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Covariance-based online validation of video
tracking

Juan C. SanMiguel and A. Calvo

A novel approach is proposed for online evaluation of video tracking

without ground-truth data. The temporal evolution of covariance features

is exploited to detect the stability of the tracker output over time. A model

validation strategy performs such detection without learning the failure

cases of the tracker under evaluation. Then, the tracker performance is

estimated by a finite state machine determining whether the tracker is on

target (successful) or not (unsuccessful). The experimental results over

a heterogeneous dataset show that the proposed approach outperforms

related state-of-the-art in terms of performance and computational cost.

Introduction: Video tracking approaches (trackers) are widely used in

many multimedia applications although the existing visual challenges

are not simultaneously addressed by current trackers [1]. Online tracker

validation is therefore needed to select the best tracker for each application

or to improve tracking performance via self-tuning. Such validation is

complex as only the tracker result is available at runtime and ground-truth

data (ideal result) can not be used. Current approaches for online validation

are based on multi-hypothesis trackers, target motion reversibility and

feature reliability. Multi-hypothesis approaches measure the dispersion

of hypothesis in the state-space and, albeit effective, they require

specific architectures such as Particle Filters (PFs) [2]. Reversibility-

based approaches apply tracking in reverse direction to check similarities

between the tracker to validate and the reverse one [3]. However, reverse

tracking has high computational cost which depends on the video sequence

length. Feature-based approaches estimate the reliability of features

extracted from the tracker output such as the change of target size [4].

They often use standard tracker outputs (e.g. bounding box) so they can

be applied to many trackers. Feature validation can be also cast as a

classification problem between successful (on-target) and unsuccessful

(off-target) tracker cases [5], often solved by the maximum likelihood

criterion. Feature-based approaches usually have low performance as the

training data availability is limited for the unsuccessful case and feature

values are similar for both cases due to wrong target model updates or

distractors (objects similar to the target). Selecting an optimal feature and

classification strategy are key for efficient online validation in terms of

performance and computational cost.

To overcome the above-mentioned problems, this Letter presents an

approach for online evaluation of single-object trackers without ground-

truth data. It focuses on the temporal evolution of covariance features

only requiring a bounding box as tracker output. Unlike previous work

assuming prior knowledge on the unsuccessful tracker case, the proposed

approach only models the successful case and presents a model acceptance

strategy to identify model deviations. Then, a two-state machine uses the

detected deviations to determine the successful tracker results.

Proposed approach: An overview of the proposed approach is shown in

Fig. 1. It starts from the target location estimated by the tracker at time t:

xt = [xt, yt, wt, yt, ot], (1)

where the tracker output (bounding box) is described by its center location

(xt, yt), width wt, height ht and orientation ot. The proposed approach

can be used for most of existing trackers as they fit Eq. 1. Then, we measure

the structure of the target appearance using xt and the covariance feature:
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1
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where Rt is the set of N pixels contained in xt; r is the pixel index;
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r
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is the mean descriptor value.

The covariance feature allows to represent any tracker output with a low-

dimensional 5× 5 matrix. Furthermore, it provides a robust descriptor to

match regions across different target changes such as appearance or pose.

We assume short-term stability of target features over time and we

exploit the temporal evolution of the covariance feature to determine

whether the tracker is on target. First, we use the proposal of [6] to compute

the distance between covariance features in consecutive time-steps:
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Fig. 1 Block diagram of the proposed approach. For each time-step, the tracker

output xt is validated as successful (S) or unsuccessful (U).

dt(Σt,Σt−1) =

√

√

√

√

5
∑

i=1

ln2λi(Σt,Σt−1) (3)

where λi(Σt,Σt−1) are the Eigenvalues obtained by solving the problem

|λΣt − Σt−1|= 0. Therefore, dt(Σt,Σt−1)≥ 0 where values close to 0

indicate similar covariance features.

We propose to detect dissimilar covariance features over time via a

model acceptance strategy. We consider a model D to define the variability

of dt during successful tracker operation, which follows the probability

density function (pdf) p(dt). We perfom hypothesis testing for model

acceptation where the null hypothesis H0 indicates that the covariance

change dt is consistent with the model D. Let H1 be the hypothesis that an

unknown change of dt has occurred. Model acceptance is formulated as:

ct =

{

H0 if p(dt)< τ

H1 otherwise
(4)

where ct indicates is covariance difference is consistent with the model D

and τ is a threshold defining the tolerance to deviations from the model.

Note that ct is not sufficient to determine the successful tracker operation

and additional reasoning is needed. For example, the tracker output may

remain locked on a background region after a target loss, thus having low

dt values (i.e. H0 hypothesis) albeit the tracker is not on target anymore.

