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Resumen (castellano) 
A día de hoy, los videojuegos son una parte considerablemente importante del desarrollo 
social, económico, así como del sector de entretenimiento de la sociedad moderna. No 
solo son una gran fuente de ingresos para los desarrolladores, sino también, una enorme 
fuente de entretenimiento en la vida privada de cada fan.  

En esta gran era de la intercomunicación e interacción global, la influencia que tienen los 
videojuegos sobre nosotros ha crecido a la par de la influencia que tenemos los usuarios 
en ellos. El gran impacto que las opiniones de millones y millones de usuarios han tenido 
en distintos productos no solo ha valido para potenciar el alcance comercial de dicho 
producto. Ha aumentado el estándar de calidad, la definición de géneros, la originalidad y 
la búsqueda de lo nuevo. Esta gran influencia que ahora mismo los usuarios tenemos 
sobre los videojuegos y su desarrollo, tiene sin duda alguna un inmenso interés, tanto 
como para el usuario, que puede guiar más fácilmente al desarrollador, como al experto 
en marketing que quiere vender más fácilmente un producto. 

En este trabajo de fin de grado se explora el uso de opiniones de usuario sobre 
videojuegos para crear sistemas de recomendación. Los sistemas llevados a cabo no solo 
son capaces de mostrar información de una manera simple de entender, sino que son 
capaces de llevar a cabo asociaciones entre distintos productos y separar géneros tanto 
cercanos como lejanos.  

SteamMind (SM) es el nombre del sistema desarrollado en este trabajo de fin de grado. 
Este proyecto es la suma de tecnologías de extracción e interpretación semántica de 
datos en un dominio informal, sobre la industria del desarrollo del entretenimiento 
virtual. Su propósito es el siguiente: 

Crear un sistema de recomendación basado únicamente en contenido generado por el 
usuario de la comunidad de videojuegos de Steam, para ser capaz, una vez 
proporcionado con una descripción, tan grande o pequeña como el usuario desee, ser 
capaz de referirle a un juego, o a un grupo de ellos. 

 

 

Palabras clave (castellano) 
Procesamiento de Lenguaje Natural, Videojuegos, Reseñas, Análisis Semántico, Mallet, 
Word2Vec, Crawler, Minería de Datos, Minería de Opinión, Sistemas de Recomendación, 
Prototipado Iterativo.  

 



 

Abstract (English) 
Videogames are a very important part of every day’s social and economic development, 
as well as the biggest part of modern society’s entertainment sector. Not only it is a 
considerable source of income for developers, but it is an incredibly big entertainment 
source of every fan’s private life.  

In this great global interaction era, the influence that games exert upon us has grown side 
to side with the influence that we, as users, exert upon them. The great impact caused by 
millions of user opinions has not only served as a commercial catalyst of the product 
itself. It has improved a lot of fields within the gaming world, quality standard, genre 
definition, originality, and the search of something new. This great influence that we now 
have as users over the whole videogame industry, without any doubt, of great interest, 
for both users – that can more easily guide a developer or a designer of the game – and 
the marketing experts – that are constantly looking for ways to improve the sales of their 
products.  

In this bachelor’s thesis, the definition of recommendation systems based on user’s 
opinion is explored. The systems that have been developed are not only capable of 
showing information that is easy to understand, but they are also capable of carrying out 
associations between similar products and define both wide and narrow genres.  

SteamMind (SM) is the name of the system developed in this bachelor’s thesis. This 
product is the aggregation of data extraction techniques and semantic interpretation 
technologies within a very informal domain, describing the industry which makes the 
virtual entertainment sector. Its purpose is, then 

To create a recommendation system based solely on the input of Steam’s gaming 
community that can be able to refer a user, once given a definition, no matter how 
short of long, of what s/he is looking for, to a game or a group of games. 

 

Keywords (English) 
Natural Language Processing, Videogames, Reviews, Semantic Analysis, Mallet, 
Word2Vec, Crawler, Data Mining, Opinion Mining, Recommendation Systems, Iterative 
Prototype.  
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“Video games are ingrained in our culture. Driven by some of the most innovative minds 
in the tech sector, our industry’s unprecedented leaps in software and hardware engages 

and inspires our diverse global audience. Our artists and creators continue to push the 
entertainment envelope, ensuring that our industry will maintain its upward trajectory for 

years to come.”  
 

Michael D. Gallagher, president and CEO, Entertainment Software Association 
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1 Introduction 

1.1 Motivation 

Games are everywhere right now. They are probably one of the biggest industries within 
the IT domain, and it will most probably continue to be. There are a lot of games, but 
most importantly, there are a lot of gamers. Lots of different people want different things 
from games. For some, they want fast movement, action, feel the adrenaline pumping as 
they make a turn with a car, or shoot a rocket into a group of soldiers. For some, it is the 
thrill of achieving something really difficult. For some others, it is the quiet time in which 
they think what is the best move to make. And yet, there is such a very big audience, and 
so much feedback that can bet tapped into thanks to the World Wide Web and the 
constant need that this society has of giving its opinion.  
 
Personally, the idea that fueled the project came from the daily routine of a game lover. 
There is something fascinating about browsing and looking for the game that will 
entertain you for the next 10, 80 or maybe even 1,000 hours to come, and yet, it is so 
very hard to find a perfect match for a user. Most hardcore gamers will browse games for 
a really long time, looking for something that they do not necessarily know it is there. It is 
a well-known fact in the IT industry that, most of the time, the client does not know 
exactly what they want, they might have a hint, a slight idea of what they are looking for, 
but they cannot pinpoint exactly what it is they are looking for. Personally, this project 
was designed to solve that daily dilemma of “Where is that next game that is going to 
entertain me?” 
 
However personal this idea may seem, professionally it is quite an interesting topic. The 
main idea was somewhat vague: using the raw power of massive opinion posts about 
games that there are currently public, free to get; using that massive information and 
condense it into something tangible, that will not be based in what a team of 30 people 
say about their own product, but of what thousands of people commented on; being able 
to link similar games, not for a genre defined by the makers of the game, but for what 
people that played the game and paid for the game have to say about it. If any of these 
goals would be achieved, it would bring a very interesting perspective to the 
recommendation field.  
 
This project begun as an exploration into the field of “directed recommendation” which 
could be easily defined as product searching or discovery. The problem relays in finding 
an accurate description for what a game is, since it is such a multi-layered product. People 
measure game value in euros per hour invested in the game, in game campaign hours, 
replayability, and many other terms. Since it is such a hard product to describe, and it can 
be described in many ways, it would only make sense for the average opinion to be taken 
into consideration. That is where this project lays.  
 
The goal of this project is then to build an (automatic) definition, of a set of games, that 
can potentially be used for recommendation systems. This definition does not need to be 
verbal, it could be numeric, it could be graphic, it could take many forms; the output does 
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not matter as much as how it is made. The main idea is that the opinion of almost 
100,000 users can be condensed into comprehensive models. These models could later 
be used to point future users to a game that they desire based on cross-referencing their 
description of their “ideal” game with every model of every game that has been 
previously analyzed. This project would help understanding the highly complex (and 
sometimes quasi-random) natural language used by users in these type of systems, which 
is – still – an open problem in Artificial Intelligence, and Computer Science at large.  

1.2 Objectives 

The purpose of the project, once again is: To create a recommendation system based 
solely on the input of Steam’s gaming community that can be able to refer a user, once 
given a definition, no matter how short of long, of what s/he is looking for, to a game or 
a group of games. In order to achieve this main objective, the project is divided in 3 
modules, each one addresses a specific part of the problem.  
 
1. Module I: Crawling and data extraction: A source of relevant data is to be identified 

and extracted. This data needs to be abundant and needs to talk just about the 
product, and not about secondary services such as packaging and delivering. The data 
is to be downloaded and placed in a file structure or database that would hold the 
information for future processing, parsing, and querying to/from the proper format 
that the next part of the project will need in order to perform the analysis. 

2. Module II: The preprocessor: This module is to parse the data extracted in the first 
module of the project, and place it in an appropriate format after applying a set of 
filters that will separate relevant information from non relevant information following 
an specific set of criteria.  

3. Module III: The semantic analyzer: The data is to be analyzed to develop a model that 
can differentiate between different games, or different game genres (groups of 
games), this will later be used to reference the user back to a game that he/she could 
be interested in. To make sure that the models are able to properly differ between 
the games and groups that will be defined. There will be a period of testing in which a 
small percentage of the data collected in the first stages of the project will be used to 
test the integrity of the system.  

1.3 Report organization. 

This report is organized in the following manner. After this short introduction that makes 
Chapter 1, Chapter 2 will describe the state of the art of the technologies within the 
project’s domain. It will cover the project’s domain, the technologies that were 
considered for the implementation of every part. Following, Chapter 3 will talk about how 
the project was designed and implemented, justifying the different paths that were taken 
and the ones that were abandoned. In Chapter 4, the results for the different models and 
testing methods that were used will be explained and analyzed, justifying the reasoning 
behind the acceptance or rejection of the models created. Lastly the conclusion and the 
potential future outcomes of the project will end the report in Chapter 5. 
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2 State of the art 

In this section, the different technological areas pertinent to this work will be discussed, 
as well as the different technological alternatives that were explored. Furthermore, the 
reasons behind selecting the techniques for developing this project will be justified. 

2.1 The Project’s Data Domain 

This project was developed to create a unique analysis of the vast amount of information 
about games from the user’s perspective, and not just from a critique’s point of view. The 
main choice for this source of information has been clear from the very start, mainly due 
to personal experience and interest. Some alternatives, nonetheless, are explored as to 
provide a source of argument and comparison that would support the choice of Steam as 
the social network to analyze. The main factors taken into account to select the source of 
the information to be analyzed are the following: 
- Firstly, a vast amount of information was needed to provide a thorough 

recommendation system, therefore, a source of a huge volume of data that could be 
easily and publicly accessed was needed. 

- Secondly, this information needed a clear context on the game that was under 
analysis by the user. This context would be given by a broad but simple view of the 
user’s opinion of the game. Text alone would be useless, since this information would 
have to be sorted out or thrown away if it would not be useful. The data that could 
give context to this review could be the date, the rating that the user gives the game, 
the amount of time spent ingame playing, and other user’s comments or responses 
to the reviewer’s opinion. 

- Thirdly, the platform selected would need to hold a certain reputation and 
popularity, as to favor the authenticity and relevance of the data. 

With all the relevant factors taken into account when picking the most suitable social 
network laid out and justified, the next section will present each social network apart by 
these factors, justifying the final choice.  

