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Abbreviations 

AGEs Advanced glycation end products 

BSA Bovine serum albumin 

CEL Carboxyethyl-lysine 

CGA  Chlorogenic acid 

CML Carboxymethyl-lysine 

CS Coffee silverskin 

CSE Coffee silverskin extract 

CVD  Cardiovascular disease 

3-DG 3-Deoxyglucosone 

DOLD Deoxyglucasone-lysine dimer 

DPP4-Is Dipeptidyl peptidase 4 inhibitors 

FFA Free fatty acid 

GLP-1 Glucagon-like peptide 

GOLD Glyoxal-lysine dimmer 

GPx Glutathione peroxidase 

GR  Glutathione reductase 

GSH  Glutathione reduced 

GSSG Glutathione oxidized 

HbA1c Glycated haemoglobin 

IFG Impaired fasting glucose  

IGF-1 Insulin-like growth factor 

IGT Impaired glucose tolerance  

MGO Methylglyoxal 

MOLD Methylglyoxal-lysine dimmer 

NA Nicotinamide 

ROS Reactive oxygen species 

STZ Streptozotocin 

T2D Type 2 Diabetes 
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Introduction 

Coffee is the most consumed drink in the world (1). Therefore, large amounts of 

by-products are generated during the coffee industrial processing (2–4). Coffee 

silverskin (CS) is a thin tegument of the outer layer of the two beans forming the 

green coffee seed that is obtained as a by-product of the roasting process (5). The 

extraction of bioactive compounds from natural products is increasingly being 

used to prepare dietary supplements/nutraceuticals, food ingredients and some 

pharmaceutical products. Our research group patented an aqueous extract of coffee 

silverskin (CSE) (P201131128) that is rich in different bioactive compounds, 

especially chlorogenic acid (CGA) and caffeine.  

CGA formed by esterification of caffeic and quinic acids is one of the most 

abundant polyphenol in CSE (6,7). CGA has shown antioxidant (8), anti-

inflammatory (9–11) and antiglycative (12,13) properties in vitro and in vivo. CSE 

is also a good source of caffeine (6,14) and it may improve the antioxidant status 

in humans (15,16). Antioxidants in general and phytochemicals in particular play 

an outstanding role in lowering chronic disease risk like Type 2 Diabetes (T2D) 

(17,18).  

T2D is very complex and multifactorial metabolic disease characterized by insulin 

resistance and beta cell failure leading to elevated blood glucose level. 

Hyperglycemia was estimated to be one major factor contributing to diabetic 

complications including accelerated non-enzymatic glycation (formation of 

advanced glycation end products (AGEs) (19,20), an increase in oxidative stress 

due to the imbalance between the generation of reactive oxygen species (ROS) 

Summary 
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and the organism's antioxidant potential, and the increase of reactive carbonyl 

compounds caused by their enhanced formation and/or decreased degradation or 

excretion (21). Coffee consumption has been associated to a wide variety of health 

beneficial effects, in particular the reduced risk of T2D (22). In our knowledge, the 

mechanism of action of CSE bioactive compounds in T2D complications is still 

unknown. To achieve this goal, the antidiabetic effect of CSE bioactive 

compounds was evaluated in vitro and in vivo. 

Rationale of the study 

The aim of this thesis is to obtain novel scientific evidences to demonstrate the 

effects of CSE in T2D. Since the health and wellness of diabetics is principally 

affected by complications associated to formation and accumulation of advanced 

glycation end products (AGEs) in the organisms, the first approach was to evaluate 

the antglycoxidative properties of the extract. These studies were performed in 

vitro and applying phytochemomics technologies. Studies of bioaccesibility and 

metabolism of caffeine and CGA present in CSE has been also performed. In vivo 

bioactivity is highly influenced by the bioaccesibility and metabolism of the food 

components. In vitro studies are not enough to demonstrate the feasibility of 

bioactive extracts for the reduction of the risk or treatment of chronic diseases. 

The effect of CSE on biomarkers of diabetes in cell culture and in vivo was tested. 

Protein glycoxidation model systems were prepared containing bovine serum 

albumin (BSA) in the presence or absence of CGA or CSE for testing their effects 

on the glycoxidation reaction and potential in the prevention of complications of 

diabetes such as nephropathy, retinopathy and neuropathy. The glycoxidation 

reaction was started by the addition of methylglyoxal (MGO) and the mixtures 

were incubated at 37°C at different times. MGO was selected because its 

physiological relevance in the formation of in vivo AGEs and diabetic 

complications.  
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To elucidate the mechanism of action of CSE in the pathogenesis of T2D, a beta 

beta cell line (INS-1E) was used. INS-1E cells were treated with different doses of 

CSE (1-10 μg/mL), CGA (1-10 µM) or caffeine (1-10 µM). In a second set of 

experiments beta cells were treated with the same concentrations of CSE, CGA or 

caffeine and streptozotocin (STZ; 5 mM) was added as a diabetogenic agent. 

The bioaccesibility of caffeine and CGA in CSE was determined by analysis of 

their content before and after in vitro gastrointestinal digestion. The processes 

were performed mimicking human digestion physiological conditions. 

Additionally, novel information regarding to the major contributors to the health 

benefits of CSE was obtained. The extract was fractionated and the chemical 

composition and bioactivity of the fractions containing high and low molecular 

weight coffee components were analysed in vitro.  

On the other hand, in order to evaluate CSE bioavailability, Wistar rats (n=16) 

were housed singly in metabolic cages with free access to food and water, and 24 

h urine samples were collected from untreated rats as a control (n=4). Then the 

animals were divided into three groups: CSE group (n=4) receiving one single 

dose of CSE (adjusted to provide 2.2 mg caffeine/kg body weight), CGA group 

(n=4) receiving pure CGA (providing 1.5 mg CGA/kg body weight) and caffeine 

group (n=4) receiving pure caffeine (providing 5 mg/kg body weight). After the 

administration of each treatment, urine samples were serially collected at different 

times during 24 h. The bioavailability experiments were repeated with the same 

animals after 3 days of clearance. 

The evaluation of CSE bioactivity in STZ-nicotinamide (NA) diabetic rats was 

conducted using Wistar rats (n=32) divided into four groups (n = 8). Daily, the 

animals were supplemented by gavage with CSE (providing 2.2 mg caffeine/kg 

body weight, 0.8 mg CGA/ kg body weight), pure CGA (providing 1.5 mg 

CGA/kg body weight) or pure caffeine (providing 5 mg caffeine/kg body weight) 



Summary                                                                                   Coffee silverskin & Diabetes 

   

 

 
18 

 

during 42 d. The fourth group (STZ group) was treated similarly with sterile water. 

At day 35, all rats were induced T2D by the intraperitoneal injection of STZ (60 

mg/kg body weight) and NA (200 mg/kg body weight), and blood glucose levels 

were monitored daily in the following days. Rats were considered diabetic when 

blood glucose levels were above 200 mg/dl. At that moment (day 42), fasting rats 

were anaesthetised with Ketamine-Xylazine and sacrificed. Plasma samples and 

pancreas were obtained and frozen at -80 ºC until further analysis. 

Metodology 

To evaluate the in vitro inhibition of AGEs formation by CSE bioactive 

compounds using the glycoxidation model systems mimicking physiological 

conditions, we analysed free amino groups, fluorescence AGEs formation and 

total AGEs formation. Data on protein structure were obtained by mass 

spectrometry, Folin reaction and UV-Vis spectral analysis. In addition, to 

determine changes in protein functionality, the antioxidant capacity of the protein 

fraction was evaluated by ABTS assay.  

Pancreatic cell oxidative status was determined by measuring ROS, reduced 

glutathione (GSH) and glutathione peroxidase (GPx) and glutathione reductase 

(GR) activities in cell lysates after treatments with CSE, CGA and caffeine. 

Besides, glucose-induced insulin content and insulin secretion was quantified by 

using ELISA kit. In the second experiment, the protective effect of treatments 

against STZ-induced damage was evaluated by analysing markers of oxidative 

stress (ROS, GSH, GPx and GR) and cell death (crystal violet assay) in INS-1E 

beta cells. 

The bioaccesibility of components of CSE was estimated by analysis of total 

phenolic compounds, CGA and caffeine before and after the in vitro digestion. 

The overall antioxidant capacity (ABTS and ORAC) was also determined. 
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The bioavailability of CGA and caffeine in CSE was determined by measuring the 

excretion of their principal metabolites after providing a single dose of CSE, CGA 

or caffeine. Hippuric acid and paraxanthine were determined in 24 h urines of rats 

by UPLC-MS/MS analysis. Novel information regarding to the effects of CSE, 

caffeine and CGA on biomarkers of T2D were obtained in beta cells (INS-1E) and 

in vivo using as experimental model STZ-NA-induced T2D rats. 

In vivo protective effect of CSE, CGA and caffeine was evaluated using an 

experimental model of STZ-NA T2D rats. Thirty-two rats were daily pre-treated 

with the CSE, CGA or caffeine during 34 days. At day 35, diabetes was induced 

by intraperitoneal injection of STZ-NA and blood samples were collected in the 

fasting state at day 42. After blood centrifugation, plasma was separated and 

frozen at -80 ºC. The pancreas were removed promptly, weighted, divided into 

three parts and then stored at −80 °C until required. Plasma glucose was measured 

using a colorimetric kit. Plasma and pancreas insulin content was analysed using 

an ELISA kit. Fructosamine, as a biomarker of plasma protein glycation, was 

evaluated by nitroblue tetrazolium (NBT) colorimetric assay. Carbonyls content, 

as a biomarker of protein glycoxidation, was measured in plasma and pancreas 

homogenates using a colorimetric assay. Biomarkers of antioxidant defence, GSH 

and GPx and GR activities were analysed in the pancreas of diabetic rats.  

Results 

Novel findings were obtained during the development of this investigation. For the 

first time, it has been associated the inhibitory capacity of AGEs formation of 

CGA free and in CSE to its ability to form protein-phenol complexes. Reactive 

adducts of arginine and lysine were found in glycoxidative reaction with BSA and 

methylglyoxal by ESI Q-TOF-MSMS analysis. The addition of CGA or CSE to 

the glycoxidation system decreased the presence of arginine adducts. The novel 

structure formed by interaction of proteins and phenol caused a significant 
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increase (p < 0.05) of antioxidant character of the parental protein. The results are 

of great interest because this change in protein function may provide protection 

against oxidation reactions and diseases associated to this of damage.  

The experiments in INS-1E beta cell showed that CSE, pure CGA and caffeine did 

not affect pancreatic beta cells viability and oxidative status, when assayed under 

physiological conditions. All concentrations of CSE and CGA ≥ 5 µM 

significantly increased (p < 0.05) the enzymatic activity of GPx. CSE (1-10 

µg/mL) and the dose of 10 µM of CGA, significantly increased (p < 0.05) beta cell 

insulin secretion in the presence of 4 and 10 mM of glucose. On the other hand, 

CSE (1µg/mL) and CGA (10µM) reinforced the antioxidant defence and increased 

insulin secretion in response to glucose in beta cells stressed with STZ. 

Bioaccesibility of CSE compounds was affected during in vitro gastrointestinal 

digestion decreasing concentrations of caffeine (25%), phenolic content (40%) and 

CGA (82%). The overall antioxidant capacity of CSE was reduce at 15% and 50% 

as measured by ABTS and ORAC, respectively. Although a significant reduction 

of the bioaccesibility of CGA and caffeine occurred during digestion results 

suggest that physiological active concentrations of both compounds remain 

available to act in the body. 

The study of the bioavailability of CSE bioactive components in the organism 

shows that 24 h after the intake of a single dose, intact CGA was not found in 

urine of rats fed with CSE (containing 0.254 mg of CGA/day) or CGA (0.321 mg 

of CGA/day), while a significant excretion (p < 0.05) of hippuric acid was 

observed only after the ingestion of CGA alone. In addition, non-metabolized 

caffeine and paraxanthine was higher in urine after consumption of pure caffeine 

than after the treatment with CSE. Altogether results on bioccesibility and 

excretion indicated that caffeine and CGA in CSE were metabolised.  
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The supplementation of rats with pure CGA and caffeine tended to reduce (p < 

0.1) STZ-NA-induced oxidation of pancreas proteins. Pre-treatment of animals 

with CSE and CGA significantly reduced (p < 0.05) STZ-induced pancreas GSH 

depletion. Results confirm the bioavailability of caffeine and CGA in CSE and 

support their biological implications in diabetes.  

Conclusion 

In conclusion, the findings derived from these investigations demonstrate that one 

of the mechanisms by which CSE bioactive compounds inhibit AGEs formation is 

the generation of novel structures with antioxidant properties. The antiglycative 

effect of CSE may provide protection against complications in diabetics. Further 

investigations should be carried out to demonstrate the hypothesis. CSE protects 

pancreatic beta cells from oxidative stress and modulates insulin secretion. 

Caffeine and CGA in CSE are bioavailable and exert antidiabetic effects following 

different mechanism of actions. The effects observed on diabetes bioamarkers can 

be associated to the synergic effect of CGA, caffeine, their metabolites and others 

coffee components. Although further studies should be conducted to identify all 

the CSE components able to affect the biomarkers of diabetes and its effects in 

humans the present study suggests that an effect of CSE consumption in diabetes 

is biologically plausible, and that effect should be ascribed to the particular 

chemical and complex composition in bioactive compounds of the extract. The 

valorisation of CS into a sustainable product for diabetes is feasible. 
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Antecedentes 

El café es la bebida más consumida en todo el mundo (1). Durante el procesado 

del café se producen una abundante cantidad de subproductos (2–4). La piel de 

plata o cascarilla de café es el tegumento que cubre los dos granos que forman la 

semilla de café verde. Éste se desprende de los mismos durante el tostado siendo el 

único subproducto de esta etapa del proceso (5). El uso de extractos biactivos de 

productos naturales tales como la cascarilla de café ha ganado popularidad. Estos 

extractos se utilizan con frecuencia en la preparación de suplementos 

dietéticos/nutracéuticos, ingredientes alimentarios, productos farmacéuticos y 

cosméticos. El grupo de investigación en el que se ha desarrollado la presente tesis 

doctoral posee una patente concedida y transferida que protege tanto el proceso de 

elaboración del extracto acuoso de cascarilla de café como su aplicación en 

alimentación, salud y cosmética (P201131128). El extracto es rico en diferentes 

compuestos bioactivos. 

El ácido clorogénico, formado por esterificación de los ácidos cafeico y quínico, 

es uno de los componentes fenólicos más abundantes en el extracto de cascarilla 

de café (6,7). Este compuesto fenólico presenta propiedades antioxidantes (8), 

anti-inflamatorias (9–11) y antiglicantes (12,13). La cascarilla de café es además 

una buena fuente de cafeína (6,14), que podría contribuir a la mejora de la defensa 

antioxidante en humanos (15,16). En general los antioxidantes y los fitoquímicos 

en particular, juegan un papel muy relevante en la reducción del riesgo de 

enfermedades crónicas tales como la diabetes Mellitus tipo 2 (T2D sus siglas en 

inglés) (17,18).  

Resumen 
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La T2D es una enfermedad metabólica compleja y multifactorial caracterizada por 

la resistencia a la insulina y el fallo del funcionamiento de las células beta del 

páncreas, lo que conduce a niveles elevados de glucosa en sangre. La 

hiperglicemia prolongada conlleva una serie de eventos bioquímicos que causan 

complicaciones asociadas a la diabetes incluyendo formación y acumulación de 

productos avanzados de la glicación no-enzimática de proteínas (AGEs por sus 

siglas en inglés) (19,20), el incremento del estrés oxidativo debido a un desbalance 

entre la generación de especies reactivas de oxigeno (ROS) y la defensa 

antioxidante del organismo, así como el incremento de los niveles de carbonilos 

reactivos debido a su formación excesiva y/o baja degradación y excreción. (21). 

Al consumo del café se le asocian una amplia variedad de efectos beneficios para 

la salud y en particular la reducción del riesgo de T2D (22). En nuestro 

conocimiento hasta la fecha, el mecanismo de acción de los componentes 

bioactivos del extracto de cascarilla de café en la patogénesis y complicaciones de 

la diabetes no ha sido objeto de estudio.  

Justificación del estudio 

El objetivo de la presente Tesis Doctoral es obtener evidencias científicas 

novedosas que demuestren los efectos del extracto de cascarilla de café en T2D. 

Dado que la salud y el bienestar de los pacientes diabéticos se ven principalmente 

afectadas por complicaciones debidas a la formación y acumulación de AGEs en 

el cuerpo, en el presente estudio se ha evaluado en primera instancia, el potencial 

del extracto para inhibir este evento. Los estudios se llevaron a cabo in vitro 

mediante aplicación de la fitoquimómica. Se realizaron estudios de 

bioaccesibilidad y metabolismo de cafeína y ácido clorogénico presentes en el 

extracto. La bioactividad de los componentes alimentarios depende de en gran 

medida su bioaccesibilidad y metabolismo. Los estudios in vitro resultan 

insuficientes para demostrar la efectividad de los extractos bioactivos en la 

reducción del riesgo y/o tratamiento de enfermedades crónicas. Por este motivo, el 
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efecto del extracto de cascarilla de café en los biomarcadores de la diabetes se 

evaluó empleando cultivos celulares y un modelo experimental animal.  

Los sistemas modelo de glicoxidación de proteínas se prepararon empleando BSA 

en presencia o ausencia de ácido clorogénico o extracto de cascarilla de café. La 

reacción de glicoxidación se inició adicionando metilglioxal a la mezcla de 

reacción. Seguidamente, las muestras se incubaron a 37ºC durante diferentes 

periodos de tiempo. Se seleccionó el metilglioxal como carbonilo reactivo dado su 

relevancia en la formación de AGEs in vivo y las complicaciones de la diabetes en 

humanos.  

Con objeto de obtener nuevos conocimientos en relación al mecanismo de acción 

del extracto en la patogénesis de T2D se utilizó una línea de células beta 

pancreáticas INS-1E. Las células se trataron con diferentes dosis de extracto (1-10 

μg/mL), ácido clorogénico (1-10 µM) y cafeína (1-10 µM). En un segundo bloque 

de experimentos las células se trataron con las mismas concentraciones de 

extracto, ácido clorogénico o cafeína, esta vez en presencia de estreptozotocina (5 

mM) para inducir la diabetes. 

La bioaccesibilidad de cafeína y ácido clorogénico presentes en el extracto se 

determinó por análisis de sus contenidos antes y después de la digestión 

gastroinstetinal in vitro. El proceso se llevó a cabo simulando las condiciones 

fisiológicas de digestión humana. Una vez digerido, el extracto se fraccionó y la 

composición química y la bioactividad de las fracciones conteniendo compuestos 

de alto y bajo peso molecular se evaluó in vitro. El estudio se realizó con objeto de 

obtener información novedosa relativa a la identidad de los componentes del 

extracto que principalmente contribuyen a su bioactividad.  

Por otra parte, con el objeto de evaluar la bioadisponibilidad de los componentes 

del extracto de cascarilla de café se utilizaron como modelo animal ratas Wistar 

(n=12) que se alojaron en jaulas metabólicas con acceso a comida y agua. Se 
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recogió la orina de 24 h de ratas no tratadas y estas muestras se emplearon como 

control. Los animales se dividieron en tres grupos: tratamiento con extracto de 

cascarilla (n=4) al que se le suministró una única dosis de extracto ajustada para 

administrar 2,2 mg de cafeína/kg de peso corporal, tratamiento con ácido 

clorogénico puro (n=4) al que se le suministró una dosis correspondiente a 1,5 

mg/ácido clorogénico/ kg de peso corporal y tratamiento con cafeína pura (n=4) 

que recibió una dosis de este compuesto de 5 mg/kg de peso corporal. Tras la 

administración de los tratamientos, se recogieron muestras de orina a diferentes 

tiempos durante 24h. El experimento de biodisponibilidad se repitió empleando los 

mismos animales tras un periodo de tres días de lavado.  

Se evaluó la bioactividad del extracto en ratas Wistar diabéticas en las que la 

enfermedad se indujo con estreptozotocina y nicotinamida. Se emplearon un total 

de 32 ratas que se dividieron en 4 grupos (n=8). Las dosis de extractos 

correspondientes a 2,2 mg/ cafeína/kg de peso corporal, 0,8 mg de ácido 

clorogénico puro/kg de peso corporal y 5 mg de cafeína pura/kg de peso corporal 

se administraron utilizando una sonda gástrica diariamente durante 42 d. El grupo 

se trató de igual modo con agua destilada estéril. El día 35 de tratamiento, se 

indujo T2D a todas las ratas por inyección intraperitoneal de estreptozotocina (60 

mg/kg de peso corporal) y nicotinamida (200 mg/kg de peso corporal). Los niveles 

de glucosa se controlaron diariamente. Niveles de glucosa en sangre superiores a 

200 mg/dl indicaron el desarrollo de T2D (día 42 de tratamiento). Las ratas en 

ayunas fueron anestesiadas y sacrificadas y se recogieron muestras de plasma y 

páncreas, que se conservaron congeladas a -80ºC hasta el momento de su análisis.  

Metodología 

Para evaluar la inhibición de la formación de AGEs in vitro en presencia de los 

compuestos bioactivos del extracto de cascarilla se utilizó un sistema modelo de 

glicoxidación que imitaba las condiciones fisiológicas, y se analizaron como 
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indicadores químicos del progreso de la reacción los niveles dew grupos amino 

libres y la formación de AGEs fluorescentes. Los datos de la modificación de la 

estructura de la proteína se obtuvieron por espectrometría de masas, la reacción de 

Folin y el análisis del espectro UV-Vis. Además, para determinar los cambios en 

la funcionalidad de la proteína, la capacidad antioxidante de la fracción proteica 

fue evaluada mediante el ensayo del ABTS. 

El estado oxidativo en las células INS-1E cultivadas se determinó midiendo la 

presencia de ROS, glutatión reducido (GSH) y las actividades glutatión peroxidasa 

(GPx) y glutatión reductasa (GR) en los lisados celulares obtenidos tras la 

incubación con extracto de cascarilla, ácido clorogénico y cafeína. Además, el 

nivel de insulina secretada por la exposición a bajos y altos niveles de glucosa se 

cuantificó mediante ELISA. En un segundo experimento, se evaluó el efecto 

protector de los tres tratamientos frente al daño inducido por streptozotocina 

mediante el análisis de biomarcadores de estrés oxidativo (ROS, GSH, GPx y GR) 

y viabilidad celular (ensayo con cristal violeta).  

La bioaccesibilidad de los componentes del extracto se estimó mediante el análisis 

de los compuestos fenólicos totales, el ácido clorogénico y la cafeína, antes y 

después de la digestión in vitro. Además, se analizó la capacidad antioxidante total 

de los digeridos (ABTS y ORAC). El resultado proporciona información del 

potencial del extracto en la protección del tracto gastrointestinal frente al estrés 

oxidativo.  

La biodisponibilidad del ácido clorogénico y de la cafeína presentes en el extracto 

de cascarilla se determinó mediante la evaluación de su excreción y de la de sus 

principales metabolitos en orina después de la administración de una dosis única 

del extracto, ácido clorogénico y cafeína a ratas. El ácido hipúrico y la paraxantina 

fueron determinados en orina de 24 horas mediante UPLC-MS/MS. Se ha 

obtenido información novedosa respecto a los efectos del extracto de cascarilla, la 
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cafeína y el ácido clorogénico sobre biomarcadores de T2D in vitro, en células 

pancreáticas beta INS-1E, e in vivo en un modelo experimental en ratas con T2D 

inducida por estreptozotozina-nicotinamida. 

El efecto protector in vivo del extracto de cascarilla, el ácido clorogénico y la 

cafeína se ha evaluado en un modelo experimental en ratas con T2D. Treinta y dos 

ratas fueron pretratadas diariamente con extracto de cascarilla, ácido clorogénico o 

cafeína durante 34 días. En el día 35 se les indujo la diabetes mediante la 

inyección intraperitoneal de estreptozotozina y nicotinamida. Se recogieron 

muestras de sangre el día 42; tras centrifugarlas, se separó el plasma y se congeló a 

-80ºC. El páncreas también fue obtenido y congelado a -80ºC hasta su análisis. Se 

determinó la glucosa en plasma mediante un ensayo colorimétrico y la insulina en 

plasma y en el páncreas mediante un kit de ELISA. La fructosamina (un 

biomarcador de glicación de proteínas plasmáticas) se determinó mediante el 

ensayo colorimétrido con nitroblue tetrazolium (NBT) y las proteínas carbonilo se 

determinaron en plasma y en homogenados de páncreas mediante un ensayo 

colorimétrico. También se determinaron los biomarcadores del sistema de defensa 

antioxidante: GSH, GPx y GR en el páncreas de las ratas diabéticas. 

Resultados 

El desarrollo de la presente investigación ha dado lugar a novedosos hallazgos. Por 

primera vez hemos asociado la capacidad del ácido clorogénico puro y el presente 

el extracto de cascarilla para inhibir la formación de AGEs a su habilidad para 

formar complejos con proteínas. El análisis de la muestras empleando ESI Q-TOF-

MSMS permitió identificar aductos de arginina y lisina en sistemas de 

glicoxidación compuestos por BSA y metilglioxal. La adición a las mezclas de 

glicoxidación de ácido clorogénico o extracto de cascarilla disminuyó la presencia 

de los aductos de arginina. La nueva estructura que se formó por interacción de la 

proteína y el compuesto fenólico incrementó significativamente (p < 0.05) la 
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capacidad antioxidante de la proteína nativa. Los resultados son de gran interés 

dado que los cambios detectados en la función de la proteína podrían protegerla de 

las reacciones de oxidación y patologías asociadas a éstas.  

Los experimentos realizados en células beta INS-1E mostraron que el extracto y el 

ácido clorogénico puro no afectan la viabilidad de las células y su estatus 

oxidativo bajo condiciones que simulan las condiciones fisiológicas. La actividad 

enzimática de GPx se incrementó significativamente al tratar las células con 

diferentes concentraciones de extracto y ácido clorogénico ≥ 5 µM. Los 

tratamientos con extracto (1-10 µg/mL) y 10 µM of CGA causaron un incremento 

significativo (p < 0.05) de la secreción de insulina por las células beta cultivadas 

en medios con 4 y 10 mM de glucosa. Por otra parte, los tratamientos con extracto 

(1µg/mL) y ácido clorogénico (10µM) mejoraron la defensa antioxidante e 

incrementaron la secreción de insulina en respuesta al incremento de glucosa en 

células beta dañadas con estreptozotocina.  

La bioaccesibilidad de los componentes del extracto disminuyó significativamente 

durante el proceso de digestión gastrointestinal. La reducción fue del orden del 

25% para cafeína, 40% para el contenido de compuestos fenólicos totales y 82% 

para el ácido clorogénico. Por otra parte, se registraron disminuciones de la 

capacidad antioxidante total del extracto hasta el 15% y 50% empleando los 

métodos ABTS y ORAC, respectivamente. Las concentraciones remantes de ácido 

clorogénico y cafeína se encuentran en los rangos de valores descritos como 

fisiológicamente activos. 

El estudio de biodisponibilidad de los componentes bioactivos del extracto mostró 

que tras 24 h de su ingesta, no se encontró en la muestra de orina ácido 

clorogénico en animales tratados con extracto o el compuesto fenólico puro. En las 

muestras correspondientes a animales tratados con ácido clorogénico puro se 

encontraron cantidades significativas (p < 0.05) de ácido hipúrico. En las muestras 
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correspondientes a animales tratados con cafeína y extractos de cascarilla de café 

se detectó la presencia de cafeína y paraxantina.  

En el modelo experimental de ratas diabéticas se detectó que la suplementación 

con ácido clorogénico puro y cafeína tienden a reducir (p<0.1) la oxidación de las 

proteínas del páncreas. El pretratamiento de los animales con el extracto y el ácido 

clorogénico puro previno (p < 0.05) la disminución de los niveles de GSH en 

páncreas de ratas diabéticas. Los resultados derivados de este estudio confirmaron 

la biodisponibilidad de cafeína y ácido clorogénico en el extracto y apoya sus 

implicaciones biológicas en la diabetes.  

