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Resumen

This short overview of the thesis work is written in Spanish as required by the
Spanish Government for thesis manuscripts in a foreign language.

La superfluidez, que es la habilidad de un fluido para fluir sin viscosidad apa-
rente, es una de las consecuencias más impactantes de la coherencia cuántica
colectiva, con manifestaciones que van desde la metaestabilidad de las superco-
rrientes en geometŕıas múltiplemente conexas, la aparición de vórtices cuánticos
o la existencia de una velocidad cŕıtica para flujos sin fricción cuando el fluido
se dispersa alrededor de un defecto. Tradicionalmente, la superfluidez se ha estu-
diado en sistemas en equilibrio como 4He ĺıquido y gases atómicos ultrafŕıos. Los
avances experimentales en óptica no lineal, en particular las microcavidades de
polaritones han allanado el camino para estudiar los fenómenos relacionados con
la superfluidez en condiciones de non equilibrio, en presencia de bombeo externo
y dissipación.

Igualmente interesante es la posibilidad de simular fases topológicas de la
materia, aśı como los estados Hall cuánticos enteros y fraccionarios, más allá de
los sistemas electrónicos tradicionales. En particular, los experimentos de fotónica
en matrices de resonadores en presencia de bombeo y dissipación, ofrecen un alto
grado de control de los parámetros que describen el sistema, aśı como un acceso
directo a los autoestados y el espectro de enerǵıa.

En esta tesis estudiamos los efectos hidrodinámicos aśı como las propiedades
topológicas de sistemas en presencia de bombeo y dissipación,. En particular, ana-
lizamos el comportamiento de tipo superfluido en microcavidades de polaritónes,
aśı como la topoloǵıa del espacio de momentos de matrices de resonadores aco-
plados.

Los polaritones excitónicos en microcavidades son cuasipart́ıculas resultantes
de la mezcla de excitones (pares electrón-hueco) y fotones confinados dentro de
microcavidades con pozos cuánticos. Mientras que en los fluidos polaritónicos se
han visto comportamientos de coherencia colectiva, la conexión entre las distin-
tas manifestaciones de comportamientos superfluidos es más compleja que en los
sistemas en equilibrio. En esta tesis, consideraremos tanto el caso de una confi-
guración de un solo fluido (estado de bombeo o de pump), como el caso de tres
fluidos en el régimen de oscilación óptica paramétrica que emerge de la dispersión
paramétrica del estado pump a los estados de signal y de idler. En ambos casos,
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miraremos la respuesta de la dispersión de los polaritones frente a un defecto
estático débil.

Para la configuración de un solo fluido, evaluaremos de forma anaĺıtica el
arrastre ejercido por el fluido en el defecto. Para velocidades bajas del fluido,
la frequencia del pump clasifica el espectro de excitaciones colectivas en tres ca-
tegoŕıas: lineal, difusivo y gapped. Vemos que tanto el régimen lineal como el
difusivo comparten cualitativamente el cambio de comportamiento del arrastre
entre el régimen subsónico y supersónico. La velocidad cŕıtica donde se produce
este cambio de comportamiento esta dada por la velocidad del sonido en el régi-
men lineal. En cambio, para los espectros gapped encontramos que la velocidad
cŕıtica sobrepasa la velocidad del sonido. En todos los casos, vemos que el arras-
tre residual en el régimen subcŕıtico está causado por la vida media finida de
los polaritones. Además, por debajo de la velocidad cŕıtica, el arrastre vaŕıa de
forma lineal con la vida del polaritón, de acuerdo con estudios numéricos previos.

El régimen de oscilación óptica paramétrica presenta retos adicionales rela-
cionados con la presencia de tres fluidos acoplados. Se ha demonstrado que la
coherencia macroscópica espontánea que proviene del acoplamiento de fase entre
el estado de signal y el de idler es responsable de la metaestabilidad simultánea
del flujo cuantisado de ambos estados de signal y idler. Encontramos que las
modulaciones generadas por el defecto en cada fluido no vienen solo determina-
das por el anillo de dispersión en el espacio de momentos (Rayleigh ring) sino
que cada componente tiene anillos adicionales debidos a la interacción con los
otros componentes, impuesta por procesos no lineales y paramétricos. Señalamos
tres factores que determinan cual de estos anillos tiene la mayor influencia en
la respuesta de cada fluido: la fuerza del acoplamiento entre los tres fluidos, la
resonancia del anillo con la dispersión energética de los polaritones y por último
la velocidad de grupo del fluido junto con el tiempo de vida de los polaritones.
Para las condiciones t́ıpicas de dispersión paramétrica, el estado de pump está
en el régimen supercŕıtico, por lo tanto, tanto el estado de signal como el esta-
do de idler mostrarán la misma modulación que se aprecia en el pump, con lo
cual ninguno de los tres estados manifiesta un comportamiento superfluido. Sin
embargo, el signal parece fluir sin fricción en los experimentos, debido a que los
tres factores mencionados anteriormente se unen para reducir la amplitud de las
modulaciones por debajo de los niveles detectables.

Los sistemas en presencia de bombeo y dissipacion pueden mostrar fenóme-
nos interesantes aunque no haya interacciones entre las part́ıculas constituyentes,
debido a la topoloǵıa no trivial de las bandas de enerǵıa. En la parte final de esta
tesis, presentaremos una propuesta realista para un experimento óptico utilizan-
do matrices acopladas resonantes. Hemos estudiado de forma teórica el modelo
Harper-Hofstadter para sistemas con bombeo y decadimiento en la presencia de
una trampa armónica débil. Si omitimos el bombeo del láser y las pérdidas, podre-
mos interpretar los autovalores de este sistema (bajo ciertas aproximaciones) co-
mo los niveles de Landau en el espacio de momentos toroidal, donde la curvatura
de Berry actúa como un campo magnético. Vemos que las principales caracteŕısti-
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cas de estos autoestados pueden ser observadas en el estado estacionario bajo un
bombeo monocromático coherente. Además, vemos que los niveles de Landau en
el espacio de momentos tienen caracteŕısticas claras en medidas espectroscópi-
cas experimentales. Finalmente, discutiremos las propiedades geométricas de las
bandas energéticas y de las part́ıculas en campos magnéticos.
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Abstract

Superfluidity, the ability of a fluid to flow without apparent viscosity, is one of the
most striking consequences of collective quantum coherence, with manifestations
ranging from metastability of supercurrents in multiply connected geometries to
the appearance of quantized vortices, or the existence of a critical velocity for fric-
tionless flow when scattering against a defect. While traditionally investigated in
equilibrium systems, like liquid 4He and ultracold atomic gases, experimental ad-
vances in nonlinear optics, in particular regarding microcavity exciton-polaritons,
paved the way for studying superfluid-related phenomena in a driven-dissipative
framework.

Equally exciting is the possibility of realising topological phases of matter,
such as the integer or fractional quantum Hall states, outside of traditional elec-
tronic systems. Photonics experiments in driven-dissipative resonator arrays, in
particular, offer a high degree of controllability and tunability, as well as unprece-
dented experimental access to the eigenstates and energy spectrum.

This thesis reports on hydrodynamic effects, as well as topological properties,
of driven-dissipative systems. In particular, we analyze the superfluid-like be-
haviour of microcavity exciton-polaritons, as well as the momentum-space topol-
ogy of coupled resonator arrays.

Microcavity exciton-polaritons are quasiparticles resulting from the mixing
of excitons (bound electron-hole pairs) and photons confined inside semiconduc-
tor microcavities. While polariton fluids have been shown to display collective
coherence, the connection between the various manifestations of superfluid be-
haviour is more involved compared to equilibrium systems. In this manuscipt,
we consider both the case of a single-fluid pump-only configuration, as well as
the three-fluid optical parametric oscillator regime that results from parametric
scattering of the pump to the signal and idler states. In both cases, we look
at the response of the moving polaritons scattering against a weak static defect
present in the microcavity.

For the single fluid, we evaluate analytically the drag exerted by the fluid on
the defect. For low fluid velocities, the pump frequency classifies the collective
excitation spectra in three different categories: linear, diffusive-like and gapped.
We show that both the linear and diffusive-like cases share a qualitatively similar
crossover of the drag from the subsonic to the supersonic regime as a function
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of the fluid velocity, with a critical velocity given by the speed of sound found
for the linear regime. In contrast, for gapped spectra, we find that the critical
velocity exceeds the speed of sound. In all cases, we show that the residual drag
in the subcritical regime is caused by the nonequilibrium nature of the system.
Also, well below the critical velocity, the drag varies linearly with the polariton
lifetime, in agreement with previous numerical studies.

The optical parametric oscillator regime presents an additional challenge, as
one is dealing with three coupled fluids. The spontaneous macroscopic coherence
following the phase locking of the signal and idler fluids has been already shown to
be responsible for their simultaneous quantized flow metastability. We find that
the modulations generated by the defect in each fluid are not only determined by
its associated scattering ring in momentum space, but each component displays
additional rings because of the cross-talk with the other components imposed
by nonlinear and parametric processes. We single out three factors determining
which one of these rings has the biggest influence on each fluid response: the
coupling strength between the three fluids, the resonance of the ring with the
polariton dispersion, and the values of each fluid group velocity and lifetime
together establishing how far each modulation can propagate from the defect. For
the typical conditions of parametric scattering, the pump is in the supercritical
regime, so the signal and idler will show the modulations of the pump, meaning
none of the three states manifests superfluid behaviour. However, the signal
appears to flow without friction in the experimental study, because the three
factors mentioned above conspire to reduce the amplitude of its modulations
below currently detectable levels.

Driven-dissipative systems can show interesting phenomena also without in-
teractions, stemming from the nontrivial topology of their energy bands. In the
final part of this thesis, we present a realistic proposal for an optical experi-
ment using state-of-the-art coupled resonator arrays. We study theoretically the
driven-dissipative Harper-Hofstadter model on a square lattice in the presence
of a weak harmonic trap. Without pumping and losses, the eigenstates of this
system can be understood, under certain approximations, as momentum-space
toroidal Landau levels, where the Berry curvature, a geometrical property of an
energy band, acts like a momentum-space magnetic field. We show how key
features of these eigenstates can be observed in the steady-state of the driven-
dissipative system under a monochromatic coherent drive. We also show that
momentum-space Landau levels would have clear signatures in spectroscopic mea-
surements in such experiments, and we discuss the insights gained in this way
into geometrical energy bands and particles in magnetic fields.
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Preface

Systems far from thermal equilibrium frequently show novel features when com-
pared to their equilibrium counterparts. As an everyday example, consider a
group of birds displaying long-range ordered behaviour, manifested by forming
a flock under certain conditions. This behaviour can be modeled by introduc-
ing a time step rule, such that each individual bird in a group determines its
next direction on each time step by averaging the directions of its neighbours
and adding some random noise on top of that [1]. It can be shown that, in the
limit of the velocity going to zero, the model reduces to the XY model in two
dimensions, where the spin is represented by the bird velocity. Since the 2D
XY model does not spontaneously break the symmetry at any finite temperature
(as justified by the Mermin-Wagner theorem), one can show that the appear-
ance of the long-range ordered phase is a direct consequence of nonequilibrium
aspects of the model. In a nutshell, the neighbours of one particular bird will
be different at different times, depending on the velocity field. This gives rise
to a time-dependent variable-ranged interaction, which can stabilize the ordered
phase.

Non-equilibrium driven-dissipative photonic systems, such as polaritons in
semiconductor microcavities or arrays of coupled optical resonators, have recently
attracted a lot of interest due to the possibility of observing quantum phenomena
which normally require very low temperatures and/or intense magnetic fields
and are traditionally restricted to the domain of solid-state systems or ultracold
atomic gases. Besides being highly tunable, these optical systems facilitate direct
experimental access to observables such as the wavefunction or energy spectrum,
all at room temperature. In particular, microcavity polaritons have allowed the
observation of collective hydrodynamic phenomena, ranging from frictionless flow
around a small defect to the formation of quantized vortices and dark solitons
at the surface of large impenetrable obstacles [2], while ring-resonator arrays
coupled to artificial magnetic fields have recently allowed engineering topological
edge states robust to disorder [3].

Microcavity polaritons are quasiparticles resulting from the strong coupling
of cavity photons and quantum well excitons [4, 5], and have the prerogative of
being both easy to manipulate, via an external laser, and detect, via the light
escaping from the cavity [6]. The finite polariton lifetime establishes the system
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Figure 1: Experimental observation of polariton Bose-Einstein condensation. A
sharp and intense peak corresponding to the lowest momentum state is formed
in the center of the far-field emission [top panels], with increasing pump power
(left to right). The corresponding energy-resolved emission [bottom panels] show
that above the condensation threshold, the emission comes almost entirely from
the lowest energy state situated at the bottom of the polariton dispersion. From
Ref. [7].

as intrinsically out of equilibrium: an external pump is needed to continuously
replenish the cavity of polaritons, that quickly, on a scale of tens of picoseconds,
escape. The pumping can be done resonantly, close to the polariton energy
dipersion, or non-resonantly.

The landmark observation [7] of polariton condensation in 2006, as shown in
Fig. 1, was achieved using a non-resonant experimental setup. In the experiments,
the system was incoherently excited by a laser beam tuned at a very high energy.
Relaxation of the excess energy [8, 9] lead to a population of the cavity polariton
states and, above a certain laser power threshold, to Bose-Einstein condensation
into the lowest polariton state.

Due to their energy dispersion and strong nonlinearity inherited from the
excitonic component, polaritons resonantly injected by the external laser into
the pump state with a suitable wavevector and energy can undergo coherent
stimulated scattering into two conjugate states [10–12], called the signal and the
idler, in a process known as optical parametric oscillator (OPO). Since their first
realisation [13–17], the interest in microcavity optical parametric phenomena has
involved several fields of fundamental and applicative research [18–24].

The superfluid properties of a resonantly pumped polariton quantum fluid,
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simulationexperiment Intensity
(normalized)

Figure 2: Top panels: Simulated (right panel) and observed (left panel) edge
state propagation in a ring-resonator array. The light enters from one corner and
exits from the other, as signaled by the arrows. Adapted from Ref. [3]. Bottom
panels: Simulated edge state propagation in a polariton system. Intensities of
the exciton (left panel) and photon (right panel) fields obtained when pumping
a lattice at the center of its lower edge. From Ref. [25].

both in the pump-only configuration (without parametric scattering) as well as
the OPO regime, have been actively investigated experimentally, as well as the-
oretically [2]. In particular, a supression of scattering in the pump-only case was
observed [26] below a critical velocity, similar to what has been predicted by the
Landau criterion for equilibrium superfluid condensates. While in equilibrium
condensates different aspects of superfluidity are typically closely related [27],
this is no longer true in a non-equilibrium context. Independent of the pumping
scheme, the driving and the polariton finite lifetime force one to reconsider the
meaning of superfluid behaviour, when the spectrum of collective excitations is
complex rather than real, raising question about the applicability of a Landau
criterion [28]. An additional complexity characterises the OPO regime, namely,
the simultaneous presence of three oscillation frequencies and momenta for pump,
signal and idler correspondingly increases up to 12 (or 6, depending on the ap-
proximation used to describe the system) the number of collective excitation
branches [29]. Note that from the experimental point of view, pioneering ex-
periments [30] have observed a ballistic nonspreading propagation of signal/idler
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polariton wavepackets in a triggered-OPO configuration, as well as demonstrat-
ing the existence and metastability of vortex configurations [31] in the signal and
idler.

Very recently, the polariton community started to explore topological effects
in polariton lattices [25, 32–35]. The idea is to break time reversal symmetry by
the application of a strong external magnetic field, giving rise to energy bands
with nontrivial topology. In particular, Ref. [25] proposes an exciton-photon cou-
pling with a winding phase in momentum space, giving rise to polaritonic bands
with chiral edge modes that allow unidirectional propagation, protected against
backscattering. The bottom panels of Fig. 2 show the exciton and photon fields
traveling together as a unique polaritonic counter-clockwise chiral edge mode. In
this context, dissipation in the form of photon losses provides a coupling to the
outside continuum of modes and, as such, can be used to detect or inject edge
modes. It would be interesting to study the feasability of coupled micropillars
for this type of physics, in view of the recent experimental findings of a linear
graphene-like dispersion [36] as well as edge states [37] in honeycomb micropillar
lattices. On the other hand, topologically protected edge states have already
been experimentaly observed [3] in the case of silicon-based optical resonator
arrays (see top panels of Fig. 2), due to recent advances in creating synthetic
gauge fields, which have opened new horizons for simulating topological phases
of matter also with neutral particles, such as photons [38] (or ultracold atoms [39–
41]). Rather than simply replicating previous measurements, experiments with
synthetic gauge fields allow for unprecedented access to properties such as the
eigenstates or eigenspectrum, while the tunability and controllability of these
experiments offer the prospect of simulating novel physics.

Contents of this thesis

This manuscript is split in two parts: part I is a detailed review of the basic
concepts, including both the theoretical formalism, as well as the relevant exper-
iments, necessary for understanding part II, which presents the three main works
published as part of my PhD (Chapters 3, 4 and 5). The two systems chosen
for ilustrating the basic physical concepts are ultracold atomic gases (Chapter 1)
and microcavity exciton-polaritons (Chapter 2). We now give a brief description
of the content of each of the chapters.

In Chapter 1, we describe the phenomenon of Bose-Einstein condensation,
and introduce the Gross-Pitaevskii equation which is extended in Chapter 2 to
the case of polariton condensates. We then review the linear response of a moving
atomic condensate to a weak stationary defect, leading to discussion on super-
fluidity. This scattering problem is the equilibrium conterpart of the problems
studied in Chapters 3 and 4 in the context of polaritons in the resonantly pumped
and optical parametric oscillator regimes, respectively. Finally, we introduce the
Harper-Hofstadter model, which is the backbone of Chapter 5.

In Chapter 2, we introduce microcavity exciton-polaritons, and their theoret-
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ical description in terms of a driven-dissipative Gross-Pitaevskii equation. We
discuss both the resonantly pumped system which is used in Chapter 3, as well
as the optical parametric oscillator of Chapter 4, and we make the connection to
the superfluid-related phenomena previously introduced in Chapter 1.

In Chapter 3, we study the scattering of a resonantly pumped polariton con-
densate against a static defect of the microcavity, for the simplified case of small
fluid velocities, when the polariton dispersion can be considered quadratic. After
discussing the effects of dissipation on the Bogoliubov excitation spectra, we find
that the finite polariton lifetime also affects the drag exerted by the condensate
on the defect. In particular, we show that there is a nonzero drag force, en-
tirely due to the out-of-equilibrium nature of the system, even in the “superfluid
regime”. Finally, we characterise the behaviour of the drag as a function of the
condensate velocity and polariton lifetime.

In Chapter 4, we present a theoretical and experimental study of the same
scattering problem, now in the context of an optical parametric oscillator con-
sisting of three coupled condensates: the pump, the signal and the idler. Apart
from using the linear response analysis first introduced in Chapter 1 and then
extended to the case of a pump-only condensate in Chapter 3, we also numeri-
cally solve the full driven-dissipative Gross-Pitaevskii equation. We show that,
while the modulation patterns are present in all three condensates, their relative
amplitudes depend on various factors. In particular, for the typical experimental
conditions that favour parametric scattering, the signal has undetectable modu-
lations, while the pump and idler show the same response.

In Chapter 5, we add a harmonic trap to the Harper-Hofstadter lattice model
of Chapter 1. We discuss how the eigenstates of the new Hamiltonian can be seen
as momentum-space Landau levels, by making use of the nontrivial topology of
the Harper-Hofstadter energy bands. We then extend the model to include driv-
ing and dissipation, and finally present a proposal for the physical implementation
of the model in state-of-the-art driven-dissipative photonic systems.

The source code belonging to Chapters 3, 4 and 5 is available online [42].
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Part I

Condensed-matter systems





Chapter 1

Ultracold atomic gases

Laser cooling [43, 44] allowed achieving temperatures in the micro-Kelvin regime,
and eventually led to the realization of optical lattices [45]. It also paved the way
for more powerful cooling techniques, such as evaporative cooling, which made
possible the Bose-Einstein condensation of dilute atomic gases [46, 47].

Ultracold gases have been at the forefront of simulating quantum phenomena
with analogs throughout physics, from nonlinear optics to condensed matter sys-
tems [48]. In particular, their link to quantum simulation of condensed matter
phenomena becomes obvious when adding optical lattice potentials [49], com-
bined with synthetic magnetic fields [39, 40].

In this Chapter, we review the physics of ultracold atomic gases, with an
emphasis on their link to hydrodynamic effects such as superfluidity, as well as
their connection to traditional solid state lattice models such as the celebrated
Harper-Hofstadter model which originally describes the single-particle physics of
band electrons in intense magnetic fields.

This Chapter is organized as follows: in Section 1.1 we present a short history
of Bose-Einstein condensation, describe its main features and state its formal defi-
nition in terms of the Penrose-Onsager criterion, leading to the weakly-interacting
Bose gas paradigm and the Gross-Pitaevskii equation (Sec. 1.2), an essential the-
oretical tool for the mean-field description of atomic condensates. In Section 1.3
we introduce the linear response formalism, which proves useful for interpreting
experiments where a weak perturbation is applied to the condensate. We em-
ploy this formalism in order to study a scattering problem concerning the flow
of a BEC in the presence of a weak static defect (Sec. 1.4). In this context, we
review Bogoliubov’s excitation spectrum and its associated Landau criterion for
superfluidity, followed by a detailed discussion on superfluidity and related phe-
nomena, such as quantized vortices, in Sec. 1.5. We briefly touch on the subject
of synthetic gauge fields for neutral atoms, before investigating the properties
of BECs in periodic potentials created by optical lattices (Sec. 1.6). Finally, we
combine the concepts of synthetic gauge fields and optical lattices in Section 1.7,
where we show the main features of the Harper-Hofstadter model, which was
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recently realized using atomic gases.

1.1 Bose-Einstein condensation

In 1925, Albert Einstein (prompted by the earlier work of the indian poly-
glot Satyendra Nath Bose) considered what would happen to a non-interacting
bosonic gas of non-relativistic particles in the thermodynamic limit, as one lowers
the temperature. He predicted the phenomenon we now call Bose-Einstein con-
densation (BEC), namely a phase transition to a new state of matter, in which a
finite fraction of all the particles would occupy the same single-particle state. The
transition occurs at fixed density below a critical temperature Tc or, alternatively,
at fixed temperature, above a critical density. In particular, if we take N neutral
particles in a cubic box of volume L3, then they would predominantly occupy
the zero-wavevector state k = 0, and the critical temperature would be [50]

Tc ' 3.31
ρ2/3~2

mkB
(1.1)

with the density ρ = N/L3 and m, kB being the particle mass and Boltzmann’s
constant, respectively.

At its core, BEC is a paradigm of quantum statistical mechanics, stemming
from the indistinguishability of elementary particles and the Bose-Einstein statis-
tics that they obey. One can hand-wavingly deduce the critical temperature (or
critical density) where quantum degeneracy would start playing a role in a many-
body system, by arguing that the thermal de Broglie wavelength should be com-
parable to or greater than the inter-particle distance (which in our case is ρ−1/3

on average) [27]. Apart from the numerical prefactor, we get the same answer as
Eq. (1.1). While one may argue that elementary massive bosons do not exist, it
is worth emphasizing that indistinguishability only plays a role when there is a
finite probability for exchange processes to occur between the particles. In that
sense, all odd-isotope alkali atoms under relevant experimental conditions (see
below) effectively behave as bosons: their many-body wavefunction is symmetric
under the exchange of any two such atoms.

Interestingly enough, BEC was considered by many at the time to be a patho-
logical behaviour of the non-interacting gas, which would resolve once interactions
were properly accounted for. In fact, it is well known that the ideal Bose gas has
infinite compresibility. This pathology is cured by introducing a weak repulsive
interaction between bosons, a regime where BEC survives, as we will see next.

Following Leggett, we characterise each of the N particles (assumed spinless,
for simplicity) by a position vector ri, with the label i running from 1 to N . Any
pure state s of the (now interacting) system – which can be also subjected to an
external potential – can be described at time t by the many-body wavefunction
Ψs(r1, r2, . . . , rN , t). Therefore, the most general state of the system (also called
mixed state) can be written as a superposition of pure orthonormal states s with
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different weights ps. The single-particle density matrix ρ̂1(r, r′, t) represents
the probability amplitude, at time t, of finding a specific particle at position r,
multiplied by the amplitude of finding it at r′, and averaged over the positions
of all the other particles:

ρ̂1(r, r′, t) ≡ N
∑

s

ps

∫
dr2dr3 . . . drNΨ?

s(r, r2, . . . , rN , t)Ψs(r
′, r2, . . . , rN , t)

=
∑

i

ni(t)φ
?
i (r, t)φi(r

′, t) (1.2)

where in the second line we have re-written the density matrix in diagonal form,
introducing its eigenvalues ni and eigenvectors φi, which form a complete or-
thonormal set at any time t (here i labels a good quantum number of the problem,
i.e. momentum in a translationally-symmetric situation).

We are now ready to state the Penrose-Onsager criterion for condensation,
first formulated in 1956: if at any given time t it is possible to find a complete
orthonormal basis of states of ρ̂1 such that one and only one of these states
has an eigenvalue of order N (the rest being of order 1), then we say the system
exhibits BEC. One should note that this definition only applies to “simple” BEC,
as opposed to the “fragmented” case (of no concern to us here), where two or
more of the eigenvalues of the one-body density matrix are of order N .

We denote the single macroscopic eigenvalue of the density matrix by N0(t),
and its corresponding eigenfunction by φ0(r, t). φ0 is called the condensate wave-
function and the N0 particles occupying it the condensate, while the ratio N0/N
is the condensate fraction. It is not necessarily true that N0 = N , even at zero
temperature. Also note that, while φ0 behaves as a single-particle Schrödinger
wavefunction, it is generally not an eigenfunction of the single-particle part of
the Hamiltonian, or of any other simple operator for that matter, other than ρ̂1.
Another useful quantity frequently found in the literature is the so-called order
parameter, ψ(r, t) =

√
N0(t)φ0(r, t). We see that, while φ0 is normalized to 1,

ψ will be normalized to N0(t).
It is worth mentioning the existence of a theorem due to Hohenberg [51], stat-

ing that, in the thermodynamic limit, BEC cannot occur at a finite temperature
in any system moving freely in space in less than three dimensions, irespective
of the existence and/or sign of the interparticle interactions, as thermal fluc-
tuations would destroy the condensate. Note that this theorem, however, only
applies under equilibrium conditions, the nonequilibrium case still being an open
question. Furthermore, there is no general proof that a realistic system of inter-
acting bosonic particles must show BEC, even at zero temperature – the solid
phase of 4He constitutes an obvious counter-example.

Most gases, with the notable exception of 4He, are solids at the densities and
temperatures predicted by Eq. (1.1). That is why it took no less than 70 years
between Einstein’s original paper and the first experimental observation of BEC
in an atomic gas. In 1995, the group of Eric Cornell and Carl Wieman succesfully
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condensed a cloud of 87Rb atoms [52] (closely followed by the group of Wolfgang
Ketterle at MIT with 23Na atoms [53]), by first bringing the system to a very low
density, and then cooling it fast enough to prevent any recombination processes
that would have lead to the formation of the solid phase. While other odd-isotope
alkali elements, especially 23Na or 7Li, are also routinely used in experiments, the
first non-alkali atom to be cooled into the BEC phase was hydrogen 1H. Due to the
extreme diluteness of these systems (ρ < 1015 atoms/cm3), the typical range of Tc
is from 20 nK to a few µK. Achieving such ultra-low temperatures stimulated the
development of novel experimental techniques, such as magnetic/laser trapping
and evaporative cooling of atoms.

The very low densities of alkali gases also limit the range of available diag-
nostic techniques. The most commonly employed method in BEC experiments
is optical absorption imaging, where one shines a laser on the gas and detects
the percentage of transmitted power. The image is usually taken after removing
the trap and allowing the gas to expand. This gives information about the gas
density as a function of coordinates and time, with a spatial resolution of a few
µm. In stark contrast to liquid 4He, density-related information seems to be
sufficient for most practical purposes.

1.2 Gross-Pitaevskii equation

As it turns out, many of the experimental results in ultracold gases can be inter-
preted on the basis of a single equation for the condensate wavefunction φ0(r, t).
This equation, first derived in 1961 independently by Eugene Gross and Lev
Pitaevskii, was originally intended as a phenomenological description of quan-
tum vortices in the superfluid phase of liquid 4He, below the lambda point. Since
liquid helium is a strongly interacting system however, the GP equation turned
out to be much better suited to alkali gases. Before giving the concrete formu-
lation of the GP equation, we must first explore the nature of the inter-atomic
interactions.

In dilute systems, the inter-atomic distance d = ρ−1/3 is on the order of
1000 Å, while the range r0 of the inter-atomic potential, namely the extent of
the last bound state of the van der Waals interaction, is about 50-100 Å. As
d� r0, the probability of three-atom colissions is substantially diminished. This
justifies limiting ourselves to a binary (instead of three-body or more) scattering
problem: consider two atoms, separated by a relative distance r and interacting
in three dimensions through a potential V (r). We can therefore decouple their
center-of-mass motion from their relative one and write a Schrödinger equation
for the scattering states ψ(r).

For temperatures below Tc, the thermal de Broglie wavelength λT > d (as
mentioned in Sec. 1.1), meaning all significantly occupied states will have small
wavevectors, k � r−1

0 . This directly translates to a low relative kinetic energy,
and hence small relative wavevectors, for the scattering problem outlined above.
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However, we know from scattering theory that the probability for two atoms,
with relative angular momentum `, of being separated by a distance r � k−1 is
proportional to (kr)2`, therefore essentially negligible in the limit kr0 � 1. That
is of course, unless ` = 0, meaning their relative state is s-wave, which is what we
will assume from now on. Since r0 � d, one can use the asymptotic expression
for ψ(r), which only depends on the scattering amplitude. At small wavevectors,
this amplitude can be safely replaced by the s-wave scattering length as, which
will encapsulate all the interaction effects on macroscopic properties of the atomic
gas.

One can now replace the two-body potential V (r) with an effective interac-
tion, Veff(r), provided it gives the same scattering length. The limit of small
wavevectors prompts us to only consider the lowest Fourier component of Veff,
equivalent in real space to a contact interaction1 Veff(r) = gδ(r), where we have
introduced the interaction coupling constant g, whose value can be calculated
using the first-order Born approximation [50]

g =
4π~2

m
as (1.3)

The scattering length as therefore becomes the small parameter of the theory of
weakly-interacting ultracold gases, and the validity of the Born approximation
rests on the following two conditions

k|as| � 1 (1.4)

|as| � ρ−1/3 (1.5)

Eq. (1.5) is called the “diluteness condition”, and it paves the way to various
mean-field approaches, such as the GP equation.

Formally, the GP equation corresponds to the lowest-order expansion in as of
the more exact Bogoliubov theory. However, we will try to give a hand-waving
justification of it for the zero-temperature case. At T = 0, all N particles are
in the condensate, therefore one could neglect all inter-particle correlations and
introduce the simplest (Hartree-Fock) ansatz, expressing the ground state many-
body wavefunction Ψ in the symmetrized form

Ψ(r1, r2, . . . , rN , t) =

N∏

i=1

φ0(ri, t) (1.6)

As mentioned in Sec. 1.1, the single-particle state φ0 (now occupied by all the
bosons) obeys a Schrödinger-like equation, to which we must add the energy of
the effective binary interactions. In mean-field, these interactions contribute the

1Technically, one should also include a regularizing part in order to remove any 1/r diver-
gencies of the wavefunction.
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equivalent of a one-particle potential term proportional to |φ0|2. [27] Together
with the kinetic part, this results in the nonlinear equation2

i~∂tφ0(r, t) =

[
−~2∇2

2m
+ U(r, t) + gN |φ0(r, t)|2

]
φ0(r, t) (1.7)

where we have also included an external potential U(r, t), normally used to model
harmonic trapping of the gas. Note that Eq. (1.7) is valid for physics occuring
over distances much larger than the scattering length as, which in turn must be
smaller than the typical range r0 of the potential U(r, t).

