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The analysis of the electromagnetic scattering at discontinuities between equilateral triangular waveguides is studied.The complete
electromagnetic solution is derived using analytical closed form expressions for the mode spectrum of the equilateral waveguide.
Themathematical formulation of the electromagnetic scattering problem is based on the quasi-analytical Mode-Matching method.
This method benefits from the electromagnetic field division into symmetries as well as from the plane wave formulation presented
for the expressions involved. The unification of the surface integrals used in the method thanks to the plane wave formulation is
revealed, leading to expressions that are very well suited for its implementation in an electromagnetic analysis and design code.The
obtained results for some cases of interest (building blocks for microwave components for communication systems) are verified
using other numerical methods included in a commercial software package, showing the potential of the presented approach based
on quasi-analytic expressions.

1. Introduction

Nowadays radiofrequency systems are widely used for very
diverse applications. The GPS system for positioning, the
LTE system for mobile communications, the DBS system for
digital broadcasting, and ground penetrating radar or remote
security screening are some examples of the usage of the elec-
tromagnetic spectrum that extends from someGHz to several
hundred GHz [1, 2]. The increasing demand of the quality of
service has led to very restrictive system specifications, which
are translated into more complex microwave and millimeter-
wave devices. In order to accomplish such designs, CAD
(Computer Aided Design) tools have experienced a strong
development over the last decades [3, 4].

These tools solve Maxwell equations using numerical
approaches or quasi-analytical methods [5]. Commercial
tools as CST Microwave Studio or Ansys HFSS focus on
the numerical solutions to Maxwell equations and develop
methods as theFinite ElementMethod or theFiniteDifferences

Time Domain Method. This kind of methods has the advan-
tage of being extremely flexible when coping with problems
that involve arbitrary geometries. In contrast, they can be
extremely time-consuming compared to the quasi-analytical
methods. This paper focuses on the latter type of methods
(i.e., quasi-analytical methods), particularly in the Mode-
Matching method [6]. This method was developed some
decades ago and has been applied to classical waveguides with
analytic modal spectrum such as the rectangular waveguide,
the circular waveguide, and the elliptical waveguide for many
types of waveguide devices such as transformers, filters, and
couplers [7–11]. However, it has not been applied to the
equilateral triangular waveguide yet.

This paper addresses theMode-Matchingmethod applied
to the equilateral triangular geometry, giving a flexible math-
ematical formulation based on well-known plane waves.This
formulation simplifies the surface integrals of themethod and
allows a very easy generalization to other problems involving
waveguides whose modes can be written as a plane wave
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expansion. In order to validate the formulation, several
case studies are presented and compared with the results
given by other different numericalmethods from commercial
software.

2. Modal Fields in the Equilateral
Triangular Waveguide

The electromagnetic field enclosed in an arbitrary cross
section waveguide can be described as an orthogonal series of
modes. When the considered transmission medium exhibits
translation symmetry along the propagation axis the electric
( ⃗
𝐸) and magnetic ( ⃗

𝐻) field can be expressed through their
transversal and longitudinal components [12–14]:

⃗
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The terms 𝑎
𝑝
𝑒

−𝛾𝑝𝑧 and 𝑏
𝑝
𝑒

𝛾𝑝𝑧 are called the modal ampli-
tudes at an arbitrary 𝑧 plane, of which the complex variables
𝑎
𝑝
and 𝑏

𝑝
are determined by the excitation and load of the

waveguide. The propagation constant 𝛾
𝑝
and the transversal

fields ⃗𝑒
𝑝
and ⃗

ℎ
𝑝
of each mode depend on the geometry of the

waveguides under consideration.The geometries of a classical
circular waveguide and a classical rectangular waveguide are
shown in Figures 1(a) and 1(b), respectively. In this paper the
equilateral triangular waveguide, shown in Figure 1(c), is ana-
lyzed. As it is known, for uniform cross-section waveguides
made up of a single enclosing metallic conductor filled with
a homogeneous dielectric material, the three-dimensional
Maxwell equations simplify to the scalar 2D Helmholtz
equation [13, 14]:

Δ
𝑡
𝜙
𝑝
+ 𝑘

2

𝑐𝑝
𝜙
𝑝
= 0, (2)

which must be held in the inner cross section of the waveg-
uide under consideration. From this function, directly related
to the 𝑧-field component of the electric or magnetic field,
the full electromagnetic field is obtained. The expressions of
the modal components ⃗𝑒

𝑝
, ⃗
ℎ
𝑝
, 𝑒

𝑧𝑝
, and ℎ

𝑧𝑝
in (1a)-(1b) are

included in Appendix. The orthogonal modes that constitute
the complete electromagnetic solution for a single conductor
waveguide can be divided into two families: the so-called TE
(Transversal Electric) modes and TM (Transversal Magnetic)
modes. The former are calculated imposing homogeneous
Neumann-type boundary conditions in (2) along the contour
𝐶 of the waveguide (see Figure 1(d)), whereas the latter are

calculated imposing homogeneous Dirichlet-type boundary
conditions:
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An initial characterization of the triangular waveguide
can be found in [15, 16]. The scalar function 𝜙

𝑝
for the com-

plete solution in an equilateral triangular waveguide is found
in [17, 18], where the complete set of solutions are divided not
only into TE and TM modes but also into symmetries with
respect to one of its medians. These functions referring to
the coordinate system selected in this paper (see Figure 1(d)),
using superscript 𝑆 for symmetric solutions and 𝐴 for
asymmetric solutions, are
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Figure 1: (a) Classical circular waveguide, (b) classical rectangular waveguide, (c) equilateral triangular waveguide of this paper, and (d)
reference coordinate system used. Conductivity 𝜎 = ∞ indicates a perfect electric wall boundary condition.

