

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

SLE 2015: Proceedings of the 2015 ACM SIGPLAN International Conference

on Software Language Engineering. New York: ACM, 2015. 101 - 112

DOI: http://dx.doi.org/10.1145/2814251.2814256

Copyright: © 2015 ACM

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1145/2814251.2814256

Example-based Validation of Domain-Specific Visual Languages

Jesús J. López-Fernández Esther Guerra Juan de Lara
Universidad Autónoma de Madrid

{jesusj.lopez, esther.guerra, juan.delara}@uam.es

Abstract
The definition of Domain-Specific Languages (DSLs) is a
recurrent activity in Model-Driven Engineering. However,
their construction is many times an ad-hoc process, partly
due to the lack of tools enabling a proper engineering of
DSLs and promoting domain experts to play an active role.

The focus of this paper is on the validation of meta-
models for visual DSLs. For this purpose, we propose a
language and tool support for describing properties that in-
stances of meta-models should (or should not) meet. Then,
our system uses a model finder to produce example models,
enriched with a graphical concrete syntax, that confirm or
refute the assumptions of the meta-model developer.

Our language complements metaBest, a framework for the
validation and verification of meta-models that includes two
other languages for unit testing and specification-based test-
ing of meta-models. A salient feature of our approach is that
it fosters interaction with domain experts by the use, process-
ing and creation of informal drawings constructed in editors
liked yED or Dia. We assess the usefulness of the approach
in the validation of a DSL for house blueprints, with the par-
ticipation of 26 4th year computer science students.

Categories and Subject Descriptors I.6.4 [Computing
Methodologies]: Model Validation and Analysis

Keywords Meta-modelling, Domain-Specific Visual Lan-
guages, Meta-model Validation and Verification

1. Introduction
Domain-Specific Visual Languages (DSVLs) are used for
modelling in a wide range of disciplines, and in particular,
their use is pervasive in Model-Driven Engineering (MDE)
[8, 21]. Hence, the creation of new DSVLs for particular do-
mains is a recurring activity which at least involves the def-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SLE ’15, October 25–27, 2015, Pittsburgh, Pennsylvania, USA.
Copyright c⃝ 2015 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

inition of a meta-model with the relevant concepts and rela-
tions in the domain (the abstract syntax) and their graphical
representation (concrete syntax). Typically, domain experts
participate in the DSVL creation process by providing re-
quirements for the language, either in natural language or
in the form of informal drawings, while language engineers
are in charge of developing the DSVL meeting the outlined
requirements [16, 21]. Unfortunately, the transition from re-
quirements to DSVL implementations is many times an ad-
hoc process, and there are few tools assisting in the vali-
dation and verification (V&V) of the resulting DSVLs with
respect to both correctness and quality criteria. In particular,
tools enabling the assessment of the DSVL by domain ex-
perts, who may not be proficient in meta-modelling, are of
special interest to obtain useful, effective languages.

To overcome some of these problems, recently, we pro-
posed the metaBest [13] framework for the V&V of meta-
models w.r.t specifications or using unit test suites. While
specifications state properties that a given meta-model should
fulfil (e.g., two meta-classes x and y should be related),
test suites require developing test models upfront. However,
none of these two mechanisms enable an exploratory way
of testing where the system produces instance models to be
inspected by the engineer, or take into account the concrete
syntax of the DSVL. Moreover, they require some back-
ground on meta-modelling, which domain experts may lack.

In this paper, we complement metaBest with a new mech-
anism to validate DSVLs by the automated generation of ex-
ample models that take into account both the abstract and
concrete syntax of the DSVL. The idea is producing exam-
ple instantiations of the meta-model being developed, which
both domain experts and engineers can inspect more easily
to detect possible flaws in the meta-model and reason on the
properties that instances should have. The example gener-
ation process can be fine-tuned using a textual DSL called
mmXtens, which allows constraining the number and type of
objects in the example, stating their connectivity, and pro-
viding a seed model either in graphical or textual format.
The semantics of mmXtens is given in terms of OCL, but it
provides a more concise syntax. Moreover, in order to pro-
duce the concrete syntax for the generated examples, in ad-
dition to the typical node-arch graphical representation, we
give support for spatial relations like adjacency or contain-

ment. Such relations can be induced from previous sketches
provided by domain experts using simple diagramming tools
(currently we provide full coverage for yED1). To automate
the generation of models and their graphical layout, we use
constraint solving techniques [10].

Altogether, our example-based validation approach per-
mits an exploratory way of testing as it is possible to analyse
whether certain model configurations are allowed or forbid-
den by a meta-model, or whether the meta-model can be in-
stantiated at all. Moreover, the fact that we generate models
in graphical concrete syntax facilitates their assessment by
domain experts. Our approach is supported by a tool, and
we analyse its usefulness by showing a study where we val-
idate the assignments of 26 fourth-year undergraduate stu-
dents enrolled in a course on DSLs.
Organization. We outline our approach in Section 2, and in-
troduce a running example in Section 3. Next, Section 4 de-
scribes mmXtens, and Section 5 shows how to enrich the gen-
erated examples with a concrete syntax. Section 6 presents
our supporting tool. Section 7 includes an empirical evalu-
ation of our proposal. Section 8 compares with related re-
search, and Section 9 ends with the conclusions.

2. Overview of the approach
Fig. 1 outlines our framework. It comprises three comple-
mentary approaches and languages for meta-model V&V:
the first one is based on unit testing (mmUnit), the second one
is based on meta-model property specifications (mmSpec),
and the last one is based on the generation of example mod-
els (mmXtens). In this paper, we focus on the last one, and
refer to [13] for details of the two former.

The goal of our example-based validation approach is to
automatically produce interesting example models that can
be easily inspected (even by non-meta-modelling experts) to
validate the correctness of a meta-model, or counterexam-
ples signalling meta-model flaws. The example generation
process can be customized by providing a seed model for
the example, as well as a set of properties that the example
should fulfil. To make this customization suitable to domain
experts, seed models can be sketched in diagramming tools
and then imported into our framework (label 1⃝). We also
provide a simple textual DSL, called mmXtens, to express
model properties in a friendlier way than using e.g. OCL.

Then, our example generator uses this information to au-
tomatically find a model instance that is conformant to the
meta-model under test and meets the defined properties (la-
bel 2⃝). If such a model is found within the search bounds,
a layout generator proceeds with the creation of its concrete
syntax (label 3⃝). The arrangement of the different graphical
elements in the produced visualization preserves the one in
the seed model (if it was provided), and moreover, it may
take into account domain-specific layout rules regarding ad-
jacency, containment and (non-)overlapping of graphical el-

1 http://www.yworks.com/en/products_yed_about.html

requirements

quality criteria

platform-

specific rules

meta-model property
checking (mmSpec)

example-based validation,
exploration (mmXtens)

test model

model
fragment
sketches

domain

expert

meta-

modelling

expert

assertions

seed

test report

model
example/
counter
example

meta-model

under test

meta-model validation &
verification framework

example
generator
(abstract
syntax)

constraint
solver

layout

rules

parser

spatial
relations
extractor

underlying
model

extractor

layout
generator
(concrete
syntax)

1

2

3

0

unit testing
(mmUnit)

test report

e

model properties

rtttt

rt

t

training

Figure 1: Overview of our framework for meta-model V&V.

ements. These rules might have been induced from previous
sketches (label 0⃝), or they can be defined as annotations
in the meta-model. Since we decouple the abstract and con-
crete syntax generation processes, it is possible to use the
most convenient approach for each step. In our case, we rely
on constraint solving in both cases.

