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Abstract

While there exists a vast repertoire of probability distributions and estimation
methods in the literature to model univariate random variables, multivariate
models remain comparatively less developed. Despite the breakthrough of cop-
ulas in the late 1950s and their rapid development in the early 2000s, the quest
for flexible models in dimensions higher than two goes on to this day. This work
contributes to this goal by extending a successful semiparametric Archimedean
bivariate copula estimation method to the 3-variate case. Our approach is based
on tensor product splines, conditional copulas and vine constructions. A novel
regularization procedure to reduce overfitting is also proposed. Experiments
with simulated data show that the proposed model can represent complex de-
pendencies expressed in terms of Kendall’s tau, a dependence measure that is
made to vary smoothly with a conditioning variable.

Keywords: copula, Archimedean copula, conditional copula, vine,
multivariate statistics, semiparametric models, spline models, regularization,
Kendall’s tau, tail dependence
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Notational preliminaries

Throughout this work, the acronyms ‘r.v.’, ‘CDF’ and ‘pdf’ shall serve as short-
hand for ‘random variable’, ‘cumulative distribution function’ and ‘probabil-
ity density function’, respectively. Most of the times, we will be using CDFs.
Notwithstanding, when dealing with r.v.’s, we may assume a generic underlying
probability space (Ω,Σ,P).

Algebra

(x; y) The (n+m)-dimensional vector resulting from stacking vectors
x ∈ Rn and y ∈ Rm .

KerA The kernel subspace of the matrix or linear map A. .

Mn×m(R) Real matrices with n rows and m columns .

Pd(R) Polynomials with real coefficients of degree d .

vecA The vectorization of matrix A, i.e., the (column) vector re-
sulting from stacking the columns of A .

A⊗B The Kronecker product of matrices A and B .

Calculus

C(Ω) The set of all continuous functions f : Ω→ R .

Ck(Ω) The set of all functions f : Ω→ R with continuous k-th order
partial derivatives. If k =∞, partial derivatives of any order
are assumed to exist .

Ck(a, b) The set of all functions f : (a, b) → R with continuous k-
th order derivative. If k = ∞, derivatives of any order are
assumed to exist .

x→ x+
0 x approaches x0 from the right (x0 < x) .

x→ x−0 x approaches x0 from the left (x < x0) .

Functions

Im(f) The image of function f . .

1A The function mapping x to 1 if x ∈ A or to 0, otherwise .

x 7→ f(x) The anonymous function mapping x to f(x) .

ix
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Probability and statistics

[X|Y = y] The r.v. that follows the conditional distribution of r.v. X
given that the r.v. Y is equal to y .

X ∼ Nn(µ,Σ) The n-dimensional r.v. X follows an n-variate normal distri-
bution with mean vector µ and covariance matrix Σ .

X ∼ tn(ν,µ,Σ) The n-dimensional r.v. X follows an n-variate Student’s t
distribution with ν degrees of freedom, location parameter µ
and scale parameter σ2 .

QX(p) The p-th quantile, p ∈ [0, 1], of the r.v. X .

F←(p) The p-th quantile, p ∈ [0, 1], of the CDF F .

X = Y a.s. The r.v. X is almost surely equal to the r.v. Y , that is
P(X 6= Y ) = 0 .

X
d
=Y The r.v. X follows the same distribution as the r.v. Y .

X ∼ N (µ, σ2) The r.v. X follows a univariate normal distribution with mean
µ and variance σ2 .

X ∼ U [0, 1] The r.v. X follows a uniform distribution in [0, 1] .

X ∼ F The r.v. X is distributed according to the CDF F .

X ∼ t(ν, µ, σ2) The r.v. X follows a Student’s t distribution with mean µ and
variance σ2 .

Sets and numbers

#A The number of elements in the finite set A .

R̄ R ∪ {−∞,∞} .

Nn {1, 2, . . . , n} .

Z+ {n ∈ Z : n ≥ 0} .

0n n-dimensional null vector .
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Chapter 1

Introduction

Impĺıcita en todas estas definiciones está la suposición de
que el número de humanos es suficientemente grande para
un tratamiento estad́ıstico válido. El tamaño necesario de
tal número puede ser determinado por el primer teorema de
Seldon, que... Otra suposición necesaria es que el conjunto
humano debe desconocer el análisis psicohistórico a fin de
que su reacción sea verdaderamente casual...

Fundación
Isaac Asimov

There exists a vast repertoire of univariate probability distributions in the
literature. Depending on the desired application, one can often assume a model
that belongs to a specific parametric family which is known to be adequate in
similar scenarios. By contrast, the theory of multivariate distributions is less
developed. One of the best-known multivariate distribution families is that of
elliptical distributions (Cambanis et al., 1981). However, they are often too
rigid in practice. For instance, the univariate margins and conditional margins
of elliptical distributions are always elliptical.

The introduction in 1959 of the concept of copula (Sklar, 1973) by Sklar is
a breakthrough in the modelling of dependencies. Copulas are multivariate dis-
tributions whose univariate margins are uniformly distributed in [0, 1]. Copulas
allow to separate the modelling of dependencies from the modelling of marginals,
according to Sklar’s theorem, and appear as a useful theoretical tool to study
dependence measures such as Kendall’s tau, Spearman’s rho or the upper and
lower tail dependence indices.

Despite the interesting mathematical properties of copulas, it was not until
the 2000s that copulas drew the attention of both researchers and practition-
ers, especially of those interested in risk management and finance (Bouyé et al.,
2000), (Embrechts et al., 2003), (McNeil et al., 2005). In the early days of copula
theory, researchers focused on expanding the set of known copulas, mainly in-
troducing parametric bivariate copulas (dimension n = 2); nowadays, the focus
is on obtaining flexible multivariate copula models (dimension n > 2) capable
of representing complex dependencies from data.

The goal of this work is to make headway in both the flexibility and the
dimensionality aspects of copula modelling. In this work, we will focus on the

1
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n = 2 and n = 3 cases. According to Lopez-Paz et al.:

“Although there exist many parametric models for two-
dimensional copulas, for more than two dimensions the number and
expressiveness of families of parametric copulas is more limited.”

(Lopez-Paz et al., 2013)

To achieve this goal, we take (Hernández-Lobato and Suárez, 2011) as the start-
ing point for our proposal. (Hernández-Lobato and Suárez, 2011) introduces a
family of semiparametric Archimedean copulas, which specifically tackles tail
dependence estimation. We propose to extend (Hernández-Lobato and Suárez,
2011) to conditional copulas in a similar way to the approach in (Lambert, 2014).
Finally, we propose to build 3-variate copula models from bivariate copulas and
a family of conditional copulas by means of the vine constructions (Bedford and
Cooke, 2002).

Our work is organized as follows. Chapter 2 introduces the essentials of cop-
ula theory. Special attention is given to various dependence measures (Section
2.3), Archimedean copulas (Section 2.4.2) and vines (Section 2.6). Chapter 3
reviews the state of the art of copula modelling, with some emphasis on the work
by Lambert (Section 3.2.3). Chapter 4 describes the bivariate semiparametric
model introduced by (Hernández-Lobato and Suárez, 2011) (Section 4.1), which
is the starting point for our proposal. This method is extended to 3-copulas in
Section 4.2. Chapter 5 presents the results of simulations that illustrate the re-
sults in Chapter 4. Finally, Chapter 6 summarizes the conclusions of this work
and outlines future lines of research.

Appendices A, B, C are self-contained summaries of relevant topics for sta-
tistical modelling: spline functions, regular variation and quantile functions.
Appendix D, which addresses implementation details, provides further details
that are relevant to the topics discussed in Chapter 4.



Chapter 2

Fundamentals of copula
theory

– ¿Matemáticas? – exclamó Quemot, pronunciando con voz
de falsete la última śılaba.
– Verá, no las matemáticas superiores que se emplean en
robótica, que seŕıa incapaz de entender, sino matemáticas
aplicadas a la socioloǵıa. Por ejemplo, me es muy familiar
la Relación de Teramin.
– ¿La qué?
– Acaso ustedes la conozcan por un nombre distinto. El
diferencial de vejaciones sufridas con provilegios concedidos:
D a sub J elevado a la enésima...
– ¿De qué está usted hablando?

El sol desnudo
Isaac Asimov

In this chapter we will present a brief introduction to copula theory. We
will summarize some basic definitions and properties and introduce families of
copulas that will be used throughout this work.

This review of copulas and their properties is included for the sake of com-
pleteness and as a quick reference. Notwithstanding, we shall not focus on
demonstrations in this chapter and refer the reader to the bibliography for fur-
ther details. Probably two of the most complete works on this topic at an
introductory level are (Embrechts et al., 2003) and (Nelsen, 2006). The latter
stands out for its rigorous approach. In the context of finance and risk manage-
ment, (Bouyé et al., 2000) and (McNeil et al., 2005) provide good introductions
to copulas and their applications, too.

2.1 Basic definitions and properties

We now introduce the concept of copula in its most general form, even though
we shall only deal with the n = 2 and n = 3 cases in this work.

Definition 2.1.1 (Copula). A function C : [0, 1]n → R is called an n-variate
copula or an n-copula, for n > 1, if the following hypotheses are met:

3



4 2.1. BASIC DEFINITIONS AND PROPERTIES

1. For all u1, u2, . . . , un ∈ [0, 1], if ui = 0 for some i = 1, 2, . . . , n, then
C(u1, u2, . . . , un) = 0.

2. For all u ∈ [0, 1],

C(u, 1, 1, . . . , 1) = C(1, u, 1, 1, . . . , 1) = . . . = C(1, 1, . . . , 1, u) = u .

3. For every non-empty rectangle R = (a1, b1] × (a2, b2] × . . . × (an, bn] ⊂
(0, 1]n, we have µC(R) ≥ 0, where

µC(R) =
∑

u∈V (R)

sign(u) · C(u) , (2.1)

for the vertices set V (R) = {a1, b1} × {a2, b2} × . . . × {an, bn} and with
the sign of a vertex u ∈ V (R) defined as sign(u) = (−1)N(u), for
N(u1, . . . , un) = #{i ∈ Nn : ui = ai}.

From the previous definition one can easily see that a copula is in fact the
cumulative distribution function (CDF) of an n-variate random vector (r.v.)
with uniform margins in [0, 1] restricted to [0, 1]n. That is, if U1, U2, . . . , Un ∼
U [0, 1], then

C(u1, u2, . . . , un) = P(U1 ≤ u1, U2 ≤ u2, . . . , Un ≤ un) (2.2)

is an n-copula. The third axiom in Definition 2.1.1, which states that an n-
copula is ‘n-increasing’, guarantees that C produces a (probability) measure by
means of (2.1), while the second one implies the margins are uniform in [0, 1].
Some authors (Nelsen, 2003) restrict the range of a copula to [0, 1], but this is
actually implied by Definition 2.1.1.

Equation (2.1) seems a bit intimidating in the n-variate version. For the
n = 2 case, we can simply write

µC ((a, b]× (c, d]) = C(b, d)− C(a, d)− C(b, c) + C(a, c) ≥ 0 .

Definition 2.1.1 entails a considerable degree of regularity. In particular,
every copula is Lipschitz-continuous with Lipschitz constant L = 1 and, hence,
uniformly continuous.

Proposition 2.1.1. Let C be an n-copula and let u = (u1, u2, . . . , un) ∈ [0, 1]n

and u′ = (u′1, u
′
2, . . . , u

′
n) ∈ [0, 1]n. We have

|C(u)− C(u′)| ≤ ‖u− u′‖1 =
n∑

i=1

|ui − u′i| .

Remark 2.1.1. For Rademacher’s theorem, since an n-copula C is Lipschitz
continuous (Proposition 2.1.1), C is differentiable almost everywhere in (0, 1)n.

(Schmitz, 2003) provides an extensive and rigorous treatment of the partial
derivatives of copulas.

Proposition 2.1.2. Let C be an n-copula and let i ∈ Nn. For all
u1, u2, . . . , ui−1, ui+1, . . . , un ∈ (0, 1), the function

ui 7→
∂C

∂ui
(u1, u2, . . . , ui−1, ui, ui+1, . . . , un) , (2.3)
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is defined and monotonically increasing for almost every ui in (0, 1). Moreover,
for almost every (u1, u2, . . . , un) ∈ (0, 1)n, we have

0 ≤ ∂C

∂ui
(u1, u2, . . . , un) ≤ 1 ,

and, in the context of (2.2), the following interpretation holds:

∂C

∂ui
(u1, u2, . . . , un) =

P(U1 ≤ u1, U2 ≤ u2, . . . , Ui−1 ≤ ui−1, Ui+1 ≤ ui+1, . . . , Un ≤ un|Ui = ui) .

Next we will introduce three important copulas that correspond to three
basic types of dependence. Strictly speaking, they are copula templates that
can be instantiated for every dimension n. For every n, two of these copulas act
as bounds for the whole set of n-copulas, according to the following result.

Proposition 2.1.3 (Fréchet-Hoeffding bounds). Let C be an n-copula. For
all u1, u2, . . . , un ∈ [0, 1], we have

max

{
1− n+

n∑

i=1

ui, 0

}
≤ C(u1, u2, . . . , un) ≤ min{u1, u2, . . . , un} . (2.4)

The upper bound in (2.4) is actually the CDF of the n-variate r.v.
(U,U, . . . , U) for a r.v. U ∼ U [0, 1].

Definition 2.1.2 (Maximal copula). We define the n-variate maximal copula
C+ : [0, 1]n → R as

C+(u1, . . . , un) = min{u1, u2, . . . , un} .

By contrast, the lower bound in (2.4) is not a copula in general, but a related
concept known as quasi-copula1. It is a copula if and only if n = 2, in which case
the copula corresponds to the bivariate r.v. (U, 1− U), for a r.v. U ∼ U [0, 1].

Definition 2.1.3 (Minimal copula). We define the minimal copula C− :
[0, 1]2 → R as

C−(u, v) = max {u+ v − 1, 0} .

Last but not least, we present the independence copula. As its name sug-
gests, it is the CDF of the multivariate r.v. whose univariate margins are uni-
formly distributed in [0, 1] and mutually independent.

Definition 2.1.4 (Independence copula). The n-variate independence cop-
ula (also known as product copula) C⊥ : [0, 1]n → R is defined as

C⊥(u1, . . . , un) =
n∏

i=1

ui .

1 We shall not expand on quasi-copulas. See (Nelsen, 2003) for further details.



6 2.2. SKLAR’S THEOREM

Kendall distribution

Given a copula, we can always define the following concept, which will be useful
later on.

Definition 2.1.5 (Kendall distribution). Let C be a bivariate copula. Let
(U, V ) be uniform r.v.’s in [0, 1] jointly distributed according to C. We define
the Kendall distribution of the copula C as

KC(x) = P(C(U, V ) ≤ x) . (2.5)

2.2 Sklar’s theorem

The importance of copulas in statistics is due to Sklar’s theorem. This famous
result states that, under certain hypotheses, a multivariate distribution can be
broken down into two different kinds of structures: a unique copula on the one
hand and the univariate margins on the other. This poses strong implications
for statistical modelling, as it suggests that the estimation of dependence in a
multivariate distribution comes down to the estimation of a copula.

Theorem 2.2.1 (Sklar’s theorem, 1959). Let F be an n-variate CDF, n > 1,
with univariate margins F1, F2, . . . , Fn. There exists an n-copula C such that

F (x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)) .

Moreover, if the Fi’s are continuous, then C is unique.

Using Proposition C.0.12(4), if the Fi’s are continuous, the unique copula C
in Theorem 2.2.1 is given by

C(u1, u2, . . . , un) = F (F←1 (u1), F←2 (u2), . . . , F←n (un)) , (2.6)

where the F←i ’s are the quantile2 functions corresponding to the CDFs Fi’s.
Interestingly, the underlying copula, in the sense of Sklar’s theorem, of a multi-
variate r.v. remains invariant under strictly increasing transformations, as the
following result states.

Proposition 2.2.1. Let X1, X2, . . . , Xn be unidimensional contin-
uous r.v.’s. Let α1, α2, . . . , αn be strictly increasing functions on
Im(X1), Im(X2), . . . , Im(Xn), respectively. We have that the n-variate
r.v.’s (X1, X2, . . . , Xn) and (α1(X1), α2(X2), . . . , αn(Xn)) share the same
associated copula, in the sense of Sklar’s Theorem 2.2.1.

The previous result allows to obtain a stochastic representation of the n-
variate r.v. (with uniform margins in [0, 1]) distributed according to the copula
of n unidimensional r.v.’s.

Corollary 2.2.1. Let X1, X2, . . . , Xn be unidimensional continuous r.v.’s.
with corresponding CDFs F1, F2, . . . , Fn. We have that the n-variate r.v.’s
(X1, X2, . . . , Xn) and (F1(X1), F2(X2), . . . , Fn(Xn)) share the same associated
copula C, which is also the multivariate CDF of the latter r.v., restricted to
[0, 1]n.

2 See Appendix C for further details.
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Proof. It is a consequence of (2.2.1), noting that we can always find a version
of Xi such that Fi is strictly increasing in Im(Xi).

3

The converse of Sklar’s theorem also holds: given a copula and some univari-
ate CDFs, we can construct a multivariate CDF. While Sklar’s Theorem 2.2.1
allows to extract the dependence structure from a given known multivariate
CDF, its converse, Proposition 2.2.2, allows to create new CDFs with a given
dependence structure. This represents a big asset, since the number of known
multivariate CDFs is relatively small, whereas constructing new copulas is a
simpler task.

Proposition 2.2.2 (Multivariate CDF construction via copulas). Let C
be an n-copula and let F1, F2, . . . , Fn be n univariate CDFs. Letting F : Rn →
[0, 1] be defined as

F (x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)) ,

we have that F is an n-variate CDF whose i-th univariate margin coincides with
Fi, for all i = 1, 2, . . . , n.

There exists a version of Sklar’s Theorem 2.2.1 involving survival functions
(McNeil et al., 2005). If we define F as the n-variate CDF

F (x1, x2, . . . , xn) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) ,

for some r.v.’s X1, X2, . . . , Xn, then the survival function F̄ corresponding to F
is defined as

F̄ (x1, x2, . . . , xn) = P(X1 > x1, X2 > x2, . . . , Xn > xn) .

Similarly, if Fi(x) = P(Xi ≤ x) is the i-th univariate margin of F , its corre-
sponding survival function is F̄i(x) = P(Xi > x).

Theorem 2.2.2 (Sklar’s theorem, survival version). Let F̄ be an n-
variate survival function, n > 1, with univariate margin survival functions
F̄1, F̄2, . . . , F̄n. There exists an n-copula Ĉ such that

F̄ (x1, x2, . . . , xn) = Ĉ
(
F̄1(x1), F̄2(x2), . . . , F̄n(xn)

)
.

Moreover, if the F̄i’s are continuous, then Ĉ is unique.

Ĉ is known as the survival copula of C, which is not to be confused with
the survival function C̄ of C.4 Letting Ui = Fi(Xi) and Ūi = 1 − Ui, for all
i = 1, 2, . . . , n, one can show that Ĉ is actually the CDF of (Ū1, Ū2, . . . , Ūn).
Therefore, the relationship between Ĉ and C̄ is:

Ĉ(1− u1, 1− u2, . . . , 1− un) = P(Ū1 ≤ 1− u1, Ū2 ≤ 1− u2, . . . , Ūn ≤ 1− un)

= P(U1 ≥ u1, U2 ≥ u2, . . . , Un ≥ un)

= P(U1 > u1, U2 > u2, . . . , Un > un)

= C̄(u1, u2, . . . , un)

,

for all u1, u2, . . . , un ∈ [0, 1].
The property C = Ĉ deserves its own definition.

3 If Fi is flat on I = ∪nj=1Ij , then P(Xi ∈ I) = 0. Therefore, we can find X̃i that is equal

to Xi almost surely such that Fi is strictly increasing on Im(X̃i).
4 C is, in particular, a multivariate CDF and, hence, has a survival function.
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Definition 2.2.1 (Radially symmetric copula). An n-copula C is said
to be radially symmetric if it is equal to its survival copula Ĉ, that is, if
C(u1, u2, . . . , un) = Ĉ(u1, u2, . . . , un) for all u1, u2, . . . , un ∈ [0, 1].

In the bivariate case, n = 2, there is also a simple relationship between the
copulas C and Ĉ. For all u, v ∈ [0, 1], we have

Ĉ(1− u, 1− v) = 1− u− v + C(u, v) . (2.7)

Last but not least, we now introduce a version of Sklar’s theorem for condi-
tional distributions (Patton, 2006).

Theorem 2.2.3 (Sklar’s theorem, conditional version). Let X,Y,W be
univariate r.v.’s and let W be the support of W . For every w ∈ W, let
FX|W (∗|w) and FY |W (∗|w) be the CDFs of the conditional margins [X|W = w]
and [Y |W = w]. Also, let FXY |W (∗, ∗|w) be the joint conditional CDF of
[(X,Y )|W = w]. If FX|W (∗|w) and FY |W (∗|w) are continuous, then there exists
a unique 2-copula C(∗, ∗|w) such that

FXY |W (x, y|w) = C(FX|W (x|w), FY |W (y|w)|w) , (2.8)

for all x, y ∈ R.

According to Patton:

“It is the converse of Sklar’s theorem that is the most interesting
for multivariate density modelling.”

(Patton, 2006)

We next introduce the converse of Theorem 2.2.3.

Theorem 2.2.4 (Converse of Theorem 2.2.3). Using the notation in Theo-
rem 2.2.3, if {C(∗, ∗|w)}w∈W is a family of conditional copulas that is measur-
able in w, then FXY |W (∗, ∗|w) defined in (2.8) is a conditional bivariate CDF
with conditional margin CDFs FX|W (∗|w) and FY |W (∗|w).

2.3 Dependence measures

In Section 2.2 we saw how copulas naturally appear as linking functions between
univariate margins. In this section we will look at some important dependence
measures that happen to exclusively depend on copulas, reinforcing their pivotal
role. In Nelsen’s words:

“. . . it is the copula which captures the ‘non-parametric’,
‘distribution-free’ or ‘scale-invariant’ nature of the association be-
tween random variables.”

(Nelsen, 2003)
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2.3.1 Rank correlation

Given two r.v.’s X and Y , remember that the linear correlation coefficient be-
tween X and Y , also known as Pearson product-moment correlation coefficient,
is defined as

ρ(X,Y ) =
Cov(X,Y )

σX · σY
, (2.9)

where σX and σY represent the standard deviations of X and Y , respectively,
and Cov(X,Y ) represents the covariance between X and Y . We always have
−1 ≤ ρ(X,Y ) ≤ 1.

The linear correlation (2.9) suffers from the following drawbacks:

1. ρ(X,Y ) is undefined if either E(X2) or E(Y 2) is infinite.

2. If α and β are non-linear strictly increasing functions, we generally have
ρ(α(X), β(Y )) 6= ρ(X,Y ).

3. Given two univariate CDFs F and G and some λ > 0, we cannot generally
expect to find a bivariate r.v. (X,Y ) such that X ∼ F , Y ∼ G and
ρ(X,Y ) = λ.

The rank correlation measures we will explore next overcome these draw-
backs of the well-known linear correlation coefficient.

Concordance

The following function plays an important role to understand the rank correla-
tion measures in this section (Nelsen, 2003).

Definition 2.3.1 (Concordance function). Let (X1, Y1), (X2, Y2) be inde-
pendent bivariate r.v.’s such that X1 and Y1 follow the same distributions as
X2 and Y2, respectively. The concordance between (X1, Y1) and (X2, Y2) is
defined as

κ(X1,Y1),(X2,Y2) = P ((X1 −X2)(Y1 − Y2) > 0)︸ ︷︷ ︸
concordance probability

−P ((X1 −X2)(Y1 − Y2) < 0)︸ ︷︷ ︸
discordance probability

= E [sign(X1 −X2)(Y1 − Y2)] .

Interestingly, the concordance function exclusively depends on copulas.

Proposition 2.3.1. The concordance κ(X1,Y1),(X2,Y2) exclusively depends on C1

and C2: the copulas of (X1, Y1) and (X2, Y2), respectively. Namely,

κ(X1,Y1),(X2,Y2) = 4

∫

[0,1]2
C1 dC2 − 1 = 4

∫

[0,1]2
C2 dC1 − 1 .

Consequently, we shall equivalently denote κ(X1,Y1),(X2,Y2) by κ(C1, C2).
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Spearman’s rho

The following alternative to the linear correlation coefficient is actually based
on it.

Definition 2.3.2 (Spearman’s rho). Let X,Y be unidimensional continu-
ous r.v.’s with CDFs FX and FY , respectively. We define the Spearman’s rho
between X and Y as

%(X,Y ) = ρ(FX(X), FY (Y )) .

Spearman’s rho is always well-defined, since both FX(X) and FY (Y ) are
uniformly distributed in [0, 1], according to Proposition C.0.14. Moreover, ac-
cording to the following result, Spearman’s rho only depends on the copula
linking X and Y .

Proposition 2.3.2. Spearman’s rho only depends on the copula between X and
Y . Namely, we have

%(X,Y ) = 3κ(CX,Y , C
⊥) .

Therefore, we can safely write %(CX,Y ) ≡ %(X,Y ).

Kendall’s tau

Another alternative to the linear correlation coefficient is Kendall’s tau.

Definition 2.3.3 (Kendall’s tau). Let X,Y be unidimensional continuous
r.v.’s. We define the Kendall’s tau between X and Y as

τ(X,Y ) = κ(X,Y ),(X̄,Ȳ ) ,

where (X̄, Ȳ ) is an independent copy of (X,Y ).

Since the concordance κ(X,Y ),(X̄,Ȳ ) only depends on the copula CX,Y between
X and Y (because CX̄,Ȳ = CX,Y ), bearing in mind Proposition 2.3.1, we can
safely write τ(CX,Y ) ≡ τ(X,Y ).

Kendall’s tau is related to the Kendall distribution (Definition 2.1.5) of the
copula CX,Y ,

Proposition 2.3.3. Let X,Y be unidimensional continuous r.v.’s. We have

τ(X,Y ) = 4 · E (CX,Y (FX(X), FY (Y )))− 1

= 4 · E (FX,Y (X,Y ))− 1
.

Some important properties

Since both Spearman’s rho and Kendall’s tau exclusively depend on copulas and
since copulas remain invariant under strictly increasing transformations α and
β (Proposition 2.2.1), we have δ(α(X), β(Y )) = δ(X,Y ) for both δ = % and
δ = τ . Other properties are summarized in the following proposition.

Proposition 2.3.4. Let X,Y be unidimensional continuous r.v.’s with copula
CX,Y . Let δ represent either Spearman’s rho % or Kendall’s tau τ . We have:

1. δ(X,Y ) = 1 if and only if CX,Y = C+.

2. δ(X,Y ) = −1 if and only if CX,Y = C−.

3. δ(X,Y ) = 0 if CX,Y = C⊥.
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2.3.2 Tail dependence

Tail dependence applies when analysing extreme events in both the upper and
lower tail.

Definition 2.3.4 (Lower tail dependence). Let X,Y be unidimensional
continuous r.v.’s. X and Y are said to be (asymptotically) dependent in the
lower tail if the following limit exists and is positive:

λL(X,Y ) = lim
α→0+

P (Y ≤ F←Y (α)|X ≤ F←X (α))

= lim
α→0+

P (X ≤ F←X (α)|Y ≤ F←Y (α))
. (2.10)

If λL(X,Y ) exists but is zero, X and Y are said to be (asymptotically) inde-
pendent in the lower tail.

Definition 2.3.5 (Upper tail dependence). Let X,Y be unidimensional
continuous r.v.’s. X and Y are said to be (asymptotically) dependent in the
upper tail if the following limit exists and is positive:

λU (X,Y ) = lim
α→1−

P (Y ≥ F←Y (α)|X ≥ F←X (α))

= lim
α→1−

P (X ≥ F←X (α)|Y ≥ F←Y (α))
. (2.11)

If λU (X,Y ) exists but is zero, X and Y are said to be (asymptotically) inde-
pendent in the upper tail.

The limits (2.10) and (2.11) are known as the lower and upper tail indices,
respectively. Interestingly, they both exclusively depend on copulas.

Proposition 2.3.5. Let C be the copula between X and Y in both Defini-
tion 2.3.4 and Definition 2.3.5. We have that

λL(X,Y ) ≡ λL(C) = lim
u→0+

C(u, u)

u
,

and

λU (X,Y ) ≡ λU (C) = lim
u→1−

1− 2u+ C(u, u)

1− u .

Remark 2.3.1. Note that λU (C) = λL(Ĉ). Using (2.7):

lim
u→1−

1− 2u+ C(u, u)

1− u = lim
u→1−

Ĉ(1− u, 1− u)

1− u = lim
u→0+

Ĉ(u, u)

u
.

2.4 Copula families

In the present section we will introduce some important examples of copulas
that are actually used in real applications.

2.4.1 Elliptical copulas

In general, copulas arising from known distributions via Sklar’s theorem are
called implicit. An important family of implicit copulas is that of elliptical
copulas. They are named after the family of elliptical distributions, from which
they derive by means of Sklar’s Theorem 2.2.1.
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Elliptical distributions

Let us first remind some concepts about elliptical distributions (Cambanis et al.,
1981), a meta-family that generalizes household distributions like the multivari-
ate Gaussian and the Student’s t.

Definition 2.4.1 (Elliptically contoured CDF). An n-variate CDF F is
said to be elliptically contoured with parameters (µ,Σ, φ), represented by F ∈
En(µ,Σ, φ), if its Fourier-Stieltjes transform

F{F}(t) =

∫

Rn
eit

Tx dF (x) ,

satisfies

F{F}(t) = eit
Tµ · φ

(
tTΣt

)
,

for some:

• µ ∈ Rn.

• Σ ∈Mn×n(R), symmetric and positive semi-definite5.

• φ : [0,∞)→ R.

The function φ is known as the distribution generator.

The name ‘elliptical’ is due to the fact that, if F is absolutely continuous,
then its density is given by

f(x) = (det(Σ))
−1/2

g
(
(x− µ)TΣ−1(x− µ)

)
,

for some non-negative function g of one real variable. Hence, the level sets of f
are ellipsoids in Rn (Embrechts et al., 2003).

Definition 2.4.1 admits an equivalent interpretation in terms of r.v.’s.

Definition 2.4.2 (Elliptical r.v.). Let (µ,Σ, φ) as in Definition 2.4.1. An n-
dimensional r.v. X is said to be elliptical with parameters (µ,Σ, φ), represented
by X ∈ En(µ,Σ, φ), if FX, the CDF of X, is elliptical with parameters (µ,Σ, φ)
or, equivalently, if the characteristic function of X,

ϕX(t) = E
(
eit

TX
)
,

satisfies

ϕX(t) = eit
Tµ · φ

(
tTΣt

)
.

Note that the parameters that define an elliptical distribution are not unique.

Remark 2.4.1. If F ∈ En(µ,Σ, φ) and λ > 0, then F ∈ En(µ, λΣ, φ(∗/λ)).

Definition 2.4.2 is equivalent to the following handy representation (Camba-
nis et al., 1981, Embrechts et al., 2003).

5 tTΣt ≥ 0, for all t ∈ Rn.
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Theorem 2.4.1 (Stochastic representation of elliptical r.v.’s). An n-
dimensional r.v. X satisfies X ∈ En(µ,Σ, φ) with rank(Σ) = k if and only if the
following equality in distribution holds:

X d
=µ+RAU ,

where

• R is a unidimensional r.v. whose CDF FR satisfies

φ(x) =

∫ ∞

0

ϕU(r2x) dFR(r) , (2.12)

where ϕU represents the characteristic function of U.

• A ∈Mn×k(R) verifies AAT = Σ.

• U is a k-variate r.v. uniformly distributed over the unit hypersphere {u ∈
Rk : uTu = 1} and independent of R.

Looking at (2.4.1), it does not seem too far-fetched and it can actually be
demonstrated that the univariate margins of elliptical distributions also belong
to the elliptical family. Copulas arising from elliptical distributions thus pro-
vide an opportunity to build multivariate distributions, via (Proposition 2.2.2),
where the univariate margins can be arbitrarily chosen: they are called meta-
elliptical distributions. Notwithstanding, elliptical copulas are always radially
symmetric (Definition 2.2.1), as pointed out by (McNeil et al., 2005). Hence,
working with elliptical copulas is fairly restrictive.6

Two major elliptical copulas

We next present two major examples of copulas arising from elliptical distribu-
tions.

Example 2.4.1. The n-variate Gaussian distribution with mean vector µ and
covariance matrix Σ is elliptical. If X ∼ Nn(µ,Σ), we have

ϕX(t) = exp

(
itTµ− 1

2
tTΣt

)
,

and thus X ∈ En(µ,Σ, φ), for φ(x) = e−x/2.

From Example 2.4.1 and using (2.6) we get the Gaussian copula.

Definition 2.4.3 (Gaussian copula). Let Σ ∈ Mn×n(R) be a covariance
matrix with Σii = σ2

i = 1, for all i = 1, 2, . . . , n. We define the n-variate
Gaussian copula with parameter matrix Σ as

CGaΣ (u1, u2, . . . , un) = ΦΣ

(
Φ−1(u1),Φ−1(u2), . . . ,Φ−1(un)

)
, (2.13)

where Φ and ΦΣ are the CDFs of N (0, 1) and Nn(0n,Σ), respectively.

6 For instance, according to Proposition 2.3.5, upper and lower tail indices are necessarily
identical for radially-symmetric copulas.
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The parameter matrix Σ in (2.4.3) is actually a correlation matrix. Inter-
estingly, all multivariate Gaussian distributions sharing a certain correlation
matrix produce the same copula (2.13), regardless of the means and variances
of their univariate margins. Indeed, this is a consequence of Proposition 2.2.1,
since the standardizing transformations

αi : Xi 7−→
Xi − µi
σi

,

which ensure zero means and unit standard deviations, are strictly increasing.
The second example derives from the Student’s t distribution.

Example 2.4.2. The n-variate Student’s t distribution is elliptical. Remember
that X follows an n-variate Student’s t distribution with parameters ν, µ and
Σ, represented by X ∼ tn(ν,µ,Σ), if

X d
=µ+

√
ν√
S

Z , (2.14)

where

• ν ∈ R, ν > 0.

• µ ∈ Rn.

• Σ ∈Mn×n(R) is symmetric and positive semi-definite.

• Z ∼ Nn(0n,Σ).

• S follows a chi-squared distribution with ν degrees of freedom, S ∼ χ2
ν ,

and is independent of Z.

Again, using (2.6), we get the Student’s copula.

Definition 2.4.4 (Student’s copula). Let Σ ∈ Mn×n(R) be a scale matrix
with Σii = σ2

i = 1, for all i = 1, 2, . . . , n. We define the n-variate Student’s
copula with parameter matrix Σ as

Ctν,Σ(u1, u2, . . . , un) = tnν,Σ(t−1
ν (u1), t−1

ν (u2), . . . , t−1
ν (un)) ,

where tν and tnν,Σ are the CDFs of t(ν, 0, 1) and tn(ν,0n,Σ), respectively.

Just like in Definition 2.4.3, Student’s copula can be fully described in terms
of a scale matrix Σ with ones in the main diagonal. Both the Gaussian copula
and Student’s copula are parametric models, much like the original distributions
they derive from. For the n-variate Gaussian copula we have to estimate (using,
say, maximum likelihood estimation) n(n−1)/2 correlation coefficients, whereas
for Student’s copula there is an additional parameter: the degrees of freedom ν.

2.4.2 Archimedean copulas

The elliptical copulas reviewed in the previous section fall into the implicit cop-
ulas category, since they arise from previously known multivariate distributions.
By contrast, the copulas we will next introduce, which are the cornerstone of
the modelling methods proposed in this work, have an explicit expression in
terms of a functional parameter.
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Definition 2.4.5 (Archimedean copula). Let φ : [0, 1]→ [0,∞] be a strictly
decreasing, convex function satisfying φ(1) = 0. We define the Archimedean
copula with generator φ as

Cφ(u, v) = φ[−1](φ(u) + φ(v)) , (2.15)

where

φ[−1](x) =

{
φ−1(x), if 0 ≤ x < φ(0)

0, otherwise
. (2.16)

We shall denote the set of Archimedean generators by Φ.