In the preceding definitions, variable 𝑏 in constants ̃𝑘
𝑦1,2,3

and
̃
𝑘
𝑥1,2,3

represents the height of the equilateral cross section of
the waveguide. It is related to the side 𝑒 of the equilateral
triangular waveguide through 𝑏 = 𝑒

√
3/2. Each modal

solution that belongs to the series (1a)-(1b) is denoted by
subindex 𝑝 ( ⃗𝑒

𝑝
, ⃗
ℎ
𝑝
), which identifies a single pair (𝑚, 𝑛) and

one of the four families that have been introduced (TE𝑆, TE𝐴,
TM𝑆, and TM𝐴). TE𝑆

𝑚𝑛
modes arise with subscripts 𝑚 ≥ 𝑛 ≥

0, TE𝐴
𝑚𝑛

modes with subscripts 𝑚 > 𝑛 ≥ 0, TM𝑆

𝑚𝑛
modes

with 𝑚 ≥ 𝑛 > 0, and TM𝐴

𝑚𝑛
modes with 𝑚 > 𝑛 > 0. It can

be seen that (4a)-(4b) fulfill homogeneous Neumann bound-
ary conditions (3a) and that (4c)-(4d) fulfill homogeneous
Dirichlet boundary conditions (3b). Finally, the cut-off wave-
number 𝑘

𝑐𝑝
in (2) can be calculated for each mode using

𝑘
𝑐𝑝
=

4𝜋
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√
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2
+ 𝑚𝑛, (6)

which shows that symmetric and asymmetric TE and TM
modes are degenerated (share the same cut-off wavenumber
value). It can be easily seen that the cut-off wavenumber 𝑘

𝑐𝑝

can also be derived as:

𝑘

2
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=
̃
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2
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+
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2
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, 𝑖 = 1, 2, 3. (7)

The cut-off frequency associated with each particular mode,
which indicates the minimum frequency where the propaga-
tion constant associated with that mode has null attenuation
(i.e., it is purely imaginary) for lossless media [13, 14], is
defined as

𝑓
𝑐𝑝
=

𝑘
𝑐𝑝

2𝜋√𝜇𝜀

, (8)

where 𝜇 is the magnetic permeability and 𝜀 is the electric
permittivity of the transmission medium filling the waveg-
uide (being (√𝜇𝜀)−1 = 2.9979 ⋅ 10

8m/s for the vacuum). The
fundamentalmodes (i.e., thosewith lowest cut-off frequency)
are TE𝐴

10
and TE𝑆

10
. The cut-off wavenumbers, the cut-off fre-

quencies, and the associated families of the first fiftymodes in
a hollow waveguide of side 𝑒 = 1 cm are given in Table 1. This
table can be used for any other equilateral triangular waveg-
uide since 𝑘

𝑐
and 𝑓

𝑐
only need to be scaled by the new side

𝑒

.
The electric and magnetic field patterns of the first twelve

modes are shown in Figure 2. Electric fields (in blue arrows)
and magnetic fields (in green arrows) are perpendicular to
each other. Besides, the former are perpendicular to the sides
of the equilateral triangle, whereas the latter are tangential,
as it is required by the boundary conditions of a perfect
conductor. Symmetric TEmodes (TE𝑆

𝑚𝑛
) and asymmetric TM
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Table 1: Cut-off wavenumbers, cut-off frequencies, and associated
families for the first fifty modes in a hollow equilateral triangular
waveguide of side 𝑒 = 1 cm.

(𝑚, 𝑛) 𝑘
𝑐
[cm−1] 𝑓

𝑐
[GHz] Mode designation

(1, 0) 4.189 19.99 TE𝐴,TE𝑆

(1, 1) 7.255 34.62 TE𝑆,TM𝑆

(2, 0) 8.378 39.97 TE𝐴, TE𝑆

(2, 1) 11.082 52.88 TE𝐴, TE𝑆, TM𝐴

, TM𝑆

(3, 0) 12.566 59.96 TE𝐴, TE𝑆

(2, 2) 14.510 69.23 TE𝑆, TM𝑆

(3, 1) 15.103 72.06 TE𝐴, TE𝑆, TM𝐴

, TM𝑆

(4, 0) 16.755 79.94 TE𝐴, TE𝑆

(3, 2) 18.259 87.12 TE𝐴, TE𝑆, TM𝐴

, TM𝑆

(4, 1) 19.195 91.59 TE𝐴, TE𝑆, TM𝐴

, TM𝑆

(5, 0) 20.944 99.93 TE𝐴, TE𝑆

(3, 3) 21.766 103.85 TE𝑆, TM𝑆

(4, 2) 22.165 105.76 TE𝐴, TE𝑆, TM𝐴

, TM𝑆

(5, 1) 23.322 111.28 TE𝐴, TE𝑆, TM𝐴

, TM𝑆

(6, 0) 25.133 119.92 TE𝐴, TE𝑆

(4, 3) 25.479 121.57 TE𝐴, TE𝑆, TM𝐴

, TM𝑆

(5, 2) 26.159 124.81 TE𝐴, TE𝑆, TM𝐴

, TM𝑆

modes (TM𝐴

𝑚𝑛
) show perfect electric wall (PEW) symmetry

with respect to 𝑥 = 0. On the other hand, asymmetric
TE modes (TE𝐴

𝑚𝑛
) and symmetric TM modes (TM𝑆

𝑚𝑛
) show

perfect magnetic wall (PMW) symmetry at 𝑥 = 0.