Conclusiones 

En conclusión, los hallazgos derivados de esta investigación demostraron que los 

componentes bioactivos del extracto inhiben la formación de AGEs mediante al 

menos en parte, por la generación de nuevas estructuras con propiedades 

antioxidantes. El efecto antiglicoxidativo del extracto de cascarilla de café podría 

proteger frente a las complicaciones de la diabetes. Para demostrar esta hipótesis 

deben realizarse experimentos in vivo. El extracto de cascarilla protege a las 

células beta del páncreas frente al estrés oxidativo y modula su secreción de 

insulina. La cafeína y el ácido clorogénico presente en el extracto se encuentran 

bioaccesibles, son metabolizables y ejercen efectos antidiabéticos a través de 

diferentes mecanismos de acción. Los efectos que se han observado en los 

biomarcadores de la diabetes pueden asociarse al efecto sinérgico del ácido 

clorogénico, cafeína y otros componentes del café. A pesar que se requieren más 

estudios para identificar todos los componentes del extracto que contribuyen a sus 

efectos en la diabetes y confirmar su efectividad terapéutica en humanos, el 

presente estudio sugiere que su efecto en la diabetes es biológicamente factible y 

que éstos deben asociarse a su particular y compleja composición química. La 

valorización de la cascarilla de café como producto sostenible para la diabetes es 
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una aplicación factible. 
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Introduction 

Coffee Silverskin Extract. Definition, extraction processes 

and chemical composition. 

Large amounts of coffee by-products are generated from the industrial processing 

of coffee cherries to obtain the coffee beverage (1–4). Coffee is actually a cherry 

whose structure is shown in Figure 1. Coffee cherries are mainly used to prepare 

the beverage when they are processed. From farm to cup, coffee processing can be 

briefly summarized in ten key steps: planting, cherry harvesting, processing (wet 

and dry methods), drying the beans, milling, exporting, tasting, roasting, grinding 

and brewing (http://www.ncausa.org/). 

The coffee industry is responsible for the generation of large amounts of waste 

since coffee is the second most valuable commodity exported by developing 

countries (5). Furthermore, the study of the coffee by-products generated during 

the different stages of coffee processing is necessary to decrease the waste 

produced by this industry. The recovery of coffee by-products is mainly based on 

their use as a source of energy and biomass. Although these strategies are of 

interest, they do not consider valuable nutritional compounds that could improve 

consumers’ health and increase the competitiveness and sustainability of coffee 

production (6). 

The valorisation of agricultural wastes, food processing by-products, wastes and 

effluents using the biorefinery approach represents the real contribution of many 

industries to sustainable and competitive development (7). Biorefineries can be 

described as integrated bio-based industries which use a variety of technologies to 

make products such as chemicals, biofuels, food and feed ingredients, 
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biomaterials, fibres, heat and power, aimed at maximizing the added value of the 

three pillars of sustainability (Environment, Economy and Society) (8). 

The type of by-product generated depends on the process used to obtain the green 

coffee bean. In the case of wet processing, ripe cherries are depulped to eliminate 

the outer skin, eliminating most of the pulp fixed to the grains (2,3). Then, the 

coffee beans undergo fermentation processes, are washed to remove the rest of the 

pulp, dried by sun exposure and peeled to remove the parchment (2,3). Here, skin 

and pulp are recovered in one fraction, and soluble sugars and mucilage are 

generated in another fraction. Finally, the parchment is obtained (2,3). Dry 

processing involves sun drying the coffee cherries for two or three weeks, and 

green coffee beans are obtained by simply threshing the dried cherries. At this 

time, skin, pulp, mucilage and parchment are obtained in a single fraction, along 

with part of the silverskin (9). The only by-product of coffee roasting is the 

silverskin. 

 

Figure 1: Cross-section of the coffee cherry, showing its anatomic parts. Based on del 

Castillo et al. (In press) (6).
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CS is a thin tegument of the outer layer of the two beans forming the green coffee 

seed and represents about 4.2 % (w/w) (Figure 1). Figure 2 summarises CS 

production by wet process (10). This coffee by-product presents phenolic 

compounds, mainly CGA, and other phytochemicals bioactive compounds that 

they contribute its high antioxidant capacity. Moreover, it has been proposed as a 

natural source of prebiotic carbohydrates and dietary fibre (10,11). The content of 

phenolic compounds and antioxidant capacity is delimited by the extraction 

method has been used prior to analyse the sample. Murthy et al., (2010) (12) 

obtained a CSE enriched in CGA involving heat treatment, spraying, enzyme 

treatment and extraction chromatography fractionation with organic solvents. Our 

research group patented a CSE from Arabica (Coffea arabica) and Robusta 

(Coffea canephora) (WO 2013004873 A1) enriched in caffeine and CGA (13). 

The extraction step takes place with 2 volumes of water per gram of CS at 100 °C 

for at least 10 min, does not use organic solvents. CSE is obtaining using an 

environmentally friendly technology (13). The extraction of bioactive compounds 

from natural products like CS is increasingly being used to prepare dietary 

supplements (nutraceuticals), food ingredients and some pharmaceutical products 

(14). 



Introduction                                                                              Coffee silverskin & Diabetes 

 

 
36 

 

 

Figure 2: Diagram of coffee silverskin production from wet processing. Based on Borrelli 

et al. (2004) (8). 

Table 1 summarises the chemical composition of our CSE. The patented CSEs are 

rich in total dietary fibre (28-36%), which includes about 4-9 % insoluble dietary 

fibre and 24-26 % soluble dietary fibre. CSEs are a good source of polyphenols, 

particularly CGA (1-6%); the most relevant are 5-O-, 3-O- and 4-O-caffeoylquinic 

acids (15). CSE is also a good source of caffeine (3%), and melanoidins (17-23%) 

which are formed during roasting process (15). Coffee melanoidins are formed by 

polysaccharides, proteins and CGA and exerted antioxidant capacity (16). CSEs 

present a higher proportion of extractable antioxidants in aqueous solution. These 

antioxidants provide a total antioxidant capacity similar to those described for 

coffee beverage and CS raw material. It has been suggested that the presence of 

CGA and melanoidins contributes to the antioxidant properties of CSEs 

(15,13,17).  
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The highlighted chemical composition of CSEs suggest that they could be a good 

source of bioactive compounds with putative effects on human health (13,17). 

Phenolic compounds from coffee have shown potential protective activity against 

metabolic disorders and complications induced by diabetes (18). CSE antioxidants 

(CGA, melanoidins and the antioxidant fibre) exhibited also antiglycative effects 

in vitro (15,16) which may be bioavailable for reducing oxidative stress in 

humans, thereby decreasing the risk of chronic diseases such as T2D (19,20,21). 

Diabetes. Classification 

Today, there are 415 million diabetic people and a further 316 million with 

impaired glucose tolerance (IGT) are at high risk from the disease. This alarming 

number is set to reach 642 million by 2040. The burden of diabetes is reflected not 

only in the increasing numbers of people suffering the disease, but also in the 

growing number of premature deaths (5 million in 2015) due to its complications 

(22). 

Table 1: Chemical composition of coffee silverskin extracts. Based on (14,16). 

Compounds ACSE (per 100g) RCSE (per 100g) 
Proteins (g) 5.36 0.99 

Carbohydrates (g) 5.44 13.43 

Total dietary fibre (g) 28.69 36.21 

Soluble dietary fibre (g) 24.01 26.80 

Insoluble dietary fibre (g) 4.67 9.41 

Caffeine (g) 3.02 3.39 

Melanoidins (g) 17.26 23.94 

CGAs (g) 1.12 6.85 

Total phenolic content (g) 3.10 3.54 
ORAC (mmol TEAC) 119.4 151.3 
DPPH (mmol TEAC) 21.9 23.1 
ABTS (mmol TEAC) 8.5 22.5 
FRAP (mmol TEAC) 82.9 64.0 
ACSE, Arabica coffee silverskin extract; RCSE, Robusta coffee silverskin extract; 

CGAs, chlorogenic acids; TEAC, Trolox equivalent antioxidant capacity. 



Introduction                                                                              Coffee silverskin & Diabetes 

 

 
38 

 

According to the American Diabetes Association (ADA) (23), the classification of 

diabetes includes four clinical classes (Figure 3). 

Type 1 diabetes (T1D): results from beta cell dysfunction, usually leading to 

absolute insulin secretion deficiency. 

Type 2 diabetes (T2D): due to the development of insulin resistance that leads 

to a progressive secretory defect of the pancreatic beta cell. 

Gestational diabetes (GD): diabetes resulting from the metabolic alteration 

occurring during pregnancy. 

Other specifics types of diabetes due to other causes: e.g., genetic defects in 

beta cell function, genetic defects in insulin action, diseases of the exocrine 

pancreas (such as cystic fibrosis), chronic pancreatitis or “pancreatic diabetes”, 

and drug – or chemically –induced. 

 

 

Figure 3: Most frequent types of diabetes. IDF Atlas 7th ed. (2015)
 
(22). 
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Type 2 Diabetes 

T2D is the most common type of diabetes with 90–95% of all diabetes cases. It is 

growing rapidly worldwide in both developed and developing nations. This rise is 

associated with economic development, ageing populations, increasing 

urbanisation, dietary changes, reduced physical activity and changes in other 

lifestyle patterns (24) 

The term T2D designates not a single disease but a heterogeneous collection of 

hyperglycemic syndrome resulted from the interaction between a genetic 

predisposition and behavioural and environmental risk factors. There is strong 

evidence that obesity and physical inactivity are the main non-genetic 

determinants of the disease. Usually, T2D occurs in adults, but it is increasingly 

seen in children and adolescents. The development of T2D is usually associated 

with a combination of insulin resistance and beta cell failure leading to elevated 

blood glucose level. Insulin resistance is defined as a pathophysiological condition 

in which a normal insulin concentration does not adequately produce a normal 

insulin response in peripheral tissues, such as adipose, muscle and liver (25). 

Under this condition, pancreatic beta cell secretes more insulin (i.e. 

hyperinsulinemia) to overcome the hyperglycemia among insulin-resistant 

individuals. Although hyperinsulinemia may compensate maintaining 

normoglycemia, however, it may cause the over-expression of other insulin 

activities (23,26). The dysregulation of glucose homeostasis in T2D affects the 

function of many organs and tissues as shown in Figure 2. 

T2D develops gradually and frequently goes from long duration of silent 

hyperglycemia. At earlier stages, T2D is often not severe enough for the patient to 

notice the classic diabetes symptoms (frequent urination, excessive thirst, weight 

loss and blurred vision). Nevertheless, even undiagnosed patients are at increased 

risk of developing macrovascular and/or microvascular complications such as 

renal disease, retinopathy, arterial hypertension and its consequences, 
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dyslipidemias and obesity. Most patients with T2D, but not all, are overweight or 

obese. In fact, this excess of weight itself causes some degree of insulin resistance. 

However, patients who are not obese or overweight by traditional weight criteria 

may have an increased percentage of body fat distributed predominantly in the 

abdominal region (22,23). 

 

Figure 4: Linkage between glucose homeostatic pathways and target cells susceptible to 

diabetes complications. Target cells include endothelial cells, podocytes, proximal tubular 

cells, glial cells, cardiomyocytes, and neuronal cells Forbes et al. (2013) (25). GLP-1, 

glucagon-like peptide; IGF-1, insulin-like growth factor; FFA, free fatty acid. 

Diagnosis  

T2D may be diagnosed based on the plasma glucose criteria, either the fasting 

plasma glucose levels (FPG) or the 2-h plasma glucose concentrations after a 75-g 

oral glucose tolerance test (OGTT) or the HbA1C criteria (Table 2). The 

concordance between the FPG and OGTT tests is imperfect, as is the concordance 

between HbA1C and either glucose-based test. Studies have confirmed that the 

OGTT value diagnoses more people with diabetes, compared with FPG and 

HbA1C cut points (27,28). The same tests are used to detect individuals with 
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prediabetes (23,29). Table 2 summarises the actual recommended values for the 

diagnosis of diabetes. 

Table 2: Values for diagnosis of diabetes by ADA and WHO criteria. 

 ADA  WHO 

Fasting plasma glucose
1
 100-125 mg/dL  

(5.6-6.9 mmol/L) 
≥ 126 mg/dL  

(≥ 7 mmol/L) 

 or or 

2-h Plasma glucose 

during OGTT
2
 

140-199 mg/dL  

(7.8-11.0 mmol/L) 
≥ 200 mg/dL 

 (≥ 7 mmol/L) 

 or or both 

HbA1c
3
 ≥ 6.5 %  

(48 mmol/mol) 
 

*Note that diabetes can be diagnosed in an individual only when these diagnostic 

values are confirmed on another day. 1 Fasting is defined as no caloric intake for at 

least 8 h.
2

The test should be performed as described by the WHO, using a glucose 

load containing the equivalent of 75 g anhydrous glucose dissolved in water. 3The 

test should be performed in a laboratory using a method that is NGSP certified and 

standardized to the DCCT assay. FPG, Fasting plasma glucose; OGTT, Oral glucose 

tolerance test; HbA1c, Haemoglobin glycated. 

The term prediabetes covers follow two states of glucose intolerance:  

Impaired glucose tolerance (IGT): considered to be present if FPG < 126 

mg/dL (7.0 mmol/L), and the OGTT > 140 to < 200 mg/dL (> 7.8 to < 11.0 

mmol/L) by both ADA and WHO criteria. 

 Impaired fasting glucose (IFG): defined as FPG between 100-125 mg/dL 

(5.6-6.9 mmol/L) by ADA, and 110-125 mg/dL (6.1-6.9 mmol/L) by WHO. 

The transition time between the early metabolic abnormalities that precede IFG 

and IGT to T2D may take many years. Most individuals ( 70%) with these pre-

diabetic states eventually develop diabetes. IGT and IFG are also associated with 

an increased risk of cardiovascular disease (CVD) (30).   
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Oxidative stress in Type 2 Diabetes 

Nowadays, evidences in experimental and clinical studies support the role of 

oxidative stress in the pathogenesis of T2D (31). Oxidative stress is patent when 

there is either an excessive production of ROS and/or a deficiency of enzymatic 

and non-enzymatic antioxidants defence systems (32). The term “ROS” includes 

all unstable metabolites of molecular oxygen (O2) that have higher reactivity than 

O2, like superoxide radical (O2•-) and hydroxyl radical (HO•), and non-radical 

molecules like hydrogen peroxide (H2O2) (33).  

In diabetes, free radical formation by non-enzymatic glycation of proteins, glucose 

oxidation and increased lipid peroxidation, leads to damage of enzymes, cellular 

machinery and also increased insulin resistance (34). In addition, oxidative stress 

is critically involved in the impairment of beta cell function due to their normal 

low antioxidant defence (35). 

Oxidative stress and free radicals have got a major role in the onset and 

progression of late diabetic complications such as coronary artery disease, 

neuropathy, nephropathy and retinopathy (36). In vivo studies support the role of 

hyperglycemia in the enhancement of oxidative stress leading to endothelial 

dysfunction in blood vessels of diabetic patients (37). 

Biomarkers of oxidative stress in Type 2 Diabetes 

The measurement of oxidised biomolecules is used for the determination of 

oxidative stress status. In fact, during T2D oxidative stress induces alterations in 

most biomolecules in the cell and modifies the plasma antioxidant status. A 

number of biomarkers are used to evaluate the oxidative stress and the antioxidant 

defence. In the present section, we are going to focus on the biomarkers measured 

in this work, which has been demonstrated to be altered during T2D. 

Protein oxidation: Proteins are a potential target of ROS, whose structure and 

function can be affected by modification. Protein-carbonyls are reported as the 
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potent biomarker of oxidative stress (38). Carbonyls (aldehydes and ketones) are 

produced on protein side chains, mainly on proline, arginine, lysine, and threonine. 

Protein-carbonyl derivatives may also be formed through oxidative cleavage of 

proteins by either the α-amidation pathway or by oxidation of glutamyl side 

chains, leading to formation of a peptide in which the N-terminal amino acid is 

blocked by an α-ketoacyl derivative (38,39). Carbonyls groups may be introduced 

into proteins by secondary reaction of the nucleophilic side chains of cysteine, 

histidine and lysine residues with aldehydes (4-hydroxy-2-nonenal, 

malondialdehyde, 2-propenal [acrolein]) produced during lipid peroxidation, or 

with reactive carbonyl derivatives (ketoamines, ketoaldehydes, deoxyosones) 

generated as a consequence of the reaction of reducing sugars, or their oxidation 

products, with lysine residues of proteins (glycation and glycoxidation reactions) 

(40). Increased protein-carbonyl content has been reported in different cells and in 

plasma of diabetic patients (41–43). Recently, Bollinelli et al. (2014) (44) 

proposed the measurement of plasma proteins-carbonyls by RPC-MS/MS as a 

potentials T2D biomarker.  

Glutathione level: Glutathione, the tripeptide γ-L-glutamyl-L-cysteinylglycine, is 

present in all mammalian tissues at 1–10 mM concentrations (highest 

concentration in liver). It is the most important endogenous antioxidant that 

defends against oxidative stress (45). Glutathion can maintain sulfhidril groups of 

proteins in a reduced state. Glutathion functions include antioxidant defence, 

detoxification of xenobiotics and/or their metabolites, regulation of cell cycle 

progression and apoptosis, storage of cysteine, maintenance of the redox potential 

and the modulation of immune function and fibrogenesis (45,46). The markedly 

increased of oxidative status linked to T2D provoked dysregulation in glutathion 

concentration. This impaired glutathione metabolism is in part responsible of the 

weakened defence against oxidative stress. Diminished plasma level of glutathion 

in T2D patients has been reported (47,48). Decreased glutathion level may be one 

of the factors for enhanced oxidative DNA damage in T2D (49,50). Indeed, 
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abnormal glutathione status is involved in beta cell dysfunction and in the 

pathogenesis of long-term complications of diabetes (51). 

Glutathine Peroxidase: GPx is the enzyme responsible for protecting cells from 

damage due to free radicals like hydrogen and lipid peroxides. GPx metabolizes 

hydrogen peroxide to water by using reduced glutathione (GSH) as a hydrogen 

donor (52). 

Glutathione Reductase: GR is the enzyme that reduces glutathione disulfide 

(GSSG) to the sulfhydryl form GSH while oxidates NADPH to NAD
+
 (52), thus 

maintain the antioxidant potential of glutathione. Unfortunately, this glutathion 

system can be impaired if ROS are produced in excess. Any alteration in this level 

will make the cells prone to oxidative stress and injury (31). 

Protein glycation products in Type 2 Diabetes 

Hyperglycaemia was estimated to be one major factor contributing to accelerated 

protein glycation and formation of advanced glycation end products (AGEs) (53). 

Protein glycation so-called Maillard reaction starts by condensation reaction of 

carbonyl group of a reducing sugar with the amino groups of a protein or nucleic 

acid generating Schiff bases which rearrange to Amadori products. The Amadori 

products undergo dehydration and rearrangements followed by other reactions, 

such as cyclisation, oxidation and dehydration, to form more stable AGEs. Side 

chains of cysteine, lysine and histidine, and the amino group of the N-terminal of 

amino acids showed the highest ability to react with the reducing sugars (54). 

Arginine and tryptophan have the highest efficiency of cross-link between 

peptides and protein AGEs-products (55). 

Dicarbonyl products (α-oxoaldehydes) such as glyoxal, methylglyoxal (MGO) and 

3-deoxyglucosone (3-DG) are formed as intermediate products during all stages of 

the Maillard reaction, but also as intermediates or by-products of glucose 

autoxidation, lipid peroxidation or in the polyol pathway (54). The accumulation 
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of reactive dicarbonyls is called carbonyl stress and it produces the formation of 

oxidative AGEs such as carboxymethyl-lysine (CML), and pentosidine or non-

oxidative AGEs derived from 3-DG [deoxyglucasone-lysine dimer (DOLD)] or 

from MGO [carboxyethyl-lysine (CEL); Methylglyoxal-lysine dimer (MOLD)] 

(54). 

Protein glycation and formation of AGEs play an important role in the 

pathogenesis of diabetic complications like retinopathy, nephropathy, neuropathy 

and cardiomyopathy (53). Glycation of proteins interferes with their normal 

functions by disrupting molecular conformation, altering enzymatic activity and 

interfering with receptor functioning (56). AGEs form intra- and extracellular 

cross links not only with proteins but also with some other endogenous key 

molecules, including lipids and nucleic acids, contributing to the development of 

diabetic complications (57). Recent studies suggest that AGEs interact with their 

plasma membrane receptors (RAGE) altering intracellular signalling, gene 

expression and the release of pro-inflammatory molecules and free radicals (58).  

Biomarkers of protein glycation in Type 2 Diabetes  

Blood biomarkers used for estimating the degree of protein glycation in diabetes 

compromise HbA1C, fructosamine, dicarbonyls and AGEs.  

Glycated Haemoglobin: HbA1C is formed non-enzymatically by condensation 

of glucose or other reducing sugars with the α- and β-chains of haemoglobin A 

(Amadori products) (59). Interestingly, the discovery of HbA1c opened new and 

still-growing pathways of research on Maillard reactions in biological systems. 

Glycation of haemoglobin occurs during the 120-day lifespan of the red cell, and 

recent glycaemia has the largest influence on the presence of HbA1c (60). Thus, 

HbA1c represent average glycaemia over approximately the last 6–8 weeks (61). 

Therefore, HbA1c in diabetes patients may be used as a reliable index of the mean 

glucose (glycaemic control) over the previous weeks and months. In 2009, the 

International Expert Committee proposed the use of HbA1c as a diagnostic criteria 
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for diabetes, prediabetes and people at high-risk of developing diabetes (see Table 

2; section Diagnosis) (62).  

Fructosamine: Fructosamine (total glycated serum proteins) is a ketoamine 

formed by linked fructose to plasma protein, primarily albumin, through non-

enzymatic glycation reaction. Fructosamine reflects the average blood sugar 

concentration over the prior 2-4 weeks therefore being a short-term biomarker 

(63). The amount of fructosamine in serum is increased in T2D due to the 

abnormally high concentration of glucose in blood. Therefore, its concentration in 

serum reflects the degree of short-term glucose variability. Thus, a clinical 

advantage is that fructosamine responds more quickly to therapy changes, 

allowing for improved glycaemic control (64). This biomarker is strongly 

associated with incident of T2D (65). 

Dicarbonyls: Under hyperglycemia and/or oxidative stress in diabetes mellitus, a 

variety of toxic dicarbonyls are produced which may react with protein amino 

groups, eventually leading to formation of AGEs (66) (Figure 5). Dycarbonyls in 

plasma and blood can be analysed by several techniques including reversed phase 

liquid chromatography, with fluorescence or UV detection, or liquid 

chromatography, with mass spectrometry detection (67). Increased concentrations 

of reactive glyoxal, MGO and 3-DG have been found in plasma of patients with 

T2D (68,69). In consequence, some authors propose the use of dicarbonyls as 

diabetes predictors (69). 

Advanced glycation end products: As described above, AGEs play an important 

role in T2D of diabetic complications due to accumulation in long-lived tissue 

proteins in diabetic patients (54). As shown in Figure 5, glyoxal causes the 

formation of CML among others. CML is the best characterized AGEs currently. 

MGO causes the generation of, for example, CEL whereas 3-DG leads to the 

formation of pentosidine or also CML (66). Some of these AGEs are cross-linking 

fluorescent (e.g., pentosidine) and others cross-linking non-fluorescent (e.g., CML, 
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CEL) (70). To detect AGEs formation in fluids and tissues, AGE-specific 

fluorescence can be measured by fluorescence (excitation wavelength of 370 nm 

and an emission of 440 nm) (71). Pentosidine emits light at 385 nm when excited 

at 335 nm (72). Other methods for AGEs detection are immunohistochemical 

staining or enzyme-linked immunosorbent assay (ELISA) using antibodies against 

different AGEs (CML, CEL or pentosidine). However, application of these assays 

is limited due to lack of reliable antibodies. The most sensitive methods to analyse 

AGE includes high performance liquid chromatography, gas chromatography or 

mass spectrometry approach (66,73). CML, CEL and pentosidine are the main 

AGEs measured in plasma and diverse tissues related to diabetic complications in 

diabetic patients (73–75). Additionally, the analyse of fluorescent AGEs has been 

proposed as a screening tool to predict diabetic complications in primary care due 

to easy and low cost determination (76). 

Figure 5: Pathways of formation of reactive dicarbonyls and advanced glycation end 

products in the pathogenesis of T2D. Based on Nowotny et al. (2015) (66). CML, 

carboxymethyl-lysine; GOLD, glyoxal-lysine dimmer; DOLD, deoxyglucasone-lysine 

dimer; MOLD, methylglyoxal-lysine dimmer; CEL, carboxyethyl-lysine. 
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Treatment of Type 2 Diabetes 

T2D is a progressive pathology that can be treated initially with oral agent 

monotherapy (metformin) concurrently with lifestyle changes, but will eventually 

require the addition of other oral agents or insulin therapy in order to achieve 

targeted glycaemic levels (77). Strategies of hyperglycaemic treatment can be 

different if predominately there is insulin secretory deficiency or insulin resistant. 

To date, four new classes of oral antidiabetic medications and nine injectable 

agents and insulin are approved to use in the management of T2D: biguanide, 

sulfonylureas, thiazolidinediones, α-glucosidase inhibitors, meglitinides, 

dipeptidyl peptidase 4 inhibitors (DPP4-Is), bile acid sequestrants, sodium-glucose 

cotransporter inhibitors, dopamine receptor agonists and insulin (78,79). Table 3 

summarises therapeutic agents available and approved by Food and Drug 

Administration (FDA; EEUU) for the treatment of T2D. Metformin remains the 

first-line treatment option for most patients (78,79).  

Metformin is the first choice therapy and sulphonylurea should be given in case of 

contra-indications for metformin, or should be added when therapy with 

metformin alone fails. Thiazolidinediones are recommended to be added in case of 

contraindications for metformin or if the combination of metformin and 

sulphonylurea fails. Alpha-glucosidase inhibitors may be considered as an 

alternative glucose-lowering therapy in people unable to use other oral drugs (80).  

Alpha-glucosidase inhibitors appear to be a serious therapeutic option in the 

treatment of T2D as they have a comparable effect on glycaemic control compared 

to metformin. They pose no risk for harmful adverse events, decrease body mass 

index and possibly reduce the risk for cardiovascular disease, while the side-

effects may be reduced by administering a lower dose without influencing its 

effect on glucose control (81). Moreover, they may also be given as ‘smart food’ 

or as a food supplement. A number of natural extracts from diverse sources have 

shown glucosidase inhibiting properties and may reduce blood glucose levels (82–

84). 
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Optional therapies have been shown to delay the relative risk of progression to 

diabetes include the gastrointestinal lipase inhibitor (orlistat) and AGE inhibitors.  

Orlistat (tetrahydrolipstatin) is a pancreatic and gastric lipase inhibitor whose 

primary effect is to reduce fat uptake by the gut (85). This is one of few 

pharmacologic treatment options available to help patients with T2D to reduce 

body weight and to improve the glycaemic control (86). 

Aminoguanidine (also called pimagedine) is a nucleophilic hydrazine compound 

that has received most attention as a potential anti-glycation drug. 

Aminoguanidine prevented AGEs formation by blocking carbonyl groups such as 

MGO, glyoxal and 3-DG (87). However, this compound showed side effects in 

diabetic patients including flu-like symptoms, gastrointestinal disturbances and 

anaemia (88). 
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Table 3: Therapeutic agents and strategies used in the management of hyperglycaemia in patients with T2D. Based on Inzucchi et al. (2015) 

(79). 

Class Compounds Mechanism of action Advantage Disadvantage 

Biguanidine  Metformin  ↓ Hepatic glucose 

production 

  Extensive experience 

 ↓ CVD events 

 No hypoglycemia 

 

 Gastrointestinal side effects 

(diarrhea, abdominal 

cramping) 

 Lactic acidosis risk (rare) 

 Vitamin B12 deficiency 

 Multiple contraindications: 

CKD, acidosis, hypoxia, 

dehydration, etc. 

Sulfonylureas 2nd Generation  

 Glyburide/ 

glibenclamide  

 Gliclazide† 

 Glipizide  

 Glimepiride 

 ↑ Insulin secretion   Extensive experience  

  ↓ Microvascular risk 

 

 Hypoglycemia  

 ↑ Weight 

 Low durability 

 ? Blunts myocardial ischemic 

  Preconditioning 

 Low duravility 

Meglitinides 

(glinides) 
 Nateglinide 

 Repaglinide 

  ↑ Insulin secretion  ↓Postprandial glucose 

excursions 

 Hypoglycemia 

 ↑ Weight 

 ? Blunts myocardial ischemic 

   preconditioning 
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Class Compounds Mechanism of action Advantage Disadvantage 

Thiazolidinediones  Pioglitazone‡  

 Rosiglitazone§ 

 ↑ Insulin sensitivity  No hypoglycemia  

 ↑ HDL-C  

  (pioglitazone) 

 ? ↓ CVD events 

 ↓ Triglycerides 

   (pioglitazone) 

 Durability 

 ↑ Weight 

 Edema/heart failure? 