Archimedean copulas rely on a single functional parameter with relatively
simple axioms. As compared with the crude Definition 2.1.1 and leaving out
computational considerations, Definition 2.4.5 seems an easy procedure to ob-
tain copulas: one can easily draw an Archimedean generator (or at least a
bounded one). One can show that the convexity requirement for the generator
φ is necessary (Embrechts et al., 2003). In other words, we cannot find a copula
of the form (2.15) for a non-convex generator φ.

The definition of an Archimedean copula in terms of the functional parameter
is not unique: infinitely many generators produce the same Archimedean copula.

Proposition 2.4.1. Let φ, φ̃ ∈ Φ. We have that Cφ = Cφ̃ if and only there

exists λ > 0 such that φ̃(x) = λφ(x), for all x ∈ [0, 1].

Archimedean copulas are named after the Archimedean property they satisfy,
according to the following result (Nelsen, 2006).

Proposition 2.4.2. Let Cφ be an Archimedean copula with generator φ. Let
I = [0, 1] be endowed with the binary operator ? : I× I→ I given by

u ? v = Cφ(u, v) .

It holds that (I, ?,≤) is a commutative totally ordered monoid. Moreover, con-
sidering the exponentiation in (I, ?), which maps u ∈ I to its k-th power, for
k ∈ Z+,

uk) = u ? u ? . . . ? u︸ ︷︷ ︸
k times

=

{
u ? uk−1), if k ≥ 1

1, if k = 0
,

(I, ?,≤) satisfies the following version of the Archimedean property7: for every
u, v ∈ I, if u < 1 and v < 1, there exists n ∈ N such that un) < v.

The Archimedean family is rather extensive, gathering a wide variety of
dependencies. In fact, two fundamental copulas we have seen are Archimedean.

Example 2.4.3. The minimal copula C− is Archimedean with generator
φ(x) = 1− x.

Example 2.4.4. The bivariate independence copula C⊥ is Archimedean with
generator φ(x) = − log x.

7 The Archimdean property in (R,+,≤) can be stated as: for every x, y ∈ R, if x > 0 and
y > 0, there exists n ∈ N such that n× x > y.
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Family Generator φ(x) Parameter range

Gumbel (− log x)θ θ ∈ [1,∞)
Clayton 1

θ (x−θ − 1) θ ∈ [−1, 0) ∪ (0,∞)

Frank − log
(
e−θx−1
e−θ−1

)
θ ∈ (−∞, 0) ∪ (0,∞)

Table 2.1: Some important Archimedean families.

Table 2.1 summarizes three of the foremost and most widespread
Archimedean (sub)families in the literature. In all cases, the generator is
parametrized by a certain θ. For this reason, these Archimedean copulas can
be seen as parametric, even though they all derive from the more general con-
struction given in Definition 2.4.5.

The convexity of φ implies some smoothness properties worth mentioning.

Remark 2.4.2. An Archimedean generator φ is continuous on (0, 1] and differ-
entiable at all points, except for a countable subset of (0, 1). Nonetheless, left
and right derivatives always exist.

Archimedean copulas are usually endowed with the following extra conve-
nient hypothesis.

Definition 2.4.6 (Strict Archimedean copula). An Archimedean copula
and its generator φ are said to be strict, represented by φ ∈ Φ∞, if φ(0) =∞.

The strictness property φ(0) = ∞ reduces (2.15) to simply C(u, v) =
φ−1(φ(u)+φ(v)). It turns out that the definition of a strict Archimedean copula
can indistinctly be stated in terms of either φ or φ−1 as generator. The key point
in using strict Archimedean copulas is contained in the following proposition.

Proposition 2.4.3. Let Cφ be an Archimedean copula with generator φ. The
following statements are equivalent:

1. φ is strict, i.e., φ(0) =∞.

2. For all (u, v) ∈ (0, 1]2, we have Cφ(u, v) > 0.

Proof. If φ is strict, then φ[−1](t) = φ−1(t) > 0 for all t ∈ [0,∞). Taking u 6= 0
and v 6= 0, we have φ(u) + φ(v) <∞, so C(u, v) > 0. Conversely, if φ(0) <∞,
since φ is continuous, we can find u > 0 such that 2φ(u) > φ(0). Therefore,
Cφ(u, u) = 0, which means µCφ([0, u]2) = 0.

Proposition 2.4.3 means that the support of a bivariate distribution whose
copula is Archimedean is not the product of its margin supports unless φ(0) =
∞. This feature of non-strict Archimedean copulas makes them unsuitable for
most applications.

Archimedean copulas and Kendall distribution

There is an interesting connection between Archimedean copulas and the
Kendall distribution (Definition 2.1.5). To begin with, Archimedean copulas
have a simple expression for (2.5).
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Proposition 2.4.4 (Kendall distribution for Archimedean copulas). Let
Cφ be an Archimedean copula with generator φ. We have that

KCφ(x) = x− φ(x)

φ′(x+)
. (2.17)

Given a function K : (0, 1) → R playing the role of KCφ , equation (2.17) is
actually a first order ordinary differential equation for an unknown Archimedean
generator φ ∈ C1(0, 1):

φ′(x)

φ(x)
=

1

x−K(x)
, (2.18)

whose general solution is

φ(x) = φ(x0) · exp

(∫ x

x0

dt

t−K(t)

)
. (2.19)

Observe that, fixed x0 ∈ (0, 1), all solutions (2.19) differ by a positive con-
stant φ(x0). Nonetheless, for Proposition 2.4.1, all of them produce the same
Archimedean copula. Therefore, there can only exist one Archimedean copula
given K. (Genest and Rivest, 1993) gives a necessary and sufficient condition
for (2.19) to be an Archimedean generator.

Theorem 2.4.2. Let K be a univariate CDF. The function φ in (2.19) is a
solution for the problem (2.18), i.e., φ generates an Archimedean copula, if and
only if K(x−) = limt→x− K(t) > x, for all x ∈ (0, 1).

Dependence measures revisited

Let us now examine the dependence measures studied in Section 2.3 in the
context of Archimedean copulas. We can find a simple expression (Nelsen,
2003) for Kendall’s tau (Definition 2.3.3) by combining Proposition 2.3.3 and
equation (2.17).

Proposition 2.4.5. Let Cφ be an Archimedean copula with generator φ. We
have

τ(Cφ) = 4

∫ 1

0

x dKCφ(x)− 1

= 3− 4

∫ 1

0

KCφ(x) dx

= 1 + 4

∫ 1

0

φ(x)

φ′(x+)
dx

.

As regards tail dependence, there exist explicit expressions for both tail
indices in terms of (φ−1)′ (Embrechts et al., 2003), but they generally only hold
for a special class of Archimedean copulas that are out of the scope of this
work: Laplace Transform (LT) Archimedean copulas. Even though all copula
families in Table 2.1 belong to the LT class, the approach we will follow does not
rely on the same hypotheses. A convenient additional alternative hypothesis for
Archimedean generators when modelling tail dependence is regular variation.8

8 See Appendix B for further details.
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Family τ λU λL

Gumbel 1− 1/θ 2− 21/θ 0

Clayton θ/(θ + 2) 0

{
2−1/θ, if θ > 0
0, if θ < 0

Frank 1− 4θ−1(1−D1(θ)) 0 0

Table 2.2: Dependence measures for the Archimedean paramet-
ric families in Table 2.1. D1 is the Debye function D1(θ) =

θ−1
∫ θ
0

t
et−1

dt.

Proposition 2.4.6. Let Cφ be an Archimedean copula with generator φ.

1. If φ ∈ R0+,α, for some −∞ < α ≤ 0, then λL(Cφ) = 2−1/|α|.9

2. If φ ∈ R1−,α, for some 1 ≤ α <∞, then λU (Cφ) = 2− 21/α.

We know that regular variation for continuously differentiable monotone
functions is alternatively characterized by the existence of certain limits, ac-
cording to Proposition B.0.8, and of course Archimedean generators are strictly
decreasing. Therefore, φ ∈ R0+,α is equivalent to

lim
x→0+

xφ′(x)

φ(x)
= α , (2.20)

whereas φ ∈ R1−,α is equivalent to

lim
x→1−

(1− x)φ′(x)

φ(x)
= −α . (2.21)

Note that the convexity of φ ensures (1−x)φ′(x) ≤ −φ(x) and necessarily α ≥ 1
in (2.21). Charpentier and Segers state for both (2.20) and (2.21):

“The limit indeed exists for virtually every known parametric
model.”

(Charpentier and Segers, 2009)

Therefore, according to Charpentier and Segers, regular variation “is not a
very restrictive assumption”. In fact, using (2.17), limits (2.20) and (2.21) are
equivalent to the less intimidating limits

K ′Cφ(0+) = lim
x→0+

KCφ(x)

x
= 1 +

1

|α|

and

K ′Cφ(1−) = lim
x→1−

1−KCφ(x)

1− x = 1− 1

α
,

respectively.

9 Using the convention 1/0 =∞.
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2.5 Basic copula estimation methods

In the context of copula modelling, estimation refers to the process of obtaining
a suitable copula representation of the underlying dependence between samples
of different r.v.’s. Such a copula model can then be used for inference.

Copula estimation methods are either parametric or non-parametric. In
parametric methods, the copula is assumed to have a particular functional form
that depends on a finite, usually small number of parameters. We have already
seen some examples of copula families that depend on one or more parameters:
the Gaussian and Student’s copula families and those summarized in Table 2.1.
By contrast, in non-parametric methods one does not assume that the copula
belongs to a specific parametric family, but rather directly build the model from
available data.

In what follows, we shall focus on bivariate copulas for the sake of simplicity.

2.5.1 Parametric estimation

Suppose we want to estimate the joint CDF H of a bivariate r.v. (X,Y )
from a sample D = {(Xi, Yi)}Ni=1. Let F and G be the unknown univari-
ate CDFs of X and Y , respectively. For Sklar’s theorem, we know that
H(x, y) = C(F (x), G(y)), for some bivariate copula C. Therefore, a reason-
able strategy consists in conjecturing some parametric models Fα, Gβ and Cγ ,
depending on vector parameters α, β and γ, to finally obtain a parametric
model Hθ that relies on a vector θ gathering all the previous ones.10

Letting fα, gβ, cγ and hθ, be the densities of Fα, Gβ, Cγ and Hθ, respec-
tively, the following equation holds:

hθ(x, y) = cγ(Fα(x), Gβ(y)) · fα(x) · gβ(y) . (2.22)

Now, we can estimate θ from data D by maximizing the likelihood function

L(θ|D) =
N∏

i=1

hθ(Xi, Yi) .

Model (2.22) is actually a parametric model of the density of H, where
parameters for both the univariate margins and the copula are estimated all at
once. In copula theory, though, it is quite common to separate both estimation
types in different stages:

1. Optimize the parameters for the univariate margins:

α̂ = arg max
α

{
N∏

i=1

fα(Xi)

}
, β̂ = arg max

β

{
N∏

i=1

gβ(Yi)

}
.

2. Using the previous estimations for the univariate margins, estimate the
parameters of the copula:

γ̂ = arg max
γ

{
N∏

i=1

cγ(Fα̂(Xi), Gβ̂(Yi))

}
.

10 Consider the parameter concatenation θ = (α;β;γ), for instance.
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3. Finally, take θ̂ = (α̂; β̂; γ̂).

According to (Bouyé et al., 2000), the former approach is called exact maximum
likelihood method (EML), whereas the latter is known as the inference functions
for margins method (IFM).

There is another parametric estimation approach yet which generalizes IFM.
Note that the univariate margins F and G need not be modelled in a parametric
manner. Instead, consider generic estimates F̂ and Ĝ, obtained by any valid
means, and build the pseudo-sample D′ = {(Ui, Vi)}Ni=1, where Ui = F̂ (Xi) and

Vi = Ĝ(Yi), for i = 1, 2, . . . , N . Finally, find the γ that maximizes

L(γ|D′) =
N∏

i=1

cγ(Ui, Vi) . (2.23)

Observe that the pseudo-sample D′ is an approximation to a sample arising
from the bivariate r.v. (U, V ) ≡ (F (X), G(Y )). Therefore, maximizing (2.23)
is an attempt to estimate the parameters of c as the density of a bivariate r.v.
(with uniform margins), not just the parameters of a linking function.

Some researchers, namely Mikosch, argue against the (2.23) approach:

“The marginal distributions and the copula of a multivariate dis-
tribution are inextricably linked. The main selling point of the cop-
ula technology — separation of the copula (dependence function)
from the marginal distributions — leads to a biased view of stochas-
tic dependence, in particular when one fits a model to the data.”

(Mikosch, 2006)

Nonetheless, there are actually serious reasons to be interested in a two-phase
estimation procedure. (Genest and Rémillard, 2006) demonstrates, using Propo-
sition 2.1.1, that the approximation error for a multivariate distribution is
bounded from above by the sums of the separate errors made in both the copula
and the margins estimation:

“Indeed, basic facts from copula theory imply that a good fit
of the joint distribution function necessarily results from good fits
of the copula and the margins taken separately, especially in low
dimension.”

(Genest and Rémillard, 2006)

In the bivariate case: letting Ĉ be the estimate of a copula C arising from (2.23)
and letting H(x, y) = C(F (x), G(y)) and Ĥ(x, y) = Ĉ(F̂ (x), Ĝ(y)), we have

‖H − Ĥ‖∞ ≤ ‖C − Ĉ‖∞ + ‖F − F̂‖∞ + ‖G− Ĝ‖∞ ,

where ‖∗‖∞ is the uniform norm. Moreover, Genest and Rémillard remind that,
if Ȟ is any other estimate of H, “things can go terribly wrong” for a copula
deduced from Ȟ if “an inappropriate choice of margins is made”.

All the above approaches are likelihood-based, but this is not the only para-
metric method. For instance, (Genest and Rivest, 1993) proposes to estimate
the parameter θ for the families in Table 2.2 by solving for θ in τ̂ = τ(θ), where
τ̂ is a sample estimate of the Kendall’s tau. Therefore, this could be considered
a method-of-moments estimation based on Kendall’s tau. Similar approaches
can be envisioned for more than one parameter.
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2.5.2 Non-parametric estimation

There are lots of different ways to estimate a copula in a non-parametric manner,
but many of them are essentially smoothed versions of the approach we present
here (Charpentier et al., 2006). Since a copula C is, in particular, a CDF, we
may approximate C with its empirical estimate

C̃(u, v) =
1

N

N∑

i=1

1[Ui,∞)×[Vi,∞)(u, v) , (2.24)

where the Ui’s and Vi’s are taken from the pseudo-sample D′ in the previous
section.

Even though the empirical copula (2.24) approximates C, C̃ is not a copula.
To see this, note that every copula is continuous, but (2.24) is not.

2.6 Vines

The vine construction can be used to build a 3-copula using 2-copulas as building
blocks. Vines (Bedford and Cooke, 2002) can be used also to build copulas
in the more general n-variate case, but since we are exclusively dealing with
copulas up to n = 3 in this work, we will not introduce some concepts relative
to discrete structures (trees, vertices, edge, and so on) that are needed in the
general definition. Hence, the following definition is not the original one in
(Bedford and Cooke, 2002) or (Lopez-Paz et al., 2013), but a simplified version,
which is sufficient for our purposes.

Definition 2.6.1 (Vine). A vine is a 3-tuple
(
C12, C23, {C13|2(∗, ∗|w)}w∈[0,1]

)
,

where C12 and C23 are 2-copulas and {C13|2(∗, ∗|w)}w∈[0,1] is a family of bivari-
ate copulas that is measurable in w ∈ [0, 1].

Vines uniquely define 3-copulas, according to the following result.

Proposition 2.6.1. Let V =
(
C12, C23, {C13|2(∗, ∗|w)}w∈[0,1]

)
be a vine. If we

define, for each w ∈ [0, 1],

FV(x, y|w) = C13|2(∂2C12(x,w), ∂1C23(w, y)|w) , (2.25)

then the vine V uniquely defines a 3-copula CV by means of

CV(u1, u2, u3) =

∫ u2

0

FV(u1, u3|w) dw . (2.26)

Proof. We just verify the 3-increasingness property in Definition 2.1.1. First,
note that (2.25) is a conditional bivariate CDF, for Theorem 2.2.4 and Propo-
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sition 2.1.2. Then, given R = (a1, a2]× (b1, b2]× (c1, c2] ⊂ R3,

µCV (R) =
2∑

i=1

2∑

j=1

2∑

k=1

(−1)i+j+k · CV(ai, bj , ck)

=
2∑

i=1

2∑

k=1

(−1)i+k ·
∫ b2

b1

FV(ai, ck|w) dw

=

∫ b2

b1

2∑

i=1

2∑

k=1

(−1)i+k · FV(ai, ck|w) dw

=

∫ b2

b1

µFV(∗,∗|w) ((a1, a2]× (c1, c2]) dw ≥ 0

,

where we have used that FV(∗, ∗|w) is 2-increasing.

Remark 2.6.1. Using the notation in Proposition 2.6.1, one can check that
CV(u1, u2, 1) = C12(u1, u2) and CV(1, u2, u3) = C23(u2, u3), for all u1, u2, u3 ∈
[0, 1].

Vines not only provide a way of constructing trivariate copulas, but also a
decomposition scheme for 3-copulas, for Theorem 2.2.3.

Proposition 2.6.2. Let C be a 3-copula and:

• Let C1,2 be the copula linking the first and second univariate margins of
C, that is, C1,2(u1, u2) = C(u1, u2, 1).

• Let C2,3 be the copula linking the second and third univariate margins of
C, that is, C2,3(u2, u3) = C(1, u2, u3).

Assume the partial derivatives ∂2C1,2(∗, w) and ∂1C2,3(w, ∗) are continuous,
for all w ∈ [0, 1]. There exists a vine V such that C = CV , namely
V =

(
C1,2, C2,3, {C1,3|2(∗, ∗|w)}w∈[0,1]

)
, where C1,3|2(∗, ∗|w) is the unique cop-

ula linking the conditional margins ∂2C1,2(∗, w) and ∂1C2,3(w, ∗), for Theo-
rem 2.2.3.

Proof. Let (U1, U2, U3) be a r.v. with CDF C. We have:

C(u1, u2, u3) = P(U1 ≤ u1, U2 ≤ u2, U3 ≤ u3)

=

∫

{U2≤u2}
P(U1 ≤ u1, U3 ≤ u3|U2)(ω) dP(ω)

=

∫ u2

0

P(U1 ≤ u1, U3 ≤ u3|U2 = w) dw

=

∫ u2

0

C1,3|2(∂2C1,2(u1, w), ∂1C2,3(w, u3)|w) dw

= CV(u1, u2, u3) ,

where we have used the probabilistic interpretation of the partial derivatives of
a copula (Proposition 2.1.2).
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The assumption that the copula between [U1|U2 = u2] and [U3|U2 = u2] does
not change with the covariate value u2 ∈ [0, 1] is lately known as the ‘simplifying
assumption’ (Hernández-Lobato and Suárez, 2011). This is equivalent to con-
sidering C13|2(∗, ∗|w) = C, for a certain bivariate copula C and all w ∈ [0, 1].
Under the simplifying assumption, the resulting vine structure is commonly
known as a ‘pair-copula construction’ (PCC). Despite the fact that PCCs can
be sometimes ‘misleading’ (Acar et al., 2012), they offer some flexibility while
preserving simplicity. When the covariate effect is hardly noticeable, PCCs can
be useful, as pointed out in (Lambert, 2014).

Just like we can model a multivariate CDF by separately specifying a copula
and several univariate margins, vines allow to obtain a 3-variate copula from
two bivariate margin copulas and a family of conditional copulas. Similarly,
one may attempt to estimate the former two components of a vine, namely the
conditional copulas and the bivariate margins, independently. Despite Mikosch’s
claim against this kind of modular estimation, this is indeed the preferred way
to use vines.
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Chapter 3

Previous work

– Es... una integral rigeliana –tartamudeó el estudiante–,
referida a una distribución planetaria que indica la presencia
de dos clases económicas principales en el planeta, o tal vez
un Sector, además de una pauta emocional inestable.
– ¿Y qué significa?
– Representa el ĺımite de tensión, ya que aqúı tenemos –
señaló, y de nuevo se movieron las ecuaciones– una serie
convergente.

Segunda fundación
Isaac Asimov

The present chapter is devoted to the review of several copula modelling
techniques. In Chapter 2 we saw that multivariate1 copula modelling can be
modularly broken down, via vine constructions, into two separate estimation
stages that can be carried out independently of each other; hence the appeal
of this approach. The first part of the chapter addresses the estimation of
the bivariate copula margins in a vine setting, introducing procedures other
than parametric and empirical approaches. The second part completes the vine
construction by focusing on the estimation of conditional copula families.

3.1 Bivariate copula modelling

In the present section we will look at semiparametric bivariate copula modelling
strategies. This name suggests that such a method combines some properties
of parametric and non-parametric methods, which were reviewed in Chapter 2.
Semiparametric methods attempt to overcome some of the drawbacks of both
parametric and non-parametric ones, which are associated with the bias and
variance components of the generalization error. According to Domingos:

“Bias is a learner’s tendency to consistently learn the same wrong
thing. Variance is the tendency to learn random things irrespective
of the real signal.”

(Domingos, 2012)

1 d-copulas, for d ≥ 3.

25
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Roughly speaking, a model with strong assumptions, like a linear classifier
(Domingos, 2012), is too simple or rigid to capture a complex structure, which
affects the bias component. On the other hand, a model with few assumptions,
like a decision tree (Domingos, 2012), is more flexible, but also more sensitive
to changes in the training set, thus affecting the variance component. The bias
and variance components of the generalization error are associated with two
problems: underfitting and overfitting, respectively. In Domingos’s words: “It’s
easy to avoid overfitting (variance) by falling into the opposite error of underfit-
ting (bias)”. Then, the relation of parametric and non-parametric methods with
underfitting and overfitting, respectively, is expressed by Hernández-Lobato and
Suárez in:

“While parametric copulas often lack expressive capacity to cap-
ture the complex dependencies that are usually found in empirical
data, non-parametric copulas can have poor generalization perfor-
mance because of overfitting.”

(Hernández-Lobato and Suárez, 2011)

There does not seem to be a unanimous definition among researchers for the
term ‘semiparametric’. The definition that, in our opinion, best represents the
essence of semiparametric models is presented in (Kosorok, 2008), where it is
stated, letting Θ be the parameter space of the model, that “Semiparametric
models are statistical models where Θ has one or more infinite-dimensional com-
ponent.”. In the context of copula modelling, an infinite-dimensional parameter
space usually refers to a function space. By contrast, for instance, Vandenhende
and Lambert hold the opinion that semiparametric means “highly parameter-
ized”.

The main difficulty in the modelling process is to satisfy the rather stringent
conditions of a copula, while leaving some flexibility for data fitting. In Chap-
ter 2 we introduced Archimedean copulas, which are formulated in terms of a
functional parameter φ, commonly known as the Archimedean generator. This
generator fulfils some specific requirements. Nonetheless, these are simpler to
model than the copula itself.

The Archimedean copula families described in Section 2.4.2 depend on a
single parameter θ. More flexible Archimedean copulas can be build if the
generator φ is selcted among a sufficiently large collection of flexible and well-
behaved functions. In this work we propose to use polynomial splines for this
purpose. For a quick reference on this topic, see Appendix A.

To end this introduction, we must acknowledge that Archimedean copulas
are not the only types of copulas that are expressed in terms of a functional pa-
rameter. Semiparametric approaches could also be envisioned for extreme-value
copulas (Gudendorf and Segers, 2010) or a more recently introduced family, the
Archimax copulas (Charpentier et al., 2014), which depend on two functional
parameters and include both Archimedean and extreme-value copulas.

3.1.1 A piecewise linear generator model

In this section we introduce the work by Vandenhende and Lambert (2005), a
simple procedure to add more flexibility to Archimedean copulas. By looking
at this technique, we will discover some of the difficulties we can expect when
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modelling copulas as well as some hints on the key features a good model should
have. Also, apart from being an ingenious and efficient technique, it will help
us to grasp another one we shall present later on.

The essence of Vandenhende and Lambert’s approach is contained in the
following proposition.

Proposition 3.1.1. If φ ∈ Φ and θ ≥ 1, then x 7→ (φ(x))θ ∈ Φ.

Vandenhende and Lambert’s original formulation, which we present next,
apparently has nothing to do with Proposition 3.1.1, but the connection will
soon become clear.

Proposition 3.1.2. Let {ti}ni=1 ⊂ R satisfying t1 < t2 < . . . < tn. Consider
the function p : R→ R given by

p(x) =
n∑

i=0

(µi + θix)1Ii(x) , (3.1)

where, for i = 0, 1, . . . , n,

Ii =





(−∞, t1), if i = 0

[tn,∞), if i = n

[ti, ti+1), otherwise

,

and µi ∈ R and θi ∈ R satisfy:

1. If i > 0, then µi =
∑i
j=1 tj(θj−1 − θj) (continuity constraints).

2. θ0 ≥ θ1 ≥ . . . ≥ θn ≥ 1 (curvature & monotonicity constraints).

Finally, let φ̃ ∈ Φ and take ψ : (0, 1)→ R given by ψ(x) = − log φ̃(x). Then

φ(x) = exp [−p (ψ(x))] (3.2)

is an Archimedean generator.

Proof. One can check φ(1) = limx→1− φ(x) = 0 and φ is strictly decreasing: ψ
is strictly increasing and x 7→ −p(x) strictly decreasing (p is strictly increasing,
because it is continuous and the slopes θi’s are positive).

To check the convexity requirement, it helps to express φ as

φ(x) = q(φ̃(x)) , (3.3)

where q : (0,∞)→ (0,∞) is given by

q(x) =
n∑

i=0

e−µixθi1e−Ii (x) , (3.4)

and

e−Ii = {e−x : x ∈ Ii} =





(e−t1 ,∞), if i = 0

(0, e−tn ], if i = n

(e−ti+1 , e−ti ], otherwise

.

Clearly, q is convex, since the exponents θn ≤ θn−1 ≤ . . . ≤ θ0 increase as x
does and they are all greater than or equal to 1. Then, φ is the composition of
two convex functions and q is monotonically increasing, so φ is convex.
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a b c d

∝ x
∝ x2

∝ x3

∝ √
x

∝ x3

∝ x2

x

Convex q(x)

Non-convex q(x)

Figure 3.1: Convex and non-convex instances of the q(x) function
in (3.3). The convex example is proportional at each piece to xθ, for
θ ≥ 1 increasing as x does. The non-convex example is not convex for
two reasons. On the one hand, q(x)−K ∝

√
x in [a, b], concave, for

a certain K ≥ 0. On the other hand, the exponent θ in the power xθ

does not increase as in the convex example: θ = 3 in [b, c], whereas
θ = 2 in [c, d].

Note that the actual value of µ0 is irrelevant. Different values produce p
functions (3.1) that differ by a constant and, therefore, determine the same
Archimedean copula. On the other hand, equation (3.3) shows that φ is strict,
i.e., φ(0) =∞, if and only if φ̃ is strict.

The construction in Proposition 3.1.2 is an extension or generalization of
that of Proposition 3.1.1, introducing not just one, but potentially many param-
eters θi’s, as Remark 3.1.1 points out below. By optimizing these constrained
parameters, we can fit such a generator to actual data, providing a legitimate
(Archimedean) copula estimation method. Figure 3.1 illustrates the requirement
that θ0 ≥ θ1 ≥ . . . ≥ θn ≥ 1 in the context of the simpler (3.3) representation.

Remark 3.1.1. In Proposition 3.1.2, if θi = θ for i = 0, 1, . . . , n and some θ ≥ 1,
then φ(x) = (φ̃(x))θ. In particular, if φ̃(x) = − log x, the independence copula
generator, then φ produces the Gumbel copula with parameter θ.

According to Vandenhende and Lambert, “That copula is indeed a semi-
parametric (or highly parameterized) Archimedean copula, having parameters
that quantify the dependence locally” . We believe the term semiparametric
does not exactly correspond to highly parameterized, as this citation suggests.
For the Archimedean copula estimation problem, semiparametric usually means
an attempt to approximate a suitable functional parameter: the φ generator or
an equivalent form of this. If the modelling strategy is successful enough, a few
parameters might suffice.

Perhaps the foremost drawback of Vandenhende and Lambert’s construction
is the fact that the resulting φ generator is not differentiable. The smoothness
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requirement is not arbitrary at all, even for modelling purposes, as the following
theorem demonstrates Nelsen (2006).

Theorem 3.1.1. Let φ ∈ Φ and (U, V ) be distributed as Cφ. For α ∈ (0, 1),
define the α-level curve of Cφ as

Lα(Cφ) = {(u, v) ∈ [0, 1]2 : Cφ(u, v) = α} (3.5)

= {(u, v) ∈ [0, 1]2 : φ(u) + φ(v) = φ(α)} . (3.6)

Then

PCφ (Lα(Cφ)) = P ((U, V ) ∈ Lα(Cφ)) = φ(α)

(
1

φ′(α−)
− 1

φ′(α+)

)
.

According to Theorem 3.1.1, any non-differentiable φ generator produces
a singular2 two-dimensional distribution, which, consequently, has no density.
This poses some issues, preventing us from using maximum likelihood estima-
tion; standard r.v. simulation techniques (Embrechts et al., 2003) still work,
though3. Next, we present our very first example of non-trivial (with distinct
θi’s) Vandenhende and Lambert’s generator.

Example 3.1.1. Consider the piecewise generator

φ(x) =

{
(− log x)2, if 0 < x ≤ 1/e

− log x, if 1/e < x < 1
,

which can be expressed as φ(x) = exp
(
−p
(
− log

(
φ̃(x)

)))
, where

p(x) =

{
2x, if x ≤ 0

x, if x > 0
,

and φ̃(x) = − log x. Hence, φ complies with the conditions in Proposition 3.1.2
and is a legitimate generator. In Figure 3.2 we can visualize a simulation of
the copula generated by φ. As we can see, there is a singular component at
L1/e(Cφ) = {(λ, 1/eλ) : λ ∈ [1/e, 1]}, with PCφ

(
L1/e(Cφ)

)
= 1/2e ≈ 0.1839.

Figure 3.3 shows the plot of a piecewise generator similar to the one presented
in Example 3.1.1. For this particular generator, there would be two singular
components over Lα(Cφ), for α = 1/3 and α = 2/3; non-differentiability at
these points is visually perceptible.

The practical importance of singular components is out of discussion. Many
copula models, notably Marshall-Olkin copulas (Embrechts et al., 2003), incor-
porate them. However, the question here is whether they are a suitable resource
for a general data fitting problem, rather than a problem prerequisite; after all,
singular components may be detected by simply inspecting data. We believe
that, for the vast majority of applications, we cannot reasonably expect singular
components to apply.

2 Lα(Cφ) in (3.5) is a curve, thus it has Lebesgue measure (in [0, 1]2) zero. However, it
accumulates a non-null Cφ-probability.

3 Partial derivatives of Cφ exist almost everywhere (see Remark 2.1.1).
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Figure 3.2: A random simulation of the copula in Example 3.1.1.
Up to 191 out of 1000 sample instances (Ui, Vi) satisfy UiVi ≈ 1/e,
where ≈ stands for Julia’s isapprox routine, and, thus, lie on the
singular component. The isapprox routine roughly checks that half of
the significand digits are equal, which is a reasonable approximation
to make up for the machine rounding errors.
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Figure 3.3: Example of Vandenhende and Lambert’s piecewise gen-
erator φ with seed φ̃(x) = − log x. The plot shows x’s in the range
[0.2, 0.8]. The resulting generator (solid lines) comprises three pieces,
joining at x = 1/3 and x = 2/3, and coloured according to the expo-
nent θ applied. Dotted lines indicate the continuation of each piece,
so that every isolated colour represents a Gumbel generator with pa-
rameter θ (proportional to (− log x)θ).
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The resulting fitted model is more rigid than it might seem. If none of
the seed generator φ̃ powers4 provides a good fit, parameters will surely be
distinct, thus yielding a non-differentiable φ which, in turn, introduces singular
components; arguably a paradox, for singular components were not supposed
to appear, in light of a previous data inspection. Later on, we will discuss the
smoothing strategy proposed by Vandenhende and Lambert, which partially
minimizes this effect.

Relation to dependence measures

The meaning of Vandenhende and Lambert’s construction can be appreciated
through the dependence measures introduced in Chapter 2. As we shall see, the
seed generator φ̃ is, to a great extent, responsible for the following properties.

Parameters θi naturally arise when calculating the Kendall’s tau for Van-
denhende and Lambert’s Archimedean copula.

Proposition 3.1.3. Let φ̃ ∈ Φ be such that τ(Cφ̃) = 0. Let φ as in Proposi-
tion 3.1.2, with parameters θ0, θ1, . . . , θn. We have

τ(Cφ) =

n∑

i=0

wi
θi − 1

θi
, (3.7)

with weights satisfying wi > 0 and
∑n
i=0 wi = 1.

Proof. Note that

0 = τ(Cφ̃) = 1 + 4

∫ 1

0

φ̃(x)

φ̃′(x+)
dx = 1−

n∑

i=0

wi ,

where the weights

wi = −4

∫

ψ−1(Ii)

φ̃(x)

φ̃′(x+)
dx (3.8)

are positive5. Now, differentiating from the right (3.2),

φ(x)

φ′(x+)
= − 1

p′(ψ(x)+)
· 1

ψ′(x+)
=

1

p′(ψ(x)+)
· φ̃(x)

φ̃′(x+)
, (3.9)

since p′ is piecewise constant in each Ii, namely p′(x) = θi if x ∈ Ii,

τ(Cφ) = 1 + 4

∫ 1

0

φ(x)

φ′(x+)
dx

= 1 + 4
n∑

i=0

∫

ψ−1(Ii)

φ(x)

φ′(x+)
dx

= 1 + 4
n∑

i=0

1

θi

∫

ψ−1(Ii)

φ̃(x)

φ̃′(x+)
dx

= 1−
n∑

i=0

wi
θi

and the result follows from
∑n
i=0 wi = 1.

4 See Remark 3.1.1.
5 The integrand in (3.8) is negative, because φ̃(x) > 0 and φ̃′(x+) < 0, for all x ∈ (0, 1).
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Vandenhende and Lambert present a particular case of Proposition 3.1.3 for
φ̃(x) = − log x, the independence copula generator. However, this is not the
only Archimedean copula with Kendall’s tau equal to zero; for instance, say
φ̃(x) = (1 − x)2. The following remark provides an insightful interpretation of
(3.7).

Remark 3.1.2. In Proposition 3.1.3, if θi = θ for i = 0, 1, . . . , n and some θ ≥ 1,
then

τ(Cφ̃θ ) =
θ − 1

θ
, (3.10)

where φ̃θ(x) = (φ̃(x))θ. Using (3.10), in a more general setting with several
distinct θi’s, we can express (3.7) as

τ(Cφ) =
n∑

i=0

wiτ(Cφ̃θi ) . (3.11)

Using the connection between regular variation and tail dependence in
Archimedean copulas (Proposition 2.4.6), the latter can be easily verified.

Proposition 3.1.4. Let φ̃ ∈ Φ be the seed generator for φ, as in Proposi-
tion 3.1.2. Then:

1. If φ̃ ∈ R0+,α, for −∞ < α ≤ 0, then φ ∈ R0+,β, with β = θ0α.

2. If φ̃ ∈ R1−,α, for 1 ≤ α <∞, then φ ∈ R1−,β, with β = θnα.

Proof. It easily follows from the alternative representation (3.3):

lim
x→0+

φ(λx)

φ(x)
=

(
lim
x→0+

φ̃(λx)

φ̃(x)

)θ0
,

and

lim
x→0+

φ(1− λx)

φ(1− x)
=

(
lim
x→0+

φ̃(1− λx)

φ̃(1− x)

)θn
.

Some important consequences derive from Proposition 3.1.4.

Remark 3.1.3. Let α and β be the indices of regular variation at 0+ of φ̃ and
φ, respectively, as in Proposition 3.1.4. Since θ0 ≥ 1, we always have β ≤ α.
Moreover, if α = 0, then β = 0, irrespective of the value of the θ0 parameter.

Remark 3.1.4. Let α and β be the indices of regular variation at 1− of φ̃ and
φ, respectively, as in Proposition 3.1.4. Since θn ≥ 1, we always have β ≥ α.