3. Running example
To illustrate our approach throughout the paper, we are using
as example a DSVL for simple house blueprints. The lan-
guage requirements have been extracted from a deliverable
exercise on meta-modelling, belonging to a course on DSLs
for fourth-year undergraduate students in Computer Science.
We will use this example to assess our proposal in Section 7.

The DSVL for blueprints should consider several types of
rooms, like entries, living rooms, bedrooms, kitchens, baths,
gyms and balconies. Any house should have at least one bath
and one living room, at most one entry, and there are no
restrictions concerning the number of rooms for the rest of
types. In addition, all rooms may have any number of plug
outlets and switches for lights.

The blueprint should allow designing the disposition of
rooms, which for simplicity, are rectangular and have the
same size. Rooms can adjoin other rooms in any of the
fourth cardinal points (north, east, south and west), and there
cannot be isolated rooms (i.e., without any adjacent room).
Rooms can adjoin at most one other room in each direction,
balconies can be adjacent to one room at most, and entries
can be adjacent to three rooms at most.

It should be possible to place between zero and two win-
dows in each exterior wall (i.e., in non-adjacent walls to

other rooms). Balconies are the only exception to this con-
dition, as their windows can only be placed in interior walls
(i.e., walls adjacent to other rooms).

Regarding doors, they can only be placed in interior
walls. Rooms may have either zero or one door in each wall,
and at least one door in total. Additionally, a blueprint should
include exactly one entrance door, which in this case, should
be in an exterior wall. If the blueprint has an entry room, the
entrance door should be there.

Fig. 2 shows a valid blueprint. In this case, using a graph-
ical syntax to represent all spatial relations between the dif-
ferent rooms and the location of windows and doors is help-
ful to better comprehend the underlying model.

Figure 2: Example of valid house blueprint.

4. Meta-model validation with mmXtens

To assist in the construction and validation of DSVLs, we
propose the automated generation of models from the DSVL
abstract syntax meta-model. The generated models can be
used to check that instances with some properties can or
cannot be instantiated from the meta-model. To guide the
generation process, we provide a language that is compiled
into OCL for its use with OCL-based model finders [10].

We organize this section as follows. Subsection 4.1 moti-
vates the need for a model generation facility for meta-model
validation. Subsection 4.2 describes the mmXtens language.
Subsection 4.3 shows some examples, and Subsection 4.4
describes its OCL-based semantics.

4.1 Motivation for an example generation facility
Resuming the running example, assume we build a first draft
of its meta-model, as shown in Fig. 3. This meta-model is
not complete, but already describes the spatial organization
of rooms by means of the references north/south (one inverse
of the other), and east/west (one inverse of the other). In ad-
dition, class Door allows connecting adjacent rooms. Houses
have at least two rooms because, according to the specifica-
tion, each house has a Bathroom and a LivingRoom. Similarly,
houses need at least two doors: one entry door and another
connecting the minimum of two rooms.

We define more complex constraints for the DSVL using
OCL [17]. Listing 1 shows the set of invariants for our first
meta-model draft. They ensure that each House has exactly

House

Room

Entry Living

Room

2..*

Door

2..* 0..1 north

south

east

west

0..1

0..1

0..1

0..1

Bathroom

0..1

0..1

0..1

n

s

e

w

s

n

w

e

0..1

0..1

0..1

0..1

doors rooms

Figure 3: Initial version of the DSVL meta-model.

one entry door (invariant oneEntryDoor); Entry rooms have
some entry door (entryDoor); and every Door is either an entry
door, or it has values exactly in the n and s references, or
in the w and e references (locCoherence). Finally, operation
isEntry evaluated on a Door returns if the door is an entry door.
1 context House inv oneEntryDoor:
2 self.doors−>one(d | d.isEntry())
3

4 context Entry inv entryDoor:
5 Bag{self.n, self.s, self.e, self.w}−>exists(d | d.isEntry())
6

7 context Door inv locCoherence:
8 self.isEntry() or (
9 self.s−>size() + self.n−>size() <> 1 and

10 self.e−>size() + self.w−>size() <> 1 and
11 self.s−>size() + self.n−>size() +
12 self.e−>size() + self.w−>size() = 2)
13

14 context Door operation isEntry() : Boolean =
15 Bag{self.n, self.s, self.e, self.w}−>one(r | not r.oclIsUnde�ned())

Listing 1: Some OCL integrity constraints

While this meta-model captures some intended models,
like the one in Fig. 4(a), it also accepts undesired ones, like
those in Figs. 4(b-c). We tag each model with a correct or
incorrect sign, depending on whether they conform to the
specification in Section 3. Model (b) is unacceptable ac-
cording to the specification because there is a door between
non-adjacent rooms, while model (c) is also unacceptable
because there is a door connected to the north and south of
two rooms that are horizontally adjacent. In both cases, de-
tecting the actual problem is difficult by inspecting the ab-
stract syntax of the model (and we will show how to create a
concrete syntax for the models in Section 5). Finally, model
(d) complies with the specification, but it describes a house
where the entry door leads to a bathroom, which may defeat
our expectations for a reasonable house.

Fixing the problems identified in models (b,c) requires
adding the OCL constraint shown in Listing 2, which ensures
that two rooms connected by a door are adjacent, and their
adjacency is compatible with the door location.
1 context Door inv roomCoherence:
2 not self.isEntry() implies (
3 not self.s.oclIsUnde�ned() implies
4 (self.s.north = self.n and self.n.south = self.s) and
5 not self.e.oclIsUnde�ned() implies
6 (self.e.west = self.w and self.w.east = self.e))

Listing 2: Invariant ensuring doors and rooms are coherent

:House

:Living

Room

:Bath

room

:Door :Door

north

south

s n

(a) (b)

n

n

ss

:House

:Living

Room

:Bath

room

:Door :Door

s nn

n

ss

:House

:Living

Room

:Bath

room

:Door :Door

east

west

n ss

s

nn

(c) (d)

:House

:Bath

room

:Living

Room

:Door :Door

south

north

n ss

s

nn

Figure 4: Correct (a,d) and incorrect (b,c) models according
to the requirements presented in Section 3.