 Bone fractures 

 ↑ LDL-C (rosiglitazone) 

 ↑ MI (rosiglitazone) 

α-Glucosidase 

inhibitors 
  Miglitol  

  Acarbose 

 Inhibits intestinal 

α-glucosidase 

 No hypoglycemia  

 ↓Postprandial glucose 

excursions 

  ? ↓ CVD events 

 Nonsystemic 

 Generally modest HbA1c 

efficacy  

 Gastrointestinal side effects 

  (flatulence, diarrhea) 

 

DPP-4 inhibitors  Sitagliptin 

 Vildagliptin 

 Saxagliptin  

 Linagliptin  

 Alogliptin 

 ↑ Insulin secretion 

(glucose-dependent) 

 ↓ Glucagon secretion 

  (glucose-dependent) 

 

 No hypoglycemia  

 Well tolerated 

 Angioedema/urticaria and 

others immune-mediated 

dermatological effects  

 ? Acute pancreatitis 

  ? ↑ Heart failure 

hospitalizations 
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Class Compounds Mechanism of action Advantage Disadvantage 

GLP-1 receptor 

agonists 
 Exenatide 

 Liraglutide 

 Albiglutide 

 Lixisenatide† 

 Dulaglutide 

 ↓ Glucagon secretion 

  (glucose-dependent) 

 ↑ Satiety 

  Slows gastric 

emptying 

 ↑ Insulin secretion   

(glucose dependent) 

  No hypoglycemia  

 ↓ Some cardiovascular 

risk factors 

 ↓ Postprandial glucose 

excursions 

 ↓ Weight 

 

 

 Gastrointestinal side effects 

(nausea/ 

vomiting/diarrhea) 

 ↑ Heart rate  

 ? Acute pancreatitis 

  C-cell hyperplasia/medullary 

thyroid tumors in animals 

 Injectable 

Amylin mimetics  Pramlintide§  ↑ Satiety  

 Slows gastric 

emptying 

 ↓ Glucagon secretion 

 ↓ Weight 

 ↓ Postprandial glucose 

excursions 

 Generally modest HbA1c 

efficacy  

 Gastrointestinal side effects 

(nausea/ 

vomiting) 

 Hypoglycemia unless insulin 

dose is simultaneously 

reduced 

 Injectable 
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Class Compounds Mechanism of action Advantage Disadvantage 

Insulins  Rapid acting analogs  

- Lispro 

- Aspart 

- Glulisine 

 Short-acting 

- Human Regular 

 Intermediate-acting 

- Human NPH 

 Basal insulin analogs 

- Glargine 

- Detemir 

- Degludec† 

 Premixed (several 

types) 

 ↑ Glucose disposal  

 ↓ Hepatic glucose 

  production  

  Other 

 

 ↓ Microvascular risk 

 Theoretically 

unlimited efficacy response 

 Nearly universal 

 Hypoglycemia  

 Weight gain 

 ? Mitogenic effects 

 Injectable 

 Patient reluctance 

 

CVD, cardiovascular disease; HDL-C, HDL cholesterol; LDL-C, LDL cholesterol; MI, myocardial infarction; †Not licensed in the U.S. ‡Initial concerns 

regarding bladder cancer risk are decreasing after subsequent study. §Not licensed in Europe for type 2 diabetes.  
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Prevention of Type 2 Diabetes 

While there are a number of factors that influence the development of T2D, it is 

evident that the major risk factors are lifestyle behaviours such as the consumption 

of processed foods and physical inactivity. All together, these behaviours are 

associated with an increased risk of being overweight or obese and with the 

development of T2D (22,23). 

It is very important to understand the role of lifestyle interventions in the 

prevention of T2D. Several programmes have shown that modifying such 

behaviours, by eating healthy diet and increasing physical activity, can greatly 

reduce the risk of developing T2D (89–94). In addition, the growing interest in the 

identification of commonly consumed dietary polyphenols that may offer a natural 

alternative to reduce the risk or to treat T2D, is helping to retard the onset of its 

complications (95). 

Effect of Coffee Components in Type 2 Diabetes 

Coffee is among the most widely consumed beverages worldwide, and 

unsweetened coffee appears to be suitable alternative to sugar-sweetened 

beverages to prevent diabetes (96,97). This natural beverage provides many 

bioactive compounds such as phenolic acids (caffeic-, ferulic-, chlorogenic- and 

quinic acid) (98), the alkaloids caffeine (98) and trigonelline (99), isoflavones 

(100), lignans (101), tannic acid (102), the diterpenes cafestol and kahweol(103) 

and melanoidins (104) many of which exhibit strong antioxidant capacity 

(98,105). Therefore, coffee is considered an antioxidant beverage with putative 

effects on human health (16). 

Coffee consumption has been associated with a lower risk of T2D, that may 

influence in different mechanism, such as glucose tolerance, insulin sensitivity, 

insulin resistance, glucose-6-phosphatase, intestinal glucose absorption, 

antioxidant activity, inflammatory biomarkers, glucose uptake, glucose 
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homeostasis, glucose metabolism and insulin secretion (16,98,106). Although 

these physiological effects of coffee are related to different components present in 

the beverage and to the cumulative effects of each compound most of the studies 

previously performed on coffee and diabetes clearly associated biological effects 

to caffeine and CGA (16,98,106). CSE contains both caffeine and CGA thus the 

present study focus the attention on them.  

Chlorogenic acid  

CGAs are a family of hydroxycinnamic specifically refers to the ester of caffeic 

acid with quinic acid (Figure 6) (107).  

 

 

Figure 6: Chemical structure of chlorogenic acid (5-O-caffeoylquinic acids). 

 

Coffee is the major source of CGAs in the human diet. The daily intake in coffee 

drinkers is estimated as 0.5-1 g, whereas coffee abstainers typically ingest <100 

mg/day (108). The major CGA compounds present in the coffee brews are 3-O-, 4-

O-, and 5-O-caffeoylquinic acids (109). 

Metabolism and bioavailability of chlorogenic acid 
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The metabolism of CGA is still unclear, although studies in humans have 

confirmed that it mainly occurs at two stations, small intestine and colon. The first 

step is carried out by the active esterase enzymes present in the wall of small 

intestine releasing caffeic acid, quinic acid and ferulic acid. The absorption occurs 

mainly in the colon, representing around two-thirds of the ingested CGA 

(110,111). The remaining CGA may be metabolized by colonic microbial 

esterases and transformed in various aromatic acid metabolites including m-

coumaric acid and derivatives of phenylpropionic and benzoic acids (112). Indeed, 

it has been reported that the bioavailability of CGAs largely depends on its 

metabolism by the gut microflora (111–113). Previous studies have found that 

hippuric acid, a benzoic acid, is the major CGA-derived metabolite observed in 

urine and plasma after the ingestion of pure CGA or CGA from a food matrix 

(112,114) (Figure 7). 

 
Figure 7: Simplified scheme of metabolism of chlorogenic acid. Based on Gonthier et al. 

(2003) (112). 
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Bioactivity of chlorogenic acid 

Results from various studies have reported that pure CGA or CGA present in 

coffee may improve the risk for T2D by directly affect risk factors (115). 

CGA was reported to regulate the glucose metabolism in experimental studies in 

diabetic humans and rats (106,116). Phenolic compounds present in coffee 

increase insulin sensitivity in peripheral tissues, potentiating insulin action a 

similar manner to the therapeutic effect of metformin (117,118). Recently, it has 

been reported that an intraperitoneal dose of 100 mg/kg of CGA reduced insulin 

resistance in high fat fed mice (119). Clinical trials have shown that CGA 

ingestion reduced early blood glucose and insulin release (120,121). Specifically, 

CGA inhibited the activity of the hepatic glucose-6-phosphate translocase (122). 

This enzyme catalyses the terminal reactions in both glycogenolysis and 

gluconeogenesis, thus is highly involved in the regulation of the blood glucose 

homeostasis (123). It has been testified that CGA also activate adenosine 

monophosphate-activated protein kinase (PKA), a master sensor and a regulator of 

cellular energy balance, leading to beneficial metabolic effects, such as the 

stimulation of glucose transport in skeletal muscle and the reduction of hepatic 

glucose production (124). Animal studies have shown that CGA reduce sodium-

dependent glucose transport in the brush border membrane vesicles isolated from 

rat small intestine (125). CGA have been reported also to reduce intestinal 

absorption of glucose by inhibition of α-amylase (126,127) and α-glucosidase 

activities (128,129), two key enzymes responsible for the digestion of dietary 

carbohydrates. 

There are several studies that have investigated the antioxidant capacity of CGAs 

using different cell-based models. They concluded that this polyphenol protect 

against oxidative stress by diverse mechanisms: 1) alleviating DNA damage 

(130,131), 2) suppressing the mitochondrial membrane depolarization (132) and 3) 

improving the antioxidant defence in cells (133,134). Other studies conducted in 
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rodent models have confirmed the efficacy of dietary intake of CGA in preventing 

oxidative stress pathogenesis through the increasement of the level of non-

enzymatic antioxidants (GSH and Vitamins C and E) and antioxidants enzyme 

(superoxido dismutase, catalase, GPx and glutathione-S-transferase) in diabetic 

model rats (116,135).  

Different experiments in cell and animal models have shown an anti-inflammatory 

activity of CGA by inhibiting the production of inflammatory mediators (136–

141).  

Finally, CGA has been also reported as an antiglycative compound which inhibits 

the protein glycation and the AGEs formation in vitro. These capacities of CGA 

have been linked to its antioxidant character, chelating properties to transition 

metals ions and quenching of carbonyl radical species and AGE crosslinking 

(12,142,143). 

Caffeine 

Caffeine (1,3,7-methylxanthine) is a methylated derivative of xanthine (Figure 7). 

Caffeine is a white crystalline xanthine alkaloid naturally occurring in coffee 

beans. Coffee is the main dietary source of this molecule and its content highly 

depends on the mode of preparation. A cup (236 mL) of instant coffee contains 93 

mg of caffeine, whereas a cup of espresso coffee (28 mL) provides 40 mg (144). 

 
Figure 8: Chemical structure of caffeine (1,3,7-methylxanthine). 
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Metabolism and bioavailability of caffeine 

Methylxanthines are extensively absorbed in the gastrointestinal tract and 

metabolized in the liver by the cytochrome P450 to yield methylxanthine 

derivatives and methyluric acids as the main metabolites. Subsequently they are 

distributed to all tissues and finally excreted in urine. Paraxanthine (1,7 

dimethylxanthine) is the main metabolite of caffeine found in plasma and urine 

after caffeine intake (145) (Figure 9). 

 

Figure 9: Simplified scheme of metabolism of caffeine metabolism. Based on Arnau. 

(2011) (145) 

Bioactivity of caffeine in Type 2 Diabetes 

Caffeine has been extensively studied in regard to their effects in insulin resistance 

and T2D, and its mechanism is still unclear. 

Some studies have demonstrated that caffeine stimulates glucose uptake via 

activation of adenosine 5’-monophosphate activation of protein kinase (PKA) 



Introduction                                                                              Coffee silverskin & Diabetes 

 

 
                            60 

 

(146,147). Pre-treatment with different doses of caffeine diminished plasma 

glucose level during the OGTT and increase pancreatic insulin level in diabetic 

rats (148). Similarly, Urzua et al. (2012) (149) has been reported that caffeine 

decreased blood glucose levels in a dose-dependent manner and improved glucose 

tolerance in diabetic rats. Recently, caffeine has shown a protective role in the 

biochemical and microscopic changes in pancreatic beta cells (150,151). However, 

other studies have reported that glucose tolerance and insulin sensitivity were 

impaired after short-term ingestion of caffeine (152–154). 

On the other hand, caffeine and its metabolites, xanthine and theobromine, 

exhibited antioxidant activities, decreasing DNA degradation and reducing 

hydroxyl radicals formation (155). 

Effects of coffee beverage in Type 2 Diabetes  

As summarized in previous sections, T2DM is a constellation of interrelated risk 

factors, including impairment of glucose and insulin metabolism, beta cell failure 

and the overproduction of AGEs related to hyperglicaemia and oxidative stress. 

Coffee consumption has been associated with reduction of chronic diseases risk 

and, in particular, T2D (156,157). Several metabolites of coffee may improve the 

symptoms of T2DM by affecting glucose regulation. These may include the 

effects of CGA on glucose-6- phosphatase and the inhibition of α-glucosidase 

activity, and the effects of caffeine on insulin secretion (101,106).  

Oxidative stress is also involved in the glucose autoxidation pathway in T2D that 

forms reactive dicarbonyl species. These dicarbonyl compounds can react directly 

with proteins and contribute to AGEs formation (66). Polyphenol coffee fractions 

(CGA and derivatives) are able to inhibit AGEs formation under diverse pathways 

(12,143,142). Some of them may be a consequence of the antioxidant activity or 

the dicarbonyl trapping activity of this coffee fraction. Caffeine and its catabolic 

products theobromine and xanthine exhibit both antioxidant and pro-oxidant 
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properties contributing to the overall antioxidant and chemopreventive properties 

of coffee (155).  

Because coffee is rich in active substances, mainly caffeine and CGA, it is the 

main contributor to the intake of dietary antioxidant in Spain (158). Hence, 

consumption of coffee may prevent and treat T2D by antioxidative and 

antiglycative effects. The relationship between coffee-drinking and health benefits 

supports the concept of coffee as a functional food because it has the ability to 

enhance the quality of life of regular consumers (159). 
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Hypothesis, objectives and working plan 

T2D is one of the most common chronic diseases in the world. Oxidative stress 

and hyperglycemia have been largely implicated in the progressive dysfunction of 

pancreatic beta cells and in the formation of AGEs and in the development of 

diabetic complications. Diet, moderate activity and hypoglycemic drugs or insulin 

are the base of diabetes management. As a consequence, the search for natural 

compounds to prevent and treat the disease or an alternative therapy of insulin is a 

scientific and technological challenge. Diet can be a good source of bioactive 

compounds that may help to reduce the risk of chronic diseases.  

Coffee is among the most widely consumed beverages worldwide. Previous 

experimental and epidemiological studies have indicated a substantial positive 

impact of coffee consumption on T2D complications. Caffeine and CGA are major 

components of coffee and they are considered effective on diabetes. However, 

their individual contribution to these effects and their mechanism of actions on the 

pathogenesis of this chronic disease have not been yet completely established. 

Nowadays, coffee is mainly used in food for the preparation of coffee beverage 

from roasted coffee beans. However, this represents a waste of abundant natural 

sources of bioactive compounds with health promoting properties such as CGA 

and caffeine. A cup of coffee contains about 6% of the raw coffee berry. The 

waste of the rest of the coffee fruits represent an environmental problem and 

inefficiently use of the natural resources. CS can be used for obtaining an aqueous 

extract by green and easily scalable procedures. 
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CS is the by-product of the roasting coffee and very abundant worldwide. CSE 

contains a similar chemical composition to that of coffee beverage obtained from 

roasted coffee beans. Hence, CSE may be used in food and health mainly in the 

prevention of diseases related to ageing and glycoxidative stress such as T2D. The 

sustainable use of this by-product of the coffee roasting industry is of interests. Its 

conversion into a sustainable product for diabetes can be very welcome by the 

coffee sector, consumers and health care professionals. CSE may be used as 

natural food supplements to prevent or treat diabetes and its complications, being 

an alternative or a coadjutant to those currently commercialized for these aims. 

Healthy effects of CSE largely will depend on the bioaccesibility and 

bioavailability of their bioactive components in the organism. 

To demonstrate this hypothesis these general objectives were proposed: 

1. To provide new knowledge on the mechanism of action of phytochemicals 

present in highly consumed products such as coffee, named as CGAs. To 

validate the potential of CS, the roasting coffee by-products, as a sustainable 

product possessing health promoting properties and biological effects on 

diabetes.  

2. To obtain new evidences of the interest for the application of the biorrefinery 

concept to achieve a sustainable coffee production and health, as well as, to 

remark the interest of agronomy and nutrition in health. 

To achieve the goal specific aims were also proposed:  

1. In vitro study of the mechanism of action of CGA alone and in CSE by 

employing phytochemomics approach. Chapter 1.  

2. To investigate the mechanism of action of CSE and its compounds CGA 

and caffeine on the pathogenesis of diabetes using a model of beta cells.  

To achieve this goal, the effect of CSE, CGA and caffeine on redox status and 

insulin secretion in the pancreatic beta cells was evaluated. Likewise, its 
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capacity to protect pancreatic beta cells against an oxidative damage was also 

examined. Chapter 2. 

3. To evaluate the bioaccessibility in vitro and the bioavailability and 

bioactivity in vivo of CSE, CGA and caffeine. 

To achieve this goal, CSE was digested in vitro mimicking human 

gastrointestinal conditions. CSE, CGA and caffeine metabolism was 

evaluated in vivo using phytochemomics. Bioactivity of CSE, CGA and 

caffeine was examined in the pancreas of diabetic rats. Chapter 3. 

Figure 8 shows the working plan performed to achieve each objective proposed in 

this work. 
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Figure 10: Scheme of working plan performed at present study.

CSE (P201131128) 

In vitro study of antiglycoxidative 

activity of CSE and CGA and their 

mechanism of action  

Beta cell study of viability and 

protective effect of CSE, CGA and 

caffeine in pancreatic in beta cells 

CGA and caffeine content 

(UPLC-MS/MS) 

Glycoxidation reaction: BSA, MGO and 

CSE or CGA (PBS 0.1 mM, pH 7.4, 

37ºC and 600 r.p.m) 
Analysis of AGEs formation, free amino 

groups and absorbance 420 nm. 
Protein structural changes by MALDI-

TOF, LC-MS/MS 

Viability of healthy beta cells  
Treatment with CSE, CGA and caffeine 

Analysis of viability, oxidative status and 

insulin secretion (ELISA) 

Viability of induced diabetic beta cells 
Treatment with CSE, CGA and caffeine 

Treatment with induced diabetic drug 

Analysis of viability, oxidative status and 

insulin secretion 

In vivo study of bioaccesibility, 

metabolism and bioactivity of CSE, 

CGA and caffeine 

In vitro digestion 
CSE, CGA and caffeine 

Analysis of digests composition 

Metabolism in healthy rats 
Wistar rats (n= 8 each group) 

Treatment with CSE, CGA and caffeine 

Analysis of metabolites in urine by 

UPLC-MS/MS 

Bioactivity in pancreas of induced 

diabetic rats  

Wistar rats (n= 8 each group) 
Treatment with CSE, CGA and caffeine 

Induced diabetes  

Analysis of oxidative status in pancreas 
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Main Contributions 

This PhD thesis aims to analyse the value of CSE for obtaining a new ingredient 

and to take advantage of the potential nutritional benefits derived from bioactive 

compounds naturally occurred in CSE such as caffeine and CGA, among others, 

and to validate the use of the new products for human consumption, in accordance 

with current legislation in Europe (EFSA Journal 2009; 7(9):1249) and its 

economic viability. At present, new ingredients and/or foods derived from coffee 

are not regulated by the EFSA. The steps to commercialize a new ingredient or 

food under the European legislation are shown in Figure 11. Previously, CSE 

chemical composition was determined, but further studies are needed to find other 

bioactive compound in this plant matrix with putative health benefits. In order to 

ascribe a health claim for this coffee roasting by-product in T2D, in vitro assays 

(biochemical and cells) and in vivo bioactivity assay was performed; they are 

summarize in the next chapters of this document. Hence, the study of acute and 

chronic toxicity and human trials are needed to complete all study levels for CSE 

in order to convert this product into a food grade ingredients with health effects. 
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Figure 9: Scheme from waste to a food grade ingredient (human consumption) under 

European legislation procedures (EFSA Journal 2009; 7(9):1249). 
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Abstract 

This chapter summarises in vitro studies performed to gain insights in the 

mechanism of action to inhibit the formation of advanced glycation end products 

by CGA alone and CSE.  

 

Study 1 published as: Fernandez-Gomez B, Ullate M, Picariello G, Ferranti P, 

Mesa MD, del Castillo MD. New knowledge on the antiglycoxidative 

mechanism of chlorogenic acid. Food Funct. 2015; 6(6):2081-2090. This article 

has been accepted for publication on the 14 of May 2015. 

 

Study 2 will be published as: Fernandez-Gomez B, Nitride C, Ullate M, Mamone 

G, Ferranti P, del Castillo MD. Use of phytochemomics for validating the 

potential of coffee silverskin extract as natural source of inhibitors of the 

glycoxidation reaction. This article has been submitted on Food & Function 

Journal on the 04 of April 2016. 
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Abstract 

The role of chlorogenic acid (CGA) in the formation of advanced glycation end-products 

(AGEs) (glycoxidation reaction) was studied. Model systems composed of bovine serum 

albumin (BSA) (1 mg mL
-1

) and methylglyoxal (5 mM) under mimicked physiological 

conditions (pH 7.4, 37 ºC) were used to evaluate the antiglycoxidative effect of CGA (10 

mM). The stability of CGA under reaction conditions was assayed by HPLC and MALDI-

TOF-MS. The glycoxidation reaction was estimated by analysis of free amino groups by 

the OPA assay, spectral analysis of fluorescent AGEs and total AGEs by ELISA, and 

colour formation by absorbance at 420 nm. Structural changes in protein were evaluated by 

analysis of phenol-bound to protein backbone using the Folin reaction, UV-Vis spectral 

analysis and MALDI-TOF-MS, while changes in protein function were measured by 

determining antioxidant capacity using the ABTS radical cation decolourisation assay. 

CGA was isomerised and oxidised under our experimental conditions. Evidence of binding 

between BSA and multiple CGA and/or its derivatives molecules (isomers and oxidation 

products) was found. CGA inhibited (p < 0.05) the formation of fluorescents and total 

AGEs at 72 h of reaction by 91.2 and 69.7%, respectively. The binding of phenols to BSA 

significantly increased (p < 0.001) its antioxidant capacity. Correlations between free 

amino group content, phenol-bound to protein and antioxidant capacity were found. 

Results indicate that CGA simultaneously inhibits the formation of potentially harmful 

compounds (AGEs) and promotes the generation of neoantioxidant structures. 

Keywords: Advanced glycation end products (AGEs), chlorogenic acid, methylglyoxal, 

glycoxidation reaction, antiglycoxidative effect. 

New knowledge on the antiglycoxidative mechanism of 

chlorogenic acid 

Beatriz Fernandez-Gomez, Monica Ullate, Gianluca Picariello, Pasquale Ferranti, Maria 

Dolores Mesa, Maria Dolores del Castillo. Food Funct. 2015 May;6(6):2081-90. 
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1. Introduction 

Protein glycation includes an initial formation of Shiff's base, followed by 

intermolecular rearrangement and conversion into Amadori products. They undergo 

further processing to form a heterogeneous group of protein-bound moieties, such 

as cross-linking fluorescent (e.g., pentosidine) and non-fluorescent adducts (e.g., 

Nε-(carboxymethyl)lysine) (CML), Nε-(carboxyethyl)lysine (CEL) called 

advanced glycation end products (AGEs) (1). Pathways of AGE formation involve 

glucose autoxidation through the generation of α-oxoaldehydes, such as 

methylglyoxal (MGO), 3-deoxyglucosone and glyoxal. MGO is a major precursor 

of AGEs, especially CEL, which is capable of binding and modifying a number of 

proteins (glycoxidation reaction), including bovine serum albumin (BSA), RNase 

A, collagen, lysozyme and lens crystallins (2,3). Protein glycation is known to be 

involved in the pathogenesis of several age-related disorders like diabetes, 

atherosclerosis, end-stage renal and neurodegenerative diseases (4). 

Inhibitors of AGEs formation might follow several mechanisms, such as aldose 

reductase, antioxidant activity, reactive dicarbonyl trapping, sugar autoxidation 

inhibition and amino group binding (5). The inhibition of AGE formation by 

synthetic aminoguanidine (AG) has been widely documented. However, as AG 

treatment in type 1 diabetics has caused serious complications (6), the search for 

natural AGE inhibitors is currently a challenge.  

Coffee and yerba mate are considered natural sources of abundant phenolic 

compounds that can inhibit the formation of AGEs (7,8). The most representative 

phenolic acids in these foods are chlorogenic acids (CGA), which commonly 

occur as 5-O-caffeoylquinic acid (5-CQA) or 3-O-caffeoylquinic acid (3-CQA) 

(9,10).The antiglycation activity of CGA has been associated to its antioxidant and 

chelating characters, as well as to its ability to trap reactive dicarbonyl compounds 

(8,11). This study aimed to obtain a better understanding of the antiglycoxidative 
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mechanism of action of CGA which is partly unknown. In vitro studies mimicking 

physiological conditions were performed to achieve this goal. 

2. Materials and methods 

2.1. Materials 

All chemicals and solvents were of analytical grade. Bovine serum albumin (BSA), phosphate 

buffered saline (PBS), 3-O-caffeoylquinic acid (CGA), sodium azide, ortho-phthaldialdehyde (OPA), 

Nα-acetyl-L-lysine, Folin-Ciocalteau, 3.3′, 5.5′-Tetramethylbenzidine (TMB) were from Sigma–

Aldrich (St. Louis, USA). Other chemicals and their suppliers were as follows: β-mercaptoethanol 

(Merck, Hohenbrunn, Germany), methylglyoxal solution (MGO) and 2.2’-azino-bis (3-

ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) (Fluka, Buchs, Switzerland) and 

Bradford reagent for protein assay (Bio-Rad, München, Germany). The Amicon® Ultra- 0.5 ml 

centrifugal filter unit fitted with an Ultracel®-30K regenerated cellulose membrane (30 kDa cut-off) 

was from Merck Millipore Ltd. (Tullagreen, Cork, Ireland). Microtest 96-well plates made from 

high-quality polystyrene were purchased from Sarstedt AG & Co. (Nümbrecht, Germany). The 

Costar® high binding 96-well EIA/RIA plate was from Corning Incorporated (Corning, NY, USA). 

The Milli-Q water used in this study was obtained using a purification system (Millipore, Molsheim, 

France). 

2.2. Formation of CGA derivatives in control samples  

2.2.1. HPLC analysis. Standard CGA before and after incubation at 37 ºC for 24 h were compared 

to assess the chemical stability of the compound under experimental conditions by reversed phase 

(RP) HPLC. A modular chromatographer HP 1100 (Agilent Technologies, Paolo Alto, CA, USA) 

equipped with a multi-waves UV-Vis detector was used to analyse samples. The stationary phase 

was a 250 x 2.1 mm i.d. C18 RP column, particle diameter 4 μm (Jupiter Phenomenex, Torrance, 

CA, USA). Column temperature was maintained at 37 °C during the HPLC analyses. Separations 

were carried out at a constant flow rate of 0.2 mL min-1 applying a 5-60% linear gradient of solvent 

B (acetonitrile/ 0.1% trifluoroacetic acid, TFA) over 60 min, after 5 min of isocratic elution at 5% 

solvent B. Solvent A was 0.1% TFA in HPLC-grade water. For each run, 2.5 μg standard or 

incubated CGA were diluted 10-fold with 0.1% TFA and injected using a Rheodyne® valve. The 

HPLC separations were monitored at 280, 320 and 360 nm, while UV-Vis spectra (200-600 nm) 

were recorded using a diode array detector. 

2.2.2. MALDI-TOF-MS analysis. Mass spectra of CGA freshly prepared and incubated at 37 ºC 

for 24 h were acquired on a Voyager DE-Pro spectrometer (PerSeptive BioSystems, Framingham, 

Massachusetts) equipped with a N2 laser (λ= 337 nm) operating in both positive and negative 

reflector ion modes. The matrix was 2.5- hydroxybenzoic acid (DHB) 10 mg mL-1 in 50% 

acetonitrile. In the positive ion mode, the matrix solution also contained 0.1% TFA. Spectra were 
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acquired using Delay Extraction technology at an accelerating voltage of 20 kV, exploring the m/z 

150−1200 range. Matrix ion signals were excluded by separately acquiring positive and negative 

spectra of DHB. The mass range was externally calibrated with a mixture of standard polyphenols 

(Sigma, Milan, Italy). Spectra were elaborated with Data Explorer 4.0. 

2.3. In vitro glycoxidation of proteins 

Model systems were composed of BSA at a final concentration of 1 mg mL-1 in 0.01 M PBS buffer 

(pH 7.4) added with sodium azide (0.05%) and MGO (5 mM). Glycoxidation model systems were 

prepared in the presence or absence of the inhibitor (CGA 10 mM). Prior to initiation of the 

glycoxidation reaction by addition of MGO, the pH values of all solutions were measured at 25 °C 

using an electrode pH-meter (Metler Toledo, Spain) to ensure optimal and equal conditions of 

reaction in all samples (pH=7.4). The model systems were incubated at 37 °C for 192 h, and samples 

were taken after 24, 72, 96 and 192 h. The glycoxidation reaction was stopped by cooling in an ice 

bath. All samples were prepared in triplicate. A control solution of BSA was also included. The 

progress of the glycoxidation reaction was determined by analysing free amino groups, AGEs and 

brown compounds. 