Eq. (1.7) is the time-dependent Gross-Pitaevskii (TDGP) equation, a mean-
field result where the condensate wavefunction φ0 must be calculated self-consistently.
It is important to emphasize that the TDGP equation is also valid at nonzero
temperatures T � Tc, provided that the density of non-condensed particles is
much smaller than the condensate density. In that case, the condensate number
N0 is smaller (but still on the order of) the total particle number N . Finally, one
must note that the nonlinearity of Eq. (1.7) builds a bridge connecting BEC to
nonlinear optics, where a similar relation is used, under the name of nonlinear
Schrödinger equation.

In case the external potential U does not depend explicitly on time, the
stationary solutions of Eq. (1.7) evolve with a trivial phase factor exp(−iµt/~).
This yields a time-independent GP equation for φ0(r) (we set ~ = 1 from here
on)

µφ0(r) =

[
−∇

2

2m
+ U(r) + gN0|φ0(r)|2

]
φ0(r) (1.8)

where µ is chemical potential of the gas, the energy required to add one more
particle to the system.3

1.3 Linear response theory

Following loosely the formalism presented in Ref. [54], we now let φ0(r) be the
steady state solution to the GP equation in the time-independent trapping po-
tential U0(r)

HGPφ0 = 0 (1.9)

with the GP Hamiltonian defined as

HGP ≡ −
∇2

2m
+ U0 + gN0|φ0|2 − µ (1.10)

This Hamiltonian describes a bosonic condensate of N0 particles with contact in-
teractions quantified by g, and chemical potential µ. Now consider adding a small

2We have tacitly assumed that N is large enough, such that N − 1 ≈ N .
3Technically, it is the Lagrange multiplier associated to the conservation of particle number

N0, and can be shown to be very close to the actual chemical potential in the thermodynamic
limit. [54]
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time-dependent perturbation on top of the trap, giving U(r, t) = U0(r)+δU(r, t).
We are interested in the response of the condensate to this perturbation. For weak
perturbations, we can perform a linearization of the GP equation Eq. (1.9) around
the stationary solution φ0 – an approach known in the literature as the “linear
response” formalism. The condensate wavefunction φ(r, t) evolves according to

i∂tφ =

[
−∇

2

2m
+ U + gN0|φ|2 − µ

]
φ (1.11)

We assume a small deviation of the wavefunction from its initial steady state

φ(r, t) = φ0(r) + δφ(r, t) (1.12)

such that we can expand Eq. (1.11) and keep only linear terms in δφ and δU .
We get

i∂tδφ =

[
−∇

2

2m
+ U0 − µ

]
δφ+ 2gN0φ

?
0φ0δφ+ gN0φ

2
0δφ

? + δUφ0 (1.13)

Note that Eq. (1.13) is not strictly linear due to the coupling of δφ to δφ?. To
restore linearity, we consider the functions δφ and δφ? as being independent and
write the linear system

i∂t

(
δφ(r, t)
δφ?(r, t)

)
= LGP

(
δφ(r, t)
δφ?(r, t)

)
+

(
S(r, t)
−S?(r, t)

)
(1.14)

where we have introduced the linear operator

LGP =

(
HGP + gN0|φ0|2 gN0φ

2
0

−gN0φ
?2
0 −

[
HGP + gN0|φ0|2

]?
)

(1.15)

and the source term S(r, t) = δU(r, t)φ0(r). Note that LGP is a non-Hermitian
operator!

We now consider the eigenvalue equation for the operator LGP

LGP|ψRk 〉 = εk|ψRk 〉 (1.16)

with |ψRk 〉 being the right eigenvector and εk its corresponding eigenvalue

|ψRk 〉 =

(
|uk〉
|vk〉

)
(1.17)

Similarly, we also introduce the left eigenvector, obeying L†GP|ψLk 〉 = ε?k|ψLk 〉, and
the orthonormality condition 〈ψLk |ψRq 〉 = δk,q.

Notice that LGP and L†GP are connected by the unitary transformation4

ηLGPη
† = L†GP (1.18)

4Note that this holds as long as the Hamiltonian HGP only contains real terms.
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where η = σ3 =

(
1 0
0 −1

)
is the third Pauli matrix. We say that LGP is η-

Hermitian, meaning that one can define a new scalar product 〈·|·〉η ≡ 〈·|η·〉 with
a different signature, such that 〈·|LGP·〉η = 〈LGP · |·〉η. The operator η is usually
called the metric operator, and, not suprisingly in our case, it is the same as the
one of the scalar Klein-Gordon equation. A pseudo-Hermitian operator usually
also posesses antilinear symmetries, and as we will see below this is also the
case for LGP. Interestingly, for operators with a real spectrum, it can be shown
that one can define another metric η+, which guarantees a positive-definite inner
product, or, in other words, 〈ψ|ψ〉η+

> 0 (provided ψ 6= 0 of course). This can be
used to formulate a probabilistic quantum theory for the new wave-functions ψR

and ψL. For the general theory and properties of pseudo-Hermitian operators,
we point the interested reader to Ref. [55].

Using Eq. (1.18), we get the general form of the left eigen-vectors as

〈ψLk | = Nk (〈uk|, −〈vk|) (1.19)

withNk a normalization factor. We can choseNk = ±1 and group the eigenvalues
of LGP into 3 families, according to the quantity

nk = 〈uk|uk〉 − 〈vk|vk〉 (1.20)

We therefore have: the “+” family, corresponding to nk = +1, the “−” family,
such that nk = −1 and the “0” family, with nk = 0.

We are now ready to write the completeness relation
∑

k

|ψRk 〉〈ψLk | = I (1.21)

Using Eq. (1.21), we can decompose any column vector as5

(
|l1〉
|l2〉

)
=

∑

k∈“+”family

[〈uk|l1〉 − 〈vk|l2〉]
(
|uk〉
|vk〉

)

+
∑

k∈“−”family

[〈vk|l2〉 − 〈uk|l1〉]
(
|uk〉
|vk〉

)
(1.22)

There is now a further symmetry of LGP that we can exploit in our problem, a
sort of time-reversal “spin”-flip symmetry, namely

ΘLGPΘ† = −LGP (1.23)

where Θ = σ1K, with σ1 =

(
0 1
1 0

)
the first Pauli matrix and K the complex

conjugation antilinear operator. This results in a duality between the “+” family

5The modes in the “0” family do not appear in this expansion as their components live in
the space orthogonal to the one of our solution.
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with eigenvectors (uk, vk) and energy εk and the “−” family with eigenvectors
(v?−k, u

?
−k) and energy −ε?−k.

We can now finally project Eq. (1.14) onto the eigenvectors of LGP. Using
the above-mentioned duality and Eq. (1.22), we get

(
δφ(r, t)
δφ?(r, t)

)
=

∑

k∈“+”family

bk(t)

(
uk(r)
vk(r)

)
+ b?−k(t)

(
v?−k(r)
u?−k(r)

)
(1.24)

with the complex amplitudes bk satisfying

i
d

dt
bk(t) = εkbk(t) + sk(t) (1.25)

where we introduced

sk(t) = (〈uk|, −〈vk|)
(
|S(t)〉
−|S?(t)〉

)
(1.26)

1.4 Cherenkov emission of Bogoliubov excitations

We now turn to applying the formalism developed in Sec. 1.3 to a concrete phys-
ical example, namely a flowing condensate scattering against a static defect [56].
The BEC6 is therefore in a state with well-defined momentum, described by the
plane wave

φ0(r, t) = ψ0 exp (ik0r − ω0t) (1.27)

and a chemical potential µ = k2
0/(2m) + gρ0. Since we have no trap, U0(r) = 0,

and Eq. (1.9) produces the equation of state

ω0 −
(
k2

0

2m
+ gρ0

)
= 0 (1.28)

where we have introduced the condensate density ρ0 ≡ N0|φ0|2.
We now introduce a weak perturbation in the form of a static localized defect

potential δU(r, t) = Vd(r), which can represent for instance a laser spot depleting
a small area of the condensate, as shown in Fig. 1.1.

Using Eq. (1.28), the GP Hamiltonian becomes HGP = −∇2

2m −
k2

0

2m and the
source term S(r) = ψ0Vd(r) exp (ik0r). We now get the linear operator for our
problem in the form

L =

(
−∇2

2m −
k2

0

2m + gρ0 gN0ψ
2
0 exp (2ik0r)

−gN0ψ
?2
0 exp (−2ik0r) −

[
−∇2

2m −
k2

0

2m + gρ0

]
)

(1.29)

6We integrate all density profiles along the z direction, resulting in an effective 2-dimensional
description.
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Figure 1.1: Density profiles of an expanding BEC hitting a stationary defect
created by the repulsive potential of a blue-detuned laser beam. The condensate
has different speeds in the two panels, moving roughly twice as fast in the right-
panel. Notice the Mach cone formed behind the defect, which gets narrower as
the condesate moves faster. From Ref. [56].

Notice that, due to the presence of the off-diagonal exponential terms, L does
not commute with the momentum operator, which is the generator of the spatial
translation group. Luckily, however, we can restore translational invariance by a
simple unitary transformation, as shown below.

Using the standard commutation relations, one can show that, for a constant
wavevector k0, the unitary operator7

T̂ (k0) = exp (−ik0r̂) (1.30)

performs a translation in momentum space, T̂ (k0)|k〉 = |k − k0〉, with the ket

|k〉 representing a single particle state with wavevector k such that k̂|k〉 = k|k〉.
Using the definitions above, one can easily obtain the commutator

[
k̂, T̂ (k0)

]
= −k0T̂ (k0) (1.31)

This allows us to rewrite the following expressions

T̂ †(k0)k̂T̂ (k0) = k̂ − k0Î

T̂ (k0)k̂T̂ †(k0) = k̂ + k0Î
(1.32)

We now recognize the two exponentials in Eq. (1.29) as being the real-space
representation of T̂ 2(k0) and its hermitian conjugate. This motivates us to define
the following unitary operator

T̂ (k0) =

(
T̂ (k0) 0

0 T̂ †(k0)

)
(1.33)

7The hat symbol denotes operators in the relevant Hilbert space.
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Figure 1.2: Top panels: Bogoliubov dispersion Eq. (1.37). The dotted lines indi-
cate the v0k plane. Middle panels: Locus Γ of intersection of the 2D dispersion
with the v0k plane. Green arrows are normal to Γ, while the dashed lines indi-
cate the Cherenkov cone. Bottom panels: Real-space density modulation, with a
δ–defect at (0, 0). Dashed lines show the Mach cone. Left column panels are for
v0 = 1.2cs, and right column for v0 = 2.5cs. From Ref. [57].

such that a unitary transformation of our operator L now restores translational
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symmetry. Indeed, one can see that

T̂ L̂T̂ † =




(k̂+k0)
2

2m − k2
0

2m + gρ0 gN0ψ
2
0

−gN0ψ
?2
0 −

[
(k̂−k0)

2

2m − k2
0

2m + gρ0

]

 (1.34)

where we have made use of Eqs. (1.32) and we have written L̂ in a base-independent
representation. In the subspace of momentum eigenstates |k〉, we can write the
(right-)eigenvalue equation corresponding to Eq. (1.34) as

LGP[k]

(
Uσ(k)
Vσ(k)

)
= εσ(k)

(
Uσ(k)
Vσ(k)

)
(1.35)

where we have recovered the matrix representation of Eq. (1.15), and introduced
the notation

ωσ(k) = v0k + εσ(k) (1.36)

Here σ = ± labels the 2 different eigenmodes, and we defined the condensate
speed v0 ≡ k0

m .
Notice that the k = 0 mode has only one eigenvector. However, one can

safely exclude it as this mode does not imply energy or momentum transport.
Excluding the k = 0 point, one can then solve Eq. (1.35), obtaining the celebrated
Bogoliubov excitation spectrum

εσ(k) = σ

[
k2

2m

(
k2

2m
+ 2gρ0

)] 1
2

(1.37)

with σ = ±, as before. Here k represents the momentum of the quasiparticle
excitation with respect to the momentum k0 of the condensate. Note that the
complex amplitudes Uσ(k) and Vσ(k) only depend on the absolute value of k,
while the (real) spectrum of Eq. (1.34), ωσ(k), is the Bogoliubov spectrum with
an additional Galilean boost v0k.

We can now further simplify the problem. As can be seen from Eq. (1.23),
the 2 eigen-families σ and −σ are linked by a duality, stemming from the PT
symmetry8 of the Bogoliubov operator L. We therefore drop the subscript σ and
make the convention that (U, V ) ≡ (U+, V+).

The Bogoliubov spectrum Eq. (1.37) is shown in the top row of Fig. 1.2, for
two different values of v0, which sets the slope of the dotted lines (indicating the
v0k plane). In the non-interacting case g = 0 and the spectrum reduces to a
simple parabola characterising a free particle. For repulsive interactions, g > 0
and we can distinguish two qualitatively different domains, after first introducing
the typical length scale of the problem, called the healing length. The healing

8This can be actually formally proven after defining the parity and time-reversal operators
corresponding to our problem. For details, see Ref. [55].
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length ξ is a measure of the distance over which the condensate density recovers
its equilibrium value ρ0 when forced to vary away from this value. For example,
in a box the boundary conditions fix the density to zero at the positions of the
walls. In mathematical terms,

1

mξ2
= gρ0 (1.38)

We first explore the domain of small momenta, kξ � 1, which is characterised
by a linear behaviour of the dispersion, ε(k) ' kcs, that implies the propagation
of low-energy excitations in the form of sound waves, with a velocity9 cs given
by

mc2s = gρ0 (1.39)

The Landau criterion for superfluidity [58] determines the maximum velocity at
which a weak impurity can travel through the condensate without dissipating
energy. In order for it to dissipate energy, such an impurity must be able to
create quasiparticle excitations in the condensate. Conservation of energy and
momentum then results in a critical velocity

vc = min
k

[
ε(k)

k

]
(1.40)

below which no dissipation can occur. In our case, this velocity is precisely equal
to the speed of sound, vc = cs. Furthermore, the two situations, the one of a
particle moving through the condensate, or of the condensate moving against a
fixed defect, are physically equivalent, being connected by a Galilean transforma-
tion. We can therefore conclude that we must have v0 ≥ cs in order to observe
any propagating perturbation, otherwise for v0 < cs the superfluid will remain
unperturbed. Before moving on, it is worth noting that the Landau criterion has
some asociated caveats. One is assuming that the only excitations are density
excitations, phonons. Thus one is, for example, neglecting the nucleation of vor-
tices by a macroscopic defect with a size comparable to the healing length, which
would lower the effective critical velocity. Vortices would furthermore also break
the translational invariance along the transverse directions, an invariance that
we already made use of. The second caveat is that quantum fluctuations are also
neglected. As seen in Ref. [59], they could lead to nonzero dissipation even at
sub-sonic speeds.

The second domain of interest is the one of large momenta, kξ � 1. Looking
at Eq. (1.35), one notices that the only k-dependent parts of LGP[k] are the diag-
onal terms. These terms have opposite sign, so the off-diagonal coupling between
U(k) and V (k) becomes highly off-resonant at large k. Completely neglecting it
gives the free-particle-like shifted parabola ε(k) ' k2/(2m) + gρ0, with U(k) ' 1

9The sound velocity here is measured in the condensate rest-frame (k0 = 0).
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and V (k) ' 0. The discontinuity in the spectrum at zero momentum can be ex-
plained by the fact that the diagonal and off-diagonal parts of LGP[0] are equal
in absolute value.

In order to obtain the defect-induced density perturbation, we must now also
determine the eigenvectors of the problem. Making use of Eq. (1.18), we can act

with σ3 on the eigenstates of LGP to obtain the ones of L†GP. This finally leads
us to a biorthonormal basis

{
|ψRσ (k)〉, |ψLσ (k)〉

}
, containing 4 basis vectors

{(
U(k)
V (k)

)
,

(
V ?(k)
U?(k)

)
,

(
U(k)
−V (k)

)
,

(
−V ?(k)
U?(k)

)}⊗
|k〉 (1.41)

which fulfill the orthonormality condition

〈ψLσ′(k′)|ψRσ (k)〉 = δσ,σ′δ
2(k − k′) (1.42)

and the completeness relation

∑

σ=±

∫
d2k |ψRσ (k)〉〈ψLσ (k)| = 1 (1.43)

provided of course that we normalize in such a way that |U(k)|2 − |V (k)|2 = 1.
In this basis, the spectral decomposition of Eq. (1.34) is the diagonal form

T̂ L̂T̂ † =
∑

σ=±

∫
d2k ωσ(k)|ψRσ (k)〉〈ψLσ (k)| (1.44)

The concrete form of LGP[k], coupled with the normalization condition Eq. (1.20),
determines the eigenvectors of the “+” family up to a phase factor. Indeed, one
can choose |U(k)| ± |V (k)| = f(k)±

1
4 , with

f(k) =
k2/(2m)

k2/(2m) + 2gρ0
(1.45)

Furthermore, in case the Hamiltonian doesn’t contain any time-reversal symmetry-
breaking terms, one can chose U(k) and V (k) to be real quantities, without loss
of generality.

It is now straightforward to solve the linearized evolution equation Eq. (1.14).
In particular, for a localized static defect potential Vd(r) = gV δ

2(r), quasiparticle
modes at all wavevectors k are excited.10 The source term is time-independent,
and hence the quasi-particle amplitudes of Eq. (1.25) have the simple form b(k) =
−s(k)/ω(k). Equivalently, we can obtain the defect-induced perturbation of the
wavefunction from its initial steady state by directly inverting Eq. (1.44) and
then reversing the unitary transformation that was applied to obtain Eq. (1.34).

10If one wishes to selectively excite a pair of modes, one can use a periodic potential, following,
for example, Ref. [60].
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Whichever route we take, it is clear that the final answer will have a resonant
structure, containing ω(k) in the denominator, hence the dominant modes will
be the ones that satisfy ω(k) = 0.

We must also mention the subject of adiabatic switching at this point. Adi-
abatic switching is neccesary to causally distinguish the past from the future,
making sure that the time t = −∞ is prior to that of the occurence of any cause
(in our case the defect) giving rise to the effect (pertubation of the condensate
density). The way to achieve this in practice is by shifting the real poles of the
Bogoliubov dispersion Eq. (1.37) into the lower half of the complex plane by an
infinitesimal amount, ε(k)→ ε(k)− i0+. This corresponds to a weak damping of
the plane wave solution and ensures that no Bogoliubov excitations were present
at t = −∞.

We show the defect-induced perturbation of the condensate density in the bot-
tom row of Fig. 1.2, for two distinct values of the condensate speed v0. Rather
than giving its full analytical expression, it is more instructive to present a ge-
ometrical construction, detailed in Ref. [57], that can shed light on the main
features of the condensate response. We have already identified the importance
of the poles of ω(k); the solutions of ε(k) +v0k = 0 can be visualized if one plots
the intersection of the Bogoliubov dispersion surface ε(k) with the v0k plane.
The locus of this intersection is a closed curve that we will denote by Γ and
that is plotted in the middle row of Fig. 1.2. Making the connection with the
Landau criterion presented earlier, we can identify two regimes. For small ve-
locities v0 < cs we have the sub-sonic regime, where Γ is a single point at the
origin. Consequently, one can observe superfluid-like behaviour with no propa-
gating density modulation. The modulation will stay localized in the vecinity of
the defect, and, in the Galilean-equivalent problem of a particle moving through
the condensate, it would renormalize the particle mass. [59]

As we gradually increases the condensate speed, and hence the slope of the v0k
plane, this plane will touch the surface of the dispersion relation when v0 = cs,
marking the entry into the super-sonic (dissipative) regime. Further increasing
the speed will increase the size of Γ, as can be seen in Fig. 1.2. The green
arrows, orthogonal to the curve Γ at each point, represent the group velocity
of the Bogoliubov mode at that particular k-value. They show the direction of
propagation of the density perturbation away from the defect, up to infinity. It is
the interference of these propagating modes that we see as the real-space density
pattern. Note that the locus Γ has two distinct regions, inherited from the linear
and quadratic domains of the dispersion Eq. (1.37).

The linear region of Γ, close to the origin, is characterised by essentially
the same physics as the Cherenkov effect in non-dispersive media [61]. The
Charenkov effect consists in the emission of electromagnetic radiation by a charged
particle moving relativistically through a dielectric medium at a velocity higher
than the (phase) velocity of light in that medium. The emission is concentrated
into a Cherenkov cone in momentum space, of aperture 2θ, where cos θ = c/v. [62]
The higher the particle speed v with respect to the speed of light c, the wider the
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angle θ between the emission and the direction of motion. The Cherenkov cone
is depicted by the dashed lines in the middle panels of Fig. 1.2, and the angle
θ in our case is of course given by cos θ = cs/v0. Due to the momentum-space
singularity at the origin, the group velocity has a jump, defining a whole region
of space where no phonons are emitted. This corresponds in real-space to the
so-called Mach cone, named in analogy to the cone that is created by a super-
sonic aircraft (since we are dealing with terminology, it is worth noting that the
ratio v0/cs goes by the name of Mach number). The Mach cone is depicted by
dashed lines in the bottom panels of Fig. 1.2: as its aperture 2φ is quantified by
sinφ = cs/v0, that means that, the faster the fluid, the narrower the cone will
be.

The high-momentum, rounded region of Γ, which corresponds to the quadratic
single-particle-like dispersion, has no equivalent in Cherenkov physics. It is re-
sponsible for the hyperbolic-like wavefronts11, emitted in the positive x̂ direction
(upstream). The physical origin of these rounded waves lies in the interference
between the coherent matter wave of the BEC and the wave scattered off the
defect. It it worth noting that the curve Γ also helps one determine the spacing
between the emitted wavefronts, which is inversely proportional to the value of
the momentum at the particular point on Γ that corresponds to the wave propa-
gation direction. In practice, we see for example that the spacing along y = 0, in
the positive x̂ direction, is wider in the left-bottom panel than in the right one.

Aside from being just a useful geometrical construction, the locus Γ can ac-
tually be observed in scattering experiments, both in the context of atomic con-
densates, as well as for microcavity polaritons (Chapter 2), where it takes the
name of Rayleigh scattering ring.

Before closing this Section, it is worth making the connection between the
Cherenkov waves shown in the bottom panels of Fig. 1.2 and the more mundane
example of surface waves created at the interface between a fluid layer and a gas.
We first need to define the capillary length `γ =

√
γ/(Gρ), with γ the surface

tension of the fluid-gas interface, G the gravitational constant, and ρ the fluid
density. Now, if the height h of the fluid layer in question is smaller than

√
3`γ ,

the fluid dispersion is dominated by capillary effects, and its form is similar to
Eq. (1.37) (see Ref. [57]). But we have just seen that the form of the dispersion
(more precisely, its intersection with the v0k plane) determines the shape of the
ougoing waves. This means that, for very shallow fluids, we will observe similar
wavefronts to the ones of Fig. 1.2. More concretely, for the water-air interface, a
thickness of h = 1 millimeter and a speed of v0 = 14 cm/s should do the trick!

1.5 Superfluidity

The history of superfluidity is intrinsically linked to that of helium, the liquefac-
tion of which was first achieved in 1908 by Kammerlingh-Onnes. This ushered in

11The wavefronts are actually parabolic in the non-interacting limit of g = 0.
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a new era of low-temperature physics, and it was soon realized that the thermal
expansion coefficient of liquid 4He had a discontinuity at the so-called lambda-
(λ-)point. This lead to the classification of liquid helium in two distinct phases,
above (He-I) and below (He-II) the critical temperature Tλ = 2.2K. It was
in this context that, 30 years later, Kapitza in Moscow and Allen and Misener
in Cambridge investigated the flow of He-II through a narrow opening between
two large containers. Observing that the fluid essentially behaves as having no
viscosity12, Kapitza introduced the term “superfluidity” in analogy to the su-
perconductivity observed in charged systems. It turned out to be an inspired
analogy, as the prevalent view of the scientific community nowadays is that the
two are essentially the same phenomenon, stemming from BEC (in the neutral
case), respectively Cooper-pairing in the charged case (arguably a kind of pseudo-
BEC). The connection between superfluidity and BEC was first made by Fritz
London, who noted that Tλ was not too far off from the critical temperature one
would predict by applying Eq. (1.1) to a noninteracting gas of helium atoms.
Of course, liquid helium is anything but a noninteracting gas, so in that sense
it is rather amusing that this connection was made. The modern conception of
superfluidity is that it represents a collection of phenomena, most of them related
to flow properties, and the initial observations of Kapitza can in fact be broken
down into such “elementary” ingredients, as we shall see.

A great leap in the understanding of superfluidity was made with the help of
Lev Landau’s phenomenological two-fluid model [63]. In a nutshell, one can think
of the problem in terms of two liquids, one formed by the condesate occupying
the single-particle state φ0 and flowing without friction, and the other behaving
as a normal fluid. To be fair, it must be said that Landau actually opposed
the whole notion of BEC, and formulated his model without it. We must also
note that the superfluid and normal components in He-II are not the condensed
and noncondensed atoms, as the whole liquid is superfluid at zero temperature,
while only around 10% of the atoms are in the BEC state. That being said,
the model describes He-II in thermodynamic equilibrium by introducing two
independent velocities (vs and vn), and associated densities (ρs and ρn), which
are temperature-dependent. One can then express the total mass current density
J = js + jn and kinetic energy of flow Q = Qs +Qn as [64]

J(r) = ρs(r)vs(r) + ρn(r)vn(r) (1.46)

Q(r) =
ρs(r)v2

s(r)

2
+
ρn(r)v2

n(r)

2
(1.47)

with ρs(r) + ρn(r) = ρ(r). We can futher define the superfluid (fs) and normal
(fn) fractions as fs(T ) = ρs(T )/ρ and fn(T ) = ρn(T )/ρ, with fs(T )+fn(T ) = 1.

12In fact, formally one cannot even define viscosity in this case, as the ratio of the mass flow
to the pressure differential diverges.
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Furthermore, we have the limits

fs(T ) −−−→
T→0

1 (1.48)

fs(T ) −−−−→
T→Tλ

0 (1.49)

It is in this sense that one is dealing with an intuitive picture of He-II as a mixture
of two independent, interpenetrating components, each associated with its own
mass current and flow energy.

We now look at the N0 atoms condensed in the state φ0, in order to inves-
tigate the origin of the superfluid velocity vs. One can express the condesate
wavefunction in the Madelung form13

φ0(r, t) =

√
ρs(r, t)

N0(t)
e
i
~ θ(r,t) (1.50)

with ρs = N0|φ0|2 being the particle density14 and θ the phase (in dimensions
of an action), both real functions. The quantum mechanical definition of the
probability current density of the condensate yields (see Appendix 1.A)

js(r, t) = N0(t)
~

2im
[φ?0(r, t)∇φ0(r, t)− φ0(r, t)∇φ?0(r, t)] (1.51)

= N0(t)|φ0(r, t)|2 1

m
∇θ(r, t) (1.52)

with m, as before, representing the particle mass. The ratio vs ≡ js/ρs will
then be the condensate velocity (called superfluid velocity in the literature for
the historical reasons detailed above)

vs(r, t) =
1

m
∇θ(r, t) (1.53)

As the curl of a gradient is zero, the flow given by Eq. (1.53) is irrotational,
in other words the vorticity

∇× vs(r, t) = 0 (1.54)

provided, of course, that vs is defined in all space (i.e. the magnitude of φ0 is
finite). If that is not the case, one can consider a contour C around the region
where φ0 vanishes, and the condition that φ0 be single-valued then gives the
famous Onsager-Feynman quantization

∮

C

vs(r, t) · dl =
~
m

2πnw (1.55)

13We explicitly re-introduced ~ in the equations of this Section to show their quantum nature.
14We again emphasize that, in general, the superfluid density ρs is not equal to the density

of condensed atoms.
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Figure 1.3: The multiply connected toroidal geometry, of radius R, used to show-
case superfluid behaviour. The anullus, which contains 4He atoms, rotates at an
angular velocity ω.

with nw = 0,±1,±2, . . . being the windinding number, the number of turns made
by the phase in the complex plane, as we go around the integration contour C.
Thus the circulation of the irrotational flow is quantized, with the quantum of
circulation being h/m = 0.997× 10−3 cm2/s.

We are now in the position to discuss the two elementary ingredients which
together account for the original obsevation of superfluidity by Kapitza. Follow-
ing Ref. [27], we consider a multiply connected geometry in the form of a hollow
cylindrical pipe with solid walls shown in Fig. 1.3. Assuming the pipe of radius
R is filled with liquid helium, and rotates with angular velocity ω, one can then
obtain the (temperature-dependent) orbital angular momentum of the system
L(T ) by minimizing the effective free energy [64]

L(T ) = I [fn(T )ω + fs(T )nwω0] (1.56)

Apart from the already defined quantities, we have introduced the moment of
inertia I = N0mR

2, and defined the quantum unit of angular velocity, ω0 ≡
~/(mR2). Finally, nw is the nearest integer to ω/ω0, expressed as

nw = int

[
ω

ω0
+

1

2

]
(1.57)

One needs to compare Eq. (1.56) with the angular momentum of a normal liquid
under the same circumstances, which is given by L = Iω = N0~ω/ω0. Keeping
this in mind, we can now introduce the two qualitatively different experiments.
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The first experiment starts by rotating the torus at a large angular velocity
Ω� ω0, on the high-temperature side of the λ-point. Once the fluid equilibrates
with the motion of the container walls, we then cool the system through Tλ,
maintaining the same angular velocity Ω. Finally, we stop the container from
rotating, and measure the angular momentum. After a short while, proportional
to the viscosity of the normal component, its velocity vn becomes zero. However,
the superfluid part of the liquid experiences no friction with the pipe walls, and
will therefore continue circulating indefinately! Since we are not dealing with the
ground state of the system, but with an excited state with astronomical lifetime,
we call this phenomenon metastability of supercurrents (“persistent currents” is
another commonly found term). However, metastability of superflow is not a
direct consequence of the BEC state – the underlying mechanism is one of topo-
logical origin: consider the contour C in Eq. (1.55) to run around the torus of
Fig. 1.3. The current in the ring will be proportional to the circulation Eq. (1.55).
Since the latter is quantized, the windinding number nw is conserved, hence so is
the (super)current! Similar arguments explain the existence of so-called topolog-
ical defects in superfluid systems. Such defects are singularities of the condensate
wavefunction, for instance, vortex lines (or rings, if the line closes in on itself) as-
sociated with the superfluid component. The conservation laws presented above
make the vortex a highly stable configuration, as opposed to the case of a normal
fluid, where it is short-lived. In this sense, the circulating currents which con-
stitute the vortex are ”persistent”, corresponding to metastable supercurrents.
Furthermoe, a superfluid system cannot sustain bulk vorticity due to Eq. (1.54),
and the vortices are quantized according to Eq. (1.55).

In the final state with the container at rest, ω = 0, so the first term of
Eq. (1.56) dissapears. The second term survives, as the system cannot change
its winding number. In the limit of large nw the angular momentum will then be
approximately given by L(T ) ' fs(T )IΩ. We see that one can reversibly increase
(or decrease) the angular momentum L by varying the temperature (provided, of
course, that it is always kept below Tλ). Since the superfluid circulates despite
any roughness of the container walls, we can reasonably expect that an object
moving though a stationary fluid also experiences reduced friction. This led to
a series of experiments with charged ions being accelerated at various speeds by
an applied external electric field [65, 66]. It was seen that, in accordance with
the Landau criterion presented in Sec. 1.4, there exists a critical speed below
which the ions experience reduced viscosity (and actually no viscosity at all in
the T = 0 limit).

We now turn to the second experiment, which is arguably one of the funda-
mental defining properties of superfluidity. The effect was first predicted by Fritz
London and then observed by G. Hess and W. Fairbank in 1967 in the context
of liquid helium, hence the name Hess-Fairbank (HF) effect. As before, we cool
the sample while rotating with a lower angular velocity ω � Ω. We wait for
the system to equilibrate, and then measure the angular momentum, this time
without stopping the rotation of the container. The value of L will be given by
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Eq. (1.56), instead of the classical Iω (that is why the HF effect is also called non-
classical rotational inertia, NCRI). We can now distinguish two different regimes.
The first one, for ω < 1

2ω0, implies nw = 0, therefore L(T ) = fn(T )Iω, so the
superfluid component contributes nothing to the current. At T = 0, fn(T ) → 0
and we get the spectacular result that the liquid completely ceases to rotate
along with the container! In the general case, the second term of Eq. (1.56)
survives. If we again consider the zero-temperature limit, and plot the angular
momentum L(0) = Iω0nw versus angular velocity ω ≥ 1

2ω0, we get a series of
plateaus of width ω0 at positions L = N0~nw = N0~, 2N0~, and so on. The
centers of these plateaus all fall on the “classical” line L = N0~ω/ω0. A hand-
waving explanation, for the simplest case of a noninteracting atomic gas, goes
as follows. In a noncondensed system rotating with angular velocity ω, the ef-
fective single-particle energies are shifted by an amount ~ω`nw , with `nw the
angular momentum quantum number of state nw. The Bose-Einstein function
then redistributes the particles to accomodate this shift, producing a “classical”
angular momentum. In a BEC however, all N0 atoms must be in the same state
nw, and posess the same value of `nw . Their only allowed contribution to L is
then N0(nw~). For small ω, the condensate is in the nw = 0 state, and so it
does not rotate with the container! This argument can be formalized, so one can
show the HF effect to be impossible inside the framework of classical statistical
mechanics, much like the Bohr-Van Leeuwen theorem shows magnetism to be a
purely quantum phenomenon. Note that, while the HF effect can be (at least
hand-wavingly) explained without including interactions, these are crucial to any
theory of metastable currents.

