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Improving Power System Static Security Margins
By Means Of A Real Coded Genetic Algorithm

Pablo Martı́n and Alejandro Sierra

Abstract—This paper introduces a new method of removing
thermal overloads and voltage limits in an electric power system
by means of the Evolution of Corrective and Preventive control
Actions (ECPA). The goal is to find the minimun number
of control actions that solve the identified limit violations at
minimum cost. A recombination operator based on form theory
allows the codification of control actions in a natural and simple
way. ECPA has been tested on the IEEE 30-bus and the IEEE
118-bus systems. The limit violations are solved at minimum
cost and with fewer control actions on average than alternative
methods.

Index Terms—Control actions, steady state security, evolution-
ary algorithms, optimization.

I. INTRODUCTION

THE aim of an electric power system (EPS) is to provide
electricity supply ensuring an appropriate level of secu-

rity. In order to guarantee the security, it is essential that the
EPS remains in its normal state of operation [1]. In the normal
state, all the energy demand is provided at the adequate voltage
and frequency levels, and all the elements of the EPS work
within their thermal limits. Moreover, an EPS in its normal
state of operation must fulfill these security requirements under
contingency, which can be defined as a perturbation giving rise
to the loss of one or more elements of the EPS.

If an EPS that is functioning in its normal state fails to
comply with the security requirements under contingency, but
keeps fulfilling the rest of conditions, it is said to be in its
alert state [2], or, according to others authors, unsecure normal
state [3]. The actions that must be taken to return the EPS to
its normal state are named preventive control actions. When
some elements of the EPS are working beyond its thermal
limit, or the voltages are out of limits without the presence of
contingencies, the EPS is said to be in the emergency state, and
it is necessary to use the so called corrective control actions
to return it to its normal state.

The following are some of the key control actions that can
be used to recover the normal state of an EPS:

• Redispatching active power of generators. This action is
used to change active power flows.

• Adjustments of controllable voltage magnitudes, which
allow modifying bus voltages and reactive power flows.

• Adjustments of transformers tap-changer positions, giv-
ing rise to variations of both power flows and voltages.
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• Reactive compensation, connecting or disconnecting volt-
age control elements (reactors and capacitors). In this
case, voltages are changed by locally increasing or de-
creasing reactive power consumption.

• Switching maneuvers to change the EPS topology and
modify power flows and voltages.

• Adjustment of phase-shifters angle, modifying power
flows and removing or alleviating thermal overloads.

• Load curtailment to reduce power flows, only used when
there are no other resources available.

The main objective of this work is to introduce a new
algorithmic approach to design the control actions that allow
an EPS to return to its normal state of operation from any
other state and, by using a limited number of control actions,
to provide solutions sufficiently adapted to practical needs.

A. Related work

The determination of corrective and preventive control ac-
tions in an EPS is addressed in the literature by means of
different methodologies. When corrective control actions are
the main concern, it is quite common to use optimal power
flow algorithms (OPF). OPF algorithms take constraints into
account and optimally determine all of the EPS control vari-
ables. Reference [4] introduces an OPF algorithm enhanced
and optimized to handle discrete control variables. In [5],
a new OPF is proposed to increase power system security
margins by means of re-dispatching generator outputs. Refer-
ence [6] makes use of a method to remove overloads in the
IEEE Reliability Test System (RTS). Constraints are taken into
account in order to improve the stability of the EPS. Reference
[7] focus on the calculation of generation redispatches by
means of a minimum number of control actions to recover
the normal state of the EPS. The performance of the proposed
method is assessed in three different EPSs: Nordic 60-bus,
standard IEEE 118-bus and a RTE 618-bus. Another OPF
example is given in [8], applied to the removal of the overloads
in a modified IEEE 30-bus test system.

The scope of SCOPF algorithms is broader than that of OPF
algorithms because they allow to calculate both corrective and
preventive control actions. These algorithms solve an optimal
power flow in which security constraints are also taken into
account in order to recover the EPS normal state, no matter
what the previous state (alert or emergency) may be. Reference
[9] provides a full review of the state of the art in the field.
The main challenges identified by this work are the following:
the need of a limited number of control actions, the need to
reduce the problem size, the modeling of voltage and transient
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stability constraints, the handling of discrete control variables,
and the increasing levels of uncertainty in the operation and
planning of the EPS. For example, reference [10] solves an
SCOPF taking uncertainty into account. In [11] a new iterative
method is described and tested in three systems of 60, 118
and 1203 buses, respectively. The size of the problem is
reduced by using a contingency filtering technique. In [12]
an application of these algorithms to the calculation of control
actions is introduced and applied to the IEEE 30-bus. A similar
application is presented in [13], solving the OPF by means of
the generalized Benders decomposition (GBD) and testing the
model’s performance on the IEEE 118-bus. In reference [14]
an evolutionary algorithm is used to solve an SCOPF problem,
and its performance is assessed on the IEEE 30-bus.