2.1.1 Gamespot, IGN and other online game magazines: 

These are some of the most popular game tabloids, both online and printed, through 
Europe. If we take a closer look at any of their articles dealing with game reviews, a clear 
pattern is shown.  
First of all, most of the user’s comments are channeled through reviews created by the 
chain’s employees. This is not necessarily a bad factor, but when we take a look at these 
responses, it is clear that most of them are not comments about the game itself, but 
reactions from the audience about a particular article. Secondly, games are classified in a 
very rigid way, created by a very small amount of employees of the company involved in 
the review, which limits the reactions of the users. For example, if a user does not agree 
on a game’s assigned genre, or he/she comes up with a very smart term to describe the 
game, or even a group of games, he/she cannot express this easily enough. Lastly, it can 
be shown that throughout every site that was under this project’s scope (Gamespot, IGN, 
Meristation) users are asked for their opinion, without a method at hand for the 
researcher to develop a way of determining whether the information given was relevant 
or not in a non-semantic way. For example, if there is a review that is one year old about 
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a product that has just been updated, the review would be of less relevance. This part 
was very important, since preprocessing and trimming the main corpus to a relevant one 
was incredibly important for better results.  
 

2.1.2 Metacritic 

Metacritic has been the only real alternative as a reliable source of gaming information 
that could be analyzed, thanks to its clear HTML, and its way to display their information. 
First of all, it displays both critiques’ opinions, and user’s opinions. Each user is forced to 
at least give a comment on their review to justify their opinion. And as it can be seen, the 
data volume is reasonable (1346 user reviews on a relatively new game1). Another 
advantage of this website is that it is not only for computer games, but for games of every 
console, and also for movies, shows and even music, which could prove itself to be a fine 
candidate for testing out this project’s output in other areas. As mentioned before, 
Metacritic has been a great candidate for the data extraction, and it would have been a 
perfect choice, if not for Steam’s immense potential, as we shall show next.  

2.1.3 Steam 

Steam is a gaming platform that started out in 2003 and proved itself to be the best 
software distribution paradigm for the gaming industry both then and now. Steam is an 
immense community of software consumers that is known for its frequent hot deals, 
offers and for its incredibly active community. Most of the gaming industry for PC is sold, 
made and distributed through Steam2, but that is not where its great potential for this 
project lays. Steam’s community is one of the most active online communities, Steam 
provides a broad selection of features, that allow its users to review games based on a 
binary system (“recommended” or “not recommended”) and to give a review as long as 
they wish, which, later on, other users can react to in various ways, such as pointing it out 
as a useful and/or funny review. This may appear simple and easily overlooked for 
Metacritic’s review system based on a 0 to 5 scale, but what Metacritic gains in accuracy, 
Steam makes it insignificant when looking at their review numbers. Looking at a popular 
game, within three months from the date of release (users are not allowed to make 
reviews before they purchase and play a game) it is expected that around 20,000 users 
will place reviews3) and when looking at a popular game that is about one year old, we 
could gather more than 110,000 reviews4. This vast amount of information, as well as 
how active the users are, make steam simple enough to mine and interpret but incredibly 
deep and broad information wise. There is also a very important system that Steam 
implements gracefully, which is the tagging system. Each tag is created by a user, and 
each user, if he/she wants, is able to vote for a tag. These tags votes, are lately used to 
index games and search for them using their tags. Once again, these tags are user 
defined, and user voted, so they are a “review” on its own, but of a very different 
relevance that will be shown later in this paper. 

                                                      
1
 DOOM, http://www.metacritic.com/game/pc/doom last accessed on 12/06/2016 

2
 Steam vs Origin vs Uplay: http://www.gadgetreview.com/steam-vs-origin-vs-uplay-comparison  

3
 Dark Souls III, http://store.steampowered.com/app/374320/ last accessed on 12/06/2016  

4
 Grand Theft Auto V, http://store.steampowered.com/app/271590/ last accessed 12/06/2016 

http://www.metacritic.com/game/pc/doom
http://www.gadgetreview.com/steam-vs-origin-vs-uplay-comparison
http://store.steampowered.com/app/374320/
http://store.steampowered.com/app/271590/
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Figure 2-1: Example of a review in Steam 

2.1.4 Comparative study. 

In order to show a very simple comparative analysis, the three sources will be consulted 
for a relatively popular game that went out mid-May: DOOM. Steam, Metacritic and 
Gamespot magazine (since it is the most popular one at the moment) will be consulted 
for a broad array of statistics that are related to user generated feedback.  
 
Table 2.1 Comparative Study Steam Metacritic Gamespot 

Magnitude of comments 17,2405 13976 5197 

Rating system Binary Decimal none 

User text response to user comment Yes None Yes 

Rating user comments Approval, 
funny 

Approval 
system 

Like system 

Post date Yes Yes  Yes 

Edit date Yes No No 

 
When looking at any of these three sources of information it is clear that Steam in plain 
numbers exceeds the amount of information that can be gathered if we were to add 
every review found in the two other candidates. Not only that, but its information is 
relevant to the game, has context within the game, has a context within the community 
and has a time context, since the dates for both posting and editing a user’s review is 
recorded. This does not only mean that Steam is a source of a lot of information, but that 
the information itself will be very valuable for analysis and mining purposes.  

                                                      
5
DOOM’s steam page http://store.steampowered.com/app/379720/ last accessed 27/06/2016 

6
 DOOM’s Metacritic page http://www.metacritic.com/game/pc/doom last accessed 27/06/2016 

7
 DOOM’s GameSpot page http://www.gamespot.com/reviews/doom-review/1900-6416432/  last accessed 

27/06/2016 

http://store.steampowered.com/app/379720/
http://www.metacritic.com/game/pc/doom
http://www.gamespot.com/reviews/doom-review/1900-6416432/
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2.2 Alternative Technologies. 

Within the project, a large amount of techniques, software and APIs have been taken into 
consideration as possible candidates to be used. To be able to clearly explain the extent 
of each one, the study of the possible technologies relevant to this project has been 
divided by the different modules of the project itself. 

2.2.1 Module I: Crawling and data extraction. 

When extracting any kind of data based on the HTTP protocol, there are a few ways that 
information can be extracted. It needs to be noted that as the websites have been getting 
more complex in time, there has been a growing complexity of the way the information is 
displayed. No longer data is displayed plainly on an HTML website, but it now gets filled 
as the user scrolls down the website (infinite scrolling), and data can be filled thanks to 
asynchronous processes that make it more difficult to extract the information from the 
site. Bearing that in mind, a few alternatives for correctly extracting dynamic 
asynchronous information have been explored. The outcome of this stage should be the 
HTML of each unit of data to be analyzed in following steps of process.  

2.2.1.1 JavaScript 

JS (JavaScript) is one of the best candidates for extracting information from the Internet 
when dealing with AJAX and other asynchronous petitions. The functions can be 
downloaded and executed locally to be able to make contact with the server and extract 
the needed data. However, a non-friendly syntax and the fact that no company ever 
comments nor correctly points out how to call their JS functions and where they are 
located within the immense maze that the website hierarchy of any complex website is, 
make it very hard to be able to correctly emulate the behavior of the target website. The 
advantages of this technology is that once everything clicks, a compact, fast and neat 
crawler would be at hand. However, the fact that most companies update their services 
whenever it is needed make this working against the clock, since at any given point in 
time, the company could simply switch JS functions and all the effort placed into creating 
that perfect crawler would be spoiled.  

2.2.1.2 Selenium 

When dealing with dynamic websites and asynchronous calls, Selenium is a rather blunt, 
yet effective tool that can provide a much needed emulation of an internet user. It is a 
web browser automaton that will emulate a user navigating a website. This comes in 
handy, since it would eliminate the problems that rise with infinite scrolling and other 
dynamic content loading tools in current websites. However, since it emulates a user, the 
speed that this tool provides is quite low, and since the data that needs to be extracted is 
gigantic in quantity, this is a poor replacement at best for any Java based crawler that 
would collect information 10 times faster. 

2.2.1.3 HTTP petitions 

Since the WWW is mostly based on a REST model, dynamic content can simply be looked 
as an HTTP petition, with its relevant URL, its parameters, and its response. When looking 
at any website that loads content dynamically using Google Chrome’s debugging add-on, 
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the next response is observed. Whenever content is loaded, an HTTP petition is launched, 
and a response comes in shortly afterwards. This can be thought of elementary and easily 
thrown away as basic information, however, it holds great potential when looking to 
structure a web crawler. The only thing needed is an agent that could launch HTTP 
petitions, which are common and varied, especially when looking at Java. Once that agent 
loads the URL and their parameters, it could iterate over that HTTP petition while altering 
its parameters in order to receive a constant flow of information. The downside to this 
way of mining data lays on how it is often put to use, as a way of DDoS attack, since 
launching multiple parallel HTTP petitions in a very short span of time could overload any 
server. In order to be able to protect itself from these kind of attacks, most servers 
implement a black list policy, and once they receive a lot of HTTP petitions within a very 
short time, they could potentially issue an IP ban that would render the crawling useless. 
Patience is what mends this flaw, since forcing the crawling agent to wait in between 
petitions for at least a second could easily prevent this ban, at the expense of more time 
needed to finish the crawling.  

2.2.2 Module II: Data pre-processing. 

In order to make sense of the HTMLs downloaded at the previous stage, the relevant data 
must be extracted, filtered, separated and placed into a suitable format that would allow 
an easy management of such information. In order to extract the information from such 
HTMLs, there is a wide array of methods and libraries that could be used. The output of 
this part of the project should be a txt file, since it is the most common input asked for in 
the different semantic analyzers that have been studied. These semantic analyzers usually 
require a very specific pathing in order to be able to process data correctly, word2vec, for 
example, required a structure such as:  
 
/labeled/game1    /unlabeled/game1 
/labeled/game2    /unlabeled/game2 
 
With each of those folders filled with individual pieces of text to be analyzed. Since the 
examples studied in other technologies also followed a similar format, using a database 
for storing the information was ruled out, since it seemed like a great investment in terms 
of working hours for merely formalizing the output of this part of the project. 

2.2.2.1 Raw analysis. 

Since an HTML is a plain text document such as any other, it can be opened as such and 
iterated over in order to extract the relevant information. This could be done practically 
in any language, ranging from Python and Java and getting even into C. This is however 
suboptimal, since there are plenty of options available for extracting data from HTML that 
are currently available. 

2.2.2.2 JSOUP 

JSOUP is a Java based library that allows the user to download HTML code, manipulate 
attributes, elements and text as well as search for them efficiently and with a very clear 
syntax. Its syntax is very similar to JQuery (another very popular JavaScript library) which 
makes any experience with it a great help when coding. It is one of the greatest HTML 
document scrapping tool available and with efficiency matching its popularity.  



 

 8 

2.2.3 Module III: Semantic Analysis. 

The semantic analysis technology is the core of this project, since it will help us to make 
sense of the huge amount of information that it will be provided with. It is important to 
mention that as it is known, language processing and understanding is a non-solved 
problem, since not even Google has been able to correctly define a language (make a 
robot that can speak like a human). Every technology mentioned is but an approximation, 
a very accurate in case of some, and a not so very accurate in some others, of the solution 
to the language problem. The output of this final module of the project would be an 
analysis of the presented data, filtered by different categories and with a clear 
interpretation. This output could take many forms, that of simple numbers and data 
providing an analysis of the social gaming network in its lowest complexity level, or a 
classifier that could divide future reviews into different fields at a higher complexity level. 