3. Overview of the Mode-Matching Method

The main goal of the Mode-Matching method is to solve the
modal amplitudes of (1a)-(1b) and relate them through the
Generalized Scattering Matrix (GSM) [9, 19], used to char-
acterize the full response by cascading individual building
blocks also in antenna problems [20, 21]. In this section an
overview of this method is introduced regardless of the cross
section geometry of the waveguides involved in the analyzed
discontinuity. In Section 4 this method will be particularized
to our geometry of interest (i.e., the equilateral triangular
waveguide).

The Mode-Matching method is based on the fact that
the total transversal fields ( ⃗

𝐸
𝑡
, ⃗
𝐻
𝑡
) must be continuous

across the transversal surface in the waveguide step under
consideration. This surface is shown in Figure 3(a), where
the waveguide (𝑤) has been ended with a perfect conductor
wall except in the intersected area with the smaller waveguide
(𝑠), and both waveguides are depicted without conductor
thickness. According to (1a) and (1b), the transversal electro-
magnetic field at both sides of a step or discontinuity placed
at the plane 𝑧 = 0 is represented by

⃗
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𝑖
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where superscripts (𝑤) and (𝑠) refer to each involved waveg-
uide (see Figure 3(b) for clarification). It is important to high-
light that, in order to formulate an affordable computational
problem, in the preceding equations the number of modes
in each waveguide has been truncated to𝑁

𝑤
and𝑁

𝑠
, respec-

tively. The boundary conditions applied across the aperture
interface 𝐴

𝑠
that preserve the transversal fields are

EFBC in 𝐴
𝑤
: �̂� × ⃗

𝐸

(𝑤)

𝑡
=

{

{

{

0, in 𝐴
𝑐
, 𝑧 = 0

�̂� ×
⃗
𝐸

(𝑠)

𝑡
in As, 𝑧 = 0

MFBC in 𝐴
𝑠
: �̂� × ⃗

𝐻

(𝑤)

𝑡
= �̂� ×

⃗
𝐻

(𝑠)

𝑡
in As, 𝑧 = 0,

(10)

where EFBC stands for Electric Field Boundary Condition and
MFBC stands for Magnetic Field Boundary Condition. The
boundary conditions are imposed using a Galerkin method,
where the EFBC is tested with the modal magnetic fields of
waveguide (𝑤) (i.e., ℎ(𝑤)

𝑗
) and the MFBC is tested with the

modal electric fields ofwaveguide (𝑠) (i.e., 𝑒(𝑠)
𝑖
) [11]. Arranging

the modal amplitudes in column vectors (a
𝑔
= [⋅ ⋅ ⋅ 𝑎

(𝑔)

𝑝
⋅ ⋅ ⋅ ]

𝑇,
b
𝑔
= [⋅ ⋅ ⋅ 𝑏

(𝑔)

𝑝
⋅ ⋅ ⋅ ]

𝑇, being 𝑔 = 𝑤, 𝑠), this method leads to the
following system of linear equations:

EFBC: (a
𝑤
+ b

𝑤
) = X𝑡

(a
𝑠
+ b

𝑠
) (𝑁

𝑤
eqs.) ,

MFBC: X (a
𝑤
− b

𝑤
) = (b

𝑠
− a

𝑠
) (𝑁

𝑠
eqs.) ,

(11)

where the term X is the following matrix:

X = [𝑋
𝑖𝑗
] = 𝑌

(𝑤)

𝑗
∬

𝐴𝑠

⃗𝑒

(𝑠)

𝑖
⋅ ⃗𝑒

(𝑤)

𝑗
𝑑𝑠. (12)

The previous integral is expressed in terms of the electric
field, but it is possible to use the magnetic field as well since
𝑌
𝑗
( ⃗𝑒
𝑖
⋅ ⃗𝑒

𝑗
) = 𝑍

𝑖
(
⃗
ℎ
𝑖
⋅
⃗
ℎ
𝑗
), where 𝑌

𝑗
and 𝑍

𝑖
stand for the

mode admittance and the mode impedance, respectively, in
Appendix. The relationship between the modal amplitudes
obtained solving the previous linear equation system is given
by the GSM of the discontinuity:

S = [

X𝑡FX − I
𝑤

X𝑡F
FX F − I

𝑠

] ,

[

b
𝑤

b
𝑠

] = S[
a
𝑤

a
𝑠

] ,

(13)

where F = 2(I
𝑠
+ XX𝑡

)

−1 and I is the identity matrix of
the corresponding size (𝑁

𝑤
or 𝑁

𝑠
). The analysis of two or

more discontinuities or steps is carried out cascading GSM
matrices as in [10, 11, 19].
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Figure 2: Electric andmagnetic field pattern (in blue and green arrows, resp.) for the first twelvemodes in the equilateral triangularwaveguide.
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Figure 3: Generic waveguide step: (a) surface views and (b) modal amplitudes.
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Figure 4: Step between equilateral triangular waveguides.