To put things into perspective, the last two remarks reveal some limita-
tions of Vandenhende and Lambert’s semiparametric approach as regards tail
dependence, according to Proposition 2.4.6. Depending on the actual indices
or regular variation of the seed generator, some tail dependence indices become
unreachable for Cφ, the Archimedean copula generated by φ. For instance, if φ̃
is regularly varying at 0+, with index α < 0, then Vandenhende and Lambert’s
technique does not allow Cφ to have a lower tail dependence index in [0, 21/α).
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Similarly, if φ̃ is regularly varying at 1− with index α > 1, then Cφ cannot have
an upper tail dependence index in [0, 2− 21/α).

For this reason, the selection of the seed generator φ̃ is of capital importance.
Vandenhende and Lambert propose taking φ̃(x) = − log x, the independence
copula generator, thus ψ(x) = − log(− log x), on the grounds of Remark 3.1.1
and the fact that the Kendall’s tau of the Gumbel family members can be
interpreted as in (3.11). However, this choice prevents any attempt to capture
the lower tail index.

Estimation and smoothing procedures

In spite of the fact that we cannot rely on a density to apply maximum likelihood
estimation to the parameters in Proposition 3.1.2, Vandenhende and Lambert
envision an alternative procedure based on an empirical estimator of the Kendall
distribution (Genest and Rivest, 1993).

Let D = {(Xi, Yi)}Ni=1 be a sample from a bivariate distribution F , not nec-
essarily having uniform margins. To estimate the copula of the aforementioned
distribution, Vandenhende and Lambert propose to minimize the distance be-
tween the empirical estimator of the Kendall distribution, K̂D, and the Kendall
distribution of the generator (3.2). Remember that the former is given by

K̂D(x) =
1

N

N∑

i=1

1[Vi,∞)(x) ,

with the empirical estimate of F (Xi, Yi)

Vi =
#{(Xj , Yj) ∈ D : Xj < Xi, Yj < Yi}

N − 1
,

whereas the latter can be easily derived from (3.9):

Kβ(x) = x+
1

ψ′(x+)

n∑

i=0

βi1Ii(ψ(x)) , (3.12)

where the i-th element of vector β is βi = 1/θi. Obviously, optimizing the
parameter vector β is equivalent to doing so with θ. Using all the above, the
optimization problem is stated as

arg min
β∈Θ

{
N∑

i=1

(
K̂D(Vi)−Kβ(Vi)

)2
}

, (3.13)

over the parameter space

Θ =
{
β ∈ Rn+1 : 0 < β0 ≤ β1 ≤ . . . ≤ βn ≤ 1

}
. (3.14)

Problem (3.13) can be reformulated as

arg min
β∈Θ

‖κ−Ψβ‖22 , (3.15)

where κ ∈ RN has i-th component κi = K̂D(Vi) − Vi and Ψ ∈ MN×(n+1)(R)
has (i, j)-entry, for i = 1, 2, . . . , N and j = 1, 2, . . . , n+ 1,

Ψij =
1Ij−1(ψ(Vi))

ψ′(V +
i )

=

{
1/ψ′(V +

i ), if ψ(Vi) ∈ Ij−1

0, otherwise
.
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Now, problem (3.15) can be approached using quadratic programming, solv-
ing

arg min
Aβ≥b

{
1

2
βTQβ + cTβ

}
, (3.16)

where:

• Q = ΨTΨ ∈M(n+1)×(n+1)(R).

• c = −ΨTκ ∈ Rn+1.

• The constraint Aβ ≥ b must be component-wisely interpreted, for A ∈
M(n+1)×(n+1)(R) mapping β to (β1 − β0, β2 − β1, . . . , βn − βn−1,−βn)T

and b = (0, 0, . . . , 0,−1)T ∈ Rn+1.

Observe that Aβ ≥ b does not impose the positivity constraint β needs
to belong to Θ (3.14). This is actually the original proposal in (Vandenhende
and Lambert, 2005). It is easy to add one more non-strict inequality constraint
requiring β0 ≥ ε, for some ε & 0. This would always guarantee that we get a
valid Archimedean generator, while maintaining a high degree of generality, but
Vandenhende and Lambert do not attach any importance to this detail. We
can only guess that, if the β we obtain by solving (3.16) does not belong to Θ,
then our data set D is not likely to arise from a distribution whose copula is
Archimedean. Looking at (3.12), since ψ′(x+) > 0, if any of the βi is negative,
then Kβ(x−∗ ) < x∗ for some x∗ ∈ (0, 1), which means φ is not an Archimedean
generator, for Theorem 2.4.2 (Genest and Rivest, 1993).

Vandenhende and Lambert propose to use a large number of parameters cor-
responding to equidistant knots (for instance, they set n = 100 in an example
with real data) and then make up for the flexibility excess by forcing proximate
parameters βi not to be very different from each other. This can be achieved
by adding a penalty term to the quadratic programming problem (3.16). To
formalize such a proximity smoothness notion, we introduce the following defi-
nition.

Definition 3.1.1 (r-th order differences). Let x ∈ Rm. We define the r-th
order difference linear map ∆r

m : Rm → Rm−r as

∆r
mx =

{
∆m−r+1(∆r−1

m x), if r ≥ 2

∆mx, if r = 1
,

where the first order difference ∆m : Rm → Rm−1 is given by

∆mx = (x2 − x1, x3 − x2, . . . , xm − xm−1)T

if x = (x1, x2, . . . , xm)T .

From now on, we shall refer to both the linear map and its matrix with
respect to the canonical basis of Rm and Rm−r indistinctly as ∆r

m.

Back to the smoothing question, the formal way to force such a proximity
smoothness is by targeting a low value of the squared 2-norm ‖∆r

n+1β‖2. For
example, Vandenhende and Lambert choose a second order (r = 2) difference
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smoothing. The version of (3.16) with an added penalty λ ≥ 0 to the difference
norm looks like

arg min
Aβ≥b

{
1

2
βT (Q+ λP )β + cTβ

}
,

where P = (∆r
n+1)T∆r

n+1 The larger the penalty factor λ is, the more weight
is attached to smoothing; the smaller λ is, the closer the result will remain
to the original data (and its noise). The optimal λ is chosen by means of a
cross-validation-type procedure.

3.1.2 A cubic spline generator model

In this section we look at a newer proposal (Lambert, 2014) that extends that
of (Vandenhende and Lambert, 2005), which was reviewed in the previous sec-
tion, and has ‘superior properties’ as compared with (Lambert, 2007). The new
Archimedean copula approximation approach follows the same overall philoso-
phy as its predecessor: not modelling the φ generator directly, but rather finding
a g function that is equivalent to φ and easier to approximate.

Just like in Proposition 3.1.2, Lambert proposes a one-to-one correspondence

φ(x) = exp [−g (S(x))] (3.17)

between φ and a new generator g : R→ R, which plays the role of its piecewise
linear counterpart p in (3.2), through a link function S : (0, 1) → R, which,
in turn, plays the role of ψ. On this occasion, Lambert gives no choice but
to take S(x) = − log(− log x), an instance of the ψ link function with seed
φ̃(x) = − log x, the independence copula generator.

The key and characteristic step of Lambert’s method is the approximation of
the g generator. In (Vandenhende and Lambert, 2005), g’s linear counterpart,
p, had to comply with several inequality constraints involving the slope of each
linear piece, that is, the derivative p′, Basically, p′ is a piecewise flat function,
not necessarily continuous, that is required to be greater or equal than 1 at each
point and monotonically decreasing. From this point of view, it comes as no
surprise that (Lambert, 2014) focuses on modelling g′.

Namely, Lambert proposes to build g′ as a linear combination of cubic B-
splines6 associated with equidistant knots on [S(ε), S(1− ε)], where ε represents
a small quantity like 10−6. More precisely, the (k + 1)-th component of the
equidistant knots vector of length N + 1 is

tk = S(ε) + k
S(1− ε)− S(ε)

N
, (3.18)

for k = 0, 1, . . . , N . The use of smooth cubic B-splines implies g′ is continuous
and, consequently, φ is differentiable. This means the resulting copula will have
a density, in contrast to (Vandenhende and Lambert, 2005).

The coordinates or coefficients that multiply the basis functions are required
to be greater than or equal to 1, so that g′(s) ≥ 1, for all s.7 On the other

6 There are several versions of B-spline functions, depending on the smoothness required.
Here, we shall suppose Lambert refers to twice continuously differentiable B-splines.

7 This is a sufficient condition, but not necessary. Let I and J be a partition of the indices
set {1, 2, . . . , n}. One can easily find examples of coordinates θ1, θ2, . . . , θn, with θi < 1 and
θj ≥ 1, for i ∈ I and j ∈ J , such that

∑n
k=1 θkBk(x) ≥ 1 for all x that belongs to the domain

of the B-splines. See (de Boor and Daniel, 1974).
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hand, Lambert does not explicitly specify how the resulting cubic spline function
should continue out of [S(ε), S(1− ε)], simply stating

g′(s) =
K∑

k=1

(1 + θ2
k)Bk(s) , (3.19)

for K B-splines B1, B2, . . . , BK and corresponding parameters θ1, θ2, . . . , θK ∈
R. In this context, Lambert does mention that, if θi = θ, for i = 1, 2, . . . ,K
and some θ ∈ R, then g′(s) = 1 + θ2 for all s ∈ R, which would imply φ(x) =
(− log x)ζ , the Gumbel copula generator with parameter ζ = 1 + θ2.

Containing the Gumbel copula family as a particular case actually reduces
the number of feasible interpretations of (3.19). To begin with, such a state-
ment ensures that any feasible continuation must depend on some of the param-
eters θk. Perhaps the most sensible strategy is to extend (3.19) with its Taylor
polynomials at S(ε) and S(1 − ε). However, we soon realize that any non-flat
polynomial extension, depending on the actual values of the parameters, might
even produce g′(s) < 0, so that φ would not be strictly decreasing8.

All in all, the following is a consistent extension of (3.19) to R:

g′(s) =





∑K
k=1(1 + θ2

k)Bk(s), if S(ε) ≤ s ≤ S(1− ε)
1 + θ2

1, if s < S(ε)

1 + θ2
K , if s > S(1− ε)

. (3.20)

Note that if θi = θ, for i = 1, 2, . . . ,K and some θ ∈ R, then g′(s) = 1 + θ2 for

all s ∈ R, using that
∑K
k=1Bk(s) = 1, for all s ∈ [S(ε), S(1 − ε)], according to

Proposition A.2.1. Also, from the piecewise definition (3.20) it follows that the
resulting Archimedean generator in (3.17) is always strict, i.e., φ(0) =∞.

Lambert’s claim that (3.19), plugged into (3.17), provides a valid
Archimedean generator for every θ = (θ1, θ2, . . . , θK) ∈ RK is not completely
accurate. Notwithstanding, it is remarkable the fact that, under Lambert’s
assumptions, the parameter space for which (3.19) is a valid Archimedean gen-
erator can be made arbitrarily large. We shall next present a counterexample
that suggests that this is in fact what Lambert actually means.

First of all, let us write down the first and second derivatives of S:

S′(x) =
−1

x log x
, S′′(x) =

1 + log x

(x log x)2
.

Note that, for all x ∈ (0, 1),

φ′(x) = −φ(x)︸︷︷︸
>0

· g′(S(x))︸ ︷︷ ︸
≥1

·S′(x)︸ ︷︷ ︸
>0

< 0 , (3.21)

hence φ is strictly decreasing. However, a brief look at φ′′ reveals we may have
φ′′(x) < 0 if there are no additional constraints, meaning φ might be neither
convex, nor consequently a legitimate Archimedean generator. To simplify cal-
culations, let us introduce the λ generator (Lambert, 2007, 2014)

λ(x) =
φ(x)

φ′(x)
=

−1

g′(S(x))S′(x)
. (3.22)

8 See (3.21) below.
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With this new generator, as pointed out in (Lambert, 2007),

φ′′(x) =
φ′(x)

λ(x)
(1− λ′(x)) , (3.23)

and thus φ′′(x) ≥ 0 if and only λ′(x) ≤ 1. Strictly speaking, λ is not differ-
entiable at every x ∈ (0, 1), in general, as a result of the piecewise definition
(3.20). Notwithstanding, λ′ is piecewise continuous and one-sided derivatives of
λ do exist, so that, even if λ′(x0) does not, having λ′(x+

0 ) > 1 implies λ′(x∗) > 1,
for some x∗ > x0.

Differentiating (3.22), we get

λ′(x) =
g′′(S(x))S′(x) + g′(S(x))S′′(x)

[g′(S(x))S′(x)]
2 . (3.24)

The following example supposes the B-splines of g′ are not defined to the left
of 0, which is not Lambert’s original plan, but serves as an illustrative example.

Example 3.1.2. Suppose the two left-most knots of the B-splines in (3.20) are
0 and 3/e. Using Proposition A.2.6, we get g′(0) = 1 + θ2

1 and

g′′(0+) = 3 · (1 + θ2
1)− (1 + θ2

2)

0− 3
e

= e(θ2
2 − θ2

1) .

On the other hand, plugging S(1/e) = 0, S′(1/e) = e and S′′(1/e) = 0 into (3.24),

λ′
(

1/e+
)

=
1

e

g′′(0+)

(g′(0))2
=

θ2
2 − θ2

1

(1 + θ2
1)2

.

Taking, for instance, θ1 = 0 and θ2 =
√

2, we get λ′ (1/e+) = 2 > 1. Therefore,
for (3.23), the resulting φ generator cannot be convex and, hence, does not
produce a copula.

The next counterexample follows Lambert’s original setting proposal and
uses the same principle as Example 3.1.2.

Example 3.1.3. Consider the (N + 1)-knot vector (3.18) and take δ = (t1 −
t0)/3. Using Proposition A.2.6 and plugging g′(S(ε)) = 1 + θ2

1 and

g′′(S(ε)) = 3 · (1 + θ2
1)− (1 + θ2

2)

t0 − t1
=
θ2

2 − θ2
1

δ

into (3.24), we get

λ′(ε+) =
(θ2

2 − θ2
1)S′(ε) + δ(1 + θ2

1)S′′(ε)

δ [(1 + θ2
1)S′(ε)]

2 .

Taking θ2 sufficiently large, we secure λ′(ε+) > 1. For a more explicit coun-
terexample, let us first take θ1 = 0. Then, since S′′(ε) = (1 + log ε)(S′(ε))2,

λ′(ε+) =
θ2

2

δS′(ε)
+ 1 + log ε .
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Finally, realizing −S′(ε) log ε = 1/ε, we have λ′(ε+) > 1 if and only if

|θ2| >
√
δ

ε
=

√
S(1− ε)− S(ε)

3εN
. (3.25)

Lambert suggests ε = 10−6 and employing K = 11 B-splines. For Proposi-
tion A.1.1 applied to twice differentiable cubic splines, we have K = n + 2,
where n = N + 1 is the number of knots, thus N = 8. Substituting this values,
we roughly have that, for |θ2| > 828, φ is not convex and consequently does not
produce a copula.

As Example 3.1.3 and (3.25) suggest, the validity of Lambert’s statement
grows as ε→ 0+. Normally, if the technique produces an invalid generator, the
latter will be so by a narrow margin and it will suffice to take a smaller ε to
solve the issue. Beyond a reasonable threshold ε & 0, if the optimization process
keeps producing some extreme values as parameters, then we may assume that
this technique is not well-suited to our dataset.

In Section 3.1.2 we will talk about the smoothing strategy used in (Lambert,
2007, 2014), which also relies on the r-th order differences of the parameter
vector (see Section 3.1.1), just like in (Vandenhende and Lambert, 2005). This
certainly makes it really unlikely to find cases like Example 3.1.3 in practice.

Relation to dependence measures

The construction by Lambert and its generator g′ are closely related to Kendall’s
tau. This connection can explicitly be stated, using Proposition 2.4.5, as

τ(Cφ) = 1 + 4

∫ 1

0

λ(x) dx

= 1− 4

∫ 1

0

1

g′(S(x))S′(x)
dx

= 1− 4

∫ ∞

−∞

γ(s)

g′(s)
ds ,

where γ(s) = exp [−2(s+ exp(−s))]. Note that, in contrast to (Vandenhende
and Lambert, 2005), we lose track of how much of the total τ(Cφ) each pa-
rameter θi (or equivalently, its transformed version 1 + θ2

i ) accounts for (see
Proposition 3.1.3). This is not necessarily a bad feature. As a matter of fact,
we can expect individual parameters to play a less prominent role than that of
the overall generator as techniques transition to less parametric approaches.

The use of the link function S(x) = − log(− log x) strongly influences the
tail dependence behaviour of the Archimedean generator, just like the selection
of φ̃(x) = − log x as seed generator did in Proposition 3.1.4.

Proposition 3.1.5. Let φ be as in (3.17), in one-to-one correspondence with a
g generator whose derivative is expressed as (3.20). We have φ ∈ R0+,0∩R1−,β,
for β = 1 + θ2

K .

Proof. Regular variation at 0+ does not depend on a particular polynomial
continuation of g′. Since φ is strictly decreasing, we will use the equivalent
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characterization of regular variation given in Proposition B.0.8. Taking g′(s) =
ans

n + an−1s
n−1 + . . .+ a1s+ a0, for s < S(ε), we have

lim
x→0+

xφ′(x)

φ(x)
= lim
x→0+

g′(S(x))

log x

=
n∑

k=0

ak

[
lim
x→0+

(− log(− log x))
k

log x

]

=
n∑

k=0

ak(−1)k+1

[
lim
x→∞

(log x)k

x

]

= 0 .

Using the flat extension of g′ to the right of S(1− ε) given in (3.20),

lim
x→1−

(1− x)φ′(x)

φ(x)
= lim
x→1−

(1− x)g′(S(x))

x log x

= lim
x→1−

g′(S(x)) · lim
x→1−

−1

1 + log x

= −(1 + θ2
K) .

Proposition 3.1.5 says that Lambert’s technique does not allow to model
lower tail dependence, since all Archimedean copulas produced are independent
in the lower tail. On the contrary, this technique has no limitation as regards
upper tail dependence: no upper tail index is out of reach.

Figure 3.4 illustrates Lambert’s technique limitations to model a well-known
Archimedean family with lower tail dependence: the Clayton family. The gen-
erator g′θ for the Clayton copula with parameter θ,

g′θ(s) =
θ exp(−s)

1− exp(−θ exp(−s)) ,

cannot be approximated with polynomials as s→ −∞.

Estimation and smoothing procedures

(Lambert, 2014) provides two general procedures for the estimation of the pa-
rameters θi in 3.20. Both rely on the density of the Archimedean copula, which,
despite g′ not being differentiable at S(ε) and S(1− ε), is defined almost every-
where9 on [0, 1]2.

The first methods is, of course, maximum likelihood estimation. Given a
sample D = {(Ui, Vi)}Ni=1, we want to find the θ ∈ RK parameter vector which
maximizes the log-likelihood function

logL(θ|D) = log

(
N∏

i=1

cφθ (Ui, Vi)

)
=

N∑

i=1

log cφθ (Ui, Vi) ,

9 Considering that real numbers in a computer cannot be expressed with infinite precision,
we may ignore this detail.
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Figure 3.4: Lambert’s generator g′θ(s) = θ exp(−s)
1−exp(−θ exp(−s)) for the

Clayton family, where S(10−6) ≈ −2.6257 and S(10−32) ≈ −4.2997.

where cφθ represents the density of the Archimedean copula generated by φθ in
(3.17), parametrized by θ. The model derived from (3.20) is non-identifiable,
since inverting the sign of any θi makes no difference, but this poses no practical
issue at all.

Lambert, just like in (Vandenhende and Lambert, 2005), chooses a large
number of parameters, like K = 11, and then takes some measures to prevent
overfitting, penalizing the squared 2-norm of the r-th order differences of θ, that
is,

‖∆r
Kθ‖2 = θTPθ , (3.26)

where P = (∆r
K)T∆r

K and ∆r
K is as in Definition 3.1.1. In (Lambert, 2014), for

instance, a third order penalty, r = 3, is used. In the end, the objective function
is a penalized log-likelihood, i.e., the target is

arg max
θ∈RK

{
logL(θ|D)− λθTPθ

}
, (3.27)

where the penalty λ ≥ 0 is selected using cross-validation.
We can translate (3.27) into Bayesian terms by introducing a prior density

p(θ) for θ. The penalty λ in (3.27) has no room in a Bayesian setting, but
can be sensitively incorporated in the design of p(θ) as a conditioning r.v. The
derivation of such a prior can be traced back to (Lambert, 2007) and corre-
sponds to a version of a prior for ∆r

Kθ, which is derived from the following two
hypotheses:

• The r-th order difference vector ∆r
Kθ, of length d = K − r, given penalty

λ, follows a multivariate normal distribution with independent compo-
nents, zero mean and variances that are inversely proportional to λ. More
precisely,

∆r
Kθ|λ ∼ Nd

(
µ = 0d,Σ =

1

λ
Id

)
,
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where Id is the identity matrix of order d and 0d is the d-dimensional null
vector. This leads to the conditional density

p(∆r
Kθ|λ) = (2π)−

d/2 · λd/2 · exp

(
−λ

2
‖∆r

Kθ‖2
)
. (3.28)

• Penalty λ follows a Gamma distribution with shape hyper-parameter a
and rate hyper-parameter b, λ ∼ G(a, b), with density

p(λ) =
ba

Γ(a)
λa−1e−bλ , (3.29)

where Γ is the gamma function and a > 0, b > 0. Therefore, we have
E(λ) = a/b.

The idea is to fix sensible values for a and b at this stage and to perform
no subsequent optimization on them. Of course, multiple choices can be made,
but some are better than others. For instance, a fairly conservative selection is
a = 1, which implies that the mode of (3.29) is λ = 0. Taking a � 1 would
be even more conservative, since p(λ) rapidly diverges as λ → 0+ and thus a
small right-neighbourhood of λ = 0 would account for most of the probability.
By contrast, the hyper-parameter b does not seem as meaningful as a when
modelling prior knowledge, apart from changing the location of the distribution.
Both (Lambert, 2007, 2014) use the simplifying assumption that a = b.

From the previous steps we can obtain p(∆r
Kθ) by integrating the product

of the densities (3.28) and (3.29) with respect to λ:

p(∆r
Kθ) =

∫ ∞

0

p(∆r
Kθ|λ) · p(λ) dλ

= (2π)−
d/2 ba

Γ(a)
·
∫ ∞

0

λa+ d
2−1 · exp

[
−λ
(
b+

1

2
‖∆r

Kθ‖2
)]

dλ

= (2π)−
d/2 ba

Γ(a)
· Γ

(
a+ d

2

)
(
b+ 1

2‖∆r
Kθ‖2

)a+d/2

.

(3.30)

The last derivation reveals that the r-th order difference vector follows a multi-
variate t-distribution, namely

∆r
Kθ ∼ td

(
ν = 2a,µ = 0d,Σ =

b

a
Id

)
. (3.31)

The form of the matrix Σ in (3.31) supports the assumption a = b, resulting in
a simple identity matrix. Note also that, for a multivariate t-distribution, ν ≤ 2
(equivalently a ≤ 1) implies covariances are undefined.

Once removed the effect of the penalty λ, we can see the components of ∆r
Kθ

are not independent any more, just uncorrelated. Another interesting remark
relates to the posterior distribution of λ, which can be calculated using Bayes’
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theorem:

p(λ|∆r
Kθ) =

p(∆r
Kθ|λ) · p(λ)

p(∆r
Kθ)

=

(
b+ 1

2‖∆r
Kθ‖2

)a+d/2

Γ
(
a+ d

2

) · λa+ d
2−1 · exp

[
−λ
(
b+

1

2
‖∆r

Kθ‖2
)]

=
βα

Γ(α)
λα−1e−βλ

,

(3.32)

where

α = a+
d

2

β = b+
1

2
‖∆r

Kθ‖2
. (3.33)

Observe that both the prior (3.29) and the posterior (3.32) distributions belong
to the Gamma family and how the knowledge about the r-th order differences
updates the penalty λ and its original hyper-parameters, a and b, to the α and
β in (3.33). The latter is best appreciated when looking at the conditional
expectation of (3.32), that is

E (λ|∆r
Kθ) =

α

β
=

a+ d
2

b+ 1
2‖∆r

Kθ‖2
,

from which we can draw two conclusions:

• Fixed dimensionality d, the larger the overfitting ‖∆r
Kθ‖2, the smaller we

can expect the penalty to be and vice versa.

• Fixed the overfitting ‖∆r
Kθ‖2, the larger the dimensionality d, the larger

we can expect the penalty to be and vice versa.

All the previous remarks suggest that the prior (3.30) is sensible. Hence,
Lambert translates it to θ ∈ RK as

p(θ) ∝ 1
(
b+ 1

2‖∆r
Kθ‖2

)a+d/2
=

1
(
b+ 1

2θ
TPθ

)a+d/2
,

where P = (∆r
K)T∆r

K . All in all, the Bayesian counterpart of (3.27) is the
maximum a posteriori estimator

arg max
θ∈RK

{L(θ|D) · p(θ)} = arg max
θ∈RK





L(θ|D)
(
b+ 1

2θ
TPθ

)a+d/2





,

or equivalently, since log is monotonically increasing and rank(P ) =
rank(∆r

K) = K − r = d,

arg max
θ∈RK

{
logL(θ|D)−

(
a+

rank(P )

2

)
log

(
b+

1

2
θTPθ

)}
, (3.34)
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that is the mode of the posterior distribution of θ given the sample D. It turns
out to be interesting to compare (3.34) with the non-Bayesian approach (3.27).
As we can see, the regularization term in (3.34) has a built-in dimensionality
factor that involves rank(P ), whereas in (3.27) one has to manually tune the
penalty λ to suit each particular parameter setting. Note that this term is
consistent with the remark that the penalty should go up as the dimensionality
of the problem does, given a fixed overfitting value.

In this review, we have made use of Bayesian statistics to find a reasoned
and reasonable regularization term for the original objective function, the log-
likelihood. If the reader is interested in posterior distribution sampling using
Markov chain Monte Carlo, we refer them to (Lambert, 2014).

Notes and comments

In this section, we have reviewed two Archimedean copula modelling strate-
gies. Both embrace a semiparametric philosophy, with different degrees of de-
velopment, and the use of polynomial splines. While (Vandenhende and Lam-
bert, 2005) sees semiparametric approaches as highly parametrized, its proposal
turned out to be less flexible than expected. The proposal in (Lambert, 2014),
though, succeeds in accomplishing the flexibility goal with fewer parameters and
effectively removing the singular components issue that harmed (Vandenhende
and Lambert, 2005). As regards dependence measures, neither (Vandenhende
and Lambert, 2005) nor (Lambert, 2014) offer a full and satisfactory solution.
In particular, tail dependence is not addressed in any of these papers.

It is important to realize the huge step from (Vandenhende and Lambert,
2005) to (Lambert, 2014) and, at the same time, praise the conciseness and
efficiency of the former. In the next section, we will look at the extension of the
cubic spline technique in (Lambert, 2014) to conditional copulas.

3.2 Conditional copula modelling

Given a sample D =
{

(U i1, U
i
2, U

i
3)
}N
i=1

from a 3-dimensional r.v. (U1, U2, U3)
with uniform margins and distributed according to a certain copula C, Defi-
nition 2.6.1 says we can attempt to re-construct C in a two-phase estimation
process:

1. Firstly, estimate two of the bivariate margin copulas, for instance: C1,2,
linking U1 and U2, and C2,3, linking U2 and U3. Let us call C12 and
C23 their respective estimates, arising from any suitable bivariate copula
estimation technique. For instance, any of the flexible semiparametric
techniques introduced in the previous section.

2. Secondly, for each u2 ∈ [0, 1], estimate the copula C1,3|2(∗, ∗|u2) corre-
sponding to the 2-dimensional r.v. [(U1, U3)|U2 = u2], where the r.v. U2 is
called the covariate. The latter conditional r.v. has margins [U1|U2 = u2]
and [U3|U2 = u2], which are the conditional margins U1 given U2 = u2

and U3 given U2 = u2, respectively. These two margins have the following
CDFs:

[U1|U2 = u2] ∼ C1|2(∗|u2)

[U3|U2 = u2] ∼ C3|2(∗|u2)
,
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where

C1|2(∗|u2) = ∂2C1,2(∗, u2) = P(U1 ≤ ∗|U2 = u2)

C3|2(∗|u2) = ∂1C3,2(∗, u2) = P(U3 ≤ ∗|U2 = u2)
.

Hence, the CDF of [(U1, U3)|U2 = u2], which is of course (u1, u3) 7→
∂2C(u1, u2, u3), can be obtained using Sklar’s theorem:

∂2C(u1, u2, u3) = C1,3|2(C1|2(u1|u2), C3|2(u3|u2)|u2) .

Therefore, the original copula C can be expressed as

C(u1, u2, u3) =

∫ u2

0

∂2C(u1, υ, u3) dυ

=

∫ u2

0

C1,3|2(C1|2(u1|υ), C3|2(u3|υ)|υ) dυ

.

If, additionally, C is absolutely continuous with density c, then

c(u1, u2, u3) = c1,3|2(C1|2(u1|u2), C3|2(u3|u2)|u2)·
· c1,2(u1, u2) · c2,3(u2, u3)

, (3.35)

where c1,3|2(∗, ∗|u2) is the density of the conditional copula C1,3|2(∗, ∗|u2)
and c1,2 and c2,3 are the densities of the bivariate margins C1,2 and C2,3,
respectively. If we suppose C1,2 and C2,3 to be well approximated by
the estimates C12 and C23 from the previous step, we can get rid of the
bivariate margin factors c1,2(u1, u2) · c2,3(u2, u3) in (3.35) and focus on
estimating, for each u2 ∈ [0, 1], the conditional copula C1,3|2(∗, ∗|u2).

As pointed out in (Acar et al., 2012), we can always try to estimate C
by maximizing directly the log-likelihood (3.35), but this is computationally
more demanding. If we hypothesize a model for the conditional copula family
{Cα13|2(∗, ∗|u2)}u2∈[0,1] depending on the vector of parameters α ∈ Rn1 and two

models for the bivariate margins Cβ12 and Cγ23, for β ∈ Rn2 and γ ∈ Rn3 , then
the resulting model for C is Cθ, where θ = (α;β;γ) ∈ Rn and the total number
of parameters is n = n1 + n2 + n3. The density of Cθ is

cθ(u1, u2, u3) = cα13|2

(
∂2C

β
12(u1, u2), ∂1C

γ
23(u2, u3)|u2

)
·

· cβ12(u1, u2) · cγ23(u2, u3)
. (3.36)

Therefore, the log-likelihood function to maximize, given sample D, is

logL(θ|D) =
N∑

i=1

log cθ(U i1, U
i
2, U

i
3) . (3.37)

Since the bottleneck of the estimation process turns out to be the computation
of the gradient of (3.37) with respect to θ, which has to be performed at each
iteration of the optimization algorithm if complex semiparametric models are
used, we may be unable to afford computing the n partial derivatives, for a large
n. Also, note that these gradient computations are not light either, because
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those parameters belonging to β and γ appear as arguments of cα13|2, rising
computational costs.

The two-phase vine estimation process gives us the opportunity to apply
complex semiparametric models for both the conditional copula family and the
bivariate margins, using a large number of parameters and smoothing procedures
in both cases. Assuming estimates C12 and C23, with densities c12 and c23

respectively, we can replace (3.36) with

cθ(u1, u2, u3) = cθ13|2 (∂2C12(u1, u2), ∂1C23(u2, u3)|u2) ·
· c12(u1, u2) · c23(u2, u3)

, (3.38)

in (3.37), since optimization for the the bivariate margins is not needed any
longer. In (3.38) all parameters θ are devoted to modelling the conditional
copula family. What is more, the values ∂2C12(U i1, U

i
2) and ∂1C23(U i2, U

i
3) need

not be computed every time. Instead, we can maximize

logL∗(θ|D) =
N∑

i=1

log cθ13|2(Ui, Vi|Wi) , (3.39)

where the datasets DU,V = {(Ui, Vi)}Ni=1 and DW = {Wi}Ni=1, for

Ui = ∂2C12(U i1, U
i
2)

Vi = ∂1C23(U i2, U
i
3)

Wi = U i2

,

can be precomputed. For the above reasons, from now on we will use the
two-phase vine estimation procedure. Observe that, because the covariate is
uniformly distributed, each conditional copula is actually a 3-copula. Hence,
(3.39) is a legitimate log-likelihood function.

In this section we will look at several strategies to model the conditional cop-
ula family {C1,3|2(∗, ∗|u2)}u2∈[0,1]. The first two techniques we will introduce,
(Acar et al., 2012) and (Lopez-Paz et al., 2013), make use of known parametric
copula families to build their conditional copulas and focus on the estimation
of the effect of the covariate u2 on the family member selection. This effect
is modelled in a non-parametric way as a function (Acar et al., 2012) and as
a stochastic process (Lopez-Paz et al., 2013). By contrast, the third and last
technique, (Lambert, 2014), builds the copula family itself in a semiparametric
manner, extending the bivariate Archimedean copula modelling strategy dis-
cussed in the previous section. To the best of our knowledge, (Lambert, 2014)
has been the only approach of this kind so far. Our proposal, which will be
thoroughly discussed in Chapter 4, relies on a similar extension of a bivariate
copula modelling method, namely (Hernández-Lobato and Suárez, 2011).

Fully non-parametric approaches like (Gijbels et al., 2011) make hardly any
assumption on the underlying conditional copula. Roughly speaking, the copula
estimate does not fit data instances, but rather data instances build the copula
itself. Though interesting, we shall not address them in this work.

3.2.1 A first order local polynomial model of the covariate

The approach in (Acar et al., 2011) assumes all conditional copulas belong
to the same parametric family. Let {cθ}θ∈Θ be a parametric family of copula
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densities, with parameter space Θ ⊂ R. One could estimate a suitable parameter
function θ : [0, 1] → Θ mapping covariate values to density parameters. To
ensure θ ranges in Θ, it is commonplace to model an alternative latent function
η : [0, 1]→ R and then build θ as

θ(w) = g−1(η(w)) , (3.40)

where g−1 : R→ Θ is known as the inverse link function.
As pointed out in (Acar et al., 2011), it is possible to model η parametrically,

for instance, considering n-th degree polynomials. Following (3.39), given the
calibration function

ηβ(w) = β0 + β1w + β2w
2 + . . .+ βnw

n , (3.41)

parametrized by the coefficients vector β = (β0, β1, . . . , βn), we can always
target

arg max
β∈Rn+1

{
N∑

i=1

log c
[
Ui, Vi; g

−1(ηβ(Wi))
]
}

,

where we have written cθ(u, v) as c(u, v; θ) to enhance readability. According
to Acar et al., the underlying calibration function η might not be well approxi-
mated by the polynomial ηβ or any other predefined parametric functional form.
Even though we agree with this statement, it must be stressed that a semipara-
metric approach using polynomial splines, which is not discussed in (Acar et al.,
2011), might provide a better fit. Nevertheless, both parametric and semipara-
metric approaches to modelling the covariate effect are relatively simple when
considered in the context of parametric conditional copulas. For this reason, we
shall not further discuss them in this work.

Estimation procedure

The approach used in (Acar et al., 2011) is actually non-parametric. Given
a covariate value w, our goal is to select a suitable parameter θ, regardless
of the way we represent η in (3.40). We can even give up on the idea of a
global definition of η. (Acar et al., 2011) hypothesize that η is smooth and
thus can be locally approximated with polynomials, even if we cannot attain a
complete definition of η. This way, given a covariate instance Wi ∈ DW , we can
approximate η at Wi with its n-th degree Taylor polynomial around w, that is

η(Wi) ≈
n∑

k=0

η(k)(w)

k!
(Wi − w)k = ηβ(Wi − w) , (3.42)

where ηβ is the polynomial calibration function in (3.41) with coefficients βk =
η(k)(w)/k!, for k = 0, 1, . . . , n. If we could find a suitable ηβ, that is, if the
approximation (3.42) were sufficiently accurate for those Wi ∈ DW that are
close enough to w, then we would have a good estimate for θ(w), which is of
course g−1(β0). Note that coefficients other than β0 ≈ η(w) are not needed
any more. Now, we still have to specify a goodness of fit measure for β and
decide which instances in DW are eligible for the estimation. These aspects are
considered in the local likelihood estimation problem

arg max
β∈Rn+1

{
N∑

i=1

Kh(Wi − w) · log c
[
Ui, Vi; g

−1(ηβ(Wi − w))
]
}

, (3.43)
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where Kh(x) = hK(x/h) and K : R→ [0,∞) is a kernel function like

K(x) =
3

4(1− x2)
1(−1,1)(x) ,

the Epanechnikov kernel. Roughly speaking, (3.43) is an average of conditional
copula log-densities in which the closer Wi is to w, the more weight is attached
to the i-th term. The rationale behind this design lies in the fact that the
approximation (3.42) is more reliable when Wi is closer to w. The closeness
notion is conveyed through the bandwidth parameter h.