2.2.3.1 Mallet 

Mallet is a “a Java-based package for statistical natural language processing, document 
classification, clustering, topic modeling, information extraction, and other machine 
learning applications to text.”8 Mallet is specially designed for document classification and 
identification of features, after given a sufficient amount of text. It is important to 
mention that Mallet is specifically based on LSA or Latent Semantic Analysis and the bag 
of words model, which takes words into consideration, but not its placement in the 
sentence. To make this clearer, Mallet could take topics out of a pair of sentences, but 
not its meaning. This is more clearly shown through a simple example. “Real Madrid won 
last soccer match versus Barcelona” and “Barcelona won last soccer match versus Real 
Madrid”: in these two sentences, mallet would interpret them the same way, it would be 
able to know that they talk about two soccer teams, but it could not make out who’s the 
winner nor the looser.  

2.2.3.2 Word2Vec (Deeplearning4j) 

Word2Vec (Word to Vectors) from the Deeplearning4j project9 is the newest and most 
popular advance on semantic analysis, fueled by Google. It takes a different approach to 
the usual semantic analysis, rather than simply relying in techniques as LSA or “Bag of 
Words”, it “vectorizes” words and even sentences and paragraphs through a two-layer 
neural network and places such vectors into a multi-dimensional map. These vectors are 
not static, as the neural network is trained, the vectors and the space itself shifts in order 
to more adequately adapt to what it has learned. The fact that they implement a neural 
network increments its processing time greatly, since neural networks have a wide array 
of factors to accurately tune, and most importantly, they have to go through a number of 
epochs in order to reach a level of learning that is adequate to the topic at hand (not too 
high, because overlearning is a problem in these systems). As Deeplearning4j states in 
their website, given enough data to Word2Vec can “make highly accurate guesses about a 
word’s meaning based on past appearances.” It displays its information through a cosine 
similarity, which is the cosine angle between the two pieces of text compared. For 
example, the list shown in this page will show words associated with “Sweden” based on 
their distance to this word.  

                                                      
8
 Mallet official website, http://mallet.cs.umass.edu/index.php  

9
Deeplearning4j official website http://deeplearning4j.org/word2vec  

http://mallet.cs.umass.edu/index.php
http://deeplearning4j.org/word2vec
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Figure 2-2: Word2Vec output example 

2.3 Technologies selected: 

When deciding the relevant tool to use in the data mining part of the project, a viability 
study was developed as to see what would be the most correct way of extracting the 
data. This viability study is explained further in the design and development section, but 
the conclusions arisen from that study were clear. JavaScript was a poor choice, since it 
was quite unstable (3 changes were made to Steam’s API in the course of 9 months). 
Selenium worked quite well in extracting the needed data, however, the mining speed 
was beyond slow, with the capability of mining only about 5 reviews per minute. Lastly, 
HTTP petitions were clearly the best choice, since after a bit of tuning and fine adjustment 
to the latest changes on Steam’s website we managed to mine around 80,000 reviews in 
about 4 days (800 reviews an hour) and with no IP ban ever issued using this method. 

 
In the second part of the project, the data extraction and manipulation, it was clear from 
the very start that JSOUP’s popularity wasn’t without reason. Its clear access to the HTML 
resources were quite efficient in the early trials and its easy syntax made no further 
research needed.  
 
Finally, the semantic analysis was the most troublesome area, in terms of making a 
decision. Mallet’s reputation as a “topic finder” was a great addition to the project. A set 
of topics could be used to describe a certain game, and hence the recommendations 
could be made based on the topics taken out using the same program and a user’s 
description of his/her ideal game. However, Word2Vec seemed a more interesting and 
flexible option, with not only topic analysis, but the potential to give meaning to vast 
amount of information without separating topics. It also needs to be noted, that since 
Word2Vec is newer, more popular, and the roots of the project (shallow neural networks 
and using words as vectors) were academically more attractive than the more traditional 
LSA approach to semantic analysis, its use as the semantic analysis seemed a perfect fit 
for an “out of the box” project such as this. However, during the projects development, it 
was clear that Word2Vec’s maturity as a product was not high enough to adapt to such a 
complicated topic as this. Word2Vec was originally thought to be the most useful 
software for the project, but it was later discarded and Mallet was used instead, this will 
later be explained in Chapter 3.  
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3 Design and Development 

 
The design behind this project has followed an iterative prototype. Since the problem was 
made of small parts, it made sense to split the project in stages, each with a well-defined 
input and output. In each part of the project, functional requirements were added from 
the start, but the maturity level of the requirement was always taken into account, and 
so, they could be slightly adjusted depending on how the prototypes varied. Before the 
system’s design and development is thoroughly explained, a brief explanation of the 
overall project and its functions will be presented: 
 
 SteamMind (SM): This is the name of the whole system, its purpose, once again, is the 

following:  

To create a recommendation system based solely on the input of Steam’s gaming 
community that can be able to refer a user, once given a definition, no matter how 
short of long, of what s/he is looking for, to a game or a group of games. 

In order to be able to fulfill its purpose, the project has the following 3 parts/modules:  
 
 I. The Crawler: 
 This module is in charge of extracting the raw data and putting it into an 

object, txt file, or database that could potentially be fed to the next 
submodule of the project. Its purpose is only to collect the data and make it so 
that it can be treated or filtered by any of its fields. 
 

 II. The preprocessor: 
 This module will take the data mined by the crawler and will use a number of 

directives to discard the information that would not be useful. This module will 
also be in charge of supplying the information to the next layer of the project 
in an adequate format so that it can be processed without having to modify it 
in any way that may slow the process down.  
 

 III. The semantic analyzer:  
 This last part of the project will receive 2 inputs: 

 Input I: The prepared, preformatted data from the second layer of the 
project. It will use it to create a model that can map different combinations 
of words to a game, or a group of games. 

 Input II: A user’s description of the product that s/he is looking for. It will 
then use that information to refer the user to one of the games that it 
analyzed before. 
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3.1 Module I: The crawler. 

The crawler’s function is to collect data and place it into an object. In order to explain 
more thoroughly each of its functions, the definition of this part of the product will be 
divided in different requirements, functional and non-functional. The functional 
requirements describe the behavior of the system and how every input is processed and 
turned into an output. The requirements will be displayed as follows: 

 
 Name/ID: This field allows a correct identification of each requirement, so that in 

future references it will be easier to classify and consult them. 
 Description: this field will explain what this requirement is to fulfill and in what way. 
 Pre-conditions: this field describes the conditions to be met within the application so 

that this requirement can be evaluated. 
 Post-conditions: this field will define the output of the function described by this 

requisite. 

3.1.1 Requirements: 

3.1.1.1 Functional Requirements: 

The functional requirements of the crawler are as follows: 
 

ID FRA01: Steam integration  

Description The system must be able to communicate with the site 
www.steampowered.com so as to be able to extract the review data. 

Pre-conditions The system in which the application is run must have an internet 
connection. 

Post-conditions The application does not raise any exceptions due to a failure in 
connection. 

 

ID FRA02: Game list collection  

Description The system must be able to crawl the game category “most popular 
steam games” and extract the product IDs of each of the most 
popular 18 games.  

Pre-conditions Requirement FRA01 has been met. 

Post-conditions The application collects a list of URLs or game ids and stores them in 
memory to be able to be forwarded to the next part of the program 

 

ID FRA03: URL builder 

Description The system is able to come up with the list of URLs of every game on 
the list produced by FRA02. 

Pre-conditions The requirement FRA02 has been met. 

Post-conditions The application will be able to access correctly every steam game 
URL based on the FRA02 list. 

 

http://www.steampowered.com/
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ID FRA04: Game review crawler. 

Description The system will be able to crawl the URL of the game provided by 
FRA03 and extract the URL from the X (this number is flexible) first 
most popular user reviews.  

Pre-conditions Requirement FRA03 has been met. 

Post-conditions The application successfully collects a list of review URLs and dumps 
them into a text file for later processing. 

 

ID FRA05: Game review data extractor. 

Description The system will be able to extract the relevant fields of data from 
each of the review URLs.  

Pre-conditions Requirement FRA04 has been met. 

Post-conditions The system is able to collect all the data into a List<Review>. 

 

ID FRA06: Lost URL detection 

Description Users are able to delete their reviews, because of this the review can 
be deleted after it has been fetched by the game review crawler 
(FRA04). Hence an error system that checks for a null or lost review 
is needed 

Pre-conditions Requirement FRA04 has been met. 

Post-conditions The system is able to point out which reviews have been deleted and 
are no longer available.  

 

ID FRA07: txt dump file 

Description The system is able to dump all the relevant data into a txt file so as 
to be ready for the pre-processor. 

Pre-conditions Requirements FRA06 and FRA05 have been met.  

Post-conditions A text file with all the information is correctly generated. 

3.1.1.2 Non-Functional Requirements: 

The non-functional requirements are those which describe the properties and qualities 
that the system must have. These are not part of the functionality, but they dictate the 
ways that each of the functions must be carried out so as to obtain a desired level of 
quality. 
 

ID NFRA01: Stability 

Description The system must be stable enough so as to maintain a proper 
execution during long periods of time in which the crawling and web-
scrapping must be carried out.  

Priority High 
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ID NFRA02: Mining speed 

Description The system must be able to mine the required data in a fast way, 
relative of course to the huge amount of information that is to be 
collected and the bottlenecks of the different software systems in 
which it may be based on.  

Priority High 

 

ID NFRA03: Portability 

Description The system must be able to be run correctly under every SO, Linux, 
Mac, and Windows so as to provide the highest possible 
compatibility to mine from different systems. 

Priority Medium 

3.1.2 General design: 

This module has been developed in a modular setting that allows a very clear description 
of the whole process that the crawler needs to carry out. The submodules are as follows: 

 

 Crawler Module I: Game list 
o This module allows to fetch either the URL or the ID of each steam game 

that is to be crawled. In order to create a stable list of games from which 
to extract the reviews, the steam category “most sold games” was 
chosen. This was a design choice, since the most sold games would have a 
higher number of reviews. 

o Input: the URL where the game list will be fetch from (see later). 
o Output: a list of URLs or IDs that will be used to crawl the game reviews.  

 Crawler Module II: Game review fetcher: 
o This module lets fetch the different reviews up to a maximum defined by a 

local variable (10,000 reviews) by their reference or URL.  
o Input: The list fetched from module I. 
o Output: A list of URLs to be scrapped by the next module in either a .txt file 

or an object (List<String> would suffice). 

