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A-posteriori Typing for Model-Driven Engineering
Juan de Lara, Esther Guerra, Jesús Sánchez Cuadrado

Universidad Autónoma de Madrid

Abstract—Model-Driven Engineering is founded on the ability
to create and process models conformant to a meta-model. Hence,
meta-model classes are used in two ways: as templates to create
objects, and as classifiers for them. While these two aspects
are inherently tied in most meta-modelling approaches, in this
paper, we discuss the benefits of their decoupling. Thus, we
rely on standard mechanisms for object creation and propose
a-posteriori typing as a means to reclassify objects and enable
multiple, partial, dynamic typings. This approach enhances flex-
ibility, permitting unanticipated reutilization (as existing model
management operations defined for a meta-model can be reused
with other models once they get reclassified), as well as model
transformation by reclassification. We show the underlying theory
behind the introduced concepts, and illustrate its applicability
using our METADEPTH meta-modelling tool.

Index Terms—A-posteriori typing, Model typing, Partial typ-
ing, Dynamic typing, Flexible MDE

I. INTRODUCTION

Model-Driven Engineering (MDE) has traditionally promoted
a “top-down” approach, where classes are used to create
instances, which in their turn are classified by those classes.
This kind of typing is called constructive [1], because classes
are used both to create and classify instances, and both aspects
(creation and classification) cannot be separated.

Constructive typing is mainstream but lacks flexibility. For
example, the SMOF standard [19] discusses the rigidity of MOF
to model objects that need to change their type dynamically
without losing their identity (e.g., a conference system where
a Student becomes Professor), or to represent objects holding
several classifiers (e.g., a person that is classified as both Author
and Reviewer when he has authored and reviewed articles). The
unmodifiability of classifiers also hinders reuse. This is so as,
to reuse an operation (e.g., a model transformation) defined
over a meta-model MMA for another meta-model MMB , the
usual solution is to transform the instances of MMB into
MMA. Alternatively, the operation could be rewritten in terms
of MMB . However, neither alternative is fully satisfactory.
The first one is heavyweight, difficulting traceability w.r.t. the
original model. The second is costly and error-prone. Instead,
being able to reclassify instances of MMB as instances of
MMA would simplify the problem.

Decoupling typing from instantiation is a well-known
technique to promote reuse and ease the adaptation of existing
code in object-oriented programming. For example, in Java,
objects are created by constructors and get classified by the
classes used to create them. However, there are additional
mechanisms (like interfaces) which allow focussing on a subset
of properties that objects require in order to achieve certain
functionality. Hence, interfaces decouple classification from the

creation type, permit several classifiers for an object, and enable
reusability. Dynamic reclassification has also been realized in
some object-oriented languages [9] to allow objects to change
their class membership at runtime, which decouples even further
classification from creation. In contrast, most MDE approaches
use static constructive typing, which results in more restricted
possibilities for modelling and reuse.

In this paper, we enable reclassification by separating the cre-
ation and classification types of objects, where already created
instances can be assigned additional types for classification, and
the type may change at runtime. Our aim is to provide a more
flexible typing in MDE, which becomes multiple, partial, and
dynamic. For this purpose, we define an a-posteriori typing that
permits classifying objects by classes different from the ones
used to create the objects. A consequence of this approach is
that model management operations become highly reusable as,
similar to Java interfaces, we can design meta-models whose
primary goal is not object creation, but to serve as a type for
model management operations.

We provide two ways to specify a-posteriori typings: at
the type and at the instance level. The former induces a
static relation between two meta-models, so that instances
of one can be seen as instances of the other. This is similar
to the implements relation between Java classes and interfaces.
The second possibility allows classifying particular objects by
defining queries assigning a given type to the result of the query.
This typing is dynamic because classification may depend on
the runtime values of objects, and therefore change whenever
such values evolve. The first kind of typing is just a special
case of the second. Moreover, we present a set of techniques
to analyse dynamic type safety and type-level reclassification.
As a proof-of-concept, we show an implementation in our
METADEPTH [5] tool, and discuss several applications.
Organization. Sec. II overviews typing alternatives in MDE.
Sec. III presents our two ways to specify a-posteriori typings.
Sec. IV describes some analysis possibilities for typing spec-
ifications. Sec. V describes tool support, and Sec. VI shows
examples and applications of a-posteriori typing. Sec. VII
discusses related work, and Sec. VIII concludes.

II. A PANORAMA OF TYPINGS FOR MDE

Fig. 1 summarizes several alternatives regarding typing that
meta-modelling approaches may adopt, namely:
• Classification time. Object classification can be determined

when the object is created (constructive typing), or new clas-
sifiers can be added later (a-posteriori typing). In constructive
typing, types are used to create instances, and the type of an
instance is only the type that was used to create it. Hence,
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Fig. 1: Alternatives for typing
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Fig. 2: (a) Constructive typing. (b) A-posteriori typing

creation and classification are inseparable. This is the usual
approach in MDE. Fig. 2(a) shows a constructive typing
example where class Task is used to create object review,
becoming its only classifier.
Instead, in a-posteriori typing, object creation and classifica-
tion are separated, and objects may have other types besides
the constructive types. The a-posteriori types do not need to
be assigned statically when the creation class is defined, as
is the case with interfaces, but they can be added on demand.
Fig. 2(b) shows an example, where the previously created
object review is assigned the types Schedulable and Measurable
(shown as stereotypes) from two different meta-models. In
this way, the model has a constructive typing w.r.t. the Tasks
meta-model, and two a-posteriori typings w.r.t. the Scheduling
and Measuring meta-models. A-posteriori typings are proper
typings; therefore, any model management operation defined
over Scheduling or Measuring gets applicable on the model.

• Dynamicity. The type of an object may be unmodifiable
(static), or it may change over time as the object evolves
(dynamic). The latter is useful if we need to classify an
object according to its properties. For instance, the bottom-
left model in Fig. 3 has the Tasks meta-model as constructive
type, and is typed a-posteriori w.r.t. the upper right meta-
model for conference reviewer assignment. The a-posteriori
typing classifies each Person object as Author if he is owner
of some article resource, or as Reviewer if he is assigned a
task with name “rev”. When the model evolves (bottom-right),
the new review task t2 is assigned to person p2, and hence,
he gets classified as Reviewer. While constructive typing is
inherently static, a-posteriori typing can be dynamic.