4. Mode-Matching Applied to Equilateral
Triangular Steps

Section 2 presented the basis functions 𝜙 𝑆/𝐴TE,TM needed to
formulate the modal fields in any equilateral triangular
waveguide.Themodal fields ⃗𝑒

(𝑔)

𝑝
or ⃗
ℎ

(𝑔)

𝑝
are required to com-

pute the inner cross productmatrixX seen in Section 3,where
the Mode-Matching method was introduced. This section
addresses the resolution of the surface integrals associated
with the inner cross products and aims at providing a suitable
formulation to solve discontinuities where one of the waveg-
uide surfaces is completely included into the other one (see
Figure 4). Towards that end, the functions given in (4a)–(4d)
must be rewritten in a more convenient form based on plane
waves:

𝜙

𝑆,𝐴/𝑆,𝐴

TE/TM =

12

∑

𝑢=1

𝐴
𝑢
𝑒

𝑗(𝑘𝑥𝑢𝑥+𝑘𝑦𝑢𝑦)
. (14)

The resulting parameters 𝐴
𝑢
, 𝑘

𝑥𝑢
, and 𝑘

𝑦𝑢
of the preced-

ing equation are given in Table 2. In order to highlight the
benefits of the mathematical formulation used in this paper,
it is sometimes convenient to define the wavenumber vector
⃗
𝑘
𝑢
= 𝑘

𝑥𝑢
�̂� + 𝑘

𝑦𝑢
�̂� and the position vector ⃗𝑟 = 𝑥�̂� + 𝑦�̂� and

then rewrite ⃗𝑟 ⋅
⃗
𝑘
𝑢
= 𝑘

𝑥𝑢
𝑥 + 𝑘

𝑦𝑢
𝑦.

Once the functions of the four mode families are formu-
lated using (14), the surface integrals involved in the Mode-
Matching method are greatly simplified. The first surface
integral thatmust be solved is the one associatedwith the nor-
malization constant𝑁

𝑝
(see Appendix). This surface integral

is solved in [17, 18] and its values are directly given by

𝑁
𝑝
=

{

{

{

{

{

{

{

{

{

16

3
√
3𝑒

2
𝑘

2

𝑐𝑝

if 𝑚 ̸= 𝑛 and 𝑛 ̸= 0

8

3
√
3𝑒

2
𝑘

2

𝑐𝑝

if 𝑚 = 𝑛 or 𝑛 = 0.

(15)

The other surface integrals that must be solved in the
Mode-Matching method are those needed to calculate the
inner cross product matrix (X). The electric fields in (12)

Table 2: Values of parameters 𝑘
𝑥𝑢
, 𝑘

𝑦𝑢
, and 𝐴

𝑢
, where the parame-

ters denoted as ̃𝑘
𝑦1,2,3

and ̃𝑘
𝑥1,2,3

are the ones described immediately
after (4a)–(4d), and Ψ andΩ are defined in Table 3.

𝑢 𝑘
𝑥𝑢

𝑘
𝑦𝑢

𝐴
𝑢

1
̃
𝑘
𝑥1

̃
𝑘
𝑦1

(1/4)𝑒

𝑗(−
̃
𝑘𝑦1𝑏−Ψ−Ω)

2 −
̃
𝑘
𝑥1

̃
𝑘
𝑦1

(1/4)𝑒

𝑗(−
̃
𝑘𝑦1𝑏−Ψ+Ω)

3
̃
𝑘
𝑥1

−
̃
𝑘
𝑦1

(1/4)𝑒

𝑗(
̃
𝑘𝑦1𝑏+Ψ−Ω)

4 −
̃
𝑘
𝑥1

−
̃
𝑘
𝑦1

(1/4)𝑒

𝑗(
̃
𝑘𝑦1𝑏+Ψ+Ω)

5
̃
𝑘
𝑥2

̃
𝑘
𝑦2

(1/4)𝑒

𝑗(−
̃
𝑘𝑦2𝑏−Ψ−Ω)

6 −
̃
𝑘
𝑥2

̃
𝑘
𝑦2

(1/4)𝑒

𝑗(−
̃
𝑘𝑦2𝑏−Ψ+Ω)

7
̃
𝑘
𝑥2

−
̃
𝑘
𝑦2

(1/4)𝑒

𝑗(
̃
𝑘𝑦2𝑏+Ψ−Ω)

8 −
̃
𝑘
𝑥2

−
̃
𝑘
𝑦2

(1/4)𝑒

𝑗(
̃
𝑘𝑦2𝑏+Ψ+Ω)

9
̃
𝑘
𝑥3

̃
𝑘
𝑦3

(1/4)𝑒

𝑗(−
̃
𝑘𝑦3𝑏−Ψ−Ω)

10 −
̃
𝑘
𝑥3

̃
𝑘
𝑦3

(1/4)𝑒

𝑗(−
̃
𝑘𝑦3𝑏−Ψ+Ω)

11
̃
𝑘
𝑥3

−
̃
𝑘
𝑦3

(1/4)𝑒

𝑗(
̃
𝑘𝑦3𝑏+Ψ−Ω)

12 −
̃
𝑘
𝑥3

−
̃
𝑘
𝑦3

(1/4)𝑒

𝑗(
̃
𝑘𝑦3𝑏+Ψ+Ω)

Table 3: Values of parameters Ψ andΩ for Table 2.