As demonstrated in [15] and [12], linear programming (LP)
is a proper and computationally efficient technique whenever
control actions are to be calculated. This efficiency allows
to address realistic size problems and develop real time
applications that yield results within a reasonable time. Graph
theory and model predictive control (MPC) have also been
applied to the computation of control actions. Reference [3]
introduces an algorithm based on directed acyclic graphs
(DAG) that computes preventive control actions (including
generation redispatch, switching, reactive compensation and
load curtailment), checking its performance on the IEEE 30-
bus. Finally, in [16] an MPC model is used to determine
the optimal sequence of control actions. The validity of this
approach is tested on a custom 4-bus EPS.

Last but not least, evolutionary algorithms (EA) have been
widely applied to the calculation of control actions. One of
the main advantages of this kind of algorithms is that they
provide a whole population of alternative solutions to the
problem. A comprehensive review of EA applied to EPSs
can be found in reference [17], making clear the increasing
interest and usefulness of these techniques. In [18] an EA is
proposed to calculate the switching maneuvers necessary to
remove the overloads of a German 73-bus EPS. Microgenetic
algorithms (μGA) are introduced as a feasible option to the
calculation of redispatches, switching, reactive compensation
and load curtailment. Their performance is checked on a
Central African 58-bus EPS. Genetic algorithms are also
efficient for the identification of EPS’s critical contingencies
and its posterior fixing by means of control actions [19]. In
reference [20], the calculation of corrective control actions is
accomplished by means of a multi objective genetic algorithm
(MOGA), that behaves successfully in both IEEE 5-bus and
14-bus EPSs. Reference [21] proposes a hybrid computational
strategy which combines an evolutionary algorithm and an
interior-point method. This model is tested on the IEEE 14-bus
and 118-bus test systems.

B. Justification

The complexity of the problem addressed by this paper
is due mainly to the non-linear and multi-objective nature
of the objective function together with the large number of
constraints. These are the main reasons why this field of
research is still open. The following are some of the drawbacks
of the models proposed to date:

• Unique solutions: most algorithms, apart from EAs, re-
turn a unique optimal or suboptimal solution. For prob-
lems such as these, there exist many feasible solutions,
and it is desirable that the algorithm offer a set of
alternative solutions, leaving the final decision to be made
by an expert.

• Modular approach: in general, out of limit voltages and
overloads are addressed independently. Therefore, the
control actions used to remove voltage violations may
worsen the overload problem and viceversa.

• Unfeasibility: despite the mathematical correctness of the
given solutions, the movement of a large number of
controls is unrealistic when only a small number of limit
violations are identified.

For these reasons, the authors consider justified the research on
new algorithmic approaches that help alleviate some of these
limitations.

A drawback of our approach is its computational burden.
It is true that evolutionary algorithms are very flexible and
capable of incorporating multiple objectives in a graceful way.
Alternative approaches such as linear programming or Benders
decomposition are faster in general. However, the combination
of a power flow algorithm together with the evolutionary
pressure alleviates the problem and, in fact, ECPA can be
applied to real size networks with of a modest increase in
the number of evaluated power flows.

The rest of the paper is organized as follows. The problem
is formulated in Section II as an optimization problem with
multiple constraints. Section III provides a description of the
proposed algorithm, including each of the operators. The re-
sults of the tests are discussed in Section IV. Finally, in Section
V the conclusions and future research path are presented.

II. PROBLEM FORMULATION

Our approach is the following: given an EPS for which a
security analysis has identified voltage violations or overloads,
the goal is to find a set of control actions that eliminate or at
least alleviate those violations in order to restore the normal
state of operation.

Let us consider an EPS with N buses, R branches and G
generators. From an static point of view, the EPS is in its
normal state if, with or without the presence of contingencies,
the flows (F ) through the branches remain within the thermal
limits (−Fmax, Fmax):

−Fmax
i < Fi < Fmax

i , i = 1, ..., R (1)

and the voltage (V ) in all of the buses is above a minimum
value (V min) and below a maximum value (V max):

V min
j < Vj < V max

j , j = 1, ..., N. (2)

From the list of available control actions introduced in
section I, only the following will be taken into account:
modifications of active power in the generators, controllable
voltage magnitudes and transformer tap ratios. The active
power values (P ) of the generators must lie between their
operating limits (Pmin and Pmax):
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Pmin
l ≤ Pl ≤ Pmax

l , l = 1, ..., G. (3)

Also, the reactive power values (Q) of the generators must
lie between their operating limits (Qmin and Qmax):

Qmin
l ≤ Ql ≤ Qmax

l , l = 1, ..., G. (4)

Finally, the transformer tap ratios (T ) must lie between their
operating limits (Tmin and Tmax):

Tmin
k ≤ Tk ≤ Tmax

k , k = 1, ..., TR. (5)

where TR is the total number of transformers in the EPS.
A solution (S) to the problem may be coded in the following

way:

S = (ΔP1, ...,ΔPNg
; ΔV1, ...,ΔVNv

; ΔT1, ...,ΔTNt
) (6)

where:

• Ng is the maximun number of active power changes.
• Nv is the maximun number of controllable voltage mag-

nitude changes.
• Nt is the maximun number of modifications of trans-

former tap ratios.

