randomness 9 and a new parameter to tune (the size
of the subsets). Then, we can expect results slightly different to RFE. We have used the
same α criteria defined for RFE to consider the optimal dataset size.

The tables (4.3.10), (4.3.11), (4.3.12) and (4.3.13) contain the error values with our
seed for RFR and GBR, respectively, with subsets of size c = 54 elements (20 · 54 = 1080).
The prune rate for tables (4.3.10) and (4.3.11) is λ = 0.5. For tables (4.3.12) and (4.3.13)
is λ = 0.8. The tables have the same structure and meaning than RFE.

The table (4.3.14), (4.3.15), (4.3.16) and (4.3.17) contain the the summary of results,
as done for RFE.

9We can control the results fixing a random state for the random generator, as we have done with others.

4.3. Wind Energy Prediction problem 61

Percentage Num var Train Test Val Perc std

100 1080 3.296 7.675 6.601 2.474
50 540 3.352 7.695 6.550 1.210
25 270 3.463 7.672 6.502 0

12.5 135 3.541 7.701 6.529 0.685
6.25 68 3.734 7.702 6.604 2.558

Table 4.3.10: Sot, SRFE, RFR, λ = 0.5,
error pruning the dataset (%)

Percentage Num var Train Test Val Perc std

100 1080 2.469 7.679 6.586 0
50 540 2.575 7.707 6.659 0.689
25 270 2.687 7.794 6.645 0.556

12.5 135 2.774 7.778 6.852 2.501
6.25 68 2.951 7.604 6.830 2.292

Table 4.3.11: Sot, SRFE, GBR, λ = 0.5,
error pruning the dataset (%)

Percentage Num var Train Test Val Perc std

100 1080 3.296 7.675 6.601 3.246
80 880 3.285 7.717 6.586 2.693
64 717 3.315 7.678 6.573 2.168

51.200 585 3.312 7.700 6.567 1.965
40.960 477 3.346 7.677 6.548 1.248
32.768 389 3.371 7.668 6.522 0.245
26.214 317 3.395 7.689 6.564 1.859
20.972 258 3.438 7.687 6.552 1.397
16.777 210 3.451 7.708 6.532 0.644
13.422 171 3.494 7.700 6.515 0
10.737 140 3.523 7.681 6.528 0.482
8.590 114 3.561 7.693 6.540 0.947
6.872 93 3.615 7.698 6.543 1.033
5.498 76 3.691 7.695 6.569 2.040
4.398 62 3.736 7.734 6.603 3.314

Table 4.3.12: Sot, SRFE, RFR, λ = 0.8,
error pruning the dataset (%)

Percentage Num var Train Test Val Perc std

100 1080 2.469 7.679 6.586 0.593
80 880 2.564 7.716 6.553 0
64 717 2.564 7.670 6.626 1.292

51.200 585 2.566 7.650 6.613 1.054
40.960 477 2.563 7.693 6.608 0.979
32.768 389 2.637 7.669 6.640 1.537
26.214 317 2.658 7.603 6.620 1.181
20.972 258 2.698 7.663 6.638 1.506
16.777 210 2.751 7.668 6.599 0.821
13.422 171 2.782 7.606 6.637 1.480
10.737 140 2.812 7.642 6.676 2.163
8.590 114 2.848 7.666 6.712 2.804
6.872 93 2.876 7.658 6.697 2.540
5.498 76 2.895 7.650 6.726 3.053
4.398 62 2.949 7.779 6.772 3.864

Table 4.3.13: Sot, SRFE, GBR, λ = 0.8,
error pruning the dataset (%)

α Num var Train Test Val

2 135 3.541 7.701 6.529

1 135 3.541 7.701 6.529

0.5 270 3.463 7.672 6.502

0 270 3.463 7.672 6.502

seed 1080 3.296 7.675 6.601

Table 4.3.14: Sot, SRFE, RFR, λ = 0.5,
summary error pruning the dataset (%)

α Num var Train Test Val

2 270 2.687 7.794 6.645

1 270 2.687 7.794 6.645

0.5 1080 2.469 7.679 6.586

0 1080 2.469 7.679 6.586

seed 1080 2.469 7.679 6.586

Table 4.3.15: Sot, SRFE, GBR, λ = 0.5,
summary error pruning the dataset (%)

α Num var Train Test Val

2 93 3.615 7.698 6.543

1 114 3.561 7.693 6.540

0.5 140 3.523 7.681 6.528

0 171 3.494 7.700 6.515

seed 1080 3.296 7.675 6.601

Table 4.3.16: Sot, SRFE, RFR, λ = 0.8
(%), summary error pruning the dataset

α Num var Train Test Val

2 171 2.782 7.606 6.637

1 210 2.751 7.668 6.599

0.5 880 2.564 7.716 6.553

0 880 2.564 7.716 6.553

seed 1080 2.469 7.679 6.586

Table 4.3.17: Sot, SRFE, GBR, λ = 0.8,
summary error pruning the dataset (%)

Boruta

In contrast with the previous situation, Boruta uses statistical tests to determine whether
a feature is relevant or not, comparing the existing variables with newly created originated

62 Chapter 4. Experiments

of permuting the original ones. The basic idea involves creating new shadow variables,
taking the relevance of the most relevant of these new features and use this value as a
threshold for comparison with the original ones. This process is repeated several times
(iterations), classifying the variables as relevant, non-relevant or not classified.

Tables (4.3.18) and (4.3.19) contains the error values with our seed for RFR and GBR,
respectively, after 100 iterations. The perc refers to the percentage of relevance of the most
relevant shadow variable we consider to filter our variables. The column Num var refers
to the number of included variables.