Mode designation Ψ Ω

TE𝑆 0 0

TE𝐴 0 𝜋/2

TM𝑆

𝜋/2 0

TM𝐴

𝜋/2 𝜋/2

are computed according to Appendix, using the transversal
gradient of the function in (14). Each term 𝑋

𝑖𝑗
of the inner

cross product matrix X is computed as

𝑋
𝑖𝑗
= (𝑋

𝑖𝑗,𝑥
+ 𝑋

𝑖𝑗,𝑦
)

√𝑌

(𝑤)

𝑗

√
𝑌

(𝑠)

𝑖

, (16)

where the terms 𝑋
𝑖𝑗,𝑥

and 𝑋
𝑖𝑗,𝑦

are independent of the
frequency and the material filling the waveguide and refer to
the surface integrals associated with the transversal fields in
�̂� and �̂�:

𝑋
𝑖𝑗,𝑥

=

12

∑

𝑟=1

12

∑

𝑞=1

𝐴

(𝑠)

𝑠𝑟
𝐴

(𝑤)

𝑠𝑞
∬

𝐴𝑠

𝑒

𝑗(𝑘
(𝑠)

𝑥𝑟
+𝑘
(𝑤)

𝑥𝑞
)𝑥

𝑒

𝑗(𝑘
(𝑠)

𝑦𝑟
+𝑘
(𝑤)

𝑦𝑞
)𝑦

𝑑𝑠,

𝑋
𝑖𝑗,𝑦

=

12

∑

𝑟=1

12

∑

𝑞=1

𝐴

(𝑠)

𝑡𝑟
𝐴

(𝑤)

𝑡𝑞
∬

𝐴𝑠

𝑒

𝑗(𝑘
(𝑠)

𝑥𝑟
+𝑘
(𝑤)

𝑥𝑞
)𝑥

𝑒

𝑗(𝑘
(𝑠)

𝑦𝑟
+𝑘
(𝑤)

𝑦𝑞
)𝑦

𝑑𝑠.

(17)

In the above expressions 𝐴
𝑠
is the intersected area between

both equilateral waveguides as it is shown in Figure 4. The
variables 𝑘

𝑥𝑟
, 𝑘

𝑥𝑞
, 𝑘

𝑦𝑟
, and 𝑘

𝑦𝑞
are the wavenumbers in (14),

for each respective waveguide. Only the new amplitudes
𝐴
𝑠𝑟
, 𝐴

𝑠𝑞
, 𝐴

𝑡𝑟
, and 𝐴

𝑡𝑞
must be computed according to the

involved gradients shown in Appendix. The results of these
amplitudes are given in Table 4.
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Table 4: Values of parameters 𝐴
𝑠𝑟
, 𝐴

𝑠𝑞
, 𝐴

𝑡𝑟
, and 𝐴

𝑡𝑞
.