As already explained in the introductory paragraph of this Section, there
is a deep underlying connection between superfluidity in a neutral system and
superconductivity in a charged one. In fact, the analog of the HF effect in a
charged system is the well-known Meissner effect. We now consider the same
topology of Fig. 1.3, and replace the container by a crystal lattice and the liquid
helium (or atomic gas for that matter) by the electrons inside this lattice. If we

now keep the crystal at rest and produce a tangential vector potential A(r) = Aφ̂,
this will generate a flux Φ =

∮
A(r) ·dl inside the conducting ring (usually called

an “Aharonov-Bohm” flux). The definition of the “superfluid” velocity Eq. (1.53)
now needs to be revised according to the gauge-coupling recipe, which consists
of replacing the canonical momentum p by the kinematic one: p → p − eA(r).
As a result, we get

vs(r) =
1

2m
(∇θ(r)− 2eA(r)) (1.58)

where the factors of 2 appear because the macroscopic wavefunction is now that
of the center of mass of a Cooper-pair of electrons, so m and e are both multiplied
by 2. The resulting Onsager-Feynman quantization Eq. (1.55) then becomes

∮

C

vs(r) · dl =
~

2m

(
2πnw −

Φ

Φ0

)
(1.59)
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where Φ0 ≡ h/(2e) is the superconducting flux quantum. If the (mass) super-
current is given, as before, by js = ρsvs, then this new quantization condition
results in a non-zero current even for nw = 0. Indeed, for Φ < 1

2Φ0 (compare to
the regime ω < 1

2ω0 discussed for the HF effect), the nw = 0 state is realized and
the electrical current je is given by

je(r) =
2e

2m
js = − e2

m2
ρs(T )A(r) (1.60)

This proves that, while in a normal conductor the flux Φ would not generate any
circulating current, a superconducting ring would respond with a diamagnetic
(note the minus sign in Eq. (1.60)) electrical current proportional15 to the vector
potential A. Coupling this with Maxwell’s equations immediately results in the
well-known Meissner effect, namely the expulsion of an applied magnetic field
inside a superconducting sample.

We now proceed to a closer analysis of the connection between the charged
and neutral case. The Hamiltonian H for a particle of charge q and mass m,
moving in a vector potential A, and in the presence of an external potential V ,
is given by Eq. (1.61). In our problem, V is imposed by the toroidal geometry
of the container, which is for now assumed to be stationary in the inertial frame
of the stars. On the other hand, the Hamiltonian H ′, of a neutral particle with
the same mass, but this time in the frame that rotates with the container at an
angular velocity ω = ωẑ is shown in Eq. (1.62),

H =
1

2m
(p− qA(r))2 + V (r) (1.61)

H ′ =
1

2m
(p′ −mω × r′)2 + V (r′)− 1

2
m(ω × r′)2 (1.62)

with r′ being the coordinate (and p′ the canonical momentum) in the rotating
frame. Making use of the cylindrical symmetry, one can decompose r as (r, z, θ),
and therefore r′ = (r, z, θ−ωt). We now see that a neutral system in the rotat-
ing frame, apart from a centrifugal term − 1

2m(ω × r′)2, is formally identical to
a charged system in the rest frame, with the correspondence qA(r) ↔ mω × r.
This connection can be used to make a neutral particle experience an “effec-
tive” electromagnetic vector potential. Its gauge-coupling to this potential is
what eventually led to the celebrated concept of synthetic gauge field. In fact,
such artificial, rotation-induced, gauge fields have already been proposed in the
context of ultracold atomic gases, in order to asess their normal and superfluid
fractions [67–69].

This naturally leads us to the topic of experimental evidence for superfluid
behaviour. The answer, however, will not be a clear-cut one, as we have seen
that it actually depends on which aspects of superfluidity one is interested in,

15The proportionality constant is called the susceptibility.
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Figure 1.4: Scanning a blue-detuned laser beam with velocity v, though the cigar-
shaped atomic condensate (left panel), creates a density hole (right panel) larger
than the healing length. The friction acting on this hole can then be used to
asess the Landau critical velocity. From Ref. [70].

such as NCRI, persistent currents, quantized vortices or reduced friction on im-
purities. Historically, liquid 4He-II was the default system for exploring such
physics, however, new systems such as ultracold gases and, more recently, mi-
crocavity polaritons (the subject of Chapter 2) have also entered the picture. In
the case of liquid helium, superfluidity is relatively easy to detect, while BEC
can only be asessed through circumstantial evidence (such as neutron scatter-
ing), as strong interactions oppose any large density changes. Ultracold gases,
on the other hand, present a spectacular BEC onset that can be observed in
the density profile, while superfluidity proves somewhat more mysterious. Re-
garding metastable supercurrents in a simply connected geometry, Chevy and
coworkers [71] succeded in stirring an atomic condensate, and then measuring its
angular momentum using the precession of certain collective modes. Other stud-
ies were also shown to produce a metastable single-vortex state (and even vortex
lattices) that persist, despite not being the ground state of the system (in fact, it
can be shown that the atomic BEC ground state is characterised by the absence
of any macroscopic current flow). Interferometric measurements are commonly
employed to see the circulation around these vortex cores. However, the lifetime
of the vortices is limited by how long it takes before they escape the magnetic
trap. To circumvent this limitation, persistent currents in multiply connected ge-
ometries (such as toroidal traps) were also investigated, for instance in Refs. [72]
and [73]. As far as the Landau criterion is concerned, an experiment similar to
the one accelerating charged ions through liquid helium was reported in Ref. [74].
The authors used a Raman laser to transfer a fraction of the condensed atoms
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into a different (hyperfine) state. As a result, those atoms no longer experienced
any magnetic trapping, but only the effect of gravity. The mobility of the free-
falling atoms was then computed, revealing information about the friction [59]
acting on them. A fairly sharp transition with a sudden increase in friction was
observed, at velocities close to the local speed of sound. In the opposite limit
of macroscopic “impurities” (large compared to the healing length), Ref. [75]
details the use of a blue-detuned laser beam, in order to create a density hole
which is then moved around the atomic condensate (see Fig. 1.4). By measuring
the density difference immediately ahead and behind the hole, one can deduce
the frictional force acting on it (see Appendix 1.A). This experiment resulted in
a critical velocity about ten times smaller than the speed of sound, presumably
due to vortex creation by the macroscopic defect.

1.6 Optical lattices

An electric dipole moment P placed in an external electric field E(r) aquires an
energy V(r) = −P · E(r). If an atom is placed in a light field, the oscillating
electric field of the latter induces an electric dipole moment P = αε0E on the
atom, with ε0 the free-space permittivity and α the atomic polarizability [76].
Integrating, we obtain the interaction energy of the atom with the field as V(r) =
− 1

2αε0E2(r). A classical model of the atom as a conducting sphere of radius r
yields a polarizability of 4πr3. In practice however, atomic transitions complicate
this simple picture, as the polarizability α depends on the driving frequency of
the light field. In the framework of the Drude model [77], one has

α(ω) =
α(0)ω2

0

ω2
0 − ω2 − iωτ

(1.63)

with the resonant frequency ω0, damping time τ and α(0) > 0 the static po-
larizability. The frequency-dependent interaction energy V(ω) thus obtained is
sometimes called the ac Stark effect [78]. If the light frequency is smaller than
that of the atomic resonance ω < ω0, the induced dipole is in phase with the elec-
tric field, as <[α(ω)] > 0, and the force on the atom will point in the direction of
the square-field maxima (the situation is of course reversed if instead ω > ω0).
This effect was first used in Ref. [79] to trap a BEC of sodium atoms using a
focused infrared laser beam (the dominant transition of Na is the familiar s→ p
yellow emission). Interestingly, the same physics can be used to create an optical
lattice, as explained below.

Consider a (plane wave) laser beam propagating along the x axis, with an
associated electric field E(x, t) = E0 cos(kxx − ωt), which reflects from a mirror
situated at x = 0. The interference between the reflected and original beam
produces a standing wave E0[cos(kxx − ωt) − cos(kxx + ωt)], with an intensity
|E(x, t)|2 = 4|E0|2 sin2(kxx) sin2(ωt). This results in an effective periodic lattice
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for the atoms, with lattice spacing b = λx/2, where λx = 2π/kx. Such a one-
dimensional lattice was first demonstrated in Ref. [80]. By tuning the strength
of the laser field, one can adjust the lattice depth, and by changing the laser
wavelength, one can modify the lattice constant. Adding more laser beams can
produce two- or even three-dimensional lattices, in a variety of different geome-
tries. For example, the simplest way to create a 2D square lattice would be to
superimpose a second lattice in the ŷ direction, producing an optical potential
of depth V0:

V(x, y) = V0[sin2(πx/b) + sin2(πy/b)] (1.64)

The beam along y should be orthogonally polarized with respect to the one along
x, in order to avoid interference effects.

The eigen-problem of a particle moving in a periodic potential given by
Eq. (1.64) is well-known in the context of solid-state band theory [77], as the
electrons inside a solid also move in such a potential, produced in that case by the
crystal ions. The energy eigenstates are the Bloch waves ψγ,k(r) = eik·ruγ,k(r),
where ~k is the quasimomentum, restricted to the first Brillouin zone (BZ)(
−πb , πb

)
×
(
−πb , πb

)
and γ = 0, 1, . . . represents the band index. The functions

uγ,k(r) are periodic in both the x̂ and ŷ direction, with period b. To see how
these bands arise, one can expand both the wavefunction ψγ,k as well as the
potential V in a Fourier series, making use of their periodicity. Inserting this
expansion into the time-independent Schrödinger equation, we get a linear sys-
tem of equations for the Fourier coefficients. For fixed k, we obtain different16

eigenenergies, Eγ(k). These eigenenergies form bands (called Bloch bands) when
k is varied inside the BZ. Each band as a certain width in energy (unsurprisingly
called the bandwidth) and consecutive bands are separated by gaps, meaning cer-
tain energies are not allowed. Furthermore, each eigenenergy has an associated
eigenfunction, completely determined by the set of Fourier coefficients with index
γ. The solution of course depends on the value of V0, and we can distinguish two
limiting cases, depending on the ratio of the bandwidths to the energy gaps. In
the weak-potential limit, the bandgaps are much smaller than the bandwidths,
and the eigenenergies have a pronounced dependence on quasimomentum. The
opposite limit, which is the one we want to focus on, is the regime of deep lat-
tices, also called the tight-binding (TB) limit. The band dispersion is now flatter
compared to the previous case, and the bandwidth/gap ratio is much smaller.

For low temperatures in the TB limit, only the lowest energy band γ = 0
is occupied, so we subsequently drop the band index. Since the potential wells
are so deep, the lowest band is adequately described by considering localized
wavefunctions at each well, i.e. at the minima of Eq. (1.64). Suppose now that
a function w(r) exists such that the Bloch waves are given by

ψk(r) = N
∑

m,n

eik·rm,nw(r − rm,n) (1.65)

16Truncating the Fourier expansion to a finite number of terms n results in 2n+ 1 bands.
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where N is a normalization factor and rm,n = mbx̂+ nbŷ are the well positions.
Eq. (1.65) represents a wave, eik·rm,n , whose phase and amplitude at each well
is given by the localized function w, called the Wannier function [77]. It can be
shown that Wannier functions centered at different wells are orthogonal to each
other and form a complete basis. The Wannier functions are thus a unitary trans-
formation of the Bloch functions, suitable for the case when particle dynamics is
described by inter-well tunneling (hopping) between nearest-neighbour wells.

In the case of a BEC, when the number of ultracold atoms per lattice well is
small, the “discrete structure” of the condensate becomes relevant and we must
replace the GP description Eq. (1.7) we have used so far with a lattice model,
such as the Bose-Hubbard model [81], as suggested in Ref. [82]. For a condensate
confined in the optical potential Eq. (1.64), with an additional harmonic trap
U(r), the spinless Bose-Hubbard Hamiltonian in 2D can be written as [83]

HBH = H0 +
U

2

∑

m,n

n̂m,n(n̂m,n − 1) +
∑

m,n

εm,nn̂m,n (1.66)

where U ∝ g is the on-site interaction strength and εm,n ∝ U(rm,n) is the
energy offset due to the harmonic trap. Futhermore, n̂m,n = â†m,nâm,n denotes

the number operator for site (m,n) and â†m,n (âm,n) is the bosonic creation
(destruction) operator for that site. Finally, the kinetic part

H0 = −J
∑

m,n

(
â†m+1,nâm,n + â†m,n+1âm,n

)
+ H.c. (1.67)

can be diagonalized to yield the Bloch dispersion

E(k) = −2J [cos(kxb) + cos(kyb)] (1.68)

where the tunneling amplitude J is an exponentially decreasing function of V0 [83].
The characteristic tunneling energy scale is given by the bandwidth, which in this
case is 8J .

Hamiltonian Eq. (1.66) supports a zero-temperature quantum phase transi-
tion between a superfluid and a Mott-insulating phase, at a critical value of the
ratio U/J . This transition was experimentally observed for the case of a bosonic
BEC in a 3D optical lattice, as reported in Ref. [84]. Increasing the lattice depth
V0, the authors went from a gapless, superfluid regime dominated by the kinetic
term Eq. (1.67) to a gapped Mott-insulator state, where the atoms are localized
and the on-site interaction term in Eq. (1.66) is dominant.

1.7 Harper-Hofstadter model

In Sec. 1.6 we introduced the quantized Bloch bands, characterising particles in
a periodic potential. A similar quantization also occurs in the case of a charged
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particle moving perpendicular to a constant uniform magnetic field, and the
allowed energy bands are called Landau levels [85]. In a magnetic field B = Bẑ,
the relevant energy and length scales for a particle with charge e and mass m are
set by the cyclotron frequency ωc = eB/m and magnetic length lm =

√
~/eB,

respectively. In this Section we want to explore the fate of the Bloch bands in
presence of a magnetic field. Alternatively, one could also start from a Landau
quantized system and perturb it via a weak periodic potential [86, 87], the two
approaches having distinct validity ranges.

One of the simplest TB models for Bloch electrons in uniform magnetic fields
is the Harper-Hofstadter model [88, 89]. Its relevant dimensionless parameter is
the ratio of flux Φ through a lattice cell to one Dirac flux quantum17 Φ0 = h/e

α =
Φ

Φ0
=
eBb2

h
(1.69)

Physically, α reflects18 the commensurability of the lattice period b and the mag-
netic length lm, as it can be recast in the form α = 1

2π (b/lm)
2
. The resulting

single-particle energy spectrum of the model depends on the rationality of α. If
α = p/q, for p and q co-prime integers, the Bloch band splits into q distinct
magnetic subbands. For α irrational, the spectrum consists instead of an infinite
number of energy levels, forming a Cantor set. The union of all allowed energies
as a function of α forms a self-similar fractal, shown in Fig. 1.5 and known as
Hofstadter’s butterfly [89]. In the continuum limit (b→ 0, with fixed B), α� 1
and the bands group into clusters that can be identified with the Landau fan
predicted in the absence of a lattice potential.

Solid-state experiments in the Hofstadter regime are notoriously difficult,
since the inter-atomic spacing of a crystal lattice is a few Ångströms, and achiev-
ing a comparable magnetic length would require a field of about 104 Tesla. Sig-
natures of the Hofstadter bands have instead been seen in artificial superlattices
with periodicities of tens of nanometers [90, 91]. In the context of neutral ul-
tracold atoms, synthetic gauge potentials paved the way for the exploration of
similar physics [39, 40]. For instance, rotating a harmonically trapped condensate
with a high angular velocity (comparable to the radial trap frequency) allowed
BEC experiments [92] to enter the lowest Landau level (LLL) regime. Rotating
2D optical lattices have also been realized [93], but the first implementation of the
Harper-Hofstadter (HH) model with ultracold atoms [94, 95] employed a different
method [40] of generating the artificial magnetic field, namely laser-assisted tun-
neling [96] based on a linear superlattice potential [97]. In a nutshell, tunneling
between lattice sites required atoms to absorb and emit photons produced by
external lasers. The interaction with said lasers generated a net phase change
equivalent to the flux of a magnetic field. The total phase accumulated by an
atom when performing a loop around a lattice cell (plaquette) was ∼ π/2 in these
experiments.

17As opposed to the superconducting flux quantum of Sec. 1.5.
18Not to be confused with the atomic polarizability, also denoted by α.
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Figure 1.5: Hofstadter’s butterfly, representing the internal structure of the lowest
Bloch band in a uniform magnetic field. For rational values of α = p/q, the
spectrum has q magnetic subbands, which become increasingly narrow as q gets
larger. Adapted from Ref. [89].

In quantum mechanics, the phase of the wavefunction of a charged particle
moving between positions r1 and r2 is changed by the presence of a magnetic
field B = ∇×A by [76]

φ12 =
e

~

∫ r2

r1

dr ·A(r) (1.70)

where the integral is taken along an oriented path from point “1” to point “2”.
Therefore, φ21 = −φ12 and, if we consider a smooth closed integration contour C
instead of two separate points, the total phase change (or Aharonov-Bohm phase)
along C is

φC =
e

~

∫

S
d2r ·∇×A(r) = 2π

ΦB
Φ0

(1.71)

where ΦB is the magnetic flux through a smooth surface S bounded by the curve
C with positive orientation, according to Stoke’s theorem.

On the 2D square lattice in Fig. 1.6, one can define the magnetic phases
φm,n =

(
φxm,n, φ

y
m,n

)
along the x̂ and ŷ directions in a similar manner, as

φxm,n =
e

~

∫ rm+1,n

rm,n

dr ·A(r) φym,n =
e

~

∫ rm,n+1

rm,n

dr ·A(r) (1.72)
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Figure 1.6: 2D square lattice pierced by a homogeneous static magnetic field
B = Bẑ. The lattice constant is b, and the curved arrows indicate the field-
induced hopping phases.

where the integrals are now taken along the links joining neighbouring sites.
Using Eq. (1.71), the flux Φ through a plaquette can be related to the total phase
φ� accumulated on a contour enclosing the plaquette in a counterclockwise sense

φ� ≡
∑

	�

φm,n = φxm,n + φym+1,n − φxm,n+1 − φym,n = 2πα (1.73)

Note that φ� is gauge-independent, unlike the Peierls phases φm,n.
To obtain the HH Hamiltonian, we introduce a static uniform magnetic field

into the single-band Bose-Hubbard model Eq. (1.66) of Sec. 1.6. We follow Hof-
stadter’s original treatment, and neglect on-site interactions19, as well as the
harmonic trapping. The kinetic term Eq. (1.67) is then modified according to
Peierls’ substitution [99] to include the hopping phases φm,n

H0 = −J
∑

m,n

(
eiφ

x
m,n â†m+1,nâm,n + eiφ

y
m,n â†m,n+1âm,n

)
+ H.c. (1.74)

These phases act to “frustrate” the hopping, such that for noninteger α it is
impossible to minimize the kinetic energy simultaneously on all lattice links [100].
The Hamiltonian is no longer invariant under translations by a single lattice site
in any direction, because fixing a gauge for the vector potential A(r) reduces
the physical symmetry of the lattice. In fact, it can be shown [101] that a
translation of A is equivalent to a gauge transformation, suggesting that new
translation operators that would commute with Eq. (1.74) can be constructed as
a combination of translation and gauge transformation.

19For a treatment that includes interactions in the Bogoliubov approximation, see Ref. [98].
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We define the magnetic translation operators (MTOs) [102, 103] as

T̂x =
∑

m,n

â†m+1,nâm,ne
iθxm,n T̂y =

∑

m,n

â†m,n+1âm,ne
iθym,n (1.75)

where the phases θm,n are to be determined by imposing
[
T̂ ,H0

]
= 0, leading

to [104]

θxm,n = φxm,n + 2παn θym,n = φym,n − 2παm (1.76)

While the specific form of the MTOs depends on the choice of gauge, their com-
mutator is gauge independent

T̂xT̂y = T̂yT̂xe
i2πα (1.77)

and vanishes only if α is an integer, a situation equivalent to the zero-field case.
In order to proceed, we point out that Eq. (1.77) has a transparent physical
interpretation. If we act on the single-particle state |m,n〉 = â†m,n|0〉

T̂ †y T̂
†
x T̂yT̂x|m,n〉 = e−i2πα|m,n〉 (1.78)

we see that performing a counterclockwise loop around a unit cell results in the
accumulation of a phase proportional to the flux inside the cell. This can be
generalized to a macrocell containing r × s original lattice cells, to deduce that

T̂ rx T̂
s
y = T̂ sy T̂

r
xe
i(rs)2πα (1.79)

For α = p/q the commutator
[
T̂ rx , T̂

s
y

]
vanishes if p(rs)/q is an integer. The

smallest possible macrocell is given by rs = q and is called the magnetic unit
cell. For this choice of unit cell, {T̂ rx , T̂ sy ,H0} form a complete set of commut-
ing operators, so we can find simultaneous eigenstates, labeled by the quasi-
momentum ~k0 which is now restricted to the magnetic Brillouin zone (MBZ)(
− π
rb ,

π
rb

)
×
(
− π
sb ,

π
sb

)
.

To obtain the spectrum of H0, we need to solve its associated Schrödinger
equation, H0|ψ〉 = E|ψ〉. We expand the eigenstates |ψ〉 in the single-particle
basis |ψ〉 =

∑
m,n ψm,n|m,n〉 and obtain an equation for the coefficients ψm,n

− J
(
e−iφ

x
m,nψm+1,n + eiφ

x
m−1,nψm−1,n

+ e−iφ
y
m,nψm,n+1 + eiφ

y
m,n−1ψm,n−1

)
= Eψm,n (1.80)

We fix the Landau gauge A(x, y) = Bxŷ for simplicity, so φm,n = (0, 2παm) and
we choose the magnetic unit cell20 r×s = q×1, for which the commuting MTOs

20In the symmetric gauge, the magnetic unit cell is larger, containing 2q × 2q sites.
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Figure 1.7: Top panels: Single-particle energy spectrum (left) En(k0
x = 0, ky)

of the HH Hamiltonian Eq. (1.74) for α = 1/7 and dispersion of the two lowest
bands, E0(k) (middle) and E1(k) (right) in (part of) the MBZ. Bottom panel:
Energy gap (continuous line) ∆E = 〈E1(k)〉k − 〈E0(k)〉k (here 〈·〉k denotes an
average over the MBZ) and bandwidth of E0(k) (dashed line, ×10) for p = 1.
The dotted vertical line marks the location of the q = 7 case shown above.

read

T̂ qx =
∑

m,n

â†m+q,nâm,n T̂y =
∑

m,n

â†m,n+1âm,n (1.81)

justifying the plane wave ansatz21 ψm,n = eikynbeik
0
xmbψm subject to the periodic

boundary conditions ψm+q = ψm. Substituting this ansatz into Eq. (1.80) yields
the Harper equation [105]

−J
[
e−ik

0
xbψm−1 + 2 cos (kyb− 2παm)ψm + eik

0
xbψm+1

]
= Eψm (1.82)

Calculating the single-particle spectrum of Eq. (1.74) is therefore equivalent to

solving the eigenvalue equation
∑q−1
m′=0Hmm′ψm′ = Eψm, m = 0, . . . , q − 1 for

the q × q matrix H defined as22

Hmm′(k
0
x, ky) = −J ×





e−ik
0
xb if m′ = m− 1 mod q

2 cos (kyb− 2παm) if m′ = m

eik
0
xb if m′ = m+ 1 mod q

0 otherwise

(1.83)

21Here ky is defined in the full BZ.
22If q = 2, m+ 1 mod q = m− 1 mod q and H01 = H10 = −2J cos(k0xb).
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For integer α we recover the lowest Bloch band Eq. (1.68), while for α = p/q this
band splits into q bands with dispersion En(k0

x, ky), n = 0, . . . , q − 1.

In the top-left panel of Fig. 1.7 we show an example of the spectrum computed
by diagonalizing H for α = 1/7. The E = 0 level is at the centre of the middle
band, and there are q − 1 gaps separating the bands. For even values of q, the
spectrum is symmetric with respect to E = 0 and the two central bands touch
at zero energy. Around these degeneracy points, the dispersion is linear [106],
while in all other cases it is quadratic near its minimum. The α = 1/2 case
is particularly interesting by analogy to graphene-related physics [107], as there
are two inequivalent “Dirac points” and the Hamiltonian preserves time-reversal
symmetry. Inspecting the middle and right panels we note that, despite the
reduced symmetry of H0, the dispersion has the full C4 rotational symmetry
of the underlying square lattice. One can formally define rotation and reflection
operators which, together with the MTOs, constitute the full projective symmetry
group [108]. The bottom panel of Fig. 1.7 shows the evolution of the lowest energy
gap ∆E, as well as the bandwidth BW of the lowest band as function of q (for
the case α = 1/q). The lowest band gets flatter, as the continuum (q → ∞)
LLL eigenstates are the solutions of the lowest band of the HH model [104], and
∆E decreases like ∼ 1/q, as the number of gaps is ∼ q − 1 (excluding the band
bottom and band top).

The energy bands of the HH model are topologically nontrivial, as charac-
terized by their non-zero Chern numbers – topological invariants that are linked
to the quantization of the Hall conductivity in the integer quantum Hall (QH)
effect [109]. In fact, solutions of the Harper equation Eq. (1.82) were also stud-
ied in connection with the QH effect [106]. We make use of these topological
properties in Chapter 5, where we consider the HH model in the presence of an
external harmonic trap in a dissipative system.

1.A Conservation laws for the GP field

In this Appendix we use (classical) field theory to derive the conservation laws
associated with the time-dependent Gross-Pitaevskii Eq. (1.7). We start by re-
casting the TDGP using Einstein’s summation convention, with the notation
x ≡ (x1, x2, x3) and ∂k ≡ ∂

∂xk
(k = 1, 2, 3)

i~∂tφ0(x, t) =

[
− ~2

2m
∂k∂k + U(x, t) + gN0|φ0(x, t)|2

]
φ0(x, t) (1.84)

This equation can be deduced by extremalization of the action S =
∫
dt
∫
dxL,

where the Lagrangian density L = L[φ0, ∂φ0, φ
?
0, ∂φ

?
0,x, t] is given by

L = −N0

[
~ Im (φ?0∂tφ0) +

~2

2m
∂kφ0∂kφ

?
0 + U |φ0|2 +

g

2
N0|φ0|4

]
(1.85)
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For compactness, let x4 = ict,23 and we can define the canonical energy-momentum
tensor [110], following the usual field-theory prescription [111]

Tµν = −∂νφ0
∂L

∂(∂µφ0)
− ∂νφ?0

∂L

∂(∂µφ?0)
+ Lδµν (1.86)

where the indices µ, ν run from 1 to 4. As the complex scalar field φ?0 (and
φ0) satisfy the Euler-Lagrange equations [112] resulting in Eq. (1.84) (and its
complex conjugate), we have

∂µTµν = ∂νL (1.87)

from which energy and momentum conservation immediately follow.24 To see
this explicitly, we split the temporal and spatial parts of Eq. (1.87) to obtain

∂tT44 + ic∂kTk4 = ∂tL (1.88)

∂tT4l + ic∂kTkl = ic∂lL (1.89)

Direct subsitution into Eq. (1.86) shows that T44 = −H, where the energy density
H is given by

H = N0

(
~2

2m
∂kφ0∂kφ

?
0 + U |φ0|2 +

g

2
N0|φ0|4

)
(1.90)

while Tk4 = i
cSk, with the energy flux density

Sk = −N0~2

m
Re (∂tφ

?
0∂kφ0) (1.91)

Regarding Eq. (1.89), we get T4l = icJl, with the mass current density (compare
to Eq. (1.51))

Jl = N0~ Im (φ?0∂lφ0) (1.92)

and the momentum flux density tensor Πkl ≡ Tkl

Πkl =
N0~2

m
Re (∂lφ

?
0∂kφ0) + δkl

(
g

2
N2

0 |φ0|4 −
N0~2

4m
∂i∂i|φ0|2

)
(1.93)

Combining all the above, one can rewrite Eq. (1.87) as

∂tH + ∂kSk = N0|φ0|2∂tU (1.94)

∂tJl + ∂kΠkl = −N0|φ0|2∂lU (1.95)

23c is the speed of light, but it is just a constant for our purposes, and will drop out from all
final results.

24Conservation of angular momentum imposes the additional requirement that Tµν = Tνµ.



50 Chapter 1. Ultracold atomic gases

We now focus on Eq. (1.95), which shows momentum conservation. For a more
transparent physical interpretation, one can make use of the Madelung transfor-
mation Eq. (1.50) and integrate over a volume V , obtaining

∂tPl +

∮

S

Πkln̂kdS = −
∫

V

ρ∂lUdV (1.96)

where we made use of the divergence theorem for tensor fields [113] in order
to express the volume integral as an integral over the surface S which encloses
V . Here n̂ is the outward-pointing unit normal to S at each point, and we also
introduced the total momentum of the field, P = m

∫
V
ρv dV (with v the velocity

Eq. (1.53)). The hydrodynamic form of the momentum flux density then reads

Πkl =
~2

4mρ
∂kρ∂lρ+mρvkvl + pδkl (1.97)

with the pressure p ≡ g
2ρ

2− ~2

4m∇2ρ. We can now write Eq. (1.96) in vector form

∫

V

ρ∇UdV = −
∮

S

[
pn̂ +mρv (v · n̂) +

~2

4mρ
∇ρ (∇ρ · n̂)

]
dS − ∂tP (1.98)

and see that the vector between square brackets is the amount of momentum per
unit time and area “flowing” through a surface orthogonal to n̂.

If we now consider a stationary regime (so that the last term of Eq. (1.98)
drops out), and assume the potential U describes some fixed obstacle (such as a
cylinder) inside V , then by definition [63] the “drag” force acting on a surface
element of the obstacle is the momentum flux though this element. The total
force, of course, will be given by the surface integral of the momentum flux,
or equivalently, by the volume integral of the potential gradient in Eq. (1.98).
While in conservative systems this drag is caused by pressure gradients across
the obstacle [114], nonconservative ones such as the resonantly pumped polariton
fluid of Chapter 3 also have a viscous contribution to the momentum flux tensor,
giving rise to Navier-Stokes-type physics.



Chapter 2

Microcavity exciton-polaritons

In Chapter 1 we have seen, among other things, that interactions are essential for
the appearance of superfluidity, and the existence of a BEC is not sufficient. We
now want to explore similar physics in the context of nonlinear optical systems, as
their nonlinear polarization is able to mediate appreciable interactions between
photons [115]. One way to achieve the strong interactions necessary for collective
fluid-like behavior of the many-photon system is by coupling the photons with
matter degrees of freedom, resulting in new quasiparticles called polaritons [116].

The connection between BEC and spontaneous coherence effects in nonlin-
ear optical systems became apparent starting with the experiments on exciton-
polaritons in semiconductor microcavities [7, 13, 16, 117]. However, the steady
state in such devices typically results from a dynamical balance between driv-
ing and dissipation, in contrast to the thermal equilibrium achieved in ultracold
atomic gases [2].

In this Chapter we review the physics of microcavity exciton polaritons, with
an emphasis on their hydrodynamics properties, and in particular the new effects
that their non-equilibrium nature introduces.