We observe that for RFR considering as perc = 75% and for GBR considering perc =
25% we obtain better test results that using our original whole dataset. If we use as
selection pattern the strategy of choosing the perc which minimizes the validation error,
then we choose perc = 75% (260 variables) for RFR and perc = 50% (73 variables) for
GBR 10.

Perc Num var Train Test Val

100 110 3.552 7.706 6.544

75 260 3.405 7.668 6.542

50 388 3.379 7.664 6.544

25 466 3.107 7.662 6.557

seed 1080 3.296 7.675 6.601

Table 4.3.18: Sot, Boruta, RFR, 100
iter, error pruning the dataset (%)

Perc Num var Train Test Val

100 9 4.313 8.283 7.196

75 17 3.643 8.001 6.888

50 73 2.919 7.685 6.618

25 272 2.614 7.636 6.649

seed 1080 2.469 7.679 6.586

Table 4.3.19: Sot, Boruta, GBR, 100
iter, error pruning the dataset (%)

Comparative

For RFE, as we observe in tables (4.3.2) and 4.3.3) for RGR and GBR respectively, we
can choose easily a value which improves the error rate for the test dataset, even with
an aggressive prune rate (λ = 0.5). Tables (4.3.4) and 4.3.5) show the results for a finer
prune rate (λ = 0.8). Here we observe that the validation error sequence and the Perc
std sequence have a non monotone behaviour, having several local minima. If we use as
selection criteria the one defined for RFE with α = 0 (we choose the percentage Perc std
lower or equal than the selected α and the lowest number of variables), we get better results
for RFR but not for GBR. In general, for RFR we observe than we can get several elections
which improve the results obtained with the whole dataset, whereas for GBR we observe a
consistent deterioration of the error rates as we consider smaller sizes. A smoother criterion
such as considering averages of the sequence Perc std can gives us better results.

As we can observe using any other parameter set (seed) from the repository in the
Appendix, for RFR a value α ∈ [0, 0.5] leads to selection which improves the results
obtained with the whole dataset, whereas for GBR we cannot obtain so optimistic general
results.

For SRFE, we obtain similar results to the ones of RFE. Tables (4.3.10) and (4.3.11)
contain the results for RFR and GBR, respectively, for λ = 0.5. Similar results, for λ = 0.8,
can be consulted in (4.3.12) and (4.3.13). The different results between RFE and SRFE are
due to the subsets for comparison. RFE can be interpreted as a limit situation (c = 1080)
where there is only one subset of features in each step instead of several. As a consequence,
the SRFE process stops when we get a final size equal to the size of the subset (c = 54 in

10The fractions of perc used are clearly not enough (probably we can get a better estimation for GBR)
but give a simple idea. We should remember that each perc requires 100 iterations with a subset of features,
being then the cost much higher than RFE and SRFE.

4.3. Wind Energy Prediction problem 63

our examples) instead of a final size of 2 as in RFE. If we compare both strategies, SRFE
and RFE, we observe than none of error sequences have a domination relation (i.e. there
is not method globally better).

This behaviour is observed also for any other parameter set (seed) from the repository
in the Appendix.

For Boruta, tables (4.3.18) and (4.3.19) contain the values for different thresholds of
relevance. As we observe, there are great differences in the number of choosen variables
for RFR and GBR, as a consequence of the difference relevance distribution given by
RFR and GBR. Because of the main idea behind Boruta is getting all the relevant features
(comparing with a shadow value of relevance given by new variables generated by permuting
the original ones), it is not possible to determine the percentage of surviving variables after
pruning. We can only control the percentage of shadow value we use to prune. However,
empirically, good results can be obtained with fractions in the range [0.25, 0.75] of the
shadow value.

4.3.4 Grid Search After Pruning

Once we have pruned the dataset and obtained a numerical idea of the different approaches,
we are going to prune the dataset and perform a search with the standard grid. For
reference, the tables (4.3.20) and (4.3.21) contain the best results obtained after performing
a search with both the standard grid (grid) and the extended grid (egrid) with the whole
dataset (without pruning).

Source Train Test Val

grid 3.243 7.693 6.585

egrid 2.876 7.652 6.557

Table 4.3.20: Sot, RFR, error using the
grid, egrid (%)

Source Train Test Val

grid 2.425 7.728 6.573

egrid 2.498 7.705 6.527

Table 4.3.21: Sot, GBR, error using the
grid, egrid (%)

The parameter set (seed) taken is the one taken previously:

{random_state : 0, n_estimators : 200, max_depth : 10 for RFR and 4 for GBR,

max_features : 0.3, min_samples_split : 8, min_samples_leaf : 4}

Results for any other parameter set from the grid can be consulted in the repository
added in the Appendix.

We must remember, as we see in the theory chapter, that if we prune the original
dataset to hold only a γ% of the original features, we can expect approximately a similar
γ% of the original cost in time.

RFE

Once we have pruned the dataset with RFE, we can start a parameter search in the new
pruned dataset. For a standard grid and λ = 0.5, we obtain the results described in tables
(4.3.22) and (4.3.23). For λ = 0.8, we obtain the results described in tables (4.3.24) and
(4.3.25). The tables include for reference the error rates obtained searching the whole
dataset with the standard grid (grid row).