𝑟, 𝑞 𝐴
𝑠𝑟,𝑠𝑞

[TE] 𝐴
𝑠𝑟,𝑠𝑞

[TM] 𝐴
𝑡𝑟,𝑡𝑞

[TE] 𝐴
𝑡𝑟,𝑡𝑞

[TM]
1 𝑗

̃
𝑘
𝑦1
𝐴
𝑢

𝑗
̃
𝑘
𝑥1
𝐴
𝑢

−𝑗
̃
𝑘
𝑥1
𝐴
𝑢

𝑗
̃
𝑘
𝑦1
𝐴
𝑢

2 𝑗
̃
𝑘
𝑦1
𝐴
𝑢

−𝑗
̃
𝑘
𝑥1
𝐴
𝑢

𝑗
̃
𝑘
𝑥1
𝐴
𝑢

𝑗
̃
𝑘
𝑦1
𝐴
𝑢

3 −𝑗
̃
𝑘
𝑦1
𝐴
𝑢

𝑗
̃
𝑘
𝑥1
𝐴
𝑢

−𝑗
̃
𝑘
𝑥1
𝐴
𝑢

−𝑗
̃
𝑘
𝑦1
𝐴
𝑢

4 −𝑗
̃
𝑘
𝑦1
𝐴
𝑢

−𝑗
̃
𝑘
𝑥1
𝐴
𝑢

𝑗
̃
𝑘
𝑥1
𝐴
𝑢

−𝑗
̃
𝑘
𝑦1
𝐴
𝑢

5 𝑗
̃
𝑘
𝑦2
𝐴
𝑢

𝑗
̃
𝑘
𝑥2
𝐴
𝑢

−𝑗
̃
𝑘
𝑥2
𝐴
𝑢

𝑗
̃
𝑘
𝑦2
𝐴
𝑢

6 𝑗
̃
𝑘
𝑦2
𝐴
𝑢

−𝑗
̃
𝑘
𝑥2
𝐴
𝑢

𝑗
̃
𝑘
𝑥2
𝐴
𝑢

𝑗
̃
𝑘
𝑦2
𝐴
𝑢

7 −𝑗
̃
𝑘
𝑦2
𝐴
𝑢

𝑗
̃
𝑘
𝑥2
𝐴
𝑢

−𝑗
̃
𝑘
𝑥2
𝐴
𝑢

−𝑗
̃
𝑘
𝑦2
𝐴
𝑢

8 −𝑗
̃
𝑘
𝑦2
𝐴
𝑢

−𝑗
̃
𝑘
𝑥2
𝐴
𝑢

𝑗
̃
𝑘
𝑥2
𝐴
𝑢

−𝑗
̃
𝑘
𝑦2
𝐴
𝑢

9 𝑗
̃
𝑘
𝑦3
𝐴
𝑢

𝑗
̃
𝑘
𝑥3
𝐴
𝑢

−𝑗
̃
𝑘
𝑥3
𝐴
𝑢

𝑗
̃
𝑘
𝑦3
𝐴
𝑢

10 𝑗
̃
𝑘
𝑦3
𝐴
𝑢

−𝑗
̃
𝑘
𝑥3
𝐴
𝑢

𝑗
̃
𝑘
𝑥3
𝐴
𝑢

𝑗
̃
𝑘
𝑦3
𝐴
𝑢

11 −𝑗
̃
𝑘
𝑦3
𝐴
𝑢

𝑗
̃
𝑘
𝑥3
𝐴
𝑢

−𝑗
̃
𝑘
𝑥3
𝐴
𝑢

−𝑗
̃
𝑘
𝑦3
𝐴
𝑢

12 −𝑗
̃
𝑘
𝑦3
𝐴
𝑢

−𝑗
̃
𝑘
𝑥3
𝐴
𝑢

𝑗
̃
𝑘
𝑥3
𝐴
𝑢

−𝑗
̃
𝑘
𝑦3
𝐴
𝑢

These inner cross products can be arranged according to
the families to which the modes in (12) belong, with matrixX
then becoming a set of submatrices:

X

=

[

[

[

[

[

[

[

[

X(𝑠)−(𝑤)

TE𝑆−TE𝑆 X(𝑠)−(𝑤)

TE𝑆−TE𝐴 X(𝑠)−(𝑤)

TE𝑆−TM𝑆 X(𝑠)−(𝑤)

TE𝑆−TM𝐴

X(𝑠)−(𝑤)

TE𝐴−TE𝑆 X(𝑠)−(𝑤)

TE𝐴−TE𝐴 X(𝑠)−(𝑤)

TE𝐴−TM𝑆 X(𝑠)−(𝑤)

TE𝐴−TM𝐴

X(𝑠)−(𝑤)

TM𝑆−TE𝑆 X(𝑠)−(𝑤)

TM𝑆−TE𝐴 X(𝑠)−(𝑤)

TM𝑆−TM𝑆 X(𝑠)−(𝑤)

TM𝑆−TM𝐴

X(𝑠)−(𝑤)

TM𝐴−TE𝑆 X(𝑠)−(𝑤)

TM𝐴−TE𝐴 X(𝑠)−(𝑤)

TM𝐴−TM𝑆 X(𝑠)−(𝑤)

TM𝐴−TM𝐴

]

]

]

]

]

]

]

]

.

(18)

Some of the surface integrals associated with these submatri-
ces can be discarded since their values are zero [22].Therefore
(18) becomes

X =

[

[

[

[

[

[

[

[

X(𝑠)−(𝑤)

TE𝑆−TE𝑆 X(𝑠)−(𝑤)

TE𝑆−TE𝐴 X(𝑠)−(𝑤)

TE𝑆−TM𝑆 X(𝑠)−(𝑤)

TE𝑆−TM𝐴

X(𝑠)−(𝑤)

TE𝐴−TE𝑆 X(𝑠)−(𝑤)

TE𝐴−TE𝐴 X(𝑠)−(𝑤)

TE𝐴−TM𝑆 X(𝑠)−(𝑤)

TE𝐴−TM𝐴

0 0 X(𝑠)−(𝑤)

TM𝑆−TM𝑆 X(𝑠)−(𝑤)

TM𝑆−TM𝐴

0 0 X(𝑠)−(𝑤)

TM𝐴−TM𝑆 X(𝑠)−(𝑤)

TM𝐴−TM𝐴

]

]

]

]

]

]

]

]

. (19)

Moreover, having the TE and TM modes divided into
symmetries allows discarding even more surface integrals
when both waveguides have their symmetry axis aligned as
in Figure 4. In that case, symmetric TE modes do not excite
asymmetric TE modes, and symmetric TM modes do not
excite asymmetric TMmodes, nor does this happen inTE and
TMmodes of different perfectwalls.Thus, in those conditions
(19) can be simplified to

X =

[

[

[

[

[

[

[

[

X(𝑠)−(𝑤)

TE𝑆−TE𝑆 0 0 X(𝑠)−(𝑤)

TE𝑆−TM𝐴

0 X(𝑠)−(𝑤)

TE𝐴−TE𝐴 X(𝑠)−(𝑤)

TE𝐴−TM𝑆 0

0 0 X(𝑠)−(𝑤)

TM𝑆−TM𝑆 0

0 0 0 X(𝑠)−(𝑤)

TM𝐴−TM𝐴

]

]

]

]

]

]

]

]

. (20)

One significant advantage of the mathematical formu-
lation used in this paper to describe the problem of the

y

x

Δx

Δy

y

x

Figure 5: Change in the coordinate system.