As an example, a solution with Ng = 3, Nv = 2 and Nt = 2
is shown in Table I.

TABLE I
EXAMPLE OF SOLUTION WITH Ng = 3, Nv = 2 AND Nt = 2

ΔP1 ΔP2 ΔP3 ΔV1 ΔV2 ΔT1 ΔT2

-45 -20 0 0.010 -0.001 0.003 -0.250

As the example of Table I makes clear, some of the active
power changes may be null, i.e., it is not necessary to modify
all of the generators involved in the solution. For instance,
the active power of generator 3 is not changed. Thus, the
maximum number of generators Ng , controllable voltage mag-
nitude changes Nv and modifications of transformer tap ratios
Nt, are upper limits which may not be necessarily reached.
This simple but flexible codification allows to generate more
realistic solutions than other conventional approaches. Finally,
the economic cost incurred by each solution is taken into
account. The total cost C(S) of a given solution is defined
as the sum of the costs C(Si) of each specific modification:

C(S) =

Ng+Nv+Nt∑
i=1

C(Si). (7)

As expected, among all of the solutions to a given problem
fulfilling (1), (2), (3), (4) and (5), the preferred ones are those
minimizing (7). The upper limits on the number of control
actions together with the minimization of the cost (7) will
encourage the evolution of as simple solutions as possible,
i.e., solutions with as few control actions as the process can
reach.

III. EVOLUTIONARY APPROACH

This paper introduces a new genetic algorithm [22] with
a set of improvements designed to better calculate the set of
control actions in a more realistic way than other approaches.
Genetic algorithms are optimization algorithms that work with
a population of individuals, where each individual is a coded
solution to the optimization problem. The initial population
is generated randomly while taking the operative limits (3),
(4) and (5) into account. They simulate the evolutionary
processes of selection, recombination and mutation, and let
the candidate solutions in the population compete for room in
future generations.

A fitness function is needed to determine the relative merit
of each individual. The probability of selection of an individual
is proportional to its fitness value. This guarantees that the
better the fitness of an individual the higher its probability
of becoming parent of future offspring. Recombination is the
process of generating new offspring from previously selected
parents. The codes of the parents are combined to yield new
codes, i.e., new individuals. Mutation alters one or more
characteristics of one individual giving rise to a new one
which can differ in fitness value. Appendix A contains the
pseudocode of ECPA. Next, a detailed description of each of
its components is given.

A. Fitness function

The objective function to maximize is the following:

F (S) =

Nf∑
i=1

ϕi(S) (8)

where
• S is a solution (6).
• Nf is the total number of factors to consider, 9 in this

work.
• ϕ1(S) is the normalized overload improvement, calcu-

lated as follows:

ϕ1(S) =
OL(S0)−OL(S)

OL(S0)
(9)

where
– OL(S0) and OL(S) are the sum of the square of

the overloads present in the EPS before taking any
control actions (S0) and after taking the control
actions (S), respectively:

OL(S) =

NOL∑
i=1

(Fi − Fmax
i )2 (10)

where
∗ NOL is the total number of overloads in S.
∗ Fi and Fmax

i are the flow and the thermal limit
of branch i, respectively.

• ϕ2(S) is the normalized overvoltage improvement, cal-
culated as follows:

ϕ2(S) =
OV (S0)−OV (S)

OV (S0)
(11)
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where

– OV (S0) and OV (S) are the sum of the square of
the overvoltages present in the EPS before and after
taking the control actions, respectively:

OV (S) =

NOV∑
i=1

(Vi − V max
i )2 (12)

where

∗ NOV is the total number of overvoltages in S.
∗ Vi and V max

i are the voltage and the maximum
voltage of bus i, respectively.

• ϕ3(S) is the normalized undervoltage improvement, cal-
culated as follows:

ϕ3(S) =
UV (S0)− UV (S)

UV (S0)
(13)

where

– UV (S) and UV (S0) are the sum of the square of
the undervoltages present in the EPS before and after
taking the control actions respectevily:

UV (S) =

NUV∑
i=1

(V min
i − Vi)

2 (14)

where

∗ NUV is the total number of undervoltages in S.
∗ Vi and V min

i are the voltage and the minimum
voltage of bus i, respectively.

• ϕ4(S) represents the improvement in the violations of
reactive limits in generators, calculated as follows:

ϕ4(S) =
QL(S0)−QL(S)

QL(S0)
(15)

where

– QL(S0) and QL(S) are the sum of the square of
the reactive limit violations in the generators present
in the EPS before and after conducting the control
actions, respectively:

QL(S) =

NRL∑
i=1

(QVi)
2 (16)

where

∗ NRL is the total number of reactive limit viola-
tions in S.

∗ QVi is the magnitude of the reactive limit viola-
tion of generator i, calculated as follows:

QVi =

{
Qi −Qmax

i if Qi > Qmax
i ,

Qmin
i −Qi if Qi < Qmin

i .
(17)

where

· Qi is the reactive power at generator i.
· Qmax

i and Qmin
i are the reactive limits of

generator i.

• The flows and voltages of the EPS (Fi, Vi and Qi) are
calculated in this work by means of a commercial power
flow algorithm [23].