• Number of classifiers. Some type systems may allow several
classifiers, none subtype of the others, to share common in-
stances. Hence, some objects may receive multiple classifiers
from the same meta-model. Constructive typing does not
support this but a-posteriori typing may enable this feature.

* topics 
* 

* 
res 

Task 
start: Date 
duration: int 
name: String 

Tasks meta-model (constructive types) 

Resource 

Person 
owner 

assigned 

1..* 1..* 

0..3 

reviews Article 
title: String 

Conference meta-model (dynamic types) 

Reviewer 

Author authors 

Topic 
desc: String 

«Author» 
p2: Person 

«Reviewer» 
p1: Person 

«Article» 
r: Resource 

:owner 

t1:Task 

start: 8/5/15 
duration: 30 
name: “rev” 

:res 

:assigned 
«Author,Reviewer» 

p2: Person 
«Reviewer» 

p1: Person 

«Article» 
r: Resource 

:owner 

t1:Task 
start: 8/5/15 
duration: 30 
name: “rev” 

:res 

:assigned 

«Author» 
p3: Person 

«Article» 
s: Resource 

:owner 

t2:Task 
start: 9/5/15 
duration: 30 
name: “rev” 

:res 

:assigned 

the model 
changes 
and gets 
retyped 

creation «instance of» 

model 

Fig. 3: Dynamic typing, multiple classifiers for objects

For example, in the bottom-right model of Fig. 3, p2 is
typed a-posteriori as Author and Reviewer. Some systems like
SMOF permit declaring the set of potential classifiers that
instances of a given type can adopt (feature bounded in Fig. 1).
The UML [18] also supports overlapping instances through
annotation overlapping on generalization sets.

• Number of model types. Besides the constructive type, a
model can be typed a-posteriori by 0 or more meta-models.
For example, the model in Fig. 2(b) is typed a-posteriori by
both meta-models Scheduling and Measuring.

• Totality. Constructive typing is total, as instances always
receive a type from the instantiated meta-model. In contrast,
a-posteriori typing can be partial if it is allowed to have model
elements (objects, links or fields) without an a-posteriori type.
For example, Task instances in Fig. 3 lack an a-posteriori
type. Similarly, the model in Fig. 2(b) is partially typed w.r.t.
the Scheduling meta-model because fields duration and name
aren not typed by this meta-model.

• Levels of typing. In standard frameworks, like EMF, the
workspace only manages two meta-levels at a time (meta-
models and models). We call them two-level. Instead, multi-
level approaches [7] permit working with models at any
number of meta-levels simultaneously, and the types defined
in a meta-level can influence the instances several meta-levels
below (instead of just the ones at the next level).

We can classify existing meta-modelling approaches based
on the previous features. For example, the typing in MOF and
EMF is constructive, static, total, allows a single classifier for
objects, a single meta-model to type a model, and is two-level.
SMOF is more flexible, as it supports a-posteriori, dynamic,
total typings, as well as assigning (bounded) multiple classifiers
to objects, and typing models by a single meta-model. As we
will see later, our modelling tool METADEPTH enables a-
posteriori, dynamic, partial typings, while objects can have
multiple a-posteriori classifiers, models can be typed by several
meta-models, and supports multi-level modelling.

III. A-POSTERIORI TYPING

In this section, we examine two ways to specify a-posteriori
typings: at the type and at the instance levels. The former
is a particular case of the latter, but it provides a concise
specification mechanism and facilitates analysis (see Sec. IV-B).
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Fig. 4: Specification of a-posteriori typing at the type-level

A. Type-level a-posteriori typing

The specification of a-posteriori typings at the type-level
is given by a (static) relation between two meta-models: a
“creation” meta-model MMC containing the constructive types,
and a “role” meta-model MMR containing the a-posteriori
types. This relation maps classes, attributes and references
from MMC to those of MMR. Fig. 4 shows an example. The
typing specification maps class Task to Schedulable, attribute
start to date, and it conceptually defines a derived attribute
months that gets bound to span. This way, Schedulable, date and
span become a-posteriori types of Task instances.

This relation is similar to the binding specification of [4],
and to the model subtyping relation of [12] (but allowing
overlapping classes). In the remaining of this section, we
describe the features of this specification mode using an
informal style to enhance comprehension.

A type-level specification is a collection of partial functions
TS = {tsi}i∈I from elements of MMC (classes, attributes,
references) to elements of MMR. Functions are partial because
not every element of MMC needs to be mapped to an element
of MMR. It is a collection to permit elements in MMC to
be mapped to several elements in MMR, and hence enable
multiple simultaneous classifiers. The functions in the collection
do not need to be jointly surjective, because some elements of
MMR might be unmapped (just like a class in a meta-model
may lack instances).
Notation. We use A ∈MMC for a class A belonging to MMC .
A.a means that a is a feature (attribute or reference) defined
in A or a superclass. We sometimes refer to features by a
(without a prefix class name). sub(A) is the set of subclasses
of A, and sub∗(A) = {A} ∪ sub(A). atts(A) and refs(A)
are the sets of attributes and references of A, both owned
and inherited. feats(A) = atts(A) ∪ refs(A). abs(A) is a
function stating whether class A is abstract, while mand(a)
denotes that feature a is mandatory. Given a reference A.r,
tar(A.r) is the class r points to. Finally, type(s) and type(o)
return the type of a slot s and an object o.

Type-level a-posteriori specifications must obey the following
well-formedness rules:

1) Classes of MMC cannot be mapped to abstract classes
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Fig. 5: Type-level specification examples. (a) Incorrect typing:
missing binding for mandatory feature B’.a’. (b) A-posteriori
types with overlapping instances. (c) Redundant specification.

of MMR: ∀A′ ∈MMR • tsi(A) = A′ =⇒ ¬abs(A′)
2) The features of a class A ∈MMC should be mapped to

features of the class A is mapped to: ∀a ∈ feats(A) •
tsi(A.a) = a′ =⇒ a′ ∈ feats(tsi(A))

3) A feature in MMC can only be mapped to a feature in
MMR with the same or ampler cardinality interval.