The number of data instances with a perceptible contribution to the local
likelihood estimation might be really small. The scarcity of data prevents us
from using a high degree n for the local polynomial approximation, due to the
curse of dimensionality. Therefore, (Acar et al., 2011) employs a first order
approximation:

arg max
(β0,β1)∈R2

{
N∑

i=1

Kh(Wi − w) · log c
[
Ui, Vi; g

−1(β0 + β1(Wi − w))
]
}

. (3.44)

Optimal bandwidth selection

It is difficult to determine beforehand a good value for the bandwidth h: it
depends on the dataset D itself. Acar et al. propose a leave-one-out cross-
validation to tune h. Let D = {(Ui, Vi,Wi)}Ni=1 be the available data and let
θh(w|D) be the parameter estimate for the covariate w arising from (3.44),

considering the sample D and the bandwidth h. Now, define θ
(−i)
h (w) =

θh
(
w|D(−i)), where D(−i) = D \ {(Ui, Vi,Wi)}. An optimal bandwidth h∗ can

be obtained through

h∗ = arg max
h∈H

{
N∑

i=1

log c
[
Ui, Vi; g

−1
(
θ

(−i)
h (Wi)

)]}
,

where the bandwidth search space H ⊂ (0, 1] admits both a discrete and a
continuous specification, depending on the optimization algorithm one wants to
use.

Strengths and weaknesses

Being non-parametric, one disadvantage of the approach in (Acar et al., 2011)
is the lack of an actual training phase or model construction phase. As men-
tioned earlier, non-parametric methods do not build models, but rather use
available data as a model itself. For each new covariate w we have to perform
the optimization (3.44). This may be unaffordable for real-time applications.

Another drawback, which is specific to (Acar et al., 2011), is the strong lim-
itation of using parametric copulas. The approach we will review next, (Lopez-
Paz et al., 2013), partially overcomes this issue by using mixtures of parametric
copulas.

On the positive side, (Acar et al., 2011) assumes as few hypotheses as pos-
sible on the calibration function, which leads to low-bias solutions. That makes
this approach a valuable asset when proposing and selecting alternative models.
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For instance, it may provide us with a sketch of the covariate dependence struc-
ture, which could eventually help determining: tuning parameters for other
methods, initialization values, appropriate basis functions for semiparametric
representations and so on. In Lambert’s words:

“Nonparametric versions are desirable to suggest or to validate
parametric specifications, or even as a substitute for these models.”

(Lambert, 2014)

3.2.2 A Gaussian process model of the covariate

The approach in (Lopez-Paz et al., 2013), though non-parametric too, differs
from (Acar et al., 2011) in the way they estimate the effect of the covariate.
Actually, their proposal can theoretically deal with an arbitrarily large number
of covariates. We shall present here a particular instantiation of their method
for the 3-vine case.

The construction

They first consider a parametric family of copula densities {cτ}τ∈[−1,1] that
can be indexed in terms of any value of Kendall’s τ (household parametric
families like Frank’s, Glayton’s or Gumbel’s satisfy this). Then, they build
the target conditional copula density c(∗, ∗|w) as a mixture of instances of the
aforementioned parametric family, where the weight of each instance is modelled
as a density that takes into account the covariate w. Letting the function
τ : R→ [−1.1]

τ(x) = 2Φ(x)− 1 ,

where Φ : R→ (0, 1) is the CDF of the univariate standard normal distribution,
the construction can be formally stated as

c(u, v|w) =

∫

R
cτ(x)(u, v) · p(x|w) dx . (3.45)

As in (Acar et al., 2011), there is actually no training stage: given w, the copula
density c̃(∗, ∗|w) is built directly from data.

Therefore, the gist of Lopez-Paz et al.’s approach is the proposal for the
density p(x|w). Given a dataset D = (DU,V , DW ), they take

p(x|w) = pXw(x|D) , (3.46)

i.e., the posterior density of a r.v. Xw from an a priori Gaussian process X =
{Xw}w∈[0,1] that is indexed by the covariate w. Hence, given the vector of
covariate values w = (w1, w2, . . . , wk), the r.v. Xw = (Xw1

, Xw2
, . . . , Xwk)T

follows a k-variate Gaussian distribution, namely Xw ∼ Nk(µw,Σw) with mean
vector µw ∈ Rk and covariance matrix Σw ∈Mk×k(R) having (i, j)-element

(Σw)ij = K(wi, wj) = σ0 + σ exp
[
−λ(wi − wj)2

]
,

where the hyper-parameters σ0, σ and λ ≥ 0 are optimized later on in the
inference process. Note that this covariance matrix expresses that two r.v. Xwi

andXwj are more strongly correlated the closer the covariates wi and wj are. On
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the other hand, taking µw = (0, 0, . . . , 0) ∈ Rk we assume no prior knowledge
on the location of the Xw’s.

Now, consider the covariates vector w = (W1,W2, . . . ,WN ), whose compo-
nents arise from DW , and the extended covariates vector w̄ = (w; w) formed by
pre-appending an arbitrary covariate w to w. Note that

Σw̄ =

[
k kT

k Σw

]
,

where k = K(w,w) and k = (K(w,W1),K(w,W2), . . . ,K(w,WN ))T . Then,
the conditional r.v. [Xw|Xw = x] follows a univariate normal distribution
(Cambanis et al., 1981), N (µ, σ2), with mean µ = µw + (x − µw)TΣ−1

w k =
µw + kTΣ−1

w (x− µw) and variance σ2 = k − kTΣ−1
w k.

Let pXw|Xw
(x|x) be the density of [Xw|Xw = x]. Lopez-Paz et al. model

(3.46) as

pXw(x|D) =

∫

RN
pXw|Xw

(x|x) · pXw(x|D) dx . (3.47)

Note that all inference then comes down to finding the posterior pXw(x|D), which
conveys the available information D. Of course, should we replace pXw(x|D)
with pXw(x) in (3.47), then we would simply have pXw(x), the univariate normal
density we a priori assumed, and no inference would be made. Then, all that is
left is to look for a way to update the density of Xw on the grounds of D. To do
that, Lopez-Paz et al. propose to think of each realization x = (x1, x2, . . . , xN )T

of Xw as an input vector of parameters for the simplified conditional copula
mixture model

cx(u, v|w) =

N∑

i=1

cτ(xi)(u, v) · p(xi|w) , (3.48)

where

p(xi|Wj) =

{
1, if i = j

0, if i 6= j
,

assuming the covariate w ranges only in DW . Hence, the covariate w acts as a
density selector. If w = Wi, the resulting density is cτ(xi), the only one affected
by the parameter xi, which is a realization of XWi

. Certainly, (3.48) mimics
the form of the originally intended mixture model (3.45), but using some trivial
1-0 weights. The likelihood function for (3.48) has the convenient form

L(x|D) =
N∏

i=1

cx(Ui, Vi|Wi) =
N∏

i=1

cτ(xi)(Ui, Vi) . (3.49)

Finally, we know the posterior of x given D is proportional to the product
of the likelihood of x given D by the prior density of x:

pXw(x|D) ∝ L(x|D) · pXw(x) .

With all that, (3.45) becomes

c(u, v|w) =

∫

R×RN
cτ(x)(u, v) · p(Xw;Xw)(x; x|D) dx dx , (3.50)

where
p(Xw;Xw)(x; x|D) = pXw|Xw

(x|x) · pXw(x|D) . (3.51)
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Approximation steps

In practice, we can approximate (3.45) by sampling {xi}ni=1 from (3.46) and
then averaging over copula densities {cτ(xi)}ni=1, that is

c(u, v|w) ≈ 1

n

n∑

i=1

cτ(xi)(u, v) . (3.52)

Moreover, because of the way we arrived to (3.46), it might be more convenient
to sample {(xi; xi)}ni=1 from (3.51) and use the first components {xi}ni=1 in
(3.52).

As we see, evaluating (3.51) is computationally expensive because of the
likelihood (3.49), specially when the number of data instances N is large. Con-
sidering that, for the approximation (3.52) to be accurate, a large number of
sample points n is needed, the evaluation of p(Xw;Xw)(x; x|D) and, in particular,
of pXw(x|D), is critical. Lopez-Paz et al. employ the Expectation Propaga-
tion (EP) algorithm to approximate pXw(x|D) with a computationally tractable
density.

Strengths and weaknesses

The proposal in (Lopez-Paz et al., 2013) provides a very interesting and in-
novative way to model the effect of several covariates. When the number of
covariates is rather large, Lopez-Paz et al.’s proposal is unparalleled, but the
one-covariate case presented here seems comparatively simple.

As mentioned in the case of (Acar et al., 2011), being (Lopez-Paz et al., 2013)
non-parametric, computational efficiency is not one of its strengths, despite the
use of the EP algorithm.

A major disadvantage of (Lopez-Paz et al., 2013) is the use of parametric
copulas as building blocks. Sure enough, the resulting copula, a mixture, does
not belong to a parametric family in general, contrary to (Acar et al., 2011),
but mixture properties depend, to a great extent, on those of the underlying
copulas. Besides, even though we can always try to apply some model selection
criterion, the number of known and convenient parametric families is relatively
small as compared with the infinite number of semiparametric Archimedean
copulas that (Lambert, 2014) and (Hernández-Lobato and Suárez, 2011) allow
to model.

3.2.3 A fully semiparametric spline-based model

The methods we will look at in this section are radically different from the
previous two. They were first presented in (Lambert, 2014) as an extension of
the bivariate copula modelling method presented in Section 3.1.2, also included
in (Lambert, 2014). Remember that Lambert, in the bivariate case, proposed
to model a latent function g′ : R→ R instead of the Archimedean generator φ.
A possible extension to the conditional case is to model ∂1g : R × [0, 1] → R,
such that, for each covariate w ∈ [0, 1],

φw(x) = exp [−g (S(x), w)] (3.53)
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is a legitimate Archimedean generator. This way, we would have a conditional
copula family {C(∗, ∗|w) = Cφw}w∈[0,1], where

C(u, v|w) = Cφw(u, v) = φ−1
w (φw(u) + φw(v)) .

A second extension approach consists in using the bivariate case technique to
model an Archimedean generator φ that is semiparametrically and conveniently
deformed under the covariate effect using a map

Tθ : Φ× [0, 1] −→ Φ
(φ,w) 7→ φw

(3.54)

that is tuned according to some vector of parameters θ.
Strictly speaking, the second approach is not an extension of the bivari-

ate case technique, but rather a more general conditional copula modelling
framework where other Archimedean generators, perhaps obtained by other
means, can be plugged in. For instance, a single-parameter Archimedean gen-
erator like Frank’s φθ could be estimated as the core of the transformed family
{Tθ(φθ, w)}w∈[0,1]. However, in the latter example, the overall copula is not
fully semiparametric. Also, note that the assumption of a unique underlying
core generator φ, posed by (3.54), is more restrictive than (3.53), even if the
transformation Tθ is highly parametrized.

The construction

If, for each w ∈ [0, 1], x 7→ g(x,w) is modelled as described in (Lambert, 2014),
then each conditional copula Cφw is semiparametric. Lambert’s proposal to
model the covariate effect is also semiparametric. We just have to think of
each parameter θk in (3.19) as a function of the covariate w, which can also be
approximated using cubic splines. Let B∗1 , B

∗
2 , . . . , B

∗
L be the cubic B-splines

corresponding to some set of knots on the covariate space [0, 1]. We can approx-
imate ∂1g with

∂g

∂s
(s, w) =

K∑

k=1

(
1 + θk(w)2

)
Bk(s) , (3.55)

where

θk(w) =
L∑

l=1

θklB
∗
l (w) , (3.56)

for a matrix of parameters Θ = (θkl) ∈MK×L(R).
The foremost issue of (3.56) lies in the total number of parameters: K ×

L. Remember that Lambert recommended to set K = 11 in the bivariate
case. Sticking to this heuristic, in the context of (3.56), would mean the total
number of parameters is bounded from below by 11L, which leaves very little
flexibility for modelling the covariate. (Lambert, 2014) proposes an alternative
formulation for ∂1g, the additive conditional spline Archimedean copula family,
in which we replace (3.56) with

θk(w) = αk +
L∑

l=1

βlB
∗
l (w) (3.57)
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in (3.55), with vectors of parameters α = (α1, α2, . . . , αK) and β =

(β1, β2, . . . , βL). Since
∑L
l=1B

∗
l (w) = 1, for Proposition A.2.1, adding a con-

stant µ ∈ R to every βl is equivalent to doing so with every αk. This causes
a model identifiability problem that can be solved by adding a identification
constraint like

L∑

l=1

βl = 0 . (3.58)

Therefore, the additive model (3.57) consists of K + L− 1 parameters.
Regardless of the decision we make between (3.56) and (3.57), (3.55) is a

smooth function both in the s and w variables. This feature partially guarantees
that the conditional copula dependence varies smoothly with the covariate, much
like the local linearity assumption and the Gaussian prior did in (Acar et al.,
2011) and (Lopez-Paz et al., 2013), respectively.

Finally, we end this subsection introducing the alternative proposal by
Lambert, based on the semiparametric transformation (3.54): the flex-power
Archimedean conditional copula family. Taking φw in (3.54) defined as

φw(x) =
[
φ
(
xα(w)

)]β(w)

, (3.59)

for some functions α : [0, 1] → (0, 1] and β : [0, 1] → [1,∞), we get a condi-
tional family of Archimedean generators. The functions α and β are commonly
known as interior and exterior power transformations, respectively.10 Then,
we complete the construction by modelling all functions φ, α and β in a semi-
parametric manner: φ follows the specification in Section 3.1.2 with parameters
θ = (θ1, θ2, . . . , θK), whereas

α(w) =


1 +

(
L∑

l=1

αlB
∗
l (w)

)2


−1

and

β(w) = 1 +

(
L∑

l=1

βlB
∗
l (w)

)2

,

for B∗1 , B
∗
2 , . . . , B

∗
L cubic B-splines defined on [0, 1] and respective parameter

vectors α = (α1, α2, . . . , αL) and β = (β1, β2, . . . , βL). The total number of
parameters is K + 2L.

Estimation procedure and smoothing

The estimation procedure for the conditional case is analogous to the bivari-
ate one. We can either maximize a penalized log-likelihood estimation or use
Bayesian inference with a prior distribution that penalizes the overfitting. The
form of the penalty differs from parametrization to parametrization, though.

For the full parametrization (3.56), the penalty targets the squared 2-norms
of the r-th and s-th order differences of the rows and columns of Θ, respectively.
Let Θ:,l and Θk,: be the l-th column and k-th row of Θ, respectively, both

10 Remember that the exterior power was introduced in Proposition 3.1.1, in the context of
(Vandenhende and Lambert, 2005).
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expressed as (column) vectors. Also, let IK and IL be the identity matrix of
orders L and K, respectively. It can be easily verified that

L∑

l=1

‖∆r
KΘ:,l‖2 = (vec Θ)T · (IK ⊗ PK) · vec Θ , (3.60)

where PK = (∆r
K)T∆r

K and ⊗ represents the Kronecker product. Similarly,
transposing Θ and using (3.60),

K∑

k=1

‖∆s
LΘk,:‖2 =

(
vec ΘT

)T · (IL ⊗ PL) · vec ΘT , (3.61)

where PL = (∆s
L)T∆s

L. In order to combine (3.60) and (3.61) in a single
quadratic form, we must permute the entries of vec ΘT in (3.61) to obtain vec Θ.
Some basic results reported in (Zhang and Ding, 2013) actually allow us to write

K∑

k=1

‖∆s
LΘk,:‖2 = (vec Θ)

T · (PL ⊗ IL) · vec Θ . (3.62)

Finally, combining (3.60) and (3.62) with respective weights α ≥ 0 and
β ≥ 0, we get the penalty term

Pα,β(Θ) = (vec Θ)
T

(αIK ⊗ PK + βPL ⊗ IL) vec Θ . (3.63)

which added to the log-likelihood logL(Θ|D) gives us the conditional copula
estimation problem:

arg max
Θ∈MK×L(R)

{logL(Θ|D)− Pα,β(Θ)} . (3.64)

Lambert does not expand on the Bayesian counterpart of (3.64) and focuses
on the Bayesian estimation of the additive parameters model. In this case,
smoothing is imposed on both α and β by penalizing their r-th and s-th order
differences, respectively, using exactly the same rationale employed in Section
3.1.2. However, while the penalty matrix for α is simply Pα = (∆r

K)T∆r
K , the

penalty matrix for β, Pβ = (∆s
L)T∆s

L + εIL, includes an extra term to impose
the identifiability constraint.11 The prior densities of α and β are additionally
assumed to be independent, giving rise to the posterior distribution

p(α,β|D) ∝ L(α,β|D)
(
bα + 1

2α
TPαα

)aα+ rankPα
2

(
bβ + 1

2β
TPββ

)aβ+L/2
, (3.65)

with hyper-parameters aα, bα, aβ, bβ.
A similar posterior can be envisioned for the flex-power family, penalizing

the vector differences, too. Namely,

p(θ,α,β|D) ∝ L(θ,α,β|D)
∏
x∈{θ,α,β}

(
bx + 1

2x
TPxx

)ax+ rankPx
2

, (3.66)

11 This manner of imposing the identifiability constraint is theoretically questionable, in
our view. As a matter of fact, we can ensure identifiability by solving for one of the βl’s in
the linear constraint (3.58).
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with penalty matrices Px and hyper-parameters ax and bx, for x ∈ {θ,α,β}.
The posterior densities (3.65) and (3.66) can then be used to obtain esti-

mates for the model parameters, by finding either the posterior mean or mode.
(Lambert, 2014) reports efficient estimation procedures to sample the posterior
distribution.

Strengths and weaknesses

All three solutions reviewed in this section represent a big improvement with
respect to (Acar et al., 2011) and (Lopez-Paz et al., 2013) as refers to flexibility.
(Lambert, 2014) is the only semiparametric approach and is consequently devoid
of the limitations imposed by parametric assumptions, except for the copulas
being Archimedean. On the other hand, having a training phase in which to
estimate parameters, computations are much more efficient than those of non-
parametric methods.

These techniques inherit some of the drawbacks that the unconditional ver-
sion has, though. Firstly, despite being flexible, tail dependence cannot be
properly addressed. Also, note that the form of the unconditional construction
does not actually suit the conditional extension. Looking at (3.55), we see that
the B-splines approximation is asymmetric, due to the square power: fixed s,
w 7→ ∂1g(s, w) is always an even-degree piecewise polynomial.

Even though we pose no question on the effectiveness of the smoothing pro-
cedures proposed by (Lambert, 2014), we still feel that the squared norm of a
parameter differences vector is not the ideal semiparametric roughness measure.
When smoothness is required for several vectors or a matrix of parameters, one
misses having a single elegant penalty that can be expressed at an abstract
function level.

A positive aspect of (Lambert, 2014) we have not expanded on in this section,
since it is out of scope, is that we can easily adapt the additive conditional spline
Archimedean copula family (3.57) to include additional covariates without the
total number of parameters getting out of control. Remember that (Lopez-Paz
et al., 2013) has this feature too, but (Acar et al., 2011) does not.



Chapter 4

Spline-based
semiparametric copulas

– Hace muchas semanas que vengo estudiando los micro-
filmes sobre Historia de las matemáticas –dijo Harlan–, y los
libros de las distintas Realidades del Quinientos setenta y
cinco. Las diferentes Realidades no tienen mucha importan-
cia. Las matemáticas no cambian. El orden de su desarrollo
tampoco cambia. No importa cómo se pueda variar una Re-
alidad, la Historia del crecimiento de las matemáticas sigue
siendo la misma. Los matemáticos han cambiado; diferentes
personas han realizado los descubrimientos, pero los resulta-
dos finales son los mismos... De todas formas, he aprendido
mucho. ¿Qué le parece eso?

El fin de la eternidad
Isaac Asimov

In this chapter we introduce a method to model Archimedean copulas, based
on approximating the generator function by polynomial splines. The method
is an extension of the proposal made in (Hernández-Lobato and Suárez, 2011).
The novel contributions of our work are (i) to give complete proofs of some
fundamental results (ii) to provide further insight into tail dependence (iii) to
provide further details on estimation and implementation.

4.1 Semiparametric Archimedean copulas

The technique by Hernández-Lobato and Suárez shares the same goal and
core philosophy as (Lambert, 2014). They both aim at estimating a suitable
Archimedean generator from data by assuming a simple yet flexible approximate
form. In both proposals the generator is approximated using splines. However,
the approximations are constructed following completely different paths and it
is difficult to establish how they are related.

One aspect of (Hernández-Lobato and Suárez, 2011) that sets it apart from
other proposals is its special emphasis on tail dependence. As shown in Chapter

55
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3, the approximation made in (Vandenhende and Lambert, 2005) has some limi-
tations to capture both the lower and upper tail dependence, whereas (Lambert,
2014), though more flexible, produces copulas that are independent in the lower
tail. By contrast, Hernández-Lobato and Suárez’s proposal can represent any
lower and upper tail dependence index.

4.1.1 The construction of the latent function

Next, we shall introduce Hernández-Lobato and Suárez’s construction in several
steps.

Solving the convexity constraint issue

Among the properties an Archimedean generator must comply with, ar-
guably the most difficult to model is the convexity constraint. The following
proposition-definition shows how it can be implemented at the cost of an extra
integration step.

Proposition 4.1.1 (F -generator). Let F : (0, 1)→ (0,∞) be continuous and
monotonically increasing. Then φ : (0, 1]→ [0,∞) given by

φ(x) =

∫ 1

x

1

F (t)
dt (4.1)

is an Archimedean generator.

Proof. φ is a well-defined function whose value at x = 1 is 0. On the other
hand, φ is continuously differentiable with φ′(x) = −1/F (x) < 0, because F is
continuous. Hence, φ is strictly decreasing. Moreover, since F is monotonically
increasing, so is φ′ and, therefore, φ must be convex.1

Indeed, the above construction conveniently takes care of the convexity con-
straint. At this stage, it is feasible to make an approximation of F based on
splines that fulfils one of the remaining conditions: monotonicity. Consider
the F -generator F (x) =

∑n
i=1 θiBi(x), defined over [0, 1]. According to (Schu-

maker, 2007), if ε ≤ θ1 ≤ θ2 ≤ . . . ≤ θn, for some ε > 0, then F is positive
and monotonically increasing. However, this approach has two shortcomings.
On the one hand, it implies that F is bounded, which is not needed in Propo-
sition 4.1.1. On the other hand, adding all the newer constraints on the θi’s
hampers the estimation process from a computational standpoint.

The F -generator is unique except for a constant positive factor, just like φ:
that is, if c > 0, then x 7→ cF (x) generates the same Archimedean copula as F .

Example 4.1.1. The Archimedean generator φ(x) = − log x, which generates
the independence copula, arises from F (x) = x.

Note that, since F is monotonically increasing, we can extend it to both 0
and 1, even if it is not necessary that F be defined at these points to compute
φ from (4.1). In particular, we can define F (0) = limx→0+ F (x) ≥ 0 and
F (1) = limx→1− F (x), where the latter limit can be infinite. We will assume
this domain extension from now on and write F (0) and F (1) instead of F (0+)
and F (1−), respectively.

1 φ ∈ C1(0, 1) is convex if and only if φ′ is monotonically increasing.
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Remark 4.1.1. Let F and φ be in the relation expressed in Proposition 4.1.1.
F (0) = 0 if and only if φ′(0) = −∞. On the other hand, φ(0) = ∞ implies
φ′(0) = −∞, whereas the converse is not true.2 Consequently, a necessary
condition for φ to be strict is F (0) = 0.

Observe that F induces a Lebesgue-Stieltjes measure µF on (0, 1).3 Interest-
ingly, the F -generator corresponding to the independence copula is F (x) = x,
with µF = λR|[0,1], that is the Lebesgue measure restricted to [0, 1] or, equiv-
alently, the probability distribution of a uniform r.v. U on [0, 1] (see Exam-
ple 4.1.1). An advantage of the parametrization in terms of F is that this
function has an interpretation that conveys more information than φ. However,
some φ’s cannot be represented as in (4.1).

Proposition 4.1.2. An Archimedean generator φ can be expressed in terms of
an F -generator, via Proposition 4.1.1, if and only if φ ∈ C1(0, 1).

Proof. In the proof of Proposition 4.1.1 we saw that (4.1) is continuously dif-
ferentiable. Conversely, let φ ∈ C1(0, 1) be an Archimedean generator. Being φ
strictly decreasing does not guarantee φ′(x) < 0, ∀x ∈ (0, 1), but the additional
convexity hypothesis does, by forcing φ′ to be monotonically increasing.4 There-
fore F (x) = −1/φ′(x) is well-defined, positive, continuous and monotonically
increasing. The fundamental theorem of Calculus can then be used to derive
(4.1) from these premises.

As stated in Theorem 3.1.1, a non-differentiable Archimedean generator pro-
duces singular components. In a general data-fitting setting, singular compo-
nents are rare. Therefore, we hardly lose any generality by assuming the exis-
tence of an F -generator.

Remember that regular variation is a convenient hypothesis to ensure tail-
dependent behaviour. We shall now discuss how F and φ relate to each other
under regular variation. However, to be consistent with Proposition 4.1.1, not
every regularly varying F is allowed.

Proposition 4.1.3. Let F be as in Proposition 4.1.1 and let α ∈ R. We have:

1. If F ∈ R0+,α, necessarily α ≥ 0.

2. If F ∈ R1−,α, necessarily α ≤ 0.

Proof. The proof of both cases is based on Remark B.0.1.

1. If α < 0, then F (0+) =∞ and F would not be monotonically increasing.
Examples with α ≥ 0 are possible.

2. If α > 0, then F (1−) = 0 and F would not be monotonically increasing.
Examples with α ≤ 0 are possible.

The following result summarizes all possible relations between the regular
variation of F and φ.

2 See Example 4.1.3.
3 For all a, b ∈ (0, 1), a ≤ b, µF satisfies µF ((a, b]) = F (b)− F (a).
4 Then, if φ′(x∗) = 0 for some x∗ > 0, necessarily φ′(x) = 0 for all x ∈ (x∗, 1), thus φ

would not be strictly decreasing, leading to a contradiction.
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Proposition 4.1.4. Let F and φ be as in Proposition 4.1.1. We have:

1. If F ∈ R0+,α, with α ≥ 0, then φ ∈ R0+,β, where β = min{1− α, 0}.

2. If F ∈ R1−,α, with α ≤ 0, then φ ∈ R1−,β, where β = 1− α.

Proof.

1. First of all, note that if F ∈ R0+,α, then x 7→ 1/F (x) ∈ R0+,−α. Using
Proposition B.0.5, there exists x0 > 0 such that 1/F (x) = x−α`(x) for all
0 < x < x0.

Suppose α > 1. We have, for 0 < x < x0,

φ(x) = φ(x0) +

∫ x0

x

t−α`(t) dt ,

and, using Karamata’s theorem (Corollary B.0.2),

∫ x0

x

t−α`(t) dt ∼ −x
1−α`(x)

1− α ,

as x→ 0+.

From the above results and the characterization of regular variation for
continuously differentiable functions with normalized slowly varying part
(Proposition B.0.8), which holds for Archimedean generators, as we saw
in (2.20), it follows that

lim
x→0+

xφ′(x)

φ(x)
= − lim

x→0+

x

φ(x)F (x)

= − lim
x→0+

x1−α`(x)

φ(x0) +
∫ x0

x
t−α`(t) dt

= 1− α ,

where we have used that limx→0+ x1−α`(x) = ∞, according to Re-
mark B.0.1. Therefore, φ ∈ R0+,1−α.

Now, suppose α < 1. Using Karamata’s theorem,

φ(0)− φ(x) =

∫ x

0

t−α`(t) dt ∼ x1−α`(x)

1− α ,

as x → 0+. Then, from Remark B.0.1, limx→0+ x1−α`(x) = 0, which
means φ(0) <∞. Therefore, φ ∈ R0+,0.

Finally, if α = 1, we either have φ(0) < ∞ or φ(0) = ∞. In the former
case, φ ∈ R0+,0, as in the case α < 1. The same holds for the latter: using
L’Hôpital’s rule,

lim
x→0+

φ(λx)

φ(x)
= λ

[
lim
x→0+

F (λx)

F (x)

]−1

= λ · λ−1 = 1 .

To sum up, if α > 1, then φ ∈ R0+,1−α, whereas if α ≤ 1, then φ ∈ R0+,0.
This can be compactly expressed as the statement we wanted to prove.
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2. Regardless of the value of α, we have φ(1) = 0. Therefore, using
L’Hôpital’s rule,

lim
x→0+

φ(1− λx)

φ(1− x)
= λ

[
lim
x→0+

F (1− λx)

F (1− x)

]−1

= λ · λ−α = λ1−α .

Regular variation in F also determines, in most cases, the strictness of the
φ generator.

Proposition 4.1.5. Let F ∈ R0+,α be an F -generator as in Proposition 4.1.1
and let φ be its corresponding Archimedean generator. We have:

1. If α > 1, then φ(0) =∞.

2. If α < 1, then φ(0) <∞.

3. If α = 1, then φ(0) depends on the form of F .

Proof.

1. If α > 1, then φ ∈ R0+,β , where β = 1 − α < 0, for Proposition 4.1.4.
Then, the result follows from Remark B.0.1.

2. This relation has been derived in Proposition 4.1.4.

3. Example 4.1.1 shows a regularly varying F with index α = 1 such that
φ(0) = ∞. To see an instance of the opposite case, consider F (x) =
x(log x)2 as x→ 0+, i.e., there exists x0 > 0 such that the equality holds
if 0 < x < x0.5 Then,

φ(0)− φ(x0) =

∫ x0

0

1

t(log t)2
dt =

[ −1

log t

]x0

0

=
−1

log x0
<∞ .

Monotonicity

Assuming that F is absolutely continuous, the monotonicity constraint is ful-
filled assuming the form

F (x) = η +

∫ x

0

f(t) dt , (4.2)

for some η ∈ R and some f : [0, 1]→ R̄ integrable on [0, x], for all x ∈ (0, 1). It
is not difficult to see that F is monotonically increasing if and only if f(x) ≥ 0
at almost6 every x ∈ [0, 1], which is a huge simplification.

Additionally, according to the Lebesgue differentiation theorem, F is dif-
ferentiable almost everywhere, with F ′(x) = f(x) at almost every x ∈ (0, 1).
However, not every continuous and monotonically increasing function can be
expressed as (4.2).

5 Of course, F (x) = x(log x)2 for all x ∈ (0, 1) is not monotonically increasing and thus
not an F -generator.

6 Sure enough, f must be finite at almost every point too if integrable.
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Example 4.1.2 (Cantor function). The Cantor function C : [0, 1] → [0, 1]
(Dovgoshey et al., 2006) is a renowned example of a continuous function which
is not absolutely continuous. Consider the set B([0, 1]) of all functions F :
[0, 1] → R with ‖F‖∞ = supx∈[0,1] |F (x)| < ∞. C can be constructed as the
limit in (B([0, 1]), ‖ ∗ ‖∞) of the sequence

Fn+1(x) =





1
2Fn(3x), if 0 ≤ x ≤ 1

3
1
2 , if 1

3 < x < 2
3

1
2 + 1

2Fn(3x− 2), if 2
3 ≤ x ≤ 1

, (4.3)

where F1 can be arbitrarily chosen in B([0, 1]).7 C exhibits a counter-intuitive
behaviour, being monotonically increasing on the whole [0, 1] with C′(x) = 0
almost everywhere, yet having Im(C) = [0, 1]. Therefore,

C(1)− C(0) = 1 6= 0 =

∫ 1

0

C′(x) dx .

Since F (0) = η, η must be non-negative. From Remark 4.1.1, η = 0 is
needed to get a strict φ. Finally, to enforce F (x) > 0 for all x > 0, one can
simply take f(x) > 0, for all x ∈ (0, 1). As we shall soon see, we can use
this positivity constraint to our advantage when dealing with the asymptotic
behaviour of f as x→ 0+ and x→ 1−. We could also enforce the positivity of
F by expressing it in terms of B-splines8 and requiring that the coefficients be
non-negative, but practical and theoretical results (de Boor and Daniel, 1974)
disapprove that approach.

Integrable functions need not be continuous in general and may even diverge,
provided that they do not accumulate an infinite area around the singularity.
Such is the case of

f(x) =

{
1√
|x−1/2|

, if x 6= 1
2

∞ if x = 1
2

,

whose value f(1/2) = ∞ could actually be different, without changing the
definition of F .9

Even though it is possible to deal with a non-continuous f in a setting like
(4.2), practical reasons urge us not to do so. Estimation procedures for an
Archimedean copula Cφ, such as maximum likelihood estimation, rely on the
existence of a density of Cφ, say cφ. The simplest way to ensure that the copula
density is well defined is by imposing Cφ ∈ C2((0, 1)× (0, 1)), so that

cφ(u, v) =
∂2Cφ
∂u∂v

(u, v) = −φ
′(u)φ′(v)φ′′(Cφ(u, v))

[φ′(Cφ(u, v))]
3 . (4.4)

This is equivalent to requiring φ ∈ C2(0, 1) and, since

φ′(x) = − 1

F (x)
, φ′′(x) =

f(x)

(F (x))2
, (4.5)

7 (B([0, 1]), ‖ ∗ ‖∞) is a Banach space and the mapping Fn 7→ Fn+1 (4.3) is a contraction
(Dovgoshey et al., 2006), so the Banach fixed point theorem applies.

8 B-splines will be our preferred modelling tool in the following sections.
9 f could perfectly take any other value in R at x = 1/2.
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also equivalent to f ∈ C(0, 1).
The previous discussion and Remark 4.1.1 motivate the introduction of the

following alternative latent function.

Proposition 4.1.6 (f-generator). Let f : (0, 1) → (0,∞) be continuous and
integrable on [0, x] for all x ∈ (0, 1). Then

F (x) =

∫ x

0

f(t) dt , (4.6)

is an absolutely continuous F -generator, according to Proposition 4.1.1, satisfy-
ing F (0) = 0.

Again, f is unique except for a constant positive factor that comes out of
integral (4.6), producing an equivalent F .

The parametrization of the Archimedean copula in terms of f , which has
simpler properties than φ of F , involves a loss of representation capacity.
Nonetheless, as shown in Corollary 4.1.1, this loss is small in the case of strict
Archimedean copulas.

Proposition 4.1.7. The Archimedean copula generator φ ∈ Φ can be expressed
in terms of an f -generator, via Proposition 4.1.6, if and only if φ ∈ C2(0, 1),
φ′(0) = −∞ and φ′′(x) > 0 for all x ∈ (0, 1).

Proof. It easily follows from Proposition 4.1.6 and equations (4.5) and

F (x) = − 1

φ′(x)
, f(x) =

φ′′(x)

(φ′(x))2
. (4.7)

Corollary 4.1.1. Let φ ∈ Φ∞. It holds that φ arises from an f -generator, via
Proposition 4.1.6, if and only if φ ∈ C2(0, 1) and φ′′(x) > 0 for all x ∈ (0, 1).

Proof. Requiring that φ be strict makes the condition φ′(0) = −∞ redundant
in Proposition 4.1.7.

We will now give an example of φ that arises from a certain f and another
one in which it is not possible to express φ in terms of f .

Example 4.1.3. The Archimedean generator φ(x) = 1−√x, arises from F (x) =
2
√
x, which, in turn, is derived from f(x) = 1/

√
x. Note that F (0) = 0 and

φ′(0) = −∞, yet φ(0) <∞.