64 Chapter 4. Experiments

α Num var Train Test Val

1 16 4.045 7.875 6.904

0.5 33 3.694 7.779 6.694

0.25 67 3.335 7.688 6.556

0 135 3.451 7.677 6.531

grid 1080 3.243 7.693 6.585

Table 4.3.22: Sot, RFE, RFR, λ = 0.5,
search in grid with pruned dataset (%)

α Num var Train Test Val

1 16 3.746 8.218 6.925

0.5 33 3.217 8.002 6.669

0.25 135 2.768 7.709 6.578

0 135 2.768 7.709 6.578

grid 1080 2.425 7.728 6.573

Table 4.3.23: Sot, RFE, GBR, λ = 0.5,
search in grid with pruned dataset (%)

α Num var Train Test Val

1 19 3.964 7.794 6.795

0.5 47 3.713 7.725 6.623

0.25 74 3.374 7.713 6.554

0 181 3.402 7.664 6.503

grid 1080 3.243 7.693 6.585

Table 4.3.24: Sot, RFE, RFR, λ = 0.8,
search in grid with pruned dataset (%)

α Num var Train Test Val

1 15 3.745 8.086 6.910

0.5 37 3.239 7.863 6.679

0.25 92 2.825 7.833 6.547

0 92 2.825 7.833 6.547

grid 1080 2.425 7.728 6.573

Table 4.3.25: Sot, RFE, GBR, λ = 0.8,
search in grid with pruned dataset (%)

Subset RFE

Once we have pruned with SRFE, for λ = 0.5 and c = 54 features per subset we obtain
the results of tables (4.3.26) and (4.3.27). For λ = 0.8 and c = 54 features per subset we
obtain the results of tables (4.3.28) and (4.3.29) The columns have the same meaning as
the one defined previously.

α Num var Train Test Val

2 135 3.546 7.679 6.522

1 135 3.546 7.679 6.522

0.5 270 3.463 7.672 6.502

0 270 3.463 7.672 6.502

grid 1080 3.243 7.693 6.585

Table 4.3.26: Sot, SRFE, RFR, λ =
0.5, c = 54, search in grid with pruned
dataset (%)

α Num var Train Test Val

2 270 2.605 7.734 6.562

1 270 2.605 7.734 6.562

0.5 1080 2.425 7.728 6.573

0 1080 2.425 7.728 6.573

grid 1080 2.425 7.728 6.573

Table 4.3.27: Sot, SRFE, GBR, λ =
0.5, c = 54, search in grid with pruned
dataset (%)

α Num var Train Test Val

2 70 3.606 7.669 6.534

1 150 3.565 7.676 6.527

0.5 180 3.217 7.677 6.516

0 180 3.491 7.686 6.514

grid 1080 3.243 7.693 6.585

Table 4.3.28: Sot, SRFE, RFR, λ =
0.8, c = 54, search in grid with pruned
dataset (%)

α Num var Train Test Val

2 70 2.677 7.651 6.612

1 110 2.683 7.667 6.587

0.5 720 2.499 7.695 6.526

0 720 2.499 7.695 6.526

grid 1080 2.425 7.728 6.573

Table 4.3.29: Sot, SRFE, GBR, λ =
0.8, c = 54, search in grid with pruned
dataset (%)

4.3. Wind Energy Prediction problem 65

Boruta

Tables (4.3.30) and (4.3.31) contains the error values after searching in the grid for RFR
and GBR, respectively, after pruning the dataset with the corresponding perc and 100 iter-
ations. We observe that for RFR with considering as perc 100% and for GBR considering
25% we obtain better test results that performing the search in the same grid using our
original whole dataset.

Perc Num var Train Test Val

100 110 3.482 7.672 6.538

75 260 3.333 7.641 6.540

50 388 3.305 7.685 6.526

25 466 3.107 7.662 6.557

grid 1080 3.243 7.693 6.585

Table 4.3.30: Sot, Boruta, RFR, 100
iter, search in grid with pruned dataset
(%)

Perc Num var Train Test Val

100 9 4.001 8.336 7.160

75 17 3.611 7.937 6.884

50 73 2.852 7.759 6.599

25 272 2.540 7.649 6.605

grid 1080 2.425 7.728 6.573

Table 4.3.31: Sot, Boruta, GBR, 100
iter, search in grid with pruned dataset
(%)

Comparative

For RFE, as we observe in tables (4.3.22), (4.3.23), for both RFR and GBR and λ = 0.5
we are able to improve the results obtained with a complete search in the dataset for both
α = 0 and α = 0.25. For λ = 0.8, we must be more selective with the value of α. As we
see, despite being able to get better results for α = 0 for RFR, we cannot obtain better
results for GBR, as a consequence of choosing a smaller number of variables. Then, we
could improve our selection criterion attending not only to the α values but also to the
number of variables selected.

Results for any other parameter set, which can be consulted on the repository of the
Appendix, show a similar behaviour. For RFR and α = 0 we get better or similar results
to the ones we obtain with the whole dataset, whereas for GBR the quality of the search
depends on the parameter set taken initially.

For SRFE, as we observe in tables (4.3.26), (4.3.27), for RFR and λ = 0.5 we are able
to improve the results obtained with a complete search in the dataset any α. For GBR,
we cannot improve the result. Besides, we need to consider bigger values α than in RFE
to obtain reasonable pruning values 11. For λ = 0.8, for both RFR and GBR we improve
the results with any α.

For Boruta, for RFR we improve the results of the search for any percentage of the
shadow value. For GBR, as expected the results is a bit less optimistic but we can improve
the results taking as shadow value the 25%.

As we observe, in general terms for any of the previous techniques we can improve easily
the results obtained for RFR without too much effort, whereas for GBR we need a careful
selection of parameters. If we analyze the results for another set of parameters (available at
the resources repository attached in the Appendix) for RFE, SRFE and Boruta, we obtain
that these results hold. Tables (4.3.32) and (4.3.33) include the number of parameter
sets in which we obtain better results pruning the dataset before executing a search of
parameters for RFE and λ = 0.8 (from a total of 32 parameter sets in the grid) compared

11In contrast to RFE which considers pruned sets of size 2k for k = 1, 2, . . ., for SRFE we consider only
subsets of approximate size 2k for k = v, v + 1, . . . where v is the size of the minimum dataset considered
(v = dlog2(54)e in our examples).