With the unexpected model (d), we might want to revise
the DSL requirements to forbid entry doors in bathrooms.
The reader may have noticed additional problems with the
meta-model, which we will discuss in the next subsection.

Altogether, this example shows the usefulness that a fa-
cility to create meta-model instances has for validation. This
is so as we have detected incorrect models according to the
requirements (models (b,c)), but which are valid according
to the meta-model. Building such models by hand is time-
consuming, and one may be biased towards building correct
models and miss less obvious faults. Generating random in-
stances is not enough either, because we may end up with
many uninteresting models. Instead, we need a mechanism
to describe properties of the instances we may like to inspect.
This is what the mmXtens language is directed to.

4.2 The mmXtens language
Fig. 5 shows our approach to model generation, where for
the moment, we neglect the concrete syntax of models, to
be explained in Section 5. In step 1, meta-modelling and do-
main experts may provide a seed model fragment. This is op-
tional, as it is always possible to start from an empty model.
In step 2, they use mmXtens to specify rules for extending the
seed fragment. These rules encode properties that the gen-
erated model should or should not have. Then, in step 3,
our engine translates the mmXtens specification into OCL and
uses an OCL-based model finder to produce a model satisfy-
ing the specification and conformant to the meta-model un-
der test. Finally, in step 4, the produced model (if any exists
that satisfies the extension rules) can be inspected to validate
whether it complies with the requirements, the expectations
about the meta-model, or the intuitions about the domain.

As an example, Fig. 6 shows an mmXtens specification
declaring a seed fragment and some simple rules, as well as

Figure 5: Example-based validation in mmXtens.

a model generated from this specification. The seed contains
a House with a Bathroom and a LivingRoom. The constraints
demand both rooms to be adjacent, and forbid the produced
model to have more rooms than those declared in the frag-
ment. The specification is used to produce the model in the
bottom-right, which is actually the one shown in Fig. 4(a).
On inspection, we validate the model as correct.

example blueprints {

 house : House {

 @^containment ref rooms = bathroom, livingroom

 }

 livingroom : LivingRoom {}

 bathroom : Bathroom {}

 extension rules:

 livingroom => reference bathroom.

 no new Room.

}
example blueprints_extended {

 house : House {

 @^containment ref rooms = bathroom, livingroom

 @^containment ref doors = door1, door2

 }

 livingroom : LivingRoom {

 ref north = bathroom

 ref s = door1

 ref n = door2

 }

 bathroom : Bathroom {

 ref south = livingroom

 ref s = door2

 }

 door1 : Door {

 ref n = livingroom

 }

 door2 : Door {

 ref s = livingroom

 ref n = bathroom

 }

}

seed fragment

1

mmXtens extension rules

instance generation

2

3

Figure 6: Example of instance generation with mmXtens.

mmXtens specifications have the structure shown in List-
ing 3 (lines 1–5). They can be tagged as positive (by default)
or negative, depending on whether we expect the specification
to be satisfiable or not. In the former case, we expect the sys-
tem to produce a model that contains the given seed model
fragment and satisfies the extension rules, while in the latter,
we expect that no such model exists. Providing a seed frag-
ment is optional; if given, it does not need to be a full model,
but it may contain just a set of initial objects together with
their features of interest (i.e., the fragment may break some
lower cardinality and OCL constraints, and objects may not
specify values for uninteresting attributes). It is possible to
define a list of extension rules with conditions that the model
to be generated should satisfy (line 4). These rules are ex-
pressed using a simple syntax, and then internally translated

into more complex OCL expressions that, transparently to
the user, are used for generating the sought example model.

1 SPECIFICATION ::= [positive | negative]? example <name> {
2 SEED_FRAGMENT
3 extension rules:
4 EXTENSION_RULES
5 }
6

7 SEED_FRAGMENT ::= [<object−id> : <type> {
8 [<slot−id> = value]∗
9 }]∗

10

11 EXTENSION_RULES ::= [
12 <object−id> => CONDITIONER . |
13 QUANTIFIER [new]? <type> [FILTER]? [=> CONDITIONER]? .
14]∗
15

16 CONDITIONER ::=
17 [reference | contain] [{via <refer−name>}]? SELECTOR |
18 attr <att−name> = value
19

20 QUANTIFIER ::= <n>..<n> | strictly <n> | <n> | every | no | some
21

22 SELECTOR ::= <object−id> |
23 QUANTIFIER [new]? <type> [FILTER]?

Listing 3: Simplified grammar of mmXtens specifications

Extension rules may refer either to specific objects in the
seed fragment (line 12), or to arbitrary objects which can
exist in the seed fragment or may need to be created new
(line 13). In both cases, we can use a CONDITIONER stating
required properties for the object. For example, the extension
rule used in Fig. 6:

livingroom => reference bathroom.

requires the existing livingroom object to be extended with a
reference to the bathroom object. As we see in this example,
a CONDITIONER may require an object to be connected with
some other using the keyword reference. If we use the key-
word contain instead, then, the reference should be a compo-
sition. Optionally, we may specify a reference name using
the keyword via. Finally, we can use a SELECTOR (lines 22-
23) to choose the target object of the reference. In the sim-
plest case, it will be an object present in the seed fragment
(e.g., bathroom in the example), though it can also be a new
object created in the extended model, or a set of objects of a
given type (we give examples below).

Alternatively, a CONDITIONER may define requirements
on the attribute values of the selected object (line 18 in the
listing). In the current version of mmXtens, these require-
ments must be concrete values. Finally, conditioners can be
combined using the logical primitives and, or and not (omit-
ted in the listing for simplicity).

Rules can also require properties on sets of objects of a
certain type, without referring explicitly to an existing object
(line 13). In such a case, we use a QUANTIFIER to select
the objects. Valid quantifiers include intervals, strictly a given
number, at least a given number, every object of a given type,
no object of a given type, or some (i.e., at least one) object of a
given type. If the type name is preceded by the keyword new,
then, the selected objects must not belong to the fragment but
they must be new in the extended model. If new is omitted,
the selection is among both existing and new objects.

For instance, valid object selections include every new
Room (for all newly created Room objects, where Room is
an abstract class), some Bathroom, no new Gym or 0..4 Door.

In this latter rule type, it is also possible to define a FILTER
to indicate required properties of the selected objects. The
definition of filters is similar to the one for conditioners, and
may include conditions over attributes and references.

An mmXtens specification may have zero or more exten-
sion rules, and the extended model to produce must fulfil
all of them. Moreover, we can customize the minimum and
maximum number of objects in the model extension. As we
will see in Section 6, this is done through a wizard.

So far, we have described the textual concrete syntax
of mmXtens. Its abstract syntax has been defined through
a meta-model, which is partly shown in Fig. 7. mmXtens

is integrated with our two other languages for meta-model
V&V. It shares the notion of seed fragment with mmUnit, but
while mmUnit assertions are contained in class TestAssertion-

Set, mmXtens assertions are contained in ExtensionAssertionSet.
Both mmXtens and mmSpec specifications follow a similar
selector/filter/condition style, because our goal is to supply
users with a homogeneous family of DSLs.