• Factors ϕ5(S), ϕ6(S), ϕ7(S) and ϕ8(S) are equivalent
to ϕ1(S), ϕ2(S), ϕ3(S) and ϕ4(S), respectively, but for
preventive instead of corrective control actions.

• Finally, factor ϕ9(S) is the normalized total cost of the
control actions associated to solution S:

ϕ9(S) =

⎧⎨
⎩

Cmax − C(S)

Cmax
if C(S) ≤ Cmax,

0 if C(S) > Cmax.
(18)

where:

– C(S) is the total cost (7) of the applied control
actions specified by solution S.

– Cmax is the maximum cost above which the con-
tribution of factor ϕ9(S) to the fitness function is
null.

B. Selection

The selection operator identifies good solutions based on
their fitness value for later recombination. More specifically,
tournament selection is used in this paper because of its sim-
plicity and efficiency [24]. In order to generate two parents, a
couple of individuals is randomly chosen from the population.
This couple takes part in a tournament, i.e., the individual
with higher fitness becomes one of the parents. This process
is repeated one more time to generate the other parent.

In order not to lose the best individual in the population,
elitism is applied [25]. The best individual is always allowed
to pass from the current generation to the next.

C. Recombination

The recombination operator of the algorithm acts on two
individuals to generate one offspring. The individuals are
modeled as sets because the order of the power variations is
totally irrelevant. This allows to use the random equivalence
recombination operator (RER), based in form theory [26]. The
goal in the design of the RER operator is to select a random
child from the set of all candidate solutions which, for each
basic equivalence relation, are equivalent to some parents.
Recombination is applied with probability pr. The algorithm
pseudocode is included in appendix B.

D. Mutation

Four mutation operators are applied with probabilities pm1,
pm2, pm3 and pm4, respectively. The first one starts by ran-
domly selecting two generators Gi and Gj . First, a Gaussian
N(0, σij) perturbation is applied to the active power of the
first generator Gi. Then, the second generator Gj is subject to
a modification with the same absolute value of the Gaussian
perturbation but opposite sign. In this way, the power balance
of the solution is maintained.

The deviation σij is calculated taking into account the
generation limits of the mutated generators (Pmax

i , Pmax
j ,
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Pmin
i and Pmin

j ), and a parameter d which adjusts the range
of the perturbation as follows:

σij =
min(RU

i , R
U
j , R

D
i , RD

j )

d
(19)

where

RU
i = Pmax

i − Pi (20)

RU
j = Pmax

j − Pj (21)

are the upward power reserves of generators i and j, and

RD
i = Pi − Pmin

i (22)

RD
j = Pj − Pmin

j (23)

are the downward power reserves of generators i and j, where
Pi is the active power output of generator i, and Pj is the
active power output of generator j. The operative limits of the
generators (3) are guaranteed by applying equations (19)-(23)
inside of the mutation operator. The second mutation operator
acts on a different level. Instead of mutating the active power
of a couple of generators, this operator replaces one of the
generators in the individual with another from the EPS. Two
conditions have to be met:

• In order to maintain the power balance of the individual,
the active power output of the new generator must be
equal to the value of the replaced one. The operative
limits (3) of the new generator are checked.

• The new generator and the replaced one must belong
to the same geographical area, so to encourage local
changes.

The third and fourth mutation operators work in the same
way as the first mutation operator, modifying controlled
voltage magnitudes and transformer taps ratios, respectively.
Operative limits (4) and (5) are taken into account as in the
first mutation operator.

IV. NUMERICAL RESULTS

A. Test systems

The algorithm has been tested with the IEEE 30-bus ( Fig.
1) and with the IEEE 118-bus test systems. The generation,
transmission and load data of the IEEE 30-bus system have
been taken from [12]. The IEEE 118-bus test system’s data
have been obtained from references [21] and [27]. A summary
of the features of the systems is provided in Table II.

TABLE II
MAIN CHARACTERISTICS OF THE POWER SYSTEMS

System Buses Generators Lines Transformers Loads

30-bus 30 6 35 7 21

118-bus 118 54 177 9 99

Fig. 1. IEEE 30 bus-system.

B. Experimental setup

The performance of ECPA in the design of corrective and
preventive control actions has been measured in terms of the
following indicators:

• Initial and final status of the controls.
• Values of limits violations before and after applying the

control actions.
• Generation costs.

More specifically, the generation cost (C(Si)) of each gener-
ator in solution Si is calculated as follows:

C(Si) = ai + biPi + ciP
2
i (24)

where Pi is the active power generation of generator number
i, and the cost coefficients ai, bi and ci are defined in [12]
for the IEEE 30-bus test system, and in reference [27] for the
IEEE 118-bus test system.

Three different scenarios have been considered in the sim-
ulations:

• Corrective control actions (subsection IV-D). The results
obtained with ECPA are compared with those from refer-
ences [12], [14] and [28] for the IEEE 30-bus test system.
A sensitivity analysis is performed with the IEEE 118-
bus test system to assess the impact of ECPA’s upper
limits (maximum number of active power changes and
controllable voltages) on the final solution of corrective
control actions.