66 Chapter 4. Experiments

to a search in the original (non pruned) dataset. In a similar way, tables (4.3.34) and
(4.3.35) include the same numbers for SRFE and λ = 0.8. The disparity between RFE
and SRFE is due to the small number of variables considered with RFE and α ∈ {0.75, 1},
which means that it is quite important to consider an criterion for defining α which takes
into account the number of selected variables. Defining a value λ� 1 will generate many
intermediate pruning steps and Perc stc, which can give us a good idea about the adequate
α, but at the high cost of many steps in RFE and SRFE which can ruin the advantage
we gain from pruning the dataset for the search. Neither the authors from [20] nor [22]
include an automatic criterion for fixing λ and α, so in this present thesis the values have
been selected ad hoc using the recommendations from [20] 12. Tables (4.3.36) and (4.3.37)
include similar results for Boruta (20 iterations).

α Train Test Val

1 0 0 0

0.5 0 0 0

0.25 0 8 16

0 11 31 32

Table 4.3.32: Sot, RFE, RFR, λ = 0.8,
number of parameter set which improve
the grid

α Train Test Val

1 0 1 0

0.5 0 6 1

0.25 0 13 16

0 1 27 24

Table 4.3.33: Sot, RFE, GBR, λ = 0.8,
number of parameter set which improve
the grid

α Train Test Val

2 0 25 32

1 0 29 32

0.5 6 32 32

0 10 32 32

Table 4.3.34: Sot, SRFE, RFR, λ = 0.8,
number of parameter set which improve
the grid

α Train Test Val

2 0 27 10

1 0 30 19

0.5 0 31 24

0 0 30 28

Table 4.3.35: Sot, SRFE, GBR, λ = 0.8,
number of parameter set which improve
the grid

α Train Test Val

100 0 23 32

75 11 32 32

50 16 30 32

25 12 31 32

Table 4.3.36: Sot, Boruta, RFR, 20 iter,
number of parameter set which improve
the grid

α Train Test Val

100 0 0 0

75 0 15 6

50 0 22 12

25 0 27 24

Table 4.3.37: Sot, Boruta, GBR, 20 iter,
number of parameter set which improve
the grid

For completeness, we include tables containing the average and standard deviation of
the 32 sets of parameters considered. For RFE and λ = 0.8 we have tables (4.3.38) and

12With the seed considered in this section, we can observe that RFE with α = 1, λ = 0.8 takes a dataset
with only 19 variables, which is clearly not enough. In contrast, SRFE with α = 2, λ = 0.8 takes a dataset
with 93 variables, generating much better results. Hence, we should take into account the size of the pruned
dataset when defining α.

4.3. Wind Energy Prediction problem 67

(4.3.39). Tables (4.3.40) and (4.3.41) include similar results for SRFE. Tables (4.3.42) and
(4.3.43) refer to Boruta.

α Train Test Val

1 3.991 ± 0.030 7.831 ± 0.014 6.850 ± 0.020

0.5 3.628 ± 0.146 7.771 ± 0.035 6.687 ± 0.046

0.25 3.542 ± 0.169 7.710 ± 0.028 6.586 ± 0.031

0 3.322 ± 0.130 7.661 ± 0.017 6.512 ± 0.012

grid 3.243 7.693 6.585

Table 4.3.38: Sot, RFE, RFR, λ = 0.8,
mean and std for the 32 sets of parame-
ters

α Train Test Val

1 3.571 ± 0.175 7.949 ± 0.098 6.804 ± 0.065

0.5 3.279 ± 0.374 7.797 ± 0.083 6.658 ± 0.045

0.25 2.980 ± 0.193 7.740 ± 0.078 6.576 ± 0.041

0 2.761 ± 0.450 7.658 ± 0.073 6.554 ± 0.037

grid 2.425 7.728 6.573

Table 4.3.39: Sot, RFE, GBR, λ = 0.8,
mean and std for the 32 sets of parame-
ters

α Train Test Val

2 3.509 ± 0.112 7.681 ± 0.020 6.548 ± 0.016

1 3.440 ± 0.116 7.666 ± 0.018 6.526 ± 0.018

0.5 3.345 ± 0.106 7.659 ± 0.015 6.518 ± 0.013

0 3.340 ± 0.117 7.661 ± 0.017 6.516 ± 0.011

grid 3.243 7.693 6.585

Table 4.3.40: Sot, SRFE, RFR, λ = 0.8,
mean and std for the 32 sets of parame-
ters

α Train Test Val

2 2.84 ± 0.254 7.675 ± 0.065 6.583 ± 0.041

1 2.83 ± 0.359 7.641 ± 0.054 6.557 ± 0.043

0.5 2.797 ± 0.417 7.645 ± 0.049 6.545 ± 0.040

0 2.803 ± 0.575 7.636 ± 0.052 6.536 ± 0.029

grid 2.425 7.728 6.573

Table 4.3.41: Sot, SRFE, GBR, λ = 0.8,
mean and std for the 32 sets of parame-
ters

Perc Train Test Val

100 3.471 ± 0.110 7.643 ± 0.199 6.664 ± 0.724

75 3.301 ± 0.162 7.644 ± 0.093 6.638 ± 0.693

50 3.236 ± 0.148 7.653 ± 0.100 6.635 ± 0.641

25 3.23 ± 0.160 7.655 ± 0.112 6.647 ± 0.664

grid 3.243 7.693 6.585

Table 4.3.42: Sot, Boruta, RFR, 20 iter,
mean and std for the 32 sets of parame-
ters

Perc Train Test Val

100 5.765 ± 0.547 8.582 ± 0.053 7.731 ± 0.066

75 3.628 ± 0.709 7.861 ± 0.225 6.784 ± 0.221

50 2.923 ± 0.229 7.689 ± 0.071 6.584 ± 0.037

25 2.897 ± 0.394 7.662 ± 0.050 6.551 ± 0.055

grid 2.425 7.728 6.573

Table 4.3.43: Sot, Boruta, GBR, 20 iter,
mean and std for the 32 sets of parame-
ters

68 Chapter 4. Experiments

4.4 Conclusions and further work

In this chapter we have seen how pruning the initial dataset not only reduced considerably
the resources needed for the construction of a good predictor but also helped us to obtain
a better regressor, improving slightly the accuracy.