Fragment AssertionSet

TestAssertionSet ExtensionAssertionSet

ExtensionAssertion

MetaClassAssertion FragmentObjectAssertion

MetaClassSelector

onlyNewElements: boolean

MetaClassQualifier

ObjectQualifier ObjectSelector

objects

mmUnit

assertions

mmXtens

assertions

selector

selector

object filter

condition

condition

metaclass

*

Figure 7: Excerpt of the mmXtens meta-model.

4.3 Examples
Next, we show examples of extension rules and illustrate
how validation with mmXtens is performed in practice. The
aim of the specification in Listing 4 is testing whether two
bathrooms can be connected through a door. It is tagged as
negative as we deem this house disposition as inadequate,
and it uses the seed model fragment shown in Fig. 6.
1 negative example can_two_bathrooms_be_connected {
2 house : House {
3 @^containment ref rooms = bathroom, livingroom
4 }
5 bathroom : Bathroom {}
6 livingroom : LivingRoom {}
7 extension rules:
8 1 new Bathroom.
9 some Door => reference 2 Bathroom.

10 }

Listing 4: Can bathrooms be connected through a door?

Our system is able to extend the seed fragment to the
model in Fig. 8, showing that houses may have bathrooms
connected through a door. While this is unusual, both the
meta-model and the requirements allow this disposition.

:House

:Bath

room

:Bath

room

:Door :Door

south

north

n s e

s n w

:Living

Room

east

west

:Door

s

n

w

e

Figure 8: Counterexample model generated from Listing 4.

In this section, we depict models as object diagrams for
better understanding. Nonetheless, our tool returns a textual
representation like the one used to define seed fragments.
This is handy, as the returned example models can become
the seed in new specifications. As an example, Listing 5
tries to extend the previous model to check whether an entry
door can be placed in a bathroom. To ensure the new Door is
an entry door, the extension rules require that it references
strictly one Room, which should be the bathroom1 object.
1 negative example enter_through_bathroom {
2 house : House {
3 @^containment ref rooms = bathroom, bathroom1, livingroom
4 @^containment ref doors = door1, door2, door3
5 }
6 bathroom1 : Bathroom {
7 ref north = bathroom
8 ref n = door3
9 }

10 ...
11 extension rules:
12 strictly 1 new Door.
13 some new Door => and { reference strictly 1 Room,
14 reference bathroom1}.
15 }

Listing 5: Can the house be entered through a bathroom?

Evaluating this specification returns an extension of the
seed model where bathroom1 is added an entry door, while
the original entry door in the seed fragment gets connected
to another room and stops being entry door. This counterex-
ample breaks our expectations about an acceptable blueprint.

Next, we show some specifications directed to test the
meta-model conformance w.r.t. the requirements. Listing 6
validates whether there may be houses without entry door,
using an empty seed model. Thus, the extension rules require
exactly one new House, with no door connected to exactly
one room (i.e., without entry door). In this case, no model
is found satisfying the defined properties, and hence, we
conclude that the meta-model ensures that every house has
an entry door. Similarly, we can check whether more than
one entry door is allowed, which is also not possible.
1 negative example no_houses_without_entry_door {
2 extension rules:
3 strictly 1 new House.
4 no Door => reference strictly 1 Room.

5 }

Listing 6: Can any house lack entry door?

Another interesting meta-model validation is whether
houses always have at least one bathroom, which can be
checked using the specification in Listing 7.
1 negative example no_houses_without_bathroom {
2 extension rules:
3 strictly 1 new House.
4 no new Bathroom.
5 }

Listing 7: Can any house lack bathroom?

In this case, the system finds a model, proving that the
meta-model is incorrect according to the requirements. Sim-
ilarly, the meta-model does not enforce at least a LivingRoom.
Listing 8 shows the OCL constraint needed for this. Once
added to the meta-model, Listing 7 returns no model.
1 context House inv bathroomAndLivingRoom:
2 self.rooms−>exists(r | r.oclIsTypeOf(LivingRoom)) and
3 self.rooms−>exists(r | r.oclIsTypeOf(Bathroom))

Listing 8: Invariant requiring Bathroom and LivingRoom

Listing 9 tests the semantics of entry doors, in particular,
whether they connect rooms to the “outside” (i.e., there is no
adjacent room in the direction where the door is located).
1 negative example entry_door_leads_to_outside {
2 house : House {
3 @^containment ref rooms = livingroom
4 @^containment ref doors = entryDoor
5 }
6 entryDoor: Door {
7 ref s = livingroom
8 }
9 livingroom : LivingRoom {

10 ref n = entryDoor
11 }
12 extension rules:
13 livingroom => reference{via north} 1 new Room.
14 }

Listing 9: Can entry doors be between adjacent rooms?

The system finds a model where livingroom adjoins a room
to the north, which signals an error in the meta-model. As
the invariant roomCoherence in Listing 2 only considered co-
herence of non-entry doors with room dispositions, we need
to add the new constraint in Listing 10.
1 context Door inv entryCoherence:
2 self.isEntry() implies (
3 not self.n.oclIsUnde�ned() implies self.n.south.oclIsUnde�ned() and
4 not self.s.oclIsUnde�ned() implies self.s.north.oclIsUnde�ned() and
5 not self.e.oclIsUnde�ned() implies self.e.west.oclIsUnde�ned() and
6 not self.w.oclIsUnde�ned() implies self.w.east.oclIsUnde�ned())

Listing 10: Invariant ensuring entry doors lead to outside

We can also test the requirement stating that Entry rooms
should be adjacent to less than 4 rooms, as otherwise they
would not be entries. The test is shown in Listing 11.
1 negative example entry_not_surrounded_by_rooms {
2 extension rules:
3 strictly 1 new House.
4 some new Entry => reference 4 new Room.
5 }

Listing 11: Can entries by adjacent to 4 rooms?

Though we have not explicitly defined an OCL constraint
dealing with this requirement, our system does not find any
model fulfilling the mmXtens specification. Upon reflection,
we can realise that this is because Entry rooms should have
an entry door, and the constraint entryCoherence in Listing 10
already ensures that entry doors lead to outside.

Finally, we can test for different house layouts. For exam-
ple, Listing 12 tries to generate an example of house where
all rooms have an adjacent room to the east.

1 negative example east_adjacent_rooms {
2 extension rules:
3 1 new Room.
4 every new Room => reference{via east} 1 Room.
5 }

Listing 12: Can all rooms have an east-adjacent room?