• Preventive control actions (subsection IV-E). The ECPA’s
results for the IEEE 30-bus test system are compared
with the results from references [12], [14] and [28].
Additionally, the results of ECPA for the IEEE 118-bus
test system are compared with those from reference [21].

• Computational requirements and scalability (subsection
IV-F). The ECPA’s computational burden for the IEEE
30-bus system is compared with that from references [14]
and [28]. The computational burden for the IEEE 118-bus
is also analyzed. More specifically, the convergence of the
fitness function is compared with that of references [14]
and [21].
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C. Initial parameter setting

Table III depicts the parameters of the evolutionary algo-
rithm, including a short description in the first column, the
symbol in the second column and, finally, the type of data in
the third column.

TABLE III
PARAMETERS OF THE EVOLUTIONARY ALGORITHM

Parameter Symbol Type

Population size Ps Integer

Max. number of generators Ng Integer

Max. number of controlled volt. bus Nv Integer

Max. number of transformer taps Ntap Integer

Probabilty of recombination pr Real

Probability of mutation 1 pm1 Real

Probability of mutation 2 pm2 Real

Probability of mutation 3 pm3 Real

Probability of mutation 4 pm4 Real

Mutation 1 deviation coef. d Real

In order to find the optimal values of the parameters, a
multivariate gradient descent algorithm (see appendix C for
details) has been applied to the IEEE 30-bus test system. The
initial values of the parameters were taken from [14]. Tables
IV and V show the results of this calculation for corrective
control actions (N), and preventive control actions (N-x).

TABLE IV
OPTIMAL VALUES OF THE PARAMETERS (INTEGERS)

Ps Ng Nv Ntap

N,OPF 140 5 5 4

N-x,SCOPF 112 5 5 4

TABLE V
OPTIMAL VALUES OF THE PARAMETERS (REALS)

pr pm1 pm2 pm3 pm4 d

N,OPF 0.610 0.157 0.069 0.118 0.089 1.33

N-x,SCOPF 0.652 0.237 0.109 0.093 0.003 2.55

D. Results of corrective control actions

This section focuses on the results obtained from corrective
control actions. Table VI displays the initial and final values of
the control variables for the IEEE 30-bus test system according
to references [12], [14], [28] and ECPA. The first column
of Table VI is the name of the control variable. The second
column is the initial value of the control variable, which is the
same in all cases. The following four columns are the final
values of the control variables in the three references used for
comparison and ECPA, respectively.

It is important to notice that in the method proposed in [14],
no transformer tap adjustments are used, and therefore all the
values of these control variables remain constant. In ECPA,
one power generator, three controllable bus voltages and one

TABLE VI
INITIAL AND FINAL STATUS OF CONTROLS FOR CORRECTIVE ACTIONS

(IEEE 30-BUS)

Variable Ini. Val. [12] [14] [28] ECPA

P [MW]

P2 80.00 48.84 50.20 48.03 49.30

P5 50.00 21.51 21.80 21.65 21.90

P8 20.00 22.15 23.80 22.38 Const.

P11 20.00 12.14 10.80 12.03 12.60

P13 20.00 12.00 12.30 12.00 12.00

V [pu]

V1 1.0500 Const. 0.9660 Const. Const.

V2 1.0450 1.0382 0.9987 1.0366 1.0356

V5 1.0100 1.0114 0.9590 1.0105 Const.

V8 1.0100 1.0194 0.9688 1.0198 1.1000

V11 1.0500 1.0912 1.0266 1.0789 Const.

V13 1.0500 1.0913 0.9500 1.0839 1.0875

Tap [pu]

T6−9 0.9780 1.0027 Const. 0.9920 Const.

T6−10 0.9690 0.9600 Const. 0.9608 0.9182

T4−12 0.9320 1.0047 Const. 0.9951 0.9925

T27−28 0.9680 0.9410 Const. 0.9417 0.9397

transformer tap ratio are kept constant in the solution, which
is an advantage over the other methods.

There are no limit violations in the test system neither before
nor after the application of the corrective control actions.
There are no available data regarding generators reactive limit
violations in [14].

Finally, Table VII includes the initial and final value of the
generation cost.

TABLE VII
FINAL GENERATION COST AFTER APPLYING CORRECTIVE ACTIONS (IEEE

30-BUS)

Ini. Val. [12] [14] [28] ECPA

Gen. cost [£/h] 900.76 802.40 802.32 802.40 802.22

On the basis of these results, it can be concluded that the
proposed method produces the minimum generation cost. The
authors want to emphasize that ECPA, due to its evolutionary
nature, yields a whole set of alternative solutions. A human
operator can benefit from this set of solutions before taking a
final decision.

In order to assess the impact on final solution of the
upper limits on the number of corrective control actions,
10 simulations for the IEEE 118-bus test system have been
conducted. The simulations have been defined by combining
the values of the maximum number of active power changes
(Ng) and the maximum number of controlled bus voltages
(Nv), as shown in Table VIII. All of the system’s data and
generation cost coefficients in this test case have been obtained
from references [21] and [27].