Example 4.1.4. The Archimedean generator φ(x) = (1 − x)α, for any α ≥ 1,
does not arise from the construction in Proposition 4.1.6. Indeed, F (x) =
−1/φ′(x) = (1− x)1−α/α, thus F (0) = 1/α > 0.

The meaning of both f and F -generators we previously alluded to is stated
in the following important result.

Theorem 4.1.1. Let (U, V ) be a r.v. with uniform margins on [0, 1] and let Cφ,
the Archimedean copula generated by φ, be their joint CDF. Let f be a generator
as in Proposition 4.1.6. Letting W = Cφ(U, V ) and Z = V , the density of the
r.v. (W,Z) is

p(w, z) =
f(w)∫ z

0
f(t) dt

1[0,z](w) =
f(w)

F (z)
1[0,z](w) . (4.8)
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Because Z ∼ U [0, 1], the density p(w, z) of (W,Z) coincides with the density
of the conditional r.v. [W |Z = z], that is p(∗|z). Note that if F (1) < ∞,
then x 7→ f(x)/F (1) is a pdf generating the same copula as f and p(w|z) can be
interpreted as a truncation model (Gagliardini and Gouriéroux, 2007). Actually,
Gagliardini and Gouriéroux propose the f latent function in the context of non-
parametric model estimation. Interestingly, it turns out that copula models
are, in some sense, differentiable with respect to the functional parameter f ,
whereas they are not differentiable with respect to φ.

We shall now focus on the conditions for regular variation of f -generators.
As opposed to F -generators, regular variation indices are only restricted at 0+.

Proposition 4.1.8. Let f be as in Proposition 4.1.6 and let α ∈ R. If f ∈
R0+,α, then α ≥ −1.

Proof. Suppose α < −1. Using Karamata’s theorem (Corollary B.0.2), for some
x0 > 0 we have

F (x0)− F (x) =

∫ x0

x

tα`(t) dt ∼ − x
α+1

α+ 1
`(x) ,

as x → 0+. Since limx→0+ xα+1`(x) = ∞, for Proposition B.0.6, f is not
integrable, which leads to a contradiction.

Finally, let us remark that instances of regularly varying f ’s with index
α ≥ −1 are possible.

Regular variation indices of f and F are related through the following result.

Proposition 4.1.9. Let f and F be as in Proposition 4.1.6. We have:

1. If f ∈ R0+,α, then F ∈ R0+,β, where β = α+ 1.

2. If f ∈ R1−,α, then F ∈ R1−,β, where β = min{α+ 1, 0}.

Proof.

1. F (0+) = 0, by construction. Hence, using L’Hôpital’s rule,

lim
x→0+

F (λx)

F (x)
= λ lim

x→0+

f(λx)

f(x)
= λα+1 .

2. If f ∈ R1−,α, using Proposition B.0.5, there exists x0 ∈ (0, 1) such that
f(x) = (1− x)α`(x) for all x ∈ (x0, 1).

Suppose α < −1. We have, for x ∈ (x0, 1),

F (x) = F (x0) +

∫ x

x0

(1− t)α`(t) dt

and, by Karamata’s theorem (Corollary B.0.2),

∫ x

x0

(1− t)α`(t) dt ∼ − (1− x)α+1`(x)

α+ 1
,

as x→ 1−.
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Using the above results and the characterization of regular variation for
continuously differentiable functions with normalized slowly varying part
(Proposition B.0.8), which holds for an F -generator (it is monotonically
increasing and we have Proposition B.0.6), it is possible to derive

lim
x→1−

(1− x)f(x)

F (x)
= lim
x→1−

(1− x)α+1`(x)

F (x0) +
∫ x
x0

(1− t)α`(t) dt = −(α+ 1) ,

where we have used that limx→1−(1 − x)α+1`(x) = ∞, according to Re-
mark B.0.1. Therefore, φ ∈ R1−,α+1.

Now, suppose α > −1. Using Karamata’s theorem once more,

F (1)− F (x) =

∫ 1

x

(1− t)α`(t) dt ∼ (1− x)α+1`(x)

α+ 1
,

as x → 1−. Then, by Remark B.0.1, limx→1−(1 − x)α+1`(x) = 0, which
means F (1) <∞. Therefore, F ∈ R1−,0.

Finally, if α = −1, we have either F (1) <∞ or F (1) =∞. In the former
case, F ∈ R1−,0, as in the α > −1 case. The same holds for the latter.
This can be shown using L’Hôpital’s rule:

lim
x→0+

F (1− λx)

F (1− x)
= λ lim

x→0+

f(1− λx)

f(1− x)
= λ · λ−1 = 1 .

To sum up, if α < −1, then F ∈ R1−,α+1, whereas if α ≥ −1, then
F ∈ R1−,0. This can be compactly expressed as the statement we wanted
to prove.

Proposition 4.1.10 is useful to prove an intermediate tail dependence result
(Charpentier and Segers, 2009) for Archimedean copulas, since F (1) is in one-
to-one correspondence with φ′(1).

Proposition 4.1.10. Let f ∈ R1−,α be an f -generator as in Proposition 4.1.6
and let F be its corresponding F -generator. We have:

1. If α < −1, then F (1) =∞.

2. If α > −1, then F (1) <∞.

3. If α = −1, then F (1) could be finite or infinite depending on f .

Proof.

1. If α < −1, then F ∈ R1−,β , where β = α + 1 < 0, for Proposition 4.1.9.
Then, the result follows from Remark B.0.1.

2. This has been shown in the proof of Proposition 4.1.9.
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3. Taking f(x) = 1/(1 − x) we get F (1) = ∞. To see an instance of the
opposite case, consider f(x) = (1− x)(log(1− x))2 as x→ 1−, i.e., there
exists x0 > 0 such that the equality holds if x > x0. Then,

F (1)− F (x0) =

∫ 1

x0

1

(1− t)[log(1− t)]2 dt

=

[ −1

log(1− t)

]1

x0

=
−1

log(1− x0)
<∞ .

The following result summarizes how f and φ are related in terms of their
regular variation behaviour.

Proposition 4.1.11. Let φ and f be as in (4.1) and (4.6), respectively, and let
α ∈ R.

1. If f ∈ R0+,α, then φ ∈ R0+,β, where β = min{−α, 0}.

2. If f ∈ R1−,α, then φ ∈ R1−,β, where β = max{−α, 1}.

Proof. It is a direct consequence of Proposition 4.1.4 and Proposition 4.1.9,
bearing in mind that 1−min{α+ 1, 0} = max{−α, 1}.

By applying Proposition 4.1.9 and Proposition 4.1.5, we can study the strict-
ness of an Archimedean generator without referring to the intermediate con-
struct F .

Proposition 4.1.12. Let f ∈ R0+,α be an f -generator as in Proposition 4.1.6
and let φ be its corresponding Archimedean generator. We have:

1. If α > 0, then φ(0) =∞.

2. If α < 0, then φ(0) <∞.

3. If α = 0, then φ(0) could be finite or infinite depending on f .

Proof. Just to clarify the case α = 0, both f(x) = 1 and f(x) = (1+log x) log x,
as x → 0+, are slowly varying at 0+, but only the latter produces a non-strict
φ, i.e., φ(0) <∞.

Positivity and tail dependence

Even though the f -generator described in the previous section involves fairly
weak and easy to implement requirements, there remain some details to work
out. The foremost of them is, no doubt, the fact that the f in (4.6) may diverge
both at 0 and 1, as Example 4.1.3 and Proposition 4.1.10 show. A piecewise
definition of f that addresses regular variation at 0 and 1 would be feasible.
The following alternative latent function, closely related to f , offers a more
convenient solution, as we shall see.
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Proposition 4.1.13 (g-generator). Let g : R → R be continuous and define
f : (0, 1)→ (0,∞) as

f(x) = exp g
[
σ−1(x)

]
, (4.9)

where the logistic function σ : R → (0, 1) and its inverse σ−1 (known as the
‘logit’ function) are given by

σ(x) =
1

1 + e−x
and σ−1(x) = log

(
x

1− x

)
,

respectively. The function f is an f -generator provided that it is integrable on
[0, x], for all x ∈ (0, 1), in which case g is a g-generator.

Proof. The continuity of f is a consequence of that of g. The composition with
the exponential function ensures the range of f is contained in (0,∞).

Because two f ’s differing by a constant positive factor produce the same
Archimedean copula, given a g-generator g and K ∈ R, the map x 7→ g(x) +K
is also a g-generator producing the same Archimedean copula as g.

The transformation (4.9) also works the other way round: an f -generator
produces the g-generator

g(x) = log f [σ(x)] . (4.10)

In other words, g and f are in one to one correspondence. Hence, Proposi-
tion 4.1.7 applies in the case of g, too. Whenever f is the density function of
some r.v. X, with corresponding CDF F , g can alternatively be expressed as
the logarithm of the ratio of two densities:

g(x) = log

(
ς ′(x)

σ′(x)

)
, (4.11)

where ς(x) = F (σ(x)) = P(X ≤ σ(x)) = P(σ−1(X) ≤ x) is the CDF of the r.v.
σ−1(X) and σ is, of course, the CDF of the logistic distribution10. If F (1) =∞,
then f cannot represent a density. Nonetheless, equation (4.11) still holds, but
ς would be a Lebesgue-Stieltjes function, rather than a CDF.

Figure 4.1 shows the plot of the logistic function and its derivative. As we
can see, the shape of σ is symmetric in the sense that σ(−x) = 1 − σ(x) and
σ′(x) = σ(x)(1 − σ(x)). Therefore, this map transforms in the same manner
the x values to the left and to the right of zero. This feature is not exclusive of
the logistic function; other non-skewed distribution functions, like the normal
distribution Φ, could also be used. The advantage of using σ over, say, Φ is its
simplicity and the fact that σ′(x) can be directly computed in terms of σ(x).

Figure 4.2 shows the extreme value distribution S−1(x) = exp(− exp(−x)),
which plays the role of σ in (Lambert, 2014), as discussed in Chapter 3, Section
3.1.2, and its density (derivative) (S−1)′(x) = exp[−(x + exp(−x))]. In this
case, the transformation is skewed to the right of zero.

In what follows we will explore some regular variation properties of functions
g and f that relate to tail dependence indices. The following result will also
illustrate how the symmetry of σ allows to model the regular variation of f both
at 0+ and 1− in a similar way, with a single function definition.

10 For Proposition C.0.15, σ is actually the CDF of the r.v. σ−1(U), where U is a r.v.
uniformly distributed in [0, 1]. Therefore, (4.11) can be interpreted as the logarithm of the
ratio of two logit-transformed r.v., namely σ−1(X) and σ−1(U).
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Figure 4.1: The logistic function σ and its derivative σ′
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Figure 4.2: The extreme value distribution S−1 and its density
(S−1)′
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Proposition 4.1.14. Let g and f be as in (4.9).

1. If g ∈ R+
−∞,α, then f ∈ R0+,α.

2. If g ∈ R+
∞,α, then f ∈ R1−,−α.

Proof. Let g ∈ R+
−∞,α. From Proposition B.0.10, we have

g(x) = αx+ `(x) ,

as x→ −∞, where ` ∈ S+
−∞. This means that

f(x) = xα ˜̀(x) , (4.12)

as x→ 0+, where ˜̀(x) = (1− x)−α exp `
(
σ−1(x)

)
. Now, according to Proposi-

tion B.0.5, we just have to check that ˜̀∈ S0+ . Given λ > 0,

lim
x→0+

˜̀(λx)
˜̀(x)

= exp

[
lim
x→0+

`
(
σ−1(λx)

)
− `
(
σ−1(x)

)]
. (4.13)

An easy calculation shows that

σ−1(λx) = σ−1(x) + µ
(
σ−1(x)

)
, (4.14)

with

µ(x) = log λ− log (1 + (1− λ)ex) , (4.15)

so

lim
x→0+

`
(
σ−1(λx)

)
− `
(
σ−1(x)

)
= lim
x→−∞

` (x+ µ(x))− `(x) . (4.16)

The right-hand side of last expression resembles that of Definition B.0.8,
except for the fact that µ is not constant. To account for this fact, we note that
slow variation implies uniform convergence (Proposition B.0.11). Indeed, given
δ > 0, since µ(x)→ log λ as x→ −∞, there exists x1 such that |µ(x)−log λ| < δ
whenever x < x1. Furthermore, fixing I = [log λ − δ, log λ + δ], we know that
for all ε > 0 there exists x2 such that |`(x + µ0) − `(x)| < ε if x < x2 and
µ0 ∈ I. Hence, taking x3 < min{x1, x2}, we get µ(x) ∈ I and, consequently,
|` (x+ µ(x))− `(x)| < ε, if x < x3.

The steps to demonstrate the case g ∈ R+
∞,α are the same, with some minor

and obvious changes:

1. Instead of (4.12), we have

f(x) = (1− x)−α ˜̀(x) ,

as x→ 1−, where ˜̀(x) = xα exp `
(
σ−1(x)

)
and ` ∈ S+

∞.

2. Instead of (4.13),

lim
x→0+

˜̀(1− λx)
˜̀(1− x)

= exp

[
lim
x→0+

`
(
σ−1(1− λx)

)
− `

(
σ−1(1− x)

)]
.
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3. Instead of (4.14) and (4.15), using σ−1(∗) = −σ−1(1 − ∗) as a shortcut,
we arrive at σ−1(1 − λx) = σ−1(1 − x) + µ

(
σ−1(1− x)

)
, for µ(x) =

log (1 + (1− λ)e−x)− log λ, with µ(x)→ − log λ as x→∞.

4. Instead of (4.16),

lim
x→0+

`
(
σ−1(1− λx)

)
−`
(
σ−1(1− x)

)
= lim
x→∞

` (x+ µ(x))−`(x) . (4.17)

5. Finally, the uniform convergence theorem, along with some derivations
that involve ε and δ, similar to the ones made earlier, allows one to con-
clude that the limit (4.17) is zero.

The previous result holds even if g does not produce an integrable f . How-
ever, in order to be a legitimate g-generator, g must satisfy the following con-
straint.

Proposition 4.1.15. Let g be g-generator, as described in Proposition 4.1.13,
and let α ∈ R. If g ∈ R+

−∞,α, necessarily α ≥ −1.

Proof. It is a direct consequence of Proposition 4.1.8 and Proposition 4.1.14.

The following result relates the additive regular variation of g and the regular
variation of φ.

Proposition 4.1.16. Let g be a g-generator and let φ be its corresponding
Archimedean generator. Letting α ∈ R, we have:

1. If g ∈ R+
−∞,α, then φ ∈ R0+,β, where β = min{−α, 0}.

2. If g ∈ R+
∞,α, then φ ∈ R1−,β, where β = max{α, 1}.

Proof. It directly follows from Proposition 4.1.11 and Proposition 4.1.14.

The strictness property of an Archimedean generator is related to the addi-
tive regular variation of g.

Proposition 4.1.17. Let g ∈ R+
−∞,α be a g-generator as in Proposition 4.1.13

and let φ be its corresponding Archimedean generator. We have:

1. If α > 0, then φ(0) =∞.

2. If α < 0, then φ(0) <∞.

3. If α = 0, then φ(0) is finite or infinite depending on g.

Proof. This is a consequence of Proposition 4.1.12, thanks to Proposition 4.1.14.
For examples that illustrate opposite instances of the limiting case α = 0, look
at those of Proposition 4.1.12 and apply (4.10).

We also have some control over f producing a finite measure or not by
adjusting the additive regular variation index of g.

Proposition 4.1.18. Let g ∈ R+
∞,α be a g-generator as in Proposition 4.1.13

and let F be its corresponding F -generator, via (4.9) and (4.6). We have:
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1. If α > 1, then F (1) =∞.

2. If α < 1, then F (1) <∞.

3. If α = 1, then F (1) is finite or infinite depending on g.

Proof. It follows from Proposition 4.1.10, via Proposition 4.1.14.

Approximations of the generator function in terms of splines

Cubic splines and B-splines have been used to approximate a sufficiently simple
latent function like the g we have just introduced. In (Lambert, 2014), reviewed
in Chapter 3, Section 3.1.2, it was the derivative of a certain generator which
was expressed as a linear combination of B-splines over a bounded domain. In
that work, little or no attention was paid to the asymptotic properties of the
approximation as |x| → ∞. Two major issues are worth noting at this respect:

• In (Lambert, 2014), not every polynomial continuation provides a valid
construction.

• In (Lambert, 2014), even if a polynomial continuation applies as x→ −∞,
the function to be approximated could grow so fast that it would not be
possible to represent it with a polynomial, always resulting in lower tail
independence, as Proposition 3.1.5 and Figure 3.4 show.

The work by Hernández-Lobato and Suárez relies on the approximation of
g with natural cubic splines. The parametrization used in our work is not
the original proposal in (Hernández-Lobato and Suárez, 2011), but actually a
simpler and more convenient one in which the slopes of the spline as |x| → ∞
become explicit parameters. For a complete explanation on this matter, we refer
the reader to Appendix A.

Proposition 4.1.19 (Natural spline g-generator). Let ∆ = {a = ξ1 <
ξ2 < . . . < ξn = b} be an n-point partition of the interval [a, b] ⊂ R. Let
N1, N2, . . . , Nn be the natural splines basis associated with ∆, as described in
Appendix A, Section A.2.1. Let θ = (θ1, θ2, . . . , θn)T ∈ Rn and define g : R→ R
as

g(x) =
n∑

i=1

θiNi(x) , (4.18)

where we assume the convention that the basis functions Ni’s extend outside [a, b]
by means of a linear extrapolation11. If θ1 > −1, then (4.18) is a g-generator.

Proof. Remember that g′(a) = θ1 in our parametrization. Since g is a natural
spline, with a linear continuation for x < a, we may assume that, for all x < a,
g(x) = θ1x + K for some K ∈ R, thus g ∈ R+

−∞,θ1 . Then, Proposition 4.1.15
only allows θ1 ≥ −1. Finally, we simply need to check the limiting case θ1 = −1
is not allowed either. Using (4.9),

f(x) = exp

(
− log

(
x

1− x

)
+K

)
= eK

(
1− x
x

)
,

which is not integrable near 0.

11 See (A.14) in the appendix.
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Proposition 4.1.19 explicitly introduces, for the first time in this chapter, the
underlying parameter vector θ of Hernández-Lobato and Suárez’s model. If we
were to optimize those parameters, the copula model would not be identifiable,
which means that two distinct parameter vectors θ1 and θ2 can give rise to the
same copula. This poses some theoretical objections to the use of maximum
likelihood estimation, for example. The following result explains why (4.18)
suffers from this identifiability issue and, at the same time, gives us the key to
solve it.

Proposition 4.1.20. Let g be a natural spline g-generator as in (4.18). For
every k = 2, 3, . . . , n− 1, there exists a unique natural spline g-generator g−k :
R → R having a zero k-th coordinate with respect to the basis in (4.18) and
producing the same Archimedean copula as g.

Proof. Let θ = (θ1, θ2, . . . , θn)T be the coordinates of the natural spline g in
(4.18) with respect to the natural spline basis N1, N2, . . . , Nn. Similarly, let
ϑ = (ϑ1, ϑ2, . . . , ϑn+2)T be the coordinates of g with respect to the cubic B-
splines B1, B2, . . . , Bn+2. For Proposition A.2.1, building a spline by adding a
constant K ∈ R to all the coordinates ϑi’s is equivalent to adding the same
constant K to the original spline. More precisely, letting gK have coordinates
ϑi +K with respect to the cubic B-splines, we have

gK(x) =
n+2∑

i=1

(ϑi +K)Bi(x) = K +
n+2∑

i=1

ϑiBi(x) = g(x) +K , (4.19)

for all x ∈ [a, b].
Now, looking at Proposition A.2.7, with the caveat that the notation em-

ployed to refer to θ and ϑ is different, we can easily see that adding a constant
K to each component of ϑ is equivalent to adding the same constant K to each
component of (θ2, θ3, . . . , θn−1)T , i.e., all the coordinates of θ except for the first
and last ones. Therefore, (4.19) can equivalently be stated as

gK(x) = θ1N1(x) + θnNn(x) +
n−1∑

i=2

(θi +K)Ni(x)

= K +

n∑

i=1

θiNi(x)

= g(x) +K ,

(4.20)

for all x ∈ [a, b]. Note that, since g and gK are natural splines, equation (4.20)
holds for x ∈ R.

Finally, let k be any index in {2, 3, . . . , n − 1} and consider θ̃ =
(θ̃1, θ̃2, . . . , θ̃n)T , where θ̃1 = θ1, θ̃n = θn, θ̃k = 0 and θ̃i = θi − θk if i 6= k.
Defining g−θk : R→ R as

g−θk(x) =

n∑

i=1

θ̃iNi(x) =

n∑

i=1
i6=k

θ̃iNi(x) (4.21)

and taking K = −θk in (4.20), we have that

g−θk(x) = g(x)− θk , (4.22)
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for all x ∈ R. All in all, g−θk in (4.21) produces the same Archimedean copula
as g, because of (4.22), while having a zero k-th coordinate.

According to Proposition 4.1.20, to make (4.18) identifiable it suffices to
remove the k-th basis function, Nk, for some k ∈ {2, 3, . . . , n− 1}, and find our
candidate natural spline

g(x) =
n∑

i=1
i6=k

θiNi(x) , (4.23)

by optimizing the reduced parameter vector
(θ1, θ2, . . . , θk−1, θk+1, θk+2, . . . , θn)T ∈ Rn−1. A secondary but conve-
nient consequence of modelling (4.23) instead of (4.18) is that we need to
optimize one less parameter, saving us some computations.

The natural spline specification of g is additively regularly varying at ±∞
by construction.

Remark 4.1.2. Let g be a natural spline g-generator as described in Proposi-
tion 4.1.19.12 Remember that g′(a) = θ1 and g′(b) = θn. On the other hand,
because of the natural spline constraints, g′′(a) = g′′(b) = 0, the linear extrap-
olation

g(x) =

{
g(a) + θ1(x− a), if x < a

g(b) + θn(x− b), if x > b
, (4.24)

implies g ∈ C2(R) ∩R+
−∞,θ1 ∩R

+
∞,θn .

As a result, the parameters θ1 and θn determine the regularly varying be-
haviour of φ.

Proposition 4.1.21. Let g be a natural spline g-generator as described in
Proposition 4.1.19, with θ1 and θn as its first and last coordinates, respectively,
and let φ be its corresponding Archimedean generator. We have:

1. φ ∈ R0+,β, where β = min{−θ1, 0}.

2. φ ∈ R1−,β, where β = max{θn, 1}.

Moreover, the θ1 parameter is related to the strictness of the resulting
Archimedean generator φ, while θn determines the finiteness of F (1).

Proposition 4.1.22. Let g be a natural spline g-generator as described in
Proposition 4.1.19, with θ1 as its first coordinate, and let φ be its corresponding
Archimedean generator. We have:

1. If θ1 ≥ 0, then φ(0) =∞.

2. If θ1 < 0, then φ(0) <∞.

Proof. The case θ1 6= 0 easily follows from Proposition 4.1.17, via Remark 4.1.2,
so we just have to check that θ1 = 0 produces a strict Archimedean generator.
In this case, g(x) = K ∈ R for all x < a. Then, f(x) = eK and F (x) ∝ x if
x < σ(a). Finally, φ(x) ∝ − log x, thus φ(0) =∞.

12 The general construction subsumes the identifiable version (4.23).
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Proposition 4.1.23. Let g be a natural spline g-generator as described in
Proposition 4.1.19, with θn as its last coordinate, and let F be its corresponding
F -generator, via (4.9) and (4.6). We have:

1. If θn ≥ 1, then F (1) =∞.

2. If θn < 1, then F (1) <∞.

Proof. Proposition 4.1.18 is sufficient to determine F (1) from θn whenever θn 6=
1. If θn = 1, we have g(x) = x+K, for all x > b and some K ∈ R. Hence, using
(4.10), f(x) ∝ x/(1− x) for x near 1 and thus F (1) =∞.

The left and right linear regions, (−∞, a) and (b,∞), respectively, are related
to tail events, whereas the interval [a, b], which represents the non-linear region
of the spline, is related to non-tail events, as the reader might have guessed
by now from Remark 4.1.2 and Proposition 2.4.6. A major contribution of
(Hernández-Lobato and Suárez, 2011) is taking advantage of the linear regions
(4.24) to model tail dependencies. Actually, nothing prevents us from using
higher order polynomial approximations, but the scarcity of data to model tail
dependencies discourages from employing complex models outside [a, b]. Re-
membering Domingos’s words:

“. . . strong false assumptions can be better than weak true ones,
because a learner with the latter needs more data to avoid overfit-
ting.”

(Domingos, 2012)

In this sense, the linear extrapolation (Remark 4.1.2) is the simplest (and so
the strongest assumption) among all possible additively regularly varying con-
tinuations, with a constant slowly varying part.

A key aspect in the design of the latent function g is the location of the spline
knots ({ξi}ni=1). There are a number of reasonable ways to address this task,
but none of them seems clearly superior to the others. In contexts where the
function to be approximated is graphically linked to data, like in a regression
setting, reasonable guesses can be made; it is even possible to optimize the
location of the B-spline knots (Mao and Zhao, 2003). In contexts like ours,
where the latent function g is related to data only in an indirect manner that
involves several (integral) transformations, the problem is more difficult to solve.
(Vandenhende and Lambert, 2005, Lambert, 2007, 2014) recommend employing
a large number of equidistant knots.

(Hernández-Lobato and Suárez, 2011) propose a different approach based on
Theorem 4.1.1 that suggests knots can be placed on empirical grounds. In any
case, Hernández-Lobato and Suárez propose to employ also a large number of
knots (n = 20, for example).

Definition 4.1.1 (Kendall knots). Let D = {(Ui, Vi)}Ni=1 be a sample con-
tained in [0, 1]2. From D, we can obtain an empirical estimate CD of the un-
derlying copula and, then, an empirical estimate of the corresponding Kendall
distribution. Let Ŵ be the r.v. corresponding to the empirical Kendall distri-
bution arising from the pseudo-sample {Wi}Ni=1, where Wi = CD(Ui, Vi). We
define the Kendall knots {qi}ni=1 as the quantiles

qi = Qσ−1(Ŵ )(pi) ,
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where p1 = ε and pn = 1− ε, for some ε & 0 (typically ε = 0.01), and

pi = p1 +
pn − p1

n− 1
(i− 1) ,

for i = 2, 3, . . . , n− 1.

The motivation for Definition 4.1.1 can be better understood by looking at
equation (4.8) in Theorem 4.1.1, which can be rewritten in terms of g as

p(w, z) =
exp g

[
σ−1(w)

]

F (z)
1[0,z](w) =

exp g
[
σ−1(w)

]
∫ σ−1(z)

−∞ exp g(t) dσ(t)
1[0,z](w) , (4.25)

where dσ(t) = σ′(t) dt. If we want to estimate the joint density of (W,Z),
where W is the Kendall r.v. and Z is one of the uniform marginal r.v., from a
sample {Wi, Zi}Ni=1 using model (4.25), placing the spline knots of g according
to Definition 4.1.1 can be a reasonable choice. By definition, Kendall knots
accumulate the same proportion of points {σ−1(Wi)}Ni=1 between any two con-
secutive knots qk and qk+1, leaving proportions ε and 1−ε to the left of q1 and to
the right of qn, respectively. Since the argument of g in the numerator in (4.25)
is σ−1(w), Kendall knots evenly distribute sample instances σ−1(Wi)’s among
spline pieces. Hence, all parameters θi’s in (4.23) should be evenly validated.
Note, however, that this interpretation does not take into account the integral
in the denominator of (4.25).

The knot placement proposed in Hernández-Lobato and Suárez perform rea-
sonably well in most situations. However, they tend to misplace the rightmost
knot before the linear regime in the upper tail is reached, which does not al-
low one to provide good estimates for g′(b) = θn. The reason for this bias
lies in the empirical distribution of {σ−1(Wi)}Ni=1, on which Kendall knots de-
pend. Since each Wi is bounded from above by either Ui or Vi, which are
uniformly distributed, the distribution of σ−1(Ŵ ) is asymmetric with respect
to σ−1(1/2) = 0; roughly speaking, there are usually (many) more negative val-
ues than positives ones, typically resulting in 0 < qn < −q1. This is even more
marked for small values of Kendall’s tau, since, according to Proposition 2.3.3,

E(W ) =
1 + τ(C)

4
,

where W represents the true Kendall r.v. associated with the copula estimate
C. We shall present some examples of samples {σ−1(Wi)}Ni=1 that illustrate this
phenomenon in Chapter 5.

If we do not feel drawn to the empirical Kendall knots, but rather prefer to
stick to the non-informative equidistant knots, as many others, there are basi-
cally two ways to do that. Hernández-Lobato and Suárez’s analogue approach
to Lambert’s equidistant knots in [S(ε), S(1− ε)] can be obtained by replacing
S with σ−1. This means that the knots are equidistant in the domain of g (of
g′, in (Lambert, 2014)).

Definition 4.1.2 (Uniform knots). We define the uniform knots {qi}ni=1 as
the quantiles

qi = Qσ−1(U)(pi) = σ−1(pi) ,

where U is a uniformly distributed r.v. in [0, 1] and the values of the pi’s are
defined as in Definition 4.1.1.
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The linearity assumptions entailed by the use of natural splines attempt to
reduce the complexity of the model where data instances are scarce. If linear
approximations are valid when |x| � 0 and if g is sufficiently well-behaved, we
can argue that the curvature of g, which represents the complexity of the model,
is not uniform over the non-linear region, but rather increases as |x| approaches
0. On the other hand, one could argue that knots should be placed where the
curvature of g is bigger. Combining this two ideas, we may conclude that knots
should accumulate near 0 and that is what Definition 4.1.2 suggests. Observe
that uniform knots are not equidistant in the domain of g (the whole R), but
their images through σ, the pi’s, are uniform in the domain of f : the interval
(0, 1).

4.1.2 Relation to dependence measures

In this section we will analyse the capabilities of Hernández-Lobato and Suárez’s
technique to model certain dependence measures, some of which have already
been introduced in Chapter 2.

Concordance

There are several ways to express the Kendall’s tau of Hernández-Lobato and
Suárez’s estimate. Unfortunately all of them involve two different generators.
Most notably, we have

τ(Cφ) = 1− 4

∫ 1

0

F (x)φ(x) dx

= 4

∫ 1

0

xf(x)φ(x) dx− 1

, (4.26)

where f , F and φ are the generators introduced in Section 4.1.1. The latter
expression is computationally more accurate than the former, because evaluating
F instead of f requires an additional approximation step (see Appendix D). In
either case, there does not seem to be any strong limitation to the representation
of Kendall’s tau in this model, provided that we use enough knots.

Tail dependence

The following proposition is useful to understand why the modelling of the tail
dependence is one of the strongest points of (Hernández-Lobato and Suárez,
2011).

Proposition 4.1.24. Let g be a natural spline g-generator as described in
Proposition 4.1.19, with θ1 and θn as its first and last coordinates, respectively,
and let φ be its corresponding Archimedean generator. The Archimedean copula
generated by φ, Cφ, has lower and upper tail indices

λL(Cφ) =

{
2−1/θ1 , if θ1 > 0

0, if θ1 ≤ 0

and

λU (Cφ) =

{
2− 21/θn , if θn > 1

0, if θn ≤ 1
,
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respectively.

Proof. It easily follows from Proposition 4.1.21 and Proposition 2.4.6.

As we can see, no upper or lower tail index is out of reach. Interestingly,
neither the upper nor the lower tail index are in one-to-one correspondence with
their associated slopes. Namely, λL(Cφ) = 0 and λU (Cφ) = 0 for infinite values
of θ1 and θn, respectively. Therefore, it is natural to wonder what differences,
if any, there are among the different tail dependencies. A partial answer to
this question is given by the following tail dependence indices, introduced by
Ledford and Tawn according to (Hua and Joe, 2013).

Definition 4.1.3 (Ledford & Tawn’s indices). Let C be a bivariate copula.
The Ledford & Tawn’s lower and upper tail indices are defined as

ηL(C) = lim
u→0+

log u

logC(u, u)

ηU (C) = lim
u→0+

log u

log Ĉ(u, u)

,

respectively, provided the limits exist, where Ĉ represents the survival copula
of C. Both indices are related through the identity ηU (C) = ηL(Ĉ).

Ledford & Tawn’s indices are in the interval [0, 1]. A pivotal value is 1/2,
which corresponds to the independence copula. Values larger than 1/2 corre-
spond thus to some positive dependence; smaller values, to negative dependence.
Ledford & Tawn’s indices are a measure of intermediate tail dependence, in the
sense that they are not sensitive to different values of the standard tail indices,
but they might distinguish between different cases of standard tail independence.

Remark 4.1.3. If C is a bivariate copula such that λL(C) > 0, then

ηL(C) = lim
u→0+

log u

logC(u, u)
=


1 + lim

u→0+

log
(
C(u,u)
u

)

log u



−1

= 1 .

Similarly, if λU (C) > 0, then ηU (C) = 1.

The following result taken from (Charpentier and Segers, 2009) summarizes
all possibles values of Ledford & Tawn’s upper tail index for Archimedean cop-
ulas, under the standard regular variation hypothesis.

Theorem 4.1.2. Let φ ∈ Φ and let Cφ be the Archimedean copula generated
by φ. If φ ∈ R1−,1, then

ηU (Cφ) =

{
1/2, if φ′(1) < 0

1, if φ′(1) = 0
.

The previous result shows that regular variation limits to a great extent the
application of Ledford & Tawn’s upper tail index, with only two possible values.
Hua and Joe present an example of Archimedean copula family {Cα}α∈(0,1),
expressed in terms of Laplace transforms, such that ηU (Cα) = 1/(1 + α) and,
hence, ηU (Cα) takes all values in (1/2, 1).

The Archimedean copulas obtained using Hernández-Lobato and Suárez’s
technique are regularly varying. Therefore, we can apply Theorem 4.1.2 to
obtain the following corollary.
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Corollary 4.1.2. Let g be a natural spline g-generator as described in Propo-
sition 4.1.19, with θn as its last coordinate, and let φ be its corresponding
Archimedean generator. The Archimedean copula generated by φ, Cφ, has Led-
ford & Tawn’s upper tail index

ηU (Cφ) =

{
1/2, if θn < 1

1, if θn ≥ 1
.

Proof. It is a consequence of Theorem 4.1.2 and Proposition 4.1.23, noting
φ′(1) = −1/F (1).

Corollary 4.1.2 shows that Hernández-Lobato and Suárez’s technique is as
good as they come as refers to upper tail dependence modelling. Even more
interesting is the combination λU (Cφ) = 0 and ηU (Cφ) = 1, corresponding to
θn = 1. According to (Charpentier and Segers, 2009), this is a rare case, known
as near asymptotic dependence, which does not usually arise in customary para-
metric models.

The next result, actually a particular case of a more general one in (Charpen-
tier and Segers, 2009), contrasts with the limitations imposed by Theorem 4.1.2.

Theorem 4.1.3. Let φ ∈ Φ∞ and let Cφ be the Archimedean copula generated
by φ. If φ ∈ S0+ and ψ ∈ R∞,α, for some α ∈ R, where

ψ(x) =

[
d

dx

{
log φ−1

}
(x)

]−1

,

then α ≤ 1 and ηL(Cφ) = 2α−1.

For Archimedean copulas, hence, Ledford & Tawn’s lower tail index can take
any value in (0, 1], even under the regular variation assumption. However, in
the representation given by Hernández-Lobato and Suárez, it is not possible to
span the whole range of values.

Proposition 4.1.25. Let g be a natural spline g-generator as described in
Proposition 4.1.19, with θ1 as its first coordinate, and let φ be its correspond-
ing Archimedean generator. The Archimedean copula generated by φ, Cφ, has
Ledford & Tawn’s lower tail index

ηL(Cφ) =





0, if θ1 < 0

1/2, if θ1 = 0

1, if θ1 > 0

.