2.3.1. Free amino groups. Free protein amino groups (both N-terminal and epsilon -NH2 of lysine) 

were determined by the OPA assay, following Go et al. (2008) (12). OPA reagent was freshly 

prepared by dissolving 10 mg of OPA in 250 μL of 95% (v/v) ethanol and adding 9.8 mL of 0.01 M 

PBS pH 7.4 and 20 μL of β-mercaptoethanol. The total volume of reaction was 250 μL. The reaction 

was carried out in transparent polystyrene 96-well microtest plate (No. 82.1581). Fluorescence was 

read after the addition of OPA reagent on a microplate fluorescence reader Biotek Synergy™ HT 

(Biotek Instruments, Highland Park, Winooski, USA) with excitation at 360 ± 40 nm and emission at 

460 ± 40 nm. Fluorescence was read every 53 s for 15 min. Calibration curves were constructed 

using standard solutions of Nα-acetyl-L-lysine (0.025-1 mM). All measurements were performed in 

triplicate, and data were expressed as µg Nα-acetyl-L-lysine equivalent per mg of protein. 

2.3.2. AGEs. AGE formation was monitored by fluorescence spectrophotometry using a Biotek 

microplate spectrophotometer at 360 ± 40 nm and 460 ± 40 nm as excitation and emission 

wavelengths, respectively. No dilution was required for the glycoxidation model or the control 

systems. All measurements were performed in triplicate. 

The formation of total AGEs-BSA was measured by an indirect ELISA assay in samples incubated 

for 72 h. A high affinity protein 96-well microplate was coated overnight (4° C) with 100 µL of 

protein samples in 0.01 M phosphate buffer (pH 7.4) (5 µg mL-1). Unbound proteins were washed 

out with buffer PBS-T (PBS 0.01 M; Tween 0.05%), the wells were blocked with gelatin 0.5% for 1 

h at room temperature, then washed out with PBS-T, and the primary antibody (dilution 1:1000) was 

added for 1 h. A polyclonal rabbit IG antibody which rose against AGEs (AGE 102-0.2, Biologo, 

Kroshagen, Germany) was used as the primary antibody. After 1 h incubation and five washing 
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steps, the secondary horse radish peroxidise-conjugated mouse anti-rabbit IgG antibody 

(ABIN376294, antibodies-online Inc.,Suite, Atlanta) diluted 1:4000 in washing buffer PBS-T was 

added, incubated for 1 h and washed again. Colour was developed with TMB (100 µL) and 

absorbance was read at 650 nm. Values were estimated by comparison with a standard curve of 

glycated BSA (Methylglyoxal-AGE-BSA, CY-R2062, CircuLexTM, CycLex Co., Ltd, Nagano, 

Japan). All measurements were performed in triplicate, and results were expressed as µg of AGEs-

BSA per mg of protein. 

2.3.3. Brown pigments. Formation of brown pigments in the samples was estimated by measuring 

absorbance at 420 nm of the samples at 24, 72, 96 and 192 h, using microplate reader BioTek 

PowerWave™ XS. Samples were analysed in triplicate. 

2.4. Structural changes of proteins 

Prior to analysis, the protein fraction of samples incubated at 37 ºC for 72 h was isolated by 

ultrafiltration. Samples (0.4 mL) were placed in the sample reservoir of an Amicon® Ultra- 0.5 mL 

centrifugal filter unit fitted with an Ultracel®-30K regenerated cellulose membrane (30 kDa cut-off) 

(Millipore Ltd., Ireland) and centrifuged at 14000 g for 40 min at room temperature. The 

concentrated samples were recovered and diluted in PBS (0.4 mL). Protein concentration was 

determined by the Bradford micromethod. The isolated protein fraction was used for structural and 

functional characterisation.  

2.4.1. UV-Vis spectra. A Biotek microplate UV-Vis spectrophotometer equipped with UV KC 

junior software (Biotek) was used. The spectrum of fractionated samples was measured at 200-790 

nm using a quartz 96-well microplate.  

2.4.2. Total phenolic compounds. Total phenolic content (TPC) of the isolated fraction incubated 

for 72 h was determined using the Folin-Ciocalteu method as described by Singleton et al. (1999) 

(13) adapted to a microplate reader. The reduction reaction was carried out in 210 µL total volume in 

96-well microplates (No. 82.1581). A 10 µL of sample (appropriately diluted when necessary) was 

added to 150 µl volume of Folin-Ciocalteu reagent (diluted 1:14, v/v) in Milli-Q water. After exactly 

3 minutes, 4 ml of 75 g L-1 sodium carbonate solution and 6 ml of water were mixed, and 50 µL of 

this mixture was added to each well. Absorbance at 750 nm was recorded using a microplate reader 

BioTek PowerWave™ XS. Calibration curves were constructed using standard solutions of CGA 

(0.1-1 mg L-1), and results were expressed as µg CGA mL-1. 

2.4.3. MALDI-TOF-MS analysis. MALDI-TOF mass spectra of samples incubated for 72 h were 

acquired in the linear positive ion mode using Voyager DE-Pro spectrometer (PerSeptive 

BioSystems, Framingham, Massachusetts). The accelerating voltage was 25 kV. Sinapinic acid (10 

mg L-1 in 50% acetonitrile/TFA 0.1%) was used as the matrix. Spectra were externally calibrated 

using a commercial protein mixture provided by the instrument manufacturer (PerSeptive 

Biosystems, Framingham, Massachusetts).  
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2.5. Functionality changes in proteins 

The antioxidant capacity of samples incubated for 72 h was estimated by the ABTS•+ decolourisation 

assay as described by Oki et al. (2002) (14) 2.2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic) acid 

radical cations (ABTS•+) were produced by reacting 7 mM ABTS stock solution with 2.45 mM 

potassium persulfate and allowing the mixture to stand in the dark at room temperature for 12-16 h 

before use. The ABTS•+ solution (stable for 2 d) was diluted in 5 mM PBS pH 7.4 (1:16 v/v) to an 

absorbance of 0.70 ± 0.02 at 734 nm. Each sample was dissolved in phosphate buffer (5 mM, pH 7.4) 

at 0.1 mg L-1. Thirty µL of test sample and 200 µL of diluted ABTS•+ solution were mixed. 

Absorbance of the samples at 734 nm was measured at 10 min of reaction using BioTek Power 

Wave™ XS microplate reader. CGA at concentrations of 0.015-0.2 mM was used for calibration.  

2.6. Statistical analysis 

Data were expressed as mean ± standard deviation (SD). Analysis of Variance (more than 2 groups), 

one-way and two-way ANOVA followed by Bonferroni test, were applied to determine differences 

between means. Differences were considered to be significant at p < 0.05. Relationships between the 

analysed parameters were evaluated by computing Pearson linear correlation coefficients setting the 

level of significance at p < 0.001. 

3. Results  

3.1  Formation of CGA derivatives 

Figure 1a compares the HPLC chromatograms of standard CGA before (lower 

panel) and after incubation at pH 7.4, 37 ºC for 24 h (upper panel). Peaks were 

assigned based on retention times and UV-Vis spectra. Under our experimental 

conditions, CGA was converted into two isomers, namely neochlorogenic acid 

(trans-5-O-Caffeoylquinic acid) and cryptochlorogenic acid (4-O-Caffeoylquinic 

acid).  

The MALDI-TOF-MS (Figure 1b) demonstrated the co-occurrence of the 

hydroquinone and quinone forms ([M + H]
+
 m/z 353 and m/z 355, and [M + Na]

+
 

m/z 375 and m/z 377, respectively) along with the dimeric adducts ([2M + Na]
+
 

m/z 729 and m/z 731), as assigned in the Table 1. No CGA homopolymers were 

detected by either HPLC or MALDI-TOF-MS. 
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Figure 1: (a) RP-HPLC chromatograms of CGA incubated at pH 7.4, 37 ºC during 24 h 

(upper panel) and freshly prepared (lower panel). Peak 1: neochlorogenic acid; Peak 2: 

cryptochlorogenic acid; Peak 3: chlorogenic acid (b) MALDI-TOF spectra of incubated at 

pH 7.4, 37 ºC for 24 h (upper panel) and freshly prepared CGA (lower panel). 
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Table 1: MALDI-TOF MS assignments of CGA derivatives. 

m/z Assignment 

353.5 [CGA*+H]
+
 quinone 

355.5 [CGA+H]
+
 

375.3 [CGA+Na]
+
 quinone 

377.5 [CGA+Na]
+
 

393.3 [CGA+K]
+
 

399.3 [CGA+2Na]
+
 

415.3 [CGA+Na+K]
+
 

531.4 DHB (matrix) adducts 

547.4 DHB (matrix) adducts 

551.4 DHB (matrix) adducts 

729.6 [CGA+CGAquinone+Na]
+
 

751.6 [CGA+CGAquinone+2Na]
+
 

775.6 [CGA+CGAquinone+3Na]
+
 

*CGA includes the isomers of chlorogenic acid that are undistinguishable by mass 

spectrometry. 

 

3.2 Progress of the glycoxidation reaction. 

The availability of free amino groups was obtained by OPA assay (Figure 2). 

Incubation of BSA alone at 37 ˚C for 192 h did not significantly affect (p > 0.001) 

the availability of free amino groups, indicating the absence of inter-protein cross-

linking events. Incubation in the presence of MGO produced a significant decrease 

(p < 0.001) in BSA free amino groups during the incubation period, suggesting 

that the glycoxidation reaction occurred. Interestingly, the addition of CGA to the 

glycoxidation mixture (BSA+MGO) also caused a significant decrease (p < 0.001) 

in available free amino groups throughout the whole incubation period. Available 

free amino groups also decreased when BSA was incubated with CGA alone 

compared to the protein control and did not significantly differ (p > 0.001) from 

those of the inhibition model composed of BSA, MGO and CGA.  
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Figure 2: Changes in the content of free amino groups in samples of control (BSA), BSA 

with MGO (BSA+MGO), BSA with MGO and CGA (BSA+MGO+CGA) and BSA with 

MGO (BSA+CGA) incubated at pH 7.4, 37 ˚C at different times during 192 h. Data are 

means of triplicate analyses (n=9). Error bars denote the relative standard deviation. 

Different letters indicate significant differences (p < 0.001) within model systems at 

different times. BSA data are considered as references. 

Figure 3 illustrates the formation of fluorescent AGEs during 192 h of 

glycoxidation reaction. As expected, the protein control (BSA alone) showed very 

low fluorescence intensity throughout the experiment, due to intrinsic fluorescence 

caused by the presence of fluorescent amino acids in the protein backbone. The 

reaction of BSA and MGO produced a significant formation (p < 0.05) of 

fluorescent AGEs in a time dependent manner. The presence of CGA efficiently 

inhibited (p < 0.05) fluorescent AGE formation in the glycoxidation model 

system, while the reaction of BSA and CGA caused a minor formation of 

fluorescent compounds. Further and more precise information regarding the 

generation of total AGEs, both fluorescent and non-fluorescence adducts, under 

our experimental conditions was obtained by indirect ELISA (Table 2). The 

results are consistent with those obtained by fluorescence monitoring. BSA data 

are considered basal values for all model systems. AGE generation was 
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significantly (p < 0.05) inhibited by the presence of CGA in the glycoxidation 

system.  

 

Figure 3: Time-course of fluorescent AGE formation in samples of control (BSA), BSA 

with MGO (BSA+MGO), BSA with MGO and CGA (BSA+MGO+CGA) and BSA with 

CGA (BSA+CGA) incubated at pH 7.4 and 37 ˚C at different times during 192 h. Data 

represent relative fluorescence units (RFU) (λexc 360 nm, λem 440 nm). Bars represent 

mean values (n=9) and error bars represent standard deviation. Different letters denote 

significant differences (p < 0.05) within model systems at the different times. 

 

 

 

 
 

 

 

 

  

Table 2: Content of total AGEs in samples corresponding to control 

(BSA), BSA with MGO (BSA+MGO), BSA with MGO and CGA 

(BSA+MGO+CGA) and BSA with CGA (BSA+CGA) incubated at pH 

7.4 and 37 ºC for 72 h. BSA data are considered as initial values. 

Total AGEs  

(µg AGE-BSA mg
-1

 protein) 

Incubation time (h) 

72  

BSA 1.01 ± 0.08
b  

BSA+MGO 1.68 ± 0.13
a  

BSA+MGO+CGA 0.51 ± 0.08
c  

BSA+CGA 0.84 ± 0.19
b,c  

Each value represents the mean (n = 9) ± standard deviation. Different letters 

denote significant differences (p < 0.05) between samples of the same column.
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Figure 4 shows the generation of brown compounds. Absorbance values at 420 

nm of mixtures composed of BSA alone and BSA+MGO were very low and not 

significantly different (p > 0.05) in any case. The presence of CGA in the model 

systems induced significant brown compound formation in a time dependent 

manner. High and similar levels of browning (p > 0.05) were found in model 

systems composed of CGA alone and BSA+CGA. The extent of brown compound 

formation in samples composed of BSA, MGO and CGA was significantly lower 

(p < 0.05) than in the other samples containing CGA. 

 
Figure 4: Time-course of brown compound formation from control (BSA), BSA with 

MGO (BSA+MGO), BSA with MGO and CGA (BSA+MGO+CGA), BSA with CGA 

(BSA+CGA) and CGA control (CGA) incubated at pH 7.4, 37 ºC for 192 h. Data represent 

relative absorbance at 420 nm at different time points. Bars represent mean values (n=9) 

and error bars represent standard deviation. Different letters denote significant differences 

(p < 0.05) within model systems at the different times. 

3.3 Structural changes of protein  

Since significant AGE formation was observed after 72 h of glycoxidation reaction 

(Figure 3 and Table 2), those samples were selected for further characterisation. 

As shown in Figure 5a, fresh and incubated (37 ˚C for 72 h) BSA solutions 

exhibited identical UV-Vis spectra, suggesting that no structural modifications of 
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proteins occurred following heating. Furthermore, the glycoxidation reaction 

BSA+MGO did not significantly alter the UV-Vis spectrum compared to fresh 

BSA. In contrast, the protein fraction isolated from the glycoxidation mixture with 

CGA showed a very different spectrum than that found for the control (BSA) and 

was very similar to the spectrum of BSA incubated with CGA. 

Total phenolic content of the samples incubated at pH 7.4, 37 ºC for 72 h is shown 

in Figure 5b. As expected, significant levels (p < 0.05) of phenolic compounds 

were detected in the protein fractions isolated from the CGA model systems, 

namely BSA + CGA and BSA + MGO + CGA. 

MALDI-TOF-MS analysis was performed to confirm the formation of covalent 

bindings of CGA to the protein backbone at 72 h (Figure 6). In the spectra 

corresponding to BSA incubated with MGO, the characteristic peak of BSA was 

clearly visible with variable mass increases (Figure 6b). Greater mass shifts were 

observed when BSA was incubated with CGA either in the absence (Figure 6c) or 

presence of MGO (Figure 6d). The mass data suggested that, BSA binds several 

molecules of CGA and its derivatives in addition to the MGO in these samples, 

forming a heterogeneous mixture of protein conjugates as reflected by the 

broadening of BSA peaks (Figure 6c and 6d). 
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Figure 5: (a) UV-Vis absorption spectra and (b) content of phenol compounds bound to 

BSA isolated from samples corresponding to control (BSA), BSA with MGO 

(BSA+MGO), BSA with MGO and CGA (BSA+MGO+CGA), BSA with CGA 

(BSA+CGA) and CGA control (CGA) incubated at pH 7.4 and 37 ºC for 72 h. Bars 

represent mean values (n=9) and error bars represent standard deviation. Different letters 

denote significant differences (p < 0.001) between means.  
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Figure 6: MALDI-TOF spectra of BSA control (a), BSA with MGO (b), BSA with CGA 

(c) and BSA with MGO and (d) incubated at pH 7.4 and 37 ˚C for 72h. 
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3.4 Changes of protein function  

The antioxidant capacity of the isolated protein fractions obtained from samples 

incubated at 37 ºC for 72 h is shown in Figure 7. The reaction with MGO did not 

modify the antioxidant capacity of BSA. The addition of CGA to reaction mixtures 

caused the formation of compounds (MW > 30 kDa) which had antioxidant 

capacity values of 303.07 and 309.89 μg eq-CGA mL
-1

 for model system 

composed of BSA+MGO+CGA and BSA+CGA, respectively. 

 

Figure 7: Antioxidant capacity of the high molecular weight fractions isolated from 

samples of control (BSA), BSA with MGO (BSA+MGO), BSA with MGO and CGA 

(BSA+MGO+CGA), BSA with CGA (BSA+CGA) and CGA control (CGA) incubated at 

at pH 7.4 and 37 ˚C for 72 h. Data are expressed as -CGA mL
-1

. Bars represent mean 

values (n=9) and error bars represent standard deviation. Different letters denote significant 

differences (p < 0.001) between means. 

3.5. Correlation between parameters  

A significant negative correlation (r=-0.754, p < 0.001) between data 

corresponding to free amino groups and antioxidant capacity was observed for 

samples incubated at 37 ºC for 72 h. A significant negative correlation (r=-0.689, p 

< 0.001) was also found between free amino groups and total phenolic content. 
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4. Discussion 
 

In this work we observed that structural changes in CGA produced in vitro under 

mimicked physiological conditions may contribute to the antiglycoxidative 

properties of this compound. Isomerisation of CGA (3-O-caffeoylquinic acid) was 

induced at pH 7.4 and 37 ºC. The formation of neochlorogenic (trans-5-O-

caffeoylquinic acid) and cryptocholorogenic (4-O-caffeoylquinic acid) acid from 

CGA under similar reaction conditions has previously been reported (15-16). CGA 

derivatives such as oxidation products and isomers might be able to act as 

substrate or/and precursors of the Maillard and polymerisation reactions (17). The 

formation of mono-quinones and dimer quinones was also observed in CGA 

incubated at pH 7.4 and 37 ºC for 24 h. This is in agreement with the non-

enzymatic oxidation of CGA previously described by Rawel et al. 2010 (18). 

Brown compounds may be formed by the Maillard reaction, oxidation of phenols 

and phenol polymerisation (17). Our data suggest that the Maillard and phenol 

oxidation reactions are the main pathways leading to the formation of brown 

compounds under our experimental conditions. Both CGA and its derivatives are 

able to react with BSA via the Maillard reaction. However, further studies are 

needed to determine the chemical nature of new-formed coloured compounds.  

The observed decrease in the formation of AGEs in the presence of CGA 

demonstrates the antiglycative activity of this compound. On the other hand, our 

results suggest conjugation of CGA or its derivatives to free amino groups. A 

significant negative correlation between content of free amino groups and phenolic 

compounds was found. These results are in agreement with Rawel et al. (2009)
 

(19) who reported a decrease in lysine residues due to the reaction of BSA and 

CGA at room temperature for 24 h. CGA isomers and quinones can interact with 

proteins forming non-covalent and covalent bonds through the Maillard 

Reaction
17

. Phenolics bind highly nucleophilic thiol, amine groups and 

hydrophobic aromatic groups of proteins (20). Three potential types of non-
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covalent interactions between hydroxycinnamic acids and proteins have been 

proposed: hydrogen, hydrophobic, and ionic binding (21).
 
Prigent et al. (2007) 

(20)
 
found that oxidised CGA induced covalent modification of α-lactalbumin and 

lysozyme. 

Soft ionization MS techniques such as MALDI are useful to evaluate the 

hydroxycinnamates (HCA) covalently bound to proteins (19).
 
MALDI-TOF-MS 

data suggest the formation of neoformed protein-phenol conjugates, inducing MS 

increments of 1.7 and 1.3 kDa in samples corresponding to BSA+CGA and 

BSA+CGA+MGO, respectively. The increase of molecular mass is indicative of 

covalent binding between CGA and/or its derivatives to the protein structure. Data 

on MALDI-TOF-MS support the data obtained on free amino groups, phenolic 

compounds and UV-Vis spectra. 

The formation of complexes by covalent binding of other reactive phenols such as 

quercetin to BSA exhibiting antioxidant potential have been previously reported 

(22,23). Quercetin and CGA share a high binding affinity for BSA. The ability of 

these two compounds to form covalent complexes polyphenol-BSA under 

physiological conditions has been demonstrated (24,25). Our results show that 

CGA causes the neoformation of molecules with antioxidant capacity. However, 

further studies are needed on the antioxidant mechanism of action of BSA-CGA 

conjugates. 

Gugliucci et al. 2009 (8) previously associated the inhibitory capacity against 

formation of fluorescent AGEs of Ilex paraguariensis extracts to the presence of 

CGA. The inhibitory capacity of CGA was linked to its antioxidant character, 

chelating properties to transition metals ions, quenching of carbonyl radical 

species and AGE crosslinking (26-28). Other authors have also shown the ability 

of CGA to inhibit in vitro BSA glycation induced by fructose and glucose and the 

formation of AGE crosslinking from collagen (11). We have recently reported that 

MGO is effectively trapped by CGA with an IC50 of 0.14 mg mL
-1

 (29).
 
In addition 
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to this mechanism, we propose for the first time a relationship between the high 

binding capacity of CGA to BSA and its antiglycoxidative mechanism of action. 

The covalent interactions suggest MGO and GCA are competing for reactive 

protein sites (free amine group). This effect prevents MGO from binding to BSA 

resulting in an effective decrease in AGE formation. 

Coffee is the major source of CGA on the diet and it has been identified as a 

beverage with the highest in vitro antioxidant capacity (30).
 
CGA from coffee has 

shown a high bioavailability in humans (31). Consumption of coffee acutely 

increases the concentrations of phenolic compounds (CGA) in LDL cholesterol 

particles and platelets, increases ex vivo resistance to LDL oxidation, and reduces 

platelet aggregation in healthy volunteers (32-33).
 
The formation of poliphenol-

protein complex in vivo can exert helpful effects in cardiovascular related 

pathologies such as diabetes mellitus type 2 by AGEs inhibition. 

In summary, the covalent conjugation of CGA and its derivatives (isomers and 

quinones) to side-chains of protein lysine residues reduces the formation of 

potentially harmful compounds, also called AGEs, and promotes the generation of 

antioxidant structures, which may be beneficial for human health. 

Abbreviations: AGEs, advanced glycation end products; MGO, methylglyoxal; GO, 

glyoxal; HCA, hydroxycinnamic acids; BSA, bovine serum albumin; CML, N
ε
-

(carboxymethyl)lysine; CEL, N
ε
-(carboxyethyl)lysine, AG, aminoguanidine; 5-CQA, 5-O-

caffeoylquinic acid; 3-CQA, 3-O-caffeoylquinic acid; CGA, 3-O-caffeoylquinic acid. 
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Abstract 

Coffee silverskin extract (CSE) has been proposed to be a good source of phenolic 

compounds such as chlorogenic acid (CGA) and its derivatives which are formed during 

roasting. Among other health-promoting benefits, CSE presents in vitro antiglycoxidative 

and carbonyl reactive species trapping capacities. These properties have been associated to 

other chemical components besides CGA. This study aimed to obtain novel information 

regarding the pathways of CSE for inhibiting the formation of fluorescent advanced 

glycation end products (AGEs). CSE and CGA significantly inhibited (p < 0.001) the 

formation of fluorescent AGEs in a protein-methylglyoxal glycoxidation model system (37 

°C for 96 hours). The lack of glycoxidation in the presence of CGA and CSE was verified 

using liquid chromatography – tandem mass spectrometry (LC-MS/MS) techniques which 

demonstrated the almost complete absence of Arg adducts after 24h of reaction. Mass 

spectrometry analysis supported the results obtaining in free amino acids, phenol bound to 

proteins and the antioxidant capacity of the samples. Differences observed between 

samples composed of CGA and CSE may be due to differences in their concentrations in 

free CGA. In conclusion, aqueous CSE can be considered a natural source of various 

inhibitors of in vitro formation of AGEs acting by different pathways besides their 

carbonyl trapping capacity. The inhibitory effect of CGA present in CSE may be 

associated to its carbonyl trapping capacity as well as to its ability to react with side-chains 

of protein amino residues blocking the reaction sites with carbonyl reactive groups. 

Keywords: Advanced glycation end products (AGEs) inhibitors, coffee silverskin, 

chlorogenic acid, protein-phenols conjugates phytochemomics.  
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1. Introduction 

Oxidative stress and hyperglycemia induce the formation of advanced glycation 

end products (AGEs), processes which play an important role in the development 

of type 2 diabetes (T2D) and its complications. AGEs are formed via non-

enzymatic glycation and also as an outcome of glucose autoxidation, lipid 

peroxidation or the polyol pathway condensation reactions (1). Reactive 

dicarbonyls such as methylglyoxal (MGO), 3-deoxyglucosone and glyoxal act as 

intermediate species leading to the formation of AGEs. MGO specially causes the 

generation of Nε-(carboxyethyl)lysine and methylglyoxal-lysine dimer, which are 

capable of binding and modifying a number of proteins through the glycoxidation 

reaction (2). AGEs derived from food are also involved in the pathogenesis of 

T2D (3). Thus, the search for natural inhibitors of AGEs formation to treat chronic 

diseases such as T2D and decrease their risk is a worldwide priority.  

Polyphenols are one family of plant compounds that are abundant in coffee as well 

as in red wine, fruits and fruit juices, tea, vegetables, chocolate and legumes. 

There is increasing evidence that polyphenols contribute to many aspects of our 

overall health. Phenols and their derivatives may form complexes with proteins 

and exhibit antiglycative capacity (4). The formation of protein-polyphenols 

conjugates by covalent or non-covalent interactions makes glycation targets 

(mainly basic amino acids) inaccessible, inhibiting the glycoxidation reaction 

(5,6). Polyphenols can also protect against glycoxidation by scavenging reactive 

oxygen species (ROS), which is a consequence of oxidative stress, consequently 

slowing glycation and inhibiting AGEs formation (7). CGA is the most abundant 

polyphenol present in coffee (8). CGA has been reported to be a potent inhibitor of 

AGEs formation in vitro (7,5,9,10). A new antiglycoxidative mechanism of action 

for CGA has recently been proposed under mimicked physiological conditions. 

The proposed pathway “physically” protects the protein structure by the 

interaction of CGA with side-chains of protein amino residues blocking the 

reaction sites with carbonyl reactive groups and generating neoantioxidant 
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compounds (4). This novel information was obtained using advanced analytical 

approaches called phytochemomics (11). 

Coffee silverskin is the tegument of green coffee beans (outer layer) and the by-

product of the roasting procedure. Coffee silverskin extract (CSE) is a good source 

of phenolic compounds such as chlorogenic acid (CGA) and its derivatives formed 

during the roasting process (12). Laboratory studies have shown that CSE has the 

capacity to inhibit the formation of fluorescent AGEs and decrease carbonyl 

radical stress. The overall antiglycative capacity of CSE was mainly associated to 

other phytochemicals present in CSE such as melanoidins and antioxidant dietary 

fibre besides CGA (7). It is not yet known whether this antiglycoxidative character 

involves protein-phenol conjugation. More studies are needed to draw the whole 

map of the antyglycative mechanism of action of CSE, identify the CSE 

compounds involved and its health benefits. Phytochemomics were used to 

achieve this goal. Mass spectrometric analyses are very relevant to detect structure 

modifications and identify protein adducts. 

2. Materials and Methods 

2.1 Chemicals and reagents 

All chemicals and solvents were of analytical grade. Bovine serum albumin (BSA), 3-O-

caffeoylquinic acid (CGA), sodium azide, ortho-phthaldialdehyde (OPA), Nα-acetyl-L-lysine, and 

3.3′,5.5′tetramethylbenzidine (TMB), 2.2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) 

diammonium salt (ABTS) were from Sigma–Aldrich (St. Louis, MO, USA). Other chemicals and 

their suppliers were as follows: β-mercaptoethanol (Merck, Hohenbrunn, Germany), methylglyoxal 

solution, Folin–Ciocalteau and sinapinic acid (Fluka, Buchs, Switzerland), Bradford reagent for the 

protein assay (Bio-Rad, München, Germany), and pepsin and endoproteinase AspN (Promega, 

Madison, WI, USA). The Amicon® Ultra-0.5 ml centrifugal filter unit fitted with an Ultracel®-30 K 

regenerated cellulose membrane (30 kDa cut-off) was from Merck Millipore Ltd (Tullagreen, Cork, 

Ireland). Microtest 96-well plates made from high-quality polystyrene were purchased from Sarstedt 

AG & Co. (Nümbrecht, Germany). The Costar® high binding 96-well EIA/RIA plate was from 

Corning Incorporated (Corning, NY, USA). The High Mass Range Peptide Mix supplied by Applied 

Biosystems (Monza, Italy) was used for calibrating the MALDI-TOF mass spectrometer in the mass 

range m/z 10000-100000. Water was purified using Milli-Q system. 
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Raw material: Coffee silverskin from Robusta (Coffea canephora) was provided by Fortaleza S.A. 

