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Context-aware part-based people detection
for video monitoring

Alvaro Garcia-Martin and Juan C. SanMiguel

We propose a novel approach for part-based people detection in
images that uses contextual information. Two sources of context are
distinguished regarding the local (neighbour) information and the
relative importance of the parts in the model. Local context determines
part visibility which is derived from the spatial location of static objects
in the scene and from the relation between scales of analysis and
detection window sizes. Experimental results over various datasets show
that the proposed use of context outperforms the related state-of-the-art.

Introduction: People detection in images faces many challenges related
to pose changes, illumination variations, occlusions and clutter. Holistic
and part-based models have been proposed to cope with such high
complexity and variability. Holistic models describe a person as a whole
by means of region, shape or colour features such as Histograms of
Oriented Gradients [!] and Aggregated Channel Features (ACF) [2].
Deformable Part Models (DPMs) [3] consider a person as a root
component and P body parts, thus providing a superior ability to handle
variations in the relative locations of parts. Recent DPM improvements
have targeted partial occlusions which still presents a major hurdle.
Occlusion patterns can be included in the model by learning from
annotated training data [4] or by means of double-person detectors [5].
However, both approaches re-train DPMs which is time consuming.
Moreover, non-visibility of parts can be assumed to create models based
on subsets of parts [0], resulting in a large set of configurations. Although
recent efforts address partial occlusions, the use of context in DPMs
has received less attention. For example, contextual cues are obtained
from nearby background pixels to get a holistic classifier [7]. Region
segmentation can help to filter out wrong hypothesised part locations [8].
Additional deformation models and AND-OR combinations are acquired
from specific training data to adapt DPMs to a particular context [9].
Albeit effective, these context-based DPMs require further training which
makes not straightforward their adaptation to other contexts.

To overcome these shortcomings, this Letter presents a framework for
people detection based on context that extends DPMs for occluded object
detection. This proposal employs two sources of context for the local
(neighbour) information and the relative part importance. We simplify
the acquisition and use of context so the proposed approach can be easily
adapted to new contexts without requiring additional training.

Framework for context-aware people detection: We include contextual
information in DPMs [3]. Each part p is represented by a 3-tuple
{Fp,Dp,vp} wWhere F), is the appearance model, D,, is the deformation
model and v, is the optimum location of the part. Detecting people in a
M x N image I involves computing a score s for hypothesised locations
of all parts, defined as {lo, ...Ip } where [, is a spatial position (z, y) and
analysis scale a. We extend DPMs to use the context of each hypothesis
via contextual part scores Y (I, Cp) Where Cp, is the scene knowledge of
part p. The score s for each hypothesis is computed as:

P
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where (-, -) is the scalar product, ¢(l,, I') are the image features from I at
location I;, and ¥ (1o, lp) is a 4D descriptor for the displacements between
the hypothesised I, and optimum v,, part locations with respect to the root
location l. For each part, the contextual score Y'(I,,,Cp) is decomposed
into the local context ¢! and the relative context " as:

Y(lp, Cp) = " <4Pl 1p,Cp) s {Lpl (10,C0) s s 90’ (Ip,Cp)}\ {@l(lp’ CP)})
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where the local context ! refers to the spatial neighbourhood of the part
using the knowledge C,,. The relative context " measures the importance
of the local context for each part ¢!(l,,Cp) as compared to the local
context of the other parts {¢'(lo,Co), ..., ¢ (lp,Cp)} \ {' (Ip,Cp)}-
DPM [3] defines an homogeneous part combination and context in (1)
introduces part heterogeneity, which modifies the scores and the original
detection thresholds cannot be used. The role of " is to calibrate

the context-based part combination to keep the original thresholds. For
example, relative part importance can be derived as the Kullback-Leibler
divergence between the score distributions of the full and one-part-out
models [6]. Estimating ¢" does not require additional training since score
distributions can be collected from the original training set. In this Letter,
we focus on defining the local context ¢ (I, Cp) and the knowledge C,,.

Local context for people detection: We consider two local contexts for
#'(Ip, Cp) that explore spatial neighbourhood to determine parts visibility
and, therefore, their importance when combined in DPMs. First, we
define context according to the detection scale a. Parts of the model may
fall outside of the image I at certain locations and scales, thus decreasing
detection performance as these parts are not visible. To obtain the scale
context !, (Ip, Cp) = ¢, , (x, y) for each part location (z, y) and analysis
scale a, we apply a kernel K over an all-ones M x N matrix I’:

z+M/y+N'
Chal@y)= Y Y I'i,j) Ki(i+de—a,j+dy—y) ()
i=xr  j=y

where (4, ) are pixel coordinates, (d.,d,) are the part displacements
with respect to the root center location and K7 is an all-ones M’ x N’
matrix whose size is the one of the rescaled part appearance model F}, by
the factor a. Spi;,a (z,y) estimates the likelihood to detect the part p in the
image I at scale a and position (z, y). Hence, the aggregated scale context
for all parts is defined as the sizes of the kernels at the considered scales,
Cp={M'x N'},_, 4 Fig. 1 depicts examples of the scale context.