We employ a finite state machine to validate the tracker operation (see

Fig. 2) where two states are defined for the successful (S) and unsuccessful

(U) cases. Starting from the S state, the S →U transition is triggered when

the H1 hypothesis is detected due to tracker failures (target loss). The U →

S transition is when the tracker recovers to the correct target after a failure.

It is activated when H1 hypothesis is accepted and the new tracker output

is similar to the previously tracked target. Inspired by [7], we compute the

similarity between the last successful output and the new tracker output:

st =

{

1 if dt(Σtref ,Σt)<β

0 otherwise
(5)

where tref is the last time-step for the successful tracker case and β is

a threshold to accept the similarity between both covariance descriptors.

Due to the use of covariance features, the check of Eq. 5 allows variations

in scale, pose and appearance of the target between t and tref .

S U

OR

Fig. 2 Finite state machine to validate the tracker output using two states:

successful (S) and unsuccessful (U). ct and st are variables for model

acceptance and tracker recovery checks, respectively.

Experimental data: We use the SOVTds dataset [8] for evaluation, which

contains 126 sequences (~23000 annotated frames) covering common

problems in visual tracking such as occlusions, similar objects and

appearance changes. The 126 sequences are grouped in three random

sets for training the feature model D (pdf p(dt)) (76), for choosing the

optimal value for τ in Eq. 4 (25) and for testing the proposed approach

(25). We validate the results of six trackers: Mean-Shift [9], Color-

based Particle Filter [10], Incremental Visual Tracking [11], Tracking-

Learning-Detection [12], SuperPixel Tracking [13] and Locally Orderless

Tracking [14]. The code of the original authors is used to analyze the

dataset and get the tracker results for validation (~138000 in total). We

heuristically set the parameter to check tracker recovery (Eq. 5) as β = 2.3.
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Performance metrics: We measure the model acceptance performance by

using standard measures of Precision (P), Recall (R) and F-score (F) as in

[2]. We also assess the tracker validation accuracy via the True Positive

Rate (TPR) and False Positive Rate (FPR) [1] that account for the number

of correct and wrong tracker validations.

Experimental results: Table 1 compares common features in video

tracking against the covariance feature, all applied within the proposed

approach. For each feature, p(dt) is modeled as the best fitting of popular

distributions using the Kolmogorov-Smirnov statistic over the training set.

The results show low performance for features based on contour (shape

and area), motion (speed and direction) and color (gray, RGB histograms

and texture) information, demonstrating their low discriminative power

between the successful and unsuccessful cases. Structure-based features

(HOG, CLD and Covariance) present the best results showing that the

target appearance structure exhibits short-term stability. Fig. 3 shows an

example of the proposed approach where the three tracker errors (frames

90, 131-164 and 195-214) are correctly identified.

Table 1: Performance (mean results) of the proposed approach using

common features for video tracking. Bold indicates best results.

Feature employed
Fitted pdf Model acceptance Tracker validation

for p(dt) P R F TPR FPR AUC

Shape ratio [4] Beta .107 .177 .099 .929 .587 .672

Area ratio [5] Beta .159 .397 .187 .905 .412 .747

Direction smoothness [5] Normal .077 .241 .100 .913 .451 .726

Speed smoothness [5] Rayleigh .039 .422 .069 .885 .429 .729

Texture difference [5] Gamma .069 .164 .089 .967 .734 .617

Gray level [5] Gamma .253 .150 .081 .968 .834 .568

Color hist. (RGB) [10] Exponential .571 .166 .150 .967 .831 .568

Gradient hist. (HOG) [1] Exponential .297 .367 .309 .958 .518 .720

Color layout (CLD) [15] Exponential .415 .363 .349 .937 .629 .754

Covariance (Proposed) Exponential .462 .549 .489 .935 .359 .788

Table 2 compares the results of the proposed approach against the

related state-of-the-art in terms of accuracy and computational cost. For

feature-based approaches, the proposal clearly improves the accuracy

of [5] (and its modification using the best feature), showing the benefits

of model validation over a two-model Bayesian classifier for successful

and unsuccessful cases. Moreover, the computational cost is reduced

as only covariance feature is employed instead of multiple features

in [5]. Compared to reverse validation [3], the proposed approach reduces

the computation cost around 50× as compared to [3]. Moreover, the

computations of [3] depend on the sequence length whereas the proposed

approach has a bounded computation. This limitation of [3] prevents its

use for many applications where execution time is critical and for long

sequences as the computational cost is not affordable. Therefore, the

proposed approach allows a broader application of online validation as

compared to [3], offering a trade-off between accuracy and cost. Note that

we do not compare with [2] as it is for PF-based approaches and [4] as it

uses low-performing features (motion speed and smoothness, see Table 1).