The methodologies we have used to prune each dataset, which are easy to understand,
interpret and implement, allow us to reduce the problem from an initial high space to
another easier to manage with an automatic criterion that the user can tune depending
on the quality of the desired final predictor. They also allow us to simplify a search of
parameters in a grid which outperforms the non pruned dataset easily. Despite as a general
result we have been able to improve the accuracy of our predictor searching in a pruned
dataset with any of the previous strategies, they are strongly different not only in basis
assumptions but also in the type of results and time/memory cost required. Hence, we
should guide our selection not only by the performance obtained but also bearing in mind
the size of final features expected and the hypothesis we assume about the data.

As we have seen, both RFE and SRFE provide simple and trustworthy frameworks to
simplify our problem assuring that the final dataset will be below a fixed number of features.
If our main preoccupation is not the final size but to obtain all the relevant features, Boruta
provides useful strategies to compute the all relevant solution with certain security that we
are not removing useful information. However, as a consequence of the high cost required
for Boruta and the lack of intuitive configuration parameters, simpler strategies like RFE
and SRFE are preferred. The selection between RFE and SRFE would depend mainly on
details from our dataset. For example, we can expect SRFE to be slower than RFE, as it
requires extra preparation steps, but at the same time, it is capable of working with bigger
dataset than RFE splitting them into pieces.

Despite the general approach searched, many points necessary for a complete treatment
of the present problem have not been treated. Among these, some have been analyzed
partially on the Appendix, such as the dependence on the grid and the stability of the
obtained rankings. Also detailed results for other seeds in the grid are added in the
resources repository of the Appendix. Others, such as the results for different feature
relevance metrics (we have used the one given by Scikit), the dependence of the results
on random state have not been treated and are open until the moment. As we have
seen, whereas for RFR the results are reasonably good, for GBR they depend on a deeper
degree on the parameters and the set of parameters taken. Hence the design of a natural
criterion to select an adequate set of parameters (seed) and configuration parameters for
each method is probably the natural continuation of the present work.

Bibliography

[1] Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. “The elements of statistical
learning” Vol. 1. Springer, Berlin: Springer series in statistics, 2001 : Chapters 1, 2,
3, 9, 10, 15.

[2] Breiman, Leo. “Random forests.” Machine learning 45, no. 1 (2001): 5-32.

[3] Quinlan, J. Ross, and Ronald L. Rivest. “Inferring decision trees using the minimum
description lenght principle.” Information and computation 80, no. 3 (1989): 227-248.

[4] Strobl, Carolin, James Malley, and Gerhard Tutz. “An introduction to recursive par-
titioning: rationale, application, and characteristics of classification and regression
trees, bagging, and random forests.” Psychological methods 14, no. 4 (2009): 323-348

[5] Denil, Misha, David Matheson, and Nando De Freitas. “Narrowing the Gap: Random
Forests In Theory and In Practice.” ICML (2014): 665-673

[6] Hernández-Lobato, Daniel, Gonzalo Mart́ınez-Muñoz, and Alberto Suárez. “Empiri-
cal analysis and evaluation of approximate techniques for pruning regression bagging
ensembles.” Neurocomputing 74, no. 12 (2011): 2250-2264.

[7] Mart́ınez-Muñoz, Gonzalo, and Alberto Suárez. “Out-of-bag estimation of the optimal
sample size in bagging.” Pattern Recognition 43, no. 1 (2010): 143-152.

[8] Wager, Stefan, Trevor Hastie, and Bradley Efron. “Confidence intervals for random
forests: the jackknife and the infinitesimal jackknife.” Journal of Machine Learning
Research 15, no. 1 (2014): 1625-1651.

[9] Elith, Jane, John R. Leathwick, and Trevor Hastie. “A working guide to boosted
regression trees.” Journal of Animal Ecology 77, no. 4 (2008): 802-813.

[10] Friedman, Jerome H. “Greedy function approximation: a gradient boosting machine.”
Annals of statistics (2001): 1189-1232.

[11] Friedman, Jerome H. “Stochastic gradient boosting.” Computational Statistics & Data
Analysis 38, no. 4 (2002): 367-378.

[12] Guyon, Isabelle, and André Elisseeff. “An introduction to variable and feature selec-
tion.” Journal of machine learning research 3, no. Mar (2003): 1157-1182.

[13] Saeys, Yvan, Iñaki Inza, and Pedro Larrañaga. “A review of feature selection tech-
niques in bioinformatics.” Bioinformatics 23, no. 19 (2007): 2507-2517.

[14] Vergara, Jorge R., and Pablo A. Estévez. “A review of feature selection methods
based on mutual information.” Neural Computing and Applications 24, no. 1 (2014):
175-186.

69

70 Bibliography

[15] Louppe, Gilles, Understanding Random Forests, PhD dissertation, 2014, University of
Liege

[16] Louppe, Gilles, Louis Wehenkel, Antonio Sutera, and Pierre Geurts. “Understanding
variable importances in forests of randomized trees.” In Advances in neural informa-
tion processing systems (2013): 431-439.

[17] Paul, Jérôme, Michel Verleysen, and Pierre Dupont. “Identification of statistically
significant features from random forests.”, ECML Workshop on Solving Complex Ma-
chine Learning Problems with Ensemble Methods. Prague, Czech Republic, Springer.
2013.

[18] Strobl, Carolin, and Achim Zeileis. “Danger: high power!–exploring the statistical
properties of a test for random forest variable importance.” (2008).