 Crawler Module III: Review page-scrapper.  
o This module allows to: 

 Read from every field the relevant data. 
 Store data in an object. 
 Have a toString method so as to dump that information in a file for 

later use. 
To be able to justify this design, a concise analysis of the Steam website will be provided. 
First of all, these are all of the relevant URLs: 

 

 Type I: Game list URL (from where the game list will be fetched):  
http://store.steampowered.com/search/?filter=globaltopsellers&os=win#sort_by
=Reviews_DESC&category1=998&os=win&filter=globaltopsellers&page=1 

o This is a rather complex URL, but it can be understood easily. It is the list of 
most sold games ordered by reviews and showing only games (not taking 
into account downloadable content (DLCs and expansions).  

http://store.steampowered.com/search/?filter=globaltopsellers&os=win#sort_by=Reviews_DESC&category1=998&os=win&filter=globaltopsellers&page=1
http://store.steampowered.com/search/?filter=globaltopsellers&os=win#sort_by=Reviews_DESC&category1=998&os=win&filter=globaltopsellers&page=1
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 Type II: Game URL (Example: Portal 2):  
http://store.steampowered.com/app/620/  

o As it can be seen, the game URL is easily fetched since it happens to be 
indexed by an id at the end of the URL. After a bit of research it was found 
that this ID is unique to each game and so fetching this id would be the 
first step to create the crawler. 

 Type III: Game review display URL:  
http://steamcommunity.com/app/620/reviews/?browsefilter=toprated  

o As shown, the URL maintains the appid structure from the game URL, and it 
simply adds the /reviews/ part to the game URL mentioned before. Also, it 
can be seen that the /?browserfilter=toprated indicates that it will show 
the top rated reviews first. It would seem like this would be a perfect 
starting point for the crawling tool. 

 Type IV: Game review URL: 
http://steamcommunity.com/id/weffal/recommended/620/  

o As shown, the reviews are assigned to the user (in this case wefall) and 
they do not carry an individual ID, which means that our system cannot 
construct the URLs from the game ID alone. It must also either know every 
user that has reviewed the game (which is not easily accessed information) 
or fetch the review URLs from the game review display URL. 
 

The easiest way to fetch the URLs from the reviews seemed to be fetching from the game 
reviews display URL, which was publically shown and accessed easily from constructing 
the URL (no crawling needed). To show how this was done, the different pages from 
which the information is going to be fetched will be displayed in HTML code. Let it be 
noted that the HTML page is around 4,000 lines long, so only the relevant data will be 
shown as to provide an insight into what information the crawler would fetch and from 
what fields.  
 
First of all, the game IDs could be fetched from a structure from the Type I URL such as 
the one that follows: 

Figure 3-1: Steam Homepage Source Code 

http://store.steampowered.com/app/620/
http://steamcommunity.com/app/620/reviews/?browsefilter=toprated
http://steamcommunity.com/id/weffal/recommended/620/
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As it can be seen, the id could be fetched straight from the <a href…data-ds-appid field. 
Also, the name could also be fetched from the <div class=”col search name ellipsis”> and 
the class=”title”. 
 
The type II URL (game URL) did not have a use in the crawling program, since it only held 
game information, so the type III URL was explored only to find a very common use 
nowadays of dynamic content: the infinite scrolling. This is a common solution for web 
developers to avoid loading too much content in one single URL, so what they design 
instead is a JavaScript script that could detect when a user is at the bottom of a page, 
then an AJAX function is executed to dynamically load content into the page, but only so 
as the user kept scrolling down. 
 
The infinite scrolling was a very hard problem to tackle. It did not allow JSOUP to fetch 
the whole reviews with only loading the type III URL, which was a huge problem, because 
the information was able to be accessed publically, but the human interaction was 
needed. Here is where the iterative prototype started, since the requisites were into 
place and the only thing avoiding for the process to continue was this stone in the path. 
Instead of doing a viability study for each solution which would take considerable time 
and could potentially be unable to yield the necessary resources, different routes were 
explored within the iterative prototype paradigm.  

3.1.3 Prototype I: JavaScript crawler. 

The first exploration was the most obvious one, since the request to load the page was 
dynamic, and it was called by a small JavaScript function on the website, it was thought at 
the time that JavaScript could be run locally as to imitate the behavior of the website and 
receive the data in a JSON file or something similar. Since everything that is on the site 
must be publically shown, especially if it is locally executed (such as JavaScript) the 
function was available to the development team. However, no documentation was 
provided for this function. The arguments were shown without clear indications on what 
they were doing or what their purpose was. During the first semester of the project, this 
option was thoroughly explored. Different versions were developed as to execute 
JavaScript in different ways, however, at the moment in which it was almost ready (URLs 
were successfully fetched and placed in a txt file) Steam decided to update their website. 
That brought a change that rend the work done until that point useless, since they almost 
deleted half of the JS functions that they called. As a result of this update, this side of the 
project was abandoned and left for a somewhat unorthodox solution: Selenium.  

3.1.4 Prototype II: Selenium crawler. 

Selenium is a software testing framework that was specially designed for testing web 
applications. It allows web browsing automation under a clunky user interface and a very 
slow pace. Setting this crawler up took less than a week. The program instantly opened 5 
to 10 different browser windows (each belonging to a single game) and it was able to 
scroll down while collecting each of the user’s name and review URL. This allowed for 
collecting both the username of the reviewer (used to create the URL for the review) 
together with the game id, and the review URL itself. This method, however unorthodox it 
may have been, worked successfully and it allowed a perfect fetching and scrapping of 
the needed data. However, even when using 10 browsers at the same time, the download 
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speed was very low, achieving only around 200 reviews per hour. This was of course 
under no consideration, since mining every piece of relevant data would take weeks. Also, 
for display purposes, this clunky method seemed sub-optimal. To be able to take this 
project to the next level, an intensive study of the infinite scroll was carried out. In the 
end a small forum post in a web development website suggested that every piece of the 
internet is based on the REST model. Which of course meant that every piece of data that 
is exchanged is based on an HTTP petition with an URL and a series of arguments that 
would tell the server how to respond. That was the key for solving the infinite scrolling 
problem. 

3.1.5 Final Prototype: Development of HTTP-GET based Java crawler. 

During the intensive study of the infinite scroll it was pointed out that everything that 
happens in a website has a HTTP petition attached to it. Using Chrome’s debugging 
console, as the game review page was scrolled down, it showed an outgoing HTTP 
petition that held the solution to the infinite scroll problem. If this petition could be sent 
while altering its parameters, it could potentially provide the URLs for each review within 
a game. With this HTTP GET petition at hand, a small Java prototype was tested to check 
the speed of mining a single game, Darksouls III. The Java prototype successfully mined 
10,000 reviews in 2 hours before getting an IP ban. This was the stepping stone in which 
the whole crawler module was built.  
 
The formal design of this class is presented next. The 
classes within this package maintain a very simple, yet 
powerful structure that could potentially allow for a 

greater expansion into other parts of the Steam website. 
The package structure will be explained from the 
innermost layer, to the uppermost. Since that will allow a 
greater understanding on what every layer takes from the one before and what it takes 
from the one after.  
In order to introduce the whole package, a class diagram is provided. 
 

  

Figure 3-3: Package structure 

Figure 3-2: SM crawler structure 
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3.1.5.1 The Review Class. 

First of all, a picture of a review will be displayed, so as to show where the information 
was taken from: 
 

  

Figure 3-4: Steam review example. 

The class review, is the undermost piece of the clockwork that makes the crawler. Its 
function is simple, to hold the information of a review, initialized by its link. In order to do 
this, the constructor receives a link, and uses the methods from the JSOUP package to 
trim down the information and save it in a data structure containing information relevant 
to the whole process.  
  
url: The original URL in a string format from where the review was fetched. 
game: A string containing the name of the game, needed for the classifier. 
posted: A string containing the date in which the review was posted.  
updated: A string containing the date in which the review was last edited. 
helpful: the number of users that rated the review helpful, as an integer. 
reviewed: the number of people that reviewed the review. 
funny: the number of people that thought the review was funny as an integer. This field 
was kept in order to be able to filter by it on a later time. 
approval: it is a double calculated by dividing helpful by reviewed. 
hoursplayed: a double storing the amount of hours that the reviewer played the game, 
taken from the website review. 
hoursweek: a double storing the amount of hours that the reviewer played the game 
within this week. 
recommended: a boolean storing whether the user recommended the game or not. 
data: a string containing the text of the review. 
 
From all the information that the review collected, only a portion of it was dumped to the 
data file, the rest were thought of minor relevance and left for future stages of the 
project. This is an example of one of the reviews dumped from the review: 
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ID:12 
Total_War_WARHAMMER 
First Campaign in this game, hard difficulty. I pick Chaos, with Archaon as a legendary lord. Turn 2, I attack a 
town, I make my army suicide itseft, rushing straight into a trap. I lose the campaign, but... Archaon died, so 
The End Times will never happen. 10 out of 10, would prevent the Old world to enter the Age Of Sigmar 
again. 
approval:76.86310904872389 
funny:310 
helpful:328 
posted:Posted: 28 May @ 8:48am 
recommended:true 
hours played:21.9 

 
Based in this dump, the most important fields are of course the recommendation, the 
approval rate and the text itself, together with the number of hours that the user has 
played. The logistics of the analysis will be explained further into this report.  

3.1.5.2 The reviewURLMiner class: 

The purpose of this class is to send the HTTP-GET petition mentioned in the introduction 
of this section in order to fetch a determined number of review URLs and place them 
within its structure. In order to do this, the HTTP get petition that refreshed the infinite 
scroll from the review page was studied and was put through a few iterations to test how 
its parameters were altered. The petition was as follows: 
 
       String url = "http://steamcommunity.com/app/" + appid + "/homecontent/?" 
                + "userreviewsoffset=" + count 
                + "&p=" + counter 
                + "&itemspage=2" + counter 
                + "&screenshotspage=" + counter 
                + "&videospage=" + counter 
                + "&artpage=" + counter 
                + "&allguidepage=" + counter 
                + "&webguidepage=" + counter 
                + "&integratedguidepage=" + counter 
                + "&discussionspage=" + counter 
                + "&l=english"+ "&appHubSubSection=10" + "&browsefilter=toprated"  

   + "&filterLanguage=default&searchText" + "=&forceanon=1"; 
 
Highlighted in pink, there is the app id from the game that the agent would be mining 
reviews from. Highlighted in yellow, there are the parts of the HTTP petition that did not 
change after debugging the code 5 times in a row within the same page (activating the 
infinite scrolling 5 times in a row, collecting and comparing the outgoing HTTP petitions). 
Highlighted in blue, we show the ones that had an argument that always changed at a 
constant rate. Finally, highlighted in green we observe the part of the URL that dictated 
the offset of the review table that was consulted. Knowing how the petition worked, and 

using the package javax.net.ssl.HttpsURLConnection, the petitions could be sent.  

 
In order to maintain the data, the next information was kept: 
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USER_AGENT: A string that would hold the agent that we would impersonate in order to 
mine the reviews, in this case Mozilla/5.0 
reviewURLs: A list of strings that would hold the URL that the HTTP petition would return. 
This would later be passed onto the class Review one by one in order to extract the 
information needed.  
reviewCount: this constant was used to determine the number of reviews to be mined, 
after this number was reached, the agent could stop mining reviews from the game.  
 