Proof. The case θ1 > 0 follows from Proposition 4.1.24 and Remark 4.1.3. The
case θ1 < 0 implies φ(0) < ∞, for Proposition 4.1.22. Therefore, Cφ(u, u) = 0
for a sufficiently small u > 0 and the result follows by Definition 4.1.3. Finally,
the case θ1 = 0 can be checked either by a simple calculation or realizing that
a constant g produces the independence copula (θ1 = 0 means g is constant as
x→ −∞).
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4.1.3 Estimation and smoothing

In this section we address the problem of estimating the parameters in (4.23),
avoiding overfitting. We will also provide useful implementation details, in-
troduced by Hernández-Lobato and Suárez. Even though we basically follow
their recommendations, we introduce some modifications that improve the ef-
fectiveness of the method. The reader is referred to Section D.1.4 for a detailed
description of these improvements and the insights that motivated them.

Maximum likelihood estimation

Maximum likelihood is the estimation method proposed in (Hernández-Lobato
and Suárez, 2011). Rearranging factors in the Archimedean copula density (4.4),
using (4.5), we get

cφ(u, v) = f(Cφ(u, v))
F (Cφ(u, v))

F (u)F (v)
, (4.27)

where f and F are the corresponding generators. Now, including explicitly the
dependence on θ, the vector of parameters in terms of which g is expressed, we
get

log cθ(u, v) = gθ
{
σ−1[Cθ(u, v)]

}
+ log

Fθ[Cθ(u, v)]

Fθ(u)Fθ(v)
, (4.28)

where we have used (4.9). The log-likelihood of θ given the data set D =

{(Ui, Vi)}Ni=1 is

logL(θ|D) =
N∑

i=1

log cθ(Ui, Vi) . (4.29)

It is important to remark that θ actually refers to the reduced parameter vector
in (4.23), which was introduced to make the model identifiable. We shall write
θ ∈ Rn−1 to emphasize the missing k-th natural spline basis function in the
expansion of g.

The original proposal (4.29) in (Hernández-Lobato and Suárez, 2011) is not
the only loss function one can optimize to estimate θ. We can also consider
the density (4.25) corresponding to the r.v. (W,Z) described in Theorem 4.1.1,
where W follows the Kendall distribution of the Archimedean copula and Z is
any of the uniform margins. The log-density of the model is

log pθ(w, z) = gθ
(
σ−1(w)

)
− logFθ(z) , (4.30)

where the indicator function 1[0,z] has been omitted on the grounds that, in
practice, we shall always have 0 ≤ w ≤ z for empirical realizations of (W,Z).
Observe that, because the Kendall distribution produces, under certain hypothe-
ses, an Archimedean copula, the loss function

logL(θ|D̃) =

N∑

i=1

log pθ(Wi, Zi) , (4.31)

where D̃ = {(Wi, Zi)}Ni=1, for Zi = Ui (or equivalently, Zi = Vi) and Wi as
defined in Definition 4.1.1, could also be used. As a matter of fact, we have
seen a similar approach, based on the Kendall distribution, in (Vandenhende
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and Lambert, 2005). Fairly speaking, Vandenhende and Lambert had arguably
no choice, since they could not rely on a copula density function.

One of the weak points of using the loss function (4.31) is the estimation of
the pseudo sample {Wi}Ni=1. Replacing Cθ(Ui, Vi) with Wi entails an informa-
tion loss, since we need to use an empirical estimate of Cθ subject to sample
errors. However, the accuracy of empirical estimates grows for large sample sizes
and, moreover, there are a number of sophisticated non-parametric techniques
that can be explored, too.

The strength of (4.31) over (4.29) is the simplicity of (4.30), as compared
with (4.28). The former involves just two latent functions (gθ and Fθ) and,
besides, is devoid of complex compositions involving functions that depend on
θ. We can take advantage of these features during optimization, as we shall see
in Appendix D.

Smoothing formulae

The actual optimization problem in (Hernández-Lobato and Suárez, 2011) in-
corporates a term E(θ) that penalizes the curvature of the gθ function, which,
as discussed above, represents the complexity of the model:

E(θ) =

∫ ∞

−∞
[g′′θ(x)]

2
dx =

∫ b

a

[g′′θ(x)]
2
dx , (4.32)

since, of course, g′′θ(x) = 0 for all x /∈ (a, b).
In Appendix A, the curvature (4.32) of a spline was expressed in

terms of the coordinates with respect to the B-splines basis, rather than
the natural basis, but a similar expression can be found. If θ =
(θ1, θ2, . . . , θk−1, θk+1, θk+2, . . . , θn) ∈ Rn−1, consider the augmented coordi-
nates vector θ̄ = (θ1, θ2, . . . , θk−1, 0, θk+1, θk+2, . . . , θn) ∈ Rn corresponding to
the full expansion of gθ. On the other hand, consider Ω ∈ Mn×n(R) with
elements

Ωij =

∫ b

a

N ′′i (x)N ′′j (x) dx (4.33)

and the reduced matrix Ω∗ ∈ M(n−1)×(n−1)(R) formed by removing the k-th
row and column in Ω.13 Then, the curvature becomes as simple as

E(θ) = θ̄
T

Ωθ̄ = θTΩ∗θ . (4.34)

The curvature (4.32) plays a similar role to (3.26), the norm of the r-th order
differences of θ, in (Lambert, 2014). In our quest for a genuine semiparametric
method, we reckon that the curvature (4.32) is a more meaningful measure than
(3.26), because it is rooted in a physical concept that involves the functional
parameter g. For instance, the norm of the differences vector is not sensitive
to knot locations, which are essential in the description of splines, whereas the
curvature definitely takes them into account.

Optimization procedure

The optimization problem to solve in (Hernández-Lobato and Suárez, 2011) is

arg max
θ∈Θ

{logL(θ|D)− λE(θ)} , (4.35)

13 Without any row or column permutation.
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with parameter space

Θ = {(θ1, θ2, . . . , θk−1, θk+1, θk+2, . . . , θn) ∈ Rn−1 : θ1 ≥ 0} (4.36)

and penalty factor λ ≥ 0. The original loss function in (Hernández-Lobato and
Suárez, 2011) is (4.29), but we can use (4.31) instead.

The constraint θ1 ≥ 0 in (4.36), Hernández-Lobato and Suárez’s original
proposal, ensures φθ(0) = ∞, according to Proposition 4.1.22. It can be re-
laxed so as to allow for non-strict Archimedean generators, requiring θ1 > −1
instead, as stated in Proposition 4.1.19. Strictly speaking, the original natural
spline parametrization in (Hernández-Lobato and Suárez, 2011) expresses Θ in
a slightly more complicated manner, since g′θ(a) does not correspond to θ1, but
to a linear combination of the full set of parameters.

Penalty λ is determined via cross-validation. Namely, Hernández-Lobato
and Suárez recommend using a 10-fold cross-validation grid search. This means
that the log-likelihood in (4.35) uses only 90% of the available data for train-
ing, while the remaining 10% is devoted to validation. Once obtained a cross-
validated penalty λ∗, the final parameter vector θ is estimated by plugging
λ = λ∗ into (4.35) and making use of the whole dataset D. Since the magnitude
of logL(θ|D) grows as the sample size N does, the penalized log-likelihood used
as loss function after cross-validation is not the same as the one used during
cross-validation to obtain λ∗. This might reduce the effectiveness of the K-fold
cross-validation, specially if we employ fewer folds, like K = 4 or K = 3, in
which case the size of datasets during validation account for just 75% or 66%
of all available data. Therefore, we propose to adjust (4.36) to normalize the
log-likelihood according to the size of the dataset employed at each step and use
instead

arg max
θ∈Θ

{
1

N
logL(θ|D)− λE(θ)

}
. (4.37)

The cross-validation proposed in (Hernández-Lobato and Suárez, 2011) may
be very time-consuming, specially if we want to test a large number of candidate
λ’s. Hernández-Lobato and Suárez simplify the grid search by considering log-
spaced candidate λ’s; namely, the (natural) logarithms of the candidates are the
integers 1, 2, 3, 4. Note that, in the N -normalized version (4.37), these particular
integer values are not supposed to work; instead we propose to try λ = 10k for
several k ∈ Z.

If we work under tight time constraints and cannot afford to perform a cross-
validation step, we may resort to a Bayesian penalty approach, even if our main
interest is not Bayesian statistics. We can easily adapt the proposal in (Lambert,
2014) to our problem by replacing the r-th order difference Gramian matrix P
in (3.34) with Ω∗. Taking hyper-parameters a = b = 1, as recommended in
(Lambert, 2014), we can alternatively solve the problem

arg max
θ∈Θ

{
logL(θ|D)−

(
1 +

rank(Ω∗)
2

)
log

(
1 +

1

2
θTΩ∗θ

)}
. (4.38)

The rationale behind the prior distribution proposed in (Lambert, 2007,
2014) also applies when penalizing the curvature. Since Ω∗ is positive semi-
definite14, it is the Gramian matrix of a set of vectors, that is, Ω∗ = ATA, for

14 By construction, θTΩ∗θ ≥ 0 for all θ ∈ Rn−1.
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some real matrix A such that rank(Ω∗) = rank(A). Therefore, E(θ) can be
interpreted as E(θ) = ‖Aθ‖2 and Aθ is the curvature counterpart of the r-th
order differences vector ∆r

n−1θ in (Lambert, 2014).
Problems (4.37) and (4.38) cannot be analytically solved, so we must resort

to numerical methods. We refer the reader to Appendix D for further details
on implementation.

4.2 Semiparametric Archimedean copula family

In this section we will present a new approach to conditional copula modelling
based on the bivariate copula modelling technique in (Hernández-Lobato and
Suárez, 2011). We must praise Hernández-Lobato and Suárez for the introduc-
tion of such a convenient method, whose light constraints make the conditional
extension a feasible goal. On the other hand, the nice approximating features
semiparametric Archimedean copulas (SPAC) have are also present in the newer
SPAC family members.

4.2.1 The construction of a bivariate latent function

Much like in (Lambert, 2014), our goal is to find a suitable family of SPAC gener-
ators {φw}w∈[0,1] and then consider the conditional copula family {C(∗, ∗|w) =
Cφw}w∈[0,1]. We build our new proposal both upon the concept of g-generator
and the spline approximation techniques. That being said, we will skip the mo-
tivation steps we took to arrive to the final operating version of the g-generator,
based on natural cubic splines.

We are looking for a bivariate function g : R × [0, 1] → R such that, fixed
a covariate value w ∈ [0, 1], x 7→ g(x,w) is a natural spline g-generator as
defined in Proposition 4.1.19. Let N1, N2, . . . , Nn be the usual natural spline
basis in Proposition 4.1.19, associated with a partition ∆x = {ξxi }ni=1, where
a = ξx1 < ξx2 < . . . < ξxn = b. For now, consider

g(x,w) =
n∑

i=1

θi(w)Ni(x) , (4.39)

where θi : [0, 1] → R, for i = 1, 2, . . . , n, and θ1(w) > −1, for all w ∈ [0, 1].15

From (4.39), we can obtain φw in three steps. Firstly, construct the f -generator

fw(x) = f(x,w) = exp g(σ−1(x), w) .

Then, integrate to obtain the F -generator

Fw(x) = F (x,w) =

∫ x

0

fw(t) dt (4.40)

and finally the Archimedean generator

φw(x) = φ(x,w) =

∫ 1

x

1

Fw(t)
dt .

Since we are proficient at approximating with splines, it comes as no surprise
the following definition (Lyche and Schumaker, 1975, Lyche and Morken, 2002).

15 Remember from Proposition 4.1.19 that the first coordinate θ1 of a natural spline, with
respect to the basis N1, N2, . . . , Nn, must satisfy θ1 > −1.
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Definition 4.2.1 (Tensor product spline g-generator). Let ∆w = {ξwi }Mi=1

be a partition of the covariate space [0, 1], i.e., 0 = ξw1 < ξw2 < . . . < ξwM = 1.
Let B1, B2, . . . , Bm, with m = M + 2, be the cubic B-splines associated with
the partition ∆w. We can take each coordinate function θi in (4.39) as

θi(w) =
m∑

j=1

θijBj(w) ,

for a parameter matrix Θ = (θij) ∈ Mn×m(R) such that θ1j > −1, for j =
1, 2, . . . ,m. Then, we can define the tensor product spline g-generator

gΘ(x,w) =
n∑

i=1

m∑

j=1

θijNi(x)Bj(w) . (4.41)

Just like in Proposition 4.1.19, we need θ1(w) > −1 for all w ∈ [0, 1]. For
Proposition A.2.1, it suffices to take θ1j > −1 for j = 1, 2, . . . ,m. Similarly, if
we want to ensure each φw is strict, i.e., φw(0) = ∞, we may consider θ1j ≥ 0
for j = 1, 2, . . . ,m.

We have no reliable heuristic to place the ξwi knots over the covariate space.
We recommend employing equidistant knots in [0, 1], i.e., ξwi = (i− 1)/(M − 1),
for i = 1, 2, . . . ,M . As for the knots in the x variable, ξxi , note that Kendall
knots (Definition 4.1.1) do not make sense in the conditional case, where we
typically have a single data instance (Ui, Vi,Wi) for each conditional copula: we
have no repeated values in the covariates data set DW = {Wi}Ni=1. We propose
to use uniform knots (Definition 4.1.2), which, in fact, were our first option for
the non-conditional case (not Hernández-Lobato and Suárez’s).

Fixed x ∈ R, we have that gw = w 7→ gΘ(x,w) is a cubic spline. This
alone represents an improvement with respect to (Lambert, 2014), where the
counterpart of gw is not exactly a spline, but a squared spline. On the other
hand, just like in (Lambert, 2014), the construction (4.41) can be easily ex-
tended to include more covariates, just adding more B-spline dimensions and
indices.16 Note also that we could have used a cubic natural spline basis for the
w-dimension, too, but the natural spline constraints do not make so much sense
in the covariate space.

There is an identifiability issue in Definition 4.2.1, just like in the original
definition of natural spline g-generator (Proposition 4.1.19). Given Θ = (θij) ∈
Mn×m(R), consider Θ̃ = (θ̃ij) ∈Mn×m(R) with

θ̃ij =

{
θij + αj , if i 6= 1 and i 6= n

θij , if i = 1 or i = n
,

where α1, α2, . . . , αm ∈ R. For Proposition 4.1.20, we have

gΘ̃(x,w) = gΘ(x,w) +
m∑

j=1

αjBj(w) ,

which means Θ and Θ̃ produce the same Archimedean copula family. We must
avoid such an identifiability issue both for theoretical and practical reasons.

16 Obviously, at the expense of raising computational costs.
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We can attain this by simply removing Ni∗ , provided that i∗ 6= 1 and i∗ 6= n,
which is equivalent indeed to setting αj = −θi∗j , for all j = 1, 2, . . . ,m, so that

θ̃i∗j = 0. Hence, once chosen i∗, we shall write

gΘ(x,w) =
n∑

i=1
i6=i∗

m∑

j=1

θijNi(x)Bj(w) , (4.42)

for a reduced parameter matrix

Θ =




θ11 θ12 . . . θ1m

θ21 θ22 . . . θ2m

...
...

...
θ(i∗−1)1 θ(i∗−1)2 . . . θ(i∗−1)m

θ(i∗+1)1 θ(i∗+1)2 . . . θ(i∗+1)m

...
...

...
θn1 θn2 . . . θnm




,

where the i∗-th row from the original matrix specification is missing, for a total
of (n− 1)m parameters. Nonetheless, we shall denote the original specification
by Θ̄ = (θij), assuming θi∗j = 0 for all j = 1, 2, . . . ,m, that is

Θ̄ =




θ11 θ12 . . . θ1m

θ21 θ22 . . . θ2m

...
...

...
θ(i∗−1)1 θ(i∗−1)2 . . . θ(i∗−1)m

0 0 . . . 0
θ(i∗+1)1 θ(i∗+1)2 . . . θ(i∗+1)m

...
...

...
θn1 θn2 . . . θnm




. (4.43)

4.2.2 Estimation and smoothing

As previously seen in this work, the estimation and smoothing of the θij ’s admit
both a Bayesian and a non-Bayesian approach. The latter can be solely stated
in terms of the likelihood function, to which a penalty term may optionally
be added. In the former approach, though, estimation and smoothing are the
two sides of the same coin and cannot be clearly separated: the smoothing
penalty is incorporated into the model as prior knowledge, which is essential in
the Bayesian approach to estimation. In this work, though, we shall content
ourselves with a shallow application of Bayesian statistics, using the Bayesian
prior in (Lambert, 2007, 2014) as a mere regularization term. We shall not
explore posterior distribution sampling.

Let cΘ(∗, ∗|w) be the density of the Archimedean copula family generated
by (4.42) and consider the dataset D = {(Ui, Vi,Wi)}Ni=1. As usual, the likeli-
hood function of the copula family, for both the non-Bayesian and the Bayesian
approach, is

L(Θ|D) =
N∏

i=1

cΘ(Ui, Vi|Wi) (4.44)
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and, of course,

log cΘ(u, v|w) = gΘ

{
σ−1[CΘ(u, v|w)], w

}
+ log

FΘ[CΘ(u, v|w), w]

FΘ(u,w)FΘ(v, w)
, (4.45)

where
CΘ(u, v|w) = φ−1

Θ (φΘ(u,w) + φΘ(v, w), w) .

In either case, we need to devise a way to measure the overfitting of the
model (4.42). Remember that Lambert proposed a measure based on the vector
differences which we did not find full and satisfactory for a semiparametric
model (for instance, vector differences do not take into account the location of
the spline knots). Instead, we propose to use an energy measure that extends
the notion of curvature employed in (Hernández-Lobato and Suárez, 2011) and
reviewed in Section 4.1.3 and Appendix A: the thin plate energy measure (Wood
and Augustin, 2002).

Definition 4.2.2 (Thin plate energy measure). Let g be as in (4.39). We
define the thin plate energy of g as

E(g) =

∫ b

a

∫ 1

0

[(
∂2g

∂x2

)2

+ 2

(
∂2g

∂x∂w

)2

+

(
∂2g

∂w2

)2
]

(x,w) dx dw . (4.46)

Expression (4.46) becomes specially tractable when g is a tensor product
spline as in Definition 4.2.1.

Proposition 4.2.1. Let gΘ as in (4.42). We have

E(Θ) = E(gΘ) = (vec Θ̄)T · Ω · vec Θ̄ ,

for some matrix Ω ∈Mnm×nm(R), where Θ̄ is as described in (4.43).

Proof. Denote by N
(p)
i and B

(q)
j the p-th and q-th derivatives of Ni and

Bj , respectively, assuming N
(0)
i = Ni and B

(0)
j = Bj . Define matrices

Np = (Np
ik)ni,k=1 and Bq = (Bqjl)

m
j,l=1, where

Np
ik =

∫ b

a

N
(p)
i (x) ·N (p)

k (x) dx

Bqjl =

∫ 1

0

B
(q)
j (w) ·B(q)

l (w) dw

,

for p = 0, 1, 2 and q = 0, 1, 2. An easy calculation shows

∫ b

a

∫ 1

0

[
∂p+qgΘ

∂xp∂wq
(x,w)

]2

dx dw =
n∑

i=1
k=1

m∑

j=1
l=1

θijθklN
p
ikB

q
jl .

Now, since
(Bq ⊗Np)n(j−1)+i,n(l−1)+k = Np

ikB
q
jl ,

and

(vec Θ̄)n(j−1)+i = θij

(vec Θ̄)n(l−1)+k = θkl
,
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we have

n∑

i=1
k=1

m∑

j=1
l=1

θijθklN
p
ikB

q
jl =

nm∑

µ=1

nm∑

ν=1

(vec Θ̄)µ(Bq ⊗Np)µν(vec Θ̄)ν .

Therefore,

∫ b

a

∫ 1

0

[
∂p+qgΘ

∂xp∂wq
(x,w)

]2

dx dw = (vec Θ̄)T · (Bq ⊗Np) · vec Θ̄ .

The result follows from last equation, taking

Ω =
∑

p+q=2

2

p!× q! (B
q ⊗Np) .

Proposition 4.2.1 can be restated in terms of the reduced matrix Θ. Using
some basic results in (Wood and Augustin, 2002), we have

E(Θ) =
(
vec Θ̄T

)T · Ω · vec Θ̄T , (4.47)

for a new Ω matrix

Ω =
∑

p+q=2

2

p!× q! (N
p ⊗Bq) . (4.48)

Finally, it easily follows from (4.47) that

E(Θ) =
(
vec ΘT

)T · Ω∗ · vec ΘT ,

where Ω∗ is a reduced version of the Ω in (4.48) without the rows and columns
ranging from (i∗ − 1)m− 1 to i∗m.

Our non-Bayesian proposal is analogous to the non-conditional case (4.37):
for a cross-validated λ ≥ 0, solve the average penalized log-likelihood optimiza-
tion problem

arg max
Θ∈Θ

{
1

N
logL(Θ|D)− λE(Θ)

}
, (4.49)

with parameter space

Θ = {Θ ∈M(n−1)×m(R) : θ1j > −1 for j = 1, 2, . . . ,m} .

Similarly, for the Bayesian approach, the optimization problem becomes

arg max
Θ∈Θ

{
logL(Θ|D)−

(
1 +

rank(Ω∗)
2

)
log

(
1 +

E(Θ)

2

)}
. (4.50)

Further details on how to implement the tensor product spline construction
and the estimation and smoothing procedures are gathered in Appendix D.
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Model tuning considerations

Unlike (Lambert, 2014), we believe that the construction (4.42) can be effec-
tive even for relatively small values of n and m. The current trend in statistical
modelling favours employing a large number of parameters and then introducing
some sort of penalty to reduce overfitting. We can feasibly apply this philoso-
phy in the non-conditional version (Hernández-Lobato and Suárez, 2011), but
not in the conditional one, unless we apply some sort of additive parameter
configuration such as (Lambert, 2014).

Model tuning may become a daunting task if we have to test for several
values of n and m (plus the penalty λ, if we opt for the non-Bayesian smoothing).
We propose setting n equal to M = m − 2 and considering only small values
for n, say, 3 ≤ n ≤ 7, for a total of (n − 1)(n + 2) parameters. Then, if we
choose to apply any type of smoothing, we would recommend to take the largest
admissible value for n, like n = 7; if we take λ = 0, then we might prefer to
focus on selecting the optimum n.
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Chapter 5

Simulation study

– ¿Cómo puedes estar seguro?
– Tenemos nuestros Cerebros electrónicos, Noys; calculado-
ras mucho más exactas que cualquier otra que se haya podido
inventar en cualquier Realidad. Podemos analizar las posi-
bles realidades y evaluar las ventajas entre miles y miles de
variables.

El fin de la eternidad
Isaac Asimov

This chapter is devoted to presenting graphical evidence of the effectiveness
of the Archimedean methods studied in Chapter 4, specially of our proposal
(Section 4.2). We will exclusively focus on synthetic data obtained from some
well-known copula families, both Archimedean and non-Archimedean, all of
which were introduced in Section 2.4.

5.1 Bivariate copula simulations

In this section we will present further evidence of the capability of (Hernández-
Lobato and Suárez, 2011), while testing our own implementation: an essential
step in order to extend Hernández-Lobato and Suárez’s technique to conditional
copulas.

All the code used to perform the following experiments is written in Julia
(Bezanson et al., 2012). Despite the shortage of external packages for Julia,
which made us implement some basic but important parts, including a splines
library, one feels really comfortable programming in Julia, thanks to its friendly
syntax, interactive environment and powerful functional programming capabil-
ities. Julia’s built-in parallelism was also useful to speed up computations.

5.1.1 Simulation settings and procedure

We will perform simulations for a number of copula families: Clayton, Frank
and Gumbel (Archimedean families in Table 2.1) and the Gaussian family (an
example of elliptical family). We will also check different values of Kendall’s
tau for each copula family, namely τ = 0.2, τ = 0.5 and τ = 0.8. Given a value

87
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τ0 for Kendall’s tau, for the families we are interested in, we can always find a
copula C such that τ(C) = τ0. Namely, for the Clayton, Gumbel and Gaussian
families, the parameters we are looking for are

θCl(τ) =
2τ

1− τ , θGu(τ) =
1

1− τ , θGa(τ) = sin
(πτ

2

)
,

respectively. Remember that the parameter of the bivariate Gaussian copula
is a linear correlation coefficient. For the Frank family there is no closed-form
expression for θ as a function of τ , but we can resort to a root-finding algorithm
to get an approximation.

Given a copula family and a value for τ , we shall simulate S = 20 datasets

Di =
{(
U

(i)
k , V

(i)
k

)}N
k=1

of N = 1000 bivariate points from that copula. Then,

from each Di we estimate a natural spline g-generator g̃i, for i = 1, 2, . . . , S, from
which the rest of relevant functions, namely f̃i, F̃i, φ̃i and φ̃−1

i , can be obtained.
Only five knots were used to model the g-generator, with no smoothing penalty.
Strictness was enforced in all φ̃i’s.

Bearing in mind, from (4.26), that the density of the Kendall’s distribution
of an Archimedean copula Cφ is

K ′Cφ(x) = f(x)φ(x) , (5.1)

we also define, for i = 1, 2, . . . , S, the estimate of (5.1) from Di:
ki(x) = fi(x)φi(x) .

Finally, to make results clearer, we can apply the logistic function σ so as to
evaluate (5.1) (and its estimates) over the whole R. Let W be a unidimen-
sional r.v. distributed according to KCφ . We have that σ−1(W ) is distributed
according to

H(x) = P(σ−1(W ) ≤ x) = P(W ≤ σ(x)) = KCφ(σ(x)) ,

supported over R, with density

h(x) = H ′(x) = K ′Cφ(σ(x)) · σ′(x) . (5.2)

Then, estimates of (5.2) can be obtained for each dataset Di:
hi(x) = ki(σ(x)) · σ′(x) .

With all the above information, two different kinds of visual proofs are pro-
vided. One type aims at evaluating how successfully the estimation process fit-
ted the original Archimedean g-generators g and Kendall densities K ′Cφ .1 Look,
for instance, at Figure 5.1. Each subplot comprises two halves that share the
same x-axis. The upper half shows:

• The average ḡ of the g-generator estimates g̃i. If the original copula was
Archimedean with g-generator g, in order to make a visually fair compar-
ison between ḡ and g, we make sure ḡ(0) = g(0). To do this, we may just
redefine ḡ as

ḡ(x) =
1

S

S∑

i=1

[g̃i(x)− g̃i(0) + g(0)] .

1 Remember that the Kendall distribution uniquely defines an Archimedean copula (The-
orem 2.4.2).
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Note that this redefinition only adds a constant to the previous average
function and, hence, produces the same Archimedean copula.

• The maximum and minimum of g̃i(x), for x taking values on a fine grid,
that is,

min
1≤i≤S

{g̃i(x)} , max
1≤i≤S

{g̃i(x)} .

• The 0.05 and 0.95 sample quantiles of g̃i(x), that is, the values q0.05(x) and
q0.95(x) that are greater or equal than g̃i(x) for 5% and 95%, respectively,
of the simulations i = 1, 2, . . . , S.

On the other hand, the lower half shows:

• The average h̄ of the Kendall density estimates h̃i:

h̄(x) =
1

S

S∑

i=1

h̃i(x) .

• The maximum and minimum of h̃i(x), for x taking values on a fine grid,
that is,

min
1≤i≤S

{h̃i(x)} , max
1≤i≤S

{h̃i(x)} .

• The 0.05 and 0.95 sample quantiles of h̃i(x).

• An histogram of the empirical estimate of σ−1(W ) for the D1 dataset.

Both the upper and lower halves are crossed by five vertical dashed lines that
mark the location of the natural spline knots. Uniform knots (Definition 4.1.2)
were used.

For each family and Kendall’s tau combination, the second type of plot, like
Figure 5.5, compares the sample D1 and the level curves of the original copula
density2 with a new sample D̃1 of size N = 1000 drawn from the estimate g̃1

and the level curves of the copula density estimate. The Archimedean copula
estimates were sampled using a generic multivariate quantile-based algorithm
(Embrechts et al., 2003); algorithms for LT-Achimedean copulas were also used
(Hofert, 2008) to sample the original copulas.

5.1.2 Comments

The results obtained in Figures 5.1, 5.2, 5.3, 5.4 demonstrate a high average
accuracy when estimating the g-generators and Kendall densities. Generator
averages almost coincide with the original ones, specially in the [−5, 5] range.
In general, fluctuations in the estimation of the g-generator seem to be bigger
than Kendall densities show, but both errors are actually equivalent.

Generator slopes when |x| → ∞ (and thus tail dependence indices) are
reasonably well captured in all the Archimedean examples. Estimation variances
grow in both tails, but this comes as no surprise, given the shortage of eligible
data instances to model tail dependence. On the other hand, the Gaussian

2 Remember that the density of an Archimedean copula is given by (4.27).
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copula has no tail dependence at all.3 By looking at the generator slope as
x → −∞, we can see that lower tail dependence is erroneously inferred in all
cases for the Gaussian copula. Notwithstanding, upper tail dependence remains
quite small, specially in the τ = 0.2 and τ = 0.5 cases, taking into account that
slopes not exceeding 1 imply upper tail independence (Proposition 4.1.24).

The simulations in Figures 5.5, 5.6, 5.7, 5.8 confirm the effectiveness of
Hernández-Lobato and Suárez’s technique. The density level curves are re-
markably well captured, even in the Gaussian case, considering the size of D1:
N = 1000. The sample D̃1 drawn from the learned copula and the training
sample D1 are alike; Kendall’s tau is reasonably well captured.

It is worth mentioning that, according to Figure 5.4, even if the Gaussian
copula is not Archimedean, the estimation process seems to have successfully
found some sort of projection onto the Archimedean copula space on the grounds
of the Kendall distribution, since the estimated Kendall density fits the empirical
sample fairly well.

3 Remember that the Gaussian copula is radially symmetric, so the upper and lower tails
coincide.
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Figure 5.1: Clayton copula g-generator and Kendall density
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Figure 5.2: Frank copula g-generator and Kendall density
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Figure 5.3: Gumbel copula g-generator and Kendall density
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Figure 5.4: Gaussian copula g-generator and Kendall density
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Figure 5.5: Clayton copula samples
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Figure 5.6: Frank copula samples
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Figure 5.7: Gumbel copula samples
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Figure 5.8: Gaussian copula samples
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5.2 Trivariate copula simulations

In this section we will present some simulation examples that illustrate the
feasibility and the strengths and weaknesses of our proposal for conditional
copula modelling.4

5.2.1 Simulation settings and procedure

Our new technique for conditional copula modelling can be used to estimate
3-variate distributions via vine constructions, as explained in Section 3.2. We
will test our method with synthetic data arising from 3-vines (Definition 2.6.1)
whose bivariate margins C12 and C23 are set to the independence copula C⊥.
We will assume a perfect fit of those bivariate margins and focus on the esti-
mation of the conditional copula family {C13|2(∗, ∗|w)}w∈[0,1]. Examples from
both Archimedean (namely Clayton, Frank and Gumbel) and non-Archimedean
(Gaussian) families will be considered for the conditional copula family.

We know from the previous section that all the above families can be indexed
in terms of Kendall’s tau. In the conditional scenario, there is a function τ :
[0, 1] → [−1, 1] mapping each value w of the covariate to a Kendall’s tau value
that corresponds to a particular instance from a copula family. This way, the
conditional copula family can be formulated as

C13|2(u, v|w) = Cτ(w)(u, v) , (5.3)

where {Cτ}τ∈[−1,1] is any of the aforementioned parametric copula families.
We will take (Lambert, 2014), reviewed in Section 3.2.3, as a reference and

use the same τ function he employs:

τ(w) = 0.5 + 0.3 sin(1.6πw
3/2) . (5.4)

Given a conditional copula family, we shall simulate S = 10 datasets Di ={(
U

(i)
k , V

(i)
k ,W

(i)
k

)}N
k=1

, for i = 1, 2, . . . , S, of N = 2000 trivariate points from

that 3-vine, where the third component W represents the covariate. From each
Di we estimate several tensor product spline g-generators g̃βi depending on a
smoothing penalty algorithm parameter β ≥ 0. Seven knots were employed for
both the x and w variables of the spline generator, i.e., n = 7 and m = 9, for a
total of (n− 1)m = 54 parameters. Strictness was enforced in all Archimedean
copulas (5.3).

Several kinds of graphical proofs are provided. One type aims at evaluat-
ing how successfully the estimation process fitted the original Archimedean g-
generators {g̃βi (∗, w)}w∈[0,1]. This is the case of Figures 5.9, 5.10, 5.11, where the

average ḡβ of the g̃βi ’s is compared to the original g-generators {g(∗, w)}w∈[0,1].
Adding a function that only depends on w to the bivariate g-generators makes
no difference. Therefore, we adjust the average ḡβ so that ḡβ(0, w) = g(0, w),
defining

ḡβ(x,w) =
1

S

S∑

i=1

[g̃βi (x,w)− g̃βi (0, w) + g(0, w)] .

This way, results visualization is enhanced.

4 See Section 4.2.
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Besides the Archimedean generators, we will also check how well some de-
pendence measures are fitted, namely Kendall’s tau and both tail dependence
indices. Let τ̃βi (w), (λ̃L)βi (w), (λ̃U )βi (w) be the Kendall’s tau, lower tail index
and upper tail index, respectively, of the i-th estimate of Cτ(w) and consider the
averages

τ̄β(w) =
1

S

S∑

i=1

τ̃βi (w) , (5.5)

λ̄βL(w) =
1

S

S∑

i=1

(λ̃L)βi (w) , (5.6)

and

λ̄βU (w) =
1

S

S∑

i=1

(λ̃U )βi (w) . (5.7)

Figures 5.12 to 5.23 show the averages (5.5), (5.6) and (5.7), as well as the

maximum, minimum and the 0.05 and 0.95 sample quantiles of τ̃βi (w), (λ̃L)βi (w)

and (λ̃U )βi (w), much like in Figure 5.1.
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Figure 5.9: Clayton conditional family g-generators
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Figure 5.10: Frank conditional family g-generators
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Figure 5.11: Gumbel conditional family g-generators
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Figure 5.12: Clayton conditional family Kendall’s tau
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Figure 5.13: Frank conditional family Kendall’s tau
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Figure 5.14: Gumbel conditional family Kendall’s tau
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Figure 5.15: Gaussian conditional family Kendall’s tau
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Figure 5.16: Clayton conditional family lower tail index
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Figure 5.17: Frank conditional family lower tail index
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Figure 5.18: Gumbel conditional family lower tail index
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Figure 5.19: Gaussian conditional family lower tail index
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Figure 5.20: Clayton conditional family upper tail index
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(c) β = 10−8

Figure 5.21: Frank conditional family upper tail index
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Figure 5.22: Gumbel conditional family upper tail index
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Figure 5.23: Gaussian conditional family upper tail index
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5.2.2 Comments

Figures 5.9, 5.10, 5.11 demonstrate the feasibility of our proposal. Despite the
curse of dimensionality (Lopez-Paz et al., 2013), the overall appearance of the
generators is reasonably well captured, except for the tails, if anything. As
expected, due to the shortage of data, overfitting becomes apparent in the form
of a curvature excess when β = 0, specially in Figures 5.9, 5.10. We can see that
increasing the curvature penalty β the function gains some extra smoothness.

Figures 5.12, 5.14, 5.13, 5.15 show that the τ function (5.4) is, on average,
fairly well reconstructed. Leaving out some procedural details, those plots are
qualitatively similar to the ones presented in (Lambert, 2014). Both of us use
N = 2000 sample points in the simulation study, but our respective approaches
are essentially different. Lambert needs to optimize fewer parameters, despite
employing a large number of knots for both variables, thanks to several additive
parameter strategies. By contrast, at this stage of our research, we focus on
a less sophisticated parameter configuration. On the other hand, our respec-
tive smoothing strategies for the simulation study are also different. Lambert
uses an automatic Bayesian smoothing, while we opt for a penalized average
log-likelihood, which allows us to graphically assess the effect of varying the
smoothness degree.

(Lambert, 2014) does not report results on the estimation of tail dependence,
so we cannot make any comparison at this respect. Our results are moderately
positive, bearing in mind that modelling tail dependence is always a difficult
task, specially in a 3-variate setting like ours. By far, the worse results we
obtained were those of the Gaussian family, which is not Archimedean. Figures
5.19, 5.23 show that our method detects strong upper and lower tail dependen-
cies when there is actually asymptotic independence in both tails. The Frank
family has no tail dependence either and our method, again, erroneously cap-
tures tail dependence (Figures 5.17, 5.21), but this time by a narrow margin.
Finally, the results for the Clayton (Figures 5.16, 5.20) and Gumbel (Figures
5.18, 5.22) families are fairly good. In particular, when there exists lower tail
dependence (Figure 5.16) or upper tail dependence (Figure 5.22), it is fairly well
estimated.