[19] Ishwaran, Hemant. “Variable importance in binary regression trees and forests.” Elec-
tronic Journal of Statistics 1 (2007): 519-537.

[20] Dı́az-Uriarte, Ramón, and Sara Alvarez De Andres. “Gene selection and classification
of microarray data using random forest.” BMC bioinformatics 7, no. 1 (2006): 1.

[21] Tuv, Eugene, Alexander Borisov, George Runger, and Kari Torkkola. “Feature se-
lection with ensembles, artificial variables, and redundancy elimination.” Journal of
Machine Learning Research 10, no. Jul (2009): 1341-1366.

[22] Pan, Feng, Tim Converse, David Ahn, Franco Salvetti, and Gianluca Donato. “Feature
selection for ranking using boosted trees.” In Proceedings of the 18th ACM conference
on Information and knowledge management, ACM (2009): 2025-2028

[23] Kursa, Miron B., and Witold R. Rudnicki. “Feature Selection with the Boruta Pack-
age” Journal of Statistical Software, no. 36, Sep (2010).

[24] Alonso, Álvaro, Alberto Torres, and José R. Dorronsoro. “Random Forests and Gra-
dient Boosting for Wind Energy Prediction.” International Conference on Hybrid Ar-
tificial Intelligence Systems, Springer International Publishing (2015): 26-37

[25] Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel et al. “Scikit-learn: Machine learning in
Python.” Journal of Machine Learning Research 12, no. Oct (2011): 2825-2830.

[26] Fanaee-T, Hadi, and Gama, Joao, Event labeling combining ensemble detectors and
background knowledge, Progress in Artificial Intelligence (2013): pp. 1-15, Springer
Berlin Heidelberg.

[27] Daniel Homola Boruta implementation for Python, https://bitbucket.org/

danielhomola/boruta_py/, 2015.

[28] Lu, Yijuan, Ira Cohen, Xiang Sean Zhou, and Qi Tian. “Feature selection using prin-
cipal feature analysis.” In Proceedings of the 15th ACM international conference on
Multimedia, ACM (2007): 301-304

https://bitbucket.org/danielhomola/boruta_py/
https://bitbucket.org/danielhomola/boruta_py/

Appendix A

Code

A.1 Code for experiments

The code used for the experiments and additonal resources can be found in

https://bitbucket.org/alvarorrol/tfm_code/

https://bitbucket.org/alvarorrol/tfm_resources/

A.2 Scikit

As we mentioned in the introduction, there are several software packages which are useful
for dealing with Trees. We have used Scikit package (version 0.17) because

• It has a very simple and powerful interface at the same time.

• It has very good documentation.

• It has a great collection of developers and users, improving continuously the package.

• It has all the simplicity of Python.

The code has been ported partially to Cython and has experienced a great improvement
in speed and performance during the latest releases of the package, as we can see in (A.2.1).

Figure A.2.1: Accelerating Random Forests in Scikit slides, from G Louppe

Besides, for Random Forest (RF) it incorporates native parallelization using joblib.
This means Scikit is the better package to work with RF, as (A.2.1) shows.

For Gradient Boosting (GB), Decission Trees (DT) and Linear Methods it is possible
to use the usual multiprocessing library from the standard library for computing a big grid.

71

https://bitbucket.org/alvarorrol/tfm_code/
https://bitbucket.org/alvarorrol/tfm_resources/

72 Appendix A. Code

A.2.1 Trees common interface

Trees are the main ingredient to build ensemble methods like Random Forest Regressors
and Gradient Boosting Regressors. A brief description of the interface has been described
in the chapters above, but to have a complete view of the parameters which have driven
the Tree building process, we attach the main details taken directly from the Scikit docu-
mentation:

• criterion: The function to measure the quality of a split. The only supported criterion is mse (for
the mean squared error).

• splitter: The strategy used to choose the split at each node. Supported strategies are best to choose
the best split and random to choose the best random split.

• max features: The number of features to consider when looking for the best split

• max depth: The maximum depth of the Tree. If None, then nodes are expanded until all leaves are
pure or until all leaves contain less than min samples split samples.

• min samples split: The minimum number of samples required to split an internal node.

• min samples leaf : The minimum number of samples required to be at a leaf node.

• min weight fraction leaf : The minimum weighted fraction of the input samples required to be at a
leaf node.

• max leaf nodes: The maximum number of leafs required to be at a leaf node.

All the detailed documentation for Trees can be found at Scikit Decision Tree Regressor
documentation.

A.2.2 DTR, RFR and GBR interfaces

The package Scikit has an implementation of CART Tree in the class DecisionTreeRegres-
sor , Random Forest Regression in the class RandomForestRegressor and Gradient Boosting
Regression in the class GradientBoostingRegressor .

The parameters to tune the Tree building process and their default values are the
following:

DTR: {criterion=’mse’, splitter=’best’, max_depth=None, min_samples_split=2,

min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None,

random_state=None, max_leaf_nodes=None}

RFR: {n_estimators=10, criterion=’mse’, max_depth=None, min_samples_split=2,

min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,

max_leaf_nodes=None, bootstrap=True, oob_score=False, n_jobs=1,

random_state=None, verbose=0, warm_start=False}

GBR: {loss=’ls’, learning_rate=0.1, n_estimators=100, subsample=1.0,

min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,

max_depth=3, init=None, random_state=None, max_features=None, alpha=0.9,

verbose=0, max_leaf_nodes=None, warm_start=False}

The returned predictors have several attributes; among them we have the list fea-
ture importances , which contains the estimation of feature relevance.

http://scikit-learn.org/stable/modules/tree.html
http://scikit-learn.org/stable/modules/tree.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html

Appendix B

Additional results

B.1 Quality of Tree feature relevance as a tool to prune

With the intention of measuring the quality of our dataset simplification, we should com-
pare the accuracy of several predictors after a reduction of the number of features with
different strategies. Tables (B.1.1) and (B.1.2) contain the test error for the Sotavento
problem and for different feature reduction and dimensionality reduction techniques intro-
duced in the theory chapters.