Conceptually, this is topologically impossible in the 2D
plane, as it would require an infinite row of rooms. How-
ever, the finder returns the topologically unsound model in
Fig. 9(a), which has a circular dependency. This reveals
a deeper problem, exemplified by the unsound models in
Figs. 9(b,c). In reality, we overlook some of these incorrect
configurations as it is difficult to mentally render these mod-
els in abstract syntax, especially those similar to Fig. 9(c).
We only realized they were wrong when trying to automati-
cally assigning them a concrete syntax (and failed!).

:Bath

room
:Living

Room east
west

west
east :Bath

room
:Living

Room
east

west

:Bath

room

north
south

east

west

(b) (c)

:Living

Room west

east

(a)

Figure 9: Topologically unsound models.

We can fix the meta-model by adding further invariants to
Room ensuring that the adjacency relationships in the meta-
model conform to topological adjacency. This is intricate
and requires heavy use of the closure OCL operator. Instead,
if we realise that a house layouts its rooms in a grid, we
can incorporate integer attributes x, y to Room, and make the
adjacency relationships derived. Thus, when two rooms r1,
r2 exist such that r1.x+1 = r2.x and r1.y = r2.y, then both are
adjacent and r1 is to the east of r2. Section 5 will show that,
by asserting that both adjacency relations in the meta-model
are to model (horizontal and vertical) topological adjacency,
we can automatically produce this solution.

4.4 From mmXtens to OCL for model finding
The semantics of mmXtens is given in terms of OCL. This al-
lows the use of an OCL-based model finder [10] for search-
ing models satisfying the mmXtens specification.

Seed fragments are translated into OCL by nesting ex-
istential quantifiers requiring the presence of the objects in

the fragment with the specified attribute values. Schemati-
cally, a fragment with n objects (o_11,...,o_1n) of type T_1,
and p objects of type T_m, is translated as shown in List-
ing 13. Assignments of primitive attributes are translated
into equalities (o_11.a_11=v_11), while references of the
form o_11:T_1{ r_1 = o_12, o_13...} are translated into
o_11.r_1→includesAll(Set{o_12, o_13,...}).
1 T_1.allInstances()−>exists(o_11, ..., o_1n |
2 o_11<>o_12 and ... and o_1n−1<>o_1n and
3 T_m.allInstances()−>exists(o_m1, ..., o_mp |
4 o_m1<>o_m2 and ... and o_mp−1<>o_mp and
5 o_11.a_11 = v_11 and ... and o_1n.a_11 = v_1n and
6 o_m1.a_m1 = v_m1 and ... and o_mp.a_m1 = v_mp and
7 <mmXtens−extension−rules>))

Listing 13: OCL translation schema for seed fragment

Extension rules are also translated into OCL, and added
to the inner-most existential quantifier of the seed fragment
translation (line 7 in Listing 13). Table 1 shows the transla-
tion schema of the main mmXtens primitives. Every rule starts
by either an existing object or a possibly quantified class c. In
the first case, the translation is just the object identifier, while
in the second, it is an expression starting by c.allInstances()→,
and ending by the OCL translation of the quantifier. If the
class is preceded by new, then we need to exclude all ex-
isting objects in the fragment. If the class is followed by a
filter, then we add a select clause containing the filter expres-
sions. The expression reference ⟨q⟩ c, with q a quantifier and c

a class, is translated into the set of references of the selector
reaching c or a superclass of c, and concatenating at the end a
condition due to the translation of the quantifier q. Typically,
such a condition performs checks on the size of the set. The
translation of reference o, with o a concrete object, is similar,
but we just need to check that o is included in some reference
of the selector targeting o’s class. In both cases, the modifier
{via r} restricts the checking to reference r only. The transla-
tion of contain is similar but considering compositions only.
Conditions on attributes are checked either on the selected
object (for expressions starting with object selectors), or on
every selected object of a given class (if starting from class
selectors). In both cases they lead to the same translation. In
case they are conditioners (i.e., after the =>), they are trans-
lated into a select. Finally, the last 5 rows of the table show
the translation of quantifiers, where between is an operation
that returns whether a given number is in an interval, and exp

the generated OCL expression.
The resulting invariant is assigned to an artificial class

created with the sole purpose of holding the invariant and
some auxiliary operations. The idea is to require the model
finder to create exactly one instance of this class.

Listing 14 shows the translation of the mmXtens specifi-
cation in Listing 4. Lines 2–5 contain the translation of the
seed fragment, made of nested existentials requiring the ex-
istence of every object and reference in the fragment. Line 6
contains the translation of the extension rule 1 new Bathroom.
This is checked by demanding that the number of all Bath-
room instances, excluding the ones in the seed fragment, is

mmXtens OCL translation
Selectors
Fragment object o o
Class c c.allInstances()
Filters/modifiers
new c → excludingAll(Set{o1,...,on})
(with c a class) with {o1, ..., on} all c’s instances in seed fragment
filter or conditioner → select(s | ⟨�lter/conditioner⟩)
Filters/Conditioners
reference Set{s.r1, s.r2, ...} → flatten()
⟨quanti�er⟩ c → select(x | x.oclIsKindOf(c))
(with c a class) → ⟨quanti�er⟩

with {r1, r2...} all refs. targeting c or a superclass
reference o Set{s.r1, s.r2, ...} → flatten() → includes(o)
(with o an object) with {r1, r2...} all refs. targeting o’s class or a superclass
attr = ⟨value⟩ If conditioner of object selector o, or filter:

o.attr = ⟨value⟩
If conditioner of a class selector:
→ select(c | c.attr = ⟨value⟩) → ⟨quanti�er⟩

attr = ⟨value⟩ s.attr = ⟨value⟩
Quantifiers
no size() = 0
some size() > 0
every size() = c.allInstances() → size()

c is the class every quantifies
strictly n size() = n
n1..n2 self.between(⟨exp⟩ → size(), n1, n2)

Table 1: Translation of mmXtens extension rules to OCL

1. Here, we optimize the code and use excluding instead of ex-
cludingAll as just one object of the given kind exists. Finally,
lines 7-10 hold the translation of the rule some Door => ref-
erence 2 Bathroom. The OCL subexpression selects the set of
doors that reference a minimum of two objects of kind Bath-

room (through the n, s, e, w references), and then, it checks
that the set is not empty. As an optimization, we omit the
flattening of the set in line 8 as it is unnecessary in this case.
As we can see, the original mmXtens specification is more
concise and easier to understand than its OCL equivalent.
1 context DummyClass inv can_two_bathrooms_be_connected:
2 House.allInstances()−>exists(house |
3 Bathroom.allInstances()−>exists(bathroom |
4 LivingRoom.allInstances()−>exists(livingroom |
5 house.rooms−>includesAll(Set{bathroom, livingroom}) and
6 Bathroom.allInstances()−>excluding(bathroom)−>size()=1 and
7 Door.allInstances()−>select(s |
8 Set{s.n, s.s, s.e, s.w}−>select(x |
9 x.oclIsKindOf(Bathroom))−>size() >= 2)

10 −>size() > 0)))

Listing 14: OCL translation of Listing 4.