In order to mine the relevant data, this class only needed the game id (highlighted in 
purple above) to start mining information, since every other parameter depended on the 
number of times the HTTP petition was sent beforehand. So the class simply needed of a 
method mine that would receive an appid, and would mine reviewCount review URLs 
using the HTTP petition that would be built iterating over the same appid with different 
parameters. The response was simple enough that a simple pattern matcher was used to 
extract the URLs, no JSOUP class was needed to parse anything else. 

3.1.5.3 mostSoldGamesAppid class: 

The almost outmost layer of the app makes a connection to the Type I URL in order to 
extract the most sold games. The class is barely 60 lines long, it simply makes a JSOUP 
connection to the Type I URL, and downloads the HTML present in such page. From there, 
it was observed that the “data-ds-appid=\” field of one of the HTML fields contained the 
appid for each game that was within that HTML division. Extracting such appids was as 
simple as compiling a pattern such as the one described before, and all the appids were 
listed in clear ints.  

3.1.5.4 Miner Class 

This class is the crawler’s main class. Its purpose is to call every other class in order to 
fully scrap about 100,000 reviews. It has a few parameters that can be modified before 
the execution so as to modify its behavior. Such as the parameter “mined” which 
determines whether the review URLs have already been collected or not, and if they have 
been beforehand, it skips this step, making it easy to do a two-step mining.  
The main is structured as so: 

1. Check if the list of reviewURLs has already been collected. 
a. If not: 

i. Declare a mostSoldAppIds class, and get the appids for every game 
in that type III URL. 

ii. Declare a URLminer, and call its mine() function once per appid. 
iii. Notify by standard output the number of reviews URLs that it holds. 
iv. When it is done, write every URL into a “reviewURLs.txt” so as to be 

able to read from it for the next step of the data mining. 
b. If it has been collected: 

i. Read the URLs from the file and store them in an ArrayList. 
2. For every review URL in the arrayList collected above: 

a. Create a Review Class with the URL 
i. Let it be noted that the review collects data by itself, using only the 

review URL. 
b. Dump the review.soString() output to a file. 
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3.2 Module II: The preprocessor. 

The preprocessor that was originally thought of was a lot more complex that the simple 
class that ended up making this part of the project. Originally, it was designed to create 
partitions for both testing and training, combining different parts of the data depending 
on length, gameplay time, and to be able to filter by every attribute collected. However, 
after switching back and forth from different semantic analyzers, it became clear that this 
part of the project was too ambitious for this scale. The fact that it does not fulfill its 
original purpose does not make it less important. This is the parser and selector of data, it 
places information in a way that every technology used could interpret and analyze. The 
general design of this part did not fully follow an iterative prototype on its own, this part 
was adjusted as the semantic analyzer needed fit. As the semantic analyzer went through 
its own iteration the preprocessor needed to be adjusted and modified to alter at the 
same pace as the semantic analyzer.  

3.2.1 Requirements: 

3.2.1.1 Functional Requirements: 

The functional requirements of the second module are as follows: 
 

ID FRB01: Data low level parsing 

Description The system must be able to read plain text in UTF-8 format and 
remove any characters that would not bring any useful information 
to the semantic analyzer. 

Pre-conditions The Module I has been executed correctly and the reviews are in a 
group of files following the review dump file syntax. 

Post-conditions The application is able to store the information without any special 
characters, such a hearts, accented words, Japanese kanji, ascii art 
and other non UTF-8 characters.  

 

ID FRB02: Review integrity 

Description The system must be able to know when a review is useful or not. This 
will be done through a list of chained requirements that may or may 
not vary depending on the restrictions that are used later on the 
semantic analyzer 

Pre-conditions Requirement FRB01 has been met. 

Post-conditions The application successfully applies a chained condition in order to 
determine whether a review should be added to the partition or not. 

 

ID FRB03: Review format 

Description The system must be able to collect the data and parse it into 
different formats for any semantic analyzer that could potentially 
analyze data. 

Pre-conditions Requirement FRB02 has been met. 

Post-conditions The application successfully puts files in any file structure, hierarchy, 
or format readable for any semantic analyzer that the project needs.  
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3.2.1.2 Non-Functional Requirements: 

ID NFRB01: Speed 

Description The system must process and assemble the different formats and file 
structures properly and at a reasonable speed. 

Priority High 

 

ID NFRB02: Capacity 

Description The system must be able to hold all of the information without 
overburden the computer in which it is been run on. 

Priority High 

 

ID NFRB03: Scalability 

Description The system must be able to withhold the future improvements or  
updates that it could need at a future date. 

Priority Low 

3.2.2 General review quality specs: 

The formatter is built to fit a general purpose, which is to trim down the amount of data 
that has been collected, so as to take only the relevant data, and the second one, which is 
to place it in an adequate format. This part is dedicated to explain and justify the design 
of the first part, the one that creates different partitions of information. 
 
First of all, when looking at reviews, there is one thing that is very clear. Steam users are 
not formal critiques. Here, there is an example that perfectly captures the steam 
community’s spirit. http://steamcommunity.com/id/ShariganXII/recommended/374320/ 
(shown next page). 
 
However, amusing these reviews 
might seem, they do not bring any 
kind of semantic meaning to the 
review. In terms of analysis they 
are an anomaly, and one that 
would insert a lot of noise into the 
system. However, they make 
barely a 2% (actual fact taken 
from the pre-analysis of the data) 
of the data taken from the 
website. In order to avoid these 
kind of reviews, ASCII art, 
Japanese or Chinese characters 
and many other characters that 
could potentially pose a threat to 
the stability of the system, the 
preprocessing rule number one 
was created: 

 
Figure 3-5: Steam informal reviews. 

 

http://steamcommunity.com/id/ShariganXII/recommended/374320/
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Preprocessing rule I: every character that was not a letter, a hyphen, or an underscore, is 
to be taken away from the sentence. 
 
This includes accented letters, numbers, since they pose no semantic value, and brackets 
and such. However, that was not the only problem that the informal status of Steam’s 
community posed. Reviews that held very little content, were also a problem, as it can be 
shown below: 
 
The user Lupo wrote this review talking about The Witcher III 
“I hope one day I get amnesia so I can play again to full effect.”10 
 
The user Clementine wrote this review, talking about the Witcher III as well: 
“537 hours and still continue playing. That's your answer for how good it is.”11 
 
The user Lewiz also talked about the Witcher III in a similar manner: 
“The more you play other games, the more you love Witcher 3”12 
 
The last example, taken from a Dark Souls III review, will also speak for itself: 
“Hmm... Mmm...”13 
 
 These types of reviews are also considered to be of very little semantic value, and hence 
the second preprocessing rule was stablished. 
Preprocessing rule II: every review that is no longer than a given length is to be removed 
from the partition. 
 
The last review that was shown, also indicates a very small problem that some of the 
reviews have, which is word variation. That is why, the third preprocessing rule stated 
that: 
 
Preprocessing rule III: if there are no more than 5 different words in a review it is to be 
discarded. 
 
Which is also with clear justification, first of all, a review such as the one shown last, has 
no use whatsoever. The ones before it, state very little, but if pieced together may be able 
to account for some semantic value, however, a very small repetition of words will not 
hold any significance and hence, must be discarded. Lastly, a very long chain of characters 
with no spaces whatsoever in between, does not hold any meaning either, and hence the 
last preprocessing rule states: 
 
Preprocessing rule IV: If there are no spaces in a review, it is to be discarded. 

                                                      
10

Lupo’s review on “The Witcher III”: http://steamcommunity.com/profiles/76561198041889474/ 
recommended/292030/  
11

 Clementine’s review on “The Witcher III”: http://steamcommunity.com/profiles/76561198008686104/ 
recommended/292030/ 
12

 Lewiz’s review on “The Witcher III”: http://steamcommunity.com/id/124123534645361234124312/ 
recommended/292030/  
13

 Reinski’s review on Dark Souls III: http://steamcommunity.com/id/Reinski/recommended/374320/ 

http://steamcommunity.com/profiles/76561198041889474/%0brecommended/292030/
http://steamcommunity.com/profiles/76561198041889474/%0brecommended/292030/
http://steamcommunity.com/profiles/76561198008686104/%0brecommended/292030/
http://steamcommunity.com/profiles/76561198008686104/%0brecommended/292030/
http://steamcommunity.com/id/124123534645361234124312/%0brecommended/292030/
http://steamcommunity.com/id/124123534645361234124312/%0brecommended/292030/
http://steamcommunity.com/id/Reinski/recommended/374320/
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3.2.3 Word2vec format: 

At first, word2vec was thought of to be the most adequate analyzer for the project, and 
so an adequate formatter was built. The word2vec format was very simple. Each topic, 
game, or subject to be identified must have a separate folder, and the corpus would be 
split into two different sections, labeled and unlabeled. The labeled partition contained 
the game folders and each game folder contained the reviews that were to be used 
specifically for the training of the model. The unlabeled partition in the other hand, held 
exactly the same folders with exactly the same names, but the reviews in them were used 
for the testing partition. In order to run different tests, two partition generators were 
created, one that read the whole review data and separated them by games, and another 
one that separated them into positive recommendations and negative recommendations. 
The file structure was as follows: 

 Classifier by games: 
o Labeled 

 The Witcher 3 

 Review 1 

 Review 2 

 Review 3 

 …. 

 Review N 
 Dark Souls 3 
 … 
 Rocket Legue 

o Unlabeled 
 The Witcher 3 

 Review N+1 

 Review N+2 

 … 

 Review N+M 
 Dark Souls 3 

 Classifier by recommendations 
o Labeled 

 Recommended 

 Review 1 

 Review 2 

 … 

 Review N 
 Not Recommended 

o Unlabeled 
 Recommended 

 Review N+1 

 Review N+2 

 … 

 Review N+M 
 Not recommended 

 

 
Where each black square is a folder with exactly N reviews in the labeled area and M-N 
reviews in the unlabeled area. Partitions were created in different percentages, with the 
lowest training percentage of 70% to a testing percentage of 30% and a highest training 
percentage of 90% and a testing percentage of 10%. 

3.2.4 Mallet format 

For causes yet to be explained (see Section 3.3, a change in the semantic analyzer was 
needed. In order to create a format suitable for this new type of software, a few different 
examples from Mallet’s official website were examined. Since Mallet’s purpose was very 
different from Word2Vec, the format was a lot simpler. It only needed raw text in order 
to function properly, in no given format, so the reviews were simply split into different 
games for clarity purposes, and they were left in a single folder. A much cleaner format 
that allowed for very quick on the go tweaks, like removing games that could introduce 
noise in the system. The file structure for this format creator was as follows: 
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 Mallet folder. 
o Partition 1 

 GameReviewsI.txt 
 GameReviews2.txt 
 …. 
 GameReviewsN.txt 

o Partition 2 
 Game Reviews1.txt 
 … 

o Partition 3 
 Game Reviews.txt 
 … 

3.3 Module III: The Semantic Analyzer. 

The semantic analyzer is the most important part of this project, since it condenses all the 
information taken by the first module, and places it into a structure that can be 
comprehended. Afterwards, this very same structure will be used to evaluate the new 
text input, which could be a user’s description of the game that he would like to find. This 
second evaluation will allow the model to make a recommendation based on what the 
other 80,000 users had to say about the particular game that they wrote about. In order 
to come up with the most suitable technology for this kind of analysis, two main 
technologies were used. At first, it was thought that word2vec would be the most suitable 
technology, and that it would bring prestige to the project, since it is a new technology 
that is still in development, with a very active community and a lot of developers behind. 
Mallet however, has been around for a few years and it has a more classic approach to 
the subject of semantic analysis using LSA and topic modeling instead of the complex 
geometrical evaluations that word2vec brings to the mix. To make it clear, during a period 
of almost 2 months, word2vec was used to try to develop an effective model that would 
suit this corpus. However, after many different issues that were raised during the 
development of the project, it was clear that it may not be totally suitable for the domain 
of the project. These issues will be further explained in a later time within this chapter. 
 