a b c

Fig. 1 Examples of scale context goi,ya for an 352 x 288 image using a= 2
(twice the original scale [3]). The values range from 1 (white) to 0 (black).

a Root body part

b Head body part

¢ Shoulder-left body part

Second, we also estimate local context from domain knowledge
descriptions such as the static scene objects [10], which are combined
with spatial constraints into semantic rules in an ontology framework
[10]. For example, some detections may be avoided such as for legs
in the ceiling of a scene, heads in the floor of a scene or body parts
occluded by tables. If we assume that this view-dependent context does
not change over time, it can applied in video monitoring with static
cameras. Otherwise, context needs to be updated accordingly. To obtain
the scene context ¢ (lp,Cp) = l, . (x,y) for each part p and scale a, we
apply the previously defined kernel K similarly to (3):
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1 . . ) .
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where O, is the set of static objects o that may occlude (e.g. tables) or
prevent (e.g. ceilings) the detection for the part p; |-| is the set cardinality
and M, is a binary M x N matrix indicating the location of the object
o which can be obtained via annotation tools [10]. The semantic rules
are represented by the sets Op, linking each part with the static objects
affecting its visibility and, therefore, determining the part knowledge as
Cp ={0p, M, }. Fig. 2 depicts examples of the scene context.

a b [

Fig. 2 Examples of scene context <p§,, s for EDds dataset [12], using twice the
original scale [3]. For the part maps, values range from 1 (white) to 0 (black).
a Root body part

b Head body part

c The annotation of all stationary scene objects (each one as a unique colour)
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Experimental setup: We test the proposed approach in datasets for video
monitoring with static cameras: LIRIS [11], EDds [12] and PDbm [13].
These datasets provide heterogeneous test conditions covering common
detection problems such as scale changes, occlusions and clutter. In
total, 51075 people are manually annotated in 46917 frames. For the
proposed approach, we use the original DPM [3] (voc-release
4.1) and distinguish three context-based derivations: DPM-A using
©L, o (lp,Cp) for scale, DPM-S using !, (I, Cp) for scene and DPM-
B for the combination of both contexts as <p§, = min(%,,a, <P§,, s)- We
use the ontology framework [10] to provide the object context via the
annotated spatial location of static objects. For the relative importance
context " in (1), we use the part weights as defined in [6]. Finally,
we measure performance using the area under precision-recall (AUC-
PR) curves [13] and provide comparisons against HOG [1], ACF-I [2]
(using INRIA model), ACF-C [2] (using Caltech model) and DPM [3]
approaches.

Experimental results: Table 1 compares the mean results obtained for
each dataset. HOG is the worst due to the use of gray-scale holistic
features such as oriented gradients whereas complex holistic approaches
(ACF-I and ACF-C) significantly improve performance since multiple
features are combined. DPM is the best selected approach which is
outperformed by the proposal in all datasets, demonstrating that context
is useful to increase detection performance in a variety of situations.

Table 1: Detection results for each dataset in terms of AUC-PR. %A is
the percentage increase of DPM-B against the best approach.
[ Dataset | HOG [1] | ACFI[2] [ ACF-C [2] | DPM [3] | DPMB [ %A |

LIRIS | 469 66.9 595 672 86.1 [ 28.1
EDds | 835 93.8 73.8 94.4 983 | 4.1
PDbm | 482 734 60.5 75.1 776 | 33

[Mean | 595 | 780 | 646 | 789 | 873 [ 10 |

Fig. 3 shows examples comparing the proposed and original approach.
For clarity, we only show results for the best compared approach (DPM).
For PDbm, no results are reported for DPM-S since no annotation is
available for the scene objects. In all cases, DPM-B improves results
thanks to the use of contextual information as seen in the PR curves.
In Fig. 3(a), it is clear the use of both context-based derivations for the
person on the left and only scene context (the table) for the person on the
right. In Fig. 3(b), it can be observed the benefit of using scene context on
both people where the table and ceiling scene objects help to detect the
occluded people and avoid false positives, respectively. In Fig. 3(c), scale
context increases detection performance for the person at the bottom of
the image, demonstrative the robustness of DPM-B for detection scales
where the person falls outside the image.

Conclusions: This letter has presented a context-based DPM approach
for people detection. The context is defined as the relative part importance
in the model and the local (neighbourhood) information of hypothesised
part locations. Local context is further explored to account for non-visible
parts due to scale constraints and for occlusions due to scene objects,
which can be easily provided as manual annotations. The proposed
approach does not require re-training unlike related literature and the
context is used to adapt the DPM combination. Performance increase over
various datasets demonstrates the utility of context for people detection.
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Fig. 3 Comparative results between selected and proposed approaches using
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a Frame 18 of vid0020 sequence (LIRIS dataset)

b Frame 1238 of Counter0001 sequence (EDds dataset)
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