This Chapter is organized as follows: we start from a microscopic description
of a semiconductor microcavity (Sec. 2.1) in terms of electrons, holes and cavity
photons (Sec. 2.2), before switching to a higher level weakly-interacting Bose
model for polaritons in Sections 2.3 and 2.4. We discuss various ways of pumping
the system, as well as the important roles played by decay (Sec. 2.5) and disorder
(Sec. 2.6), leading to a driven-dissipative Gross-Pitaevskii equation at the mean-
field level (Sec. 2.7). We investigate the optical limiter and bistable regimes
of resonantly pumped polariton condensates, by means of a single-state (pump
only) ansatz (Sec. 2.8) for the polaritonic GP equation. Finally, we consider a
three-state solution, the optical parametric oscillator regime (Sec. 2.9) obtained
by parametric scattering of pump polaritons into the signal and idler states.
In Section 2.9, we also review some superfluid-related phenomena in an OPO
context, such as quantized vortices, and the U(1) symmetry breaking resulting
in a Goldstone mode of the OPO Bogoliubov spectrum.
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Figure 2.1: Pictorial representation of microcavity polaritons, as electron-hole
pairs (excitons) inside a semiconductor quantum well (QW), coupled with the
photons trapped by the dielectric Bragg mirrors of the cavity. Momentum con-
servation dictates that a cavity field component of momentum k must decay into
external radiation of frequency ω, emitted at an angle θ satisfying kc = ω sin θ.
From Ref. [7].

2.1 Model system

Consider the following (simplified) physical system, at zero temperature: we have
an optical planar microcavity containing photons confined along the growth di-
rection (say z) by its (identical) metalic mirrors, separated by a distance lz. At
position zQW, the cavity contains a 2D quantum well (QW), which is a thin semi-
conductor layer sandwitched in between another alloy acting as a barrier. The
setup is shown in Fig. 2.1 (for an in-depth introduction to the physics of semicon-
ductor microcavities, see Ref. [6]). The photons create electron-hole hydrogenlike
bound pairs (excitons) confined by the barrier inside the QW. Exactly describing
the system of electrons, holes and photons, taking into account their Coulomb
interaction and the disorder created by defects inside the QW, as well as imper-
fections present in the cavity mirrors is a daunting task that would provide little
physical insight into this system. We therefore use a series of approximations
and construct an effective theory that is more physical.

2.2 Microscopic description

We start by writing down the kinetic energy of the cavity photons

HC =
∑

k

ωC(k)a†kak (2.1)
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where we’ve made use of the translational symmetry of the problem in the (x, y)

plane and labeled the bosonic creation (annihilation) operators a†k (ak) by the in-
plane momentum k. These operators satisfy the standard commutation relations

[
ak, a

†
k′

]
= δk,k′ (2.2)

[ak, ak′ ] =
[
a†k, a

†
k′

]
= 0 (2.3)

The confinement along the z direction leads to the quantization of the photon
momentum kz = πN/lz, with N = 1, 2, . . . indexing the longitudinal modes.
Fig. 2.1 depicts the photonic field corresponding to the N = 5 mode as a standing
wave, representing the measurable electric field inside the cavity. This field can be
expressed in terms of photonic operators by E(k, z)ak+ H.c., where the photon
mode wavefunction E(k, z) has the sinusoidal shape [6]

E(k, z) ∝
√
ωC(k)/lz sin (kzz) (2.4)

The cavity photon dispersion for each of these modes is therefore ωC(k) =
c/n
√
k2 + k2

z , with c/n the speed of light in the semiconductor. Expanding the
square root for k � kz, one gets ωC(k) ≈ c/nkz + k2/(2mC). We see that cavity
photons, as opposed to free-space photons, have a quadratic dispersion with an
effective mass mC = nkz/c. For typical cavities used in experiments, mC is of
the order of 10−5 (free) electron masses m0

e (see Tab. 2.1).

We now turn our attention to the semiconductor QW. For simplicity, consider
a spin-polarized direct bandgap semiconductor such as GaAs, so that we can ne-
glect additional spin degrees of freedom. We further assume that the dispersions
of single particle states in the conduction and valence bands have the quadratic
form εck = εg/2 + k2/(2me) and εvk = −εg/2 − k2/(2mh), with εg the semicon-
ductor bandgap and me and mh the effective masses for electrons and (heavy)
holes. Excitons have a typical “extension” λX = ε

2µe2 (see Tab. 2.1 for typical

values for a GaAs-based microcavity) called the (2D) exciton Bohr radius, with ε
the static dielectric constant, e the electron charge and µ−1 = m−1

e +m−1
h their

reduced mass. Their binding energy is called the exciton Rydberg, defined as

RyX = e2

ελX
(see Tab. 2.1).

We further define c†k and vk as the operators which create an electron in the
empty conduction band, respectively a hole in the filled valence band, and which
obey the Fermi anticommutation rules

{
ck, c

†
k′

}
= δk,k′ (2.5)

{ck, ck′} =
{
c†k, c

†
k′

}
= 0 (2.6)

and similar for vk. We can therefore write the electronic Hamiltonian in terms
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of these new operators as [118]

Hel =
∑

k

(
εckc
†
kck + εvkv

†
kvk

)
+

1

2

∑

q

Vq
(
ρeqρ

e
−q + ρhqρ

h
−q − 2ρeqρ

h
−q
)

(2.7)

Here we have introduced the electron and hole densities, ρeq =
∑

k c
†
k+qck and

ρhq =
∑

k vkv
†
k+q. The matrix element of the Coulomb potential Vq = e2

2εAq
depends on cavity quantization area A, but this dependence drops out when
passing from discrete sums over states to integrals over the momenta k.

Finally, the last ingredient of our microscopic description concerns the inter-
action between electrons and photons. Making use of the dipole approximation,
we have

Hdipole =
∑

k,q

G(q)
(
a†qv
†
k+qck + H.c.

)
(2.8)

with the strength G(k) = eµcv

√
ωC(k)
2εAlz

written in the dipole gauge, where µcv is

the inter-band dipole matrix element.

2.3 Effective Hamiltonian

As mentioned in Sec. 2.1, we are interested in an approximate description of
the problem where we can consider the excitons as fundamental quasiparticle
excitations from the ground state of the semiconductor and treat the Coulomb
term in Eq. (2.7) as an effective exciton-exciton interaction. We then couple
the resulting excitons to light, and obtain the so-called weakly interacting boson
model for polaritons. The name stems from the fact that, at moderate electron-
hole densities, such that the inter-exciton distance is much larger than λX , one
can assume excitons to behave esentially as (composite) bosons [5], and therefore

describe them using the Bose creation and annihilation operators b†k and bk.
Making an Usui transformation [119] and truncating the interaction terms at
fourth order results in the following three-part effective Hamiltonian [12]

Heff = H0 +HXX +Hsat
XC (2.9)

where we have defined

H0 =
∑

k

(
a†k, b

†
k

)(ωC(k) ΩR
ΩR ωX(k)

)(
ak
bk

)
(2.10)

HXX =
1

2

∑

k,k′,q

Uk−k′,qb
†
k+qb

†
k′−qbk′bk (2.11)

Hsat
XC = − ΩR

ρsatA

∑

k,k′,q

(
b†k′−qb

†
k+qbkak′ + H.c.

)
(2.12)
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H0 contains the kinetic energy of the excitons and cavity photons, as well as
their harmonic coupling, ie. the conversion of an exciton to a cavity photon at
the Rabi frequency ΩR, which depends on the overlap between the wavefunctions
of the exciton and photon through the oscillator strength surface density f2D of
the excitonic transition

ΩR ∝
E(zQW)

Emax

√
f2DωC(0)/lz (2.13)

where Emax is the maximum amplitude of the cavity photon electric field, at
one of its antinodes from Eq. (2.4). It is worth noting that both Eq. (2.8) and
Eq. (2.10) make use of the rotating-wave approximation, neglecting antiresonant

terms which do not conserve the number of excitations, such as bkak and b†ka
†
k.

This is justified so long as ΩR � ωC(0), ωX(0), which is normally the case,
as can be seen in Tab. 2.1, which reports typical parameters of a GaAs-based
microcavity with embedded QWs.

Eq. (2.10) can be diagonalized by means of a unitary transformation of the
form [116] (

pk
uk

)
=

(
Xk Ck
−Ck Xk

)(
bk
ak

)
(2.14)

The normal modes of H0 are called upper and lower polaritons (UP and LP) and
correspond to the Bose operators uk and pk, with eigenenergies

ωUP,LP(k) =
1

2
(ωC(k) + ωX(k))± 1

2

[
(ωC(k)− ωX(k))

2
+ 4Ω2

R

]1/2
(2.15)

where the ± signs refer to the UP and LP branches and the Hopfield coefficients
appearing in Eq. (2.14) are

Xk =

[
1 +

(
ΩR

ωLP(k)− ωC(k)

)2
]−1/2

(2.16)

Ck = −
[

1 +

(
ωLP(k)− ωC(k)

ΩR

)2
]−1/2

(2.17)

The two branches of the polaritonic dispersion relation are shown in Fig. 2.2, to-
gether with the dispersions of the cavity photons and excitons. One can therefore
think of polaritons as being massive photons dressed by matter excitations.

Note that the 1s-exciton energy can be approximated as ωX(k) = ωX(0)+ k2

2M ,
with the exciton mass M = me + mh of the order of the electron mass and
ωX(0) = εg−RyX . Since, as we have already noted, M is several orders of mag-
nitude larger than the cavity photon mass mC , one can in practice neglect the
momentum dependence of the excitonic dispersion, considering it as flat com-
pared to the cavity photon one. Furthermore, we can measure energies start-
ing from ωX(0) and denote the detuning between exciton and photon bands as
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Figure 2.2: Dispersion relation for the two polaritonic branches (UP, LP) as
a function of emission angle θ of photons outside the cavity, which is directly
related to the momentum k of polaritons inside the cavity. The exciton and
cavity photon dispersions are depicted with dashed (red) lines. Due to their light
mass, the polaritons have a very sharp dispersion compared to excitons. Also
note the typical anticrossing form characteristic of Hermitian coupling. From
Ref. [9].

δ ≡ ωC(0) − ωX(0). For zero detuning (δ = 0), the splitting between the two
polariton branches is 2ΩR. In order to tune δ in experiments, one tipically builds
the cavity mirrors with a wedge [120].

HXX quantifies the effective repulsive exciton-exciton interaction, with a mo-
mentum dependent strength Uk−k′,q that can be calculated from the Coulomb
exchange term in the Born approximation [121]. A further approximation that
one can make for wave vectors much smaller than λ−1

X is to reduce Uk−k′,q to

a contact potential gX ≡ 1
2U0,0 = 6e2λX

2Aε , as shown in Ref. [121]. As a result,
gX physically represents the interaction between two excitons in the same single-
particle momentum eigenstate |k〉.

Finally, the last term of Eq. (2.9), Hsat
XC, can be interpreted as a saturation

effect due to the Pauli exclusion principle underlying the fermionic character
of the excitons [122]. The exciton saturation density ρsat ∼ 7

16πλ2
X

generally

depends on the specific shape of the internal wavefunction of the exciton [123].
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For the problems we will be treating in the remainder of this manuscript it can
be considered large enough to justify neglecting this anharmonic contribution to
the total Hamiltonian Eq. (2.9) (see Tab. 2.1).

Before concluding this Section, one should mention the validity limitations of
the weakly interacting boson model for polaritons reviewed here. Its derivation
implies an expansion of the original fermionic operators of Eq. (2.7) in powers of
bosonic operators, having as small parameter the number of excitons per Bohr
radius λX . Truncating this series at fourth order results in an upper bound on
the exciton density of around 1/λ2

X . At higher densities, an electron-hole plasma-
like state is formed, with a a qualitatively different behaviour [124]. We see that
this model is particularly useful for the case when the dominant interaction is
the Coulomb repulsion between the excitons.

2.4 Lower polaritons

Assuming the Rabi energy ΩR to dominate over the kinetic and interaction en-
ergies we can neglect the upper polaritons and project Eq. (2.9) on the basis of
lower-polariton states only. Employing the approximations discussed above, we
obtain the lower-polariton Hamiltonian

HLP =
∑

k

ωLP(k)p†kpk +
∑

k,k′,q

V eff
k,k′,q p

†
k+qp

†
k′−qpkpk′ (2.18)

where the strength of the repulsive interaction between lower polaritons now
depends on in-plane momentum through the Hopfield coefficients1

V eff
k,k′,q = gXXk+qXk′−qXkXk′ (2.19)

This effective interaction, originating from the binary Coulomb scattering of the
excitons, is the one responsible for the collective behaviour of the polaritons, and
in particular superfluid hydrodynamics, an aspect which we will explore in the
following two Chapters.

Physically, the quantities |Xk|2 and |Ck|2 are the excitonic and photonic frac-
tions of the lower polariton mode and the effective mass of the lower polaritons,
mLP, can be computed from the curvature of their dispersion Eq. (2.15) by

mLP(k) =

[
d2ωLP(k)

dk2

]−1

(2.20)

which at normal incidence k = 0 reduces to

mLP = 2mC

[
1− δ/

√
δ2 + 4Ω2

R

]−1

(2.21)

1The interaction strength gX can usually be rescaled to 1 by a simple transformation.
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if we neglect the flat exciton dispersion in the limit M � mC . For zero detuning,
we see that mLP = 2mC and the light and matter content of lower polaritons are
each equal to 1/2.

As long as the interesting physics is limited to small (compared to
√
mLPΩR)

wavevectors k, close to the bottom of the LP branch, one can safely approximate
the LP dispersion as being parabolic, by expanding Eq. (2.15) in a Taylor series
around k = 0 and truncating at second order. We obtain the expression

ωLP(k) ' ωLP(0) +
k2

2mLP
(2.22)

with an effective mass given by Eq. (2.21). In practice, many interesting exper-
imental conditions can be adequately described by limiting ourselves to the LP
branch with a quadratic dispersion.

2.5 Pumping and dissipation

We have so far assumed that the mirrors at the two ends of the optical cavity
in Fig. 2.1 are perfect. In reality of course, this is not the case, and photons
continuously escape from the cavity. In other words, decay is a built-in feature
of this system and, rather than being a hindrance, it is actually useful as it
allows one to extract information about the system. By looking at the near-field
(far-field) emission from the cavity, one can measure the real (momentum) space
photon density. The polaritonic spectrum can also be obtained in this way, as
a function of the angle θ of emission of a photon out of the cavity, as shown in
Fig. 2.2.

Since the system is lossy, one needs to drive it by means of an incoming
laser beam (called the pump), thus replenishing the photons and achieving a
stationary state. It is important to note, however, that this state should not
be confused with thermal equilibrium, as we are dealing with intrinsic out-of-
equilibrium physics here. Experiments have so far explored two main ways of
pumping these cavities: resonantly (coherent) and non-resonantly (incoherent).
We will not concern ourselves with the latter in this manuscript, but we point
the interested reader to the excelent review in Ref. [2] (and references therein)
for details.

Resonant pumping is done by means of a continuous-wave coherent laser beam
which is transmitted through one of the mirrors, at energies and momenta close to
the LP or UP. The coherence of the beam is then inherited by the polariton fluid.
As already mentioned, conservation of in-plane momentum and photon frequency
dictates that a laser wave coming in at an angle θ and frequency ω resonantly
excites a microcavity mode with wavevector k = ω

c sin(θ) (see Fig. 2.1). As
a result, we see that, besides balancing the losses, the pump can also be used
to tune the system to a particular desired state, injecting polaritons of a given
momentum and energy. In the following we will consider that the pumping is done
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quasi-resonantly, close to the bottom of the LP branch, by using a homogeneous
planewave pump of amplitude fp, wavevector kp, frequency ωp

F(r, t) = fp exp [i(kp · r − ωpt)] (2.23)

Depending on the pump parameters (specifically the pumping angle, which in
turn determines kp), one can distinguish two qualitatively different regimes: 1)
the pump-only state where the only stable configuration of the system is the mode
at kp and 2) the regime where polaritons at kp undergo stimulated scattering
and populate two other modes. Indeed, if the pumping angle is such that the
wavevector it excites lies above the inflection point of the LP dispersion, the
system can enter a new regime called optical parametric oscillator (see Sec. 2.9
for details about OPO).

To quantitatively account for the driving and decay, one can use the input-
output formalism that was extended to planar microcavities in Ref. [125]. As far
as photonic losses are concerned, we must first note that, apart from the radiative
decay channels already mentioned, there is also a nonradiative contribution due
to photon absorbtion inside the cavity. The total cavity photon decay rate γC
can therefore be expressed as the sum γrad

C + γnrad
C , where the radiative decay

rate is [2, 126]

γrad
C (k) =

ct2

2lz
(2.24)

for normal incidence, where c is the speed of light in vacuum and t the mirror
transmittivity.

The excitons from the QW are of course also subject to decay processes.
While their radiative decay can only take place via one of the cavity modes (due
to strong light-matter coupling2), we must include nonradiative recombination
processes as well as the additional dephasing [127] caused by interactions with
carriers inside the well and variations in well thickness. All this results in an
effective decay rate γX for excitons, which is generally weaker than the photonic
one quantified by γC . Typical values of both rates for GaAs-based microcavities
are shown in Tab. 2.1.

2.6 Disorder effects

It is noteworthy to remark that Hamiltonian Eq. (2.9) does not include any
disorder. We have already mentioned that there are two distinct disorder classes
in this problem. One is the excitonic disorder, acting on length scales of around
10 nanometers, which tipically affects the exciton oscillator strengths f2D, but
not the spatial polaritonic density. This type of disorder stems from variations
in the QW thickness as well as alloy imperfections and is typically not strong

2In general, one is in the strong coupling regime when ΩR is greater than the combined
losses in the system.
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enough to dissociate excitons. Neglecting excitonic disorder also implies that
each localized exciton state couples to precisely one extended photon state. The
resulting polaritons are then nothing but the coherent superposition of these
excitonic and photonic states.

Photonic disorder, on the other hand, acts on lengthscales `C = (mCΩR)−1/2

on the order of microns (see Tab. 2.1) and therefore can disrupt the polariton
density profile. Photonic disorder is normally caused by the presence of imper-
fections inherent to the growth process of the cavity mirrors. These defects (as
well as any layer mismatch) act as scattering centers for the polaritons, and can
be included in the Hamiltonian as an additional external scalar potential. The
simplest example is that of a spatially localized defect of strength gV located at
positon r0, which can be approximated by the potential

Ṽd(r) = gV δ
2(r − r0) (2.25)

To get a more quantitative idea of the physics involved, it is worth describing
realistic samples typically used in state-of-the-art experiments. Instead of simple
metallic mirrors, such microcavities are usually bound by a series of up to around
20 distributed Bragg reflectors (DBRs), which are alternating dielectric layers of
thickness λ/4 and different refractive indices, achieving a total reflectivity of over
99.9% [6].

Multiple CdTe (or GaAs, GaN, ZnO) QWs a few nanometers thick are placed
inside the cavity of length lz = 2λ ∼ 1 µm, at the antinodes (maxima) of the
photonic electric field, in order to maximize the coupling between excitons and
photons (see Eq. (2.13), which shows maximum coupling for E(zQW) = Emax).
When N distinct QWs are placed in the cavity at the electric field maxima, the
light-matter coupling ΩR is enhanced by a factor

√
N . Furthermore, the cavity

cutoff frequency ωC(0) is normally chosen close to the exciton frequency ωX(0).
Typical values of the relevant parameters for GaAs-based microcavities are

shown in Tab. 2.1.

2.7 Mean-field description

As it turns out, a useful approach for tackling the hydrodynamics-related prob-
lems that we will encounter in the following Chapters is the so-called mean-field
approximation. In the context of conservative, weakly interacting Bose gases
at thermal equilibrium, this approach leads to the celebrated Gross-Pitaevskii
equation [50], and in our case it will lead to its driven-dissipative counterpart.

If the Rabi energy is larger than the pump detuning from the bottom of the
LP branch ωp − ωLP(0) and also larger than the decay rates γX and γC , we
can start from the lower polariton Hamiltonian of Sec. 2.4. The idea is that
one replaces the lower polariton operators pk in Eq. (2.18) with their expectation
values ψk = 〈pk〉, where ψk is now interpreted as a classical field (order parameter
representing lower polariton polarization) describing the state with momentum
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QW Cavity

ε ' 13 ωC(0) ' ωX(0) ' 1.53 eV
me = 0.063m0

e δ ∈ [−10, 10] meV
mh = 0.3m0

e mC = 2.3× 10−5m0
e

λX ' 7 nm `C = 0.868 µm
RyX ' 17 meV ΩR ' 2.2 meV
γX ∼ µeV γC = 0.1 meV
gX ' 5× 10−3 meV(µm)2 A ∼ 104 µm2

ρsat ' 2842 (µm)−2 lz ∼ 1 µm

Table 2.1: Typical parameters of a GaAs-based microcavity with embedded QWs.
Left column shows properties of a QW, while the right one refers to the micro-
cavity. For these values, the ratio between saturation and Coulomb interaction
is small, ΩR/(gXρsat) ' 0.1. From Ref. [128].

label k. The mean-field equation for ψk is then obtained from the Heisenberg
equation of motion ṗk = i [HLP, pk] by replacing all the operators with their
corresponding expectation values. This mean-field treatment is of course exact
as far as the pumping and the losses are concerned, as well as for any two-
operator product such as the polariton kinetic energy. However, the effective
lower polariton interactions are approximated following an approach similar to
the one pioneered by Bogoliubov in the context of atomic BECs, namely

〈p†k1+k2−kpk2
pk1
〉 ≈ 〈pk1+k2−k〉?〈pk2

〉〈pk1
〉 (2.26)

We obtain a generalized Gross-Pitaevskii equation (GPE) in momentum space
under coherent driving, which includes losses and describes the time evolution of
ψk(t)

i∂tψk =

[
ωLP(k)− i

2
γk

]
ψk +

∑

k1,k2

gk,k1,k2
ψ?k1+k2−kψk2

ψk1

+ Ck

∑

q

CqVd(k − q)ψq + Ckfp exp (−iωpt)δk,kp (2.27)

Here γk = γX |Xk|2 + γC |Ck|2 is the (lower) polariton loss rate, Vd(k) is the
Fourier transform of the external potential Eq. (2.25) and the effective polariton-
polariton interaction strength is given by

gk,k1,k2 = gXXkX|k1+k2−k|Xk1Xk2 (2.28)

Going beyond the mean-field approximation to include quantum and thermal
fluctuations of the (quantum) field ψ̂k is not an easy task in general, see Ref. [2]
for some approaches such as using the semiclassical Wigner representation.
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In order to obtain the corresponding form of Eq. (2.27) in real-space, we
introduce the Fourier transform of the classical wavefunction ψk by means of3

ψ̃(r) =

∫
d2k

(2π)2
ψ(k) exp (ik · r) (2.29)

Knowing that Fourier transforms take multiplication to convolution, we immedi-
ately get the real-space equation for ψ̃(r, t)

i∂tψ̃(r) =

[
ωLP(−i∇)− i

2
γ(−i∇)

]
ψ̃(r)

+

∫
dr1,2,3 g̃(r1 − r, r − r2, r − r3)ψ̃?(r1)ψ̃(r2)ψ̃(r3)

+

∫
dr1,2 C̃(r − r1)C̃(r1 − r2)Ṽd(r1)ψ̃(r2) + C(kp)F(r, t) (2.30)

Note that the kinetic energy operator has a particular dependence on the gra-
dient instead of the usual Laplacian, reflecting the non-parabolic LP dispersion.
Furthermore, the nonlocal interaction term in the second line of Eq. (2.30) has
the form of the most general third order nonlinear term that one can come up
with, if g̃ were an arbitrary function. This freedom is somewhat restrained in
practice by the fact that g̃ is related to Eq. (2.28) by

g̃(r1, r2, r3) =

∫
dk1,2,3 g(k1,k2,k3) exp

[
i
∑3
n=1(kn · rn)

]
(2.31)

and we have also introduced the functions C̃(r), which are the Fourier trans-
forms of the Hopfield coefficients C(k). These coefficients do not have a very
pronounced momentum dependence, as in fact for δ = 0, X(k) is between 1/

√
2

and 1. If we neglect altogether the Hopfield coefficients in Eq. (2.30) and consider
the case of parabolic lower polariton dispersion, we finally obtain the real-space
driven-dissipative GPE in its simplified form

i∂tψ̃(r) =

[
ωLP(0)− ∇2

2mLP
− i

2
γ + Ṽd(r) + gX |ψ̃(r)|2

]
ψ̃(r) + F(r, t) (2.32)

Here we have also neglected the momentum dependence of the polariton loss rate,
justified by the fact that, at large momenta, the diminishing radiative width is
normally compensated by non-radiative broadening. To make a stronger con-
nection with nonlinear optics, we note that a similar equation holds for cavities
containing a nonlinear medium, with the role of gX being taken by the χ(3) sus-
ceptibility of the medium [129]. This equation allows for an ab-initio description
of the coherently pumped system, unlike the more complicated case of incoherent

3Replacing the discrete sums over k states by continuous integrals is justified in the limit of
a large system.
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pumping where one generally also needs a phenomenological description of the
various relaxation processes [9].

Before moving on, we note that one can also describe the dynamics of polari-
tons scattering against a defect using the two-component GPE [2, 130] for the
coupled exciton and cavity fields ψX,C(r, t):

i∂t

(
ψX
ψC

)
= Ĥ

(
ψX
ψC

)
+

(
0

F(r, t)

)
, (2.33)

where

Ĥ =

(
ωX(−i∇)− iγX2 + gX |ψX |2 ΩR

ΩR ωC(−i∇)− iγC2 + Ṽd

)
. (2.34)

Eq. (2.33) is usually solved numerically, as we shall see in Chapter 4.

2.8 Equation of state

Because we drive the system with the coherent plane-wave continuous pump
Eq. (2.23), we can look for stationary state solutions with similar oscillatory
behaviour

ψ(r, t) = ψpe
i(kp·r−ωpt) (2.35)

In absence of an external potential, inserting this ansatz into Eq. (2.27), we
obtain the equation of state for lower polaritons

[
ωp − ωpLP − gXX4

p |ψp|2 +
i

2
γp

]
ψp = Cpfp (2.36)

where we employ the simplified notation γp ≡ γ(kp), Cp ≡ C(kp), Xp ≡ X(kp)
and ωpLP ≡ ωLP(kp). One immediately notices that, unlike the case of the atomic
mean-field Eq. (1.28), the phase of the polariton field amplitude ψp is set by the
pump, therefore explicitly breaking the U(1) gauge symmetry associated with
global rotations of the condensate phase. This implies that, unlike the atomic
BECs, no Goldstone branch will be present in the polaritonic excitation spectrum.
Note also that the oscillation frequency of the condensate wavefunction is fixed
by the pump frequency ωp. In Chapter 3, we will compare the main features
of the quasiparticle excitation spectrum for polaritons to equilibrium systems
like cold atomic gases in the BEC regime. Furthermore, a locked phase clearly
prevents the formation of phase dislocations, such as vortices and solitons. For
this reason, it has been suggested [131] and experimentally realised [132] that the
defect can be located just outside the pump spot, leaving the condensate phase
unbound and allowing hydrodynamic nucleation of vortices, vortex-antivortex
pairs, arrays of vortices, and solitons to be observed when the fluid collides with
the extended defect. Similarly, nucleation of vortices in the wake of the obstacle
has been observed in pulsed experiments [133, 134].
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Figure 2.3: Pump energy blueshift of Eq. (2.37) as a function of pump laser
intensity in the optical limiter (left panel) and bistable (right panel) regimes.
The arrows in the right panel show the hysteretic jumps between the lower and
upper branches at different intensities, while the dotted middle branch is single-
mode unstable. The black dot marks a saddle node bifurcation. From Ref. [135].

The repulsive polaritonic interaction is responsible for a blueshift of the LP
dispersion ωpLP. Introducing the pump energy blueshift εp = gXX

2
p |ψp|2, we can

rewrite Eq. (2.36) in absolute value as

[(
ωp − ωpLP

γp
−X2

p

εp
γp

)2

+
1

4

]
εp
γp

= X4
p

Ip
γ3
p

(2.37)

where we have also defined the pump laser intensity Ip = gXC
2
p |fp|2/X2

p . One
can now distinguish two qualitatively different regimes, based on the value of
the bare pump detuning ωp − ωpLP. The first regime, called optical limiter is for

ωp − ωpLP ≤
√

3γp/2 and it is plotted in the left panel of Fig. 2.3. We see that
the pump blueshift increases monotonically with increasing pump power. The
increase is sublinear, as the blueshift moves the lower polariton dispersion out of
resonance with the pump.

The second regime ωp−ωpLP >
√

3γp/2, shown in the right panel of Fig. 2.3, is
called optical bistability and is no longer monotonic. The blueshift-intensity curve
has a characteric S-shape, and shows hysteresis: increasing the pump power,
we get to the first turning point (filled circle in the figure) where the blueshift
suddenly jumps from the low to the high branch, while the reverse process of
decreasing the pump power shows a jump at a second turning point on the S
curve. Defining an interaction-renormalized pump detuning ∆p ≡ ωp − (ωpLP +
X2
pεp), we see that this quantity is positive up to the second turning point on the

S curve, and then changes sign, becoming negative on the higher branch.
The middle branch of the S curve, with negative slope, is dynamically unsta-

ble, while the two turning points where the stable and unstable solutions meet
are called saddle node bifurcations. To see this, one must consider small pertur-
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Figure 2.4: The driving (pumping) of a swing by a person, using the standing
position, shown as an (albeit contrived) example of a degenerate parametric
amplifier. From Ref. [136].

bations of wave-vector k of the form

δψ(r, t) =
∑

k,ω

{
upe

i[(kp+δk)·r−(ωp+ω)t] + v?pe
i[(kp−δk)·r−(ωp−ω)t]

}
(2.38)

where δk ≡ k−kp. Substituting this into Eq. (2.27) and linearising with respect
to the amplitudes up and vp, we obtain an eigenvalue problem from which the
two (complex) eigenvalues ω can be determined in a straightforward manner.

Dynamical stability is then ensured when = [ω(k)] < 0 for any wave-vector k.
We can therefore distinguish two main types of instabilities, depending on the
value of δk: for δk = 0 (the degenerate case), the system shows a Kerr single-
mode (or pump-only) instability which only involves the pump wave-vector, while
the general case of δk 6= 0 implies a parametric instability, signaling the onset
of the optical parametric oscillator (OPO) regime. This regime involves two
separate modes (apart from the pump), namely the so-called signal and idler
states at wavevectors ks = k and ki = 2kp−k respectively, as we will discuss at
large in Sec. 2.9.

2.9 OPO regime

To understand why the OPO regime arises, one has to first look at the form
of the Heisenberg equation of motion Eq. (2.27). This equation describes the
coupled dynamics of an arbitrary state k, given an applied optical field which
excites polaritons with in-plane wavevector kp. As a result of polariton-polariton
interactions, the coherent occupation at generic wavevectors k1 and k2 can scatter
into k and k1 + k2 − k, a process one can represent as

{k1,k2} → {k,k1 + k2 − k} (2.39)
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As these states further scatter into others by the same matter wave-mixing mech-
anism, we get a cascade of so-called satellite states, with diminishing population.

Out of the multitude of possible scattering channels, we limit our description
to the one describing the process {kp,kp} → {k, 2kp−k}, which is precisely the
parametric scattering of two pump polaritons into the signal and idler states that
we just introduced in Sec. 2.8. As it turns out, due to the peculiar shape of the
lower polariton dispersion relation Eq. (2.15), this scattering process can occur
in a completely resonant way, with conservation of both in-plane momentum as
well as energy, expressed by the phase-matching conditions 2kp = ks + ki and
2ωp = ωs + ωi (we have introduced here the signal and idler frequencies). The
parametric scattering condition that has to be satisfied then reads

2ωLP(kp) = ωLP(ks) + ωLP(ki) (2.40)

We must further emphasize the importance of the unique form of the LP dis-
persion in Eq. (2.40), as it allows efficient parametric coupling on a relatively
broad range of pump momenta. Parametric scattering would not be possible for
particles with a quadratic dispersion: in the atomic case for instance, one must
employ the use of an optical lattice in order to deform the dispersion and promote
parametric amplification [137].

While this may all seem far-removed from everyday experience, we remind
the reader that parametric amplifiers and oscillators are commonly found in me-
chanical (as well as electronic) systems. For instance, one can consider a person
on a swing in the standing position, as shown in Fig. 2.4 (and described in de-
tail in Ref. [138]). In this particular example, we are dealing with a degenerate
parametric amplifier, as the signal and idler have the same frequency and are
represented by the swing. The person driving the swing then acts as the pump,
and one can see that his (or hers) up-down motion has a periodicity which is
twice that of the swing, therefore ωp = 2ωs in this case.