After failing at successfully implementing a model with word2vec, Mallet was tried out 
and the results were processed at a much faster rate, and were a lot more precise. 
Without further explaining, the requirements of the system that was to be created will be 
listed and justified.  

3.3.1 Requirements: 

3.3.1.1 Functional Requirements: 

ID FRC01: Stop words 

Description The system must be able to take in a list of stop-words, which are 
common words that are frequently used and do not bring any 
significance to the text to be analyzed. These words can and should 
be dynamic in order to tune the model.  

Pre-conditions The Module II has been executed correctly and the reviews are in a 
group of files following the correct software syntax (either 
Word2vec, or Mallet) 

Post-conditions The system is able to ignore every word listed in the stop words list. 
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ID FRC02: Unattended learning 

Description The system must be able to come up with a model suiting input 
corpus. This model’s specifications could vary depending on the 
current approach of the project 

Pre-conditions Requirement FRC01 has been met. 

Post-conditions The system creates such model and places it in a text output that can 
be interpreted. 

 

ID FRC03: Evaluation 

Description The system must be able to create a list of results that can be 
evaluated.  

Pre-conditions Requirement FRC02 has been met. 

Post-conditions The system is able to either interactively or automatically be tested 
and compiles a list of results. 

3.3.1.2 Non-Functional Requirements. 

ID NFRC01: Speed 

Description The system must be able to come up with a model in a reasonable 
amount of time, no less than 3 hours of processing would be a 
reasonable. 

Priority High 

 

ID NFRC02: Stability 

Description The system must not, under any circumstance, cause an exception 
that could stop the processing, since it would damage greatly the 
speed of the project. 

Priority Very High 

3.3.2 Prototype I: Word2vec-based SA. 

The first semantic analyzer that was tried out, was Word2Vec’s paravec technology. 
Word2Vec is “a two-layer neural net that processes text. Its input is a text corpus and its 
output is a set of vectors: feature vectors for words in that corpus.”14 What the 
developers from the Deeplearning4j team state is that word2vec turns text into a 
numerical vector form that deep neural nets can process and analyze. The usual output of 
a word2vec program is a dictionary or map in which each word is mapped specifically to a 
vector, and later, those vectors can be queried to find their relationship with other words 
in the same form. That relationship is measured by the cosine similarity between two 
words, which means that a word A mapped as a vector has no relationship with another 
word B also mapped as a vector so as long their intersecting angle is one of 90 degrees. As 
the angle gets smaller, the relationship is stronger.  
 
Knowing the basics of word2vec, the experiments on the prototype that was created in 
order to analyze text using this technology will be explained. First of all, word2vec 
provides a broad repertory of examples, that can be used to build software based on 

                                                      
14

 Word2Vec’s official website http://deeplearning4j.org/word2vec  

http://deeplearning4j.org/word2vec


 

 27 

them. The one that was more closely examined was the “ParagraphVectors 
ClassifierExample.java”15 
 
This small Java program was said to be able to classify documents, when given them in 
the proper format (see Section 3.2.3 for more information about word2vec format) it 
would be able to learn different patterns from different topics in text. So if fed with 
enough documents of finance and health, it would be able to learn to distinguish them. 
Later, when given a document with no label, it would process it and be able to find the 
relationship to the other labels. The relationship would be mapped in cosine distance and 
the output would look like this: 
  

            Document 'unlabeled_health' falls into the following categories: 
                health: 0.29721372296220205 
                science: 0.011684473733853906 
                finance: -0.14755302887323793 

 
This originally was thought able to distinguish between game genres, “recommended” 
reviews or “non-recommended” reviews, games, or even positively classified reviews (as 
in reviews that are highly valued due to the “useful” parameter of such review). In order 
to test this classifier, a first implementation of the example was made. This example had a 
very small variation, and it was supplied with a huge amount of examples: the original 
only supplied with 3 categories, with 10 documents for the train partition and 1 for the 
test. For this test, it was fed with 7 games, 1,000 reviews per game in the training 
partition, and 300 reviews for each game in the test partition. However, the program 

crashed before even starting processing from a very odd exception: “Exception in thread 

"main" java.lang.IllegalArgumentException: Length must be >= 1” This stopped the 

project for a few days, and contacting word2vec’s development team was needed. 
Thankfully, they were quite active and during a period of about two days, a cause for the 
exception was searched for. The filed issue can be found here in case of future 
references: https://github.com/deeplearning4j/deeplearning4j/issues/1623  
 
The user Raver119 assigned to paravec development stated: 
 
“So here's the problem: 
You should train your model on both labeled/unlabeled data, so all words available in 
vocab. And your exception appears because not a single word from document was found 
in vocab.” 
 
This was done before preprocessing rule IV was assigned to Module II, hence, a review 
was found that had the next text: 
“*CLAP**CLAP**CLAP**CLAP**CLAP**CLAP**CLAP**CLAP**CLAP**CLAP*” 
Which was the cause of the exception. 
This was only one of the few problems that the project had when processing the data. 
First of all, the processing speed was very slow, one full run over what will be defined as 
partition A took over 8 hours to fully process everything: 
                                                      
15

 ParagraphVectorsClassifierExample: deeplearning4j’s github https://github.com/deeplearning4j/dl4j-0.4-
examples/blob/master/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVecto
rsClassifierExample.java  

https://github.com/deeplearning4j/deeplearning4j/issues/1623
https://github.com/deeplearning4j/dl4j-0.4-examples/blob/master/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-0.4-examples/blob/master/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
https://github.com/deeplearning4j/dl4j-0.4-examples/blob/master/src/main/java/org/deeplearning4j/examples/nlp/paragraphvectors/ParagraphVectorsClassifierExample.java
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 Partition A: 
o 20 epochs 
o 7 games,  
o 1,000 reviews per train partition  7*1,000=7,000 reviews train partition 
o 300 per test partition.  7*300 =2,100 reviews test partition 

This would not be a cause for concern if only the results were as the developers 
explained. However, there was a second problem behind all that processing time. The 
second problem arose when the first testing was made. There was one group that was 
more dominant than the others. In the partition A format, one of the games would be 
assigned over 95% of the reviews from the 2,100 review partition. Or so it would look 
when processing the output of the simple example program that was given. In order to be 
able to make a decent count without having to manually count every output, the class 
Results was implemented only for the word2vec format. 

3.3.2.1 Result class: 

The result class was implemented to be able to get 
the usual word2vec output (shown in 3.3.2) and 
transform it into a table, or organized structure. To 
understand the output of word2vec better, there 
are a few very important facts: 

1. For every test review the program knows 
what it belongs to. This will be the label of 
the Result. 

2. It tests the average cosine distance to every 
class that has been recorded in the training 
partition. So for each test, there will be X 
cosine distances calculated where X will be 
the recorded labels at the Train partition (In 
case of train partition A, there will be 7 
cosine distances calculated) 
 

One result class was created in execution time per game, and was assigned its name for 
the label field. The values field was a HashMap<String, Double>, in which the Double was 
the sum of the cosine distance of every test review that was processed by the class, and 
the Label was the Group that the cosine distance was calculated to. The tally field was a 
HashMap<String, Integer>, and for every value added up in values it would add one 
more, it was later used to create an average cosine distance per group. For example, the 
next hashmaps (column 1 and 2) that come from a set of test reviews that has 4 reviews 
would be used to create the results: 

Table 3.1 Result class example Values Tally Result 

Witcher 3 4 4 1 

GTA V 3 4 0,75 

METAL GEAR R 1 4 0,25 

Lastly, the field correct was another HashMap<String, Integer> that would increment the 
value of each tag if the review yielded the closest cosine distance (positive one would be 
the closest, and negative one would be the furthest). The logic behind this is that if a 
review from a label “Witcher 3” comes and its closest cosine distance is the label “GTA V” 

Figure 3-5: Result class. 
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that means that the review was classified as GTA V, which is to be recorded as erroneous 
classification, and knowing which tags are more likely to be classified as other tags would 
have been very useful to represent similarities between different games. Now that this 
class is explained, the output of the class would be something like this: 
 

The group A has the next accuracies for 

each other class: 

B average cos distance: -

0.08151683720294386 

B has an accuracy of : 0/400 

A average cos distance: 

5.093872889119667E-4 

A has an accuracy of : 0/400 

C average cos distance: 

0.7569797006249428 

C has an accuracy of : 400/400 

D average cos distance: 

0.19814932759851217 

D has an accuracy of : 0/400 

E average cos distance: 

0.5440101922303439 

E has an accuracy of : 0/400 

F average cos distance: 

0.025434730636952736 

F has an accuracy of : 0/400 

The group B has the next accuracies for 

each other class: 

B average cos distance: -

0.037045918115909446 

B has an accuracy of : 0/400 

A average cos distance: -

0.045483740557806414 

A has an accuracy of : 0/400 

C average cos distance: 

0.7549091298040003 

C has an accuracy of : 399/400 

D average cos distance: 

0.19445993211120366 

D has an accuracy of : 0/400 

E average cos distance: 

0.5314711512625218 

E has an accuracy of : 0/400 

F average cos distance: 

0.006557742160221096 

F has an accuracy of : 1/400 

The group F has the next accuracies for 

each other class: 

B average cos distance: -

0.04110614491859451 

B has an accuracy of : 0/400 

A average cos distance: -

0.04103634840539598 

A has an accuracy of : 0/400 

C average cos distance: 

0.7270043413882377 

C has an accuracy of : 393/400 

D average cos distance: 

0.19797361596487462 

D has an accuracy of : 0/400 

E average cos distance: 

0.4780905103310943 

E has an accuracy of : 0/400 

F average cos distance: 

0.08513673244291567 

F has an accuracy of : 7/400 

 

This is an actual output of the testing program from the word2vec prototype. At first, it 
was thought to be a mistake from the reviews, however, after getting similar results in 5 
different tries, with different random type A partitions (with different reviews in each of 
those 5 partitions) it was clear that there was an underlying problem with either the 
program or how it was getting executed. Yet another issue was submitted to the 
deeplearning4j github asking for help. For reference it can be found here:  
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https://github.com/deeplearning4j/deeplearning4j/issues/1657  
 
The expert user raver119 offered his help once again to see what was going on with the 
dominancy of group C in the results. After 5 days of testing, skyping, and talking through 
Gitter, it was found that the whole text was very similar, or as he would put it: “Issue was 
investigated: actually single-domain corpus, with neglectible differences between labels, 
etc.”  
 