electromagnetic scattering between equilateral triangular
waveguides is that any offset introduced in the reference
coordinate system results again in plane waves with the same
wavenumber vector and just a change in their associated
amplitudes. Figure 5 shows an arbitrary offset between two
coordinate systems. According to this representation, the
basis functions in (14) referring to the new coordinate system
are

𝜙


𝑆,𝐴/𝑆,𝐴

TE/TM =

12

∑

𝑢=1

𝐴
𝑢
𝑒

𝑗(𝑘𝑥𝑢(𝑥

+Δ𝑥)+𝑘𝑦𝑢(𝑦


+Δ𝑦))

, (21)

which can be rewritten using the same parameters 𝑘
𝑥𝑢

and
𝑘
𝑦𝑢

already calculated in (14) and therefore introducing a
simple change in its amplitudes:

𝜙


𝑆,𝐴/𝑆,𝐴

TE/TM =

12

∑

𝑢=1

𝐴



𝑢
𝑒

𝑗(𝑘𝑥𝑢𝑥

+𝑘𝑦𝑢𝑦


)

, (22)

where 𝐴

𝑢
= 𝐴

𝑢
𝑒

𝑗(𝑘𝑥𝑢Δ𝑥+𝑘𝑦𝑢Δ𝑦). Another advantage of this
formulation is that all the surface integrals involved in the cal-
culation of the inner cross product matrix X can be reduced
to the following simple exponential integral:

𝐼 = ∬

𝐴𝑠

𝑒

𝑗𝐵1𝑥
𝑒

𝑗𝐵2𝑦
𝑑𝑠, (23)

where 𝐵
1
and 𝐵

2
are related to the additions of the corre-

sponding wavenumbers and 𝐴
𝑠
is the inner surface of the

triangular intersection.

5. Results and Discussion

In order to prove the efficiency of the formulation presented
in this paper, three cases are solved. For each case, the GSM is
compared at different frequencieswith the results given by the
commercial software CST Microwave Studio. It is important
to bear in mind that the modal series that describe the
electromagnetic field in each waveguide must be truncated to
a finite number of modes. Nevertheless, it is not advisable to
use a very high number of modes from the beginning since it
increases the computational cost and therefore the efficiency
of theMode-Matching technique is compromised. Besides, in
this scenario, where twomodal series have beenmatched, the
problem of relative convergence arises.
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Figure 6: Case studies: single step (a) without offset and (b) with offset and (c) double step with offset.
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Figure 7: Case study a:modeTE𝐴
10
inwaveguide 1 tomodeTE𝐴

10
inwaveguide 2: (a) reflectionmagnitude, (b) reflection phase, (c) transmission

magnitude, and (d) transmission phase.
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Figure 8:Case study a:modeTE𝑆
10
inwaveguide 1 tomodeTE𝑆

10
inwaveguide 2: (a) reflectionmagnitude, (b) reflection phase, (c) transmission

magnitude, and (d) transmission phase.

One of the well-known strategies to address the problem
is to set a reference frequency 𝑓

ref
𝑐

and select the modes
whose cut-off frequency is below it in each waveguide. The
reference frequency𝑓ref

𝑐
is increased until the results decrease

their variation with the number of selected modes. It will be
seen that at that point they show a good agreement with the
commercial software CST Microwave Studio.

According to the selected stopping criterion based on a
cut-off frequency threshold, three pairs ofmode relationships
are used: 34-10, 106-34, and 214-58, where the former number
indicates the number of modes considered in the largest
waveguide and the latter the ones considered in the smallest
one. The three case studies analyzed are depicted in Figure 6.

5.1. Single Step between Aligned Waveguides. In the first
case study a single step between two equilateral triangular
waveguides is considered, where both of them are centered at
our coordinate reference system (see Figure 6(a)).The side of
thewaveguide (𝑠) is√3mm,which is port 2 in the generalized
scattering parameters shown later on, whereas the side of the
waveguide (𝑤), which is port 1, is 2√3mm. Figures 7 and
8 show the comparison of the two first degenerated modes
(TE𝑆

10
and TE𝐴

10
) using the presented formulation for the

Mode-Matching method and the commercial software CST
Microwave Studio.

The frequency range (i.e., 117–122GHz) is selected in
order to ensure the propagation of the pair of fundamental
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Figure 9: Case study b: mode TE𝐴
10

in waveguide 1 to mode TE𝐴
10

in waveguide 2: (a) reflection magnitude, (b) reflection phase, (c)
transmission magnitude, and (d) transmission phase.

modes in each waveguide and guarantee a better comparison
with the commercial software.

Figures 7(a) and 7(b) show the magnitude and phase
of the reflection parameters of the TE𝐴

10
mode, that is, the

relationship between the amplitudes of the incident and the
reflected TE𝐴

10
mode in each waveguide. Figures 7(c) and

7(d) represent the magnitude and phase of the transmission
parameters of theTE𝐴

10
mode, that is, the relationship between

the amplitudes of the same type of mode going through both
waveguides.

In this case the energy transfer between the TE𝐴
10

mode
and the TE𝑆

10
mode is not represented, since it is known in

advance that this transference is zero due to the dual symme-
tries that these modes present. For the same reason, thanks

to the division of the modes into symmetries the number
of modes used is half the number used in the two following
cases, leading to a faster convergence.