As we observe, simple strategies like Variance pruning (filter method which removes
variables with small variance) are not quite effective holding informative features. More
complex methodologies like PCA improves the error obtained, but are still above our
pruning using the feature relevance obtained from RFR and GBR. F est, which refers to
the feature estimation using the F ratio of error, gives us much better results, although it
is slightly above our technique in most of the situations.

Perc RFR PCA Variance F est

1 7.943 9.043 15.878 8.202

2 7.860 8.992 15.592 7.816

5 7.714 9.180 13.941 7.802

10 7.678 9.318 16.017 7.861

20 7.653 9.511 8.838 7.826

Table B.1.1: Sot, RFR, Test error prun-
ing the dataset with optimal parameter.

Perc GBR PCA Variance F est

1 8.249 8.603 15.047 8.353

2 8.055 8.477 15.068 7.943

5 7.781 8.277 13.210 7.748

10 7.738 8.496 15.145 7.861

20 7.686 8.584 8.691 7.798

Table B.1.2: Sot, GBR, Test error prun-
ing the dataset with optimal parameter.

B.2 Extended grid

The performance of the estimation will depend completely on the set of parameters fixed.
Hence, we have to face the dilemma of choosing a big grid which represents the parameter
space with certain detail or a small one with is cheap to compute. Most of the times we
will estimate, using the nature of the problem and the dataset associated, a small subset of
parameters from the whole space that we think can contain a good approximation to the
optimal one. However this will mean some time and initial attempts which will consume
our precious time if we do not have an idea of the cost of each operation. As the BS and
Sotavento problems are easy problems, we can ask ourselves about the cost of computing
the grid and obtain certain general results.

73

74 Appendix B. Additional results

B.2.1 BS problem

The following graphs show us the comparison between our grid and the extended grid.
Figures (B.2.1) contain the time and error distributions using the standard grid (in red)
and the extended grid (in blue) 1.

Each row represents the DTR, RFR and GBR regressors respectively (top-down), while
each column represents the time, train error, test error and validation error respectively
(from left to right).

With respect to the images, we can observe that our decisions for the standard grid of
DTR can be considered a reasonable description. On the other hand and as we partially
expected, for RFR and GBR the standard grid does not contain a good representative
section of the parameter space, because our error distribution is biased towards high values
in the extended grid. However, at least, the grid is distributed in the low time values of
the extended grid.

Figure B.2.1: BS: time, train, test, val error in grid-egrid (left-right).
For DTR, RFR and GBR problem (top-down).

Figures (B.2.2) include the distribution of relevance for both grids. With respect to the
distribution of feature relevance, whereas DTR does not hold a uniform behaviour, RFR
and GBR show us that our standard grid was a good option. In general terms, the feature
relevance distribution given by DTR is not stable while the one given by RFR or GBR is
(more or less) stable. We can consider then than our selection of parameters for RFR and
GBR is a good option to obtain a general description of the feature relevance distribution,
even being cheap to compute as we have seen in the time distribution.

1As the extended grid contains more elements, the figures have been graphed with 10 bins for the
standard grid and a number of bins for the extended grid such that the number of items per bin, in average
terms, is equal for both representation (so for example, if we have 81 elements in the standard grid and
10 bins, we have an average of 8 items per bin, so if the extended grid has 2592 items we should have
approximately 320 bins for the extended grid).

B.2. Extended grid 75

Figure B.2.2: BS: DTR, RFR and GBR, distribution of feature relevance for both grids.

Table (B.2.1) contains the times needed to compute both grids for each method. We
observe that the time cost goes up easily just duplicating the number of options for each
parameter, especially for ensemble methods. Hence, we must be extremely careful when
building a grid for parameter search. In our example, we have duplicated the number of
options for each feature of the grid and we have converted a search of < 2 minutes in a
problem of > 1 hour, perhaps without any real gain because many set of parameters can
de discarded with an analysis of the problem.

Problem Grid Extended Grid

DTR 1.224 32.129

RFR 111.066 6247.688

GBR 82.232 5583.407

Table B.2.1: BS: time(s) for the grid and the extended grid.

B.2.2 Sotavento

The following graphs show us the comparison between our grid and an extended grid,
which contains the previous one as a subset. Figures (B.2.3) contain the time and error
distribution using the standard grid (red) and the extended grid (blue).

The structure is identical to BS. As we observe for the Tree predictors the first image
of each row of images, which depicts a time distribution, shows us that our initial grid
is distributed in the lower values of the extended grid, as we expected. However, the
distribution of errors is not strongly shifted towards high value of the distribution of error,
as we could expect initially from our simple grid. For example, the error patterns of the
testing (third) and validation (fourth) images show us that the selection of a simple grid
can be representative of a bigger and more complex extended grid.

We also observe that whereas the error from RFR is concentrated the one from DTR
and GBR is more dispersed. The reason for a big separation in each group of errors in
RFR is our choice of depth values.

As in the previous situation, the distribution of relevance for both the standard grid
and the extended grid are also similar (one pending issue is then defining the proximity of
the distributions).

76 Appendix B. Additional results

Figure B.2.3: Sot: time, train, test, val error in grid-egrid (left-right).
For DTR, RFR and GBR problem (top-down).