Chapter 6

Conclusions and future
work

– No ha dicho cuándo volverá.
Hardin contestó:
– Lo sé...; ¡pero espero que no vuelva
hasta que usted y yo estemos segura y
cómodamente muertos!

Fundación
Isaac Asimov

Throughout this work we have presented both a broad overview of multivari-
ate copula modelling techniques and an in-depth new proposal on this matter.
Chapter 2 and Chapter 3 gather some basic copula theory principles and some
selected pieces from the state of the art, respectively, that provide the context
for our research, the bulk of which is concentrated in Chapter 4 and Chapter 5.

The first part of Chapter 4 is devoted to expanding on (Hernández-Lobato
and Suárez, 2011), adding some proofs and computational and implementation
details (expanded in Appendix D) that Hernández-Lobato and Suárez did not
originally include in their paper. We also propose some improvements regarding
spline design (namely, spline knot locations and natural spline parametrization)
and remark some new facts about intermediate tail dependence in the context
of (Hernández-Lobato and Suárez, 2011).

The second part of Chapter 4 addresses a new semiparametric technique
proposal that extends (Hernández-Lobato and Suárez, 2011) in a similar way to
(Lambert, 2014). We construct a tensor product spline to fit a two-dimensional
latent function, while specifying all relevant parameter constraints and some
smoothing procedures based on a different roughness measure to the one used
by Lambert.

The first part of Chapter 5 complements (Hernández-Lobato and Suárez,
2011) with newer simulations, while the second one illustrates, using synthetic
data, the feasibility and effectiveness of our new proposal, obtaining qualita-
tively similar results to those in (Lambert, 2014).

From a theoretical standpoint, our proposal would benefit from an extensive
and rigorous study of its convergence properties, which was out of the scope of
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this work. From a more practical perspective, it would be desirable to test its
flexibility and robustness on real data, as compared with methods like (Lambert,
2014). In order to make a fair comparison, we would need to adapt our model
design and implementation so as to make it more efficient. By now, (Lambert,
2014) reports simulations using S = 500 samples, whereas we can reasonably
handle up to S = 10 samples. Once matched the efficiency of (Lambert, 2014),
we may extend our technique to more than one covariate, following perhaps
Lambert’s additive parameters approach.



Appendix A

Splines

This appendix is intended to summarize the main results about splines that
we will extensively use throughout this work. Even though the basic concepts
presented here constitute no new material, some notation, implementation and
motivational details are due. See (Lyche and Morken, 2002) for a friendly (but
complete) introduction and (Schumaker, 2007) for further insights.

A.1 Introduction

Definition A.1.1 (Spline). Given an interval [a, b], with a < b, a function
f : [a, b] → R is called a spline of degree d ≥ 0, represented by f ∈ Sd(∆), if
it is left-continuous at b and there exists a partition ∆ = {ξi}ni=1 of [a, b], with
a = ξ1 < ξ2 < . . . < ξn = b, such that the restriction of f to [ξi, ξi+1) is a
polynomial of degree d, for i = 1, 2, . . . , n− 1.

From now on, we will use Sdr(∆) as shorthand for Sd(∆) ∩ Cr(a, b), that is,
the set of all splines with r-th continuous derivative.1 Obviously, since f ∈
Sd(∆) satisfies f|[ξi,ξi+1) ∈ C∞(ξi, ξi+1), the only troublesome points to ensure

continuity are ξi, for i = 2, 3, . . . , n−1. Moreover, notice that Sdr(∆) = Pd([a, b])
if and only if r ≥ d, so we will always assume r ≤ d, with r = d as a trivial
limiting case.

The last definition simply formalizes the concept of piecewise polynomials.
Other formalizations are equally valid. For instance, taking the interval in
Definition A.1.1 to be left-open, instead of right-open, would also make sense
for our purposes. Note that this is equivalent to asking for left continuity in
place of right continuity, whenever full continuity cannot be assured. It must be
stated, however, that a consistent selection of right or left continuity across all
intervals eases spline representation, as we shall soon see. The inclusion of the
endpoint b in the domain of a spline, along with the left-continuity assumption,
though arbitrary, respond to practical considerations and have no effect on the
algebraic structure of this set.

Splines play an important role in function approximation. Given a set of n+1
data points {(xi, yi)}ni=0 arising from a certain function sample, remember that
there exists a unique polynomial of degree n that interpolates them. Generally

1 Existence of the 0-th derivative means function continuity, by convention.
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speaking, provided that the x-axis points are carefully chosen, interpolation
error decreases as n increases, which in turn hampers computations.2 Several
spline solutions to the interpolation problem can also be found, with varying
regularity at joints. Again, interpolation error decreases as partition ∆ is finer,
but, as opposed to global polynomial interpolation, local polynomial degrees
remain fixed and so computational costs.3

Apart from avoiding Runge’s phenomenon and speeding up computations,
splines allow for greater flexibility when representing functions, while preserving
simplicity.

Proposition A.1.1. Let ∆ be an n-point partition as in Definition A.1.1. We
have that Sdr(∆) is a vector space and

dimSdr(∆) = (n− 1)d− (n− 2)r + 1

= (d− r)n+ 2r − d+ 1 .

Proof. First of all, it is easy to check that Sd(∆) is a vector space and Sdr(∆)
has closure under function addition and scalar multiplication: Sdr(∆) is a vector
subspace of Sd(∆). Secondly, Sd(∆) is isomorphic to the Cartesian product
vector space of Pd(R) (real polynomials of degree d) with itself n − 1 times

(abbreviated
(
Pd(R)

)n−1
) through the linear map Π : f 7→ (p1, p2, . . . , pn−1),

where pi is such that f|[ξi,ξi+1)(x) = pi(x) · 1|[ξi,ξi+1)(x). Hence, dim Sd(∆) =
(n− 1)× (d+ 1).

Now, consider the linear function L that maps f ∈ Sd(∆) to the (n − 2) ×
(r + 1) real matrix




p1(ξ2)− p2(ξ2) p2(ξ3)− p3(ξ3) . . . pn−2(ξn−1)− pn−1(ξn−1)
p′1(ξ2)− p′2(ξ2) p′2(ξ3)− p′3(ξ3) . . . p′n−2(ξn−1)− p′n−1(ξn−1)

...
...

...

p
r)
1 (ξ2)− pr)2 (ξ2) p

r)
2 (ξ3)− pr)3 (ξ3) . . . p

r)
n−2(ξn−1)− pr)n−1(ξn−1)


 ,

where the pi’s are defined as before. From basic Linear Algebra, we know that
dimSd(∆) = dim Ker(L)+dim Im(L) . Of course, Ker(L) = Sdr(∆), so it suffices
to verify that dim Im(L) = (n − 2) × (r + 1), that is to say L is a surjective
function.

We will show that L can be broken down into surjective linear maps as
L = Ξ ◦Dr ◦ Λ ◦Π, so it is also onto. Firstly, let

Λ :
(
Pd(R)

)n−1 −→
(
Pd(R)

)n−2

(p1, p2, . . . , pn−1) 7→ (p1 − p2, p2 − p3, . . . , pn−2 − pn−1)
.

Any basis of polynomials of degree d induces a basis both in
(
Pd(R)

)n−1
and(

Pd(R)
)n−2

. The matrix of Λ with respect to those basis is always A ⊗ Id+1,

2 See Runge’s phenomenon (Schumaker, 2007).
3 Evaluating a spline at a point x requires finding i ∈ {1, 2, . . . , n − 1} such that x ∈

[ξi, ξi+1). A sensible single-thread implementation would perform a binary search over ∆
(an ordered sequence), with a relatively cheap O(logn) order of comparison operations, plus a
fixed number of additions and multiplications. By contrast, evaluating an n-degree polynomial
requires, at best, O(n) additions and multiplications.
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where

A =




1 −1 0 0 . . . 0
0 1 −1 0 . . . 0

0 0
. . .

. . .
. . .

...
...

...
. . .

. . .
. . . 0

0 0 . . . 0 1 −1



∈M(n−2)×(n−1)(R) ,

so dim Im(Λ) = rank(A ⊗ Id+1) = rank(A) × rank(Id+1) = (n − 2) × (d + 1),
thus Λ is onto.

Given x ∈ R, it easy to check that

Dr
x : Pd(R) −→ Rr+1

p 7→ (p(x), p′(x), p′′(x), . . . , pr)(x))

is an onto linear map. Then, clearly,

Dr :
(
Pd(R)

)n−2 −→
(
Rr+1

)n−2

p 7→
(
Dr
ξ2

(p), Dr
ξ3

(p), . . . , Dr
ξn−1

(p)
)

is, too. Finally, let Ξ be the isomorphism
(
Rr+1

)n−2 ∼=M(n−2)×(r+1)(R) trans-
forming tuple vector components into matrix columns.

From last proposition we see that the more regularity r we demand, the
lower the space dimension is. Namely, for the cubic case (d = 3), we have

dimS3
1(∆) = 2n (A.1)

and
dimS3

2(∆) = n+ 2 . (A.2)

Case (A.1) corresponds to (Cubic) Hermite interpolation, that is, construct-
ing a cubic spline f by specifying f(ξi) and f ′(ξi), for i = 1, 2, . . . , n. On the
other hand, (A.2) tells us that, even if we fixed values f(ξi), for i = 1, 2, . . . , n,
the resulting vector space of cubic splines f would have dimension 2. Adding
the following two linear boundary conditions

f ′′(a+) = f ′′(b−) = 0 , (A.3)

we get the subspace of natural (cubic) splines, SN (∆). Imposing instead, for
some α, β ∈ R,

f ′(a+) = α and f ′(b−) = β , (A.4)

we get the (affine) subspace of complete or clamped (cubic) splines, Sα,β(∆).

A.2 A basis for splines: B-splines

Proposition A.1.1 showed that the set of splines with a given regularity has
vector space structure. The proof implicitly specified (through isomorphism) a
possible basis for this space. Now, we explicitly state that f ∈ Sd(∆) has the
form

f(x) =
n−1∑

i=1

d∑

j=0

λijx
j
1Ii(x) =

n−1∑

i=1

pi(x)1Ii(x) , (A.5)
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for some scalars λij , where Ii = [ξi, ξi+1), for all i < n−1, and In−1 = [ξn−1, ξn].

Despite its simplicity, the basis {x 7→ xj1Ii(x) : 1 ≤ i ≤ n− 1 and 0 ≤ j ≤ d}
does not have built-in smoothness: we have to impose on the variables in (A.5)
the constraints

p
k)
i−1(ξi) = p

k)
i (ξi) , (A.6)

for i = 2, 3, . . . , n − 1 and k = 0, 1, . . . , r, in order for f to be r times differen-
tiable.

The next family of functions, known as B-splines or basis splines, will provide
a more general solution for representing splines.

Definition A.2.1 (B-splines). Let d ∈ Z+ and let t = (t1, t2, . . . , tm+d+1) be
a real vector, for m ∈ N, such that ti ≤ tj whenever i < j. For each k ∈ Z
between 0 and d and for each j ∈ N between 1 and m + d − k, we recursively
define the j-th B-spline of degree k and knots t, Bt

j,k : R→ R, as

Bt
j,k(x) = ωt

j,k(x)Bt
j,k−1(x) + ω̄t

j+1,k(x)Bt
j+1,k−1(x) , (A.7)

where the complementary weights are defined as

ωt
i,k(x) =

{
x−ti

ti+k−ti , if ti ≤ x < ti+k

0, otherwise

ω̄t
i,k(x) = 1− ωt

i,k(x)

(A.8)

and finally
Bt
j,0 = 1[tj ,tj+1) . (A.9)

Several equivalent possibilities arise when defining B-splines. Induc-
tively, we can see that the range of Bt

j,k is completely determined by knots

tj , tj+1, . . . , tj+k+1 and, in fact, Bt
j,k vanishes outside [tj , tj+k+1). In particular,

if tj = tj+k+1, then Bt
j,k(x) = 0, for all x ∈ R.4 This allows to rewrite (A.7)

simply as

Bt
j,k(x) =

Bt
j,k−1(x)

tj+k − tj
(x− tj) +

Bt
j+1,k−1(x)

tj+k+1 − tj+1
(tj+k+1 − x) ,

assuming the convention that 0/0 = 0.
Observe that the definition of B-splines can easily be stated in terms of an

infinite (alternatively, doubly infinite) (de Boor, 1972) non-decreasing real se-
quence t = {ti}i∈N (alternatively, t = {ti}i∈Z) automatically defining Bt

j,k for
all k ∈ Z+ and for all j ∈ N (alternatively, j ∈ Z). Using a vector instead
restricts both the degree and the number of B-splines for that degree. Notwith-
standing, given a degree d, all results in this section require a finite number of
functions Bt

j,d, typically requiring m > d; one of the axioms of an extended knot
vector, according to (Lyche and Morken, 2002). Moreover, we shall be mainly
concerned with cubic B-splines (d = 3).

B-splines are indeed splines, as defined in Definition A.1.1, and the notion
of degree in both cases also coincides. This can easily been demonstrated by
induction on degree k. More precisely, we claim that the restriction of Bt

j,k to a

4 Indeed, if tj = tj+1 in (A.9), then [tj , tj+1) = ∅ and Bt
j,0 is identically zero.
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certain partitioned interval is a spline of degree k. Namely, if tj < tj+k+1, then
the partition we look for is {tj , tj+1, . . . , tj+k+1} (over interval [tj , tj+k+1)); if,
on the contrary, tj = tj+k+1, then Bt

j,k turns out to be identically zero and thus
any partitioned interval suffices.

Several other properties of B-splines can be inductively checked. The fol-
lowing, which can actually be derived as a corollary of a more general result, is
one of them.

Proposition A.2.1. Let d, m and t be as in Definition A.2.1 and assume
m > d. We have

m∑

j=1

Bt
j,d(x) = 1, for all x ∈ [td+1, tm+1) .

Proof. It easily follows by induction, bearing in mind that Bt
1,d−1 and Bt

m+1,d−1

vanish outside [t1, td+1) and [tm+1, tm+d+1), respectively.

From now on, we will omit the knot vector superscript t, both in B-splines
and in the weighting functions involved, when there is no place for confusion.
Next, we introduce an easy result that will considerably simplify calculations
with B-splines.

Proposition A.2.2. Let d, m and t be as in Definition A.2.1 and let z ∈ R.
If there exists 1 ≤ j ≤ m such that z = tj+1 = tj+2 = . . . = tj+d < tj+d+1, then
Bt
j,d(z) = 1 and Bt

i,d(z) = 0 if i 6= j.

Proof. Let us prove it by induction on degree d, starting with d = 1. Suppose
that z = tj+1 < tj+2. Then we have Bj+1,0(z) = 1 and Bi,0(z) = 0 for i 6= j+1.
Therefore,

Bj,1(z) =
tj+2 − z
tj+2 − tj+1

Bj+1,0(z) = 1 ,

no matter tj < tj+1 or not. To see Bi,1(z) = 0 whenever i 6= j, note that the
latter builds upon Bi,0 and Bi+1,0, thus i = j + 1 is needed for it to be greater
than zero. But then,

z − ti
ti+1 − ti

=
tj+1 − tj+1

tj+2 − tj+1
= 0 ,

so Bi,1(z) = 0, regardless.
Now, suppose the statement holds for d− 1. Taking l = j+ 1 and k = d− 1,

we have z = tl+1 = tl+2 = . . . = tl+k < tl+k+1 so, by inductive hypothesis,
Bl,k(z) = 1 and Bl−1,k(z) = 0, hence

Bj,d(z) = ωj,d(z)Bl−1,k(z) + ω̄j+1,d(z)Bl,k(z) = 1 .

Finally, for Bi,d(z) = 1 we need i+ 1 = l, that is, i = j.

Now it is time to address some differentiability properties of B-splines.

Proposition A.2.3. Allowing the usual convention that 0/0 = 0, the r-th right
derivative5 of a basis spline function of degree d ≥ 1 satisfies the following

5 Of course, the only points where the right derivative of a spline might not be equal to its
left derivative are the knots in t.
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recurrence relation:

DrBj,d = d ·
(
Dr−1Bj,d−1

tj+d − tj
− Dr−1Bj+1,d−1

tj+d+1 − tj+1

)
,

where D0f(x) = f(x+).

Proposition A.2.4. Let d and t be as in Definition A.2.1. Let z ∈ R such that
z = tik for j ≤ i1 < i2 < . . . < in ≤ j + d + 1. Then, Bt

j,d has continuous r-th
derivative at z for r = 0, 1, . . . , d− n.

Definition A.2.2 and Theorem A.2.1 give us the keys to represent splines as
linear combinations of B-splines, which can be efficiently and stably evaluated
(de Boor, 1972).

Definition A.2.2. Let d, m and t be as in Definition A.2.1. We define the
vector space of linear combinations of B-splines as

Bd(t) = span{Bt
1,d, B

t
2,d, . . . , B

t
m,d} =

{
x ∈ R 7→

m∑

i=1

θiB
t
i,d(x) : θi ∈ R

}
.

Theorem A.2.1. Let ∆ be an n-point partition of [a, b] as in Definition A.1.1.
Consider the extended knot vector

t = (a;

d−r times︷ ︸︸ ︷
ξ2, . . . , ξ2,

d−r times︷ ︸︸ ︷
ξ3, . . . , ξ3, . . . ,

d−r times︷ ︸︸ ︷
ξn−1, . . . , ξn−1; b) , (A.10)

where a = (a1, a2, . . . , ad+1) ∈ Rd+1 and b = (b1, b2, . . . , bd+1) ∈ Rd+1 satisfy
a1 ≤ a2 ≤ . . . ≤ ad+1 ≤ a and b ≤ b1 ≤ b2 ≤ . . . ≤ bd+1. Splines and linear
combinations of B-splines coincide when restricted to [a, b), that is

Sdr(∆)|[a,b) = Bd(t)|[a,b) . (A.11)

Proof. The key result for this proof, which we will not include in this annex,
is the linear independence of functions Bt

1,d, B
t
2,d, . . . , B

t
m,d, given an extended

knot vector as (A.10), when they are all restricted to [td+1, tm+1), with m > d
(Lyche and Schumaker, 1975, Schumaker, 2007, Lyche and Morken, 2002). Since
td+1 = ad+1 ≤ a and b ≤ b1 = tm+1, they are also linearly independent when
restricted to [a, b). Additionally, for Proposition A.2.4, Bd(t)|[a,b) ⊂ Sdr(∆)|[a,b).
Finally, m + d + 1 = |t| = (n − 2) × (d − r) + 2 × (d + 1), so dimBd(t)|[a,b) =

m = dimSdr(∆)|[a,b), which ends the proof.

The selection of the knots ai and bi, for i = 1, 2, . . . , d + 1, provided that
they satisfy the hypotheses given in Theorem A.2.1, has no effect on (A.11).
For practical reasons, as we shall soon see, a convenient selection is ai = a and
bi = b, for all i, in which case t is called (d + 1)-regular (Lyche and Morken,
2002). Notice that we would much rather have

Sdr(∆) = Bd(t)|[a,b] , (A.12)

than (A.11), so that splines (and their derivatives, according to Proposi-
tion A.2.3 could be evaluated as a linear combination of B-splines at endpoint
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Figure A.1: B-splines for S3
2(∆), where ∆ = {0, 0.3, 0.5, 0.7, 1.0}.

b too. This would be granted if b < b1; with (d+ 1)-regularity, though, we need
to redefine (A.9) for j = m:

Bt
m,0 = 1[tm,b] . (A.13)

We shall assume this workaround from now on. Figure A.1 shows the B-splines
for S3

2(∆) according to Theorem A.2.1.

Proposition A.2.5. Let d, m and r be the usual parameters for a smooth
spline. Let t be as in (A.10), with the additional assumption that a = ai and
b = bi, for all i = 1, 2, . . . , d + 1, and the subsequent redefinition (A.13). Then
Bt
m,k(b) = 1 and Bt

j,k(b) = 0 if j 6= m, for k = 0, 1, . . . , d.

Proof. It easily follows by induction on k.

Many times one wants to extend a spline function out of its domain of
definition in a sensitive manner. One way to do this is by linear extrapolation,
defining:

f(x) = f(a) + f ′(a+)(x− a)

f(x) = f(b) + f ′(b−)(x− b)
, (A.14)

for x ≤ a and x ≥ b, respectively. This strategy results specially convenient
when the natural boundary conditions (A.3) are met, yielding a legitimate C2(R)
function (see Figure A.3). The following result gives us simple expressions
for the previous evaluations of f and its derivatives in terms of basis spline
dimension, coordinates and knots.

Proposition A.2.6. Let ∆ and f ∈ Sdr(∆), with coordinates θ1, θ2, . . . , θm, like
in Theorem A.2.1. Suppose, for the sake of simplicity, maximum non-trivial
regularity r, r = d − 1, so that every interior point ξi ∈ ∆, 1 < i < n, appears
just once in the extended knot vector (A.10). Taking δai = a− ξ1+i = ξ1 − ξ1+i

and δbi = b− ξn−i = ξn − ξn−i, we have:
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1.

f(a) = θ1 ,

f(b) = θm .

2.

f ′(a+) = d · θ1 − θ2

δa1
,

f ′(b−) = d · θm − θm−1

δb1
.

(A.15)

3.

f ′′(a+) =
d(d− 1)

δa1

[
θ1

δa1
−
(

1

δa1
+

1

δa2

)
θ2 +

θ3

δa2

]
,

f ′′(b−) =
d(d− 1)

δb1

[
θm
δb1
−
(

1

δb1
+

1

δb2

)
θm−1 +

θm−2

δb2

]
.

(A.16)

Proof. It easily follows by combining Proposition A.2.2 and Proposition A.2.5
with Proposition A.2.3.

Equations (A.15) and (A.16) are arranged so as to emphasize the symmetry
within each pair of expressions: θ1+k and ξ1+k are to a as θm−k and ξm−k are
to b, respectively, for k = 0, 1, 2. Note, however, that δai < 0 whilst δbi > 0.

A.2.1 A natural spline basis

The combination of (A.15) and (A.16) gives us a parametrization of SN (∆) in
which the first and last coordinates represent the spline slopes at endpoints a
and b, respectively.

Proposition A.2.7. Let ∆ be an n-point partition of [a, b], with n ≥ 3, and

let B1, B2, . . . , Bn+2 be the B-splines for S3
2(∆). Letting θ̂1, θ̂2, . . . , θ̂n ∈ R and

defining

θ1 = θ̂2 +
δa1 + δa2

3
θ̂1

θ2 = θ̂2 +
δa2
3
θ̂1

θi = θ̂i−1 , for i = 3, 4, . . . , n

θn+1 = θ̂n−1 +
δb2
3
θ̂n

θn+2 = θ̂n−1 +
δb1 + δb2

3
θ̂n

, (A.17)

where the δai , δ
b
i are like in Proposition A.2.6, it turns out that f = x 7→∑n+2

i=1 θiBi(x) ∈ SN (∆) with f ′(a+) = θ̂1 and f ′(b−) = θ̂n.
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Figure A.2: Natural spline basis for ∆ = {0, 0.3, 0.5, 0.7, 1.0} (di-
mension n = 5) induced by parametrization (A.17). Notice that N3

coincides with B4 from Figure A.1.

Parametrization (A.17) is derived by enforcing natural boundary conditions
(A.3) on the B-spline coordinates. If Ξ ∈ M(n+2)×n(R) is the matrix map-

ping θ̂ = (θ̂1, θ̂2, . . . , θ̂n) to θ = (θ1, θ2, . . . , θn+2), then we can define, for
i = 1, 2, . . . , n,

Ni(x) = [ΞTB(x)]i , (A.18)

where B(x) = (B1(x), B2(x), . . . , Bn+2(x)), as a natural spline basis. Figure A.2
depicts basis functions (A.18), while Figure (A.3) shows an instance of a natural
spline. As a consequence of δai < 0 (i = 1, 2), N1 is the only basis function taking

negative values. This somewhat inelegant decision aims at identifying θ̂1 with
f ′(a+), rather than −f ′(a+). Of course, if we wanted all our natural basis
functions to be positive, it would suffice to substitute N1 with x 7→ −N1(x).

A.3 Spline smoothness and model regulariza-
tion

There are a number of spline applications where, in addition to differentiability
(local smoothness), global smoothness matters. Differentiability eases optimiza-
tion to a great extent, but still falls short to overcome model complexity issues.
For instance, splines in a regression setting (Eilers and Marx, 1996) may suffer
from undesired wiggles, even if they are infinitely differentiable. The process of
imposing global smoothness on a non-parametric statistical model (say spline
regression) is called regularization.

The importance of S3
2(∆) at this respect roots in physical interpretations.

Imagine that an arbitrary C2(a, b) function y(x) represents a sufficiently elastic
beam. More precisely, we have a function σ : x ∈ (a, b) 7→ (x, y(x)) whose arc
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Figure A.3: A randomly generated natural spline p with
parametrization (A.17) and knots placed at ∆ = {0, 0.3, 0.5, 0.7, 1.0}
(dimension n = 5). Slope parameters are θ̂1 = p′(0) = −1 and
θ̂5 = p′(1) = 1, whereas θ̂2, θ̂3, θ̂4 ∈ [0, 1]. Linear extrapolation is
used to extend p outside [0, 1], according to (A.14).

length between a and x is given by

s(x) =

∫ x

a

‖σ′(t)‖2 dt =

∫ x

a

√
1 + (y′(t))2 dt .

If we reparameterize the beam as σ̃ = σ ◦ s−1 over (0, L), where L = s(b) is
the total length of the beam, we get that ‖σ̃′(s)‖2 = 1 for all s, so curvature
at arc distance s is simply κ(s) = ‖σ̃′′(s)‖2. The total energy of the beam is
proportional to the integral of this quantity over all beam length, that is

E ∝
∫ L

0

κ(s)2 ds =

∫ b

a

(y′′(x))2

[1 + (y′(x))2]5/2
dx . (A.19)

The ideal interpolant function would be the one that, in addition to passing
through the specified points, minimized energy (A.19). It turns out that solving
for a least energy interpolant, according to this formulation, is no easy task
(Horn, 1983). Nonetheless, cubic splines provide a convenient approximation
to the solution, according to the following proposition (Shampine et al., 1996,
Pollock, 1999).

Proposition A.3.1. Let ∆ = {xi}ni=1 be a partition of an interval [a.b], with
a < b, and {yi}ni=1 an arbitrary collection of real values. Let f ∈ SN (∆)
(alternatively, f ∈ Sα,β(∆), for α, β ∈ R) such that f(xi) = yi. Spline f
minimizes

E(f) = ‖f ′′‖22 =

∫ b

a

(f ′′(x))2 dx , (A.20)

in the sense that, for all g ∈ C2(a, b) passing through points {(xi, yi)}ni=1 (alter-
natively, with the additional constraints g′(a+) = α and g′(b−) = β), it verifies
E(f) ≤ E(g). Moreover, E(f) = E(g) if and only if f = g.
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Proof. For both natural and clamped boundary conditions, it all comes down
to checking ‖(f − g)′′‖22 = ‖g′′‖22 − ‖f ′′‖22. The uniqueness of the cubic spline
interpolant as the minimizer of (A.20) follows from the fact that ‖(f−g)′′‖2 = 0
yields f(x)− g(x) = c1x+ c2 for some c1, c2 ∈ R, even if h ∈ C2(a, b) 7→ ‖h′′‖2
is not a norm. Finally, since f(a) = g(a) and f(b) = g(b), it follows that
c1 = c2 = 0.

Energy (A.20) can be easily computed when f ∈ S3
2(∆). Let a and b

be the left and right endpoints of partition ∆, N = dimS3
2(∆) and θ =

(θ1, θ2, . . . , θN ) be the coordinates of f with respect to the basis splines of S3
2(∆):

(B1, B2, . . . , BN ). We have

E(f) = θTΩθ , (A.21)

where Ω ∈MN×N (R) has (i, j)-element

Ωij =

∫ b

a

B′′i (x)B′′j (x) dx . (A.22)

Moreover, integral (A.22) can be exactly calculated using Gaussian quadrature
formulas like Simpson’s rule (Shampine et al., 1996), since the integrand is a
piecewise polynomial of degree 2.

Note that (A.20) approximates (A.19) under the assumption that (y′(x))2 �
1 for all x in the domain. Also, it is important to remark that the last property
holds for both natural and complete boundary conditions; the former, with no
additional constraints at all. This is one of the reasons why we usually endow
cubic splines with natural boundary conditions.

Going back to regularization, (Pollock, 1999) suggest a regression model
yi = f(xi) + εi, for data points {(xi, yi)}ni=1 and random variables {εi}ni=1, with
Var(εi) = σ2

i , minimizing

(1− λ)
n∑

i=1

(
yi − f(xi)

σi

)2

︸ ︷︷ ︸
data fitting

+λ

∫ xn

x1

(f ′′(x))2 dx

︸ ︷︷ ︸
regularization

,

where parameter λ ∈ [0, 1] represents the relative importance that is attached
to regularization as opposed to data fitting.
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Appendix B

Regular variation

This appendix is devoted to summarizing some basic definitions and results of
regular variation, an analytical property that typically arises in Probability and
Statistics (Mikosch, 1999, Soulier, 2009). Probably the most renowned reference
on this topic is (Bingham et al., 1987), which includes thorough proofs.

We can compactly state many of the following properties using ± and ∓
notations1, expressing how different sign choices match one another to produce
both ‘up’ and ‘down’ alternatives; the former will be considered the first alter-
native, whereas the latter will take the second place.

In what follows, measurable will refer to (real) Lebesgue-measurable func-
tions. Also, we shall use the notation f(x) ∼ g(x), as x → τ , whenever

limx→τ f(x)/g(x) = 1, and the usual convention −
∫ b
a
f(x) dx =

∫ a
b
f(x) dx.

Definition B.0.1 (Regular variation at∞). Let f be a positive, measurable
function defined on [x0,∞), for some x0 ∈ R. We say that f is regularly varying
at ∞ with index α ∈ R, represented by f ∈ R∞,α, if

lim
x→∞

f(λx)

f(x)
= λα , (B.1)

for all λ > 0.

We now introduce one of the most important properties of regularly varying
functions. See (Bingham et al., 1987) for several direct and indirect proofs.

Theorem B.0.1 (Uniform convergence). Let f ∈ R∞,α and 0 < a ≤ b <∞.
The limit (B.1) is uniform2 in λ on the interval:

1. [a, b], if α = 0.

2. (0, b], if f is bounded on (0, x], for all x > 0, and α > 0.

1 We will assume the notational convention +∞ =∞.
2 Uniformity in λ on an interval I means that for all ε > 0, there exists x∗ > x0 (x0 as in

Definition B.0.1), such that x > x∗ implies∣∣∣∣f(λx)

f(x)
− λα

∣∣∣∣ < ε ,

regardless of which λ ∈ I is chosen.
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3. [a,∞), if α < 0.

Regular variation can be translated to −∞ in the following manner.

Definition B.0.2 (Regular variation at −∞). Let f be a positive, mea-
surable function defined on (−∞, x0], for some x0 ∈ R. We say that f is
regularly varying at −∞ with index α ∈ R, represented by f ∈ R−∞,α, if
x 7→ f(−x) ∈ R∞,α.

We can also state regular variation at a point z (Mikosch, 1999), both ap-
proaching z from left and right.

Definition B.0.3 (Left regular variation). Let f be a positive, measurable
function defined on [x0, z), for some x0, z ∈ R, x0 < z. We say that f is left
regularly varying at z (alternatively, regularly varying at z−) with index α ∈ R,
represented by f ∈ Rz−,α, if

lim
x→0+

f(z − λx)

f(z − x)
= λα , (B.2)

for all λ > 0.

Definition B.0.4 (Right regular variation). Let f be a positive, measurable
function defined on (z, x0], for some x0, z ∈ R, x0 > z. We say that f is right
regularly varying at z (alternatively, regularly varying at z+) with index α ∈ R,
represented by f ∈ Rz+,α, if

lim
x→0+

f(z + λx)

f(z + x)
= lim
x→0−

f(z − λx)

f(z − x)
= λα , (B.3)

for all λ > 0.

Pointwise regular variation is connected to regular variation at ±∞ through
the following proposition.

Proposition B.0.2. f ∈ Rz±,α if and only if x 7→ f(z − 1/x) ∈ R∓∞,−α.

Proof. It suffices to see that

lim
x→0∓

f(z − λx)

f(z − x)
= lim
x→∓∞

f (z − 1/(λ−1x))

f(z − 1/x)
.

Proposition B.0.3. Formally consider τ ∈ {∞,−∞, z+, z−}, that is, τ indexes
any of the four regular variation scenarios. If f ∈ Rτ,α and f(x) ∼ g(x) as
x→ τ , then g ∈ Rτ,α.

In all the above regular variation cases, index α = 0 plays an important role.

Definition B.0.5 (Slow variation). Formally consider τ ∈ {∞,−∞, z+, z−},
that is, τ indexes any of the four regular variation scenarios. A function f ∈ Rτ,0
is called slowly varying at τ , represented by f ∈ Sτ .

The next two propositions allow to express a regularly varying function as
the product of a power function and a slowly varying one, which we shall call
its slowly varying part.
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Proposition B.0.4. f ∈ R±∞,α if and only if

f(x) = (±x)α`(x) , (B.4)

as3 x→ ±∞, for some ` ∈ S±∞.

Proposition B.0.5. f ∈ Rz±,α if and only if

f(x) = [±(x− z)]α`(x) ,

as4 x→ z±, for some ` ∈ Sz± .

By definition of regular variation and using both Proposition B.0.4 and
Proposition B.0.5, we can state the following remark.

Remark B.0.1. For all α > 0:

• If ` ∈ S±∞, then

lim
x→±∞

(±x)α`(x) =∞ , lim
x→±∞

(±x)−α`(x) = 0 .

• If ` ∈ Sz± , then

lim
x→z±

[±(x− z)]−α`(x) =∞ , lim
x→z±

[±(x− z)]α`(x) = 0 .

Additionally, slow variation is fully characterized by the next two theorems.

Theorem B.0.2 (Representation theorem at ±∞). If ` ∈ S±∞, there
exists x0 ∈ (0,∞) (alternatively, x0 ∈ (−∞, 0)) such that, for all x ≥ x0

(alternatively, for all x ≤ x0),

`(x) = c(x) exp

(∫ x

x0

η(t)

t
dt

)
, (B.5)

for some real functions c and η defined on [x0,∞) (alternatively, (−∞, x0]) and
satisfying limx→±∞ c(x) = c∗ ∈ (0,∞) and limx→±∞ η(x) = 0.

Theorem B.0.3 (Representation theorem at z±). If ` ∈ Sz± , there exists
x0 > z (alternatively, x0 < z) such that, for all x ∈ (z, x0] (alternatively, for all
x ∈ [x0, z)),

`(x) = c(x) exp

(∫ x

x0

η(t)

z − t dt
)
, (B.6)

for some real functions c and η defined on x ∈ (z, x0] (alternatively, x ∈ [x0, z))
and satisfying limx→z± c(x) = c∗ ∈ (0,∞) and limx→z± η(x) = 0.

Observe that any function ` that can be expressed as (B.5) or (B.6) is clearly
slowly varying. Also, for every slowly varying function ` ∈ Sτ , we can easily
construct ¯̀∈ Sτ such that `(x) ∼ ¯̀(x) as x→ τ by simply substituting c(x) in
(B.5) and (B.6) for its limit as x→ τ , that is c∗.

3 ‘As x → +∞’ actually means ‘for all x ≥ x0, for some x0 ≥ 0’. Similarly, ‘as x → −∞’
stands for ‘for all x ≤ x0, for some x0 ≤ 0’.

4 ‘As x→ z−’ actually means ‘for all x ∈ [x0, z), for some x0 ∈ R’. Similarly, ‘as x→ z+’
stands for ‘for all x ∈ (z, x0], for some x0 ∈ R’.
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Definition B.0.6 (Normalized regular variation). If the c function is con-
stant in either (B.5) or (B.6), we shall call the corresponding ` normalized and
shall write ` ∈ S̄τ , for τ ∈ {∞,−∞, z+, z−}. Similarly, a function f ∈ Rτ,α
shall be called normalized, represented by f ∈ R̄τ,α, if its slowly varying part is
normalized.