4) The target of a reference A.r should be mapped to the
target of the reference r is mapped to, or to a subclass:
∀r ∈ refs(A) • tsi(A.r) = r′ =⇒ tsi(tar(A.r)) ∈
sub∗(tar(tsi(A.r)))

5) A non-composition reference in MMC cannot be mapped
to a composition reference in MMR.

6) If a class A′ ∈ MMR is mapped by a class of MMC ,
all mandatory features of A′ should be mapped as well:

∀A′ ∈MMR • tsi(A) = A′ =⇒
∀a′ ∈ feats(A′) •mand(a′) =⇒
∃a ∈ feats(A) • tsi(A.a) = A′.a′

(1)

This condition is needed to emulate correct instantiations.
Fig. 5(a) shows an example of incomplete specification,
as a binding from some feature of B to B’.a’ is missing.

To enhance flexibility, type-level specifications are allowed
to define virtual derived features (attributes or references), to
be mapped to features of MMR. This is useful when the
mapping between some aspect of MMC and MMR is not
direct, but requires adaptation. The type-level specification in
Fig. 4 illustrates this possibility, as it defines a derived attribute
months, mapped to attribute span of Schedulable. A derived
feature A.da is defined by an expression that gets evaluated in
the context of objects of type A. Derived features are mapped
following the same rules as non-derived features, from a virtual
meta-model extension of MMC that incorporates all derived
features defined by the a-posteriori specification.

Given a model M instance of MMC , it is retyped according
to TS = {tsi} (written TS(M)) by composing the types from
MMC and each tsi as follows:

• An object o of type A ∈ MMC is retyped to tsi(A),
and indirectly, to the superclasses of tsi(A). Moreover,



it inherits the a-posteriori types of the superclasses of A
(see Fig. 5(b)).

• A slot or link o.s of type A.a ∈ MMC is retyped to
tsi(A.a).

It is remarkable that our typing specification does not define
any condition to preserve the compatibility of inheritance
hierarchies in MMC and MMR, in contrast with other
approaches to relate meta-models [13]. This happens because
we enable more flexible typings, where a-posteriori types may
have overlapping instances. For example, in Fig. 5(b), two
classes A and B related by subtyping get mapped to two
independent classes A’ and B’ respectively. As a consequence,
the instances of B will be typed a-posteriori by both A’ (because
B inherits the a-posteriori typing from A) and B’. Hence, A’ and B’
may have common instances. “Reversing” inheritance relations
in MMC in MMR is not problematic either, as Fig. 5(c) shows.
In this case, the mapping ts(B) 7→ B′ becomes redundant
because it assigns to B the same a-posteriori types that B
already inherits from A (i.e., A’ and B’).

It is interesting to analyse the features that type-level a-
posteriori specifications yield:

• Objects with different creation type may have the same
a-posteriori type if their classes are mapped to the same
class in MMR. That is, if given two classes A and B
of MMC , we have that tsi(A) = tsj(B). In a weaker
version, A and B become related if tsi(A) and tsj(B),
or A and B, share a common ancestor class.

• Objects with same creation type cannot have different
a-posteriori types. This is not possible because each tsi
maps classes to classes, and is not able to select a subset
of the instances of a class.

• Objects whose creation type and its supertypes are not
mapped to a role meta-model class, lack an a-posteriori
type. This is possible because each tsi can be partial.

• Objects may have several a-posteriori types (i.e., types
in the role meta-model can have overlapping instances).
This is so if tsi, tsj map a class A ∈ MMC to several
classes in MMR. As above mentioned, another source
of overlapping instances is the existence of inheritance
relationships between the classes that participate in the
typing specification (see Fig. 5(b)). Constraining the
specification TS to be a single function instead of a
collection, and adding an additional rule to preserve
the compatibility of inheritance hierarchies in MMC

and MMR, would yield type-level specifications where
a-posteriori types do not have overlapping instances.
Restricting our typing specification to be non-overlapping
and not multiple, yields the meta-model relations defined
in [13]. Implementations may restrict overlapping to occur
only between selected annotated classes of MMR, as
UML and SMOF do.

• The defined a-posteriori typing is not dynamic. This means
that the assigned a-posteriori types do not change when
the model evolves. Although one could define additional
a-posteriori types, the existing ones do not change. This
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Fig. 6: Specification of a-posteriori typing at the instance-level

is so because the type assigned by TS depends statically
on a class from MMC .

Further analysis of retypings will be given in Section IV.
Once an instance model M of MMC is retyped by TS

to MMR, we can manipulate M via operations defined over
MMR. Retyping M by TS produces a virtual view of M ,
which is seen as an instance of MMR. Every read operation
defined over MMR is safe over TS(M). Writing a feature
A′.a′ ∈ MMR is only possible if the source feature A.a ∈
MMC such that ts(A.a) = A′.a′ is not derived. For multi-
valued features (i.e., with upper cardinality bigger than 1),
adding an element is safe if the source feature in MMC has
the same cardinality. For writing, compositions in MMC can
only be mapped to compositions in MMR. New objects of
type A′ ∈MMR can be created by an operation defined over
MMR if A′ is not mapped from two different classes of MMC .
If it receives more than one mapping, it is not possible to know
which class in MMC should be instantiated. Moreover, if the
class A ∈MMC such that ts(A) = A′ has unmapped features,
the operation defined over MMR will not be able to initialize
them when creating objects of type A′.

Next, we present a more expressive approach to specify
a-posteriori typings at the instance level, and show how to
translate type-level specifications into them.

B. Instance-level a-posteriori typing

The specification of a-posteriori typings at the instance-level
consists of queries that are evaluated over the model to be
typed, and their results are assigned types from the role meta-
model. Fig. 6 shows an example of instance-level specification,
where the first two lines assign the a-posteriori type Schedulable
to all tasks with duration less than 80, and therefore, object
review gets this type a-posteriori, but not object writing.