After a last conversation with him through Gitter, he stated that the paravec software 
was not as yet as sharp as it should be, adding it to how similar the text was created a lot 
of problems. He recommended to use another example found on their Github. However, 
after a lot of weighting pros and cons of using word2vec, it was clear that the software 
may have been too new for stable testing. Mallet was selected as the next branch for 
testing and the word2vec branch of this project was closed.  

3.3.3 Final Prototype: Mallet-based SA.  

The Mallet Semantic analyzer was much easier to implement. Rather than using a lot of 
complex structures with few indications on how to properly set them up. Rather than 
using neural networks, that are more demanding both processing and time wise, Mallet 
uses hidden Markov Chains, maximum entropy Markov Models and Conditional Random 
fields, which can overall be summarized as LDA and LSA processing. Mallet included a set 
of tutorials and very concise slides that would explain how data was transformed and 
processed. Firstly, data is converted through a series of pipes to a numeric form, and from 
there it is processed depending on what the user programs. There is a wide array of 
models at the user’s disposition. The model that seemed to work best and, in the end, 
was the one used for the different models shown in this project, was LDA.  
 
For this last part of the project, there were 3 classes. The ImporterSM class, the 
TopicModel class and the gameModel class. They follow a very similar structure to the 
one used for word2vec: the importer takes the data created by Module II and places it in 
a defined input, ready for the topic modeler to process it, afterwards, the model is tested 
and evaluated thanks to the gameModel class.  
 
It is very important to reiterate that Mallet creates topics out of text. Essentially, it maps 
word appearances to a certain topic. So for example, if it were to be fed with sentences 
related to the soccer club Real Madrid, it would be able to estimate that once the words 
“Cristiano Ronaldo, Europe Cup, Casillas…” and others were found together on 100 
comments out of 900, it would be able to tell that those 100 comments are talking about 
the same thing, but the computer would lack the human reasoning to be able to know 
that it is talking about soccer. This is very important to this part of the project, since what 
it means, is that Mallet will be able to map topics to a group of words, but not game titles, 
so the recommendation system would not be completed by just the topic modeling. In 
order to introduce this last package that makes the semantic analyzer, the classes in it, 
the different inputs, outputs and processes will be briefly introduced.  
  
 
 

https://github.com/deeplearning4j/deeplearning4j/issues/1657
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 ImporterSm class 
o Input: The formatted reviews in a single file per game. Only corpus (review 

text) and no numeric data. 
o Processes: The class places the data through a set of pipes that Mallet 

provides. More specifically, it applies the stop word list (removes the 
words from that list), it tokenizes data, and then turns it into a numeric 
form. 

o Output: Returns the information in an InstanceList (a class from the Mallet 
library that stores the corpus information).  

 TopicModel class 
o Input: Takes in the instance list 
o Processes: It makes two threads to process data, sets the number of 

iterations to run the model through, and it processes the data through a 
ParallelTopicModel and a given number of topics (it can be adjusted). 

o Output: This builds a model based on topics, it creates topics, assigns them 
an id (this is important, it assigns each topic an id, not a game to a topic), 
and each topic is a probability density function. This function depends on 
the apparition of certain words. In a nutshell, it maps a set of words to a 
topic. 

 GameModel class. 
o Input: takes in the model and the instance list from both classes, also, it 

takes in the “tags”(Appendix A) from the game list that is been tested with. 
These tags have been manually extracted from Steam’s website. The 
model is given a list of topics, that after a text input returns a probability 
from 0 to 1, this probability states the chance of belonging to a topic.  

o Processes: Takes the list of tags per game, and processes it through the 
model. The highest probability from all the topics after taking the tag list 
returns the most probable topic due to that list of tags.  

o Output: A list of games mapped to a list of topics, together with an 
interactive program that allows user input and recommends a game based 
on what the user wrote.  

 
This is done, so that if a user is talking about a game, not necessarily one that s/he knows 
of, will be able to find it. The point would be that the user could give a short, or long 
description of his desired game, and afterwards, the classifier will be able to evaluate the 
text and refer him/her to the most likely choice for this game based on what the other 
users have said.  
 
In order to make the classifier more accurate, different partitions were tried out. First of 
all, reviews with cropped length and both positive and negative recommendations were 
tried out. This first model was clunky at best, providing successful hit rates for only about 
30% of the reviews in the testing partitions, and very few successful interactive 
recommendations that actually pleased the testing users. The second model included 
every review, no matter the length (Preprocessing rule II was completely ignored) and the 
results were more catastrophic than before. About 20% of the models returned successful 
hit rates above than 50% for the testing reviews.  
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It was clear by that time that something was failing, and so, the models were carefully 
examined for a period of five days. During this time, it was discovered that there were 
two games that were highly problematic, first of all the RPG_Maker_V, which was not 
really a game, but a game making software. Therefore, since the corpus of this software 
was quite chaotic, removing this game, its reviews, and tags made the overall corpus 
more focused in the “gaming” domain and it reduced miss rates for the groups that it was 
assigned to. Also, “Youtuber’s life” suffered from a similar problem and a very small 
review pool (only about 400 reviews, the games have an average review pool of 4,000 
reviews), so it was also removed.  
 
After these changes, the models were starting to make more sense, the topic count was 
also changed, and it seemed to reach the best accuracy at 20 topics for the now formally 
pool of 15 games.  
 
The last thing that was changed before trying a new model, was changing the review 
pool, to only the positively rated reviews (the ones that actually recommended the 
game). This was done with the hypothesis in mind that when people are asking for a 
game, knowing what is good about the game is a lot more relevant than knowing what is 
bad. This seemed to be the case, since the models ended up successfully classifying 
reviews for 12/15 games on average after testing it 10 times. It seemed that the 
development was at its end, since a correct classifier was found. 
 
It is also important to mention that in order to test the “recommendation” power of this 
software, a pool of over 20 gamers were personally introduced to the classifier and asked 
to try the software in interactive mode. The models were compiled and the user was 
asked to write a description of the desired game, rather than shutting down after saving 
the model, the program kept on running asking the user for descriptions and choosing a 
game or two games from the list. Afterwards, they were presented with a quality survey 
to evaluate the application and its recommendation quality. This survey is presented in 
the next section, but it is referred to here in order to justify the acceptance of the model 
by a small “hardcore-gaming” community.  
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4 Results 

The main topic modeler was run 3 times, and yielded different results. Every result can be 
examined more closely in the appendices. There are 3 parts to every result:  

1. Topic creation: This is the first step of the semantic processing. The whole data is 
condensed into a variable amount of topics that are represented by an id, which 
corresponds to a certain number of words appearing in the same text. In order to 
show these topics in a more comprehensive way, they will be shown as a series of 
the top 5 most common words for each topic, however, it should be noted that 
these are only the most probable words, not all of them. 

2. Mapping topics to games: This process takes the tags taken in the Steam website 
as a voted list of word that defines a game and then asks the model which topic is 
most related to such list of words. The most related topic to such list is then 
considered to be the one talking about the game. This two-way mapping is needed 
to make sure that the user’s opinion is taken into consideration in both steps. 

3. Classifying reviews: The reviews, as explained before, are split into a training-test 
partition, this part of the process takes every game’s test partition and asks the 
model for its dominant topic within the mapped domains in the previous step. To 
clarify, this means that if there are topics that are not assigned to a game in step 
2, they will not be taken into consideration in this step.  

4.1 Partition I: 

Partition I: Topic summaries. 

0 story  world  quests  combat   
1 fun  ive  good  time   
2 online  story  rockstar  fun   
3 paradox  stellaris  empire  strategy   
4 insurgency  realistic  team  tactical   
5 battleborn  fun  borderlands  moba   
6 competitive  team  skins  fun   
7 multiplayer  campaign  fast  fps   
8 gear  metal  mgs  kojima   
9 dark  boss  series  bosses   

10 rocket  cars  league  friends   
11 gear  boss  action  story   
12 total  warhammer  units  battles   
13 amazing  years  year  made   
14 survival  dinos  early  dinosaurs   
15 dont  time  people  playing   
16 dead  loot  warhammer  fun   
17 graphics  optimization  low  kill   
18 keeper  campaign  bugs  early   
19 story  feel  fps  great   

 

This information is for display purposes only, since without a deep knowledge of every 
game analyzed in this experiment, it is very unlikely that the reader will be able to make 
sense of the data. Afterwards, the program was fed with the tags of every game (see 
Appendix A) and every game was mapped to a group.  
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Partition I: Topic Mapping to games 

Group 0 is mapped to the next games: 

[DARK_SOULS_III, 
METAL_GEAR_SOLID_V_THE_PHANTOM_PAI
N, The_Witcher_3_Wild_Hunt] 

Group 18 is mapped to the next games: 

[War_for_the_Overworld] 

Group 2 is mapped to the next games: 

[Grand_Theft_Auto_V] 

Group 3 is mapped to the next games: 

[Stellaris] 

Group 4 is mapped to the next games: 

[Insurgency, Counter_Strike] 

Group 5 is mapped to the next games: 

[Battleborn] 

Group 7 is mapped to the next games: 

[DOOM, Warhammer_Vermintide] 

Group 10 is mapped to the next games: 

[Rocket_League] 

Group 11 is mapped to the next games: 

[METAL_GEAR_RISING_REVENGEANCE] 

Group 12 is mapped to the next games: 

[Total_War_WARHAMMER] 

Group 14 is mapped to the next games: 

[ARK_Survival_Evolved] 

 

This data is mostly straightforward for topics in which there is only one game mapped to. 
If there is more than one game mapped to a topic, it means that Mallet has identified a 
similarity in those games. In case of Group 0, the similarities are well known throughout 
steam community. First of all, they are all very complex games, which have RPG-like 
characteristics to them, they are all third person, and they are all open world. Lastly, all of 
these games are overwhelmingly positive classified on steam. The link that Mallet creates 
through the topic model is therefore justified. The second group that contains more than 
1 game is Group 4, which is a group assigned to two very competitive first person 
shooters with a lot of realistic elements to them. Anyone playing both games can tell that 
they are very similar. Group 4 is very important to this experiment, since it shows that 
game genres can be assigned dynamically and implicitly thanks to content (reviews) 
brought by the users. Lastly, Group 7 puts together two shooters that are a bit different in 
game mechanics, Warhammer Vermintide is well known for having a lot of hardcore RPG 
mechanics to it, and DOOM has a set of abilities for the users to unlock but it could not be 
classified as an RPG game per se. The similarity in these two games lays on the fast action 
of each game, and on the setting. In both games, you shoot constantly fighting rounds of 
demons, rats and they are both Gore. From here on the links between the games within 
the same groups are justified, and from here on, the recommendation potential of the 
developed software will be examined. 