(Bilbao, Spain). According to the manufacturer, CS represents 0.5% of green beans and 0.6% of 

roasted beans. CSE powder was made as described in patent WO 2013/004873 (13). CGA content in 

the CSE model system was calculated based on data obtained by Mesías et al. (2014) (7). 

2.2 In vitro glycoxidation of proteins 

Model glycoxidation systems were prepared containing BSA at a final concentration of 1 mg/mL in 

0.01 M PBS buffer (pH 7.4) in the presence or absence of CGA (10 mM) or CSE (10 mg/mL). The 

pH values for all solutions were measured at 25°C using an electrode pH-meter (Metler Toledo, Mp 

230, Columbus, OH, USA). Each day, the pH meter was calibrated before use with standard buffer 

solutions at pH 4 and 7. The glycoxidation reaction was started by adding MGO at a final 

concentration of 5 mM. The model systems were incubated at 37°C for 24 and 96 h. The 

glycoxidation reaction was stopped by reducing temperature in an ice bath. The samples were kept at 

- 20 °C until analysis. All samples were prepared in duplicate. Samples were fractionated by 

ultrafiltration. Briefly, samples (0.4 ml) were placed in the sample reservoir of an Amicon® Ultra- 

0.5 ml centrifugal filter unit fitted with an Ultracel®-30K regenerated cellulose membrane (30 kDa 

cut-off) and centrifuged at 14000 g for 40 min at room temperature. Concentrated samples were 

recovered and re-suspended in PBS (0.4 ml). Protein recovery (RMM > 30 kDa) was determined by 

the Bradford micro method (14). 

2.3 Free amino groups. The free protein amino groups (alpha and epsilon N-terminal amino acid 

side chain of lysine) were determined by the OPA assay according to Go et al. (2008) (15). The OPA 

reagent was freshly prepared by dissolving 10 mg of OPA in 250 μL of 95% (v/v) ethanol and 

adding 9.8 mL of 0.01 M PBS pH 7.4 and 20 μL of β-mercaptoethanol. The reaction was carried out 

in 250 μL total volume in a transparent polystyrene 96-well microtest plate. Fluorescence was read 

right after the addition of the OPA reagent on a microplate fluorescence reader Biotek Synergy™ HT 

(Biotek Instruments, Winooski, USA) with excitation wavelengths of 360 ± 40 nm and emission 

wavelengths of 460 ± 40 nm. Readings were recorded every 53 s for 15 min. Calibration curves were 

constructed using standard solutions of Nα-acetyl-L-lysine (0.025-1 mmol). All measurements were 

performed in triplicate and concentration was expressed as µg Nα-acetyl-L-lysine/ mg protein. 

2.4 Advanced glycation end products. Fluorescent AGEs formation was measured using a Biotek 

microplate spectrophotometer BioTek Synergy™ HT (Biotek, Instruments, Winooski, VT, USA). 

Fluorescence intensity of the sample was measured using excitation wavelengths of 360 ± 40 nm and 

emission wavelengths of 460 ± 40 nm. No dilution was required for glycoxidation model systems. 

All measurements were performed in triplicate. Results were expressed as relative fluorescents units 

(RFU).  

2.5 Phenol compounds bound to protein  



In vitro study 2                                                                          Coffee silverskin & Diabetes 

 

 
                            104 

 

2.5.1 Determination of total phenolic compounds. Total phenolic content of the samples incubated 

for 96 h was determined using the Folin–Ciocalteu method as described by Singleton et al. (1999) 

(16) adapted to a microplate reader. The reduction reaction was carried out in 210 µL total volume in 

96-well microplates (no. 82.1581). Ten µL of the sample (appropriately diluted when necessary) was 

added to 150 µl volume of the Folin–Ciocalteu reagent (diluted 1:14, v/v) in Milli-Q water. After 3 

minutes, 50 µL of a solution composed of 4 mL of 75 g/L sodium carbonate solution and 6 mL of 

water was added to each well. Absorbance at 750 nm was recorded using a BioTek PowerWave™ 

XS microplate reader. Calibration curves were constructed using standard solutions of CGA (0.1–1 

mg/mL), and results were expressed as µg eq-CGA/mg protein. All measurements were performed in 

triplicate. 

2.5.2 ABTS•+ assay. The antioxidant capacity of samples incubated for 96 h was estimated by the 

ABTS•+ decolorization assay as described by Oki et al.(2006) (17). An ABTS•+ stock solution was 

prepared by reacting 7 mM ABTS stock solution with 140 mM potassium persulfate and allowing the 

mixture to stand in the dark at room temperature for 12–16 h before use. The ABTS•+ solution (stable 

for 2 d) was diluted in 5 mM PBS pH 7.4 (1:75 v/v) to an absorbance of 0.70 ± 0.02 at 734 nm. Each 

sample was dissolved in phosphate buffer (5 mM, pH 7.4) at 0.1 mg/L. Samples (30 µL) were added 

to 270 µL of diluted ABTS•+ solution in a microplate. Absorbance was measured at 734 nm for 10 

min at 30ºC with measurements every 2 min using a BioTek Power Wave™ XS microplate reader. 

CGA at concentrations of 0.15–0.2 mM was used for calibration. Results were expressed as µg eq-

CGA/mg protein. All measurements were performed in triplicate. 

2.6 Structural changes in protein  

2.6.1 Preparation of proteins and peptides for mass spectrometry analysis. BSA was isolated 

from the glycoxidation systems by precipitation with 80% cold acetone (1:10, v/v; 20 h, - 27°C). The 

pellet was recovered after centrifugation (10000 g, 45 min), washed twice with cold acetone and 

dried. BSA was solubilized in 300 mM tris-HCl, 6M guanidine and 1mM EDTA at pH 8. 

Dithioteitrol was added at a final concentration of 10 mM, and BSA was reduced at 37°C for 1 h. 

Subsequently, the protein was alkylated with iodoacetamide (55mM, at 22°C for 30 min in the dark). 

PD10 desalting columns (GE Healthcare Life Sciences, Milan, Italy) were used to remove low 

molecular weight molecules and exchange the denaturation buffer with the digestion buffers.  

Two enzymatic digestions were performed. Pepsin digestion (1:100, E:S) was carried out for 2 h at 

37°C in 5% formic acid (FA) and 20% acetonitrile (ACN) at pH 2. Endoproteinase AspN digestion 

(1:100, E:S) was carried out for 4 h at 37°C in 50 mM ammonium bicarbonate at pH 8. Both 

enzymes, sequencing grade, were purchased from Promega (Madison, WI, USA). Prior to MS 

analysis, peptide digests were desalted using C18 Zip-Tip pre-packed micro-columns (Merck 

Millipore, Bedford, MA, USA), previously equilibrated with 0.1% trifluoroacetic acid (TFA) in 

water and eluted with a mixture of H2O/ACN/TFA (50/50/0.1 v/v/v).  
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2.6.2 RP-HPLC. The peptides digests were separated by RP-HPLC using a C18 Vydac 2.1 mm i.d. 

column (Hesperia, CA, USA), respectively. The pool of peptides was fractionated by applying a 

linear gradient from 5 to 45% solvent B in 60 minutes. The HPLC chromatograph system was an HP 

1100 Agilent modular system equipped with diode array detector (Palo Alto, CA, USA). In both 

cases, the flow rate was 0.200 ml/min. Column effluents were monitored by detection at λ= 220 and 

280 nm.  

2.6.3 MALDI-TOF analysis. Spectra were acquired using a Voyager DE Pro mass spectrometer 

(PerSeptive BioSystems, Framingham, MA, USA) equipped with a N2 laser (λ= 337 nm). The 

accelerating voltage was 20 kV. Mass spectra of the peptides were acquired in in either linear or 

reflector mode using 4-CHCA (α-Cyano-4-hydroxycinnamic acid) (10 mg/mL in 50% ACN/0.1% 

TFA). In both cases, spectra were acquired under delayed extraction conditions and 250 laser shots 

were accumulated for each spectrum. External mass calibration was performed with commercial 

standard peptide/protein mixtures (PerSeptive Biosystems, Framingham, MA). Raw data were 

analysed using the Data Explorer 4.0 software supplied with the spectrometer. Prior to data base 

searching, mass spectra were baseline corrected and Gaussian smoothed with a filter width of 5. 

Peaks with S/N >15 were selected and deisotoped. Identifications were carried out using the non-

redundant National Center for Biotechnology Information (nrNCBI) and Swiss Prot/TrEMBL 

databases via Mascot (Matrix Science, London, UK) and Protein Prospector MS-FIT 

(http://prospector.ucsf.edu/) search engines. The accepted criteria were mass tolerance of 0.3 Da, 

fixed carbamidomethylation of cysteines, variable: methionine oxidation, pyro-glutamic acid, and 

one missed tryptic cleavage.  

2.6.4 Nano flow LC-ESI-MS/MS analysis. LC-ESI-MS/MS was carried out using an Ultimate 

nano3000 HPLC (Dionex, Sunnydale, CA, USA), equipped with a Famos auto sampler (Dionex), 

coupled to a Q-STAR mass spectrometer (Applied BioSystems, Framingham, USA). Peptide digesta 

(~2 μg) were first loaded into a C18 trapping cartridge (LC Packings, Dionex, USA) and flushed 5 

min at a flow rate of 5 μL/min (5% solvent B) by means of the loading pump and secondary, 

separated with a C18 PepMap100 column (15 cm length, 75 μ m ID, 300 Å [LC Packings]), using a 

linear gradient from 5 to 40% B for 90 min at a constant flow rate of 300 nL/min. The eluents were 

(A) 5% ACN in 0.1% FA and (B) 80% ACN in 0.08% FA. Eluted peptides were analysed on-line 

using an ESI-Q TOF Q-Star Pulsar instrument (Applied BioSystems, Foster City, CA, USA) 

equipped with a nano-spray source (Protana, Denmark). 

LC-MS/MS experiments were performed in the information-dependent acquisition (IDA) mode. 

Precursor ions were selected using the following MS to MS/MS switch criteria: ions greater than m/z 

400, charge states 2 to 4, intensity exceeding 18 counts, former target ions were excluded for 30 s 

and ion tolerance was 50.0 mmu. CID was used to fragment multiple charged ions and nitrogen was 

used as the collision gas. The raw spectrum files were used to generate text files in a mascot generic 
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file format (.mgf), which were submitted to the Mascot ver. 2.3 (http://www.matrixscience. com) and 

Batch-tag (Protein Prospector, University of California San Francisco, USA) search engines.  

The following search criteria were applied: database, NCBI or Swiss-Prot; type of search, MS or 

MS/MS ion search; pepsin or endoproteinase Asp-N (cleavage on N-terminal side of Asp or Glu); 

fixed modifications, carbamidomethyl; variable modifications, oxidation on methionine and the N-

terminal loss of ammonia at Gln; mass values, monoisotopic; parent tolerance, 0.07 Da; ms/ms 

tolerance, 0.1 Da; and number of maximum missed cleavages, 1. Unassigned MS/MS spectra were 

manually identified with the aid of the Analyst software (Applied BioSystems). 

2.7 Statistical analysis 

Prior to statistical analysis, data were tested for homogeneity of variances using the Levene test. For 

multiple comparisons, one-way ANOVA was followed by a Bonferroni test when variances were 

homogeneous or by the Games-Howell test when variances were not homogeneous. Differences were 

considered to be significant at p < 0.05, highly significant at p < 0.01 and very highly significant at p 

< 0.001. 

3. Results 

3.1. Progress of the glycoxidation reaction 

Free amino groups were determined by the OPA assay (Figure 1). Incubation of 

BSA with MGO produced a significant decrease (p < 0.001) in BSA free amino 

groups at 37 ºC for 96 h, indicating that the glycoxidation reaction had occurred. 

Interestingly, the addition of CGA to the glycoxidation mixture (BSA with MGO) 

also caused a significant decrease (p < 0.001) in free amino groups. Available free 

amino groups also decreased compared to the protein control when BSA was 

incubated with CSE and did not significantly differ (p = 0.133) from those of the 

glycoxidation model composed of BSA and MGO.  
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Figure 1. Changes in the content of free amino groups in samples of control (BSA), BSA 

with MGO (BSA + MGO), BSA with MGO and CGA (BSA + MGO + CGA) and BSA 

with MGO and RCSE (BSA + MGO + CGA) incubated at pH 7.4 and 37 °C for 96 h. 

Concentrations assayed were 1 mg/mL BSA, 5 mM MGO, 10 mM CGA and 10 mg/mL 

RCSE. Data represent the mean of duplicate analyses (n=6). Error bars denote the standard 

deviation. Different letters indicate significant differences (p < 0.001) within model 

systems. BSA data are considered as references. 

Figure 2 illustrates the formation of fluorescent AGEs during 96 h of 

glycoxidation reaction. As expected, the protein control (BSA alone) showed very 

low fluorescence intensity, due to intrinsic fluorescence caused by the presence of 

fluorescent amino acids in the protein backbone. The reaction of BSA with MGO 

produced a significant formation (p < 0.001) of fluorescent AGEs. The presence of 

CGA or CSE inhibitors efficiently inhibited (p < 0.001) fluorescent AGE 

formation in the glycoxidation model system.  
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Figure 2. Fluorescent AGE formation in samples of the control (BSA), BSA with MGO 

(BSA + MGO), BSA with MGO and CGA (BSA + MGO + CGA) and BSA with MGO 

and CSE (BSA + MGO + CSE) incubated at pH 7.4 and 37 °C during 96 h. Concentrations 

assayed were 1 mg/mL BSA, 5 mM MGO, 10 mM CGA and 10 mg/mL. Data represent 

relative fluorescence units (RFU) (λex 360 nm, λem 440 nm). Bars represent mean values 

(n=6) and error bars represent standard deviation. Different letters denote significant 

differences (p < 0.001) within model systems. 

2.1 Changes in protein function  

Total phenolic content of the samples incubated at pH 7.4, 37 °C for 96 h is shown 

in Figure 3. BSA alone and BSA incubated with MGO showed significant 

differences (p < 0.01) in phenolic content. The Folin-Ciocalteu reagent is known 

to react with amino acids present in BSA such as tryptophan, tyrosine and cysteine 

(18). The reaction with MGO changes the structure of BSA and amino acids can 

be more exposed to the Folin-Ciocalteu reagent. As expected, significant levels (p 

< 0.05) of phenolic compounds were detected in the protein fractions isolated from 

the model systems containing CGA. The presence of CSE in the glycoxidation 

model system (BSA and MGO) significantly enhanced phenolic content (p < 0.05) 

as CGA equivalents. 
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Figure 3. Content of phenol compounds bound to BSA isolated from samples 

corresponding to the control (BSA), BSA with MGO (BSA + MGO), BSA with MGO and 

CGA (BSA + MGO + CGA) and BSA with MGO and CSE (BSA + MGO+ CSE incubated 

at pH 7.4 and 37 °C for 96 h. Concentrations assayed were 1 mg/mL BSA, 5 mM MGO, 

10 mM CGA and 10 mg/mL CSE. Bars represent mean values (n=6) and error bars 

represent standard deviation. Different letters denote significant differences (p < 0.01) 

between means. 

The antioxidant capacity of samples incubated at 37 °C for 96 h is shown in 

Figure 4. The reaction with MGO modifies the antioxidant capacity of BSA due 

to changes in its structure and makes amino acids more accessible to react with the 

ABTS
•+

 radical (19). The addition of CGA to reaction mixtures caused the 

formation of compounds which had antioxidant capacity for a model system 

composed of BSA, MGO and CGA. Similarly, the presence of CSE also 

significantly increased (p < 0.05) scavenging properties against the ABTS radical. 

The final concentration of CGA in model system containing CSE was 2 mM. 

However, no significant differences (p > 0.05) were found in the total antioxidant 

capacity values in model systems with CGA and CSE. 
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Figure 4. Antioxidant capacity of the high molecular weight fractions isolated from 

samples of the control (BSA), BSA with MGO (BSA + MGO), BSA with MGO and CGA 

(BSA + MGO + CGA) and BSA with MGO and CSE (BSA + MGO + CSE) incubated at 

pH 7.4 and 37 °C for 96 h. Concentrations assayed were 1 mg/mL BSA, 5 mM MGO, 10 

mM CGA and 10 mg/mL CSE. Data are expressed as μg eq-CGA/mg protein. Bars 

represent mean values (n=6) and error bars represent standard deviation. Different letters 

denote significant differences (p < 0.01) between means. 

2.2 Mass spectrometry characterisation of adducts 

Since lysine and arginine are candidate amino acids substrates for glycation, 

hydrolysis with trypsin was not appropriate for this study (20). The MALDI-TOF 

analysis of the pepsin hydrolyzed BSA control led to a coverage of 45% of the 

protein sequence (Figure 5). For instance, the analysis of hydrolyzed BSA 

incubated for 24 h in both glycoxidation systems (BSA with MGO and BSA with 

CGA) showed the presence of a number of new peptides that are not expected to 

be released from the native protein (Table 1 and Figure 5). The ESI-Q/TOF 

analysis of the samples allowed us to identify the major adducts and characterize 

the modification site. The fragmentation pattern of the 785.49 m/z, 682.43 m/z and 

1231.52 m/z peptides (Table 1 and Figure 6) corresponded to peptides 237-242 

with the Arg 241 adduct (+54), peptide 479-783 with the Arg 482 adduct (+54), 

and peptide 274-283 with the Arg 280 adduct (+54), respectively. 
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Figure 5. MALDI-TOF MS spectra of the pepsin peptides of BSA (upper panel) and BSA 

with MGO (lower panel) incubated at pH 7.4 and 37 ºC for 24 h. 

 

Table 1. Peptides released by pepsin digestion from BSA with MGO incubated at pH 7.4 

and 37 ºC for 24 h. 

Measured MH
+ 

(m/z) 

Theorical MH
+ 

(m/z) 
Sequence Adduct 

785.49 731.45 
237

AWSVA R(+54)L
242 

+54-Arg 241 

1002.56 930.55 
211

K(+72)VLASSAR
218 

+72-Lys 211 

682.53 628.41 
479

ILNR(+54)L
483 

+54-Arg 482 

1231.52 1177.55 
274

LECADDR(+54)ADL
283 

+54-Arg 280 
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Figure 6. Nano-HPLC ESI MS separation of the pepsin peptides of BSA with MGO 

incubated at pH 7.4 and 37 ºC for 24 h (left panel a, c, e) and MS/MS-based sequencing of 

selected peptides (right panel b, d and f). 

The MALDI-TOF-MS analysis of BSA after endoproteinase AspN hydrolysis led 

to coverage of 80% of the protein sequence (Figure 7). The peptides 

identifications are listed in Table 2. In one case in the BSA sample incubated with 

MGO it was found a peptide, 36-71, where the reactive site was likely the only 

cysteine of the peptide, as suggested by the mass difference between expected and 

measured mass corresponding to lack of carboxyamidation (57 units) due to the 

previous reaction of the cysteine residue with MGO. MS/MS data however, did 

not allow proving this hypothesis. 
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Figure 7. MALDI-TOF MS spectra of endoproteinase Asp-N peptides of BSA (upper 

panel) and BSA with MGO (lower panel) incubated at pH 7.4 and 37 ºC for 24 h.
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Table 2. Identification of peptides released by ASP-N digestion from BSA with MGO, BSA with MGO and CGA, BSA with MGO and CSE 

incubated at pH 7.4 and 37 ºC for 24 h. 

Measured 

(m/z) 

Theorical 

(m/z)
 Hypothesis Peptide sequence BSA+MGO BSA+MGO+CGA BSA+MGO+CSE 

1522.55 1461.53 +54-Arg 
1
DTHKSEIAHRFK 

12 
x - - 

1783.34 1728.94 +54-Arg 
450

DYLSLILNRLCVLH
463 

x - - 

1802.01 1728.94 +72-Lys 
450

DYLSLILNRLCVLH
463 

x x - 

1859.77 1787.80 +72-Lys 
56

DESHAGCEKSLHTLFG
71 

x x x 

2257.13 2203.15 +72-Lys 
37

DLGEEHFKGLVLIAFSQYL
55 

x x - 

2836.54 2839.43 +54-Cys 
13

FSSAYSRGVFRRDTHKSE IAHRFKD
36 

x - - 

3048.97 2994.93 +54-Arg 
332

EYSRRHPEYAVSVLLRLAKEYEATL
35

6
 

x x - 

2250.11 1896.11 +354-Lys 
279

DKPLLEKSHCIAEVEK
294 

- x x 

4210.11 3856.34 +354-Lys 

37
DEHVKLVNELTEFAKTCVADESHAGC 

EKSLHTLFG
71

 
- 

- x 
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1. Discussion 

The obtained data confirm the occurrence of the Maillard reaction between amino 

groups bound to protein and MGO. On the other hand, results indicate the 

presence of compounds such as CGA, and its breakdown products in CSE are able 

to inhibit the reaction by conjugation of the phytochemicals to reactive residues of 

the protein in the very early stages of the reaction (24 h).  

Free amino groups analysis confirmed the progress of the Maillard reaction under 

the studied conditions. These results are in agreement with those previously 

reported by other authors (5). Interestingly, the free amino groups content of 

samples composed of BSA, MGO and CSE was slightly lower (p=0.131) than that 

found for the corresponding glycoxidation control composed of BSA and MGO. 

As expected, CGA 10 mM significantly reduced (p < 0.001) free amino groups 

content compared to the control suggesting the conjugation of phenol to the 

protein backbone. We previously reported this effect of CGA on free amino 

groups under the same conditions used in this study (5). Differences in the effect 

of CGA alone and CSE on free amino groups content in the presence of MGO may 

be ascribed to differences in the effective concentration of inhibitor in the 

glycoxidation reaction. The final concentration of CGA in the model system 

containing CSE was 2 mM, while the value of this compound in the system 

containing pure CGA was 5-fold higher.  

Fluorescent AGEs were formed during the BSA-MGO reaction under our 

particular conditions (Figure 2). The presence of CSE and CGA reduced the 

characteristic fluorescence of the glycoxidation mixture (BSA+MGO). We 

previously observed the inhibition of fluorescent AGEs mediated by CGA (10 

mM) at the same concentration and conditions tested in this study (5). Results of 

free amino acids and fluorescent AGEs suggest the inhibition of the glycoxidation 

reaction by conjugation of the phytochemicals present in CSE to the protein. 

Furthermore, CSE was less effective than CGA in the formation of AGEs in 

agreement with data on free amino acids. These results may be explained based on 
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differences in concentrations of the antiglycative agents in both samples. CSE has 

already been described as a potent inhibitor of the formation of fluorescent AGEs 

in a dose-dependent manner in a particular BSA-MGO assay (7). In addition, since 

CSE is a complex mixture of compounds, the inhibition of AGEs could be carried 

out through other pathways such as trapping their precursors (7). 

Figures 3 and 4 support that high molecular fraction of samples (> 30 kDa) 

contains phenols and presents antioxidant capacity. The formation of BSA-CGA 

conjugated under the conditions here assessed has recently been reported (5). No 

significant differences (p > 0.01) were observed in the total phenol content and 

antioxidant character of macromolecules in samples composed of CGA and CSE 

(Figures 3 and 4). Results could be influenced by the presence of other 

compounds derived from CGA formed during coffee processing in the food matrix 

such as melanoidins (7). These compounds may also exert an antiglycative effect 

through different mechanisms of action such as chelating activity or antioxidant 

capacity (6).  

Omics provided conclusive results on the conjugation of the phenols present in 

CSE to the protein structure and their role as inhibitors of the formation of BSA-

MGO adducts. Many efforts have been made to map the glycation sites in a variety 

of model proteins such as human serum albumin (21), hemoglobin and myoglobin 

(22,23) and lens α-crystallin (24) using proteomics approach. Our data show that 

Arg and Lys residues of BSA are formed in the glycoxidation system at 24 h. 

MGO has been reported to selectively modify arginine and lysine of bovine and 

human serum albumin under physiological conditions (25). The lack of 

glycoxidation in the presence of CGA and CSE was verified using LC-MS/MS 

technologies, which demonstrated the almost complete absence of Arg adducts in 

these samples. In both cases, only one adduct at Lys 211 (m/z 1002) was 

determined. The formation of BSA-CGA and BSA-CA adducts were observed in 

the glycoxidation mixture containing pure CGA and CSE at 24 h (Table 2). Under 

our particular experimental conditions, results suggest that CGA and CSE are 
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more reactive than MGO. Furthermore, data suggest that the low concentration of 

CGA present in CSE may be enough to protect the protein against glycoxidation. 

CSE seems to be a good inhibitor of fluorescent AGEs. Its mechanism of action 

may involve several pathways including conjugation of the phenols and its 

derivatives to amino acid residues, targets of the glycoxidation reaction.  

Determination of fluorescent AGEs has been proposed as a screening tool to 

predict diabetic complications in primary care (26). Many authors consider the 

inhibitors of AGEs to be another therapeutic target in diabetes management 

(2,26,27). Nowadays, there is an emerging interest in searching for natural extracts 

with antiglycative capacity by their therapeutic potential effect (28,29) and in 

reducing the side effects of the current anti-AGEs drugs such as aminogunidine 

(30). However, the effectiveness of these compounds depends on their 

bioaccesibility, bioavalability and metabolism in the organism. Our recent research 

indicates that the CGA present in CSE is bioavailable and provides health benefits 

(31,32). Further research is needed to demonstrate the antiglycoxidative effect of 

CSE in vivo.  

2. Conclusion 

The use of the omics approach allowed us to detect the formation of protein-

phenol conjugates under mimicked glycoxidative physiological conditions. Novel 

information supports that the mechanism of action of CSE to inhibit the formation 

of fluorescent AGEs involves several pathways including interactions between 

phenols and proteins. Furthermore, results support the potential of CGA and CSE 

as health promoters in fluorescent AGEs-related diseases.  

Abbreviations: AGEs (advanced glycation end products), MGO (methylglyoxal), BSA 

(bovine serum albumin), CGA (3-O-caffeoylquinic acid), CA (caffeic acid), ROS (reactive 

oxygen species), T2D (type 2 diabetes), CSE (coffee silverskin extract), TFA 

(trifluoroacetic acid), ACN (acetonitrile), FA (formic acid). 
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Abstract 

Results found in in vitro assay with cellular model of beta cells (INS-1E) 

performed to gain insights in the mechanism of action of CSE in the pathology of 

T2D, mimicking physiological condition are shown in the present chapter. 

 

 

Study published as: Fernandez-Gomez B, Ramos S, Goya L, Mesa MD, del 

Castillo MD, María Ángeles Martín. Coffee silverskin extract improves glucose-

stimulated insulin secretion and protects against streptozotocin-induced 

damage in pancreatic INS-1E beta cells. Food Res. Int. 2016; doi: 

10.1016/j.foodres.2016.03.006. 
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Abstract 

The present research aimed to provide novel information regarding the antidiabetic 

mechanism of action of coffee silverskin extract (CSE) and its components chlorogenic 

acid (CGA) and caffeine (CF). Their effect on insulin secretion and biomarkers of 

oxidative stress in INS-1E cells in vitro cultured under physiological and stressed 

conditions were assessed. Under physiological conditions, CSE and pure CGA and CF did 

not affect cells´ oxidative status and viability. However, concentrations of CSE ≥ 1µg/mL 

and CGA ≥ 5 µM significantly increased (p < 0.05) the enzymatic activity of glutathione 

peroxidase (GPx). Moreover, all concentrations of CSE (1-10 µg/mL) and the dose of 10 

µM of CGA, significantly stimulated (p < 0.05) insulin secretion in cells cultured in media 

containing 4 and 10 mM of glucose. CSE (1µg/mL) and CGA (10µM) reinforced 

antioxidant defence and increased insulin secretion in response to glucose in beta cells 

stressed with streptozotocin (STZ). Since CGA concentration in CSE was of ≈ 0.1 nM it 

can be assumed that other antioxidants present in this particular extract may also contribute 

to the observed effect. In conclusion, here we provide evidence that CSE could be a new 

potential antidiabetic agent through its antioxidant actions and its ability to modulate 

insulin secretory function. 