5. Applying geometry to concrete syntax
The active participation of domain experts during the DSL
construction is crucial for its success [7]. To foster their par-
ticipation, our system supports interaction via drawings in
two ways. First, drawings can be imported for their use as
seed fragments, and it is possible to infer spatial relations
between elements in the drawings. Second, generated exam-
ples can be rendered as graphical drawings, where the layout
of elements may take into account spatial constraints.

5.1 Parsing informal drawings
Domain experts can provide drawings made with yED,
which are parsed to extract the underlying model processable

by our tool. The extracted model can be materialized using
our textual concrete syntax for model fragments, and then
included in mmXtens specifications as seed. Once parsed, ob-
jects retain as annotations some of their graphical features,
like position and size. Moreover, our parser infers spatial re-
lationships between the graphical elements in the imported
drawings, which can be used to generate suitable graphical
visualizations of the models obtained with mmXtens. Cur-
rently, we identify the following spatial relationships:

• Containment. This relationship appears when the bounds
of a graphical object are within the bounds of another. An
object might be contained within several others.

• Adjacency. Graphical objects can be adjacent horizon-
tally (left/right) or vertically (up/down).

• Overlapping. This relationship is made explicit when two
graphical objects are not in a containment relation, but
they overlap. We distinguish left/right/up/down overlap-
ping of the bounding box of the two objects.

• Alignment. We distinguish left/right/up/down alignment
of graphical objects. Heuristically, this relationship is
only signalled if objects are adjacent as well.

As an example, Fig. 10(a) shows a drawing made with the
yED editor. Drawings are enriched with legends that assign
a type name to graphical elements. Fig. 10(b) shows the leg-
end for this example. From the drawing and the legend, our
parser produces the model in Fig. 10(c), where the attributes
starting with “@” are annotations storing the original graph-
ical position (@x, @y) and size (@width, @height).

livingRoom:
LivingRoom

bathroom
:Bathroom

door:Door

door1:Door

north

south

n

s

n

s

n

s

(a)

(b) (c)

@x=95
@y=40
@width=15
@height=15

@x=95
@y=110
@width=15
@height=15

@x=89 …

@x=89 …

@
o

v
e

rl
a

p
U

p

@overlapUp

@overlapUp

@overlapDown

@overlapDown

@overlapDown

@adjoinsUp
@adjoinsDown

@alignLeft
@alignRight

@alignLeft
@alignRight

Figure 10: (a) Drawing. (b) Legend. (c) Extracted model
with annotations for the graphical concrete syntax.

In the parsing process, associations in the abstract syntax
(e.g., n/s) may become annotated with layout information de-
rived from spatial relationships between the objects partici-
pating in the association. If two objects are in a certain spa-
tial relation, it may mean they should be connected through
a given association kind. In the example, as the top of the Liv-

ingRoom overlaps with the bottom of a Door, we connect both
objects via n/s roles, and the connections get annotated as

@overlapUp/@overlapDown. The correspondence between spa-
tial relations and associations can be done in two ways. The
first one is by building the meta-model via example mod-
els [14]. In this case, the meta-model is induced from draw-
ings provided by domain experts, and the detected spatial
relations trigger the creation of meta-model associations an-
notated with the spatial relation. The second way is by anno-
tating manually the meta-model associations with the spatial
relations they should fulfil. When such spatial relations are
found between two objects, the association gets instantiated.

5.2 Layouting models

LayoutElement
x : int
y: int
width : int

contains* *

adjoins
Left

adjoins
Right

*
adjoins
Down

adjoins
Up

*

*
*

*

overlap
Left

overlap

overlap
Up

width : int
height : int

*

Down

overlap
Down

*

*
overlap
Right

Figure 11: Simplified conceptual
meta-model for layouting.

In Section 4, we gen-
erated example mod-
els considering only
their abstract syntax,
which may be dif-
ficult to assess by
domain experts. For
this reason, we ren-
der the generated
models as yED dia-
grams. Moreover, be-
ing able to validate examples using their concrete syntax is
crucial for some DSVLs, like our running example, where
spatial relations play a key role and some meta-model asso-
ciations represent just these relations.

Fig. 11 shows the conceptual meta-model for layouting
(alignment relations are supressed for simplicity). When our
system finds an example model (in abstract syntax), we
represent it as an instance of the layout meta-model, where
the necessary spatial relationships are instantiated as well.
The semantics of the spatial relations is expressed in OCL.
Then, the challenge is computing a value for the attributes
x, y, width and height of the different objects, compatible with
the spatial constraints. Moreover, if part of the model to be
layouted is a seed fragment extracted from a drawing, then,
the size and position of the objects in the drawing should
be preserved. In order to perform this computation, we use
a model finder again. The resulting model is rendered as a
yED file using the computed layout.

For the sake of illustration, Listing 15 shows the OCL-
based semantics of the contains spatial relation.

1 context LayoutElement inv contains:
2 self.contains−>forAll (c |
3 self.x <= c.x and self.y >= c.x
4 and self.x+self.width >= c.x+c.width
5 and self.y+self.height >= c.y+c.height)

Listing 15: OCL semantics of containment.

Using this approach, unsound models like those in Fig. 9
do not get any visualization, thus signalling they have some
problem. However, they are still valid according to the meta-
model.

5.3 Inducing abstract syntax constraints from the
concrete syntax

By inspecting models in concrete syntax, it may be easier to
detect errors. For example, by trying to assign a layout to any
model containing the fragments in Fig. 9, we realize that the
spatial constrains they require are unsatisfiable. This means
that the meta-model of the DSVL lacks extra constraints. In
this section, we show that some of these constraints can be
automatically derived from the spatial relations.

For example, assume the association roles north and south

in the meta-model of Fig. 3 are tagged as adjoinsUp and
adjoinsDown. Topologically, this means that the association
needs to be acyclic. Similarly, assume roles east and west

are tagged as adjoinsRight and adjoinsLeft, so they should be
acyclic as well. Finally, these associations are also aligned
vertically and horizontally, and annotated accordingly. Hav-
ing this configuration means that Rooms can be placed in a
grid. In such a case, we produce a compilation adding x, y at-
tributes to class Room, as described at the end of Section 4.3.

Similarly, for a reference tagged as contains, we can pro-
duce OCL constraints analogous to those of containment
references. However, the spatial containment we detect is
weaker than meta-modelling containment, as graphically, an
object can have two overlapping containers (i.e., two con-
tainers, one not contained in the other).

In our current implementation, this synthesis of OCL
constraints for the meta-model is optional.

6. Tool support
mmXtens is integrated into metaBest [13], a tool for the inte-
gral V&V of meta-models, which also includes the mmSpec

and mmUnit languages. The tool permits importing drawings
into a textual format (Fig. 12(1)). These are seed fragments,
serving as starting point for example model generation. Once
imported, extension rules can be added.