B.3 Randomness

As we have stated both in the theoretical and experimental chapters, DTR, RFR and
GBR use certain randomness in the training process. Analyzing the repository for DTR
we found that the Cython code uses a 32bit XorShift random generator. The code is:

rand_r replacement using a 32 bit XorShift generator

See http :// www. jstatsoft.org/v08/i14/paper for details

cdef inline UINT32_t our_rand_r(UINT32_t* seed) nogil:

seed [0] ^= <UINT32_t >(seed [0] << 13)

seed [0] ^= <UINT32_t >(seed [0] >> 17)

seed [0] ^= <UINT32_t >(seed [0] << 5)

return seed [0] % (<UINT32_t >RAND_R_MAX + 1)

The referenced paper gives us an idea about the implementation. This random gener-
ator is used through two wrapper functions, which generate random integers and doubles.

cdef inline SIZE_t rand_int(SIZE_t low , SIZE_t high ,

UINT32_t* random_state) nogil:

""" Generate a random integer in [0; end)."""

return low + our_rand_r(random_state) % (high - low)

cdef inline double rand_uniform(double low , double high ,

UINT32_t* random_state) nogil:

""" Generate a random double in [low; high)."""

return ((high - low) * <double > our_rand_r(random_state) /

<double > RAND_R_MAX) + low

B.3.1 Stability of the solution

As we have stated, we use the validation set to rank the subsets of parameters from the
grid we have built. However, as the process of building Trees involves some randomness, we
have to assure some stability for the results. Although all the experiments in the present

B.3. Randomness 77

work use a fixed initial random state for the random generators (random state = 0) we are
also interested on discovering the dependence on this seed.

For that, we can design different procedures. We have decided to obtain several ranking
of parameters and apply some metrics to measure the distance between our solution lists.

We have used as metric the minimum number of swaps to convert one list into others 2.
This metric is useful to compute the disorder of the rankings and gives a clear idea about
the stability of the ranking. However this metric does not take care of the order of the
list (we are comparing rankings, no lists). Hence we can use diminishing weights when we
compare elements, in such a way that only top elements are important. We are using as
metrics the ones described in (B.3.1).

The element p is the permutation needed to transform the first list into the second one.
We iterate through each element of each permutation adding the previous quantities and
later we average. The images in (B.3.1) includes the distribution of both metrics for all
the permutations of five elements (we are working with list of 32 elements for RFR, GBR
and 81 elements for DTR, so computing the distribution for this values is not possible but
can give us an idea about the range as for big j and p[k] the value to add goes to 0 fast).

For the BS problem, we have repeated the training process 100 times using the standard
grid, obtaining the results described in the table (B.3.2).

Statistic nswaps+ =

Metric1 I(p[j]!=j)

2p[j]+j

Metric2 abs(p[j]−j)
2p[j]+j

Table B.3.1: BS: Metric description.

Statistic DTR RFR GBR

Swaps 63 6 4

Metric1 0.303 0.091 0.408

Metric2 0.448 0.120 0.598

Table B.3.2: BS: Stability of the rank-
ings. 100 repetitions.

For n total list we have n(n−1)/2 comparisons between rankings. For the swap metric,
in general terms, we have obtained a considerable variation for DTR 3 , but a small one for
RFR and GBR. With respect to the ranking metrics, we have obtained a small variability
for RFR and a big one for DTR and GBR. Bearing in mind the average number of swaps,
we understand the result for DTR. With respect to GBR, a careful observation of the
rankings shows us that although there are just a few swaps in the lists, they are elements
in the top. Our selection of the depth modifies the top elements of the list depending on
the seed used. Hence, we can conclude that in general sense both RFR and GBR are stable
with respect to the initial random state.

Figure B.3.1: Distribution of metric1 (left) and metric2 (right) for permutations of 5 items.

2Code can be consulted on the repository.
3Then it is difficult to talk about optimal set of parameters for a DTR regressor if we concentrate only

on the parameters of the Tree.

	Contents
	Introduction
	Motivation
	Some example problems
	The formal problem
	The state of the art
	Focus of the present work
	Distribution of the work

	Theory
	Supervised Learning
	Bias Variance Tradeoff

	Linear Models
	Penalty methods

	Trees
	Building regression Trees
	Stopping learning and pruning
	Error estimation and cost
	CART Trees
	Building a Tree with Scikit

	Bootstrap aggregating (bagging)
	Random Forest
	Bias and Variance
	Proximity
	Regularization
	Cost
	Building a random forest with Scikit

	Boosting methods (boosting)
	Gradient Boosting
	Gradient Boosting problem
	Gradient descent algorithm
	Loss functions
	Regularization
	Cost
	Building a gradient boosting regressor with Scikit

	Feature reduction
	Dimensionality reduction
	PCA
	PCA and SVD
	Dimensionality reduction

	Feature selection
	Formal problem
	Filter methods
	Univariate
	Multivariate

	Wrapper methods
	Best Subset Selection
	Forward and Backward Stepwise Selection
	Forward-Stagewise Regression

	Embedded methods
	Feature selection with Linear methods
	Feature selection with Trees
	Feature selection with Scikit

	Feature selection with Random Forest
	Alternative definition
	Feature selection with Scikit

	Feature selection with Gradient Boosting
	Alternative definition
	Feature selection with Scikit

	Pruning variables with Trees
	Recursive Feature Elimination (RFE)
	Boruta
	Subset RFE (SRFE)
	Comparative

	Experiments
	Parameters and methodology
	Bike Sharing problem
	Distribution of feature relevance
	Pruning the dataset using feature relevance
	Searching

	Wind Energy Prediction problem
	Distribution of feature relevance
	Pruning the dataset with FR
	Pruning
	Grid Search After Pruning

	Conclusions and further work

	Appendix Code
	Code for experiments
	Scikit
	Trees common interface
	DTR, RFR and GBR interfaces

	Appendix Additional results
	Quality of Tree feature relevance as a tool to prune
	Extended grid
	BS problem
	Sotavento

	Randomness
	Stability of the solution