An instance-level a-posteriori typing specification from a
creation meta-model MMC to a role meta-model MMR is a
collection of partial functions IS = {isi}i∈I from instances
of MMC (objects, slots and links) to elements of MMR

(classes, attributes and references). It must fulfil the same
well-formedness rules as type-level specifications, though at
the instance-level, with some particularities we discuss next.

In particular, function isi(osetj) 7→ Cj maps sets of objects
from a model M instance of MMC , to classes in MMR. The
set of objects can be obtained in any way; in this paper, we
assume they are gathered using OCL expressions. We write



expi(M) 7→ oseti to denote a function taking a model M of
MMC and returning a set oseti of its objects. Like in type-
level specifications, if isi(osetj) 7→ Cj , then objects in osetj
are assigned type Cj and every supertype of Cj .

Slots have to be mapped in the context of objects. Therefore,
to map slots, isi takes two arguments isi(osetj , s) 7→ Cj .fk.
This means that slot s in every object of osetj is mapped to
attribute Cj .fk. The mapped slot s should be valid in every
object of osetj : ∀o ∈ osetj • type(o.s) ∈ atts(type(o)). Such
slots should be compatible with the class osetj is mapped to.
That is, if isi(osetj) = Cj , then isi(osetj , s) = Cj .fk, where
fk ∈ atts(Cj). This corresponds to well-formedness rule 2 of
type-level specifications.

Links are mapped similarly. If we have isi(osetj , l) 7→
Cj .rk, then we require l to be valid in every object in
osetj and isi(osetj) = Cj . Moreover, the objects that
result from evaluating l in every object of osetj should
be compatible with tar(Cj .rk). More formally: osetj →
collect(o|o.l) ⊆ is−1∗i (tar(Cj .rk)), where is−1∗i (A) is the set⋃

isi(osetj)∈sub∗(A) isi(osetj). The equivalent rule at the type
level is stronger (rule 4), as it demands compatibility between
the type of the link and the mapped reference tar(Cj .rk). At
the instance level, the condition is relaxed to consider the actual
type of the objects in set osetj .

Similar to the type-level case, mandatory features in MMR

should get a mapping from some slot in IS:

∀A′ ∈MMR • isi(osetj) = A′ =⇒
∀a′ ∈ feats(A′) •mand(a′) =⇒
∃ s • isi(osetj , s) = A′.a′

(2)

Finally, instance-level specifications allow the specification
and mapping of derived features, which should obey the same
well-formedness rules as non-derived features.

Instance-level specifications are more expressive than the
type-level ones, leading to typings with the following features:
• Objects with different creation type may have the same

a-posteriori type, if these objects are selected by queries
mapped to the same class in the role meta-model.

• Objects with same creation type may have different a-
posteriori types. This is possible if several queries select
objects with same creation type, but they are mapped to
different classes in the role meta-model.

• Objects that are not selected by any query lack an a-
posteriori type. This is possible because the defined a-
posteriori typing can be partial.

• Objects may have several a-posteriori types, if selected by
various queries and mapped to different MMR classes.

• The defined a-posteriori typing can be dynamic. This is
possible if an object changes its attribute values in such
a way that it becomes selected or deselected by different
queries. For example, in Fig. 6, modifying writing.duration
to 30 makes writing Schedulable, while setting review.duration
to 81 makes review to drop its Schedulable type.

Any type-level specification TS = {tsi}i∈I can be translated
to an instance-level specification IS = {isi}i∈I , building the
mappings isi ∈ IS from every tsi ∈ TS as follows:
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Fig. 7: Specification of a-posteriori typing at the instance-level

• ∀tsi(A) = A′, set isi(A.allInstances()) 7→ A.
• ∀tsi(A.f) = A′.f ′, set isi(A.allInstances(), f) 7→ A′.a′.

A well-formed type-level specification TS yields a well-
formed instance-level specification IS. Equation 2 follows
almost directly from equation 1. This is so as, if A′ ∈MMR

and mand(A′.a′), then, by equation 1, we have that ∃a ∈
feats(A)•tsi(A.a) = A′.a′ and tsi(A) = A′. This means that
we have created the mappings isi(A.allInstances()) 7→ A′

and is(A.allInstances(), a) 7→ A′.a′, satisfying equation 2.

IV. ANALYSIS OF A-POSTERIORI TYPING

In this section, we present a number of analysis techniques
for a-posteriori typing specifications which are based on the
use of constraint solving and model finders [15].

A. Analysing dynamic type safety

Dynamic typing may lead to undesired model views, where
the a-posteriori typing is unsafe. For example, if a reference
should contain objects with a certain a-posteriori type, and an
object in the reference changes its type but the a-posteriori
type of the reference is not updated, then, the reference will
contain an object with an unwanted a-posteriori type. As a rule
of thumb, reclassification may be unsafe for objects pointed by
references. Some programming languages bound the classes
an object may be retyped to, and forbid references to such
classes [9]. Instead, we allow more flexibility, and provide an
analysis mechanism to detect unsafe typings.

As an example, assume the instance-level a-posteriori typing
specification in Fig. 7. The specification classifies all resources
in a model as Articles, their owners as Authors, and all Persons
assigned a task named “rev” as Reviewers.

Here, we would like to analyse whether there might be Tasks
models with incoherent a-posteriori type. This would be the
case if references authors or reviews can contain objects with
wrong type. For the case of authors, we need to check that
there cannot be articles that contain in its reference authors an
object which is not typed as Author. This can be proved by
checking if the following OCL constraint is unsatisfiable:

1 Article.allInstances()−>exists(a |
2 a.authors−>exist(r |
3 Author.allInstances()−>excludes(r)))

However, our interest is on analysing tasks models. Hence,
the previous constraint is translated in terms of constructive
types. For this, we use the typing specification as it defines



the query over constructive types that corresponds to each
a-posteriori type. This way, analysing the dynamic safety of
authors amounts to checking the following constraint is not
satisfiable on MMC :

1 Resource.allInstances()−>exists(a | −− Resource is mapped to Article
2 a.owner−>exists (r | −− owner is mapped to authors
3 Resource.allInstances() −− Resource.owner is mapped to Author
4 −>collect(owner)−>excludes(r)))

Listing 1: Checking type safety for authors.