The tool integrates the USE validator [10] for model find-
ing. Hence, given an mmXtens specification, the tool com-
piles it into OCL, and passes the meta-model and the OCL
to USE. metaBest permits setting a number of preferences for
the solver, as shown in label 2 of the figure. When the solver
is invoked (label 3), the user may select whether to gener-
ate: only the abstract syntax (MBF checkbox), only the con-
crete syntax (the abstract syntax is generated but discarded)
or both. If a concrete syntax is requested, a legend like the
one shown in Fig. 10(b) must be provided, identifying each
object type with a graphical representation. Label 4 in the
figure shows the generated model using concrete syntax and
visualized in the yED editor.

7. Assessment
We have used mmSpec and mmXtens to assess the usefulness
of our framework by validating the meta-models built by
26 undergraduate students as solution to the requirements
in Section 3. To be able to use the English word checking

Figure 12: Meta-model example generation with metaBest.

primitives provided by mmSpec, we had to translate the name
of the meta-model elements into English (as they were origi-
nally in Spanish). The translation preserved expressions and
word choices, abbreviations and diacritic mistakes.

7.1 Assessing meta-model quality
We have used mmSpec to assess the quality of meta-models
and analyse design choices for the DSL. The selected quality
properties assess the fulfilment of good habits and patterns
in the meta-model, independently of domain requirements.
They are introduced in [12], and include design properties,
best practices, metrics and naming conventions. The results
show good average quality, with fail rates of 0.4% for design
properties; 8.2% for best practices; 3.3% for metrics and
56.3% for naming conventions.

The best practice with highest fail rate is having two
classes referring to each other with references that should
be opposite but are not, most commonly between Wall and
Room. This property is failed by 23% students. Reason-
able thresholds for metrics are not violated, since meta-
models are small. Finally, naming conventions where not
consistently followed. For example, all meta-models contain
names that do not follow camel-case, and 21 out of 26 do
not use a noun-phrase name for non-boolean attributes.

In addition, we have designed specific mmSpec properties
to automatically analyse the student solutions for some as-
pects of the DSL. For most aspects, we expressed possible
solutions ranked from best (L1) to worst (L4).

• How is the house/room containment relation modelled?
L1: Room types are subclasses of an abstract class, and
the root house class has a single containment reference
pointing to the abstract class. L2: Similar to L1, but the
root class has a containment reference to each subclass.

L3: Room types are identified with an enumeration. L4:
Room types are identified with a string attribute.

• How is room navigability modelled? L1: By means of
associations. L2: Using ids instead of associations. L3:

Using compositions instead of associations.
• Are doors represented (as attributes or classes)?

• Are windows represented (as attributes or classes)?

• How are light-spots and power outlets modelled? L1: As
attributes. L2: As classes.

Fig. 13 shows the result for each property. The choices
for room containment were the most diverse. We were not
able to predict a few solutions to room containment and the
modelling of doors and windows. These cases were exam-
ined individually for determining their correctness.

Figure 13: Level of compliance for domain properties.

7.2 Validating meta-model instances
We have used mmXtens to test to what extent the evaluated
meta-models are able to produce valid models meeting the
requirements. In particular, we used mmXtens to generate
a model with only one house, and in case of failing, we

checked the reason for failure. Fig. 14 shows the results.
11% meta-models have satisfiability problems, with severe
flaws like unfeasible association cardinalities or containment
relationships that make impossible having instances, even if
their OCL constraints are not considered.

Figure 14: mmXtens results

There are two main
types of errors for OCL
constraints: syntax errors
(31%) and unsatisfiable
constraints (19%). The
former include errors like
missing brackets or wrong
parameter types. The lat-
ter refer to incompatible
constraints, so that mak-
ing satisfiable one would
make the other(s) unsatisfiable. These issues are hard to de-
tect in a traditional approach, since one would have to pro-
duce models and detect errors manually. A small percentage
(12%) of solutions had complex and numerous issues, de-
manding profound changes for being acceptable. Only 27%
were able to produce examples. We have used those 7 solu-
tions to make a series of tests using mmXtens to check their
correctness regarding the domain of the problem.

Fig. 15 shows a student solution with two extension rules
seeking the smallest valid house, and the generated model.
The model has some flaws: both rooms have walls with the
same orientation, while lacking others. Both rooms keep a
logical north/south adjacency, but the involved walls hold
two doors instead of sharing one. Finally, the living room
has two windows on its south wall, and adjoins the bathroom
in that direction, hence the windows are incorrectly placed.

House
rooms

2..* Room
powerOutlets : int
lightspots: int

Wall
walls

4
Door

Window

doors

0..1

windows

0..2adjoins

0..1
orientation : String

:Houseroom room

:Bathroom
powerOutlets = 9
lightspots = 10

:LivingRoom
powerOutlets = 9
lightspots = 1

:Wall
orientation = west

:Wall
orientation = north

:Wall
orientation = west

:Wall
orientation = north

:Wall
orientation = south

:Wall
orientation = south

:Wall
orientation = north

:Wall
orientation = west

:Window

adjoins

:Door :Door:Window :Window

adjoins

:Door

Figure 15: A student solution and a generated model.

We systematically encoded the problem requirements in
mmXtens, evaluating the 7 solutions. The results are shown
in Table 2. While most achieved the most basic require-
ment (Rq1), they fail for more complex ones. In all our ex-
periments, mmXtens/USE had good performance, producing
models within seconds.

In conclusion, we have seen that mmSpec was useful to
evaluate quality properties of the meta-models, as well as to

Requirement Correct sols.
1. Houses have at least a living room and a bathroom. 6
2. Balconies can only be adjacent to a single room. 0
3. Entries can be adjacent to three rooms at most. 1
4. Only balconies can have windows in interior walls. 1
5. A room at north/east of another is at south/west of the other. 3
6. Houses have an entry door (at the entry if there is one). 2
7. Rooms are topologically coherent. 0

Table 2: Solutions that fulfil the original requirements

automatically evaluate the design solutions followed. With
mmXtens we could evaluate the conformance of meta-models
w.r.t. the problem statement. The advantage is that we did
not have to create tentative examples manually. As most
students failed in some way, we argue that the availability of
a tool like mmXtens would have helped in obtaining higher
quality solutions. However, this cannot be concluded from
the present experiment, and we leave it to future work.

8. Related work
In [15], the authors discuss the need for V&V in MDE, and
identify the lack of comprehensive methods. The goal of
our metaBest framework is providing such methods for DSL
development. An analysis of the literature reveals three main
approaches to meta-model V&V: unit testing, specification-
based testing and reverse testing.

Works inspired by unit testing support the definition of
test suites made of model fragments, and their validation
w.r.t. a meta-model. For example, in [18], test models de-
scribe instances that the meta-model should accept or reject.
Our own language mmUnit belongs to this category.