A schematic depiction of the polariton parametric scattering process with
the signal state located at zero momentum and the pump close to the inflection
point of the LP dispersion is shown in Fig. 2.5. It is clear that for a given signal
wavevector, Eq. (2.40) then uniquely determines the pump and idler states. The
fact that ks is close to 0 is not incidental, but was observed in multiple experi-
ments [139, 140] performed in the OPO regime, as well as numerical simulations
of the full GP equation [128]. An intuitive explanation was put forward [130, 141],
based on the interaction-induced blueshift of the LP dispersion.

We now turn our attention to the mechanism explaining the onset of the
parametric scattering instability in the simple case of the optical limiter regime
shown in the left panel of Fig. 2.3. As already mentioned, the polariton-polariton
repulsive interaction causes a blueshift of the LP dispersion proportional to the
pump mode population |ψp|2. This shift also affects the signal and idler frequen-
cies ωLP(ks,i), bringing them in resonance with the pump frequency ωp. The
pump population (and hence the shift) of the optical limiter is a monotonically
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Figure 2.5: Upper (UP) and lower (LP) polariton dispersions are shown as solid
lines, while the original exciton and cavity photon are represented by dashed
lines, as a function of the laser incidence angle θ. The filled circles represent
two pump polaritons being parametrically scattered into the signal (here at 0
angle) and idler states, shown as empty circles. The scattering process depicted
by the curved arrows is resonant, conserving both energy and momentum. From
Ref. [12].

increasing function of laser intensity, quantified by Eq. (2.37). As a result, there
is a certain minimum threshold intensity where the resonance starts and the
pump-only solution becomes unstable towards parametric scattering. Further
increasing the laser power, we hit an upper threshold, where the blueshift be-
comes too large and the resonance is lost, forbiding parametric oscillation. This
mechanism defines a certain window of pump intensities where the parametric
instability can arise, the region depicted by the dashed line in Fig. 2.6. Inside
this window, the pump-only solution still exists, but it is unstable towards OPO.

The simplest ansatz one can make for describing the OPO regime above
threshold is to consider the three separate states (signal, pump and idler), each
with its own population, wavevector and frequency, in the form [10, 130, 141, 142]

ψ(r, t) = ψse
i(ks·r−ωst) + ψpe

i(kp·r−ωpt) + ψie
i(ki·r−ωit) (2.41)

where energy and momentum conservation dictate that ωi = 2ωp − ωs and ki =
2kp − ks. As before, we insert this ansatz into Eq. (2.27) and we obtain three
coupled complex nonlinear equations for ψs,p,i which determine the dynamics of
the signal, pump and idler. It is important to note that these equations become
closed only if we neglect the multiple scattering processes mentioned at the start
of this Section and consider only the conversion of two pump polaritons into
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Figure 2.6: OPO pump (upper solid curve) and signal (lower curve, magnified
5 times) energy blueshifts in the optical limiter regime, as a function of pump
laser intensity. The dashed line is the pump blueshift in the pump-only solution
Eq. (2.37). The vertical dotted line marks the pump intensity used in Fig. 2.7.
From Ref. [29].

a signal and an idler polariton. We will not give the full form of these OPO
equations of state, but instead refer the reader to Ref. [135], where a complete
discussion of the oscillation threshold and ensuing dynamics is given. Fig. 2.6
shows a particular solution of the equations for the optical limiter case. One can
see the smooth growth of the signal population (and subsequent depletion of the
pump) inside the OPO (dashed) region. It is of course never implied that the
whole OPO window is dynamically stable, and in fact a stability analysis needs
to be performed by adding small fluctuations on top of the (now) three coupled
states, in a manner similar to Eq. (2.38), following Ref. [29]. The complete
treatment will be presented in Chapter 4.

Before moving on, it is worth noting that a limitation of the ansatz Eq. (2.41)
is that it does not allow solving the so-called “selection” problem of determining
the value of ks above threshold. As a result, this value has to be considered
as an input parameter to our problem. Futhermore, similarly to the pump-
only case and inherent in any mean-field approach, we are of course neglecting
any quantum fluctuations of the three macroscopically occupied modes. Last
but not least, we are also neglecting the so-called TE-TM (transverse electric
- transverse magnetic) splitting [143], which can act as an effective spin-orbit
interaction term [144]. This approximation allows one to work with a single spin
state, considering the circular polarization of the pump to be fully transmitted
to the signal and ider as well.

We now turn our attention to a separate discussion, concerning the phases of
the three OPO states. As before, the phase of the pump is fixed by the outside
laser, and now the sum of the signal and idler phases is given by the matching
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condition φs + φi = 2φp. Their phase difference however is a free parameter,
and as such it is spontaneously chosen by the system every time the threshold is
crossed. In summary, the OPO equations of motion for the three states posess a
U(1) symmetry, corresponding to a simultaneous and opposite phase rotation of
the signal and idler, that is

ψs → ψse
iφ

ψi → ψie
−iφ (2.42)

This intrinsic symmetry is spontaneously broken above threshold, a random value
of the phase of the signal (and hence idler) being selected at each realization of
the experiment.

We can thus see the onset of OPO as a phase transition in out-of-equilibrium
conditions, signaling the spontaneous macroscopic occupation of the signal and
idler states. Below threshold, the incoherent signal and idler emission starts be-
ing stimulated and then becomes coherent once the threshold is crossed. These
coherence properties were studied both experimentally [117] as well as theoreti-
cally, by means of quantum Monte Carlo methods [145]. The order parameter of
the transition is the matter polarization, the analog of magnetization in the ferro-
magnetic phase transition. At the critical point, noise fluctuations are amplified
and a macroscopic polarization is spontaneously created.

The phase transition can be first or second order, depending on the pump
parameters - both behaviors have been observed in experiments [16, 146, 147].
In the optical limiter case detailed above, both pump and signal are continuous
functions of the incident laser power, and the transition is second order as the
signal increases smoothly. In the pattern formation language, one clasifies the
associated bifurcation as being of the supercritical Hopf type. If one considers
the bistable pump regime of the right panel of Fig. 2.3 however, things get more
complicated, as the bifurcation can now be of the subcritical Hopf type and hence
the associated OPO initiates discontinuously [135].

It is relatively well known that in an infinite uniform two-dimensional equilib-
rium system, thermal fluctuations at any strictly nonzero temperature are strong
enough to destroy the fully ordered BEC state. The associated phase transition
in that case is instead described by the so-called Berezinskii-Kosterlitz-Thouless
(BKT) theory, and is driven by interactions as opposed to being a purely statis-
tical phenomenon. As the polariton system is out of equilibrium (and in practice
no experimental system is truly infinite anyway), the exact nature of the OPO
transition in this case has not yet been fully elucidated, although it seems that
BKT-like physics has been both predicted [148] and observed [149] under inco-
herent pumping.

The breaking of the U(1) symmetry in an atomic gas below the BEC criti-
cal point is related to the appearance of a soft Goldstone mode in the form of
zero sound. Similar physics arises below the Curie temperature in a ferromag-
net, where the magnon excitations (spin waves) are the corresponding Goldstone
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Figure 2.7: Real (left) and imaginary (right) parts of the Bogoliubov spectrum
of collective excitations on top of the OPO stationary state as a function of
∆k = k − ks,p,i. The chosen pump intensity is marked with a dotted line in
Fig. 2.6. The breaking of the U(1) symmetry corresponding to the simultaneous
phase rotation of the signal and idler is manifest in the presence of the Goldstone
mode G (solid heavy curve). From Ref. [29].

bosons due to the spontaneous breaking of the initial rotational symmetry. Since
the resonantly pumped polariton system above threshold spontaneously breaks
a U(1) symmetry, Goldtone’s theorem predicts a massless mode corresponding
in this case to a spatial twist of the signal-idler phases. Indeed, such a mode has
been identified in Ref. [29] by calculating the quasiparticle excitation spectrum on
top of the three-state OPO anzatz Eq. (2.41). The Bogoliubov spectrum in ques-
tion is shown in Fig. 2.7, and the Goldstone mode represented by the solid heavy
line labeled “G”. Note that both the real and imaginary parts of the frequency
of this gapless mode tend to zero in the long wavelength limit ∆k → 0. Close to
this point, the real part has a non-zero slope due to the finite wavevector of the
injected pump polaritons, while the imaginary part has a parabolic shape. This
means that, as opposed to the BEC case, a localized perturbation in the OPO
regime does not freely propagate as a sound wave. Instead, one should observe
a diffusive-like behaviour, where the localized signal-idler phase perturbation de-
cays and is then dragged along by the flow of the pump. Another important
difference compared to the BEC spectrum is the absence of a singularity of the
Goldstone branch around the ∆k = 0 point.

Further insight into OPO physics for realistic experimental conditions can be
gained by numerically solving the full 2-component GP equation (2.33) for the
coupled exciton and cavity photon fields, as first done in Ref. [150]. A similar
approach, reviewed in detail in Ref. [128], will be employed in Chapter 4, where
we study multicomponent superfluidity in the OPO regime. Using a continuous
wave pump with a top-hat profile, one injects polaritons at a specific wavevector,
close to the inflection point of the LP dispersion. Above a certain threshold pump
power, random numerical noise starts getting amplified and the OPO instability
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Figure 2.8: Top panels: Integrated photon emission intensities for the signal s
(red dots), pump p (blue squares) and idler i (green triangles) as a function of the
renormalized pump intensity (left) and real-space signal emission corresponding
to positions 1-4, including random photonic disorder, shown as contour lines
(right). Note the OPO phase transition is a gradual one, with the signal first
switching on in the center, increasing to maximum size and finally switching
off for large pump intensities. Middle panels: Photonic component of the OPO
spectrum (log scale) as a function of energy and momentum (left) and integrated
in momentum (right). Note that the emission is δ-like in energy. Bottom panels:
Full photonic emission (left) and filtered real-space emission of signal, pump and
idler (last 3 panels). Note the vertical interference fringes caused by the coherent
superposition of the 3 states. The arrows in the second panel indicate the complex
currents due to finite size effects. From Ref. [128].

sets in, populating the three states. After the system reaches a steady state, one
can obtain the time evolution of the photon and exciton fields ψC and ψX both in
real and momentum space. Since experiments measure the photonic component
of the polariton field, that is what is plotted in Fig. 2.8. Filtering in a narrow cone
in momentum (or equivalently, in energy), one can obtain separately the emission
of the signal, pump and idler states, while the energy-momentum spectrum can
be calculated as the discrete Fourier transform of the total photonic wavefunction
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recorded at equally spaced time-intervals.
Inspecting Fig. 2.8, we see that the threshold is a continuous one in this case,

with the OPO first switching on in a narrow region in the center of the system
and then extending to the size of the whole pump spot before finally surviving
only on its edge when pumping is increased even further. Interestingly, the OPO
transition is signaled by the appearance of a moving striped pattern in the po-
lariton density (see bottom left panel), spontaneously breaking the translational
symmetry of the system. This pattern is caused by the interference of the coher-
ent emission of the three states, and is similar to the Rayleigh-Bénard instability
in the field of fluid dynamics. The threshold point in the OPO case is where the
stimulated scattering rate exceeds the losses, while the Bénard cells form when
the temperature gradient (playing the role of pumping) exceeds the viscosity
(dissipation). In these simulations, the pump (and hence also signal and idler)
wavevectors are oriented along the x̂ direction, kp = (kp, 0), so the fringes appear
along the ŷ axis. They are however usually not visible in experiments, due to the
time integration of the photonic emission in most experimental setups. Seen in
this new light, the OPO phase transition has an associated Goldstone mode that
would correspond to a rigid translation of the spatial stripe pattern.

The photonic component of the OPO spectrum is shown in the middle pannel
of Fig. 2.8. Integrating the spectrum over all momenta, one sees that, as a result
of being in the steady state, the emission is δ-like in energy, while it is broadened
in momentum due to the finite size of the pump. The satellite states, equally
spaced in energy and less populated, are also visible in the middle left panel.
They are due to secondary scattering processes, from the signal/idler into the
pump and secondary-signal/secondary-idler, and so on.

Finally, the filtered emission from the signal, pump and idler states is shown
in the lower panels of Fig. 2.8. Since we are in the steady state, the density pro-
files are time-independent and the idler emission is less intense due to the smaller
radiative decay of polaritons at large momenta. One important difference from
cold atomic gases in the BEC regime is the presence of nonvanishing currents,
which can flow across the microcavity even in the ground state in a polariton sys-
tem. These currents can be seen in the second panel for the signal state, and are
due the complex interaction between nonlinearities, dissipation and parametric
gain. Note that we are not refering here to the uniform flow caused by the signal
being at finite momentum ks, as in fact this dominant current is substracted
from the plot.

While still on the topic of persistent currents, we can make the connection
to Sec. 1.5, and discuss superfluid-related phenomena in the OPO regime. A
prime example of this is the stability of quantized vortices, reported by San-
vitto and coworkers in Ref. [31]. They used a pulsed, narrow probe beam in
a Gauss-Laguerre state in order to imprint a finite angular momentum on the
OPO condensate previously created by means of a wide pump spot. In a similar
fashion to the rotating BEC experiments performed with ultracold gases, the
system responded by forming a quantized vortex, which eventually drifted out of
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Figure 2.9: Snapshots of the time evolution of the phase (upper row) and the
density (bottom row) of an OPO polariton condensate triggered by a pulsed
probe carrying a m = 1 vortex. From Ref. [31].

the condensate, due to the simply-connected geometry (see Fig. 2.9). The vortex
was visible in both the signal and idler state, and its lifetime was much longer
than the average polariton lifetime. In a similar direction, Ref. [151] presented a
theoretical study predicting the formation of spontaneous quantized vortices in
the OPO regime, provided the pump spot is spatially narrow. These vortices were
shown to drift to their stable equilibrium positions, caried by the nontrivial OPO
currents discussed in the previous paragraph. Further work by Tosi et al. [152]
investigated the appearance and dynamics of vortex-antivortex pairs created by
a pulsed probe, much narrower than the pump spot. It was shown that, while
both vortices and antivortices form along the edge of the probe laser, they form
at different relative positions, as determined by the steady-state currents. We
will deepen our investigation of OPO superfluidity in Chapter 4, where we look
at the flow of the signal, pump and idler states against a small defect. Finally, de-
parting somewhat from the OPO regime, it was shown in Ref. [153] that, despite
not strictly obeying the Landau criterion, the superfluid density of incoherently
pumped polaritons need not vanish. However, due to their nonequilibrium na-
ture, the normal fraction would remain finite even at zero temperature. Last but
not least, the same publication proposes using artificial gauge fields (generated by
applying a real magnetic field in an anti-Helmholtz configuration) for measuring
the superfluid and normal components of the system.
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Chapter 3

Drag in a coherently-driven polariton fluid

In a conservative quantum liquid flowing past a small defect, the Landau cri-
terion for superfluidity (presented in Sec. 1.4) links the onset of dissipation at
a critical fluid velocity with the shape of the fluid collective excitation spec-
trum [50]. In particular, for weakly interacting Bose gases, the dispersion of the
low-energy excitation modes being linear implies that the critical velocity for
superflow coincides with the speed of sound cs. Clearly, this is strictly correct
only for vanishingly small perturbations [59], while for a defect with finite size
and strength, the critical velocity can be smaller than cs [60, 75], due to vortex
creation by the macroscopic defect.

However, even for perturbatively weak defects, in out-of-equilibrium systems,
where the spectrum of excitations is complex, the validity of the Landau criterion
has to be questioned [28, 148, 154]. In the particular case of coherently driven
polaritons in the pump-only configuration, it has been predicted [155, 156], and
later observed [26], that scattering is suppressed at either strong enough pump
powers or small enough flow velocities (see Fig. 3.1). Yet, on closer scrutiny, it has
been shown that, despite the apparent validity of the Landau criterion, the system
always experiences a residual drag force, even in the limit of asymptotically large
densities [154] or small velocities. This result has been proven by numerically
solving the Gross-Pitaevskii equation describing the resonantly-driven polariton
system in presence of a non-perturbative extended defect. Here, the drag force
exerted by the defect on the fluid has been shown to display a smooth crossover
from the subsonic to the supersonic regime, similar to what it has been found
in the case of non-resonantly pumped polaritons [28]. In this Chapter, we find
an even richer phenomenology for the dependence of the drag force on the fluid
velocity and two different kinds of crossovers from the sub- to the supercritical
regime. Furthermore, we show that the origin of the residual drag force, which, in
agreement with Ref. [154], lies in the polariton lifetime only, can be demonstrated
even within a linear response approximation.

More specifically, we apply the linear response theory described in Sec. 1.3 for
the case of an equilibrium condensate and extended here to a driven-dissipative
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Figure 3.1: Experimental images of the real- (top row) and momentum- (bottom
row) space polariton density extracted from the near/far-field light emitted from
the cavity. The different columns correspond to increasing values of the polariton
density, from left to right. For the highest density, polariton superfluidity is
apparent as a suppression of the real-space modulation (panel III) accompanied
by the collapse of the Rayleigh scattering ring (panel VI). From Ref. [26].

fluid in order to analytically evaluate the drag force exerted by the coherently
driven polariton fluid in the pump-only configuration on a point-like defect. To
simplify the formalism, we restrict our analysis to the case of resonant pumping
close to the bottom of the lower polariton dispersion, where the dispersion is
quadratic. Here, the properties of the collective excitation spectrum have been
shown to be uniquely determined by three parameters only [156]: the fluid veloc-
ity vp, the interaction-renormalised pump detuning ∆p, and the polariton lifetime
γ. In particular, the sign of the detuning ∆p determines three qualitatively dif-
ferent types of spectra: linear for ∆p = 0, diffusive-like for ∆p > 0, and gapped
for ∆p < 0.

For both cases of linear and diffusive spectra, we find a qualitatively similar
behaviour of the drag force as a function of the fluid velocity vp: In particular, the
drag displays a crossover from a subsonic or superfluid regime — characterised
by the absence of quasiparticle excitations — to a supersonic regime — where
Cherenkov-like waves, similar to those of Sec. 1.4, are generated by the defect and
propagate into the fluid. The crossover becomes sharper for increasing polariton
lifetimes 1/γ and displays the typical threshold behaviour for γ → 0 with a critical
velocity given by the speed of sound of the linear regime, vc = cs, exactly as for
weakly interacting equilibrium superfluids (in the case of perturbatively weak
defects). This behaviour is similar to the one predicted for polariton superfluids
excited non-resonantly [28], where the spectrum in that case is diffusive-like.
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However, for gapped spectra at ∆p < 0, we find that the critical velocity gov-
erning the drag crossover exceeds the speed of sound, vc > cs, and we determine
an analytical expression of vc as a function of the detuning ∆p. Furthermore,
for γ → 0, the drag has a threshold-like behaviour qualitatively different from
the one of weakly interacting equilibrium superfluids, with the drag jumping
discontinuously from zero to a finite value at vp = vc.

We evaluate the drag as a function of the polariton lifetime γ and find for
all three cases that: In the supercritical regime, vp > vc, the lifetime tends
to suppress the propagation of the Cherenkov waves away from the defect and
therefore to suppress the drag. Instead, well in the subcritical regime, vp � vc,
we find that the residual drag goes linearly to zero with the polariton lifetime γ, in
agreement to what was found in Ref. [154], by making use of a non-perturbative
numerical analysis for a finite size defect. Similar to Ref. [154], here, we do also
find that the residual drag in the subcritical regime can be explained in terms of
an asymmetric perturbation induced in the fluid by the defect in the direction of
the fluid velocity.

This Chapter is structured as follows: In Sec. 3.1 we briefly review the linear
approximation scheme and extend it to the case of a resonantly pumped polariton
fluid. We classify the three types of collective excitation spectra in the simplified
case of excitation close to the bottom of the LP dispersion in Sec. 3.1.1. In Sec. 3.2
we derive the drag force and characterise the crossover from the subsonic to the
supersonic regime in the three cases of zero, positive and negative detuning. In
this section, we also evaluate the drag as a function of the polariton lifetime,
interpreting therefore the results of Ref. [154]. Brief conclusions are drawn is
Sec. 3.3.

3.1 Linear response

As explained in Chapter 2, the description of cavity polaritons resonantly ex-
cited by an external laser is usually formulated in terms of a classical non-linear
Schrödinger equation (or Gross-Pitaevskii equation) for the LP field ψLP (r, t)
(see Eq. (2.32)):

i∂tψLP = [ωLP (−i∇)− iγ/2 + Vd(r) + gX |ψLP |2]ψLP + F(r, t) . (3.1)

The LP dispersion is expressed in terms of the photon ωC(k) = ωC(0) + k2

2mC
and exciton ωX(0) energies, the photon mass mC , and the Rabi splitting ΩR (see
Eq. (2.15)):

ωLP (k) =
1

2
[ωC(k) + ωX(0)]− 1

2

√
[ωC(k)− ωX(0)]

2
+ 4Ω2

R . (3.2)

Because polaritons continuously decay at a rate γ (see Sec. 2.5), the cavity is
replenished by a continuous wave resonant pump F(r, t) at a wavevector kp (we



80 Chapter 3. Drag in a coherently-driven polariton fluid

will later assume kp directed along the x-direction, kp = (kp, 0)) and frequency
ωp (see Eq. (2.23)):

F(r, t) = fpe
i(kp·r−ωpt) . (3.3)

Note that, as discussed in Secs. 2.4–2.7, Eq. (3.1) is a simplified description of
the polariton system. It implies that the interaction nonlinearities are small
enough not to mix the lower and upper polariton branches and that we pump
far from the UP dispersion. Moreover, starting from a formulation in terms of
coupled exciton and photon fields, the polariton lifetime would be momentum
dependent and, similarly, the polariton-polariton interaction strength gX is not
contact-like as instead assumed in Eq. (3.1). However, as shown in Appendix 3.A,
these simplifications do not affect our results qualitatively, rather, they allow us
to write them in terms of simpler expressions. Furthermore, we have checked
that, whenever the system is excited near the bottom of the lower polariton
dispersion, the results for the drag force reported in Sec. 3.2 coincide with the ones
obtained using the photon-exciton coupled field description Eq. (2.33) introduced
in Chapter 2.

The potential Vd(r) in Eq. (3.2) describes a defect, which can be either nat-
urally present in the cavity mirror [26] or it can be created by an additional
laser [157]. Later on, we will assume the defect to be point-like Vd(r) = gV δ(r)
and weak, so that we can apply the linear response approximation [59]. As
detailed in Sec. 1.3, one divides the response of the LP field in a mean-field com-
ponent ψp corresponding to the case when the perturbing potential is absent,
and a fluctuation part δψ(r, t) reflecting the linear response of the system to the
perturbing potential (see Eq. (1.12)):

ψLP (r, t) = e−iωpt
[
eikp·rψp + δψ(r, t)

]
. (3.4)

By substituting (3.4) into (3.1), we obtain a mean-field equation and by retaining
only the linear terms in the fluctuation field and the defect potential, the following
first order equation in δψ(r, t) (the equivalent of Eq. (1.14)):

i∂t

(
δψ
δψ∗

)
= L̂

(
δψ
δψ∗

)
+ Vd(r)

(
ψpe

ikp·r

−ψ?pe−ikp·r
)
, (3.5)

where the operator L̂ is given by (compare to Eq. (1.29) for the atomic case):

L̂ =

(
ω̃LP (−i∇)− iγ/2 gXψ

2
pe

2ikp·r

−gXψ?p2e−2ikp·r −ω̃LP (−i∇)− iγ/2

)
, (3.6)

with ω̃LP = ωLP − ωp + 2gX |ψp|2. We solved the complex cubic mean-field
equation (2.36) for ψp in Sec. 2.8. Here, we want to study the response of the
system to the presence of the defect and how different behaviours of the onset of
dissipation can be described in terms of the different excitation spectra one can
get for polaritons resonantly pumped close to the bottom of the LP dispersion.
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Figure 3.2: Collective excitation spectra for the subsonic (thick solid [black]
line at vp = 0.2cs, with cs =

√
gX |ψp|2/mLP) and supersonic (dashed [red]

line at vp = 1.9cs) regimes and for an interaction-renormalised pump detuning
∆p = −0.3gX |ψp|2 (a, b), ∆p = 0 (c, d), ∆p = 0.3gX |ψp|2 (e, f) and ∆p =
2.3gX |ψp|2 (g, h). Real parts of the spectra are plotted in the left panels and
the corresponding imaginary parts in the right panels for γ = 2.2gX |ψp|2 — note
that in our description the spectrum imaginary parts do not depend on the fluid
velocity vp.

3.1.1 Spectrum of collective excitations

The spectrum of the collective excitations can be obtained by diagonalising the
operator L̂ in the momentum space representation, following the approach of
Sec. 1.4 (see Eq. (1.34))

Lk,kp =

(
ω̃LP (δk + kp)− iγ/2 gXψ

2
p

−gXψ?p2 −ω̃LP (δk − kp)− iγ/2

)
, (3.7)

where, δk = k − kp. The description of the spectrum simplifies in the case
when the pumping is close to the bottom of the LP dispersion, that can be
approximated as parabolic (see Eq. (2.22))

ωLP (δk ± kp) ' ωLP (0) +
k2
p

2mLP
+

δk2

2mLP
± δk · vp , (3.8)
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Figure 3.3: Momentum-space response (top row) |δψs (k + kp) |2 (arb. units) and
normalised real-space wavefunction (bottom row) |ψLP (r)|2/|ψp|2 corresponding
to the nondiffusive spectra (a)–(d) in Fig. 3.2. System parameters: vp = 1.5cs,
γ = 0.06gX |ψp|2, and ∆p is −0.35gX |ψp|2 (left column), −0.25gX |ψp|2 (middle
column) and 0 (right column).

where vp = kp/mLP is the fluid velocity, and mLP is the LP mass of Eq. (2.21).
This simplification allows one to describe the complex spectrum in terms of three
parameters only, namely the fluid velocity vp, the interaction-renormalised pump
detuning (defined in Sec. 2.8)

∆p = ωp −
[
ωLP (0) +

k2
p

2mLP
+ gX |ψp|2

]
(3.9)

and the LP lifetime γ. One observation we can immediately make is that, unlike
the atomic case, one will no longer have a sharp corner1 in the spectrum at
δk = 0, as that feature depended on the equality (up to a sign) between the
diagonal and off-diagonal elements of L. The elementary excitation spectrum
of coherently-driven polaritons reads (compare this to the spectrum given by
Eq. (1.36)):

ω±(k) = δk · vp − iγ/2±
√
ε(δk) [ε(δk) + 2gX |ψp|2] , (3.10)

where ε(k) = k2

2mLP
− ∆p. If energies are measured in units of the mean-field

energy blue-shift gX |ψp|2 (we will use the notation ∆′p = ∆p/gX |ψp|2 and γ′ =
γ/gX |ψp|2), then the fluid velocity vp is measured in units of the speed of sound

1Unless, of course, ∆p = 0.
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Figure 3.4: Momentum-space response (top row) |δψs (k + kp) |2 (arb. units) and
normalised real-space wavefunction (bottom row) |ψLP (r)|2/|ψp|2 corresponding
to the diffusive spectra (e)–(h) in Fig. 3.2. Polariton lifetime γ = 2.2gX |ψp|2,
and ∆p = gX |ψp|2, vp = 1.5cs (left column); ∆p = 9gX |ψp|2, vp = 1.5cs (middle
column) and ∆p = 9gX |ψp|2, vp = 0.07cs (right column).

cs =
√
gX |ψp|2/mLP. In order to make connection with the current experiments,

note that, for blue-shifts in the range gX |ψp|2 ' 0.1−1 meV, typical values of the
speed of sound cs are 0.8−2.7×106 m/s. Similarly, for common values of the LP
mass, the range in momenta in Fig. 3.2 comes of the order of δkx ' 0.2−0.8 µm−1.

The spectrum (3.10) can be classified according to the sign of the interaction-
renormalised pump detuning ∆p [155, 156] — see Fig. 3.2. For ∆p < 0 (panels
[a,b]), the real part of the spectrum lacks the sonic behaviour at small δk, and
shows a gap that increases with |∆p|, while the imaginary part is determined by
the polariton lifetime γ only. If one applies the Landau criterion for the real part
of the spectrum only, then one finds a critical velocity

vc

cs
=

√
1 + |∆′p|+

√
|∆′p|(|∆′p|+ 2) > 1 , (3.11)

always larger than the speed of sound for ∆p < 0. If the fluid velocity is sub-
critical, vp < vc (see the [black] solid lines in Fig. 3.2(a)), then no quasiparticles
can be excited and thus, for infinitely living polaritons γ → 0, the fluid would
experience no drag when scattering against the defect. For the case of vp = vc,
the <[ω+(k)] branch touches the ω = 0 plane in one point (see left column of
Fig. 3.3), resulting in a localized perturbation around the defect, with an ad-
ditional stripe pattern of wavevector mLPv

c, caused by the interference of the
pump with the momentum of the scattered state. For supercritical velocities in-
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Figure 3.5: Hermitian (left column) and anti-Hermitian (right column) coupling
between two damped oscillators of energies E1, E2, decay rates γ1, γ2 and inter-
action energy V . Top row shows the coupling matrices, while middle (bottom)
row shows the evolution of the real (complex) eigenvalues, with increasing |V |.
From Ref. [12].

stead, vp > vc see the [red] dashed lines in Fig. 3.2(a), one expects dissipation in
the form of radiation of Cherenkov-like waves from the defect into the fluid. In
the supercritical regime, the set of wavevectors k for which <[ω+(k)] = 0 form a
closed curve in k-space with no singularity of the derivative (see middle column
of Fig. 3.3). As explained in the geometrical model presented in Sec. 1.4, this
means the radiation can be emitted in all possible directions around the defect.
This, as we will see in the next section, will imply that the drag force for γ → 0
goes abruptly, rather than continuously, from zero at vp < vc to a finite value at
vp ≥ vc.

The spectrum gap closes to zero in the resonant situation at ∆p = 0, when
the two branches ω±(k) touch at δk = 0 (panels [c,d] of Fig. 3.2). Here, the real
part of the spectrum displays the standard sonic dispersion at small wavevectors
(as for the weakly interacting bosonic gases of Chapter 1) with a slope given
by cs ± vp. The imaginary part, as in the previous case, is constant and equal
to −γ/2. It is clear therefore that in this case, when γ → 0, one recovers the
equilibrium results valid for weakly interacting gases [56, 59], where the critical
velocity for superfluidity equals the speed of sound, vc = cs, and the drag displays
a threshold-like behaviour. Here, in the supersonic regime vp > vc, the closed
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curve <[ω+(k)] = 0 has instead a singularity, resulting in the standard Mach
cone of aperture θ, sin θ = cs/vp, inside which radiation from the defect cannot
be emitted [56] (see right column of Fig. 3.3, as well as Fig. 1.2 of Sec. 1.4).

For ∆p > 0, the real parts of the two Bogoliubov branches cross and stick
together, giving rise to flat regions near the crossing points. This is due to level
attraction caused by the anti-Hermitian coupling of Eq. (3.7), and is accompa-
nied by a splitting of the imaginary parts, as illustrated in Fig. 3.5. We further
distinguish two separate cases, 0 < ∆p ≤ 2 and ∆p > 2. In the first case (panels
[e,f]), there is only one flat region in momentum-space, and the intensity of the
Rayleigh scattering is amplified on a segment situated at δkx = 0 and oriented
parallel to the y axis, as shown in the left column of Fig. 3.4. A consequence
of this (parametric) amplification is the long shadow seen in the real-space im-
age [156]. As the imaginary part only has one peak (corresponding to the pump),
this is the precursor of the Kerr single-mode instability described in Sec. 2.8. The
second case (panels [g,h]) has a different momentum-space topology, with two flat
regions, producing two distinct peaks in the imaginary part. As soon as these be-
come positive, one enters the regime of parametric oscillation (see Sec. 2.9), with
the signal and idler momenta situated at the two maxima. The corresponding
far-field image plotted in the middle column of Fig. 3.4 shows two pronounced
peaks on the line passing through δkx = 0, the interference of which results in
a near-field “zebra-like” pattern [156]. For very small fluid velocities (see right
column of Fig. 3.4), the two Bogoliubov branches cross on a ring of wavevectors,
giving rise to cylindrical wavefronts [158]. We note that spectra [e]–[h] have no
correspondence in equilibrium systems, because a finite polariton lifetime γ is
needed in order to insure stability, =[ω±(k)] < 0. Following the literature [2], we
refer to these spectra as diffusive-like. We also note that, for these spectra, even
if considering only the real part of the collective excitation spectrum, as soon as
the fluid is in motion, dissipation in the form of waves is possible. However, we
will see that, similar to the case of non-resonantly pumped polaritons [28], when
decreasing γ (and accordingly ∆p in order to have stable solutions), this situation
continuously connects to the case where a threshold-like behaviour with vc = cs
was found.