The algorithm to build these constraints is as follows. Given
a reference A.r with tar(r) = B in MMR; and given an
instance-level specification with isi(expA) = A, isi(expA,
expr) = A.r and isi1(expB1

) = B, ..., isin(expBn
) = B; we

build the constraint:
expA->exists(a | expr [a/self] -> exists(r |

expB1
->union(expB2

)...− >union(expBn )->excludes(r)))
where expr[a/self ] is the expression expr substituting

self by a. If there are several mappings isi1(expA1
),...,

isim(expAm
) assigned to A, we build the previous constraint

for each such mapping. If any such constraint is satisfiable,
the typing is not safe.

Correctness of cardinalities is analysed similarly, by checking
the unsatisfiability of constraints expressed over MMR (e.g.,
Reviewer.allInstances()->exists(r | r.reviews->size() > 3)), once they
have been translated into constructive types, like:

1 Task.allInstances()−>select(name="rev")−>collect(assigned)−>exists(r |
2 Task.allInstances()−>select(name="rev" and
3 assigned−>includes(r))−>collect(res)−>size() > 3)

Listing 2: Checking cardinality constraints.

Hence, given a reference A.r in MMR with cardinality
[minr , maxr ]; and given a specification with isi(expA) = A and
isi(expA, expr) = A.r; we build the constraint:

expA->exists(a | expr [a/self] -> size() > maxr) or
expA->exists(a | expr [a/self] -> size() < minr)
with the first term only needed if maxr 6= * and the second

if minr > 0. If this expression is satisfiable, the cardinality of r
might be violated. If A receives multiple mappings, then the
constraint has to be checked for all of them.

Please note that we only need to do this analysis once, when
the a-posteriori typing is specified.

B. Analysing type-level reclassification

Meta-models may include OCL constraints. While our
typing specifications have well-formedness rules ensuring
correct retyping, these OCL constraints may impose additional
restrictions. Hence, it is interesting to analyse whether, given a
meta-model MMC and a type-level specification w.r.t. a meta-
model MMR, some/every valid instance of MMC becomes a
valid instance of MMR when the retyping is performed.

As Fig. 8(a) shows, retyping a model MC w.r.t. MMR

creates a virtual model view MR of MC . This view discards
the elements of MC which are not typed by MMR and includes
the derived features. Thus, the goal of the analysis is to
check whether: (a) a valid view model MR for some MC

exists (reclassification executability); (b) a valid view model

MMR 
model showing 
no surjectivity 
(CR  CC) 

model showing 
no totality 
(CR  CC) 

MMC 

model showing 
executability 
(CR  CC) 

MMC MMR 

MC 

«instance of» 

MR 

«instance of» 

type-spec 

type-spec 
induced view 

(a)                                               (b) 

Fig. 8: Totality and surjectivity of model reclassification
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duration: int 
name: String 

SO() : boolean = self.span>0 

t:Task 
start=30/04/15 
duration=30 
name=‘string0’ 
date=30/04/15 
span=1 

t:Task 
start=30/04/15 
duration=-30 
name=‘string0’ 
date=30/04/15 
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      (a)                                (c) non-totality           (d) non-surjectivity 

(b) executability 
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t.T0() and not t.S0() 

t:Task 
start=30/04/15 
duration=120 
name=‘string0’ 
date=30/04/15 
span=4 

 not t.T0() and t.S0() 

t:Schedulable 

date=30/04/15 
span=4 

retyping 

C1: self.date=self.start 
C2: self.span=self.duration/30 

Fig. 9: (a) Merged meta-model for analysis. (b,c,d) Models
showing executability, non-totality and non-surjectivity.

MR for every model MC exists (reclassification totality); (c)
every possible instance of MMR is view of some instance of
MMC (reclassification surjectivity). Fig. 8(b) illustrates these
possibilities using sets depicting the model instances of MMC

and MMR, dots representing models, and CC and CR being
the sets of constraints in MMC and MMR respectively.

These properties are interesting for both type- and instance-
level specifications, but we present the method for type-level
specifications, leaving instance specification as future work.

Our analysis is based on the use of model finders (able to
find model instances of a given meta-model) and is inspired by
the techniques in [11]. The idea is to merge MMC and MMR,
substituting every mapping from classes in MMC to classes in
MMR by inheritance, making every class in MMR abstract,
removing every reference of MMR, encoding constraints in
both meta-models as boolean operations, and encoding derived
attributes and mappings of features as constraints.

Fig. 9(a) shows the encoding of the type-level specification in
Fig. 4. We assume that class Schedulable defines the constraint
span>0, and Task defines the constraint duration<100. These
constraints get encoded as operations S0 and T0. Constraint C1
in Task is generated due to the binding start→ date, while C2
is generated due to the binding months→ span.

Executability is proved by finding an instantiation of the
merged meta-model where all Task instances yield S0()=true
and T0()=true, meaning that the constraints in MMC and
MMR hold. Thus, we have to find a model such that
Task.allInstances()→forAll(t | t.S0()=true and t.T0()=true). Non-totality
is proved by finding a model where all tasks fulfil T0,
and some violates S0. This emulates the satisfaction of all



constraints in MMC , while some constraint in MMR is vio-
lated. Thus, we require: Task.allInstances()→exists(t | t.S0()=false)
and Task.allInstances()→forAll(t | t.T0()=true). Conversely, non-
surjectivity is proved by finding a model where all constraints
of MMR hold, and some of MMC is violated. If such a model
exists, it must be retyped w.r.t. MMR. Figs. 9(b,c,d) show
three witness models showing executability, non-totality and
non-surjectivity of the analysed specification.

V. TOOL SUPPORT

In this section, we show an implementation of the previous
concepts in METADEPTH [5]. METADEPTH supports multi-
level modelling and integrates the Epsilon languages [21] for
defining constraints, transformations and code generators. For
this work, we have extended the tool with the possibility to
specify a-posteriori typings and perform analysis.