Table 2: Comparative results (mean) for online tracker validation. The

symbol ’*’ is for [5] using only the best feature. △% shows the difference

(in percentage) between the proposed and each selected approach.

Reference Type
Tracker validation Execution time (ms/frame)

TPR FPR AUC △% Train Test △%

[5] Feature .941 .773 .584 +34.7 4578 4230 -87.2

[5]* Feature .940 .739 .601 +31.1 4299 3970 -86.3

[3] Reversibility .931 .185 .886 -11.1 - 26681 -97.7

Proposed Feature .935 .359 .788 - 567 542 -

Conclusions: An approach to validate trackers is presented in this Letter

based on short-term evolution of covariance features. The results show

that focusing on temporal consistency of features is more effective

than the traditional two-model classification. Moreover, the structure of

target appearance (covariance) performs better than common features

to determine tracker errors. Finally, the proposed approach outperforms

competitive feature-based approaches and provides a generic cost-bounded

validation that can be applied for long-term and time-critical applications.
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Fig. 3 Example for online validation of tracking results between successful

(S) and unsuccessful (U) for the Mean-Shift (MS) tracker. From top to bottom

graphs: error as the spatial overlap between the estimation and ground-truth

data [3], covariance difference dt (Eq. 1) and final tracker validation.

Juan C. SanMiguel and A. Calvo (Video Processing and Understanding

Lab, Universidad Autónoma de Madrid, Madrid, Spain)

E-mail: juancarlos.sanmiguel@uam.es

References

1 Smeulders, A., Chu, D., Cucchiara, R., Calderara, S., Dehghan, A., and
Shah, M.: ’Visual Tracking: An Experimental Survey’, IEEE Trans. Pattern

Anal. Mach. Intell., 2014, 36, (7), pp.1442-1468
2 SanMiguel, J., and Cavallaro, A.: ’Temporal validation of Particle

Filters for video tracking’, Comput. Vis. Image Understand., 2014,
http://dx.doi.org/10.1016/j.cviu.2014.06.016 (last accessed Oct. 2014)

3 Hao, W., Sankaranarayanan, A., and Chellappa, R.: ’Online Empirical
Evaluation of Tracking Algorithms’, IEEE Trans. Pattern Anal. Mach.

Intell., 2010, 32, (8), pp.1443-1458
4 Chau, D., Thonnat, M., Brémond, F., and Corvée, E.: ’Online parameter

tuning for object tracking algorithms’, Image Vis. Comput., 2014, 32, (4),
pp. 287-302.

5 Spampinato, C., Palazzo, S., and Giordano, D.: ’Evaluation of tracking
algorithm performance without ground-truth data’, Proc. of IEEE Conf. on

Image Process., Orlando (USA), Oct. 2012, pp.1345-1348
6 Förstner, W., and Moonen, B.: ’A metric for covariance matrices’, Geodesy-

The Challenge of the 3rd Millennium, 2003, pp. 299-309
7 Matthews, I., Ishikawa, T., and Baker, S.: ’The template update problem’,

IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26, (6), pp. 810-815
8 VPULab datasets: ’SOVTds: A single-object video tracking dataset’,

http://www-vpu.eps.uam.es/SOVTds/ (last accessed Oct. 2014)
9 Comaniciu, D., Ramesh, V., and Meer, P.: ’Kernel-based object tracking’,

IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (5),pp. 564-577
10 Nummiaro, K., Koller-Meier, E., and Gool, L.V.: ’An adaptive colour-based

particle filter’, Image Vis. Comput., 2002, 21, (1), pp. 99-110
11 Ross, D.A., Lim, J., Lin, R.S., and Yang, M.H.: ’Incremental learning for

robust visual tracking’, Int. J. Comput. Vis., 2008, 77, 1, pp. 125-141
12 Kalal, Z., Mikolajczyk, K., and Matas, J.: ’Tracking-learning-detection’,

IEEE Trans. Pattern Anal. Mach. Intell., 2011, 34, (7),pp. 1409-1422.
13 Fan, Y., Huchuan, L., and Ming-Hsuan, Y.: ’Robust Superpixel Tracking’,

IEEE Trans. Image Process., 2014, 23, 4, pp.1639-1651
14 Oron, S., Bar, A., Levi, D., and Avidan, S.: ’Locally Orderless Tracking’,

Int. J. Comput. Vis., 2014, http://dx.doi.org/10.1007/s11263-014-0740-6
(last accessed Oct. 2014)

15 Manjunath, B., Ohm, J., Vasudevan, V., and Yamada, A.: ’Color and texture
descriptors’, IEEE Trans. Circ. Syst. Video Technol., 2001, 11, 6, pp.703-715

2

Page 2 of 6