Keywords: Coffee silverskin, coffee by-products, oxidative stress, insulin secretion, 

antidiabetic effect 

 

Coffee silverskin extract improves glucose-stimulated insulin 

secretion and protects against streptozotocin-induced 

damage in pancreatic INS-1E beta cells 

Beatriz Fernandez-Gomez, Sonia Ramos, Luis Goya, Mª Dolores Mesa, Mª Dolores del 

Castillo, Mª Ángeles Martín. Food Res. Int. 2016; doi: 10.1016/j.foodres.2016.03.006. 
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1. Introduction 

Type 2 diabetes (T2D) is a complex and multifactorial metabolic disorder 

characterized by persistent hyperglycaemia. Although T2D is caused by a 

deficiency in insulin secretion associated to decreased responsiveness of peripheral 

tissues to insulin, it is generally accepted that the inability of beta cells to secrete 

adequate amounts of insulin is primarily responsible for the development and 

progression of T2D(1) (1). Hyperglycemia and the subsequent increase in 

oxidative stress that appears in diabetes mellitus have been largely implicated in 

the progressive dysfunction of pancreatic beta cells and in the development of 

diabetic complications (2). Micro- and macro-vascular complications of diabetes 

(blindness, kidney failure, heart disease, stroke and amputations) are the major 

causes of morbidity and mortality in human populations (3). Currently, numerous 

antidiabetic drugs, including inducers of insulin secretion, are used as treatment of 

T2D. Nevertheless, all of them exhibit adverse side effects and, actually, even 

under treatment, beta cell dysfunction worsens driving to loss of glycemic control 

(4). Therefore, there is a growing interest in the identification of naturally 

occurring antioxidant agents that may protect and improve beta cell mass and 

function since they may offer a natural alternative to reduce risk or treat diabetes 

and retard the onset of its complications. 

Coffee consumption, both caffeinated and decaffeinated, has been associated to a 

wide variety of health beneficial effects, in particular the reduced risk of T2D 

(5,6). Coffee components, caffeine (CF) and chlorogenic acid (CGA), possess 

potential benefits on glucose homeostasis (7). The effect of CGA and CF on 

glucose metabolism remains unclear (8). The use of coffee by-products as natural 

source of compounds with putative health benefits such as CGA, CF and dietary  

fibre among others has been proposed (9–11). Glucoregulatory properties have 

been recently ascribed to a coffee silverskin extract (CSE) by-product of coffee 

roasting (12). The antidiabetic effect of CSE has been associated to its capacity to 
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inhibit enzymatic activity of α-glucosidase and lipase. CSE is also able to inhibit 

in vitro the formation of advanced glycation end-products (AGEs)(13,14) which 

have been involved in the development of diabetes and its complications (15). 

However, up to date, the protective effect of CSE on the development and 

progression of diabetes and, particularly, on beta cell viability and function has not 

been evaluated.  

Streptozotocin (STZ) is a potent DNA-methylating agent, which generates ROS 

that induce oxidative stress in pancreatic beta cells (16). STZ has been used in beta 

cells to imitate the pathology of T2D and to evaluate the antidiabetic effect of 

novel compounds (17–19). The aim of the present study was to investigate the 

mechanism of action of CSE on the pathogenesis of diabetes using an in vitro 

model of beta cells, the INS-1E cells. To achieve this goal, the effect of CSE on 

redox status and insulin secretion in the pancreatic beta cells was evaluated. 

Likewise, its capacity to protect pancreatic beta cells against an oxidative damage 

induced by STZ was also examined. In addition, the main phenolic constituent 

CGA and the alkaloid CF were individually studied in order to determine their 

contribution to the beneficial effect of the CSE on the function of pancreatic beta 

cells. 

2. Material and Methods 

2.1. Materials and Chemicals 

CGA, CF, STZ, glutathione reductase (GR), reduced and oxidized glutathione (GSH and GSSG, 

respectively), NADH, NADPH, o-phthaldialdehyde (OPT), tert-butylhydroperoxide (t-BOOH), 

gentamicin, penicillin G, streptomycin and bovine serum albumin (fraction V) were purchased from 

Sigma Chemical (Madrid, Spain). The fluorescent probe 2′,7′-dichlorofluorescin diacetate (DCFH-

DA) was from Molecular Probes (Eugene, OR). Cell culture dishes were from Falcon (Cajal, Madrid, 

Spain) and cell culture medium and fetal bovine serum from Lonza (Madrid, Spain). Bradford 

reagent was from BioRad Laboratories S.A. 

2.2. Preparation of coffee silverskin extract (CSE) 

CS from the Arabica (Coffea arabica) species was provided by Fortaleza S.A. (Spain). According to 

the manufacturer, the weight portion of CS represents 0.6 % of the roasted beans. Arabica CSE was 
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prepared by aqueous extraction according to the procedure patented by del Castillo et al. (2013) (9). 

Briefly, 50 mL of boiling water was added to 2.5 g of CS. The mixture was stirred at 250 rpm for 10 

min, filtered by Whatman paper no. 4 and the filtrate was freeze dried. The powdered extracts were 

stored in dark and dry place until analysis. Concentrations of the bioactive compounds were 

determined by a capillary electrophoresis and UV-Vis detection, and a detailed description of this 

CSE is given elsewhere (13). Accordingly, the amounts of CGAs and CF present in the CSE were 

11.18 mg/g and 30.26 mg/g, respectively.   

2.3. Cell culture and treatments 

Rat insulinoma cell line, INS-1E, was kindly provided by Dr. Mario Vallejo of "Alberto Sols" 

Biomedical Research Institute CSIC, Madrid, Spain. INS-1E cells were maintained in a humidified 

incubator containing 5 % CO2 and 95 % air at 37 ºC. They were grown in RPMI-1640 medium with 

11 mM glucose, supplemented with 10 % fetal bovine serum (FBS), 1 % Hepes, 1 mM sodium 

pyruvate, 50 μM betamercaptoethanol and 1 % of the following antibiotics: gentamicin, penicillin 

and streptomycin. 

For the treatments with the different compounds, concentrations of CSE (1, 5 and 10 μg/mL), CGA 

(1, 5 and 10 μM) and CF (1, 5 and 10 μM) diluted in RPMI-1640 culture medium and filtered 

through a 0.2-μm membrane were added to cell plates during 20 h. For STZ treatment, STZ was 

dissolved in 0.1 M citrate buffer (pH 4.5) and added to cell plates during different times (3-18 h) and 

concentrations ranging from 1 to 5 mM. 

2.4. Evaluation of cell viability and production of reactive oxygen species (ROS) 

Cell viability was determined by the crystal violet assay. INS-1E cells were seeded at low density (2 

x 105 cells per well) in 24-well plates. After the different treatments, cells were incubated with 

crystal violet (0.2 % in ethanol) for 20 min. Plates were rinsed with distilled water, allowed to dry, 

and 1 % sodium dodecyl sulphate (SDS) was added. The absorbance of each well was measured 

using a microplate reader at 570 nm (Bio-Tek, Winooski, VT, USA).  

Cellular ROS were quantified by the DCFH assay using a microplate reader (20). For the assay, cells 

were plated in 24-multiwells and incubated with the different treatments. After that, 10 µM DCFH 

was added to the wells for 30 min at 37 ºC. After being oxidized by intracellular oxidants, DCFH 

will become dichlorofluorescein (DCF) and emit fluorescence. ROS generation was evaluated in a 

fluorescent microplate reader at an excitation wavelength of 485 nm and an emission wavelength of 

530 nm (Bio-Tek, Winooski, VT, USA). 

2.5. Glucose-stimulated insulin secretion (GSIS) and content 

After the different treatments, INS-1E cells were washed and placed in Krebs–Ringer bicarbonate 

buffer (KRB: 115 mM NaCl, 24 mM NaHCO3, 5 mM KCl, 1 mM MgCl2 6H2O, 1mM CaCl2 

2H2O) supplemented with 5 mg/mL BSA for a quiescent period of two hours. Next, cells were 

incubated for 90 min in KRB containing 4 or 10 mM glucose and the different concentrations of 
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CSE, CGA and CF. GSIS was evaluated in the medium by an enzyme-linked immunosorbent assay 

(ELISA) kit (Mercodia, Uppsala, Sweden).  

For cellular insulin content measurement, treated cells were lysed at 4 ºC in a buffer containing 25 

mM HEPES (pH 7.5), 0.2 mM EDTA, 0.1 % Triton X-100, 200 mM ß-glycerolphosphate, 0.1 mM 

Na3VO4, 2 µg/mL leupeptin, and 1 mM phenylmethylsulphonyl fluoride (PMSF). The supernatants 

were collected and assayed for insulin content by the ELISA kit (Mercodia, Uppsala, Sweden). 

2.6. Determination of glutathione peroxidase (GPx) and glutathione reductase (GR) activities  

Treated INS-1E cells were collected in PBS and centrifuged at low speed (300×g) for 5 min to pellet 

cells to assay the activities of GPx and GR. Cell pellets were resuspended in 20 mM Tris containing 

5 mM EDTA and 0.5 mM beta-mercaptoethanol, sonicated and centrifuged at 3000×g for 15 min. 

Enzyme activities were measured in the supernatants. Determination of GPx activity was based on 

the oxidation of GSH by GPx, using t-BOOH as a substrate, coupled to the disappearance of 

NADPH by GR. GR activity was determined by following the decrease of the absorbance due to the 

oxidation of NADPH utilized in the reduction of GSSG. The methods have been previously 

described (21). Protein was measured by the Bradford reagent. 

2.7. Determination of reduced glutathione (GSH) 

The concentration of GSH was evaluated by a fluorometric assay previously described (21). The 

method takes advantage of the reaction of GSH with OPT at pH 8.0. After the different treatments, 

the culture medium was removed and cells were detached and homogenised by ultrasound with 5 % 

trichloroacetic acid containing 2 mM EDTA. Following centrifugation of INS-1E beta cells 

homogenates for 30 min at 3.000 rpm, 50 µL of the clear supernatant were transferred to a 96-

multiwell plate for the assay. Fluorescence was measured at an emission wavelength of 460 nm and 

an excitation wavelength of 340 nm. The results were interpolated in a GSH standard curve (5 – 

1000 ng) and expressed as nmol GSH/mg protein, which was determined by the Bradford reagent.  

2.8. Determination of carbonyl groups 

Protein oxidation was measured as carbonyl groups content according to a published method (22). 

The determination was carried out in supernatants of INS-1E cells. Absorbance was measured at 360 

nm and carbonyl content was expressed as nmol/mg protein using an extinction coefficient of 22000 

nmol/L/cm. Protein concentration was determined by the Bradford reagent. 

2.9. Statistics  

Prior to statistical analysis, the data were tested for homogeneity of variances using Levene test. For 

multiple comparisons, one-way ANOVA was followed by a Bonferroni test when variances were 

homogeneous or by the Tamhane test when variances were not homogeneous. The level of 

significance was p < 0.05. A SPSS version 22.0 program was used.  

3. Results and discussion 
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3.1. Effects of CSE, CGA and CF on the redox status of cultured INS-1E cells  

The aim of the present study was to obtain novel information regarding the 

mechanism of action of CSE and its bioactive components, CGA and CF, on the 

pathogenesis of diabetes induced by STZ. For this purpose, we used an established 

cell culture line from rats, INS-1E cells, which show important biological features 

of the pancreatic islet beta cells and have been widely used as a reliable model of 

beta cells.  

Doses of pure CGA and CF to be tested were selected taking into account the 

information on physiological concentrations reported by others. After normal 

dietary intakes, polyphenols and their metabolites appear in the circulatory system 

at nM-μM concentrations, so they are the most appropriate doses for in vitro 

studies (23). On the other hand, plasma concentrations may reach up to 10 μM of 

CF after the intake of a normal coffee serving (24). 

The feasibility of the doses of CSE (1-10 µg/mL), CGA (1-10 µM) and CF (1-10 

µM) for treating INS-1E was determined by the analysis of cellular redox status 

and antioxidant response biomarkers. Treatment of INS-1E with CSE, CGA and 

CF did not affect intracellular ROS generation or cell viability, indicating no 

cellular stress or damage (Table 1).  

Figure 1 shows that the treatment of INS-1E cells with CSE, CGA or CF 

preserved the GSH store (Figure 1A) and the GR activity (Figure 1C). 

Interestingly, CSE and the phenolic CGA evoked a significant increase (p < 0.05) 

in the enzymatic activity of GPx (Figure 1B). Glutathione and their related 

enzymes, GR and GPx, participate in the defence against hydrogen peroxides and 

superoxides and they are essential to prevent the cytotoxicity of ROS. Several 

phenolic compounds have shown to enhance the expression and activity of 

antioxidant enzymes in different tissues such as liver (25,26) or colon (21) and 

also in pancreatic beta cells (27). This outcome should have a significant impact 

on INS-1E cells because they are particularly susceptible to oxidative stress-
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induced injury due to the low-level expression of antioxidant enzymes as 

compared to other types of cells (4). Furthermore, it has been demonstrated that 

the overexpression of antioxidant enzymes protects pancreatic beta cells from 

oxidative stress-induced dysfunction (28). Therefore, the induction of GPx by CSE 

and CGA sets the cells in favourable conditions to face a potential oxidative 

challenge and could be an important strategy to improve beta cell survival in 

diabetes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.- Effect of 20 hours treatment with noted concentrations of 

coffee silverskin extract (CSE), chlorogenic acid (CGA) and caffeine 

(CF) on cell viability and intracellular ROS generation in pancreatic 

INS-1E cells.  

 

 
 % Cell Viability 

ROS 

(% Fluorescence Units) 
*
C  100.3 ± 2.5

a 
100.2 ± 6.3

a
 

CSE 

( μg/mL) 

1 103.4 ± 9.4
a
 101.2 ± 6.4

a
 

5 104.2 ± 4.4
a
 99.8 ± 7.2

a
 

10 102.1 ± 4.6
a
 100.2 ± 8.7

a
 

CGA 

( μM) 

1 99.8 ± 5.4
a
 97.4 ± 82

a
 

5 98.9 ± 8.7
a
 100.3 ± 9.2

a
 

10 98.7 ± 7.7
a
 101.2 ± 5.8

a
 

CF 

( μM) 

1 100.3 ± 5.8
a
 99.7 ± 5.8

a
 

5 102.4 ± 4.0
a
 96.8 ± 8.8

a
 

10 100.4 ± 2.0
a
 97.3 ± 9.3

a
 

*C represents untreated control cells. Data represent means ± SD of 8-10 

samples per condition. Same letter a as superscript indicates that no significant 

differences were found, p < 0.05. 
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Figure 1.- Effect of coffee silverskin extract (CSE), chlorogenic acid (CGA) and caffeine 

(CF) on GSH concentration and GPx and GR activities. C represents untreated control 

cells. INS-1E cells were treated with 1–10 μg/mL CSE and 1-10 μM of CGA and CF for 

20 h and GSH concentration (A) and GPx (B) and GR (C) activities were evaluated. Data 

represent means ± SD of 6-8 samples per condition. Different letters denote statistically 

significant differences, p < 0.05. 

 

3.2. CSE and CGA increased GSIS in INS-1E cells 

Since the ineffectiveness of beta cells to secrete adequate amounts of insulin is 

decisive in the development and progression of T2D, agents that may improve beta 

cell function are considered key to prevent or to treat diabetes (4). Accordingly, 

we were next interested in exploring the potential effect of CSE, CGA and CF on 

insulin secretory function. Indeed, it has been indicated that many phytochemicals 

present in plant foods, particularly polyphenols, could be able to induce insulin 

secretion in pancreatic beta cells (27,29–31). 
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After the incubation of INS-1E cells in the presence of CSE (1-10 µg/mL), CGA 

(1-10 µM) and CF (1-10 µM) for 20 hours, the GSIS was assayed for 90 min. As 

shown in Figure 2A-C, pre-treatment of cells with CSE and CGA, significantly 

increased (p < 0.05) insulin secretion in cells cultured in media containing 4 and 

10 mM of glucose. However, CF resulted ineffective stimulating insulin secretion. 

According to that, a previous work reported a positive effect of CGA on insulin 

secretion (32), besides the doses of CGA employed in that study were higher (28 

and 140 µM) than those tested in the present study. On the other hand, a very low 

concentration of CSE (1 µg/mL) resulted effective to increase insulin secretion in 

a glucose-dependent manner in pancreatic beta cells which is a novel and 

interesting result. This CSE dose contains 9.86 x 10-5µM of CGA which is lower 

than the effective doses of CGA (10 µM). These data suggest that other 

compounds are contributing to the observed effect. Synergistic effects of bioactive 

compounds present in the botanical matrix including those unknown can be 

responsible of the overall antidiabetic observed effect. Further studies should be 

conducted to identify such components of this particular extract contributing to the 

protective effect of pancreatic cells.  

The observed effect on insulin secretion could be due to an increase of insulin 

biosynthesis. To confirm this hypothesis, we also measured total insulin content in 

control and CSE, CGA, and CF 20 hour-treated cells. As showed in Figure 2D, 

there was no difference in insulin levels between the control and treated INS-1E 

cells. Therefore, we can ensure that the augmented GSIS induced by CSE and 

CGA was not related to an increase in the biosynthesis of the hormone but rather 

to the stimulation of insulin secretion. In this regard, from a mechanistic point of 

view, several insulin secretagogues with recognized therapeutic effect such as 

sulfonylureas or glinides are able to close KATP channel and lead to an increase in 

glucose-induced depolarization. Consequently, voltage-dependent Ca
2+

 channels 

open, causing the acceleration of Ca
2+

 influx and the increase of the concentration 

of cytosolic free Ca
2+

 that is necessary and sufficient to trigger insulin secretion 
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(33). In line with this, it has been recently indicated that a coffee extract (100 

µg/mL) and its main component CGA (28.2 µM) may block KATP channel, 

conferring a regenerative effect on zebrafish pancreatic islet damaged with alloxan 

(34). On the contrary, Tousch et al., (2008) (32) indicated that CGA at stimulating 

concentrations for insulin secretion (28.2 and 84.6 µM ) does not close KATP 

channels in rat INS-1E cells, suggesting that a different mechanism of action may 

be involved.  

Other insulin secretagogues amplify Ca
2+-

induced insulin secretion though the 

activation of diverse protein kinases, including protein kinase A (PKA), protein 

kinase C (PKC) or extra cellular regulated kinases (ERKs), that are involved in the 

mechanism of insulin exocytosis itself (35). Accordingly, several phenolic 

compounds such as quercetin (36) and microbial-derived flavonoid metabolites 

(31) have demonstrated to increase glucose-stimulated insulin secretion via ERKs 

activation. Therefore, a potential role of the phenolic CGA on signalling pathways 

cannot be ruled out. Further studies about the molecular mechanisms involved in 

the action of CGA and CSE on beta cell insulin secretion are necessary. 
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Figure 2.- Effect of coffee silverskin extract (CSE), chlorogenic acid (CGA) and caffeine 

(CF) on insulin secretion and insulin content in INS-1E cells. C represents untreated 

control cells. Cells were treated with 1–10 μg/mL CSE (A) and 1-10 μM CGA (B) and CF 

(C) for 20 h and then incubated in KRB medium containing 4 or 10 mM glucose for 90 

min and insulin release was evaluated in the KRB medium. Insulin content was determined 

in non-treated control cells and in cells treated with CSE, CGA and CF for 20 h (D). Data 

represent means ± SD of 6-8 samples per condition. Different letters denote statistically 

significant differences, p < 0.05. 

3.3. CSE and CGA protect INS-1E cells against STZ-induced oxidative stress 

It is generally accepted that oxidative stress is involved in the loss of beta cell 

function and viability, thus, the protection of beta cells from oxidative stress is one 

of the mechanisms potentially involved in the prevention of diabetes (37). 

Consequently, we finally investigated the protective effect of CSE, CGA and CF 

against oxidative stress. To this end, we used STZ, a chemical compound 

commonly used to induce diabetes through its toxic effects on pancreatic beta cells 

(38). The cytotoxic action of STZ is associated with the generation of ROS and the 

consequent beta cell destruction and suppression of insulin secretion (16). 
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Our first goal for this outcome was to determine the conditions leading to 

oxidative stress and cell death in INS-1E cells. Figure 3 reveals that increasing 

concentrations of STZ induced a dose-dependent increase in ROS generation and 

cell toxicity as shown by the decrease in cell viability. Since the STZ 

concentration of 5 mM at 6 hours caused a significantly increase (p < 0.05) in 

ROS generation and nearly 40 % cell death (Figure 3), we decide to choose this 

concentration and that time for the following experiments.  

 

Figure 3.- Effect of streptozotocin (STZ) on ROS production and cell viability in INS-1E 

cells. Cells were treated with 1-5 mM STZ for 3, 6, 9 and 18 hours and ROS levels (A) and 

cell viability (B) were evaluated. Data represent means ± SD of 8-10 samples per 

condition. Different letters denote statistically significant differences, p < 0.05. 
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To investigate the potential of CSE, CGA and CF to protect beta cells against the 

impairment of viability or insulin secretion induced by STZ, we used effective 

doses of each compounds on antioxidant defence and insulin secretion. INS-1E 

cells were treated with 1 µg/mL CSE, 10 µM CGA or 10 µM CF during 20 hours 

followed by treatment with 5 mM of STZ for 6 hours (for oxidative damage assays 

and cell viability) or for 90 minutes (for insulin secretion assays). Figure 4 

illustrates the effect of the different treatments on the appearance of INS-1E cells. 

STZ treatment led to morphological changes such as cell shrinkage related to cell 

death. However, pre-treatment with CSE or CGA, but not CF, prevented these 

morphological alterations. In agreement with those data, treatment of cells with 

STZ enhanced ROS generation (Figure 5A) and protein cell oxidative damage 

(measured as carbonyl groups) (Figure 5B) resulting in a remarkable decrease of 

INS-1E cell viability (Figure 5C). Pre-treatment with CSE or CGA significantly 

reduced (p < 0.05) the ROS over production induced by STZ and prevented beta 

cell death. Since the increase in ROS generation induced by STZ has been directly 

implicated in pancreatic beta cell apoptosis (39,40), it is reasonable to suggest that 

the effect of CGA and CSE reducing ROS over production possibly will contribute 

to reduce apoptosis and enhance cell survival of INS-1 beta cells. Likewise, STZ 

treatment also induced a significant decrease (p < 0.05) in insulin secretion in INS-

1E cells (Figure 5D) whereas the pre-incubation with CSE and CGA completely 

restored GSIS to control levels. CF did not protect against oxidative stress, cell 

death or impaired insulin secretion induced by STZ.  
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Figure 4.- Representative microscopy images of INS-1 cells after different treatment. 

Untreated cells (C). Cells treated with 5 mM STZ for 6 h (STZ). Cells treated with 1 

μg/mL CSE and further exposed to 5 mM STZ for 6 h (CSE + STZ) Cells treated with 10 

μM of CGA and further exposed to 5 mM STZ for 6 h (CGA + STZ). Cells treated with 10 

μM of CF for 20 h and further exposed to 5 mM STZ for 6 h (CF + STZ). 

In parallel, the oxidative stress induced by STZ caused a significant decrease (p < 

0.05) in GSH (Figure 6A) and a remarkable increase of GPx (Figure 6B) and GR 

(Figure 6C) activities in order to enhance the antioxidant cell defence against 

ROS. Under these extreme oxidative conditions pre-treatment of INS-1E cells with 

CSE and CGA greatly prevented GSH depletion and completely recovered GPx 

and GR activities. Altogether, our results indicate that the concentrations of CSE 

and CGA hereby assayed efficiently protect the viability and function of 

pancreatic beta cells against STZ while CF was ineffective on that since did not 

significantly inhibit ROS production.  
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The cyto-protective effect of coffee and its phenolic components against an 

oxidative injury has previously been described in different cultured cells (41–43). 

Results obtained for pure CGA are in line with those reporting a protective effect 

of different antioxidant compounds on pancreatic beta cells (27,31,44). However, 

the present study is the first to demonstrate a specific chemo-protective effect of 

CSE on pancreatic beta cells. This effect produced by CSE cannot be ascribed to 

isolated CF or CGA, but to a synergic effect of different components present in the 

extract. Further studies are necessary to identify the compounds responsible for 

that property. On the other hand, our findings highlight the potential of CSE in the 

protection against diabetes supporting those described in the patented with number 

P201431848. 

 

Figure 5.- Effect of coffee silverskin extract (CSE), chlorogenic acid (CGA) and caffeine 

(CF) against oxidative damage induced by STZ. C represents untreated control cells. Cells 

were treated with 1 μg/mL CSE (A) and 10 μM of CGA (B) and CF (C) for 20 h and 

further exposed to 5 mM STZ for 6 h. Then, intracellular ROS generation (A), carbonyl 

group production (B) and cell viability (C) were measured. To evaluate cell functionality, 

after 20 h of CSE, CGA and CF treatment, control and treated cells were placed in KRB 
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containing 10 mM glucose and 5 mM STZ and insulin secreted during 90 min was 

evaluated (D). Data represent means ± SD of 8-10 samples per condition. Different letters 

denote statistically significant differences, p < 0.05. 

 
 

Figure 6.- Effect of coffee silverskin extract (CSE), chlorogenic acid (CGA) and caffeine 

(CF) on GSH concentration and GPx and GR activity in STZ-treated cells. C represents 

untreated control cells. INS-1E cells were treated with 1 μg/mL CSE (A) and 10 μM of 

CGA (B) and CF (C) for 20 h and further exposed to 5 mM STZ for 6 h. Then, GSH 

concentration (A) and GPx (B) and GR (C) activities were evaluated. Data represent means 

± SD of 6-8 samples per condition. Different letters denote statistically significant 

differences, p < 0.05. 

3. Conclusion 

In conclusion, for the first time we provide scientific evidences regarding the 

protective effects of CSE in pancreatic beta cells through its antioxidant actions 

and its ability to modulate insulin secretory function. In addition, our results 

suggest that physiological concentrations of pure CGA (10 µM) are able to protect 

pancreatic cells against oxidative stress while CF in the same concentration is 

ineffective. On the other hand, since the concentrations of CGA present in CSE 
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seems to be ineffective to protect pancreatic cells against diabetogenic agents 

causing cell oxidative stress (STZ), further research should be conducted to 

identify which compound/s are responsible for those benefits. Our findings support 

the potential of CSE as anti-diabetic phytodrug and functional ingredient for the 

prevention of diseases related to oxidative stress such as diabetes. Results also 

suggest that coffee by-products present added value confirming that coffee is not 

only a drink. 

Abbreviations: CF, caffeine; CGA, chlorogenic acid; CSE, coffee silverskin extract; DCF, 

dichlorofluorescein; GPx, glutathione peroxidase; GR, glutathione reductase; GSH, 

reduced glutathione; GSIS, glucose-stimulated insulin secretion; KRB, Krebs–Ringer 

bicarbonate buffer; OPT, o-phthaldehyde; ROS, reactive oxygen species; STZ, 

streptozotocin; t-BOOH, tert-butylhydroperoxide; T2D, Type 2 diabetes. 
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Abstract 

The present chapter shows results derived from in vivo assay. The study was 

performed in rats to gain insights in the metabolism and bioactivity of coffee 

silverskin extract compounds in the pathology of T2D. 

Study will be published as: Fernandez-Gomez B, Lezama A, Amigo-Benavent M, 

Ullate M, Herrero M, Martín MA, Mesa MD, del Castillo MD. Insights on the 

health benefits of the bioactive compounds of coffee silverskin extract. This 

article has been submitted on Journal of Functional Foods on the 04 of 

March2016. 

  

Chapter 3 
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Abstract 

Little is known about the bioaccessibility of chlorogenic acid (CGA) and caffeine in coffee 

silverskin extracts (CSE), and the contribution of these substances to the prophylactic 

effect of CSE on the pathogenesis of diabetes has not been reported. This study aimed to 

evaluate the bioaccessibility, bioavailability and bioactivity of CGA and caffeine alone and 

in CSE in the pancreas of rats treated with streptozotocin-nicotinamide. The bioaccesibility 

of CGA and caffeine was affected by changes in pH during digestion, and both CGA 

(0.825 µmol) and caffeine (5.026 µmol) were metabolized. Their metabolites protected 

pancreatic cells against the risk of diabetes. This is the first study to demonstrate a specific 

chemo-protective effect of CSE in pancreatic tissue, and this effect may be associated with 

its antioxidant character. Daily administration of CSE, CGA or caffeine 35 d previous to 

the induction of diabetes significantly reduced (p < 0.05) pancreatic oxidative stress and 

protein damage. 

 

Keywords: coffee silverskin, chlorogenic acid, caffeine, bioaccessibility, metabolism, 

pancreas oxidative stress, diabetes.  
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1. Introduction  

According to the International Diabetes Federation (IDF), type 2 diabetes mellitus 

(T2DM) is one of the most frequent diseases in the world, with 387 million cases 

in 2014 (1). T2DM is a very complex and multifactorial metabolic disease 

characterized by insulin resistance and β cell failure, leading to high blood glucose 

levels. Oxidative stress plays an important role in hyperglycemia-induced pancreas 

injury as well as in the early events leading to the development of T2DM. 

Advanced glycation end-products (AGEs) increase reactive oxygen species 

formation and impair antioxidant systems. Furthermore, the formation of some 

AGEs is induced per se under oxidative conditions (2). There is also evidence that 

antiglycative agents in foods and medicine may reduce the risk of diabetes and 

treat the pathology (3). 