A. Models and meta-models in METADEPTH

Models and meta-models are specified textually. As
METADEPTH supports multi-level modelling, elements may be
decorated with a potency (written after the ’@’ symbol) stating
at how many meta-levels the element can be instantiated. In
two-level modelling, meta-models have potency 1 and models
have potency 0. Listing 3 shows part of a Tasks meta-model in
lines 1–8, where Task is extended by a subclass DocTask. Lines
10–21 show a simple model.

1 Model Tasks {
2 Node Task {
3 start : Date;
4 duration : int;
5 name : String;
6 }
7 Node DocTask : Task{}
8 }
9

10 Tasks someTasks {
11 Task t0 {

12 start = "30/04/2015";
13 duration = 30;
14 name = "coding";
15 }
16 DocTask t1 {
17 start = "30/05/2015";
18 duration = 90;
19 name = "write manual";
20 }
21 }

Listing 3: Meta-model and example model in METADEPTH.

B. Specification of a-posteriori typings

METADEPTH permits specifying both type-level and instance-
level typings. Instance-level specifications are given by mapping
queries written in the Epsilon Object Language (EOL, a variant
of OCL) [14] to types. As an example, Listing 4 shows the
specification in Fig. 6. Line 2 maps the instances of Task with
duration less than 80, to type Schedulable (all is an abbreviation
for allInstances). The keyword with sets the context of the
following mappings to the objects selected by the previous
query. The computations of derived attributes (like months in
line 3) are also expressed in EOL. Every EOL expression
is enclosed between ‘$’. Fig. 10(a) shows a schema of the
different relations between the models involved in instance-
level specifications, with ‘@’ denoting potency.

1 type Tasks Scheduling inst {
2 $Task.all.select(x | x.duration < 80)$ > Schedulable
3 with { /months : double = $self.duration/30$ > span,
4 start > date}}

Listing 4: Instance-level a-posteriori typing in METADEPTH
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Fig. 10: A-posteriori typing specifications in METADEPTH: (a)
at the instance level; (b,c) at the type level

A-posteriori typings induced by instance-level specifications
are dynamic. Once the specification is applied to model
someTasks, evaluating the query Schedulable.all yields Set{t0},
but upon changing t1.duration to 3, the query yields Set{t0, t1}.
Thus, accessing instances through a-posteriori types involves a
transparent evaluation of their associated queries. To improve
efficiency, we profit from Epsilon’s caching mechanism.
If type dynamicity is not needed, using type-level specifications
is more efficient as no queries need to be evaluated, and they
can be easily defined by simple mappings. However, our current
implementation is more restricted than the one presented in
Sec. III-A, as a class in MMC cannot be mapped to two classes
in MMR. Our implementation of instance-level specifications
allows multiple typing though.
In METADEPTH, type-level specifications are actually imple-
mented as a typing between the creation and role meta-models.
As they reside in the same meta-level, we promote the role
meta-model to a higher meta-level, and then use it to retype
the creation meta-model and its instances. In the example, we
lift the Scheduling meta-model using the command lift Scheduling,
which outputs the model LiftedScheduling with potency 2. This
approach has two advantages: retyping instances of Tasks to
Scheduling amounts to type composition, natively supported by
the tool. Second, it enables bidirectional retypings, as instances
of Scheduling can also be retyped w.r.t. Tasks.
Figs. 10(b,c) show a schema of type-level specifications. Note
that backward reclassification may not yield a unique typing
if an object can be classified by several types. For example,
reclassifying back the model in Listing 6 to the Tasks meta-
model yields four possible a-posteriori typings, which result
from all possible combinations of assigning Task and DocTask as
types for t0 and t1 (as METADEPTH does not support multiple
classifiers in type-level specifications). Moreover, we ignore
derived attributes in backward reclassification, as it would
require calculating the inverse of arbitrary expressions.
Listing 5 shows a type-level specification. It only needs to
define the mapping of features, as the mapping of classes can
be automatically induced.

1 type Tasks LiftedScheduling {
2 Task::start> Schedulable::date,
3 Task::/months : $double = self.duration/30$ > Schedulable::span
4 }

Listing 5: Type-level specification in METADEPTH.

Given an a-posteriori typing, retyping models is automatic. The
tool permits displaying a model using the a-posteriori types



using the command dump 〈model〉 as 〈role-meta-model〉. If we type
dump someTasks as Scheduling, the tool displays:

1 Scheduling someTasks {
2 Schedulable t0 {
3 date = "30/04/2015";
4 span = 1.0;
5 }
6

7 Schedulable t1 {
8 start = "30/05/2015";
9 span = 3.0;

10 }
11 }

Listing 6: Reclassification in METADEPTH.

Internally, this model is just another view of someTasks using
the a-posteriori typing.

C. Analysis of typing specifications

METADEPTH can check executability, non-totality, and non-
surjectivity of retypings, as explained in Sec. IV-B. In particular,
the command refinement Tasks Scheduling tries to find a coun-
terexample witness model that satisfies the constraints of Tasks
and violates some of Scheduling. Similarly, command refinement
Tasks Scheduling strict checks if there is a model fulfilling all
constraints in Tasks and violating some of Scheduling.
METADEPTH relies on the USE Validator [15] to perform the
analysis. Given a UML class diagram with OCL constraints,
USE finds an object model satisfying the constraints, provided
some exists within the search bounds. The found model is
parsed back into METADEPTH, and retyped to either the
creation or the role meta-model. In all our tests, USE had good
searching times, finding witnesses in less than one second.

VI. APPLICATIONS OF A-POSTERIORI TYPING

A-posteriori typing has multiple applications in MDE. First,
it is a mechanism to obtain views of models w.r.t. other
meta-models, which allows its use to specify simple model
transformations (see Section VI-A). Second, it enables the
reuse of model management operations defined over a role
meta-model (see Section VI-B). Finally, dynamic typing can be
valuable in Models@run.time applications, where models evolve
and objects can get reclassified dynamically (see Section VI-C).