The first column of Table VIII is the simulation’s number.
The second and third columns are the maximum number
of active power changes (Ng) and the maximum number
of controllable voltage buses (Nv) respectively. The fourth
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TABLE VIII
INFLUENCE OF UPPER LIMITS ON BEST INDIVIDUALS OF FINAL

SOLUTIONS (IEEE 118-BUS)

N Ng Nv N̂g N̂v Cost

1 14 6 7 4 128560.1

2 10 6 8 5 128555.9

3 6 6 6 5 128628.1

4 2 6 2 5 129329.0

5 2 5 2 5 129323.1

6 2 4 2 4 129312.3

7 2 3 2 2 129396.3

8 2 2 2 2 129330.6

9 2 1 2 1 129396.6

10 2 0 2 0 129438.6

column is the actual number of active power changes in the
best individual (N̂g) of the simulation. The fifth column is the
actual number of controllable voltage bus changes (N̂v) in the
best individual. The sixth column depicts the total generation
cost in $/h for the best individual of the simulation.

The best individuals of all of the simulations are free from
limit violations. Furthermore, in all of the simulations, ECPA
yields lower generation costs than the one published in [21],
which is 130191.3 $/h for the OPF case. The minimum
generation cost is reached in simulation number 2. This comes
as no surprise since it is the solution with the highest number
of actual controls in the simulation. From the third simulation
onwards, as limits are reduced, simpler solutions are obtained
but at a higher generation cost. Despite the higher generation
cost, the simplicity of the solution can become very attractive
for the system’s operator.

Table IX shows the best solution obtained from simulation
number 2. Active power changes with respect to base case
values are given in [MW], and changes in controllable voltage
buses are given in pu. Security limits and original values of
control variables are available in references [21] and [27].

TABLE IX
BEST SOLUTION FOR THE IEEE 118-BUS TEST SYSTEM WITH N̂g = 8

AND N̂v = 5

ΔP4 ΔP10 ΔP15 ΔP40 ΔP42 ΔP61 ΔP89

35.2 -133.8 34.8 56.1 50.1 -2.2 -104.8

ΔP104 ΔV10 ΔV55 ΔV62 ΔV66 ΔV107

99.1 -0.0207 0.0370 0.0629 0.0116 0.0292

E. Results of preventive control actions

33 contingencies are specified for this simulation, each one
involving the outage of one of the branches in the IEEE 30-
bus test system. The notation Cx−y in Tables XI and XII
indicates the outage of the branch from bus x to bus y, Ix−y

denotes an overload in the branch from bus x to bus y, Vx

indicates a voltage violation (high or low) in bus x and Qx

represents a reactive limit violation of the generator in bus
x. Table X displays the final status of the control variables
that have been used in the three references and in ECPA. The

first column of Table X is the name of the control variable.
The following four columns are the final values of the control
variables in the three references used for comparison and the
proposed algorithm, respectively. The method proposed in [14]
makes use of four thyristor controlled series capacitors (TCSC)
as additional control variables. The location and the optimal
values of the setting of the TCSC are fully described in [14].

TABLE X
FINAL STATUS OF CONTROLS FOR PREVENTIVE ACTIONS (IEEE 30-BUS)

Variable [12] [14] [28] ECPA

P [MW]

P2 57.56 43.00 57.36 56.90

P5 24.56 23.88 24.46 24.40

P8 35.00 25.03 34.86 34.90

P11 17.93 11.27 18.03 17.30

P13 16.91 19.22 17.28 17.10

V [pu]

V1 1.0500 Not avail. 1.0500 1.0500

V2 1.0338 Not avail. 1.0350 1.0294

V5 1.0058 Not avail. 1.0081 0.9923

V8 1.0230 Not avail. 1.0236 1.1000

V11 1.0913 Not avail. 1.0630 1.0457

V13 1.0883 Not avail. 1.0765 1.0897

Tap [pu]

T6−9 1.0154 Const. 1.0281 0.9941

T6−10 0.9628 Const. 0.9467 0.9000

T4−12 1.0128 Const. 1.0109 1.0214

T27−28 0.9580 Const. 0.9568 0.9587

As was the case in the previous section, no transformer tap
adjustments are used in [14], and therefore this control variable
remains constant.

Tables XI and XII show the limit violations under con-
tingency, as a result of a security analysis performed before
applying any preventive action.

TABLE XI
LIMITS VIOLATIONS BEFORE APPLYING PREVENTIVE ACTIONS 1/2 (IEEE

30-BUS)

Violations [12] [14]

Flow limits C1−2: I1−3,I3−4,I4−6 C1−2: I1−3,I3−4,I4−6

C1−3: I1−2 C1−3: I1−2,I2−6

C3−4: I1−2 C3−4: I1−2,I2−6

C2−5: I2−6,I5−7 C2−5: I2−6

C4−6: I1−2,I2−6

C27−28: I22−24,I24−25

Voltage limits C4−6: V12 Not avail.

C24−25: V27

C25−27: V27

Reactive limits C1−3: Q1 Not avail.