Coffee silverskin (CS), the tegument of green coffee beans (outer layer), is the 

only by-product of the roasting process. Previous studies have proposed the use of 

coffee silverskin extracts (CSE) as a natural source of bioactive compounds, such 

as chlorogenic acid (CGA), caffeine, melanoidins and dietary fibre among others, 

with putative health benefits (4). Indeed, glucoregulatory properties have recently 

been ascribed to CSE by-products of roasting coffee (5). The antidiabetic effect of 

CSE has been associated with its capacity to inhibit the enzymatic activity of α-

glucosidase and lipase (5). CSE is also able to inhibit the formation of AGEs. The 

anti-AGEs capacity of CSE may be ascribed to CGA and other bioactive 

compounds composing the extract (6). Fernandez-Gomez et al. (2015) (7) reported 

the antiglycative mechanism of action of CGA. Moreover, CSE may protect 

pancreatic tissue against oxidative stress induced by the commonly-used 

diabetogenic agent streptozotocin (STZ) (8).  

Healthy effects associated with CSE largely depend on the bioaccesibility and 

bioavailability of their bioactive components in the organism. CSE, like other food 

matrices, is a complex mixture of bioactive compounds. Nowadays, little is known 
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about the bioaccessibility of CGA and caffeine composing CSE, and therefore, 

their true in-vivo potential. Moreover, the contribution of CGA and caffeine to the 

prophylactic effect of CSE on the pathogenesis of diabetes has not been reported. 

This study aimed to evaluate the bioaccessibility, bioavailability and bioactivity of 

CGA and caffeine alone and in CSE in the pancreas of rats treated with STZ-

nicotinamide (NA), using phytochemomics (9). 

2. Material and Methods 

2.1. Chemicals  

Pancreatin (P-1625), α-amilase from human saliva type IX-A (A0521), 2.2′-azino-bis (3-

ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), CGA, hippuric acid (HA) , 

caffeine and paraxanthine solution, formic acid, o-phthaldehyde, 2,2′-Azobis (2-amidinopropane) 

dihydrochloride (AAPH), glutathione reductase (GR), reduced and oxidized glutathione (GSH and 

GSSG, respectively), NADH, NADPH, tert-butylhydroperoxide (t-BOOH), 1,4-dithiothreitol (DTT) 

buffer, nicotinamide (NA) and streptozotocin (STZ) were purchased from Sigma Chemical (Sigma-

Aldrich, St Louis, MO, USA). The other chemicals and equipment used were: Pepsin (Merck 

1.07190) and Amicon® Ultra-0.5 ml centrifugal filter unit fitted with an Ultracel®-10 K regenerated 

cellulose membrane (30 kDa cut-off) (Merck, Darmstadt, Germany), Bradford reagent for the protein 

assay (Bio-Rad, München, Germany), methanol (MeOH) HPLC-grade (Lab-Scan, Gliwice, 

Sowinskiego, Poland). Distilled water was deionized using a Milli-Q system (Millipore, Bedford, 

MA, USA). All other chemicals were of analytical grade. 

2.2. Preparation of coffee silverskin extract  

Arabica CSE was prepared by aqueous extraction following the procedure patented by (10). Briefly, 

50 ml of boiling water was added to 2.5 g of CS. The mixture was stirred at 4 g for 10 min, filtered 

through no. 4 Whatman paper and freeze-dried. The powdered extracts were stored in a dark and dry 

place until analysis. The sample (37 mg/ml CSE solution) was filtered through a 0.45 µm pore 

diameter nylon membrane syringe filter (Análisis Vínicos, Ciudad Real, Spain) and diluted 100-fold 

with Milli-Q water and 10 µl aliquots analysed in triplicate by UPLC-MS/MS. CSE contained 19.87 

± 2.4 mg caffeine/g dry matter and 6.88 ± 1.77 mg CGA/g dry matter. 

2.3. Evaluation of the bioaccessibility of coffee silverskin extract  

2.3.1. In vitro oral gastrointestinal digestion 

The amount of CSE components potentially available for further uptake was determined following 

the procedure of Hollebeck et al. (2013) (11) with slight modifications. To mimic in vitro oral 

digestion, 1.17 g of CSE was suspended in 9 ml of Milli-Q water and the pH was adjusted to 6.9 with 

1M HCl and brought to a volume of 9.98 ml. α-Amilase (0.45 ml of 0.562 mg/ml in phosphate 
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buffer) was added to each sample and incubated at 37 ºC for 5 min with constant stirring at 4 g. For 

the gastric digestion step, 10 ml of Milli-Q water was added and the pH of the samples was adjusted 

to 2.0 with 1 M HCl. Pepsin (110 μl, 5 mg/ml in 0.1 M HCl) was added to each sample and 

incubated in a final volume of 22.88 ml at 37 ºC for 90 min under anaerobic conditions using an 

anaerobic chamber model Bactron II (Biogen, Weston, MA, USA) with constant stirring at 4 g. After 

this time, the pH of the samples was adjusted to 7 with 1M NaHCO3 for the intestinal digestion step. 

One ml of pancreatin solution (287.59 mg/ml in 0.1 M NaHCO3) was added, the final volume 

brought to 31.24 ml with Milli-Q water, and the mixture was incubated at 37 ºC for 150 min under 

anaerobic conditions. Digested samples were centrifuged at 1677 g at 4 ºC for 40 min. Enzymatic 

activity was stopped with liquid N2 and supernatants were freeze-dried and stored under dark, dry 

conditions at 4 ºC until analysis. The digestion of CSE was also carried out under the same 

conditions without adding the enzymes to gain insight into the effect of the pH in CGA and caffeine 

metabolism. Digestion experiments were carried out in triplicate. 

2.3.2. Chemical composition of digested and non-digested coffee silverskin extract  

Soluble protein content was determined using the BioRad protein assay kit following the 

manufacturer’s instructions. Bovine serum albumin (BSA) was used for the calibration curve. 

Samples were analysed in triplicate and results expressed as mg BSA/g CSE. 

Total phenolic content (TPC) was determined using the Folin-Ciocalteu’s colorimetric assay (12) 

adapted to a microplate reader. Briefly, CSE prepared at 2 mg/ml was used. Ten µl of the sample was 

combined with 200 μl of Folin reagent (0.017% (v/v)) and 50 μl of NaHCO3 (30 mg/ml). The 96-

well plate was incubated in darkness at room temperature for 2 h and was read at 725 nm using a 

BioTek PowerWave™ XS (Winoski, VT, USA) microplate reader. Calibration curves were 

constructed using a standard solution of CGA (0.1-0.8 mg/ml). Samples were analysed in triplicate 

and results expressed as mg of CGA equivalents per g of CSE (mg CGA /g CSE). 

The chemical composition of CGA and caffeine in the CSE and their digested products was analysed 

by capillary zone electrophoresis (CZE) as described by del Castillo et al (2002) (13). Previously, the 

digested CSE (10 mg of extract/ml) was filtered through 0.2 μm nylon filters (Symta, Madrid, 

Spain). Determinations were carried out in an Agilent G1600 A (Santa Clara, CA, USA) capillary 

electrophoresis instrument equipped with ChemStation software and a diode array detector (DAD). 

CZE was performed in an uncoated fused 48.5 cm long silica capillary (40 cm to the detector) with 

an internal diameter of 50 μm and a x3 bubble cell. The other analysis conditions were as follows: 50 

mM sodium borate buffer (pH 9.5), 20 kV voltage, 25 ºC temperature and the injection was at 50 

mbar for 5 s. Electropherograms (e-grams) were monitored at 200 and 280 nm for CGA and caffeine, 

respectively; and spectra collected from 190 to 600 nm. The capillary was conditioned after running 

each sample by flushing with 0.1 M NaOH and buffer for 3 min. CGA (0.15-9 mM), and caffeine 
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(0.15-10 mM) calibration curves were used as standards for identification and quantification. 

Samples were analysed in triplicate and results were expressed as mg of CGA or caffeine/g CSE. 

2.3.3. Antioxidant capacity of digested and non-digested coffee silverskin extract  

Antioxidant capacity and radical scavenging and oxygen radical absorbance capacity were 

determined by the ABTS and ORACFL assays, respectively. The ABTS assay was carried out 

according to Oki et al. (2006) (14). ABTS•+ was produced by reacting 7 mM ABTS and 2.45 mM 

potassium persulfate (final concentration in 10 ml of water). The mixture was incubated in the dark 

at room temperature for 16 h before use. The aqueous ABTS•+ solution was diluted 1:75 (v/v) with 5 

mM phosphate buffer (pH 7.4) obtaining an absorbance value of 0.7 ± 0.02 at 734 nm. Thirty µl of 

sample (0.2 mg of non-digested CSE /ml or 0.2 mg of digested CSE digested/ml) or standard and 270 

µl of ABTS•+ working solution were placed in each well. Absorbance readings were recorded in a 

microplate reader at 734 nm every minute. A standard calibration curve was constructed using 

Trolox (0.01-25 mM,), and results were expressed as µmoles of Trolox equivalents (TEAC)/g of 

CSE. Another calibration curve using CGA, the major phenolic compound in coffee, was constructed 

(0.05-0.25 mM), and results were expressed as µmoles of CGA equivalents (CGA)/g of CSE. 

Samples were analysed in triplicate. 

An aliquot of non-digested CSE (10 mg/ml) was subjected to fractionation using an Amicon® Ultra 

0.5 ml centrifugal filter unit fitted with an Ultracel®-10K regenerated cellulose membrane (10 kDa 

cut-off) (Merck Millipore, German). The antioxidant capacity of low (< 10 kDa) and high (≥ 10 kDa) 

molecular weight fractions was also analysed using the ABTS•+ assay. 

The ORACFL assay was performed following the procedure described by Huang et al. (2002) (15). 

Briefly, 25 μl of sample of the appropriate dilution or standard were added to a 96-well microplate 

followed by the addition of 150 μl of fluorescein work solution (8.5 x 10-5 mM) prepared in 75 mM 

phosphate buffer (pH 7.4). The BioTek PowerWave™ XS microplate reader was programmed to 

incubate the plate at 37 ºC and add 30 μl of AAPH solution (153 mM in phosphate buffer) as a 

peroxyl radical generator. Fluorescence was read with excitation at 485 nm and emission at 528 nm 

every two minutes for 90 min. A blank consisting of fluorescein, AAPH and phosphate buffer was 

also included. Calibration curves of Trolox (6.25-50 μM) and CGA (3.12-25 μM) were constructed. 

Standard calibration curves were composed by plotting the net area under the curve (AUC) as a 

function of Trolox or CGA concentration. ORACFL values were expressed as µmoles TEAC/g of 

CSE and as µmoles CGA/g of CSE. 

2.4. Animals and the experimental design (ARRIVE guidelines) 

The experimental protocols were approved by the Ethical Committee for the Use of Laboratory 

Animals of the UGR—Universidad de Granada, Campus de la Cartuja, GR, Spain (CEEA: 2010-

287). 
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CSE doses administrated to the animals in vivo provided 0. 150 and 0.434 mg/d of CGA and 

caffeine, respectively. CGA and caffeine dose selection was based on moderate coffee consumption 

(3 cups a day) in adults (13,16), and the CSE dose was limited by its caffeine content (max. 300 

mg/day). 

2.4.1. Evaluation of the bioavailability of coffee silverskin extract 

Twelve 6-week-old male Wistar rats (ENVIGO, Alconbury, United Kingdom) were housed singly in 

metabolic cages with free access to standard food (2014S Teklad, ENVIGO, Alconbury, United 

Kingdom) and water ad libidum. Food and water intake were measured by subtracting the remaining 

amount of food and water in the containers from the total amount given the day before, during the 

bioavailability study. Animals were divided into four groups (n = 4): rats treated with CSE, rats 

treated with CGA, rats treated with caffeine and untreated rats (control). At 8:00 in the morning, the 

CSE group received one single dose of CSE (2.2 mg caffeine/kg body weight; 0.8 mg CGA/ kg body 

weight), the CGA group received pure CGA (1.5 mg CGA/kg body weight) and the caffeine group 

received pure caffeine (5 mg/kg body weight). Urine samples were then serially collected from 

treated rats every hour for 6 hours, then every 2 h up to 10 h and finally after 24 h. Urine samples 

were collected from untreated rats every 24 hours as a control. Samples were stored at -80 °C until 

analysis. After 3 days of clearance, the bioavailability experiments were repeated with the same 

animals. 

Urinary creatinine was measured with the creatinine quantitative test kit (SPINREACT, Gerona, 

Spain) based on the Jaffe reaction, as previously described by Murray (1984) (17).  

CGA, caffeine and related compounds, HA and paraxanthine were determined by UPLC-MS/MS. 

Urine samples were defrosted, centrifuged at 10481 g for 10 min at 4 °C and supernatants were 

filtered using a 0.45 µm pore-size nylon membrane syringe filter (Análisis Vínicos, Ciudad Real, 

Spain). Aliquots (10 µl) were analysed in triplicate using an Accela liquid chromatograph (Thermo 

Scientific, San Jose, CA, USA) equipped with a DAD and an autosampler. The chromatograph was 

coupled to a TSQ Quantum (Thermo Scientific, San Jose, CA, USA) triple quadrupole analyzer via 

an electrospray ionization (ESI) interface. Xcalibur software (Thermo Scientific, San Jose, CA, 

USA) was used for data storage and evaluation. Analytical conditions consisted of a ZORBAX SB-

C18 (50 mm × 2.1 mm and 1.8 μm of particle diameter) column (Thermo Scientific, San Jose, CA, 

USA) using 1% (v/v) formic acid in methanol and 1% (v/v) formic acid in Milli-Q water as A and B 

mobile phases, respectively. Elution was carried out according to the following gradient: 0 min, 95% 

B; 0.35 min, 95% B; 7 min, 80% B; 9.5 min, 5% B; 10 min; 95% B; 15 min, 95% B. Optimum flow 

rate was 0.3 ml/min, whereas the injection volume was 10 μl. The DAD recorded the spectra from 

200 to 450 nm. Column and autosampler compartments were kept at 30 °C and 4 °C, respectively. 

The mass spectrometer was operated in the positive ESI mode to quantify caffeine and paraxanthine 

and in the negative ESI mode to quantify CGA and HA. Spray voltage and capillary temperature 
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were set at 3500 V and 250 °C, respectively. Nitrogen was used as a sheath and auxiliary gas at 

pressures of 40 and 20 arbitrary units, respectively. Ion sweep gas pressure was 2 units and collision 

gas (Ar) pressure was 1.5 mTorr. Scan width and scan time were fixed at 0.020 (m/z) and 0.100 s, 

respectively, and the system was operated in selected reaction monitoring (SRM). SRM parameters 

were optimized by direct infusion of standards. Two transition ions were monitored for identification 

but only the most intense one for each precursor ion was used for quantification. Parent ([M-H]-) and 

product ions for CGA and HA were m/z 353.2 191.1 and m/z 178.3  134.3, respectively, 

whereas parent ([M-H]+) and product ions for caffeine and paraxanthine were m/z 195.1  138.2 and 

m/z 181.1  124.2, respectively.  

2.4.2. Evaluation of the bioactivity of coffee silverskin extract in the pancreas of streptozotocin-

nicotinamide diabetic rats 
 

Thirty-two 6-week-old male Wistar rats (ENVIGO, Alconbury, United Kingdom) were divided into 

four groups (n = 8) paired by weight (average weight per group was 194 ± 2 g). Rats were 

maintained at 23 ± 1 ˚C and 55 ± 5 % relative humidity on a 12:12-hour light-dark cycle with free 

access to standard food (2014S Teklad, ENVIGO, Alconbury, United Kingdom) and water ad 

libidum. Food and water intake were measured by subtracting the remaining amount of food and 

water in the containers from the total amount given the day before, during the experimental time. The 

rats in groups 1, 2 and 3 were supplemented by gastric gavage with CSE (2.2 mg caffeine/kg body 

weight, 0.8 mg CGA/ kg body weight), pure CGA (1.5 mg CGA/kg body weight) and pure caffeine 

(5 mg caffeine /kg body weight) dissolved in 1 ml of sterile water, respectively, every day for a total 

of 42 days. The fourth group (the STZ group) was treated similarly with sterile water. At day 35, all 

rats were injected with 200 mg/kg body weight of NA dissolved in saline buffer, and 15 min later 

T2DM was induced by the intraperitoneal injection of 60 mg/kg body weight of STZ dissolved in 

cold 0.1 M citrate buffer (pH 4.5) immediately before use, according to Masiello et al. (1998) (18). 

The order in which the animals were injected was randomized among the groups. Blood samples 

were obtained from the tail vein and glucose levels (mg/dl) were determined after T2DM induction 

every day for six days using a glucometer (FreeStyle Lite®, Abbott Laboratories). Rats were 

considered diabetic when blood glucose levels were above 200 mg/dl. An additional healthy control 

group (n = 8) was also included in the experiment.  

At day 42, overnight-fasting blood glucose was measured using a glucometer. The fasting rats were 

then anaesthetised with Ketamine-Xylazine (1 ml/kg body weight and 0.5 ml/kg body weight, 

respectively) and sacrificed. The pancreas was removed promptly, weighed, divided into three parts 

and stored at −80 °C until required.  

Glutathione peroxidase (GPx) and glutathione reductase (GR) activity were determined in pancreas 

homogenates as described by Rodríguez-Ramiro et al. (2011) (19). Thus, pancreatic tissues were 

homogenized (1:5 w/v) in 0.25 M Tris, 0.2 M sucrose and 5 mM DTT buffer pH 7.4 and centrifuged 
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at 3000 g for 15 min. Determination of GPx activity was based on the oxidation of GSH by GPx, 

using t-BOOH as a substrate, coupled to the disappearance of NADPH catalysed by GR which 

reduced GSSG. GR activity was determined based on the decrease in absorbance due to the oxidation 

of NADPH used in the reduction of GSSG. Total pancreatic protein content was measured by the 

Bradford method (20). 

GSH concentration was evaluated using the previously described fluorometric assay (19). This 

method takes advantage of the reaction of GSH with o-phthaldehyde at pH 8.0. Pancreatic tissues 

were homogenized (1:20 w/v) in 50 mM phosphate buffer pH 7.0, and proteins were precipitated 

with 5% trichloroacetic acid and then centrifuged for 30 min at 10.000 g. Fluorescence was measured 

at an emission wavelength of 460 nm and an excitation wavelength of 340 nm. Results were 

interpolated in a GSH standard curve (5 ng-1 μg) and expressed as nmol/mg protein. 

Pancreatic protein oxidation was measured as carbonyl groups content according to Granado-Serrano 

et al. (2009) (21). Pancreatic tissues were homogenized (1:5 w/v) in 0.25 M Tris, 0.2 M sucrose and 

5 mM DTT buffer pH 7.4 and centrifuged at 3000 g for 15 min. Absorbance was measured at 360 

nm, and carbonyl content was expressed as nmol/mg protein using an extinction coefficient of 22000 

nmol/l/cm. Total pancreatic protein content was measured by the Bradford reagent (20). 

2.5. Pharmacokinetic and statistical analysis  

Maximum concentration (Cmax), AUC and the time required to reach maximum concentration 

(Tmax) of metabolites in urine was evaluated using Microsoft Excel functions (22). SPSS program 

version 22.0 was used for statistical analyses. Comparisons of excretion pharmacokinetic parameters 

between treatments were done by Student’s T-test. Prior to statistical analysis, all data were tested for 

homogeneity of variances using the Levene test. For multiple comparisons, one-way ANOVA was 

carried out followed by a Bonferroni test when variances were homogeneous or by the Tamhane test 

when variances were not homogeneous. The level of significance was p < 0.05 except in the case of 

carbonyl content (p < 0.1). 

3. Results 

3.1. In vitro bioaccessibility of the bioactive compounds of coffee silverskin 

extract 
 

Caffeine, TPC and CGA levels of 44.64 mg/g, 46.65 mg/g and 13.33 mg/g were 

detected in CSE, respectively. Overall antioxidant capacity values of 397 and 358 

µmol CGA/g (corresponding to 427 and 816 of µmol TEAC/g) were obtained for 

scavenging and hydrogen donating capacities in CSE, respectively (Table 1). The 

antioxidant capacity of low molecular weight compounds (<10 kDa) was 220 
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µmol CGA/g, while the antioxidant capacity of the fraction containing high 

molecular weight compounds (≥10 kDa) was 110 µmol CGA/g.  

In vitro digestion of CSE decreased concentrations of TPC (40%), CGA (82%) 

and caffeine (25%). The overall antioxidant capacity of CSE decreased by 15% 

and 50% as measured by ABTS and ORAC, respectively (Table 1).  

 

 

 

 

 

 

 

 

To evaluate the effect of changes in pH during digestion on the degradation of 

bioactive compounds, a digestion in the absence of digestive enzymes was 

performed. Changes in pH decreased TPC and CGA content by 38% and 83%, 

respectively, while caffeine content only decreased by 15%. .  

CSE can provide bioaccessible amounts of bioactive compounds such as caffeine 

(172.37 µmol/g), TPC (28.06 mg/g) and CGA (6.86 µmol/g). Digests presented 

scavenging capacity (337µmol/g) and oxygen radical absorbance capacity (179 

µmol/g) after physiological digestion 

3.2. Metabolism of the bioactive compounds of coffee silverskin extract 

 

Figure 1 shows the kinetics of the urinary excretion of CGA, caffeine and their 

metabolites. Urinary pharmacokinetic parameters of these compounds after CSE, 

caffeine and CGA consumption are presented in Table 2. Intact CGA was not 

found in the urine of rats fed with CSE (containing 0.150 mg of CGA/day), CGA 

(0.293 mg of CGA/day) or caffeine. The baseline value of HA in urine excretion 

was set at 431.70 µmol/mmol creatinine and was obtained by measuring HA in the 

Table 1. Antioxidant capacity (µmol CGA/g) of non-digested and 

digested CSE. 

Sample ABTS ORAC
FL

 

CSE non-digested  397 ± 17
a

 358 ± 25
a

 

CSE digested 337 ± 26
b

 179 ± 13
b

 

Results are expressed as mean ± SD for n = 3. Different letters in the same 

column indicate significant differences (p < 0.05). CSE, coffee silverskin 

extract 
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24 h urine of the animals before administering the products. HA excretion was the 

greatest after the ingestion of CGA, reaching a peak in the 0-2 h interval, and AUC 

was significantly higher (p < 0.05) than that found after the intake of caffeine and 

CSE (Table 2). The maximum concentration of HA in urine (1346.86 mmol/µmol 

creatinine) was found 1.57 h after CGA consumption, which was higher than the 

maximum HA concentrations found in urine after caffeine intake (Figure 1A and 

Table 2). 

Excretion of caffeine and its metabolite paraxanthine were not detected in the 

urine of CGA treated rats. Non-metabolized caffeine in urine excretion (AUC and 

Cmax) after the consumption of pure caffeine was higher than that found after 

treatment with CSE (Figure 1B and Table 2). Urinary excretion of caffeine 

peaked at 0-8 h and decreased in the next 8-24 h in rats treated with caffeine. In 

rats treated with CSE, urinary excretion of caffeine peaked at 2 h and then 

decreased (Figure 1B and Table 2). 

Urinary paraxanthine excretion after consumption of pure caffeine was higher 

(AUC and Cmax) than that found after the intake of CSE (Figure 1C and Table 

2). In this case, paraxanthine reached maximum excretion between 2 and 12 h, and 

excretion decreased between 12 to 24 h after the ingestion of both CSE and 

caffeine (Figure 1C and Table 2). 

Both studied compounds were metabolized. Free CGA was not detected in urine 

and caffeine was metabolized to paraxanthine.  
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Figure 1. Kinetics of the urinary excretion of hippuric acid (A), caffeine (B) and 

paraxanthine (C) after consumption of CSE (2.2 mg caffeine/kg body weight, 0.8 mg 

CGA/ kg body weight), CGA (1.5 mg/kg body weight) and caffeine (5 mg/kg body 

weight). Results represent the concentration (µmol/mmol creatinine) as mean (n=7) ± 

SEM. CSE, coffee silverskin extract; CGA, chlorogenic acid. 
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Table 2. Pharmacokinetic parameters (Cmax, AUC and Tmax) of metabolites detected in urine after 

treatments consumption with coffee silverskin extract (CSE; 2.2 mg caffeine/kg body weight, 0.8 mg 

CGA/ kg body weight), cholorogenic acid (CGA; 1.5 mg/kg body weight); and caffeine (5 mg 

caffeine/kg body weight). 

Metabolite Parameters ACSE CF CGA1.5 

HA 

Cmax 

(mmol/µmol) 
385.08 ± 121.01

a

 719.11 ± 138.15
b

 1346.89 ± 274.86
b

 

Tmax (h) 10.50 ± 4.47
a

 4.63± 2.78
a

 1.57± 0.28
a

 

AUC 

(mmol/µmol.h) 
6097.77± 2524.13

a,b

 6863.70 ± 1180.80
a

 12993.63 ± 2158.54
b

 

     

Caffeine 

Cmax 

(mmol/µmol) 3.31 ± 1.12
a

 28.88 ± 4.64
b

 n.d 

Tmax (h) 1.8 ± 0.37  2.50 ± 0.50 
 

AUC 

(mmol/µmol.h) 14.80 ± 5.58
a

  136.66 ± 17.74
b

   

     

PX 

Cmax 

(mmol/µmol) 10.68 ± 2.69
a

 22.40 ± 4.17
b

 nd 

Tmax (h) 5.50 ± 1.59 4.62 ± 0.59 
 

AUC 

(mmol/µmol.h) 125.31 ± 34.68
a

 265.56 ± 55.81
b

  

VValues represent mean ± SEM, n=7. Means in a row without a common letter differ; p < 0.05, T-student. nd, not 

detected. AUC, area under the curve; Cmax, maximum concentration reached; Tmax, time to reach Cmax; HA, hippuric acid; 

PPX, paraxanthine. 

 

3.3. Bioactivity of coffee silverskin extract in the pancreas of streptozotocin-

nicotinamide diabetic rats 

 

The effect of the CSE, CGA and caffeine treatments on oxidative stress 

biomarkers in the pancreas of diabetic rats is shown in Figure 2. Rats were 

considered diabetic when blood glucose levels were above 200 mg/dl. The STZ-

NA treatment caused significant oxidation (p < 0.1) of pancreatic proteins by 
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increasing their carbonyl groups (Figure 2A). On the contrary, animals pre-treated 

with CGA or caffeine for 35 d significantly prevented (p < 0.1) oxidative protein 

damage induced by STZ. Protein carbonyl content decreased by 24% and 22% in 

the pancreas of diabetic rats treated with CGA and caffeine, respectively. 

However, CSE did not reduce the rate of protein oxidation induced by the toxic 

agent. GSH content in the pancreas of T2DM rats decreased significantly (p < 

0.05) (Figure 2B), and pre-treatment with CSE and CGA significantly reduced (p 

< 0.05) GSH depletion in the pancreas of diabetic rats. Untreated rats and those 

treated with CSE and CGA showed similar pancreatic GSH values (p > 0.05). 

GPX and GR values of all animals were of the same order of magnitude (p > 0.05) 

(Figure 2C). 

The physiological concentrations of the bioactive compounds forming CSE were 

able to protect pancreatic cells against oxidative stress produced by the 

diabetogenic agent STZ. 
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Figure 2. Effect of CSE, CGA and caffeine on oxidative status in pancreatic tissues of 

STZ-NA induced diabetic rats. C, untreated healthy control rats; STZ, rats treated with 

STZ (60 mg/kg body weight) and NA (200 mg/kg body weight); CSE, rats treated with 

STZ-NA and CSE (2.2 mg caffeine/kg body weight, 0.8 mg CGA/ kg body weight); CGA, 

rats treated with STZ-NA and 1.5 mg CGA/kg body weight; Caffeine, rats treated with 

STZ-NA and 5 mg caffeine/kg body weight; (A) GSH levels (p < 0.05, (B) GR and GPx 

activities (p < 0.05) and (C) Carbonyl groups production (p < 0.1) were evaluated. Data 

represent means ± SEM (n=8). Different letters denote statistically significant differences 

referred above in brackets. CSE, coffee silverskin extract; CGA, chlorogenic acid; STZ, 

streptozotocin; NA, nicotinamide. 

4. Discussion 

This is the first study assessing the role of the gastrointestinal digestion on the 

bioaccessibility of CSE bioactive compounds and its remnant overall antioxidant 

capacity. 

TPC values found in CSE are in agreement with those described by other authors 

(6,23). Slightly higher CGA and caffeine concentrations were found in CSE than 
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in CS raw material (4.31 mg CGA/g and 10 mg caffeine/g) using a similar 

analytical method (24). Results suggest that aqueous extraction increases the 

bioaccessibility of the bioactive compounds present in the plant matrix. Values of 

overall antioxidant capacity also agree with those reported by Mesías et al. (2014) 

(6). The highlighted chemical composition of CSE suggests that it could be a good 

source of bioactive compounds with putative healthy benefits (4).  