A. (Bi-directional) model transformation by reclassification

Consider the DSL to describe factories in Fig. 11. It declares
three kinds of machines: generators introduce parts in the
factory, terminators remove parts from it, and assemblers
transform parts. Machines are connected by conveyors, which
transport any number of parts. Parts have a boolean flag
indicating whether they passed a quality test.
Assume we want to transform Factory models into PetriNets.
Petri nets are made of places and transitions. Places may hold
tokens, and can be connected to transitions (and vice versa).
Tokens must be in exactly one place, as required by constraint
cont. Transitions can fire if all incoming places (relation ins)
hold some token. If a transition fires, a token is deducted from
every input place and added to its output places (outs). The
envisioned transformation translates any kind of machine into
a transition, conveyors into places, and parts into tokens.
Instead of using a transformation language, which would create
a separate target model conformant to the PetriNet meta-model,

Place Transition 

ins 

outs 

Token 
tokens 

Assembler 

inps 

outps 

Part 
parts * Generator outps 

Terminator 
inps 1..* 

* 

* 
* 

* 
* 

Factory meta-model PetriNet meta-model 

Type-level 
specification 

g:Generator 

c1:Conveyor 

a:Assembler 

c2:Conveyor 

t:Terminator 

p: Part 

factory model 

outps 

outps inps 

inps 

parts 

g:Transition 

c1:Place 

a:Transition 

c2:Place 

t:Transition 

p: Token 

outs 

outs ins 

ins 

tokens 

Conveyor 
name: String[0..1] 

1..* 

cont: Place.all()->one(x |  
    x.tokens->includes(self)) 
 

name=“c1” name=“c2” 
View of 

qa: boolean=true 

qa=true 

reclassification 

Fig. 11: Reclassifying Factory models into Petri-nets

we can use a type-level a-posteriori typing specification. This
way, we can reclassify Factory models as PetriNets, producing
a virtual view of the factories without the need to explicitly
create a Petri net model (see Fig. 11).
Listing 7 shows the type-level specification. Conveyors are re-
typed as Places, Parts as Tokens, and Generators, Assemblers
and Terminators as Transitions. Note that Generators are retyped
as Transitions without inputs, and Terminators are retyped as
Transitions without outputs.

1 type Factory LiftedPetriNet {
2 Conveyor::parts > Place::tokens,
3 Generator::outps > Transition::outs, Terminator::inps > Transition::ins,
4 Assembler::inps > Transition::ins, Assembler::outps > Transition::outs,
5 }

Listing 7: Type-level specification.

This specification allows retyping Factory models as PetriNet,
and vice versa. As an example, Listing 8 shows a PetriNet
model and its two possible a-posteriori typings: the first one
types the transition as Terminator, and the second as Assembler.

1 PetriNet example {
2 Place p {}
3 Transition t { ins = [p]; }
4 }
5 Factory example { // 1st typing
6 Conveyor p {}
7 Terminator t { inps= [p]; }

8 }
9 Factory example { // 2nd typing

10 Conveyor p {}
11 Assembler t { inps= [p]; }
12 }

Listing 8: Retyping a Petri net into a Factory.

The specification can be analysed to detect whether it is
executable, total and surjective. For totality, the tool finds the
witness model in Listing 9, which proves the transformation is
not total because this factory cannot be retyped as a Petri net
(i.e., this model “cannot be transformed”). The reason is that
the model violates the constraint cont in the PetriNet meta-model,
since part2 is outside any Conveyor. Moreover, the same model
shows the backward transformation is not surjective, as this
model cannot be produced from any Petri net.

1 Factory noRefinementWitness { // Model witness with no Petri net equivalent
2 Assembler assembler2 { outps= [conveyor2, conveyor1]; }
3 Conveyor conveyor1 { name= "string1"; }
4 Conveyor conveyor2 { name= "string1"; }
5 Generator generator2 { outps= [conveyor1]; }



6 Part part2 { qa = true; }
7 }

Listing 9: Witness model showing no totality.

Reclassification is not a substitute for traditional transforma-
tions. But to have an intuition of the potential applicability of
this approach, we analysed the zoo of ATL transformations
to see how many of them can be specified as reclassifications
(see http://miso.es/dsets/atlzoo). Interestingly, 19% (23/119) of
the transformations are refinements or 1-to-1 mappings that
can be reformulated as retypings.

B. Reuse of model management operations

We have developed a simulator for Petri nets using EOL, a
very small excerpt of it is shown in Listing 10. The simulator
uses the types of the PetriNet meta-model, defining operations
(like enabled) on its types. Operation step is the main simulation
method, which performs one simulation step if some transition
can be fired.

1 operation Transition enabled() : Boolean {
2 return self.ins.forAll(p| p.tokens.size()>0);
3 }
4 operation step() : Boolean {
5 var enabled : Set(Transition) := Transition.all.select( t | t.enabled());
6 ... // fire one random Transition from enabled
7 }

Listing 10: Small excerpt of the EOL Petri net simulator

Once the specification of the a-posteriori typing is defined, the
simulator becomes applicable “as is” to the instances of the
Factory meta-model. This is possible because our tool handles
a-posteriori types as if they were constructive types, hence
achieving reuse of the simulator in a straightforward way.
Therefore, an expression like Transition.all returns all instances
of all classes mapped to Transition.
In general, object creation in reused model management
operations may result in non-deterministic behaviour, if the
created object (tokens in the case of the simulator) is mapped
to several constructive types. In this example, the behaviour is
deterministic because Token was only mapped by Part. Hence,
whenever the simulator creates a Token, a Part gets created
instead, with its attributes initialized to the default values.

C. Dynamic typing

Let us consider factories in which parts that do not pass a quality
check are not processed. Interestingly, we can still use the same
simulator as in Section VI-B, if we include this condition in
the a-posteriori typing of Parts. This way, Parts whose qa is
false are not mapped to Tokens and will not be considered by
the simulator. As the typing becomes dynamic, we need to use
an instance-level a-posteriori typing specification, a fragment
of which is shown in Listing 11. Line 3 selects in collection
tokens only those parts whose qa is true.