We will see in the next section how these different spectra imply only two
qualitatively different types of crossover of the drag force as a function of the
fluid velocity, for either ∆p < 0 or ∆p ≥ 0 pump detunings.

3.2 Drag force

The steady state response of the system to a static and weak defect can be
evaluated starting from Eq. (3.5):

(
δψs(r)
δψ∗s (r)

)
= L̂−1

(
Vd(r)eikp·rψp
−Vd(r)e−ikp·rψ?p

)
.
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Figure 3.6: Drag force Fd as a function of the fluid velocity vp for different values
of the pump detuning ∆p: ∆p = −0.3gX |ψp|2 (a), ∆p = 0 (b), and ∆p > 0
(c), and for different values of the polariton lifetime — here, we use the notation
γ′ = γ/gX |ψp|2 and ∆′p = ∆/gX |ψp|2.

For a point-like defect, this can be written in momentum space as:

δψs(k + kp) =
−gV ψp(ε(k)− k · vp + iγ/2)

ε(k)[ε(k) + 2gX |ψp|2]− (k · vp − iγ/2)2
,

while the other component δψ∗s (kp−k) can be obtained by complex conjugation
and by substituting k → −k. The drag force exerted by the defect on the fluid
is given by the expectation value of the operator −∇Vd(r) over the condensate
wavefunction [159]:

Fd = −
∫
dr|ψLP (r, t)|2∇Vd(r) , (3.12)

This definition is justified for conservative systems in Appendix 1.A, using the
momentum-flux tensor. In the steady state linear response regime, we obtain:

Fd = gV

∫
dk

(2π)2
ik
[
ψ∗pδψs(k + kp) + ψpδψ

∗
s (kp − k)

]

= 2g2
V |ψp|2

∫
dk

(2π)2

ikε(k)

ω+(k)ω−(k)
. (3.13)
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(a)

(b)

Figure 3.7: Drag force Fd as a function of the inverse polariton lifetime γ′ =
γ/(gX |ψp|2) in the (a) subcritical regime (vp = 0.2cs) and (b) supercritical regime
(vp = 1.9cs). In both cases we have fixed ∆p = −0.3gX |ψp|2 (vc ' 1.46cs)
but these results are qualitatively similar for any other value of the pump de-
tuning. We plot in the right panels the normalised real-space wavefunction
|ψLP (r)|2/|ψp|2 for two specific values of γ′ = 0.4 and γ′ = 1.6.

The drag is clearly oriented along the fluid velocity vp, i.e., Fd = Fdv̂p. If γ → 0,
then the integral in Eq. (3.13) is finite only if poles exist when <[ω±(k)] = 0,
i.e., when quasiparticles can be excited, in agreement with the Landau criterion.
For finite polariton lifetimes, however, it is clear that the integral will always be
different from zero for vp > 0. We now analyse the behaviour of the drag force
as a function of the fluid velocity for the three (∆p = 0, ∆p > 0, and ∆p < 0)
different spectra illustrated in the previous section.

For the linear spectrum, at ∆p = 0, in the equilibrium limit, γ → 0, we
recover for the drag the known result of weakly interacting Bose gases in two
dimensions [59]:

Fd
(mLPcs)3g2

V /gX
=

(vp/cs)
2 − 1

vp/cs
Θ(vp − cs) , (3.14)

with a threshold-like behaviour at a critical fluid velocity equal to the speed of
sound cs. This limiting result is plotted as a bold gray line in the panels (b,c) of
Fig. 3.6. For ∆p = 0 and finite lifetimes γ, we find a smooth crossover from the
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subsonic to the supersonic regime, with the drag being closer to the equilibrium
threshold behaviour for decreasing γ (see Fig. 3.6(b)). A finite lifetime tends to
increase the value of the drag in the subsonic region vp � vc, giving place to a
residual drag force, similar to what was found in the numerical simulations of
Ref. [154] (see Fig. 3.8). Instead, in the supersonic region vp � vc, the finite
lifetime tends to decrease the value of the drag.

In the case of diffusive-like spectra at ∆p > 0 the situation is qualitatively
very similar to the resonant case (see Fig. 3.6(c)), with the difference that now,
in order to have stable solutions, we can decrease the value of the lifetime only by
decreasing accordingly also the value of the pump detuning ∆p. The crossover
for both ∆p = 0 and ∆p > 0 is also qualitatively very similar to the case of non-
resonantly pumped polaritons [28], where the spectrum of excitation is diffusive-
like. In Ref. [160], a similar approach was used to analytically derive the drag
for nonresonantly pumped polaritons in 1D, finding a continuous crossover from
a regime dominated by viscous drag (of Stokes type) to one dominated by wave
resistance. Futhermore, the authors proved that it was not possible to separate
the viscous and wave-resistance components of the drag. Shortly after the publi-
cation of Ref. [161] (on which this Chapter is based), Van Regemortel et al. [158]
found that the parametric amplification mechanism described in Sec. 3.1.1 can in-
crease the scattering of particles in the flow direction (for low condensate speeds),
leading to a negative drag force, i.e. a force directed opposite to the flow direc-
tion. To see how this comes about, one can look at the right column of Fig. 3.4:
the top panel shows that the average momentum of the scattered modes is in the
positive δkx direction. This, in turn, leads to a pileup of the fluid density behind
the defect (x > 0), as can be seen in the bottom panel.

In the case of gapped spectra, the situation is, however, qualitatively different
(see Fig. 3.6(a)). For infinitely living polaritons, γ → 0, the drag force can also
be evaluated analytically and its expression is similar to Eq. (3.14), but with a
critical velocity larger than the speed of sound, the expression of which is given
in Eq. (3.11):

Fd
(mLPcs)3g2

V /gX
=

(vp/cs)
2 − 1

vp/cs
Θ(vp − vc) . (3.15)

Therefore now the drag experiences a jump for vp = vc, rather than a continuous
threshold as for the resonant case ∆p = 0. As already mentioned in the previ-
ous section, this discontinuous behaviour of the drag for the gapped spectra is
connected to the fact that, as soon as quasiparticles can be excited by the defect
at vp ≥ vc, Cherenkov-like waves can be immediately emitted in all directions,
rather than being restricted in a region outside the Mach cone as before. For
∆p = 0, the cone was gradually closing with increasing fluid velocity.

Both the increase of the value of the drag in the subcritical region as a func-
tion of the polariton lifetime and the decrease in the supercritical region, are
behaviours common to all the types of spectra. We plot the drag force as a func-
tion of γ in Fig. 3.7, for two values of the fluid velocity vp and a specific value
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Figure 3.8: Top row : Photon density along y = 0, perturbed by a circular
potential of radius 7 µm and height 110 meV (centered at the origin), in the
subcritical regime. The pump momentum is kp = 1 µm−1, and the panels (from
left to right) correspond to decreasing exciton (γX) and photon (γC) decay rates
γX = γC = 1.3, 0.44 and 0.011 meV. Bottom row : Residual drag force as a
function of decay rate. The left panel compares two different values of kp, namely
0.7 (black solid line) and 1 µm−1 (red dashed line). The right panel shows two
different potential heights, of -22 (blue dashed line) and -2.2 meV (red dashed
line), with kp = 0.7 µm−1. In all plots, the pump is 0.44 meV blue-detuned
above the bare LP branch ωLP (kp). Adapted from Ref. [154].

of the pump detuning ∆p, though we have checked that the following results are
generic. For vp < vc, we find that the residual drag is a finite-lifetime effect
only and, well below the critical velocity, the drag force goes linearly to zero for
γ → 0. This is in agreement with the results of Ref. [154], where the full GP
equation for the coupled exciton and photon fields was solved numerically for a
finite-size defect: see the bottom row of Fig. 3.8 for the numerical drag in the
limit of asymptotically large densities.

In the resonant case ∆p = 0, the slope of the drag for vp � cs can be evaluated
analytically starting from the expression (3.13):

Fd
(mLPcs)3g2

V /gX
'
γ→0

2cs
πvp

(
1√

1− (vp/cs)2
− 1

)
γ

2gX |ψp|2
.

The residual drag in the subsonic regime is an effect of the broadening of the
quasi-particles energies: Even when the spectrum real part does not allow any
scattering against the defect (e.g., for ∆p ≤ 0), the broadening produces some
scattering close to the defect. This results in a perturbation of the fluid around
the defect, asymmetric in the direction of the fluid velocity (see panel (a) of
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Fig. 3.7), similar to what was obtained in Ref. [154] (see top row of Fig. 3.8).
Instead, in the supersonic regime, the drag force is weaker in the non-equilibrium
case with respect to the equilibrium one. This is caused by the finite lifetime
tending to suppress the propagation of the Cherenkov waves away from the defect,
as shown in panel (b) of Fig. 3.7.

3.3 Conclusions and discussion

To conclude, we have analysed the linear response to a weak defect of resonantly
pumped polaritons in the pump-only state, and we have been able to determine
two different kinds of threshold-like behaviours for the drag force as a function
of the fluid velocity. In the case of either zero or positive pump detuning, one
can continuously connect to the case of equilibrium weakly interacting gases of
Chapter 1, where the drag displays a continuous threshold with a critical velocity
equal to the speed of sound. However, for negative pump detuning, where the
spectrum of excitations is gapped, the drag shows a discontinuity with a critical
velocity larger than the speed of sound. In this sense, the case of coherently
driven microcavity polaritons in the pump-only configuration displays a richer
phenomenology than the case of nonresonantly pumped polariton superfluids.
We have also seen that the absence of a long-range wake does not imply the
absence of dissipation, as a residual drag force due to the finite polariton lifetime
is always present in the system. In this sense, one can say that we are not dealing
with superfluid behaviour in a strict sense.

3.A GP equation for the LP branch

If one starts from a description of polaritons in terms of separate exciton and
cavity photon fields, a rotation into the LP and UP basis, followed by neglecting
the occupancy of the upper polariton branch, as explained in detail in Chapter 2,
results in the following Gross-Pitaevskii equation (compare to Eq. (2.27)) for the
LP field in momentum space ψLP (r, t) =

∑
k e

ik·rψLP,k(t) [12]:

i∂tψLP,k = fpe
−iωptδk,kp + [ωLP (k)− iγ(k)/2]ψLP,k+

∑

k1,k2

gk,k1,k2
ψ∗LP,k1+k2−kψLP,k1

ψLP,k2
+ Ck

∑

k1

Vd,k−k1
ψLP,k1

Ck1
, (3.16)

where γ(k) = γXX
2
k + γCC

2
k is the effective LP decay rate,

gk,k1,k2 = gXXkX|k1+k2−k|Xk1Xk2 (3.17)

is the interaction strength, and where Vd(r) =
∑

k e
ik·rVd,k.
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In these expressions, the coefficients (see Eqs. (2.16) and (2.17))

X2
k, C

2
k =

1

2

(
1± ωC(k)− ωX(0)√

(ωC(k)− ωX(0))2 + 4Ω2
R

)
(3.18)

are the Hopfield coefficients used to diagonalise the free polariton Hamiltonian.
We want here to justify the simplified description done in Eq. (3.1). If we follow
the linear response expansion as in (3.4), the operator L̂ in momentum space
analogous to (3.7) reads as:

Lk,kp =

(
ω̃LP (δk + kp)− iγ(δk + kp)/2 gXX

2
kp
Xδk+kpXδk−kpψ

2
p

−gXX2
kp
Xδk+kpXδk−kpψ

?
p

2 −ω̃LP (δk − kp)− iγ(δk − kp)/2

)
,

(3.19)
where now ω̃LP (δk±kp) = ωLP (δk±kp)−ωp + 2gXX

2
kp
X2
δk±kp |ψp|2. It is easy

to show that the eigenvalues of this operator coincide with our approximated
expressions (3.10) in the limit of δk � kp, when X2

δk±kp ' X2
kp

, C2
δk±kp ' C2

kp

and when we can simply rename gX ≡ gXX
4
kp

and γ ≡ γ(kp). It is interesting
to note that, even if we would retain the linear terms in kp · δk in the expansion
of X2

δk±kp , this would result in a renormalisation of the fluid velocity vp in the

expression (3.10) which takes into account the blue-shift of the LP dispersion due
to the interaction.
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Chapter 4

Polariton superfluidity in the OPO regime

This Chapter presents a joint theoretical and experimental study of an OPO
configuration (see Fig. 4.1) where a wide and steady-state condensate hits a sta-
tionary localized defect in the microcavity. Contrary to the criterion for quantized
flow metastability for which the signal and idler display simultaneous locked re-
sponses, we find that their scattering properties when the OPO hits a static defect
are different. In particular we investigate the scattering properties of all three
fluids, the pump, the signal and the idler, in both real and momentum space. We
find that the modulations generated by the defect in each fluid are not only de-
termined by its associated Rayleigh scattering ring, but each component displays
additional rings because of the cross-talk with the other components imposed
by nonlinear and parametric processes. We single out three factors determining
which one of these rings has the biggest influence on each fluid response: the
coupling strength between the three OPO states, the resonance of the ring with
the blue-shifted LP dispersion, and the values of each fluid group velocity and
lifetime together establishing how far each modulation can propagate from the
defect. The concurrence of these effects implies that the idler strongly scatters,
inheriting the same modulations as the pump, while the modulations due to its
own ring can propagate only very close to the defect and cannot be appreciated.
However, the modulations in the signal are strongly suppressed, and not at all
visible in experiments, because the slope of the polariton dispersion in its low
momentum component brings all Rayleigh rings coming from pump and idler out
of resonance.

Note that the kinematic conditions for OPO are incompatible with the pump
and idler being in the subsonic regime. Thus, the coupling between the three
components always implies some degree of scattering in the signal. In practice,
the small value of the signal momentum strongly suppresses its visible modula-
tions, as confirmed by the experimental observations.
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QW

DBR

DBR

e

e h

h

pump

signal

idler

Figure 4.1: Pictorial representation of the optical parametric oscillator (OPO)
state inside a planar microcavity. Cavity modes of the incoming external laser
[black arrow] couple to the excitons formed by electron [e, solid spheres] – hole
[h, hollow spheres] pairs inside the semiconductor quantum well (QW), creating
the pump [red] polaritons, which coherently scatter into the signal [blue] and
idler [green] states. All three types of polaritons decay into external radiation,
emitted through the top distributed Bragg reflector (DBR) of the cavity.

4.1 Model

As explained in Chapter 2, the dynamics of polaritons in the OPO regime and
their hydrodynamic properties when scattering against a defect can be described
via a classical driven-dissipative non-linear Gross-Pitaevskii equation (GPE) for
the coupled exciton and cavity fields ψX,C(r, t) [2, 130]:

i∂t

(
ψX
ψC

)
= Ĥ

(
ψX
ψC

)
+

(
0

Fp(r, t)

)
. (4.1)

The dispersive X- and C-fields decay at a rate γX,C and are coupled by the Rabi
splitting ΩR, while the nonlinearity is regulated by the exciton coupling strength
gX :

Ĥ =

(
ωX(−i∇)− iγX2 + gX |ψX |2 ΩR

ΩR ωC(−i∇)− iγC2 + Vd

)
. (4.2)

We describe the defect via a potential Vd(r) acting on the photonic component;
this can either be a defect in the cavity mirror or a localized laser field [26, 157,
162]. In the conservative, homogeneous, and linear regime [γX,C = 0 = Vd(r) =
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Figure 4.2: OPO mean-field blueshifts and fluctuation Rayleigh rings in the
linear-response scheme for homogeneous pumping. Left panel: signal s ([blue]
upper triangles), pump p ([red] circles), and idler i ([green] lower triangles)
mean-field energy blueshifts εn=s,p,i (in units of γp = γkp) vs the rescaled
pump intensity Ip (in units of γ3

p) in the optical limiter regime. Parameters
are ΩR = 2.5 meV, zero cavity-exciton detuning, γX = γC = 0.12 meV,
ωp−ωX(0) = −1.25 meV, kp = 1.6µm−1, ks ' 0, and ki = 3.2µm−1. The shaded
area is stable OPO region, while the vertical dashed line corresponds to the pump
power value chosen for plotting the right panel. Right panel: blueshifted LP dis-
persion (4.9) with superimposed Rayleigh curves Γp,i,(u,v),k̃+kp,i

evaluated within

the linear-response approximation (same symbols as left panel). The two rings
corresponding to the signal state, Γs,(u,v),k̃, are shrunk to zero because ks ' 0.

gX ], the eigenvalues of Ĥ are given by the LP and UP energies Eq. (2.15). The
cavity is driven by a continuous-wave laser field Fp(r, t) = Fp(r)ei(kp·r−ωpt) into
the OPO regime: Here, polaritons are continuously injected into the pump state
with frequency ωp and momentum kp, and, above a pump strength threshold,
they undergo coherent stimulated scattering into the signal (ωs,ks) and idler
(ωi,ki) states.

As a first step, it is useful to get insight into the system behaviour in the
simple case of a homogeneous pump of strength Fp(r) = fp. A numerical study
of the coupled equations (4.1) for the more realistic case of a finite-size top-hat
pump profile Fp(r) will be presented in Sec. 4.3. To further simplify our analysis,
we assume here that the UP dispersion does not get populated by parametric
scattering processes and thus, by means of the Hopfield coefficients Eqs. (2.16)
and (2.17), we project the GPE (4.1) onto the LP component [11, 135] ψk =
XkψX,k + CkψC,k, where ψ(r, t) =

∑
k e

ik·rψk(t). As explained in detail in
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Figure 4.3: Spectrum of collective excitations. Cut at ky = 0 of the real part of
the quasiparticle energy dispersion <[ωn,(u,v),k−kn ] plotted versus kx − kn. The
spectrum is evaluated within the linear approximation scheme and the parameters
are the same ones used for Fig. 4.2.

Sec. 2.7, we obtain Eq. (2.27):

i∂tψk =
[
ωLP(k)− iγk

2

]
ψk + Ck

∑

q

CqVd(k− q)ψq

+
∑

k1,k2

gk,k1,k2
ψ∗k1+k2−kψk1

ψk2
+ f̃p(t)δk,kp . (4.3)

Here, γk = γXX
2
k + γCC

2
k is the effective LP decay rate, the interaction strength

is given by gk,k1,k2 = gXXkXk1+k2−kXk1Xk2 , and the pumping term is given

by f̃p(t) = Ckpfpe
−iωpt. Note that the dependence on the exciton-exciton inter-

action strength gX can be removed by rescaling both the LP field
√
gXψk(t) →

ψk(t) and the pump strength
√
gXfp → fp, something we will do later on to all

effects, working in terms of energy blueshifts and the rescaled pump intensity.

4.2 Linear-response theory

As already explained in Sec. 2.9, in the limit where the homogeneously pumped
system is only weakly perturbed by the external potential Vd(r), we apply a
linear-response analysis [59]: The LP field is expanded around the mean-field
terms for the three n = 1, 2, 3 = s, p, iOPO states [130] (see Eqs. (2.38) and (2.41))

ψ
k̃

=

3∑

n=1

e−iωnt
[
ψnδk̃,0 + u

n,k̃
e−iωt + v∗

n,−k̃e
iωt
]
, (4.4)
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where k̃ = k− kn. Eq. (4.3) is expanded linearly in both the fluctuation terms,
u
n,k̃

and v
n,k̃

, as well as the defect potential. At zeroth order, the three com-

plex uniform mean-field equations can be solved to obtain the dependence of
the signal, pump and idler energy blueshifts, εn = gXX

2
kn
|ψn|2 on the system

parameters [135]. A typical behaviour of εn as a function of the rescaled pump
intensity Ip = gXC

2
kp
f2
p/X

2
kp

in the optical limiter regime is plotted in the left
panel of Fig. 4.2. At first order, one obtains six coupled equations diagonal in
momentum space [29]

ωwk̃ = Lk̃wk̃ +
1

2
Ψd , (4.5)

for the six-component vector wk̃ = (u
n,k̃
, v
n,k̃

)T and for the potential part, Ψd =

(ψnCknCk+knVd(k),−ψ∗nCknCkn−kVd(−k))T . To understand the origin of the
factor 1/2 in Eq. (4.5), it is sufficient to consider one component only, and start
from Eq. (3.4) used in Sec. 3.1. The connection becomes clear once we write
the fluctuation part as δψ(r, t) = 1

2

{
δψ(r, t) + [δψ?(r, t)]

?}
and compare it to

Eq. (2.38) of Sec. 2.8.
In (4.5) we have only kept the terms oscillating at the frequencies ωn ± ω

and neglected the other terms in the expansion (i.e., 2ωn − ωm ± ω), which
are oscillating at frequencies far from the LP band, and thus with negligible
amplitudes. In the particlelike and the holelike channels, the Bogoliubov matrix
determining the spectrum of excitations can be written as [29]

Lk =

(
Mk Qk

−Q∗−k −M∗−k

)
, (4.6)

where the three OPO states components are

(Mk)mn =
[
ωLP (km + k)− ωm − i

γkm+k

2

]
δm,n + 2

3∑

q,t=1

gkm+k,kn+k,ktψ
∗
qψtδm+q,n+t

(Qk)mn =

3∑

q,t=1

gkm+k,kq,ktψqψtδm+n,q+t . (4.7)

In absence of a defect potential (Ψd = 0), Eq. (4.5) is the eigenvalue equation
for the spectrum of excitations of a homogeneous OPO, i.e., det(Lk̃ − ω) = 0.
We plot in Fig. 4.3 a typical collective dispersion (here we consider the same
system parameters as the ones used in Fig. 4.2), by plotting the real part of
the Bogoliubov matrix eigenvalues <[ωn,(u,v),k−kn ] as a function of kx − kn (cut
at ky = 0). The spectrum has six branches, ωn,(u,v),k̃, labeled by n = s, p, i

and (u, v). Even though these degrees of freedom are mixed together, at large
momenta, one recovers the LP dispersions shifted by the three states’ energies
and momenta, i.e.,

lim
k̃�
√

4mCΩR

ωn,(u,v),k̃ = ±(ωLP (k− kn)− ωn) , (4.8)
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(a)

(b)

(c)

Figure 4.4: Linear response of the three OPO states to a static δ-defect for
ks = −0.4 [column (a)], 0.0 [column (b)] and 0.7 µm−1 [column (c)]. The pa-
rameters are given in Fig. 4.2, and gV = 0.5γp µm2. Column (a): Top row is
the analogue of Fig. 4.2, for negative signal momentum. The three bottom rows
show the rescaled emission in real |ψ(r, ωn)|2/|ψn|2 (left panels in linear scale)
and momentum space |ψk̃(ωn)|2 (right panels in logarithmic scale) filtered at the
energies of the signal (top), pump (middle) and idler (bottom). Column (c):
Same as column (a), for a positive signal momentum. Column (b): Vanishing
signal momentum; the corresponding mean-field blueshifts and Rayleigh rings are
plotted in Fig. 4.2. The inset shows the Gaussian-filtered (see main text) signal
emission.

where + (−) corresponds to the u (v) particlelike (holelike) branch. The OPO
solution is stable (shaded area in Fig. 4.2) as far as =[ωn,(u,v),k̃] < 0. Note

also that, owing to the U(1) symmetry of the OPO equations of motion (see
Sec. 2.9), no restoring force would oppose a rotation of the signal-idler phases,
meaning that the generator of such global rotations, (iψs, 0,−iψi,−iψ?s , 0, iψ?i ),
is an eigenvector of Lk̃=0 with eigenvalue 0 [29].

The shape of the patterns, or Cherenkov-like waves, resulting from the elastic
scattering of the OPO 3-fluids against the static (ω = 0) defect can be de-
termined starting from the spectrum, and in particular evaluating the closed
curves Γn,(u,v),k̃ in k-space, or “Rayleigh rings” [57] defined by the condition

<[ωn,(u,v),k̃] = 0. Even if they do not appear to be relevant here, note that the

presence of a non-vanishing imaginary part of the excitation spectrum =[ωn,(u,v),k̃] 6=
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0 introduces some complications: Even in the absence of any Rayleigh ring, the
drag force can be non-vanishing (as we saw in Chapter 3 for the pump-only case)
and the standard Landau criterion may fail to identify a critical velocity [28].
The modulations propagate with a direction η̂n,(u,v),k̃ orthogonal to each curve

Γn,(u,v),k̃, a pattern wavelength given by the corresponding |k̃|, and a group

velocity v
(g)

n,(u,v),k̃
= ∇k̃<[ωn,(u,v),k̃], where ξn,(u,v),k̃ = |v(g)

n,(u,v),k̃
/=[ωn,(u,v),k̃]|

determines the distance, at any given direction η̂n,(u,v),k̃, over which the pertur-
bation extends away from the defect. For a single fluid under a coherent pump,
the qualitative shape of the modulation pattern generated in the fluid by the
defect is mostly determined by the excitation spectrum [56, 155].

For OPO, the spectrum of excitation on top of each of the three, n = 1, 2, 3,
states (see Fig. 4.3) generates six identical Rayleigh rings Γn,(u,v),k̃ for the three
states. Note that the Rayleigh rings can be found by finding the intersections
<[ωn,(u,v),k−kn ] = 0. The Rayleigh rings for the OPO conditions specified in
Fig. 4.2 are clearly visible in the right panels of Fig. 4.4 (b), where we plot the
k-space photoluminescence filtered at the energy of each state, i.e., |ψk̃(ωn)|2 =
|ψnδk̃,0+u

n,k̃
+v∗

n,−k̃|
2. We have chosen here a δ-like defect potential, Vd(k) = gV ,

but we have checked that our results do not depend on the specific shape of the
defect potential: In particular, we have also considered the response to defects
with smooth Gaussian-like profiles, whose effect is only to partially weaken the
upstream modulations in real space.

As detailed in Sec. 2.9, the mean-field OPO ansatz assumes the signal mo-
mentum ks to be an input parameter, rather than solving the full “selection
problem” [135]. This is in contrast to both the full numerical solution of the GP
Eq. (4.1) (Sec. 4.3) as well as experiments (Sec. 4.4), where the signal momen-
tum is automatically selected (typically close to the bottom of the LP band) by
parametric scattering processes. The reason why parametric scattering processes
select a signal with a momentum close to zero, already very close to the lower
pump thresold for OPO, is still awaiting an explaination. In particular, this can-
not be addressed within a spatially homogeneous approximation where the three
mean-field solutions for pump, signal, and idler states are described by plane
waves. However, one can show [130] that, within the same mean-field approxi-
mation scheme, when increasing the pump power towards the upper threshold for
OPO, the blue-shift of the LP polariton dispersion due to the increasing mean-
field polariton density, causes the signal momentum to converge towards zero
ks → 0.

In the following, we take advantage of the broad range of possible choices for
ks (and thus ki) at mean-field level [135], and analyze three distinct cases: neg-
ative (ks = −0.4 µm−1), vanishing (ks = 0 µm−1) and positive (ks = 0.7 µm−1)
signal momenta.
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4.2.1 Vanishing signal momentum

For the OPO conditions considered here, the signal momentum is at ks ' 0, and
thus only four of the six Rayleigh rings are present. The same rings are also
plotted in the right panel of Fig. 4.2, shifted at each of the three OPO states’
momentum kn, Γn,(u,v),k̃+kn

and energies ωn. It is important to note that, even
though the three OPO states have locked responses because they display the same
spectrum of excitations, only one of the rings Γn,(u,v),k̃+kn

is the most resonant
at ωn with the interaction blueshifted LP dispersion,

ω̄LP (k) = ωLP (k) + 2X2
k

3∑

n=1

εn , (4.9)

where εn = gXX
2
kn
|ψn|2 are the mean-field energy blueshifts (measured in Fig. 4.2

in units of γp = γkp). This implies that the most visible modulation for each
fluid should be the most resonant one, with superimposed weaker modulations
coming from the other two state rings.

In the specific case of Fig. 4.2, the signal is at ks ' 0 and thus produces no
rings in momentum space. The other four rings are very far from being resonant
with the blueshifted LP dispersion (4.9) at ωs, and thus the signal displays only
an extremely weak modulation coming from the next closer ring, which is the
one associated with the pump state, Γp,u,k̃+ks

. We estimate that the signal
modulation amplitudes are roughly 1% of the average signal intensity and about
a factor of 10 times weaker than the modulation amplitudes in the pump fluid.
To show that the signal has weak modulations coming from the pump, we apply
a Gaussian filter to the real space images (see the inset of Fig. 4.4 (b)). This
consists of the following procedure. The original data for the real space profile
ψ(r) are convoluted with a Gaussian kernel K(r − r′), obtaining a new profile,
ψ̃(r′) =

∫
drψ(r)K(r − r′), where short wavelengths features are smoothened

out. The convoluted image ψ̃(r′) is then subtracted from the original data,
giving ψ(r)− ψ̃(r), and effectively filtering out all long wavelength details. This
procedure reveals that indeed the pump imprints its modulations also into the
signal, even though these are extremely weak, thus leaving the signal basically
insensitive to the presence of the defect.

Pump and idler states are each mostly resonant with their own rings, i.e.,
Γp,u,k̃+kp

at ωp and Γi,u,k̃+ki
at ωi, respectively. Thus one should then observe

two superimposed modulations in both pump and idler filtered emissions, the
stronger one for each being the most resonant one. However, the modulations
associated with the idler only propagate very close to the defect, at an average
distance ξi,u,k̃ ∼ 1.7 µm before getting damped, and thus are not clearly visible.
For the OPO conditions considered, this is due to the small idler group velocity

v
(g)

i,u,k̃
, as the dispersion is almost excitonic at the idler energy.

We can conclude that, for the typical OPO condition with a signal at ks ' 0,
considered in Figs. 4.2 and 4.4 (b), the signal fluid does not show modulations and
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(a) (b) (c)

Figure 4.5: Real space signal, pump and idler OPO one-dimensional filtered
profiles in the linear-response approximation. OPO filtered emissions along the
y = 0 direction, I(x, y = 0, ωn) = |ψ(x, y = 0, ωn)|2/|ψn|2. A signal at ks =
−0.4 µm−1 [panel (a)] corresponds to Fig. 4.4 (a), a signal at ks = 0.0 µm−1

[panel (b)] corresponds to Fig. 4.4 (b) and a signal at ks = 0.7 µm−1 [panel (c)]
corresponds to Fig. 4.4 (c). In each panel we plot the filtered profiles of signal,
pump, and idler, while the horizontal gray dashed lines represent the values of
the mean-field emission without a defect.

the extremely weak scattering inherited from the pump state can be appreciated
only after a Gaussian filtering procedure of the image. In contrast, the idler has
a locked response to the one of the pump state.

4.2.2 Finite signal momentum

Given the freedom of choice for the signal momentum ks close to the lower
OPO threshold, we consider here two additional cases, that could not be studied
neither experimentally, nor within a full numerical approach, but that instead we
can easily analize within the linear-response theory. In particular, we have left
fixed the pumping conditions kp = 1.6 µm−1 and ωp − ωX(0) = −1.25 meV and
considered two opposite situations.

In the first case, the signal has a finite and positive momentum ks = 0.7 µm−1

and thus the idler is at low momentum, ki = 2.5 µm−1. The results are shown
in Fig. 4.4 (c). Here we see that all six Rayleigh rings are clearly visible and,
in addition, as the idler is at lower momentum compared to the case considered
in Sec. 4.2.1, and thus its dispersion steeper, the idler group velocity is large
enough to appreciate the modulation of the Rayleigh ring associated to this state.
As a result, each of the three filtered OPO emissions exhibits as the strongest
modulation the one coming from its own Rayleigh ring, including the signal which
is now at finite and large momentum. In this case, the OPO response of each
filtered state profile looks completely independent from the other, as if we were
pumping each state independently.