Normalized slowly varying functions have the following interesting property
(Soulier, 2009), which is an extension of Remark B.0.1.

Proposition B.0.6. Let α > 0. We have:

• ` ∈ S±∞ is normalized if and only if both x 7→ (±x)α`(x) and x 7→
(±x)−α`(x) are ultimately monotone5 as x→ ±∞.

• ` ∈ Sz± is normalized if and only if both x 7→ [±(x − z)]α`(x) and x 7→
[±(x− z)]−α`(x) are ultimately monotone6 as x→ z±.

Regular variation, in all its different (and equivalent) forms, thus reduces
to slow variation. It is time now to present the very first examples of slowly
varying functions (at ∞7).

Example B.0.1. For any β ∈ R, x 7→ (log x)β is slowly varying at ∞.

For continuously differentiable functions, there is an alternative characteri-
zation of regular variation (Soulier, 2009).

Proposition B.0.7. Let ` be continuously differentiable. We have that ` ∈ S̄±∞
if and only if

lim
x→±∞

x`′(x)

`(x)
= 0 . (B.7)

Proof. For the ‘only if’ part, differentiating (B.5), we get

x`′(x)

`(x)
=
xc′(x)

c(x)
+ η(x) .

The result follows from c being constant (thus c′(x) = 0, for all x) and
limx→±∞ η(x) = 0. For the ‘if’ part, ` can be expressed as (B.5), with
η(x) = x`′(x)/`(x) and c(x) = `(x0), for all x some x0.

Theorem B.0.4. Let f be continuously differentiable and let α ∈ R. We have
that f ∈ R̄±∞,α if and only if

lim
x→±∞

xf ′(x)

f(x)
= α . (B.8)

Proof. The proof comes down to Proposition B.0.7, using Proposition B.0.4 and
noting

xf ′(x)

f(x)
= α+

x`′(x)

`(x)
.

5 Meaning monotone in [x0,∞) or (−∞, x0], respectively.
6 Meaning monotone in (z, x0] or [x0, z), respectively.
7 Examples at −∞, z+ and z− can be derived from this case.
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Proposition B.0.8. A continuously differentiable function f is regularly vary-
ing at z± with index α if and only if

lim
x→z±

(z − x)f ′(x)

f(x)
= −α .

Proof. It is a consequence of Theorem B.0.4 and Proposition B.0.2, letting
g(x) = f(z − 1/x):

−α = lim
x→∓∞

xg′(x)

g(x)
= lim
x→∓∞

x−1f ′(z − 1/x)

f(z − 1/x)
= lim
x→z±

(z − x)f ′(x)

f(x)
.

Integrals of regularly varying functions, under weak assumptions, behave
as regularly varying too. Expressing the integrand as a power function times
a slowly varying one, the following important result (Mikosch, 1999, McNeil
et al., 2005, Soulier, 2009) says we can take the slowly varying factor out of the
integral.

Theorem B.0.5 (Karamata’s Theorem). Let ` ∈ S∞ be locally bounded in
[x0,∞) for some x0 ≥ 0.

1. If α > −1, then ∫ x

x0

tα`(t) dt ∼ xα+1

α+ 1
`(x) ,

as x→∞.

2. If α < −1, then ∫ ∞

x

tα`(t) dt ∼ − x
α+1

α+ 1
`(x) ,

as x→∞.

Karamata’s theorem is usually stated for slowly varying functions at ∞,
but there exist equivalent versions for cases −∞ and z± with the same original
interpretation.

Corollary B.0.1 (Karamata’s Theorem at −∞). Let ` ∈ S−∞ be locally
bounded in (−∞, x0] for some x0 ≤ 0.

1. If α > −1, then

∫ x0

x

(−t)α`(t) dt ∼ (−x)α+1

α+ 1
`(x) ,

as x→ −∞.

2. If α < −1, then

∫ x

−∞
(−t)α`(t) dt ∼ − (−x)α+1

α+ 1
`(x) ,

as x→ −∞.
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Proof. It easily follows from a change of variable in Theorem B.0.5, noting that,
by definition, ` ∈ S−∞ if x 7→ `(−x) ∈ S∞.

Corollary B.0.2 (Karamata’s Theorem at z±). Let ` ∈ Sz± be locally
bounded in (z, x0] or in [x0, z) for some x0 > z or x0 < z, respectively.

1. If α < −1, then

∓
∫ x

x0

[±(x− z)]α`(t) dt ∼ − [±(x− z)]α+1

α+ 1
`(x) ,

as x→ z±.

2. If α > −1, then

∓
∫ z

x

[±(x− z)]α`(t) dt ∼ [±(x− z)]α+1

α+ 1
`(x) ,

as x→ z±.

Proof. This proof is analogous to the one of Corollary B.0.1, now using the
changes of variable given in Proposition B.0.2.

Next we introduce a concept which is closely related to regular variation.

Definition B.0.7 (Additive regular variation at ∞). A measurable func-
tion f defined on [x0,∞), for some x0 ∈ R, is said to be additively regularly
varying at ∞, represented by f ∈ R+

∞,α, if

lim
x→∞

f(x+ µ)− f(x) = αµ , (B.9)

for all µ ∈ R.

Expression (B.9) closely resembles that of a ‘derivative at infinity ’:

lim
x→∞

f(x+ µ)− f(x)

µ
= α , if µ 6= 0 .

Additive regular variation, just like ordinary regular variation, can be studied
at −∞.

Definition B.0.8 (Additive regular variation at −∞). A measurable func-
tion f defined on (−∞, x0], for some x0 ∈ R, is said to be additively regularly
varying at −∞, represented by f ∈ R+

−∞,α, if x 7→ f(−x) ∈ R+
∞,−α.

Again, additive regular variation is also related to regular variation at ±∞
by means of the following proposition.

Proposition B.0.9. f ∈ R+
±∞,α if and only if x 7→ exp f [± log(±x)] ∈

R±∞,±α.

Proof. It suffices to show it is true for f ∈ R+
∞,α and then use Definition B.0.2

and Definition B.0.8. Therefore, letting g(x) = exp f(log x), it all comes down
to checking

lim
x→∞

f(x+ µ)− f(x) = log lim
x→∞

g(λx)

g(x)
, (B.10)

where λ = eµ.
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As in Definition B.0.5, index α = 0 in additive regular variation suggests a
slow rate of change.

Definition B.0.9 (Additive slow variation). Formally consider τ ∈
{∞,−∞}, that is, τ indexes any of the two additive regular variation scenarios.
A function f ∈ R+

τ,0 is called additively slowly varying at τ , represented by
f ∈ S+

τ .

Just like regularly varying functions could be factorized as a power series
times a slowly varying function, additively regularly varying functions can be
expressed in terms of their slowly varying counterparts.

Proposition B.0.10. f ∈ R+
±∞,α if and only if

f(x) = αx+ `(x) , (B.11)

as x→ ±∞, for some ` ∈ S+
±∞.

Proof. It easily follows from plugging both (B.4) and (B.11) into Proposi-
tion B.0.9.

We end this appendix with the additive version of the theorem of uniform
convergence.

Proposition B.0.11. Consider f ∈ S+
±∞. The limit (B.9) is uniform8 in µ on

any interval [a, b].

Proof. Focusing on the case +∞ (−∞ is analogous) and looking back at the
proof of Proposition B.0.9, we see that the logarithm function appears both
relating constants µ and λ (µ = log λ) and the limits at both sides of equation
(B.10). On the one hand, given a closed interval [a, b] for µ, we see that λ ∈
[log a, log b], a closed interval. On the other hand, logarithm is continuous at 1.
The last two remarks make clear, without any further ε-δ reasoning, that the
uniformity of f in µ reduces to the uniformity of g in λ (see equation (B.10)),
thanks to Theorem B.0.1.

8 Uniformity in µ on an interval I means that for all ε > 0, there exists x∗ > x0 (alter-
natively, x∗ < x0), with x0 as in Definition B.0.7 (alternatively, as in Definition B.0.8), such
that x > x∗ (alternatively x < x∗) implies |`(x+ µ)− `(x)| < ε, regardless of which µ ∈ I is
chosen.
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Appendix C

Quantiles

This appendix aims to remind some well-known properties of quantile functions
(McNeil et al., 2005), a concept which, in turn, is one of the cornerstones of
copula modelling. As (Embrechts and Hofert, 2013) points out, it is surprisingly
unusual to find detailed proofs for these results and, to make matters worse,
many of them are wrong or inflated with unnecessary hypotheses. For this
reason, we take our time to formalize and tailor them according to our needs.

Through this appendix we will extend, by convention, the usual domain of
a univariate CDF, R, to R̄ = R ∪ {−∞,∞} as

F (−∞) = lim
x→−∞

F (x) = 0 ,

and
F (∞) = lim

x→∞
F (x) = 1 ,

assuming, thus, {0, 1} ⊂ Im(F ).
Quantile functions are a special case of generalized inverses of CDFs.

Definition C.0.10 (Quantile function). Let F be a univariate CDF. We
define the quantile function of F , F← : [0, 1]→ R̄, as

F←(α) = inf{x ∈ R̄ : F (x) ≥ α} . (C.1)

If X is a r.v. with CDF F , we alternatively denote F← by QX .

From Definition C.0.10 we can easily check that

F←(0) = inf{x ∈ R̄ : F (x) ≥ 0} = inf R̄ = −∞ , (C.2)

and F←(α) =∞ implies α = 1, though the converse is not generally true (it is
possible that F (x) = 1 for some finite x).

The fact that (C.2) holds for any univariate CDF, including those which
have a bounded from below support, may seem a bit odd. Take for example
F (x) = max{0,min{1, x}}, the CDF of the uniform distribution on [0, 1], for
which we would expect F←(0) = 0. We can justify the use of R̄ in (C.1) just
like we allow the domain of a CDF to be R̄. Notwithstanding, quantiles can be
sensibly defined to take more informative values at zero (Embrechts and Hofert,
2013), but at the cost of hardening demonstrations. Besides, Embrechts and
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Hofert claim that ‘from a statistical or practical point of view, the 0-quantile
is irrelevant’, which is true as regards the results contained in this appendix.
Consequently, we follow their advice and adopt Definition C.0.10.

Let us introduce the most fundamental properties of quantile functions.

Proposition C.0.12. Let F be a univariate CDF. The following properties
hold:

1. F← is monotonically increasing.

2. For all α ∈ [0, 1], F (F←(α)) ≥ α.

3. For all α ∈ [0, 1], if α ∈ Im(F ), then F (F←(α)) = α.

4. If F is continuous, then F (F←(α)) = α for all α ∈ [0, 1].

5. For all x ∈ R and α ∈ [0, 1], F (x) ≥ α if and only if F←(α) ≤ x.

6. For all x ∈ R, F←(F (x)) ≤ x. Moreover, F←(F (x)) < x if and only if
there exists x′ < x such that F is constant on [x′, x].

Proof. Part (1), i.e., α < β yielding F←(α) ≤ F←(β), directly follows from
{x ∈ R̄ : F (x) ≥ β} ⊂ {x ∈ R̄ : F (x) ≥ α} if α < β.

To show (2), note that if F←(α) <∞, there exists a sequence {xn}∞n=1 such
that xn ≥ F←(α) for all n and such that limn→∞ xn = F←(α). Since F is
right-continuous, limn→∞ F (xn) = F (F←(α)) and, as F (xn) ≥ α for all n, we
get F (F←(α)) ≥ α. On the other hand, if F←(α) = ∞, then α = 1 and the
result follows trivially.

To show (3), suppose that α ∈ Im(F ). First of all, F−1({α}) = {x ∈ R̄ :
F (x) = α} ⊂ {x ∈ R̄ : F (x) ≥ α}, so F←(α) ≤ inf F−1({α}). Secondly, it holds
that F (inf F−1({α})) = α, even if α ∈ {0, 1} (which are trivial cases), because
F is right-continuous. Finally, using (2) and the fact that F is monotonically
increasing, we get

α ≤ F (F←(α)) ≤ F (inf F−1({α})) = α ,

as we wanted to show.
Property (4) is a direct consequence, via (3), of the fact that (0, 1) ⊂ Im(F )

if F is continuous.
As regards (5), the ‘only if‘ part directly follows from Definition C.0.10.

Conversely, if F←(α) ≤ x, using (2) and being F monotonically increasing, we
have α ≤ F (F←(α)) ≤ F (x).

The first part of (6) follows from x ∈ {y ∈ R̄ : F (y) ≥ F (x)}. On the other
hand, letting α = F (x), if F←(α) < x, it follows that F (F←(α)) = α = F (x),
using the fact that α ∈ Im(F ) and (3). Taking x′ = F←(α), it holds that
F (x′) = F (x) and, since F is monotonically increasing, F must be constant on
[x′, x]. Conversely, if F←(F (x)) = x, by definition of F←, there cannot exist
such an x′.

Proposition C.0.12 leaves a corollary and a very insightful remark.

Corollary C.0.3. If F is strictly increasing and continuous, F← is actually
the inverse of F , that is, F−1.
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Proof. Being F strictly increasing guarantees the existence of F−1. Then, using
Proposition C.0.12(4), F−1 and F← must coincide.

Remark C.0.2. Let x0 ∈ R. If F←(F (x0)) 6= x0, then

{x ∈ R : F←(F (x)) 6= x and F (x) = F (x0)}

=

{
(a0, b0], if b0 <∞ and F continuous at b0

(a0, b0), otherwise
,

where a0 = F←(F (x0)) ∈ R and b0 = sup{x ∈ R̄ : F (x) = F (x0)} ∈ R ∪ {∞}.
This means that {x ∈ R : F←(F (x)) 6= x} can be decomposed as the countable1

union of pairwise disjoint left-open intervals where F is constant.

We end this appendix introducing the three foremost results on quantile
functions.

Proposition C.0.13. Let X ∼ F be a univariate r.v. We have

F←(F (X)) = X a.s. .

Proof. According to Remark C.0.2, the set {x ∈ R : F←(F (x)) 6= x} can
be decomposed as the countable union of pairwise disjoint left-open intervals
{In}n∈N where F is constant (say F (x) = αn for all x ∈ In). The probability
that X belongs to any of this intervals is zero:

P(X ∈ In) =

{
F (bn)− F (an), if In = (an, bn]

F (b−n )− F (an), if In = (an, bn)

= 0 ,

where we have used that F is right-continuous (namely, at an) and, thus,
F (an) = αn. The proof ends by observing

P [X 6= F←(F (X))] = P

(
X ∈

∞⋃

n=1

In

)
=
∞∑

n=1

P (X ∈ In) = 0 .

Proposition C.0.14. Let X ∼ F be a continuous univariate r.v. Then

F (X) ∼ U [0, 1] .

Proof. First of all, given u ∈ (0, 1), since F is monotonically increasing, it
necessarily follows that F−1({u}) is a closed interval (perhaps containing a
single point). Of course, F takes the constant value u on that interval. Besides,
being F continuous, the probability of the interval endpoints is zero. Therefore,
P(X ∈ F−1({u})) = 0 and so, given u ∈ (0, 1),

P(F (X) ≤ u) = P(F (X) < u) + P(X ∈ F−1({u}))
= P(X < F←(u)) (Proposition C.0.12(5))

= P(X ≤ F←(u)) (X is a continuous r.v.)

= F (F←(u))

= u , (Proposition C.0.12(4))

as we wanted to show.
1 Each interval contains a different rational and card(Q) = ℵ0.
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Proposition C.0.15. Let U ∼ U [0, 1] and let F be a univariate CDF. We have

F←(U) ∼ F .

Proof. It is a direct consequence of Proposition C.0.12(5):

P(F←(X) ≤ x) = P(X ≤ F (x)) = F (x) .



Appendix D

Implementation details

This annex is devoted to the presentation of several technical details relating to
the implementation of the methods described in Chapter 4.

D.1 The bivariate case

In this section we look at the estimation and smoothing procedures described
in Section 4.1.3 from an implementation perspective. We will present the ex-
pressions for all the gradients involved in the optimization process, the approx-
imations steps to take, numerical tips and computational considerations.

In the following lines we shall suppose that the generators fθ, Fθ and φθ
and the copula function Cθ and its density cθ all relate to the natural spline gθ.
Also, we shall denote by ∇θ the gradient with respect to the parameters vector
θ = (θ1, θ2, . . . , θk−1, θk+1, θk+2, . . . , θn)T ∈ Rn−1, when a function, like any of
the above mentioned, depends on additional arguments other than θ.

D.1.1 Gradient formulae

The gradient of the natural spline generator gθ is simply

∇θgθ(x) = (N1(x), N2(x), . . . , Nk−1(x), Nk+1(x), Nk+2(x), . . . , Nn(x))T ,

where the natural spline basis functions Ni’s are as described in (4.23). The rest
of calculations are always the same, regardless of the actual basis or parametriza-
tion used.1 Using the usual construction steps, we get

∇θfθ(x) = fθ(x) · ∇θgθ
(
σ−1(x)

)

and differentiating under the integral sign, we have

∇θFθ(x) =

∫ x

0

∇θfθ(t) dt (D.1)

and

∇θφθ(x) = −
∫ 1

x

∇θFθ(t)

(Fθ(t))2
dt , (D.2)

1 Remember the missing k-th basis function, which is removed in order to make the model
identifiable.
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where integration of vector-valued functions must be component-wisely inter-
preted.

We also need ∇θφ−1
θ (x), which is just a little bit trickier than the previous

formulae. By definition,

x =

∫ 1

φ−1
θ (x)

1

Fθ(t)
dt ,

and using implicit differentiation, we have

0 = ∇θ
(∫ 1

φ−1
θ (x)

1

Fθ(t)
dt

)
= − ∇θφ

−1
θ (x)

Fθ
(
φ−1
θ (x)

) +∇θφθ
(
φ−1
θ (x)

)
,

where 0 = (0, 0, . . . , 0) ∈ Rn−1, to finally obtain

∇θφ−1
θ (x) = Fθ

(
φ−1
θ (x)

)
· ∇θφθ

(
φ−1
θ (x)

)
.

Special care must be taken when differentiating

Cθ(u, v) = φ−1
θ (φθ(u) + φθ(v)) ,

with respect to θ.2 In any case, taking w = Cθ(u, v), the final result is

∇θCθ(u, v) = Fθ(w) [∇θφθ(w)−∇θφθ(u)−∇θφθ(v)] .

With all the above ingredients, the gradient of (4.28) is

∇θ log cθ(u, v) = A+B , (D.3)

where

A = ∇θgθ
(
σ−1(w)

)
+ w(1− w) · g′θ

(
σ−1(w)

)
· ∇θCθ(u, v)

B =
F ′θ(w) · ∇θCθ(u, v)

Fθ(w)
+
∇θFθ(w)

Fθ(w)
− ∇θFθ(u)

Fθ(u)
− ∇θFθ(v)

Fθ(v)

and again w = Cθ(u, v). Note the use of F ′θ(w), instead of fθ(w), which is meant
to emphasize that, whatever we use to approximate Fθ(w), using the derivative
of this approximation is numerically more stable than using the original fθ(w)
in the above calculations.

Then, finally, the gradient of the log-likelihood (4.29) is

∇ logL(θ|D) =
N∑

i=1

∇θ log cθ(Ui, Vi) .

Using the Kendall-based loss function (4.30) instead, the gradient

∇θ log pθ(w, z) = ∇θgθ
(
σ−1(w)

)
− ∇θFθ(z)

Fθ(z)
, (D.4)

2 To avoid confusion, it might be convenient to express it as

C(u, v;θ) = φ−1(φ(u;θ) + φ(v;θ);θ) .
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is much easier to compute than (D.3). In this case, the gradient of the log-
likelihood function (4.31) is

∇ logL(θ|D̃) =
N∑

i=1

∇θ log pθ(Wi, Zi) .

In either case, as regards the penalty term E(θ), described in (4.34), we
simply have

∇E(θ) = 2Ω∗θ .

D.1.2 Approximation steps

The functions involved in the optimization problem (4.37) and their derivatives
have no closed-form expression. A naive approach to evaluate them results in
either numerical errors that will be difficult to overcome or an excessive execu-
tion time; measures must be taken to prevent these situations. The techniques
employed here might seem a bit tricky, but they are actually commonplace.

The base for all the integral approximations we will make is contained in the
following definition.

Definition D.1.1 (Boole’s rule). Let f : R → R and let a, b ∈ R such that
a < b. Take h = (b− a)/4 and xi = a+ (i− 1)h, for i = 1, 2, . . . , 5. Define

Iba(f) =
2h

45
(7f(x1) + 32f(x2) + 12f(x3) + 32f(x4) + 7f(x5)) .

The Boole’s rule makes the approximation

Iba(f) dx ≈
∫ b

a

f(x) .

Should integration be performed at each function evaluation, the optimiza-
tion process would take too long and become unfeasible. To avoid this, spline
interpolation is performed after applying the quadrature in Definition D.1.1
on a fine grid. Additionally, when the function is positive, we apply a log-
transformation to the quadrature values prior to the interpolation step, increas-
ing its efficacy. The following definitions will make it clear.

Definition D.1.2 (Integral interpolation). Let f : R → R. Let a, b ∈ R
such that a < b and m ∈ N, with m > 2. Take h = (b− a)/m and xk = a+ kh,
for k = 0, 1, . . . ,m. Define the sequence of partial sums {qk}mk=0 as

qk+1 = qk + Ixk+1
xk

(f) ,

beginning with q0 = 0. We define Q̂m[a,b]{f} : [a, b] → R as the cubic spline in-

terpolating the set of points {(xk, qk)}mk=1 and having flat continuations outside
[a+ h, b]. We can make the approximation

Q̂m[a,b]{f}(x) ≈
∫ x

a

f(x) dx ,

for x ∈ [a+ h, b].
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Definition D.1.3 (Backwards integral interpolation). Let f : R→ R. Let
a, b ∈ R such that a < b and m ∈ N, with m > 2. Take h = (b − a)/m and
xk = b − (m − k + 1)h, for k = 1, 2, . . . ,m + 1. Define the sequence of partial
sums {qk}m+1

k=1 as
qk = qk+1 + Ixk+1

xk
(f) ,

beginning with qm+1 = 0. We define Q̌m[a,b]{f} : [a, b]→ R as the cubic spline in-

terpolating the set of points {(xk, qk)}mk=1 and having flat continuations outside
[a, b− h]. We can make the approximation

Q̌m[a,b]{f}(x) ≈
∫ b

x

f(x) dx ,

for x ∈ [a, b− h].

When the function to be integrated is positive and is known to range over
several orders of magnitude, it is advisable to interpolate log-scale values.

Definition D.1.4 (Log-scale integral interpolation). Let f : R → (0,∞).
Let a, b ∈ R such that a < b and m ∈ N, with m > 2. Take h = (b− a)/m and
xk = a + kh, for k = 0, 1, . . . ,m. Define the sequence of partial sums {qk}mk=0

as
qk+1 = qk + Ixk+1

xk
(f) ,

beginning with q0 = 0. We define L̂m[a,b]{f} : [a, b] → (0,∞) as the cubic spline

interpolating the set of points {(xk, log qk)}mk=1 and having flat continuations
outside [a+ h, b]. We can make the approximation

L̂m[a,b]{f}(x) ≈ log

∫ x

a

f(x) dx ,

for x ∈ [a+ h, b].

Definition D.1.5 (Backwards log-scale integral interpolation). Let f :
R → (0,∞). Let a, b ∈ R such that a < b and m ∈ N, with m > 2. Take
h = (b − a)/m and xk = b − (m − k + 1)h, for k = 1, 2, . . . ,m + 1. Define the
sequence of partial sums {qk}m+1

k=1 as

qk = qk+1 + Ixk+1
xk

(f) ,

beginning with qm+1 = 0. We define Ľm[a,b]{f} : [a, b] → (0,∞) as the cubic

spline interpolating the set of points {(xk, log qk)}mk=1 and having flat continu-
ations outside [a, b− h]. We can make the approximation

Ľm[a,b]{f}(x) ≈ log

∫ b

x

f(x) dx ,

for x ∈ [a, b− h].

We shall extend component-wisely the definition of the all the above opera-
tors to vector-valued functions. Letting T represent any integral operator and
f(x) = (f1(x), f2(x), . . . , fd(x)), we define

T{f}(x) = (T{f1}(x), T{f2}(x), . . . , T{fd}(x)) .
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Next, we present explicit formulae for the approximation of Fθ(x), φθ(x)
and their gradients and derivatives over a sufficiently large interval I = [ε, 1 −
ε] ⊂ [0, 1], where ε represents a really small positive quantity like ε = 10−10.
Following the recommendation in (Lambert, 2007), we stabilize all integrands
by means of a change of variable, namely t = σ(s), and eventually integrate
over σ−1(I) = [σ−1(ε), σ−1(1− ε)] ⊂ R.

• To approximate Fθ in I:

Fθ(x) =

∫ σ−1(x)

−∞
exp gθ(s) dσ(s)

= Fθ(ε) +

∫ σ−1(x)

σ−1(ε)

exp gθ(s) dσ(s)

≈
∫ σ−1(x)

σ−1(ε)

exp gθ(s) dσ(s)

≈ exp
[
L̂mσ−1(I){ρ}

(
σ−1(x)

)]
= F̃θ(x)

, (D.5)

where
ρ(s) = σ′(s) · exp gθ(s) . (D.6)

• To approximate F ′θ in I, do not use fθ, but the derivative of the estimate

F̃θ. Let p(x) = L̂mσ−1(I){ρ}(x) = log F̃θ(σ(x)), where ρ is as defined in

(D.6). Then, we can use

F ′θ(x) ≈ F̃θ(x) · p′
(
σ−1(x)

)

x(1− x)
.

• To approximate φθ in I, we use the approximation for F̃θ in (D.5):

φθ(x) =

∫ ∞

σ−1(x)

1

Fθ(σ(s))
dσ(s)

= φθ(1− ε) +

∫ σ−1(1−ε)

σ−1(x)

1

Fθ(σ(s))
dσ(s)

≈
∫ σ−1(1−ε)

σ−1(x)

1

Fθ(σ(s))
dσ(s)

≈
∫ σ−1(1−ε)

σ−1(x)

1

F̃θ(σ(s))
dσ(s)

≈ exp
[
Ľmσ−1(I){ρ}

(
σ−1(x)

)]
= φ̃θ(x)

,

where

ρ(s) =
σ′(s)

F̃θ(σ(s))
. (D.7)

• To approximate φ−1
θ , let {(xk, yk)}mk=1 be the points that give rise to the

interpolating spline p(x) = Ľmσ−1(I){ρ}(x) = log φ̃θ(σ(x)), where ρ is as
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defined in (D.7). Let q be the cubic spline interpolating {(ȳk, x̄k)}mk=1,
where x̄k = xm−k+1 and ȳk = ym−k+1, and thus satisfying q(x) ≈ p−1(x).3

Then,
φ−1
θ (x) ≈ σ (q(log x)) .

• To approximate ∇θFθ in I:

∇θFθ(x) =

∫ σ−1(x)

−∞
exp gθ(s) · ∇θgθ(s) dσ(s)

= ∇θFθ(1− ε) +

∫ σ−1(x)

σ−1(ε)

exp gθ(s) · ∇θgθ(s) dσ(s)

≈
∫ σ−1(x)

σ−1(ε)

exp gθ(s) · ∇θgθ(s) dσ(s)

≈ Q̂mσ−1(I){ρ}
(
σ−1(x)

)
= ∇̃θFθ(x)

, (D.8)

where
ρ(s) = σ′(s) · exp gθ(s) · ∇θgθ(s) .

• To approximate ∇θφθ in I, we use the approximation ∇̃θFθ in (D.8).

∇θφθ(x) =

∫ ∞

σ−1(x)

1

[Fθ(σ(s))]2
· ∇θFθ(σ(s)) dσ(s)

= ∇θφθ(1− ε) +

∫ σ−1(1−ε)

σ−1(x)

1

[Fθ(σ(s))]2
· ∇θFθ(σ(s)) dσ(s)

≈
∫ σ−1(1−ε)

σ−1(x)

1

[Fθ(σ(s))]2
· ∇θFθ(σ(s)) dσ(s)

≈
∫ σ−1(1−ε)

σ−1(x)

1

[F̃θ(σ(s))]2
· ∇̃θFθ(σ(s)) dσ(s)

≈ Q̌mσ−1(I){ρ}
(
σ−1(x)

)

,

where

ρ(s) =
σ′(s)

[F̃θ(σ(s))]2
· ∇̃θFθ(σ(s)) .

• If we denote the original estimate of the copula CDF by C̃θ, arising from
all the previous approximations, we can improve it with

Cθ(u, v) ≈ min
{

1− ε,max
{
C̃θ(u, v), ε

}}
.

With all the above approximations, we are ready to run a standard opti-
mization algorithm relying on function and gradient evaluations to solve (4.37),
regardless of the chosen loss-function. Despite the apparent complexity and
instability-proneness of the previous approximation steps, high accuracy is
achieved, as we were able to check by comparing with finite-difference estimates
of the gradients involved.

3 Since φθ is strictly decreasing, we have y1 > y2 > . . . > ym.
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The number of points m used for integrals interpolation must be sufficiently
large to ensure the accuracy of calculations over the whole σ−1(I). However, a
very large m will slow down computations. In our experience, m = 500 provides
good approximations if combined with ε = 10−10, while keeping execution times
under control.

D.1.3 Practical tips

In the above calculations, the finite precision arithmetic of computers causes
some minor numerical errors that, if not properly addressed, may harm the op-
timization process. Namely, during the integration steps, some unexpected 0’s
may arise, despite Fθ(x) and φθ(x) being always positive for x ∈ (0, 1). For
instance, it is not unusual to have exp gθ(s) ≈ 0 or σ′(s) ≈ 0 for sufficiently
negative s’s, in which case the computer might erroneously return 0. Conse-
quently, the logarithmic transformations we use before interpolation in (D.1.4)
and (D.1.5) return −∞’s, which obviously cannot be interpolated. This values
must be removed from the interpolation grid, along with their corresponding
abscissae. Fortunately, this step does not affect the overall accuracy of the
estimates.

D.1.4 Computational considerations

Fixed the number of knots n, the complexity of the estimation process is O(N),
where N is the sample size, due to the log-likelihood evaluations. On the other
hand, if N remains constant, the complexity is O(n), where n is the number of
spline knots used, which equals the number of basis functions plus one.

Specially for small sample sizes, the bottleneck of any gradient-based opti-
mization algorithm applied to our problem is the construction of the estimate
functions. Apart from estimating the latent functions, each gradient comprises
n − 1 partial derivatives. Each one involves, besides an interpolation step, m
runs of the 5-point quadrature rule (D.1.1). Notwithstanding, note that there
are far fewer function evaluations when using the lighter gradient (D.4).

We have successfully tried both gradient-based and gradient-free optimiza-
tion algorithms: L-BFGS (a light version of the BFGS quasi-Newton algorithm
used in (Hernández-Lobato and Suárez, 2011)) and Nelder-Mead, respectively.
In addition to easily handling the non-negative slope constraint θ1 ≥ 0 (4.36),
both converge without needing a decent initial guess at the solution. This con-
trasts with the recommendation in (Hernández-Lobato and Suárez, 2011) of
using some parts of (Lambert, 2007) to set the initial guess. As a matter of
fact, our implementation using the NLopt library4 in Julia (Bezanson et al.,
2012) demonstrates Hernández-Lobato and Suárez’s method converges by itself
alone, taking as initial estimate θ0 = 0n−1, the product/independence copula.

The gradient-based algorithm rapidly converges. Most times, it barely re-
quires from 10 to 20 heavy iterations for the log-likelihood target value to sta-
bilize up to a reasonable tolerance, taking only a few seconds. By contrast,
the gradient-free algorithm struggles to converge and usually takes far longer,
needing a huge number of light iterations.

4 Steven G. Johnson, The NLopt nonlinear-optimization package, available at
http://ab-initio.mit.edu/nlopt

http://ab-initio.mit.edu/nlopt
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D.2 The conditional case

We now present further implementation details on the proposal we made in Sec-
tion 4.2. Much of the new material actually builds upon the previous section.
To begin with, all gradient formulae from Section D.1.1 also apply in the condi-
tional case, just replacing the parameter vector θ with the parameter matrix Θ
and adding an extra argument for the covariate w. For instance, (D.1) becomes

∇ΘFΘ(x,w) =

∫ x

0

∇ΘfΘ(t, w) dt , (D.9)

where FΘ(∗, w) and fΘ(∗, w) play the role of Fw and fw in (4.40), respectively.

D.2.1 Approximation steps

The most relevant implementation detail concerns the approximation of the
bivariate functions involved in the estimation of the model, namely those in
equation (4.45). In the non-conditional case, we used cubic spline interpolation
to approximate those functions; now we shall use bi-quadratic splines.

Unfortunately, we cannot directly apply bivariate versions of the interpo-
lation operators described in the previous section. As mentioned in Section
D.1.3, due to the finite precision arithmetic of computers, some intermediate
calculations that happen to be inaccurate have to be removed for the sake of
the entire estimation process. Since the x-components to be removed vary from
one covariate w to another, the resulting grid is not rectangular, which makes
interpolation just not feasible.

To overcome this problem, we propose to perform an intermediate uni-
dimensional interpolation step. Let 0 = w1 < w2 < . . . < wk = 1 be
k equidistant knots in the covariate w-space and let the interpolation grid
a = x1 < x2 < . . . < xm = b in R. Consider, for instance, the approxi-
mation of x 7→ FΘ(x,wj) according to (D.5), i.e., x 7→ F̃Θ(x,wj). We can
approximate the function FΘ in both variables, x and w, by means of a bi-
quadratic spline p(x,w) interpolating the values yij = log F̃Θ(σ(xi), wj) over
the grid {(xi, wj) : i = 1, 2, . . . ,m and j = 1, 2, . . . , k} and finally defining
F̄Θ(x,w) = exp p(σ−1(x), w). The same process works for the rest of relevant
functions and derivatives.

A different, but related, problem concerns the inversion of the Archimedean
generator x 7→ φΘ(x,w). Because the range of each generator varies from one
covariate w to another, we need to find a common domain for the inverse gen-
erators y 7→ φ−1

Θ (y, w). We propose the following steps:

1. Consider the values yij = log φ̃Θ(σ(xi), wj) used to obtain the final esti-
mate φ̄Θ(x,w).

2. Fixed wj , build a cubic spline pj(y) interpolating the values xi over the
grid yij . This way, pj(y) ≈ σ−1(φ−1

Θ (exp y, wj)).

3. Take m equidistant knots {yk}mk=1 between y1 = min{yij} and ym =
max{yij}.

4. Define xij = pj(yi), for i = 1, 2, . . . ,m and j = 1, 2, . . . , k.
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5. Build a bi-quadratic spline p(y, w) interpolating the values xij over the
grid {(yi, wj) : i = 1, 2, . . . ,m and j = 1, 2, . . . , k}.

6. Finally define φ̄−1
Θ (y, w) = σ [p(log y, w)].

In order to get accurate approximations, our experience shows we need about
k = 100 covariate values. For the rest of model settings, we can use m = 500 and
ε = 10−10, as in the bivariate case. We successfully tried to alleviate the high
computational costs and make up for the large number of function evaluations
by employing bi-quadratic splines instead of bi-cubic splines.

D.2.2 Computational considerations

The estimation and smoothing process is computationally expensive, largely due
to the intermediate approximations we have just described. Given a parameter
configuration, the complexity of the algorithm is again O(N), where N is the
sample size. However, this time the number of parameters grows really fast
with the number of basis functions n and m in the x and w axis, respectively.
This fact has an impact on both the estimation stage itself and the preceding
approximation stage. Namely, fixing n, the complexity is O(m); fixing m, we
have O(n).

Contrary to the bivariate case, a gradient-free optimization algorithm like
Nelder-Mead did not work for us. The gradient-based L-BFGS algorithm did
work, also without a good initial guess at the solution. Specifically, convergence
is accomplished if we set all the entries of parameter matrix Θ to 0, which is
equivalent to considering φw(x) = − log x (independence copula) for all w ∈
[0, 1].
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