C3−4: Q1

C4−6: Q1

After applying the preventive control actions that have been
calculated with ECPA, there are no limit violations in the EPS.
This is also the case in references [12], [14] and [28], and
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TABLE XII
LIMITS VIOLATIONS BEFORE APPLYING PREVENTIVE ACTIONS 2/2 (IEEE

30-BUS)

Violations [28] ECPA

Flow limits C1−2: I1−3,I3−4,I4−6 C1−3: I1−2

C1−3: I1−2 C2−5: I2−6,I5−7

C2−4: I1−2 C3−4: I1−2

C2−5: I2−6,I5−7

C4−6: I2−6

Voltage limits C4−6: V12 C6−7: V10,V12,V27

C10−17: V10

C10−20: V10

C25−26: V27

C25−27: V27

Reactive limits C1−3: Q1 C1−3: Q1

C2−4: Q1 C3−4: Q1

C4−6: Q1

TABLE XIII
FINAL GENERATION COST AFTER APPLYING PREVENTIVE ACTIONS (IEEE

30-BUS)

[12] [14] [28] ECPA

Gen. cost [£/h] 813.74 812.49 813.73 813.21

therefore no distinctions can be made with respect to this
issue. Table XIII includes the final value of the generation
cost. ECPA is only outperformed by the one proposed in [14],
in which additional control variables have been used.

ECPA’s performance for preventive control actions has
also been evaluated for the IEEE 118-bus test system. For
this purpose, a comparison between the results published in
reference [21] and those for ECPA has been made. All of
the system’s data, generation cost coefficients and security
limits have been taken from references [21] and [27]. The
total generation cost in the base case is 130191.3 $/h, and
the status of control variables (active power changes) and the
results from the initial N-1 security analysis for the base case
are given in [21].

Table XIV compares the final active power values of the
generators in reference [21] with those of ECPA. The first
column is the name of the generator. The second and third
columns are the final active power values of the generators
in [21] and ECPA, respectively. The values in brackets cor-
respond to those generators whose values have changed with
respect to the original base case value. The fourth, fifth and
sixth columns have the same information as the first, second
and third columns, respectively.

It can be seen in Table XIV that 45 generators have been
modified in the solution proposed in [21], while only 7
generators have been changed in ECPA’s solution. The total
generation cost of the solution proposed in [21] is 131026.6
$/h, while the total cost of ECPA’s solution is 130933.0
$/h. In addition, the solution of [21] contains two unsolved
contingencies (C8−5 and C30−17) versus none in ECPA.

TABLE XIV
FINAL STATUS OF CONTROLS FOR PREVENTIVE ACTIONS (IEEE 118-BUS)

P [MW] [21] ECPA P [MW] [21] ECPA

P1 (49.1) 44.4 P65 (323.6) 353.6

P4 (8.2) 0.2 P66 (365.9) (357.0)

P6 (30.1) 23.6 P69 (273.5) 455.2

P8 (2.1) 0.0 P70 (6.0) 0.0

P10 (262.9) 262.7 P72 (7.4) 0.0

P12 (88.6) (129.4) P73 (12.1) 0.0

P15 (42.6) 32.8 P74 (30.4) 19.0

P18 (32.9) (35.1) P76 (44.3) 24.3

P19 (31.3) 30.7 P77 0.0 0.0

P24 0.0 0.0 P80 (450.4) 432.0

P25 (192.9) 196.1 P85 0.0 0.0

P26 (258.7) (269.1) P87 (3.8) (1.6)

P27 (25.0) 16.2 P89 (481.8) 502.5

P31 (7.4) 7.3 P90 0.0 0.0

P32 (30.3) 21.6 P91 0.0 0.0

P34 (22.5) 12.8 P92 0.0 0.0

P36 (8.3) 17.6 P99 0.0 0.0

P40 (67.8) 53.2 P100 (238.2) 231.6

P42 (41.2) 43.1 P103 (39.1) 38.3

P46 (19.8) 19.1 P104 (7.7) 0.0

P49 (201.2) 193.9 P105 (16.8) 5.7

P54 (51.1) 49.6 P107 (35.1) 29.3

P55 (60.3) 33.7 P110 (24.5) 7.3

P56 (29.0) 34.2 P111 (35.6) 35.3

P59 (155.9) (175.1) P112 (19.1) (56.4)

P61 (155.2) 148.9 P113 (12.0) 3.0

P62 0.0 0.0 P116 0.0 0.0

F. Computational requirements and scalability

In this section ECPA’s computational burden for the IEEE
30-bus system is compared with that of two other evolutionary
approaches. At the end of the section, ECPA’s behavior on the
IEEE 118-bus system is addressed.

In order to assess the computational burden of the new
algorithm, a comparison between ECPA and the evolutionary
methods published in [14] and [28] has been conducted. For
this purpose, the number of power flow evaluations before
reaching a solution in the IEEE 30-bus system has been
considered. The system’s data are obtained from reference
[12] as was done in previous simulations. The results of this
comparison are provided in Table XV. In the SCOPF case,
Nc represents the number of evaluated contingencies. These
figures prove that ECPA’s performance is of the same order of
magnitude as that of the other evaluated approaches.