In the second case, shown in Fig. 4.4 (a), the signal is finite and negative,
ks = −0.4 µm−1, and the idler is now at very large momentum, ki = 3.6 µm−1,
where its dispersion is very exciton-like and flat, and thus the idler has a very
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Figure 4.6: Real space profiles of three uncoupled signal, pump and idler fluids.
The rescaled profiles |ψ(r, ωn)|2/|ψn|2 are obtained by setting all off-diagonal
couplings in Eq. (4.6) to zero, resulting in three uncoupled signal (top row), pump
(middle row), and idler (bottom row) fluids. The three columns correspond to the
three different cases analysed within the linear-response approximation: the case
of a signal at ks = −0.4 µm−1 (left column) corresponds to the same conditions
as Fig. 4.4 (a), a signal at ks = 0.0 µm−1 (middle column) corresponds to Fig. 4.4
(b), and a signal at ks = 0.7 µm−1 (right column) corresponds to Fig. 4.4 (c).

small group velocity and its own modulations are visible only very close to the
defect. For this case, we can appreciate in the idler filtered profile overlapped
modulations from all the three state Rayleigh rings (note that because the signal
is at negative momentum, its modulations have an opposite direction compared
to the ones of pump and idler), while in the signal we can mostly see the signal
long wavelength modulations and only very weakly the pump one.

4.2.3 Discussion

We can compare the different modulation strengths of the three OPO profiles
by looking at the color bars plotted next to the profiles. In order to better
compare them on the same plot, we show in Fig. 4.5 the one-dimensional OPO
filtered emissions along the y = 0 direction, rescaled by the mean-field solution
ψn in absence of the defect, for the three cases analysed above. While for the
OPO conditions with a signal at ks = 0.0 µm−1 (middle panel, corresponding
to Fig. 4.4 (b)), the imprinted modulations from the pump are hardly visible,
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and can only be appreciated after a Gaussian filter manipulation, both OPO
cases with a finite momentum signal result in modulations in the signal with an
amplitude of the same order of magnitude of both pump and idler fluids.

In Fig. 4.6 we instead show the real space profiles obtained by setting all
off-diagonal couplings in the Bogoliubov matrix Lk of Eq. (4.6) to zero, result-
ing in three uncoupled signal (top row), pump (middle row), and idler (bottom
row) fluids. This underlines the importance of the coupling between the three
fluids in the three different OPO regimes we analysed within the linear-response
approximation. In particular, for the OPO conditions such that the signal has a
finite and positive momentum ks (right column of Fig. 4.6, which corresponds to
the conditions shown in Fig. 4.4 (c)), the coupling has little effect and the three
fluids respond to the defect in practice in a independent way (each Rayleigh ring
influences its own fluid). The OPO condition with a finite and negative momen-
tum ks, which corresponds to the conditions shown in Fig. 4.4 (a), are shown in
the left column of Fig. 4.6: Here, we can see that the coupling between the three
fluids plays a role. The modulations of the pump can be appreciated both in the
signal profile (though weakly), as well as in the idler profile. In the idler fluid its
own modulations can only propagate very close to the defect and thus the only
really appreciable modulations are the ones inherited from the pump. Finally,
for the experimentally relevant case of an OPO with a signal at zero momentum
(middle column of Fig. 4.6, which corresponds to the conditions shown in Fig. 4.4
(b)), there is also a role played by the coupling, though, as already thoroughly
analysed, the modulations in the signal inherited from the pump can only be
appreciated after a Gaussian filtering manipulation.

Finally note that, for the OPO conditions of Sec. 4.2.1, as well as for the finite
momenta cases considered in Sec. 4.2.2, the subsonic to supersonic crossover of
the pump-only state [26] happens at pump intensities well above the region of
stability of OPO — the shaded gray regions of Fig. 4.2 and Fig. 4.4 (a) and (c).
Thus, it is not possible to study a case where the pump is already subsonic and
at the same time promotes stimulated scattering.

4.3 Numerical analysis

The results obtained within the linear-response approximation are additionally
confirmed by an exact full numerical analysis of the classical driven-dissipative
non-linear GPE (4.1) for the coupled exciton and cavity fields ψX,C(r, t) in the
case of a finite size pump. Eq. (4.1) is solved numerically on a 2D grid of N×N =
28×28 points and a separation of 0.47 µm (i.e., in a box L×L = 121 µm×121 µm)
by using a 5th-order adaptive-step Runge-Kutta algorithm. Convergence has been
checked both with respect the resolution in space L/N as well as in momentum
π/L, without [128, 151] as well as in presence of the defect. The same approach
has been already used in the literature, for a review, see Refs. [128, 151]).

As for the system parameters, we have considered a LP dispersion at zero
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Figure 4.7: OPO spectrum obtained by full numerics. Left panel: Photonic
component of the OPO spectrum in presence of a point-like defect, |ψC(kx, 0, ω)|2
(logarithmic scale), as a function of the rescaled energy ω − ωX(0) versus the x-
component of momentum kx (cut at ky = 0) for a top-hat pump (see text for the
space profile and parameter values), with intensity fp = 1.23f th

p above the OPO
threshold, pump wave-vector kp = 1.6 µm−1 in the x-direction and ωp−ωX(0) =
−0.44 meV. The symbols indicate the signal ([blue] upper triangle), pump ([red]
circle), and idler ([green] lower triangle) energies, as well as the two momenta kx
on each state Rayleigh ring at ky = 0. Note that the logarithmic scale results in a
fictitious broadening in energy of the spectrum, which is in reality δ-like (see right
panel). The bare LP dispersion, including its broadening due to finite lifetime,
is plotted as a shaded grey region, while the bare UP dispersion as a (black)
dot-dashed line. Right panel: Momentum integrated spectrum,

∑
k |ψC(k, ω)|2

(linear scale) as a function of the rescaled energy ω − ωX(0), where it can be
clearly appreciated that the emission is δ-like in energy.

photon-exciton detuning, ωC(0) = ωX(0), a dispersionless excitonic spectrum,
ωX(k) = ωX(0) and a quadratic dispersion for photons ωC(k) = ωC(0)+k2/2mC ,
with the photon mass mC = 2.3 × 10−5me, where me is the bare electron
mass. The LP dispersion Eq. (2.15) is characterised by a Rabi splitting ΩR =
2.2 meV. Furthermore, the exciton and cavity decay rates are fixed to γX = γC =
0.53 meV. For the defect we choose a δ-like potential

Vd(r) = gV δ(r− r0) , (4.10)

where its location r0 is fixed at one of the N ×N points of the grid. Note that in
a finite-size OPO, local currents lead to inhomogeneous OPO profiles inside the
pump spot, despite the external pump having a top-hat profile with a completely
flat inner region [128, 151] — as shown later, this can be observed in the filtered
OPO profiles evaluated in absence of a defect, shown as dashed lines in Fig. 4.9.
We have thus chosen the defect location so that it lies in the smoothest and most
homogeneous part of the OPO profiles.

Also we have checked that our results do not qualitatively depend on the
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strength gV (nor on the sign) of the defect potential, as far as this does not exceed
a critical value above which it destabilises the OPO steady-state regime. The
pump, Fp(r, t) = Fp(r)ei(kp·r−ωpt), has a smoothen and rotationally symmetric

top-hat profile, Fp(r) = Fp(r) =
fp
2 [tanh(

r+σp
r0

) − tanh(
r−σp
r0

)] with strength

fp = 1.23f th
p = 0.053 meV/µm and parameters r0 = 8.68 µm, σp = 34.72 µm.

We pump at kp = 1.6 µm−1 in the x-direction, kp = (kp, 0), and at ωp−ωX(0) =
−0.44 meV, i.e., roughly 0.5 meV above the bare LP dispersion. By increasing
the pump strength fp, we find the threshold f th

p above which OPO switches on,
leading to two conjugate signal and idler states. We then fix the pump strength
just above this threshold (fp = 1.23f th

p ), where we find a steady state OPO
solution which is stable (see Ref. [128] for further details). In absence of the
defect, this condition corresponds to a signal state at ks = −0.2 µm−1 and ωs −
ωX(0) = −1.64 meV and an idler at ki = 3.4 µm−1 and ωi−ωX(0) = 0.76 meV. It
is interesting to note that already very close to the lower pump power threshold
for OPO, the selected signal momentum is very close to zero. This contrasts
with what one obtains in the linear approximation scheme, where instead just
above the lower OPO threshold there exists a broad interval of permitted values
for ks (and thus ki) — we have already mentioned this “selection problem” for
parametric scattering in Sec. 4.2.

We evaluate the time dependent full numerical solution of (4.1) ψX,C(r, t),
until a steady state regime is reached. Here, both its Fourier transform to mo-
mentum k and energies ω can be evaluated numerically. We plot on the left panel
of Fig. 4.7 a cut at ky = 0 of the photonic component of the OPO spectrum in
presence of a point-like defect, |ψC(kx, 0, ω)|2, as a function of the rescaled en-
ergy ω−ωX(0) versus the x-component of momentum kx (cut at ky = 0). In the
right panel we plot instead the corresponding momentum integrated spectrum,∑

k |ψC(k, ω)|2. Here, we can clearly see that the presence of the defect does not
modify the fact that the OPO emission for the OPO signal ([blue] upper trian-
gle), pump ([red] circle), and idler ([green] lower triangle) states has a completely
flat dispersion in energy, thus indicating that a stable steady state OPO solution
has been reached. Note that in the spectrum map of the left panel of Fig. 4.7,
the logarithmic scale results in a fictitious broadening in energy. However, from
the integrated spectrum plotted in linear scale in the right panel of Fig. 4.7 one
can clearly appreciate that this emission is δ-like, exactly as it happens for the
homogeneous OPO case [128]. Thus the effect of the defect is to induce only
elastic (i.e., at the same energy) scattering; now the three OPO states emit each
on its own Rayleigh ring (given each by the symbols on the left panel of Fig. 4.7
which represent the rings at a cut for ky = 0). This makes it rather difficult
to extract the separated signal, pump and idler profiles by filtering in momen-
tum, as done previously for the homogeneous case, but it still allows to filter
those profiles very efficiently in energy. In fact, because the emission is δ-like,
it is enough to fix a single value of the energy ω to the one of the three states
ωn=s,p,i, thus extracting the filtered profiles either in real space |ψC(r, ωn)|2 or
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Figure 4.8: Full numerical responses to a static defect of the three OPO states in
real and momentum space. Filtered OPO emissions (signal [top panels], pump
[middle], and idler [bottom]) in real space |ψC(r, ωn)|2 (left panels in linear scale)
and momentum space |ψC(k̃, ωn)|2 (right panel in logarithmic scale) obtained
by a full numerical evaluation of (4.1). For the top left panel of the signal
space emission, Gaussian filtering is applied to enhance the short wavelength
modulations of this state, revealing that the modulations corresponding to the
pump state are also imprinted (though weakly) into the signal. The symbols
indicate the pump ring diameter extracted from fitting the upstream modulations
and resulting in a density-wave wavevector coinciding with that of the pump,
kp = 1.6 µm−1.

in momentum space |ψC(k, ωn)|2 — we have however checked that integrating in
a narrow energy window around ωn does not quantitatively change the results.

The results of the above described filtering are shown in Fig. 4.8, where real-
space emissions |ψC(r, ωn)|2 are plotted in the left panels, while the ones in
momentum space |ψC(k̃, ωn)|2 are plotted in the right panels. We observe a
very similar phenomenology to that one obtained in the linear approximation
shown in Fig. 4.4 (b). The signal now is at slightly negative values of momenta
ks = −0.2 µm−1, thus implying a very small Rayleigh ring associated with this
state. Thus we observe that only the modulations associated with the pump are
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Figure 4.9: Real space signal, pump and idler OPO one-dimensional filtered pro-
files derived from finite size numerics with and without a defect. Rescaled OPO
filtered emissions along the y = 0 direction, |ψC(x, y = 0, ωn)|2 ΩR

gX
, obtained

by numerically solving the GPE Eq. (4.1) of Sec. 4.1. While the dashed lines
represent the filtered emissions of signal (top panel), pump (middle) and idler
(bottom) for a top-hat pump without a defect, the solid lines are the same OPO
conditions but now for a defect positioned at (xd, yd) = (9.5,−0.5) µm corre-
sponding to the vertical dotted lines. The system parameters are the same ones
as those of Fig. 4.8.

the ones that are weakly imprinted in the signal state and that can be observed
by means of a Gaussian filtering (inset of the top-left panel). We have fitted
the upstream wave crests and obtained the same modulation wavevector as the
pump one ([blue] upper triangles). Similar to the linear-response case, we also
find here that the most visible perturbation in the emission filtered at the idler
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energy is the one due to the pump Rayleigh ring. As before, the modulations
due to the idler Rayleigh ring cannot propagate far from the defect because of
the small group velocity associated with this state.

In Fig. 4.9 we instead plot the corresponding one-dimensional profiles in the
y = 0 direction both in presence (solid line) and without (dashed line) a defect.
Here, we can observe that, even if the pump has a top-hat flat profile, as also
commented previously, in absence of a defect, the finite-size OPO is characterised
by inhomogeneous profiles of signal, pump and idler because of localised currents.
Furthermore, we observe that the presence of a defect induces strong modulations
in pump and idler. Notice that the modulation imprinted by the pump into the
signal is hardly visible in the top panel of Fig. 4.9 without the Gaussian filtering.

4.4 Experiments

We now turn to the experimental analysis, where a continuous-wave laser is used
to drive a high quality (Q = 14000) GaAs microcavity sample into the OPO
regime — details on the sample can be found in Refs. [163, 164]. The polariton
dispersion is characterised by a Rabi splitting ΩR = 2.7 meV and the exciton
energy is ωX(0) = 1485.26 meV, while the cavity-exciton detuning is slightly
negative, −1 meV. The pump is at kp = 0.89 µm−1 and ωp−ωX(0) = −2.43 meV,
and, at pump powers 1.5-times above threshold, an OPO appears, with signal at
small wavevector ks = 0.21 µm−1 and ωs − ωX(0) = −2.95 meV, and idler at
ki = 1.57 µm−1 and ωi − ωX(0) = −1.91 meV. The defect used in the sample is
a localized inhomogeneity naturally present in the cavity mirror. Note that the
exact location of the defect can be extracted from the emission spectrum and is
indicated with a dot (orange) symbol in the profiles of Fig. 4.10.

To filter the emission at the three states’ energies, Is,p,i(r = x, y), and to
obtain 2D spatial maps for the three OPO states, one uses a spectrometer and,
at a fixed position x0, one obtains the intensity emission as a function of energy
and position, I(ε, x0, y). By changing x0 one can build the full emission spec-
trum as a function of energy and 2D position, I(ε, r). The filtered emission for

each OPO state is obtained from the integrals In=s,p,i(r) =
∫ ωn+σ

ωn−σ dεI(ε, r), with
σ = 0.08 meV. The results are shown in Fig. 4.10 for, respectively, the signal
(top panel), pump (middle) and the idler (bottom) profiles. Energy and momen-
tum of the three OPO states are labeled with a [blue] upper triangle (signal), a
[red] circle (pump), and a [green] lower triangle (idler), while the localised state,
clearly visible just below the bottom of the LP dispersion, is indicated with the
symbol d. The bare LP dispersion is extracted from an off-resonant low pump
power measurement, as well as the emission of the exciton reservoir (X) and that
of the UP dispersion (each in a different scale). The signal profile shows no appre-
ciable modulations around the defect locations, nor could any be observed after
applying a Gaussian filtering procedure to the image. In contrast, in agreement
with the theoretical results, both filtered profiles of the pump and idler show
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Figure 4.10: Experimental OPO spectrum (lower panel) and filtered emissions
of signal (top), pump (middle), and idler (bottom) in presence of a structural
defect. The six panels show the filtered emission profiles in real space Is,p,i(r). A
Gaussian filtering to enhance the short wavelength modulations is applied in the
right column. The extracted wave crests from the idler (yellow contours in the
bottom panel) are also superimposed on the pump profile (middle) by applying
a π phase-shift.

the same Cherenkov-like pattern. We extracted the wave crests from the idler
profile ([yellow] contours in the bottom panel) and superimposed them on the
pump profile (middle panel) with an added π phase-shift, revealing that the only
modulations visible in the idler state are the ones coming from the pump state.
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4.5 Conclusions

To conclude, we have presented a joint theoretical and experimental study of the
superfluid properties of a nonequilibrium condensate of polaritons in the so-called
optical parametric oscillator configuration by studying the scattering against a
static defect. We have found that, while the signal is basically free from modula-
tions, the pump and idler lock to the same response. We have highlighted the role
of the coupling between the OPO components due to nonlinear and parametric
processes. These are responsible for the transfer of the spatial modulations from
one component to the other. This process is most visible in the clear spatial mod-
ulation pattern that is induced by the nonsuperfluid pump onto the idler, while
the same modulations are only extremely weakly transferred into the signal, be-
cause of its low characteristic wavevector, so much that experimentally cannot be
resolved. The main features of the real- and momentum-space emission patterns
are understood in terms of Rayleigh scattering rings for each component and a
characteristic propagation length from the defect; the rings are then transferred
to the other components by nonlinear and parametric processes.

Much interest has been recently devoted to aspects related to algebraic or-
der [165, 166] and superfluid response [153] in drive-dissipative polariton conden-
sates. Our theoretical and experimental results further stress the complexities
and richness involved when looking for superfluid behavior in nonequilibrium
multicomponent condensates such as the ones obtained in the OPO regime.



Chapter 5

Landau levels in driven-dissipative cavity
arrays

In 1984, Michael Berry showed that the adiabatic evolution of energy eigenfunc-
tions with respect to a time-dependent Hamiltonian contains a phase of geo-
metrical origin, commonly known today by the name of ”Berry’s phase” [167].
Although Berry’s seminal paper gave the example of a spinor’s evolution under
slowly changing magnetic field, geometric phases [168] with similar origin have
been encountered in a plethora of physical contexts, ranging from hydrodynamics
to quantum field theory, the quantum Hall effect and topological insulators.

In a condensed matter context, the eigenstates of electrons in a periodic lattice
can be labeled by a band index n and the crystal momentum k. The Berry-phase
physics arising when adiabatically transitioning between neighbouring wavevec-
tors was appreciated only recently. This phenomenon can explain properties
such as electric polarization, anomalous Hall conductivity or the quantization of
conductance in the integer quantum Hall effect.

In the presence of a (synthetic) gauge field, the eigenstates making up an
energy band can have nontrivial geometrical properties, as encoded in the Berry
connection and Berry curvature [169, 170]. Understanding the geometry of eigen-
states in a band is of great importance, not least because the integral of the Berry
curvature over the 2D Brillouin zone (BZ) gives the first Chern number: the
topological invariant responsible for the integer quantum Hall effect [109]. Con-
sequently, there has been much work in recent years to develop new techniques
with which to probe the properties of energy bands in photonics and ultracold
gases. For example, the Berry curvature can be measured in the semiclassical
dynamics of a wavepacket in an optical lattice [171–177] or in photon transport
in a cavity array [178]. In all these cases, the physics can be most naturally
understood by recognising that the Berry curvature acts like a magnetic field in
momentum space [169, 179–181].

The analogy between Berry curvature and magnetism is most powerful when
a geometrical energy band is subjected to an additional weak harmonic poten-
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tial [182]. Then, in the effective momentum-space Hamiltonian, a harmonic po-
tential acts like the kinetic energy of a particle in real space. Just as the physical
momentum p − A(r) is the sum of the canonical momentum p and the mag-
netic vector potential A(r) in the magnetic Hamiltonian, so the physical posi-
tion r +An,n(p), is given by the canonical position r and the Berry connection
An,n(p) of band n in the effective Hamiltonian [179, 183–188]. The Berry curva-
ture, Ωn(p) = ∇×An,n(p), is then like a momentum-space magnetic field. For
certain models, this analogy leads to a clear analytical understanding of single-
particle dynamics [182, 189–191]. In particular, we will focus on the small-flux
limit of the Harper-Hofstadter Hamiltonian [88, 89], which is a model that has re-
cently been realized in a multitude of experimental configurations, ranging from
ultracold gases [94, 95, 192, 193], solid state superlattices [90, 91] and silicon
photonics [3] to classical systems such as coupled pendula [194] and oscillating
circuits [195]. As first shown in Ref. [182], the eigenstates of this model in the
presence of a harmonic trap are toroidal Landau levels in momentum space. Not
only would an observation of these states constitute the first exploration of ana-
logue magnetic states in momentum space, but also the first experimental study
of magnetism on a torus.

Most theoretical works on momentum-space Landau levels have focused on
conservative dynamics [182, 191], while photonic systems naturally include driv-
ing and dissipation [196]. In this Chapter, we present a realistic experimental
proposal for the observation of these states in a driven-dissipative 2D lattice of
cavities, such as the array of coupled silicon ring resonators of Ref. [3], where link
resonators were used to simulate a synthetic gauge field for photons. We com-
bine this set-up with a harmonic potential, introduced, for example, by a spatial
modulation of the resonator size. We demonstrate numerically that the main
features of momentum-space Landau levels will be observable spectroscopically
in this system for realistic parameters.

In this Chapter, we also emphasize how the inherent driving and dissipation
in photonics can be a key advantage in probing properties that are otherwise
inaccessible. Firstly, the spectroscopic measurements discussed here are sensitive
to the absolute energy of a state. From this, we show how to extract the energy
shift due to the off-diagonal matrix elements of the Berry connection An,n′(p)
relating eigenstates in different bands n and n′. Only very recently has the
first measurement of such effects been reported in ultracold atomic gases [197,
198], and the approach used in this experiment would be difficult to apply to
a photonics set-up. The scheme we present may therefore be useful for the
characterisation of energy bands in topologically-nontrivial photonic systems.

Secondly, since the photon steady-state depends on the overlap between the
(observable) spatial amplitude profile of the drive and of the eigenstates [196], the
observables will depend on the phase of the eigenfunctions and thus on the specific
synthetic magnetic gauge that is implemented in a given experimental realization
of the Harper-Hofstadter Hamiltonian using a synthetic gauge field. We note that
a related gauge-sensitivity has also recently been of much interest in ultracold
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gases in suitably designed time-of-flight experiments [199–202]. Experiments on
synthetic magnetic fields therefore present the opportunity of straightforwardly
probing gauge-dependent physics.

This Chapter is organized as follows: in Section 5.1 we add a harmonic trap
to the HH model introduced in Sec. 1.7. We explain how the eigenstates can
be understood as momentum-space Landau levels in Section 5.1.1, before we
discuss the breakdown of approximations in Section 5.1.2, focusing on the energy
shift from the off-diagonal matrix elements of the Berry connection. Then in
Section 5.1.3, we add driving and dissipation to the model. In Section 5.2.1, we
show numerical results highlighting gauge-dependent effects, before presenting a
viable proposal for a photonics-based experiment in Section 5.2.2. Finally, we
draw conclusions in Section 5.3.

5.1 The trapped Harper-Hofstadter Model

In this Chapter, we study the Harper-Hofstadter Hamiltonian H0 in the presence
of an external harmonic trap. The full tight-binding HamiltonianH of this system
is

H = H0 +
1

2
κ
∑

m,n

[
(m−m0)2 + (n− n0)2

]
â†m,nâm,n (5.1)

H0 = −J
∑

m,n

(eiφ
x
m,n â†m+1,nâm,n + eiφ

y
m,n â†m,n+1âm,n) + H.c. (5.2)

where J is the real hopping amplitude and â†m,n (âm,n) are the creation (annihi-
lation) operators for a particle on a square lattice at site (m,n). The harmonic
trap is of strength κ and is centered at a position (m0, n0) which, in general, need
not coincide with a lattice site. Throughout, the lattice spacing is set equal to
one.

As explained in Sec. 1.7, the hopping phases φ = (φxm,n, φ
y
m,n) are the Peierls

phases gained by a charged particle hopping in the presence of a perpendicular
magnetic field [88, 89]. The sum of the phases around a square plaquette of the
lattice is therefore equal to 2πα, where α is the number of magnetic flux quanta
through the plaquette (with ~ = e = 1). For neutral particles, such as photons,
these phases can be imposed artificially to simulate the effects of magnetism, for
example, by inserting link resonators into an array of silicon ring resonators as
mentioned above [3].

Although the sum of phases around a plaquette is set by the external (syn-
thetic) flux, the exact form of the hopping phases themselves depends on the
choice of magnetic gauge. In the Landau gauge, for example, φ = (0, 2παm)
such that only the hopping amplitude along one direction is modified. Con-
versely, in the symmetric gauge, φ = (−παn, παm) and so hopping terms along
both x and y are affected, preserving the C4 rotational invariance of the lattice.
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This gauge-dependence of the hopping phases is reflected in the spatial profile
of the phase of an eigenstate of H. In a photonics experiment, this phase is
an observable quantity as the intensity response of a system to a given external
driving is determined by the overlap of the spatial amplitude distribution of the
pump with the eigenstates. Such experiments will therefore be sensitive to the
synthetic magnetic gauge as we discuss in Section 5.2.2.

5.1.1 Toroidal Landau Levels in Momentum Space

Having introduced the full Hamiltonian in Eq. (5.1), we now review how the
eigenstates of this model in an appropriate limit can be understood as toroidal
Landau levels in momentum space [182]. Throughout the following discussion,
we assume that the trap is centered at the origin (m0, n0) = (0, 0).

We begin from the eigenstates of the Harper-Hofstadter model H0|χn,p〉 =
En(p)|χn,p〉, where En(p) is the energy dispersion of band n at crystal mo-
mentum p. As the spatially-dependent hopping phases in H0 break transla-
tional invariance, new magnetic translation operators must be introduced to de-
fine a larger magnetic unit cell, containing an integer number of magnetic flux
quanta [102, 103, 172]. Then translational symmetry is restored and Bloch’s the-
orem can be applied to write the eigenstates as |χn,p〉 = 1√

N
eip·r|un,p〉, where

|un,p〉 is the periodic Bloch function and N is the number of lattice sites. Thanks
to the new larger unit cell, the crystal momentum and the periodic Bloch func-
tions here are defined in the smaller magnetic Brillouin zone (MBZ). For exam-
ple, hereafter, we take the number of flux quanta per plaquette to be of the form
α = 1/q, where q is an integer. Then the magnetic unit cell can be chosen to be
q times larger than the original unit cell, while the MBZ is q times smaller than
the original BZ.

Adding the harmonic trap breaks all translational symmetry of the lattice,
but we can use the eigenstates of H0 as a basis in which to expand the new
wave function |ψ〉 =

∑
n

∑
p ψn(p)|χn,p〉. Substituting this expansion into the

full Schrödinger equation i∂t|ψ〉 = H|ψ〉, it can be shown that the expansion
coefficients ψn(p) satisfy [182]:

i∂tψn(p) = En(p) +
κ

2

∑

n′ ,n′′

(
δn,n′ i∇p +An,n′ (p)

)
×

×
(
δn′ ,n′′ i∇p +An′ ,n′′ (p)

)
ψn′′ (p), (5.3)

where An,n′ (p) = i〈un,p|∇p|un′ ,p〉 is the matrix-valued Berry connection.
To proceed, we consider the harmonic trap to be sufficiently weak compared to

the bandgap that we can make a single-band approximation [182]. This assumes
that only one coefficient ψn is non-negligible and that the external trap does not
significantly mix different energy bands. Then Eq. (5.3) reduces to

i∂tψn(p) = H̃ψn(p), (5.4)
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where we have introduced the effective momentum-space Hamiltonian

H̃ =
κ

2
[i∇p +An,n(p)]2 + En(p) +

κ

2

∑

n′ 6=n

|An,n′ (p)|2. (5.5)

For the moment we focus on the first two terms; we discuss the role of the last
term, which comes from the off-diagonal matrix elements of the Berry connection,
in detail in the next subsection. As can be seen, there is a close analogy between
the first two terms in the momentum-space Hamiltonian and that of a charged
particle in an electromagnetic field in real space:

H′ =
[−i∇r −A(r)]

2

2M
+ Φ(r). (5.6)

In this analogy, the role of the particle mass M is played by κ−1, while the
scalar potential Φ(r) is replaced by the energy band dispersion En(p) and the
magnetic vector potential A(r) by the intra-band Berry connection An,n(p).
We note that both the magnetic vector potential and the Berry connection are
gauge-dependent quantities. We hereafter refer to the gauge choice for the Berry
connection as the Berry gauge, and the gauge choice for a real-space magnetic
vector potential as the magnetic gauge. From the Berry connection, we can also
define the geometrical Berry curvature Ωn(p) = ∇×An,n(p), which acts like a
momentum-space magnetic field B(r).

The topology of momentum space also plays a crucial role here, as the MBZ
is topologically equivalent to a torus. One important consequence of this is of
course that the integral of Berry curvature over the whole MBZ is quantised in
units of the first Chern number Cn. In the above analogy with magnetism, this
means that the particle is confined to move on the surface of a torus, while the
Chern number counts the number of magnetic monopoles contained inside [203].

The above analogy with magnetism is particularly powerful because there
are natural limits for our model Eq. (5.1) in which the eigenstates of Eq. (5.6)
and hence of Eq. (5.5) are known analytically [182, 189, 191]. We will focus on
the flat-band limit in which the bandwidth is much smaller than the trapping
energy; for the energy bands of H0 with α = 1/q, this assumption improves as
κ decreases or as q increases. In this limit, we can firstly approximate Ωn(p) ≈
Ωn, so that the first term is analogous to the kinetic energy of a particle in
a uniform magnetic field. Secondly, we can approximate En(p) ≈ En so that

the second term of H̃ is just a constant energy shift. Hence, the corresponding
eigenstates can be understood as toroidal Landau levels in momentum space. We
note that the opposite limit, in which the trapping energy is small compared to
the bandwidth, also yields very interesting physics including the realisation of a
Harper-Hofstatder model in momentum space [189, 204].

As shown in Ref. [182], the momentum-space toroidal Landau levels form
semi-infinite ladders of states:

εn,β = En +

(
β +

1

2

)
κ|Ωn|, (5.7)
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where we have introduced the Landau level quantum number [85] β = 0, 1, 2, . . .,
and where κ|Ωn| can be recognised as the analogue of the cyclotron frequency
ωc = e|B|/M . Again, we note that here we have neglected the contribution from
the last term in Eq. (5.5), as this will be discussed in the next subsection. As can
be shown from the Diophantine equation for the Hall conductivity, for odd values
of q, the Chern number of all bands except the middle band is Cn = −1 [104].
Then as the Chern number is related to the uniform Berry curvature as Cn =
(1/2π)ΩnAMBZ, where AMBZ = (2π)2/q is the MBZ area, the Berry curvature is
given by |Ωn| = 1

2πα [182].
While the above spectrum does not directly depend on the toroidal topology of

momentum space, the topology does enter into the eigenstate degeneracy, which
is equal to |Cn|, as well as into the analytical form of the eigenstates in the MBZ.
For example, for the bands with Cn = −1, the eigenstates can be written as [182]

χβ(p) = N lΩn
β

∞∑

j=−∞
e−ipyje−(px+jl2Ωn )2/2l2Ωn

×Hβ(px/lΩn + jlΩn),

(5.8)

N lΩn
β =

( √
2/q

2ββ!× 2πl2Ωn

)1/2

, (5.9)

where Hβ are the Hermite polynomials and lΩn =
√

1/|Ωn| is the analogue of
the magnetic length. Here we have taken the Berry gauge to have a Landau
form An(p) = Ωnpxp̂y parallel to the p̂y unit vector in momentum space. We
have also assumed that the MBZ is of length 2π in one momentum direction, and
2π/q in the other direction, corresponding to a magnetic unit cell of q plaquettes
containing one flux quantum. While this choice of MBZ is valid in any magnetic
gauge of the underlying Harper-Hofstadter model, it is particularly natural when
the hopping phases in H0 are in the Landau magnetic gauge φ = (0, 2παm), as
we shall discuss further below.

5.1.2 The Berry connection

We now study the effects of the last term in the momentum-space Hamiltonian
Eq. (5.5) which comes from the off-diagonal matrix elements of the Berry con-
nection [169]:

δEn(p) ≡ κ

2

∑

n′ 6=n

|An,n′ (p)|2

=
κ

2

∑

n′ 6=n

|〈un,p|∇pH0(p)|un′ ,p〉|2

[En′ (p)− En(p)]
2 . (5.10)

This can be recognised as a momentum-space counterpart of the real-space ge-
ometrical scalar potential previously studied in atomic systems [39, 205, 206].
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In these systems, the scalar potential arises from real-space Berry connections,
which can be created, for example, by using spatially-dependent optical fields to
dress the atoms.