Figure 8 follows the same scheme with the mode TE𝑆
10
. It

can be seen that, compared to the TE𝐴
10
mode, the TE𝑠

10
mode

requires more modes in the series to achieve the results given
by the numericalmethod inCST in general. In the TE𝐴

10
mode

only the |𝑆
11
| parameter and the phase of the transmission

parameters require a larger number of modes to converge.

5.2. Single Step between Misaligned Waveguides. In the sec-
ond case study the previous waveguides are selected again,
but a vertical offset of 0.08mm and a horizontal offset
of 0.02mm are introduced (see Figure 6(b)). Figures 9–11
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Figure 10: Case study b: mode TE𝑆
10

in waveguide 1 to mode TE𝑆
10

in waveguide 2: (a) reflection magnitude, (b) reflection phase, (c)
transmission magnitude, and (d) transmission phase.

depict the results obtained using both the Mode-Matching
technique and the CSTMicrowave Studio solver again for the
two fundamental degenerate modes.

Figures 9 and 10 show that in this case both the TE𝐴
10

and the TE𝑆
10
modes require a higher number of modes to be

similar to the results obtained by the CST commercial sof-
tware.

It is interesting to include the energy transfer between
the modes of different families, which is nonzero in this
case study since the symmetry axis between the considered
waveguides is no longer aligned. Figure 11 represents the rela-
tionships between themodal amplitudes ofmode TE𝐴

10
in one

of the waveguides and mode TE𝑠
10
in the other one.

5.3. Double Step betweenMisalignedWaveguides. In the third
and last case study, two steps between the same waveguides
are analyzed (see Figure 6(c)). In this case the notation associ-
atedwith the number ofmodes used refers to the threewaveg-
uides, 34-10-34 being the modes selected in the three waveg-
uides involved. In order to test the evanescent modes (i.e.,
those whose cut-off frequency is below the analyzed range of
frequencies), a range of frequencies is selected where none
of the modes in the smallest waveguide propagates (i.e., 90–
95GHz).

The thickness of waveguide (𝑠) is 0.3mm to limit the
attenuation of its first three pairs of modes to 3.9 dB, 10 dB,
and 11.5 dB, respectively, having significant higher-order
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Figure 11: Case study b: mode TE𝐴
10
in waveguide 1 to mode TE𝑆

10
in waveguide 2 and mode TE𝑆

10
in waveguide 1 to mode TE𝐴

10
in waveguide

2: (a) reflection magnitude, (b) reflection phase, (c) transmission magnitude, and (d) transmission phase.

mode interaction between the two discontinuities. In Figures
12–14 it can be seen that all the results achieved using a
very low number of modes (i.e., 34-10-34) and those with a
higher number show greater differences than in the previous
two cases. In any case, the results finally converge once the
number of modes is increased.

6. Conclusion

The complete mathematical formulation of the Mode-
Matching method applied to equilateral triangular discon-
tinuities has been presented. The mode spectrum for the

equilateral triangular waveguide has been shown. A flexi-
ble formulation based on plane waves has been presented,
simplifying the surface integrals involved. Moreover, this
mathematical formulation can be easily extended to discon-
tinuities that involve triangular equilateral waveguides with
other classical waveguides such as the rectangular, circular,
or elliptical waveguides, where their modes can be expanded
in plane waves as well. Finally, three case studies have
been analyzed and compared with the results obtained with
the commercial software CST Microwave Studio. A good
agreement between responses has been proved, with Mode-
Matching having the advantage of a quasi-analytical method
with high efficiency.
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Figure 12: Case study c: mode TE𝐴
10

in waveguide 1 to mode TE𝐴
10

in waveguide 2: (a) reflection magnitude, (b) reflection phase, (c)
transmission magnitude, and (d) transmission phase.

Appendix

Mode Calculation

The electromagnetic field of a TE mode, at the angular
frequency 𝜔 = 2𝜋𝑓, can be expressed using the following
equations [13, 14]:

ℎ
𝑧𝑝
= −

√𝑌
𝑝
𝑘

2
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√𝑁

𝑝
∇
𝑡
𝜙
𝑝
,

(A.1a)
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where the wave impedance (admittance) 𝑍
𝑝
(𝑌

𝑝
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−1
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𝛾
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, (A.2)

and the normalization constant for unit complex power 𝑁
𝑝

and the propagation constant 𝛾
𝑝
are
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Figure 13: Case study c: mode TE𝑆
10

in waveguide 1 to mode TE𝑆
10

in waveguide 2: (a) reflection magnitude, (b) reflection phase, (c)
transmission magnitude, and (d) transmission phase.

The electromagnetic field of a TM mode can be expressed
using the following equations:
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where the normalization constant for unit power𝑁
𝑝
and the

wave number 𝑘
𝑐𝑝

hold the same definition as in (A.3a) and
(A.3b), respectively, and the wave impedance (admittance)
𝑍
𝑝
(𝑌

𝑝
) is
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Figure 14: Case study c: mode TE𝐴
10
in waveguide 1 to mode TE𝑆

10
in waveguide 2 and mode TE𝑆
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in waveguide 1 to mode TE𝐴

10
in waveguide

2: (a) reflection magnitude, (b) reflection phase, (c) transmission magnitude, and (d) transmission phase.
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