TABLE XV
NUMBER OF POWER FLOW EVALUATIONS FOR THE IEEE 30-BUS SYSTEM

[14] [28] ECPA

OPF 1800 1000 1760

SCOPF 1800Nc 1000Nc 1800Nc

ECPA has also been applied to the IEEE 118-bus test
system, whose data are obtained from references [21] and [27].
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The purpose of this experiment is to test the performance of
the new algorithm in a larger scale system.

A set of 10 OPF and 5 SCOPF cases have been solved. 186
contingencies have been considered in the SCOPF case. Table
XVI shows the average number of power flow evaluations
required to achieve a solution. Nc represents the number of
contingencies in the SCOPF case.

TABLE XVI
AVERAGE NUMBER OR POWER FLOW EVALUATIONS FOR THE IEEE

118-BUS TEST SYSTEM

OPF SCOPF

IEEE 118 2067 2100Nc

The data from Tables XV and XVI show that ECPA solves
OPF and SCOPF problems in the IEEE 118-bus system with
a modest increase in the number of power flows.

Fig. 2 shows the evolution of the fitness value during a
typical ECPA-SCOPF run for the IEEE 118-bus system. The
convergence rate is very fast and a reasonable solution is
obtained after only 20 generations. This convergence behavior
is similar to the one published in [21] for the IEEE 118-bus
system, and outperforms the results published in [14].
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Fig. 2. Fitness function convergence of a typical execution of ECPA (IEEE
118-bus system).

V. CONCLUSIONS

This paper introduces a new method of removing thermal
overloads and voltage limits in an electric power system by
means of the Evolution of Corrective and Preventive control
Actions (ECPA). The upper limits on the number of control
actions together with the minimization of the cost function
makes this algorithm find solutions with fewer control actions
than other approaches. Besides, the numerical results confirm
the effectiveness of ECPA. For example, in the corrective case
and for the IEEE 30-bus system, the cost incurred by the best
solution is below the best results that have been obtained in
the literature, and fewer control actions are needed. In the
preventive case, the proposed method is only surpassed by one

work in which additional control variables have been used.
Since ECPA is a genetic algorithm, the final solution is a
whole population of individuals, which allows users to choose
among alternative options. ECPA’s computational burden for
the IEEE 30-bus system is similar to that of other evolutionary
alternatives. The method has also been applied to the IEEE
118-bus system. In this larger-scale network, the number of
evaluated power flows is only slightly increased. Our future
work will focus on the extension of the algorithm to a multi
objective version.

APPENDIX A
PSEUDOCODE OF A GENETIC ALGORITHM

The following algorithm adapts a population P (t) (t is
the iteration number) of n individuals or solutions xt

i (i =
1, . . . , n):

P (t) = {xt
1,x

t
2, . . . ,x

t
n} (25)

1: Procedure Genetic Algorithm
2: Start
3: t← 0
4: Create P (t)
5: Evaluate P (t)
6: while Stop Condition = False do
7: t← t+ 1
8: Select P (t) from P (t− 1)
9: Modify P (t)

10: Evaluate P (t)
11: end while

The algorithm iterates until a stopping condition is reached,
the simplest of which may well be ”a fixed number of
iterations is achieved”. The function named Evaluate calculates
the fitness of each individual in the population, which has to be
maximized. Function Select makes use of these fitness values
in order to create a pool of individuals that will be later used
by function Modify in order to create the next population of
individuals.

APPENDIX B
RER OPERATOR

The random equivalence recombination operator allows to
generate a new individual xt with size K from two parents
xt−1
1 and xt−1

2 of the previous population, in the following
way:

1: Procedure Random Equivalence Recombination
2: xt = ∅
3: U = xt−1

1 ∪ xt−1
2

4: while |xt| < K do
5: Randomly Select an item (s) from U
6: Remove the selected item (s) from U
7: xt = xt ∪ {s}
8: end while
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APPENDIX C
GRADIENT DESCENT ALGORITHM

The following code corresponds to the algorithm used
in Section IV-C in order to set the values of the parame-
ters:

1: Procedure Parameter Setting (Ns, Nmax)
2: Start
3: p0 ← (p01, p

0
2, p

0
3, ..., p

0
7)

4: f0 ← f(p0)
5: f̂ ← f0

6: p̂← p0

7: i← 1
8: while i ≤ Nmax do
9: μi

j ← p̂i−1
j ∀j = 1, . . . , 7

10: σi
j ← p̂max

j −p̂min
j

3 ∀j = 1, . . . , 7
11: pij ← N(μi

j , σ
i
j) ∀j = 1, . . . , 7

12: pi = (pi1, p
i
2, p

i
3, ..., p

i
7)

13: f i ← f(pi)
14: if f i > f̂ then
15: p̂← pi

16: f̂ ← f i

17: end if
18: i← i+ 1
19: end while

Notice that in order to calculate f in point number 13 above,
ECPA is run Ns times because f is the mean best fitness value
(MBF). Nmax is the maximum number of iterations used. It
has been set to 30 for corrective actions and 20 for corrective
and preventive actions.
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