While unit testing proposals work at the model level,
specification-based testing allows expressing desired proper-
ties of a meta-model. In this line, [20] presents an approach
for checking meta-model integration, relying on OCL. How-
ever, as the authors recognise, using OCL to check meta-
model properties is cumbersome, leading to complicated as-
sertions and demanding expert technical knowledge. Our
mmSpec language follows this approach, but is a DSL espe-
cially designed to express meta-model properties.

In reverse testing, the system produces artefacts, to be
evaluated by the engineers. Most approaches are based on
the automatic generation of instance models from a meta-
model, likely using constraint solving [3, 5, 22], as we do
in mmXtens. In these approaches, domain experts inspect
the generated models to detect invalid ones, in which case
the meta-model contains errors. This approach is followed
by [4] (where the generated snapshots are targeted to test
cardinality boundaries) and [6] (where a language to de-
fine object snapshots is proposed). In [11], the authors trans-
late meta-models into ontologies, and then use reasoners to
check the instantiability of the meta-models. This method
was applied to the analysis of the ATL meta-model zoo.
However, they do not use the method in the process of DSL
development. On a more different approach, in [1], question-

naires with true/false questions are generated from the meta-
model, and the domain experts perform the meta-model val-
idation by answering the questionnaires.

The closest work to mmXtens is Lightning [5]. The tool
is built atop Alloy, and supports defining the syntax and se-
mantics of DSLs. For validation, it uses constraint solving to
produce examples, but it does not include a user-friendly lan-
guage (but Alloy itself) to describe their expected properties.
Moreover, it does not support layout inference or graphical
parsing, and is not integrated with other testing languages.

Regarding the inference and use of spatial relations in
DSVLs, most recent (Eclipse-based) frameworks, like Sir-
ius [19] or Eugenia [9], focus on graph-like languages. Their
support for specifying and enforcing more advanced rela-
tions, like adjacency, overlapping or containment is limited.
However, spatial relations play a crucial role for many vi-
sual languages (including our running example), as widely
acknowledged in the visual languages community [2].

Hence, while there are approaches covering some aspect
of meta-model testing, to our knowledge, metaBest is the
most comprehensive one for DSVL V&V.

9. Conclusions and future work
We have presented an approach for the example-based val-
idation of meta-models. This is done by means of a DSL,
mmXtens, which permits describing seed fragments and ex-
tension rules to complete those examples by means of a
model finder. The seed examples may come from informal
drawings, which are parsed, and where spatial relations are
extracted. These relationships are then used to provide a lay-
out for the generated examples. The language has been inte-
grated with two other DSLs for meta-model V&V, and im-
plemented in a tool. The usefulness of the approach has been
tested on a set of meta-models built by students.

In the future, we would like to extend mmXtens with
more sophisticated primitives, e.g. for expressions regarding
attribute values, or conditions on paths between objects. We
will also generate visual environments for the DSVL, with
the concrete syntax inferred from the example sketches.

Acknowledgments
Work supported by the Spanish MINECO (TIN2011-24139
and TIN2014-52129-R), the R&D programme of the Madrid
Region (S2013/ICE-3006), and the EU commission (FP7-
ICT-2013-10, #611125).

References
[1] A. Bertolino, G. D. Angelis, A. D. Sandro, and A. Sabetta. Is

my model right? let me ask the expert. Journal of Systems and
Software, 84(7):1089–1099, 2011.

[2] P. Bottoni and A. Grau. A suite of metamodels as a basis for a
classification of visual languages. In VL/HCC, pages 83–90.
IEEE Computer Society, 2004.

[3] J. Cabot, R. Clarisó, and D. Riera. UMLtoCSP: a tool for
the formal verification of uml/ocl models using constraint
programming. In ASE, pages 547–548. ACM, 2007.

[4] J. J. Cadavid, B. Baudry, and H. A. Sahraoui. Searching the
boundaries of a modeling space to test metamodels. In ICST,
pages 131–140. IEEE, 2012.

[5] L. Gammaitoni, P. Kelsen, and F. Mathey. Verifying mod-
elling languages using lightning: a case study. In MoD-
eVVa@MODELS, volume 1235 of CEUR, pages 19–28, 2014.

[6] M. Gogolla, J. Bohling, and M. Richters. Validating UML
and OCL models in USE by automatic snapshot generation.
Software and System Modeling, 4(4):386–398, 2005.

[7] S. Kelly and R. Pohjonen. Worst practices for domain-specific
modeling. IEEE Software, 26(4):22–29, 2009.

[8] S. Kelly and J. Tolvanen. Domain-Specific Modeling - En-
abling Full Code Generation. Wiley, 2008.

[9] D. Kolovos, L. Rose, S. bin Abid, R. Paige, F. Polack, and
G. Botterweck. Taming EMF and GMF using model transfor-
mation. In MODELS, volume 6394 of LNCS, pages 211–225.
Springer, 2010.

[10] M. Kuhlmann and M. Gogolla. From UML and OCL to
relational logic and back. In MODELS, volume 7590 of LNCS,
pages 415–431. Springer, 2012.

[11] Y. Liu, S. Höglund, A. H. Khan, and I. Porres. A feasibility
study on the validation of domain specific languages using owl
2 reasoners. In TWOMDE, volume 604 of CEUR, 2010.

[12] J. J. López-Fernández, E. Guerra, and J. de Lara. Assessing
the quality of meta-models. In MODEVVA, volume 1235 of
CEUR, pages 3–12, 2014.

[13] J. J. López-Fernández, E. Guerra, and J. de Lara. Meta-model
validation and verification with MetaBest. In ASE, pages 831–
834. ACM, 2014.

[14] J. J. López-Fernández, J. Sánchez Cuadrado, E. Guerra, and
J. de Lara. Example-driven meta-model development. Soft-
ware and System Modeling, in press, 2014.

[15] J. Merilinna and J. Pärssinen. Verification and validation in the
context of domain-specific modelling. In DSM, pages 9:1–9:6.
ACM, 2010.

[16] M. Mernik, J. Heering, and A. M. Sloane. When and how to
develop domain-specific languages. ACM Computing Surveys,
37(4):316–344, 2005.

[17] OMG. OCL 2.4. http://www.omg.org/spec/OCL/, 2014.

[18] D. Sadilek and S. Weißleder. Testing metamodels. In ECMFA,
volume 5095 of LNCS, pages 294–309. Springer, 2008.

[19] Sirius. https://eclipse.org/sirius/, 2015.

[20] S. Sobernig, B. Hoisl, and M. Strembeck. Requirements-
driven testing of domain-specific core language models using
scenarios. In QSIC, pages 163–172. IEEE, 2013.

[21] M. Voelter. DSL Engineering - Designing, Implementing and
Using Domain-Specific Languages. CreateSpace, 2013.

[22] H. Wu, R. Monahan, and J. F. Power. Exploiting attributed
type graphs to generate metamodel instances using an SMT
solver. In TASE, pages 175–182. IEEE, 2013.