Our results indicate that in vitro digestion affected the composition of CSE 

reducing the bioaccessibility of TPC, CGA and caffeine. However, digests 

presented antioxidant capacity suggesting that antioxidants remained bioaccessible 

after the digestion process. The release of compounds from the plant matrix 

depends on the chemical form and the properties of nutrients and phytochemicals 

(25). TPC and CGA content were significantly decreased (p < 0.05) by the 

digestion processes (data not shown). Since this decrease was observed in the 

presence of digestive enzymes, it may be associated with changes in pH taking 

place during in vitro digestion. Several studies have shown that the 

bioaccessibility of TPC in different food matrixes was lower than that found for 

isolated polyphenols. Podio et al. (2015) (26) observed a 5-fold lower TPC content 

in digested coffees than in native instant coffees. Campos-Vega et al. (2015) (27) 

reported a considerable reduction of TPC (91%) in spent coffee grounds. 

Akillioglu & Karakaya (2010) (28) showed that the bioaccessibility of TPC ranged 

from 19% to 39% in bean varieties. Phenolic compounds are less bioaccessible 

partly due to the presence of dietary fibre in the plant matrix (29). CSE contains 

high amounts of dietary fibre (362 mg/g) which affect the release of TPC in the 

digestion process. Hydroxycinnamic acid derivatives constitute the main phenolic 

component of CS (24). Vallejo et al. (2004) (30) observed an 87% decrease in 

CGA after intestinal digestion. Previous studies have suggested that a pH value of 

7.5 and bile salts could contribute to lower CGA. Bermudez-Soto et al. (2007) (31) 

reported a minor decrease in CGA (5%) in chokeberry extract due to the pH of 

intestinal digestion (pH 7.5). However, a bioaccessibility study of CGAs in spent 
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coffee grounds showed a total recovery of this compound after digestion (32). 

These differences in CGA release suggest that bioaccessibility is also affected by 

the plant matrix.  

In agreement with the data on TPC and CGAs, overall antioxidant capacity also 

decreased after in vitro gastrointestinal digestion. The main antioxidant 

compounds reported in CSE are CGAs, melanoidins and antioxidant fibre (4). 

According to our data, low molecular weight compounds (CGAs and other 

phenols) seem to make a greater contribution to the overall antioxidant capacity of 

CSE than the high molecular weight fraction (melanoidins, proteins and 

antioxidant fibre). Rice-Evans et al. (1996) (33) found that CGA antioxidant 

activity is related to the CH=CH-COOH group, which ensures greater H-donating 

ability and radical stabilization. Caffeine effectively reacts with the hydroxyl 

radical (OH·) and caffeine-derived oxygen-centered radicals are formed in the 

reaction between caffeine and OH· (34). In this sense, Pellegrini et al. (2003) (35) 

found a decrease of ∼25–30% in the antioxidant capacity of espresso coffee when 

the caffeine was removed.  

The greatest part of the CGA ingested by rats is hydrolyzed to caffeic acid and 

quinic acid, and further metabolized by gut microbiota into various aromatic acid 

metabolites including m-coumaric acid and derivatives of phenylpropionic and 

benzoic acids (Figure 3) (36). Previous studies found that HA, a benzoic acid, was 

the major CGA-derived metabolite observed in urine and plasma after the 

ingestion of pure CGA or CGA from a food matrix (36,37). We found amounts of 

HA in urine of 1346.86 mmol/µmol creatinine after the intake of a single dose of 

0.825 µmol CGA. Urine HA concentration after the intake of CSE containing 

0.424 µmol CGA (447.93 mmol/µmol creatinine) was of the same order of 

magnitude as basal values (431.70 mmol/µmol creatinine). These results are in 

agreement with the low bioaccessibility observed for the CGA present in CSE. 

The metabolic fate of CGAs ingested as a pure compound or present in coffee has 

been previously investigated in rats (36,38) and humans (39,40). Farah et al. 
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(2008) (41) reported high bioavailability of CGAs present in a green coffee extract 

in humans. In this study, we did not detect intact CGA in urine after oral dosing of 

CGA and CSE. Results suggest that CGA was absorbed and metabolized into 

different compounds to those tested in the present study. In accordance with our 

findings, several authors failed to detect CGA in the plasma or urine of rats and 

humans fed pure CGA or CGA-containing foods (38,39,42,43). 

 

Figure 3. Simplified scheme of CGA and caffeine metabolism studied in the present study. 

CSE is also a good source of caffeine (1,3,7-trimethylxanthine). Methylxanthines 

are extensively absorbed in the gastrointestinal tract and metabolized in the liver to 

yield methylxanthine derivatives and methyluric acids as the main metabolites, 

which are finally excreted in urine (Figure 3) (44). Paraxanthine (1,7 
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dimethylxanthine) is the main metabolite of caffeine biotransformation found in 

plasma and urine after caffeine intake (45). The pharmacokinetics of caffeine and 

paraxanthine excretion were evaluated after the consumption of 5.026 µmol pure 

caffeine and CSE containing 2.211 µmol caffeine. Caffeine was present in the 

urine of both groups of rats, which is in agreement with other studies that 

described incomplete biotransformation in humans (46,47). According to CSE 

composition, the lower consumption of caffeine was in line with the lower 

excretion observed for this compound and its metabolite paraxanthine. These 

results are in agreement with previous findings of dose-dependent metabolism and 

the excretion of caffeine (44). Therefore, our data showed that the caffeine present 

in CSE is bioavailable, partially metabolized, and rapidly excreted.  

The in vivo effect of CGA, caffeine and CSE on the prevention of oxidative 

damage in the pancreas of STZ-NA-induced T2DM rats was also evaluated. The 

cytotoxic action of STZ is associated with the generation of ROS and consequent 

β-cell destruction and suppression of insulin secretion (48). Antioxidants are able 

to prevent pancreatic islets damage induced by STZ (49). Consequently, natural 

antioxidants may be considered promising candidates for the prevention or co-

treatment of diabetes. In the present study, the administration of STZ to the 

animals produced a decrease in GSH and an increase in GR activity (p=0.173), 

while GPx activity remained unaltered in pancreas antioxidant defence. This 

indicates that the depletion of GSH may induce GR activity but that this induction 

is not enough to regenerate the basal GSH concentration. Protein oxidation was 

significant (p < 0.1) in the pancreas of STZ induced T2DM rats. Interestingly, the 

daily administration of CSE, CGA or caffeine 35 d previous to the induction of 

diabetes significantly prevented (p < 0.05) pancreatic oxidative stress and protein 

damage. In vitro studies have shown that CGA (50–52) and caffeine (53) protect 

pancreatic β-cells from the oxidative stress damage caused by free radicals. 

Furthermore, in vivo studies have demonstrated that CGA (54) and caffeine 

(55,56) could also prevent STZ-induced oxidative stress and protect β-cells in 
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vivo. The present study is the first to demonstrate a specific chemo-protective 

effect of CSE on pancreas tissue, possibly associated to its antioxidant character. 

In conclusion, the present study provides, for the first time, information on the 

bioaccessibility, metabolism and in vivo bioactivity of bioactive compounds 

present in CSE. The bioaccessibility of CGA and caffeine was affected by changes 

in pH during digestion. CGA (0.91 µmol) and caffeine (5.53 µmol) were 

metabolized and protected pancreatic cells against the oxidative stress induced by 

the diabetogenic agent. 

Abbreviations: CGA, chlorogenic acid; CSE, coffee silverskin extract, HA, hippuric acid; 

GPx, glutathione peroxidase; GR, glutathione reductase; GSH, reduced glutathione; STZ, 

streptozotocin, NA, nicotinamide; TE, trolox equivalent; ROS, reactive oxygen species, 

TPC, total phenolic compounds. 
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T2D is an autoinflammatory syndrome including many disorders such as 

hyperglycemia, dyslipidemia, insulin resistance, impaired beta cell functioning, 

and insulin secretion (1,2). There are various ways to treat T2D such as lifestyle 

modification (diet and exercise changes), dietary supplementation and finally 

medication. Preventive actions are increasingly recognised to reduce the risk of 

T2D, within them dietary factors have actually a great influence in the 

development of the disease. If diet and exercise do not manage the adequate 

glucose blood levels, initiation of an oral antidiabetic agent is needed (3). 

Nowadays, the use of plants extracts containing phytochemicals is a challenge to 

achieve the goal of T2D treatment and its prevention, and also may reduce 

diabetes complications and side effects of current antidiabetic drugs (5). CSE 

contents high amounts of phytochemicals such as caffeine and CGA among others 

(6,7). These components, also present in coffee brew, possess potential benefits on 

glucose homeostasis (8). However, the mechanism of action of CGA and caffeine 

on glucose metabolism remains still unclear (9). The present study contributes to 

the better understanding of coffee components in the pathogenesis of diabetes. 

CSE is a complex matrix of bioactive compounds (6,7), beside CGA, able to affect 

different pathways involved in the pathogenesis of diabetes (8,9). The information 

provided in the present thesis is novel and of socio-economic interest. The 

knowledge generated during the development of the present investigation is a 

contribution to the food waste valorisation and nutrition and health sustainability. 

Additionally, the study emphasizes the interest of the agriculture in health and the 

great potential of vegetable food wastes in providing different molecules able to 

reduce the risk and to treat chronic diseases considered as epidemics of the XXI 

century, such as diabetes. 

 

General discussion 
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A suitable alternative for managing CS produced in the coffee roasting industry is 

by processing it environmentally friendly technology, preferably without using 

organic solvents, which make it possible to obtain products with high added value. 

The extraction methods patented in P2013004873A1 were hot water extraction 

(low technology) and extraction in subcritical and/or supercritical water conditions 

(high technology), both methods allow to obtain higher bioactive compounds 

extraction yields. Specifically, CSE used in this study was obtained by a simple 

water extraction stage (100 °C for at least 10 min) described in the patent 

WO2013004873A1. Moreover, our previous studies indicated that this green 

extraction process of CSE produces completely recyclable solid waste (6) and it 

can be used as a natural source of antioxidant fibre to elaborate bakery products 

(10). 

The sustainability of food production and consumption, defined as biorefinery, is a 

research priority, since it explores innovative strategies to increase resource 

efficiency, providing consumers with healthier products of higher quality and 

safety and ensuring minimal waste in the food chain (11). The recovery of coffee 

by-products is mainly based on their use as a source of energy and biomass (12). 

Conversion of by-products into health-promoting products is of particular interest 

because it could increase the competitiveness and sustainability of coffee 

production. Thus, the study of CSE as a promoting health compound provides an 

opportunity to increase the competitiveness of the coffee sector. 

Results obtained in this study and protected by patent (P201431848), suggest that 

bioactive compounds present in the CSE affect several pathways involved in the 

pathogenesis of the diabetes reducing the risk this of disease. The effects of CSE 

on biomarkers of diabetes can be summarised as follows: 

1. Increase glucose tolerance (P201431848) 

2. Enhance insulin sensitivity and secretion (P201431848 and Chapter 2) 

3. Inhibit the activity of α-glucosidase (P201431848) 
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4. Decrease total plasma cholesterol and triglycerides (P201431848) 

5. Inhibit the activity of lipase (P201431848) 

6. Inhibit AGEs formation through the interaction of CGA and its derivatives 

with protein backbone (Chapter 1) 

7. Enhance antioxidant defence in beta cells against oxidative damage 

(Chapter 2) causing reduction of oxidative stress and protein damage in 

diabetic pancreas (Chapter 3). 

All these effects have an impact in diabetes and health (Figure 12). The 

components of CSE are metabolised and play a role in vital organs involved in the 

pathogenesis of diabetes and its complications. As a consequence, CSE may be 

useful in both prevention and treatment of diabetes. 
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Figure 12: Effects of coffee silverskin extract on the biomarkers of Type 2 Diabetes and 

health. 
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Most data on effects of coffee components on glucose metabolism published so far 

are based on animal and in vitro studies; therefore the relevance for the 

development of T2D in humans is currently unclear. However, these results 

suggest that an effect of coffee consumption on glucose metabolism is biologically 

plausible, and that the effects of coffee cannot be equated to those of caffeine and 

CGA. Other coffee constituents are relevant for diabetes, like melanoidins, 

melatonin, lignans and lignin, tannic acid, isoflavones and trigonelline acting 

following different pathways. All of these compounds may be present in CSE. 

Table 4 shows the effects of coffee components inT2D. 

Table 4: Coffee components and possible effects in Type 2 Diabetes. 

Component 
Concentration 

in CSE (w/w) 
Suggested mechanism 

Caffeine 3-3.4 (7) 

 Reduce glucose levels and insulin sensitivity (13,14) 

 Protective effect against oxidative stress in beta cell 

and pancreas (Chap. 3;15,16)  

CGA 1.1-6.8(7) 

 Regulate glucose metabolism (9,18–20) 

 Enhance insulin action (21–23) 

 Inhibit α-glucosidase activity (24,25) 

 Protect beta cell and pancreas against oxidative stress 

(Chap. 2 and 3; 19,26,27) 

 Inhibit AGEs formation (Chap1; 7,28). 

Melanoidins 17.2-23.9 (7)  Antioxidant and antiglycative effects (7,32) 

Melatonin 0.34 (38)  Protection of beta cells from oxidative stress (39) 

Isoflavones nd 
 Proliferation and protection of beta cells (42).  

 Decrease HbA1c levels and improve lipid profile (43) 

Tannins nd  Hypoglycemic and antioxidant effects (46,47) 

Lignin nd 
 Decrease glucose absorption, improve insulin 

sensitivity and protect against oxidative stress (49,50) 

Lignans nd 
 Antioxidant action and decrease glucose, HbA1c, C-

reactive protein and lipids plasma levels (42) 

Trigonelline nd 
 Improve insulin content and sensitivity (56,57) 

 Regulate glucose and lipids metabolism (56,57) 
CSE, Coffee silverskin extract; Chap, Chapter; nd, no data; HbA1c, glycated haemoglobin. 
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Concentrations of caffeine ranging from 3-3.4 % are present in CSE (7). Our 

results show that caffeine in CSE was metabolized and the metabolites protected 

pancreas against oxidative stress in rats suffering streptozotocin-induced diabetes 

(Chapter 3). Since no effect of caffeine was observed in INS-1E cells, results 

seem to indicate its metabolites are more effective than the parental molecule in 

the prevention of oxidative stress during diabetes. Caffeine can also reduce 

glucose levels and insulin sensitivity (13,14). Caffeine treatment improved the 

health of the pancreas of diabetic rats. Other authors have also observed a 

protective effect of caffeine in pancreatic beta cell (15,16). Food components 

should be bioavailable to exert their therapeutic effect. Our results support that 

caffeine and also CGA are bioavailable and they affect the biomarkers of diabetes 

(Chapter 3). Differences found between in vitro and in vivo studies pinpoint the 

interest of the study of the influence of molecules metabolism in the bioactivity of 

the food components.  

CGA is present in amounts of 1.1-6.8% in the CSE (7). Our results suggest CGA 

and its metabolites are more effective than caffeine in T2D biomarkers. In 

previous studies, CGA and its roasting-formed derivates that are present in CSE 

were proposed as main contributors to the beneficial effects of CSE in T2D 

(8,9,17). The antidiabetic effect of CGA has been associated to different 

mechanism, including: 1) regulation of glucose metabolism (9,18–20), 2) 

enhancement of insulin action (21–23), 3) inhibition of α-glucosidase activity 

(24,25), 4) protection against oxidative stress (19,26,27) and 5) inhibition of AGEs 

formation by different pathways (antioxidant, chelating properties, quenching of 

carbonyl radical species and AGE crosslinking) (7,28). Most of these effects were 

observed in the present study. For the first time, a new mechanism of action of 

CGA, administered alone or in CSE, for inhibiting the formation of AGEs has 

been reported during the development of the present PhD thesis (Chapter 1). 

According to the investigations performed, the formation of fluorescent AGEs is 

inhibited by different pathways such carbonyl trapping, antioxidant effect and 
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formation of protein-phenols conjugates (7,28,29) (Chapter 1). The finding of the 

new mechanism of action of CGA and CSE in the formation of AGEs is very 

relevant (Chapter 1). The goal was achieved by employing advanced analytical 

approaches also called phytochemomics (30). Our study confirms the interest of 

the use of omics for a better understanding of the bioactivity of food components 

and in particular of those bioactive compounds present in low concentrations, such 

as phytochemicals including phenolic compounds. Most of the complications of 

diabetes are associated to AGEs (31). In agreement, the search of natural sources 

of inhibitors of the formation of AGEs represents a scientific challenge. The 

present study demonstrates the potential of CSE as a natural source of 

antiglycative agents beside CGA. 

Other compounds present in the CSE are melanoidins. Values of melanoidins of 

17.2-23.9 % have been found in the extract (7). Antiglycative, chelating and 

antioxidant properties have been ascribed to coffee melanoidins (32–34). These 

functions are linked with the presence of CGA, protein and polysaccharides in its 

complex structure (32). Coffee melanoidins also protected against non-alcoholic 

fatty liver disease by reducing the hepatic fat accumulation (35). This symptom of 

the metabolic syndrome is closely related with visceral obesity, dyslipidemia and 

T2D (36). Melanoidins from CSE have carbonyl trapping capacity and inhibiting 

fluorescent AGEs formation (7). Hence, these compounds could be used as 

inhibitors of AGEs related diseases. In addition, melanoidins and CGA may 

contribute to synergic inhibitory effect on the formation of AGEs. Further research 

should be conducted in order to elucidate the contribution of these indicidual 

compounds to this very important property in diabetes and its complications. 

Melatonin is an indoleamine hormone (37,38). Our CSE contains 3.4 mg/g dry 

matter of melatonin (38). Experimental evidences indicated that melatonin has 

potential to reduce the risk of T2D by protecting beta cells against oxidative stress, 

since it neutralizes the production of reactive species and normalizes the redox 

state in the cell (39). Melatonin, CGA and other coffee antioxidants (CGA and its 
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metabolites, caffeine metabolites, melanoidins among others) may exert synergic 

effects resulting in a protection against the oxidative stress of pancreas and in the 

development of diabetes. Further research should be conducted in order to 

demonstrate the hypothesis.  

Other compounds present in coffee and probably in our CSE are lignans and 

lignin, tannic acid, isoflavones and trigonelline. All these compounds may also be 

responsible for the health promoting properties associated to CSE. Although we 

have not analysed the presence of these molecules in our CSE, their identification 

open a big field of study that may complete the knowledge of the effects of this 

extract in T2D. 

Isoflavones are phenolic compounds described in coffee beans (40). In processed 

coffee, these compounds are usually found as glucoside derivatives and free 

aglycones (41). The most abundant isoflavones characterised in roasted coffee are 

genistein, daidzein and formononetin (methylated precursors of daidzein) (40). 

Isoflavones levels in coffee beans (about 30-40%) decrease during the roasting 

process (40). Genistein intake was associated to an antidiabetic effect through 

different mechanism of actions, such as direct effects on beta cell proliferation, 

glucose-stimulated insulin secretion and protection against apoptosis, 

independently of its functions as an estrogenic receptor agonist, antioxidant or 

tyrosine kinase inhibition (42). Supplementation with genistein and daidzein 

caused a decrease in blood glucose and HbA1c levels and also improved lipid 

profile in T2D animals (43). Further research should be conducted in order to find 

out the content of isoflavones in CSE and their contribution to the antidiabetic 

effects associated to the extract in the present investigation. 

Tannins (commonly referred as tannic acid) are water-soluble polyphenols that are 

present in CS (44). The amount of tannins in CS reported was 0.43 mg tannic acid 

equivalents /l (44). Although the ingestion of tannic acid and other hydrolysable 

tannins have been related with anti-nutritional effects, since they form complexes 
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with proteins, starch, and digestive enzymes causing a reduction in the nutritional 

value of foods, their antioxidant property is also well documented and depends on 

the amount and type of tannins present in the food (45). The healthy effect of 

tannins might be related to other components associated with these molecules 

rather than to tannins themselves (45). Tannins were proposed as antidiabetic 

agent due to its hypoglycemic and antioxidant activities observed in vitro (46) and 

in vivo (47). Therefore, tannins may contribute to the antiglycoxidative effect 

found for CSE in the present study. 

CS also contains lignin, an organic polymer, (28-30% dry matter) (48). This 

organic polymer is classified as insoluble dietary fibre (48). Then, lignin is 

resistant to digestion in the small intestine and requires colonic bacterial 

fermentation. An inverse relationship between the intake of insoluble fibre and the 

risk of developing T2D has been observed. Insoluble fibre may have different 

mode of action in T2D, such as decreasing absorption of simple carbohydrates and 

improving of insulin sensitivity (49). In addition, metabolites of native lignin 

(lignophenols) have been reported to reduce oxidative stress and inflammation in 

streptozotocin-induced diabetic rats (50). The content of lignans in CSE should be 

studied. 

Other bioactive compound related to lignin and present in coffee beans are lignans 

(51). In plants, lignans (monolignol dimers) usually occur free (aglycone) or 

bound to sugars (glycoside). Monolignols, derived from hydroxycinnamic acids, 

are either dimerized to lignans into the cell or polymerized into larger lignin 

structures in the cell wall (52). The enterolignans are metabolites of food lignans 

produced by human intestinal bacteria. They exert weak estrogenic (53) and other 

biochemical properties, suggesting a nutritional potential for the prevention of 

chronic diseases (54). The main effects of lignans and its derivatives in the 

pathogenesis of T2D included decreasing of fasting glucose, HbA1c and C-

reactive protein levels and the improvement of lipid profiles (42). Lignans may 
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affect glucose metabolism through the antioxidant and anti-estrogenic properties 

of their metabolites (42).  

Trigonelline, a niacin related compound, is a natural constituent of coffee beans 

(approximately 1% dry matter) that is partially degraded to nicotinic acid during 

the roasting process (55). Although we have not investigated the presence of 

trigonelline in our CSE, probably it may be present since it is contained in roasted 

coffee beans. Trigonelline possesses beneficial effects in diabetes such as 

hypoglycaemic, hypocholesterolemic and hypotriglyceridemic. Previous studies 

have suggested the role of trigonelline for improving insulin content in plasma and 

pancreas, as well as the insulin sensitivity index in diabetic rats (56). On the other 

hand, trigonelline regulates glucose and lipid metabolism through the inhibition of 

key enzymes (57). Trigonelline may also contribute to the antidiabetic effect found 

for CSE. In agreement, the study of bioaccesibility, bioavailability and bioactivity 

of trigonelline is of great interest. Some of the effects ascribed to trigonelline in 

T2D correspond to those found for CSE. Therefore, trigonelline and the other 

coffee components here described may exert synergic effects. The effectivity of 

CSE may be associated to the synergic effect of all compounds present in the 

extract. Therefore, more investigations are needed in order to elucidate all 

molecules implicated in the biological activity of the CSE. 

Suggestions for further research 

Since the validation process for a novel food or ingredient established by the 

European legislation (EFSA Journal 2009; 7(9):1249) comprise chemical 

characterisation (toxic and health promoters), proposal for applications, in vitro 

assays, in vivo toxicity, in vivo bioactivity and finally human trials (Figure 12, 

pag. 73), it can be said that the present study provides novel scientific information 

for supporting the usefulness of CSE as a sustainable natural source of bioactive 

compounds able to reduce the risk of disease. Further analyses on chemical 

composition are needed to find out any relationship between components of the 

CSE and its health benefits. Clinical trials are also mandatory to confirm the 
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effectivity of CSE in diabetes. The research needed to complete the validation of 

CSE as novel functional food ingredient will be carried out during the 

development of the project SUSCOFFEE (AGL2014-57239-R). However, 

significant information regarding to the insights of CSE in diabetes is reported in 

the present study. In line with the results reported by others for coffee brew, our 

results suggest that an effect of CSE consumption on diabetes is biologically 

plausible, and that effect should be ascribed to the particular and complex 

chemical composition of CSE (Figure 12 and 13). 

 

Figure 13: Coffee silverskin extract, by-product of coffee industry, can be valorised into a 

health promoting ingredient. 
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1. For the first time, a relationship between the high binding capacity of CGA to 

BSA and its antiglycoxidative mechanism of action is proposed. The covalent 

conjugation of CGA and its derivatives (isomers and quinones) to side-chains 

of lysine residues reduces the formation of AGEs and promotes the 

generation of antioxidant structures, which may be beneficial for human 

health. 

2. Applying the phytochemomics approach we have confirmed that the CSE 

inhibits AGEs formation by different pathways including protein-phenol 

conjugation. CGA seems to be a principal contributor to the antiglicoxidative 

properties of the CSE.  

3. CSE improves glucose-stimulated insulin secretion and protects against 

streptozotocin-induced damage in pancreatic INS-1E beta cells.  

4. Total phenolic acids and chlorogenic acids decrease after in vitro digestion 

due to changes of pH, suggesting that their metabolism starts in the 

gastrointestinal tract.  

5. The study of bioavailability indicates that phytochemicals present in coffee 

silverskin are metabolised in the body. 

6. The in vivo study suggests that CSE may reduce the risk of diabetes through 

pancreas protection. Phytochemicals and their metabolites may contribute to 

this effect.  

7. CSE is a complex matrix of bioactive compounds, besides CGA, able to 

affect different pathways involved in the pathogenesis of diabetes. CGA, 

caffeine, their metabolites and other unidentified compounds may play a role 

in diabetes. 

Conclusions 
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8. CSE may protect the pancreas against oxidative stress and subsequently 

reduce the risk of diabetes as well as its complications, due to either oxidative 

stress or AGEs formation.  

In summary, the present research indicates that CS has the potential to be valorised 

into an ingredient with health promoting properties such as an antidiabetic (Figure 

13). CS can be considered a food waste with health applications, making coffee 

processing more sustainable. Toxicological studies and clinical trials should be 

carried out to confirm the health benefits associated to CSE.  
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1. Por primera vez, se propone una relación entre la capacidad de formar 

conjugados de la BSA con CGA y el mecanismo de acción antiglicoxidativo 

de este compuesto fenólico. La formación de un enlace covalente entre el 

CGA y sus derivados (isómeros y quinonas) y los grupos amino libre de los 

residuos de lisina de la proteína reduce la formación de AGEs generándose 

nuevas estructuras antioxidantes que podrían ser beneficiosas para la salud 

humana. 

2. Mediante la aplicación de la fitoquimómica se confirmó que el extracto de 

cascarilla inhibe la formación de AGEs mediante diferentes mecanismos, 

tales como la conjugación de compuestos fenólicos a proteínas. El CGA 

parece ser uno de los principales agentes antiglicoxidantes presentes en el 

extracto.  

3. El tratamiento de células INS 1E con extracto de cascarilla de café modula la 

secreción de insulina inducida por glucosa y protege a estas células del daño 

oxidativo causado por estreptozotocina.  

4. Los niveles de compuestos fenólicos totales y ácido clorogénico del extracto 

de cascarilla disminuyen durante la digestión gastrointestinal in vitro, debido 

a los cambios de pH que tienen lugar durante este proceso, sugiriendo que su 

metabolismo se inicia en el trato gastrointestinal. 

5. El estudio de biodisponibilidad indica que los fitoquímicos presentes en el 

extracto de cascarilla de café se metabolizan en el organismo. 

6. El estudio in vivo sugiere que el extracto de cascarilla de café reduce el riesgo 

de diabetes proporcionando protección al páncreas. Este efecto parece 

deberse a los fitoquímicos y sus metabolitos. 

 

Conclusiones 
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7. El extracto de cascarilla de café es una matriz compleja formada por varios 

compuestos bioactivos, además de ácido clorogénico, capaces de afectar 

diferentes vías involucradas en la patogénesis de la diabetes. El ácido 

clorogénico, la cafeína, sus metabolitos y otros componentes pendientes de 

identificación presentes en el extracto pueden tener un papel relevante en la 

diabetes.  

8. El extracto de cascarilla podría proteger al páncreas del estrés oxidativo y 

consecuentemente reducir el riesgo de diabetes, así como, de sus 

complicaciones asociadas a estrés oxidativo o formación de AGEs. 

En resumen, la presente investigación indica que la cascarilla de café tiene 

potencial para su valorización como ingrediente con efectos beneficiosos para la 

salud, por ejemplo como antidiabético. La cascarilla de café puede considerarse un 

subproducto de los alimentos con aplicaciones en salud, lo que hace al procesado 

del café más sostenible. Estudios toxicológicos y clínicos deben llevarse a cabo 

para confirmar los beneficios para la salud que el presente trabajo atribuye al 

extracto de cascarilla de café. 
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