1 type Factory PetriNet inst {
2 $Conveyor.all$ > Place with {
3 /sp : Token[∗] = $self.parts.select(p|p.qa=true)$ > tokens
4 }
5 $Part.all.select( p | p.qa = true )$ > Token
6 }

Listing 11: Excerpt of instance-level typing to PetriNet

parts 

c:Conveyor 
name=“finish” 

qa=true 

«Place» 

p1:Part 
«Token» 

«tokens» 

t:Terminator 
«Transition» 

parts 

qa=true 

p2:Part 
«Token» 

«tokens» 

inps 
«ins» 

parts 

c:Conveyor 
name=“finish” 

qa=true 

«Place» 

p1:Part 
«Token» 

«tokens» 
parts 

qa=false 

p2:Part 

c:Conveyor 
name=“finish” 

«Place» 

parts 

qa=false 

p2:Part 

t:Terminator 
«Transition» 

inps 
«ins» 

t:Terminator 
«Transition» 

inps 
«ins» 

qcheck() step() 

Fig. 12: Dynamic typing for the simulation of a factory.

Fig. 12 shows two simulation steps. Method qcheck is an
operation over Factory that uses constructive types. It emulates
a quality check, setting the qa attribute of some Parts to false
according to a probability distribution. In step 2, p2.qa becomes
false, hence p2 drops the classifier Token and leaves the tokens
collection. Method step belongs to the original simulator, and
it consumes one Token of the incoming Place to Transition t.
Another advantage of this approach is that it permits having a
simple simulator, unaware of possible conditions for activation
or deactivation of Tokens, and permitting dynamicity of Places
and Transitions by means of other dynamic typings.

VII. RELATED WORK

Next, we compare our typing approach with others proposed
in the literature. Table I summarizes this comparison using
most features in Fig. 1 as well as the extra criteria Style, which
refers to the specification style (type/instance level).

TABLE I: Comparison of model typing approaches.
Approach Class. Style Dyn. # #model total.

time class. types
Concepts [6] post. type no many many total
Adapters [4] post. type no many many partial
Zschaler [23] post. type no one many partial
Steel et al. [12], [22] post. type no one many partial
SMOF [19] post. - yes many many total
UML [18] post. - yes many one total
MOF [20] creat. - no one one total
This paper post. both yes many many partial

In previous works, we proposed concepts [6] as a mechanism
to express requirements for model management operations.
Concepts can be mapped to meta-models, and as a result,
operations developed over concepts get adapted for the meta-
models. Concepts allow the use of adapters [4] that enable
more flexible mappings between concepts and meta-models via
OCL expressions. This approach has a type-level specification
style, lacks support for dynamicity, and has only been applied
to adapt model transformations.
Zschaler [23] proposes constraint-based model types, a
constraint-based specification of requirements for meta-models
to qualify for operations. These types are automatically
extracted from existing operations. Dynamicity, multiple clas-
sification or flexible mappings via queries are not considered.



In [12], [22], a matching relation is defined between two meta-
models, to permit instances of the first to be accepted by the
latter. Originally, matching classes required same name [22],
but this is more flexible in [12]. To achieve compatibility,
derived features are frequently added to the source meta-model.
Still, no dynamicity or overlapping classes are considered.
Regarding standards, SMOF recognises the need for multiple
and dynamic classification, and proposes annotating the classi-
fiers that may have instances in common [19]. UML allows
multiple classifiers through generalization sets [17]. While
UML supports dynamic classification, neither UML nor SMOF
provide support for defining a-posteriori typing specifications,
and hence unanticipated reuse of operations become difficult.
Finally, MOF does not support a-posteriori typing, dynamicity,
or overlapping classes, and models have exactly one type.
Exploratory modelling [1] has been proposed as a way to
provide a type to existing instances, where types are created
on-demand based on instance features. Instead, in a-posteriori
typing, types already exist, and the typing creates a new clas-
sification relation between those types and existing instances.
Some works have analysed the compatibility of meta-models
regarding acceptance of instances [12], [16]. Interestingly, our
condition for totality of type-level specifications is forward
compatibility in [16], and surjectivity is back compatibility.
Notably, all previous works implement a type-level style for
specifications, which neglects dynamicity of typing. The work
in [8] is closer to our instance-level specifications, proposing
the use of queries to relate (possibly derived) elements of two
models. While such relations are not retypings, they might be
used to encode our instance-level specifications.
Dynamic reclassification has been more studied in object-
oriented languages. In [9], objects can change its type among
several state classes, subtypes of a given root class. To ensure
type-safety, state classes are not allowed to receive references.
Similar to our role meta-models, role classes [10] model the
different roles individual objects can acquire or drop. While in
these approaches, the change of role or classifier is done via
method invokations, our instance-level specifications express
these changes declaratively, which facilitates analysis.
Also for programming languages, pluggable type systems [2]
allow plugging-in additional typings for a program, which
is similar to our a-posteriori typing. There are few attempts
to increase dynamic typings in MDE. One exception is [3],
proposing the extraction of the dynamic aspect of objects, so
that it can be changed dynamically, similar to the state pattern.
However, it does not fully support dynamic classification.
Hence, our proposal improves existing works by more flexible,
dynamic reclassification, which enables multiple classifiers.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a-posteriori typing as a
mechanism to decouple object creation from classification.
We have shown two specification styles for such typing and
shown a practical implementation in METADEPTH. We have
presented examples and applications showing the flexibility of
the proposal. Altogether, our approach leads to a more flexible

retyping than existing proposals permitting “as is” reuse of
model management operations, while type dynamicity enables
flexible adaptation of those operations.
Most MDE approaches, including ours, are based on nominal
typing; in the future, we could use structural typing to classify
untyped objects (e.g., extracted as raw data from documents)
according to the features they exhibit, and as a heuristic
for re-typing specifications. Currently, we can only specify
non-overlapping conditions in role meta-models using OCL
constraints. It would be interesting to develop annotations to
signal these constraints more concisely. We would also like to
improve tooling, e.g., increasing the efficiency of instance-level
a-posteriori typings by smarter cache policies.
Acknowledgements. Work supported by the Spanish MINECO
(TIN2011-24139 and TIN2014-52129-R), and the R&D pro-
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