In the flat-band limit, we have checked numerically that we can approximate
the momentum-space geometrical scalar potential as δEn(p) ≈ δEn and so this
contributes only a uniform constant energy shift. This term was not considered
in previous works [182, 189], as these works focused on systems such as ultracold
atomic gases, where the absolute energy is not easily experimentally observable.
As we will discuss in the next section, spectroscopic measurements in photonics
are sensitive to the energy of a state, therefore such corrections may be extracted
experimentally. We note that an analogous effect has also been derived for the
effective momentum-space magnetic Hamiltonian for a trapped particle in an
ideal flat band [191], and predicted for the frequency spectrum associated with
excitonic states in transition metal dichalcogenides [207].

To see under what conditions the off-diagonal elements of the Berry connec-
tion are relevant, we compare the energy Eex obtained from an exact numerical
diagonalization of Eq. (5.1) with the analytical eigenenergy Ean predicted by
Eq. (5.7). We focus on the lowest ladder of states, associated with band n = 0
in Eq. (5.7), at energies which are below the onset of the second ladder around
energy E1. This allow us to easily identify which numerical eigenvalue should
correspond to which Landau level quantum number [182].

We introduce two dimensionless parameters ηzpe and ηlev to quantify devia-
tions between the numerics and analytics. The former represents the error in the
“zero-point energy”, and is defined as the energy of the lowest numerical state
relative to the analytical n = 0, β = 0 Landau level. The latter is the level spac-
ing error, which we define as the difference between the numerical energy spacing
between two neighbouring states and the analytical spacing between states with
β and β − 1 quantum numbers.

Considering first the “zero-point energy” error ηzpe, the analytical energy of
the n = 0, β = 0 Landau level is given from Eq. (5.7) by:

Ean = 〈E0(p)〉p +
1

2

κ

2πα
, (5.11)

where we have used that |Ωn| = 1
2πα and where we calculate the uniform energy

shift E0 = 〈E0(p)〉p as the average band-energy over the MBZ. This definition
generalises our flat-band approximation to account for the non-zero bandwidth
of the lowest band.

We then define the dimensionless parameter ηzpe as

ηzpe =
4πα

κ
(Eex − Ean). (5.12)

This dimensionless error is plotted with a dashed line as a function of q for κ =
0.02J in the top panel of Fig. 5.1. At small q, there is a large bandgap between
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the lowest two Harper-Hofstadter energy bands, but the lowest band also has a
large bandwidth. In this regime, the single-band approximation is reasonable,
while the flat-band approximation breaks down leading to large errors. This limit
requires a different analytical approach as previously presented in Ref. [189]. To
account for the error at large q, we include the shift from the off-diagonal matrix
elements of the Berry connection Eq. (5.10). We calculate this shift numerically
from the eigenstates of the Harper-Hofstadter model, and we incorporate it into
a second parameter

ηnab
zpe =

4πα

κ
(Eex − Ean − 〈δE0(p)〉p). (5.13)

This is plotted as a solid line in the top panel of Fig. 5.1. As can be seen, this
shift dramatically reduces the error in the zero point energy at large q. We also
calculate this shift considering only the effects of band mixing with the second
lowest band n = 1; this is indistinguishable on this scale from the full shift. This
can be understood from the dependence on the bandgaps in Eq. (5.10), which
shows that the contributions of high-energy bands are suppressed. As discussed
further in Section 5.2.2, it would be possible experimentally to extract the energy
of the lowest state; this could constitute the first direct measurement of the effects
of the off-diagonal matrix elements of the Berry connection in a photonics system.

We turn now to the level-spacing error ηlev. This can be expressed as

ηlev =
2πα

κ
[Eex(β)− Eex(β − 1)]− 1, (5.14)

where we have used that the analytical level spacing from Eq. (5.7) is simply
κ/2πα. We plot the level-spacing error in the bottom panel of Fig. 5.1 for β =
1, 2, 3 and 4. As can be seen here, there is a large variation in the errors at small
q due to the large bandwidth [189]. On the other hand, we see that ηlev � 1,
for q & 6, where the flat-band approximation improves. In this regime, the level-
spacing error is much smaller than the zero-point error. This is because when the
shift from the off-diagonal matrix elements of the Berry connection Eq. (5.10) is
approximately uniform over the MBZ at large q, it just acts as a uniform energy
shift on all the states in a ladder with band index n. Consequently, this shift
drops out of the level spacing error between states, leaving only higher-order
band-mixing terms. From perturbation theory, it is expected that mixing with
other bands leads to a negative energy shift on states in the lowest band, and
indeed this can be seen in both ηnab

zpe and ηlev in the small negative errors found
at large q.

5.1.3 Driving and dissipation

We now include in our model the driving and dissipation that are an integral part
of the proposed photonics experiment. We assume there are uniform and local
losses characterized by a loss rate γ, and that the pump is monochromatic, with
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Figure 5.1: Top panel : “Zero-point energy” error, with (solid curve, ηnab
zpe ) and

without (dashed line, ηzpe) the shift from the off-diagonal matrix elements of the
Berry connection. Including just the first term in the sum Eq. (5.10) gives an
identical curve to the one of ηnab

zpe . The chosen trap strength is κ = 0.02J . Bottom
panel : Level-spacing error, for the same trap strength, considering β = 0, 1 (solid
curve), β = 1, 2 (dashed curve), β = 2, 3 (dashed-dotted curve) and β = 3, 4
(dotted curve).

frequency ω0 and a spatial profile fm,n. Following the treatment of Ref. [178],
we replace the bosonic creation and annihilation operators with their expecta-
tion values, as can be justified for a noninteracting system. The steady state
evolution of the photon-field amplitude in a cavity then follows that of the pump
as am,n(t) = am,ne

−iω0t. Combining Hamiltonian evolution with pumping and
losses, one arrives at a set of linear coupled equations that can be solved numer-
ically for the steady-state[208]:

fm,n = J
[
e−iφ

x
m,nam+1,n + eiφ

x
m−1,nam−1,n

+e−iφ
y
m,nam,n+1 + eiφ

y
m,n−1am,n−1

]

+

[
ω0 + iγ − 1

2
κ
(
(m−m0)2 + (n− n0)2

)]
am,n (5.15)

where we have reintroduced the position of the harmonic trap centre (m0, n0),
although unless otherwise specified we set (m0, n0) = (0, 0) in our simulations.

The expectation values |am,n|2 correspond to the number of photons at site
(m,n), whereas the intensity spectrum is given by their total sum

∑
m,n |am,n|2

as a function of pump frequency ω0. These observables can be directly related to
the eigenstates of the Hamiltonian in Eq. (5.1). Firstly, the different eigenmodes
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of a driven-dissipative system will appear as peaks in the transmission and/or
absorption spectra under a coherent pump [196]. The resonance peaks will be
broadened by the decay rate γ, while the area of the peaks will depend on the
overlap between the spatial amplitude profile of the pump and the underlying
eigenstate of H at that energy.

Secondly, when the pump frequency is set on resonance with a given mode, the
intensity profiles in both real- and momentum-space reproduce the wave function
of that mode [196]. This corresponds respectively to measuring the near-field and
far-field spatial emission of photons from the cavity array. We note that the far-
field emission is simply the Fourier-transform of the real-space wave function and
so will be a function of crystal momentum defined in the full BZ. To reach the
MBZ, a further processing step is required; for example, if the Harper-Hofstadter
Hamiltonian is in the Landau gauge and if we choose a magnetic unit cell of q
plaquettes along x̂, the appropriate transformation takes a particularly simple
form [182]: ∑

n

|ψn(pMBZ)|2 =
∑

j

|ψ(pBZ = pMBZ − jG)|2, (5.16)

where ψn(pMBZ) is the wave function coefficient in the MBZ, while ψ(pBZ) is
that in the original BZ. In this expression, j is an integer, while G = (2π/q)p̂x is
the magnetic reciprocal lattice vector, where the factor of q is due to the enlarged
magnetic unit cell. We note that for other magnetic gauges or for other choices of
the magnetic unit cell, this transformation will in general be more complicated.
In this sense, we call this choice of magnetic unit cell, a “natural” choice when
the Harper-Hofstadter Hamiltonian is in the Landau gauge. In the rest of the
Chapter, we denote the momentum in the original BZ as p, and that in the MBZ
as p0.

5.2 Results and discussion

5.2.1 Pumping and gauge-dependent effects

As introduced above, spectroscopic measurements can be used in a driven-dissipative
photonics experiment to study the trapped Harper-Hofstadter model and hence
toroidal Landau levels in momentum space. In this section, we focus on the effects
of the pumping, exploring how different pumping schemes excite the eigenstates
with different weights. We find that such spectroscopic measurements are sensi-
tive to the underlying synthetic magnetic gauge chosen in a given implementation
of the Harper-Hofstadter Hamiltonian.

To best illustrate these gauge-dependent effects, we present the results of
numerically solving Eq. (5.15) for the steady-state in a large lattice of N ×N =
45 × 45 sites, with κ = 0.02J , γ = 0.001J and α = 1/11. These parameters are
chosen to highlight the key features of different pumping schemes; we will present
numerical results for a more realistic experimental system in Section 5.2.2. The
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Figure 5.2: Intensity spectra for different pumping conditions: (a) pumping the
single site (5,5), (b) pumping with a Gaussian profile centered at site (5,5) with
width σ = 1, (c) homogeneous pumping across all lattice sites and (d) pumping
with a random phase across all lattice sites. These results were obtained by
numerical solving Eq. (5.15) for the steady-state in a lattice of N ×N = 45× 45
sites, with κ = 0.02J , γ = 0.001J and α = 1/11. Black (solid) curves correspond
to using the Landau gauge while green (dashed) ones to the symmetric gauge.
The dotted vertical lines (with labels indicating the value of β) mark the states
which were selected for later analysis. The spectra in panels (a) and (d) are
identical for both gauges.

numerical code was written in Julia [209] and is available online, as supplemental
material to Ref. [210].

The intensity spectrum of the steady-state as a function of pump frequency is
shown in Fig. 5.2, where we compare results for both the Landau and symmetric
gauge for four pumping schemes, discussed in turn below. For simplicity we
limit ourselves to pump frequencies located between the two lowest-lying Harper-
Hofstadter bands of the untrapped system. This allows us to focus only on states
within the first ladder of the trapped system (Eq. (5.7) with n = 0). At higher
energies, the clear identification of states is more difficult as more than one ladder
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Figure 5.3: Real space reconstruction of the states β = 3, 6, 15 and 26 of
Fig. 5.2(a).

of toroidal Landau levels can overlap, as shown, for example, in Section 5.2.2.

Single-site pumping–The first and simplest case that we consider is that of
pumping a single site fm,n = δm,m0

δn,n0
at an off-center lattice site. These

results are shown in Fig. 5.2 panel (a), where the uniform energy spacing of the
toroidal Landau levels can be clearly observed. For this pumping scheme, we
find no significant differences between the spectra for the Landau or symmetric
gauge. This is to be expected as changing the gauge is equivalent to changing
the relative phase between different sites, but as we are only pumping one site,
this phase difference is unimportant.

Instead, for both magnetic gauges, we see that the peak height is very small for
low energy states, rising to a maximum as energy increases, before decreasing once
more. This behaviour can be understand by considering the form of the real space
wavefunctions of H. In real space, the eigenstates are rings of finite width which
increase in radius as the energy increases (as can be seen in Fig. 5.3). Analytically,
we can predict how the ring radius scales with energy by remembering that the
term (β+1/2)κ|Ωn| in Eq. (5.7) is the momentum-space kinetic energy κ

2 r
2 where

r = i∇p + A0,0(p) is the physical position operator in the lowest band. From
this, we deduce that r2 ≈ 1

π qβ, as can be confirmed numerically. Therefore, if
one pumps an off-center site, there will only be a limited range of rings that will
have radii that will overlap with the pump spot and so be excited. Here, we
have set the pump spot to be at position (5, 5), and from the above scaling, the
toroidal Landau level that best overlaps with this pump will have a quantum
number β ≈ 14, which is in good agreement with the numerical results shown in
Fig. 5.2 (a).

Gaussian pumping– We now consider a Gaussian pump as the next logi-
cal step up in complexity from a single-site pump. This has the form fm,n =
exp− 1

2σ2

[
(m−m′)2 + (n− n′)2

]
, and we choose σ = 1 and for the pump centre

to be at (m′, n′) = (5, 5), as for single-site pumping. The results are shown in
Fig. 5.2 (b). The main effect is, as expected, that more states become visible in
both the low- (smaller β) and high-energy (larger β) sections of the spectrum.
This is because the pump has a greater spatial width and so overlaps with a
larger range of real-space eigenstates.
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Figure 5.4: Momentum space reconstruction of the eigenstates. Top row : states
corresponding to β = 0, 2, 4 and 6 in Fig. 5.2(c), using the Landau gauge.
Bottom row : states corresponding to β = 0, 1, 9 and 20 in Fig. 5.2(b), using the
symmetric gauge.

However, we can also see that the intensity spectrum now depends on the
underlying magnetic gauge, as the phase of the eigenstates is important. In
particular, more high-energy peaks can be seen for the Landau gauge than for
the symmetric gauge. This can be most easily understood by noting that in
momentum space, the symmetric-gauge states also have a ring-like structure (see
bottom panel of Fig. 5.4), where the ring radius increases with β. To see this,
we note that, in the symmetric gauge, the real-space wavefunctions have a phase
which winds around the ring as eiβφ where φ is the polar angle around the ring.
This phase-winding sets the radius of the rings in momentum space as p2 ≈ π βq ;
a scaling that can be confirmed numerically and seen in Fig. 5.4, bottom panel.
(The white spot close to the edges of the rings in these figures is due to destructive
interference with the pump.) As the Fourier transform of the Gaussian pump is
again a Gaussian, it follows that only a limited range of low-energy symmetric-
gauge momentum-space states will have a good overlap with the pump. The high
energy portion of the spectrum is therefore washed out compared to its Landau
gauge counterpart, where states have higher amplitude close to the centre of the
BZ and so better overlap with the pump.

Before continuing, we also note that for sufficiently large values of β the
symmetric-gauge rings in momentum space will increase to the point where they
touch the BZ boundaries. When this occurs, self-interference patterns appear in
the wave function as shown for example in Fig. 5.5. The extra ring-like structures
appearing for β ≥ 30 in Fig. 5.5 are due to the close proximity of states pertaining
to other ladders with n > 0. Note that in order to excite such high-energy states,
we have used a pump with a homogeneous amplitude and a random onsite phase,
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Figure 5.5: Momentum space reconstruction of the eigenstates in the full BZ,
using the symmetric gauge and homogeneous pumping with a random on-site
phase. Top row : states corresponding to β = 9, 20, 30. Bottom row : states
corresponding to β = 38, 59, 99. Parameters are the same as in Fig. 5.2.

as will be presented in the fourth pumping case below.

Homogeneous pumping with uniform phase– If we now take the limit of a very
wide Gaussian, we reach a homogeneous pump profile extended over all lattice
sites. The results for this pumping scheme are shown in panel (c) of Fig. 5.2.
Now fm,n = f , and we see that the intensity spectrum is strongly magnetic-gauge
dependent. In the Landau gauge, firstly, there are visible peaks for only half of
the states. This can be understood by noting that a homogeneous pump in real
space is a δ function in momentum space centered in the middle of the BZ. If we
consider the Landau-gauge eigenstates in the full BZ, as shown in the top row of
Fig. 5.4, we see that the states with an even value of β have an even number of
nodes, with a lobe at the BZ center. Conversely, the states with odd values of β
have an odd number of nodes, including one at the BZ center. (These feature can
be related back to the properties of the Hermite polynomials in the analytical
eigenstates in the MBZ Eq. (5.8).) Consequently, only states with even values
of β have a good overlap with the pump, and the intensity spectrum contains
half the expected peaks, now separated by twice the toroidal Landau level energy
spacing.

In the symmetric gauge, secondly, we find only one out of every four states
for homogeneous pumping, as can be seen in the inset of Fig. 5.2 (c). This is due
to the fact that, on a square lattice, the angular momentum is conserved modulo
4, respecting the 4-fold rotational symmetry. The peak intensity gets smaller for
larger β because of the diminishing overlap of the localized central pump with
the increasing momentum-space ring discussed above.
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Homogeneous pumping with a random on-site phase – As the fourth scheme,
we consider a pump with a uniform amplitude over the lattice but a random
site-dependent phase φm,n: fm,n = feiφm,n . The phases are chosen from a
random uniform distribution, and have values in the interval [0, 2π). The bottom
panel of Fig. 5.2 was obtained by averaging over 100 distinct realizations of these
random phases. This results in a relatively even intensity distribution, for both
gauges, where we can associate a peak to each toroidal Landau level in this energy
window. While such a pumping scheme would therefore be the best way to excite
all the eigenstates and to fully probe the momentum-space physics, we note that
this would also be difficult to achieve in an experiment.
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Figure 5.6: Momentum space reconstruction of the eigenstates in the full BZ,
using the Landau (top row) and symmetric gauge (middle and bottom row) and
a spatially homogeneous pump with a random on-site phase. We have considered
the state β = 4 for different trap positions (m0, n0). For the top and middle rows,
we have (from left to right): (0,0) (trap in the center), (2,0), (5.5,0) and (11,0),
whereas for the bottom row we chose the positions (0,2), (0,5.5), (0,11) and
(11,11). Parameters are the same as in Fig. 5.2.

Before continuing, we give a final example of an interesting gauge-dependent
effect that could be studied experimentally in this system. Unlike the physics
discussed above, this is not directly related to the pumping but instead to the
behaviour of the wave function under a change in the centre of the harmonic trap
(m0, n0). As derived in Ref. [189], moving the harmonic trap in space changes
the boundary conditions on the wave function in the MBZ. We note that although
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Figure 5.7: Top row : Intensity spectrum for a small lattice of 11× 11 sites, with
γ = 0.05J , κ = 0.2J and α = 1/7. Second row : Profile of the β = 7 state
in real space (left), momentum space (center) and the population over bands in
the MBZ (right) for the conservative system. Third row : Reconstruction of the
β = 7 mode wavefunction in real space (left), momentum space (center) and
the population over bands in the MBZ (right) obtained in the driven-dissipative
system by pumping at ω0 = −1.63J , on resonance with the desired mode (black
dotted line in the top panel). The δ-like pump at (0,5) is visible as a dark square
in the left panel. Bottom row : Slice along the p0

x = 0 line in the MBZ (solid black
line), compared to the analytical prediction of Eq. (5.8), |χ7(0, py)|2 (blue dotted
line) and to the population over bands for the nondissipative system (dashed
orange line).

this derivation was made explicitly for the magnetic Landau gauge in the MBZ,
numerically we observe here that this physics is also seen in the full BZ in both
gauges. As shown in Fig. 5.6, a shift in the harmonic trap centre in one direction
shifts the observed momentum-space pattern in the perpendicular direction. This
behaviour can be understood as a realisation of Laughlin’s Gedankenexperiment



5.2 Results and discussion 127

for the quantum Hall effect but now in momentum space [189]. As we observe,
the momentum-space wave function returns to itself after the harmonic trap has
been moved q lattice sites for the magnetic Landau gauge but 2q lattice sites for
the magnetic symmetric gauge, reflecting the underlying translational symmetry
of H0 in the two different gauges.

5.2.2 Results for realistic experimental parameters

We now present numerical results for system parameters within current experi-
mental reach, to demonstrate that the essential characteristics of toroidal Landau
levels could be probed experimentally for the first time in photonics. We choose
a small lattice of only 11 × 11 sites, with losses of γ = 0.05J ; this loss rate is
in the same range as those present in the experiment of Ref. [3]. Such a large
loss rate broadens the peaks in the intensity spectrum, making closely-spaced
eigenenergies harder to resolve. From Eq. (5.7), we see that the level spacing is
given by κ

2πα , and so we can increase the energy spacing by applying a stronger
harmonic potential, chosen here as κ = 0.2J . Increasing the strength of the har-
monic trap improves our flat-band approximation, but weakens the single-band
approximation. To compensate for this, we consider a larger value of α = 1/7,
for which the larger band-gap (E1 − E0) reduces band-mixing effects.

As in the experiment of Ref. [3], we work in the Landau gauge for the Harper-
Hofstadter Hamiltonian, with hopping phases given by φ = (0, 2παm). In order
to model the experimental pumping scheme where light was injected into a single
resonator at the edge of the system via an external integrated waveguide [3], we
consider a localized pump on a single site situated on the upper border of the
system at (m0, n0) = (0, 5). The corresponding intensity spectrum is shown in
the 1st row of Fig. 5.7. Apart from the expected broadening due to larger losses,
the peaks observed correspond well to the expected eigenenergies. As discussed
above, single-site pumping limits the number of visible peaks, as the heights of
the peaks at low-energies are suppressed due to the poor overlap of the real-space
eigenstate with the pump position. However, as this pumping scheme is closest to
that used in experiments, we emphasise that even in this case, enough peaks can
be observed to extract quantitative measurements of the toroidal Landau level
spacing. The orange vertical (dashed) lines show the first ladder of eigenstates
of H from Eq. (5.1). We also note that here for frequencies larger than −1.5J ,
we also start to see states from the second ladder ε1,β (see Eq. (5.7)), which are
depicted as green vertical dash-dotted lines. Their proximity to the first ladder
states means they cannot be easily resolved as separate peaks in the dissipative
spectrum.

Setting the pump frequency at the energy indicated by the black dotted line,
we plot the numerical near- and far-field emission in the left and center panels of
the 3rd row of Fig. 5.7. This corresponds to the wave function in real space and
in the full BZ, respectively. By applying the transformation in Eq. (5.16), we can
also map the wave function in the full BZ to the population over bands in the
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MBZ, as shown in the right panel of the 3rd row of Fig. 5.7. For comparison, we
plot these quantities for the corresponding numerical eigenstate of H Eq. (5.1)
in the second row of Fig. 5.7, for which there is no pumping and dissipation.

We find very good qualitative agreement between the numerical results in the
MBZ and the analytical toroidal Landau level Eq. (5.8) with β = 7, as expected.
We can make a quantitative comparison with this analytical eigenstate by taking
a slice along the dash-dotted vertical lines (p0

x = 0) in the right column of rows 2
and 3; these cuts are shown in the bottom panel of Fig. 5.7 along with a dotted
blue curve indicating the analytical eigenstate. As can be seen, there is excellent
agreement between the numerics without driving and dissipation and the analyt-
ical result. We have checked that reducing κ makes this fit even better, pointing
towards band-mixing effects. Introducing pumping and dissipation distorts the
eigenstate, but many characteristic features are still clearly observable.

It is particularly interesting to note that in the driven-dissipative steady-
state in real space, shown in the left panel of the 3rd row of Fig. 5.7, the photon
distribution breaks the rotational symmetry of the ring eigenstate. While this can
be physically understood as a decaying cyclotron orbit with an inverse lifetime
set by γ, in terms of eigenmodes the exponential decay (and more generally
the breaking of the rotational symmetry) results from the interference of several
modes which overlap in frequency due to the relatively large value of γ. In the
same way that real-space Landau levels give rise to real-space cyclotron orbits
under the effect of the magnetic field, the observation of momentum-space Landau
levels can provide clear evidence of a cyclotron orbit in momentum space under
the effect of the Berry curvature, whose effect is indeed that of a momentum-space
magnetic field.

Finally, we briefly summarize how one can practically measure the contri-
bution δE0 from the off-diagonal matrix elements of the Berry connection (see
Eq. (5.10)) from the intensity spectrum. Starting from an experimental spec-
trum, one first needs to select a particular peak and determine its β label by
comparing the MBZ reconstruction with the analytical result. The distance be-
tween two neighbouring peaks gives the level spacing κ|Ω0|. Finally, to separate
the shift δE0 from the Harper-Hofstadter ground state energy E0 in Eq. (5.7),
one can make use of the fact that the former depends on the trap strength κ,
while the latter does not. Preparing two otherwise identical samples with differ-
ent trap strengths and subtracting the ground state energy will then allow for a
direct measurement of the contribution from the off-diagonal matrix elements of
the Berry connection.

5.3 Conclusion

In conclusion, we have shown that the observation of toroidal Landau levels in mo-
mentum space is within experimental reach for state-of-the-art driven-dissipative
photonic systems. Our proposal combines the recent realisation of the Harper-
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Hofstatder model in an array of silicon-based coupled ring resonators in Ref. [3],
with a harmonic potential, which could be introduced through a spatial modu-
lation of the resonator size. We have presented numerical results to show that
even for very small lattices, in the presence of driving and strong dissipation, key
characteristics of the toroidal Landau levels can still be extracted. This would be
a first direct investigation of analogue magnetic eigenstates in momentum space.

We have also emphasised that the proposed photonics experiment would be
able to highlight a momentum-space analog of the cyclotron motion as well as
to measure the energy shift due to the off-diagonal matrix elements of the Berry
connection, which, as these are inter-band geometrical properties, are hard to ac-
cess by other means. We have also discussed how the spectroscopic measurements
presented here are sensitive to the specific synthetic magnetic gauge implemented
in an experiment.

Finally, an interesting outlook would be to include the effect of photon-photon
interactions in the model, as the degenerate ground states predicted in [189] for
a weakly-interacting trapped Harper-Hofstadter model may lead to interesting
nonlinear dynamical features. In the longer run, when the synthetic gauge field
is combined with strong interactions, one can hope to observe the hallmarks of
fractional quantum Hall physics [211, 212].
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Conclusions

The main theme of this thesis was the study of well-established phenomena,
namely superfluidity and magnetism, in a novel context of driven-dissipative
photonic systems, which are subject to losses that need to be compensated by
continuous pumping. After introducing the basic concepts in the setting of ultra-
cold atomic gases in thermal equilibrium, we looked at how the effects of driving
and dissipation changed this picture. In particular, we investigated the response
of microcavity exciton-polaritons scattering against a stationary defect, with an
eye on superfluid-like effects, and then turned to the momentum-space magnetism
of resonator arrays.

In the case of polaritons, we looked at the single-fluid pump-only regime, as
well as the three coupled fluids of the optical parametric oscillator regime created
by the parametric scattering of the pump to the signal and idler states. We found
that none of the two regimes displayed frictionless flow in the strict sense of the
word. The pump-only fluid showed a density modulation localized close to the
defect even in the “superfluid regime”, resulting in a residual drag force that
is entirely due to the finite polariton lifetime. On the other hand, we showed
that the optical parametric oscillator regime, in the optical limiter configuration,
always displays propagating density modulations in the pump, signal and idler,
and therefore violates the definition of frictionless flow in a stronger, conceptual
way. Futhermore, we determined two distinct types of threshold-like behaviour
of the drag force as a function of fluid velocity in the pump-only case, one of
which has no direct analog in equilibrium weakly-interacting atomic gases. In
the optical parametric oscillator case, we singled out three factors which together
determine the amplitude of the density modulations, and explained why, for
typical experimental conditions, the signal state may appear superfluid.

In the last part of the manuscript, we have discussed how momentum-space
Landau levels could be observed experimentally in driven-dissipative photonic
systems, by breaking time-reversal invariance by means of a synthetic gauge
field and creating topologically nontrivial energy bands. We have presented a
realistic proposal for engineering these states by combining a harmonic trap with
an artificial magnetic field for photons in a two-dimensional ring resonator array.
An observation of momentum-space Landau levels would be the first realisation
of magnetism on a toroidal surface. We have also demonstrated that the main
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properties of momentum-space Landau levels may be observed spectroscopically
for systems with realistic experimental parameters. Furthermore, spectroscopic
measurements will be able to access the absolute energy of eigenstates, measuring
novel geometrical features of energy bands, such as a contribution from the inter-
band Berry connection. The pumping and losses present in these experiments also
open the way towards studying analogue cyclotron orbits in momentum space.

In the future, more in-depth studies of polariton superfluidity, especially re-
garding the optical parametric oscillator regime, are needed. In experiments,
one could look at multiply-connected geometries, and on the theoretical side, use
nonequilibrium Keldysh field theory, which was already successfully employed
in the case of incoherently pumped systems, in order to rigorously compute the
superfluid and normal fractions. As far as the resonator arrays are concerned,
it would be interesting to include photon-photon interaction in future studies,
paving the way to fractional quantum Hall physics in a driven-dissipative set-
ting.



Conclusiones

These closing conclusions are written in Spanish as required by the Spanish Gov-
ernment for thesis manuscripts in a foreign language.

El tema principal de esta tesis es el estudio de la superfluidez y magnetismo
en un nuevo contexto de los sitemas fotónicos en presencia de bombeo y decadi-
miento. Estos sistemas están sujetos a pérdidas que necesitan ser compensadas
con un bombeo continuo. Después de introducir los conceptos básicos para un
sistema de gases atómicos ultrafŕıos en equilibrio térmico vemos cómo los efectos
del bombeo y las pérdidas cambian el panorama. En particular, investigamos la
respuesta de la difusión de los polaritones excitónicos en microcavidades bajo la
presencia de un defecto estacionario, mirando los efectos de superfluidez. Pos-
teriormente miramos el magnetismo en el espacio de momentos de matrices de
resonadores.

En el caso de los polaritones consideramos el régimen de un solo fluido (esta-
do de pump) y también el caso de tres fluidos acoplados en la configuración de
oscilación óptica paramétrica creada por la difusión paramétrica del pump en los
estados signal y idler. Encontramos que ninguno de los dos reǵımenes manifiestan
un comportamiento de fluido sin fricción en el sentido estricto de la palabra. En
el caso del fluido único existe una modulación de la densidad localizada cerca del
defecto incluso en el régimen superfluido produciendo una fuerza de arrastre re-
sidual completamente debida al tiempo de vida finito de los polaritones. Por otra
parte, vemos que el régimen de oscilación óptica paramétrica en la configuración
del limitador óptico siempre muestra modulaciones de la densidad que se propaga
en los estados de pump, signal y idler, y por tanto viola la definición de fluido
sin fricción de una forma conceptual. Además determinamos dos tipos distintos
de umbrales de la fuerza de arrastre como función de la velocidad del fluido y
del pump, uno de ellos no tiene análogo directo con gases atómicos en equilibro
débilmente interactuantes. En el caso del oscilador óptico paramétrico señalamos
tres factores que juntos determinan la amplitud de la modulación de la densidad,
que explican la aparente superfluidez del signal en condiciones experimentales
t́ıpicas.

En la última parte de esta tesis discutimos como los niveles de Landau en
el espacio de momentos pueden ser observados experimentalmente en sistemas
fotónicos en presencia de bombeo externo y perditas, rompiendo la inversión tem-
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poral por medio de un campo magnético artificial y creando bandas de enerǵıa
topológicamente no triviales. Presentamos una propuesta realista para obser-
var estos estados combinando una trampa armónica con un campo magnético
artificial para fotones en una matriz de anillos resonantes bidimensional. Una
observación de los niveles de Landau en el espacio de momentos seŕıa la primera
observación del magnetismo en una superficie toroidal. Además demostramos que
las propiedades principales de los niveles de Landau en el espacio de momentos
pueden ser observadas espectroscópicamente en sistemas con parámetros experi-
mentales realistas. En el futuro, experimentos espectroscópicos podrán medir la
enerǵıa absoluta de los autoestados describiendo nuevas propiedades geométricas
de las bandas de enerǵıa, como ocurre en el caso de la conexión Berry entre ban-
das. El bombeo y las pérdidas que hay en estos experimentos abren una nueva
v́ıa para estudiar órbitas análogas a las del ciclotrón en el espacio de momentos.

En el futuro se requerirán estudios más a fondo de la superfluidez de los
polaritones, sobre todo en el régimen de oscilación óptica paramétrica. En los ex-
perimentos uno puede mirar geometŕıas múltiplemente conexas. Desde el punto
de vista de la teoŕıa de Keldysh, basada en funciones de Green fuera del equilibro,
que ha sido utilizada de manera satisfactoria en el caso de sistemas bombeados
incoherentemente, para poder calcular de forma rigurosa las fracciones tanto su-
perfluida como normal. En el caso de las matrices de resonadores podŕıa ser
interesante incluir la interacción fotón-fotón en futuros estudios, abriendo el ca-
mino en la f́ısica del efecto Hall cuántico fraccionario en sistemas con bombeo y
dissipación.
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[70] C. Raman, M. Köhl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz, Z. Hadz-
ibabic, and W. Ketterle, Phys. Rev. Lett. 83, 2502 (1999).

[71] F. Chevy, K. W. Madison, and J. Dalibard, Phys. Rev. Lett. 85, 2223
(2000).

[72] C. Ryu, M. Andersen, P. Cladé, V. Natarajan, K. Helmerson, and
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