Once the games were mapped, the test partition was run through the model, using a 
modified version of the result class to be adapted from cosine distance to average chance 
of belonging to a class. This information is displayed in Appendix E, since each model is 
composed of 15 tables with at least 12 rows to each table. In order to provide a 
condensed view, a summary will be provided. Firstly, every game review test partition for 
a single game carries the following information: 
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Table 4.1: War for the Overworld P(B) Classified Hit Rate Miss Rate 

GTA_V 0.0075 0/93 0% 100% 

DOOM, Warhammer_Vermintide 0.0049 0/93 0% 100% 

Stellaris 0.0068 0/93 0% 100% 

Total_War_WARHAMMER 0.0098 2/93 2% 98% 

War_for_the_Overworld 0.2845 85/93 91% 9% 

Rocket_League 0.0046 0/93 0% 100% 

Insurgency, Counter_Strike 0.0077 3/93 3% 97% 

ARK_Survival_Evolved 0.0046 1/93 1% 99% 

DARK_SOULS_III, 
METAL_GEAR_SOLID_V, The_Witcher_3 

0.0031 0/93 0% 100% 

METAL_GEAR_RISING_REVENGEANCE 0.0020 0/93 0% 100% 

Battleborn 0.0115 2/93 2% 98% 

The title of the table shows which one of the game reviews test partition was under 
testing. To be clear, every review tested in Table 1.1 belongs to War for the Overword. 
What is under testing is the capability of the system to tell which reviews belong to which 
game. P(B) is short for Probability of belonging to the game topics (which are grouped at 
the leftmost column). The third column, shows how many of the test reviews were 
classified as the topic on its row. Lastly, the other two columns show the different hit and 
miss rate of the classifier. The column with most hit chance is highlighted blue if it is the 
correct game (as in this case), or orange if it is incorrect (see other examples Appendix 
C,D,E).  

Mostly every game had its reviews correctly referred back to the group that it was 
mapped to. Here is a short summary of the data shown in the Appendix D. 

Table 4.2: Successfully Mapped Games: Partition I 12/15 

Game Title Hit rate Group assigned 

War_for_the_Overworld 91% War_for_the_Overworld 

Battleborn 88% Battleborn 

The_Witcher_3 75% DARK_SOULS_III, METAL_GEAR_SOLID_V, 
The_Witcher_3 

ARK_Survival_Evolved 73% ARK_Survival_Evolved 

Rocket_League 77% Rocket_League 

Insurgency  87% Insurgency, Counter_Strike 

GTA_V 82% GTA_V 

Stellaris 80% Stellaris 

DOOM 85% DOOM 

Total_War_WARHAMMER 84% Total_War_WARHAMMER 

METAL_GEAR_RISING_REVENGEANCE 85% METAL_GEAR_RISING_REVENGEANCE 

Counter_Strike 29% Insurgency, Counter_Strike 

As it can be seen, every game but Counter Strike has a very positive hit rate, not going 
under 70% at any point of the review process. This is a very positive result, since it shows 
than in 11 out of 15 cases, this software is able to identify the topics of the games, and 
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point users to a group based on a game description. However, not every result is positive. 
The next games have wrongly mapped groups. 

Table 4.3: Unsuccessfully Mapped Games: Partition I 3/15 

Game Title Hit rate Group assigned 

DARK_SOULS_III 26% War_for_the_Overworld 

Warhammer_Vermintide 25% War_for_the_Overworld 

METAL_GEAR_SOLID_V 23% War_for_the_Overworld 

It is very hard to find why the system is not working correctly in these cases. However, 
rather than just discarding this information as outliers or statistical anomalies, these 
failures will be tried to be justified. As it can be seen, all of the games are wrongly 
mapped to the War for the Overworld game, which is extremely odd, since the games 
have nothing to do with War for the Overworld. WfO (abbreviation for the game title) is a 
dungeon manager game, with a top down perspective. It only shares a bit of environment 
with Dark Souls III and Warhammer Vermintide since they are all quite gothic and gore in 
nature, they also share RPG elements. However, Metal Gear Solid V the Phantom Pain is a 
very odd match. It is also shown that both Darksouls III and Metal Gear Solid V belong to 
the same group (group 0). It may be that the other game within that group, Witcher III, is 
a lot more dominant. It is also worth noticing that Witcher III users are a lot more mature 
(in writing) than the users from Dark Souls 3 and Metal Gear V. This is an assumption 
made due to the intimate knowledge of the gamming community, but it can be easily 
seen by looking at more than 200 reviews from every game and comparing the wording 
and structure of the reviews. This is not a formal fact, but more of a supposition coming 
from the expertise in the field.  

4.2 Partition II: 

This is a new partition, with a testing split that differs greatly from the one used before. 
Once again, these partitions are created randomly selecting from a 90%-10% distribution.  

Partition II: Topic summaries 

0 dungeon  keeper  campaign  bugs  
original   
1 good  great  time  dont  gameplay   
2 space  paradox  stellaris  empire  
strategy   
3 metal  gear  mgs  kojima  missions   
4 csgo  competitive  team  skins  
counterstrike   
5 server  survival  dinos  early  
dinosaurs   
6 fun  playing  people  players  lot   
7 people  time  dont  playing  hours   
8 witcher  world  quests  combat  rpg   
9 souls  dark  boss  series  bosses   

10 ive  feel  feels  time  review   
11 war  total  warhammer  units  
campaign   
12 characters  battleborn  moba  
borderlands  pvp   
13 left  dead  loot  warhammer  rats   
14 story  feel  graphics  series  character   
15 metal  gear  boss  action  fun   
16 fun  rocket  cars  league  friends   
17 doom  multiplayer  fps  campaign  
fast   
18 fps  realistic  insurgency  team  
tactical   
19 gta  online  rockstar  fun  friends   
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Partition II: Topic Mapping to games 

Group 0 is mapped to the next games: 

[War_for_the_Overworld] 

Group 16 is mapped to the next games: 

[Rocket_League] 

Group 17 is mapped to the next games: 

[DOOM] 

Group 18 is mapped to the next games: 

[Insurgency, Warhammer_Vermintide, 
Counter_Strike] 

Group 2 is mapped to the next games: 

[Stellaris] 

Group 3 is mapped to the next games: 

[METAL_GEAR_SOLID_V_THE_PHANTOM_P
AIN] 

Group 19 is mapped to the next games: 

[Grand_Theft_Auto_V] 

Group 5 is mapped to the next games: 

[ARK_Survival_Evolved] 

Group 8 is mapped to the next games: 

[DARK_SOULS_III, 
The_Witcher_3_Wild_Hunt] 

Group 11 is mapped to the next games: 

[Total_War_WARHAMMER] 

Group 12 is mapped to the next games: 

[Battleborn] 

Group 15 is mapped to the next games: 

[METAL_GEAR_RISING_REVENGEANCE] 

 This new group from the other random partition created some very interesting 
results. As before, there are groups that contain more than one game, but this time there 
are only two groups such as this. Group 18, together with Insurgency and Counter Strike, 
also contains Warhammer Vermintide. This can be easily justified by the fact that all of 
these three games are the only cooperative competitive shooters that are played within 
small environments (maps or arenas) over and over again. Also, the group that last time 
contained Dark Souls III, Witcher III and Metal Gear V, now only contains the first two. 
This will show to be a very positive change when it comes to classify these games. 
 

Table 4.4: Successfully Mapped Games: Partition II 13/15 

Game Title Hit rate Group assigned 

War_for_the_Overworld 97% War_for_the_Overworld 

Battleborn 83% Battleborn 

The_Witcher_3 73% DARK_SOULS_III, The_Witcher_3 

ARK_Survival_Evolved 75% ARK_Survival_Evolved 

Rocket_League 73% Rocket_League 

Insurgency  85% Insurgency, Counter_Strike 

GTA_V 80% GTA_V 

Stellaris 81% Stellaris 

DOOM 85% DOOM 

Total_War_WARHAMMER 81% Total_War_WARHAMMER 

METAL_GEAR_RISING_REVENGEANCE 77% METAL_GEAR_RISING_REVENGEANCE 

Counter_Strike 29% Insurgency, Counter_Strike 

METAL_GEAR_SOLID_V 78% METAL_GEAR_SOLID_V 
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Table 4.5: Unsuccessfully Mapped Games: Partition II 2/15 

Game Title Hit rate Group assigned 

DARK_SOULS_III 33% War_for_the_Overworld 

Warhammer_Vermintide 24% War_for_the_Overworld 

 
As it can be seen, classifying Metal Gear V the Phantom Pain as its own game, produced a 
positive classifying of almost 80% of the reviews. Which is obviously a very good 
increment from the previous classifier’s accuracy. In the comparative study, the data will 
be compared more closely. At this point, it can be said that the new classifier’s choice was 
a lot more accurate than the one before.  

4.3 Partition III:  

As a new partition is created, the same data as the other partitions will be displayed. 

Partition III: Topic summaries 

0 people  fun  dont  playing  back   
1 gta  online  rockstar  story  friends   
2 series  end  man  weapon  year   
3 csgo  competitive  team  skins  
players   
4 time  great  feel  ive  good   
5 story  amazing  beautiful  world  ive   
6 witcher  story  world  quests  combat   
7 server  survival  dinos  early  
dinosaurs   
8 characters  battleborn  fun  
borderlands  pvp   
9 space  paradox  stellaris  empire  
strategy   

 
10 souls  dark  boss  series  bosses   
11 war  total  warhammer  units  battles   
12 doom  multiplayer  fps  campaign  
fast   
13 metal  gear  boss  story  action   
14 good  great  dont  fun  buy   
15 dungeon  keeper  campaign  bugs  
original   
16 story  metal  gear  mgs  kojima   
17 left  dead  loot  warhammer  rats   
18 fun  rocket  cars  league  friends   
19 fps  realistic  insurgency  team  
tactical  

Partition III: Topic Mapping to games 

Group 16 is mapped to the next games: 

[METAL_GEAR_SOLID_V_THE_PHANTOM_P
AIN] 

Group 1 is mapped to the next games: 

[Grand_Theft_Auto_V] 

Group 18 is mapped to the next games: 

[Rocket_League] 

Group 19 is mapped to the next games: 

[Insurgency, Counter_Strike] 

 

 

Group 6 is mapped to the next games: 

[DARK_SOULS_III, 
The_Witcher_3_Wild_Hunt] 

Group 7 is mapped to the next games: 

[ARK_Survival_Evolved] 

Group 8 is mapped to the next games: 

[Battleborn] 

Group 9 is mapped to the next games: 

[Stellaris] 

Group 11 is mapped to the next games: 

[Total_War_WARHAMMER] 
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Group 12 is mapped to the next games: 

[DOOM, Warhammer_Vermintide] 

 

 

Group 13 is mapped to the next games: 

[METAL_GEAR_RISING_REVENGEANCE] 

Group 15 is mapped to the next games: 

[War_for_the_Overworld] 

 This new partition corrects only one mapping from the previous partitions: it takes 
Warhammer Vermintide back together with DOOM. This would originally make the 
reader suppose that the impact to this partition will be minimum, and that the changes 
will be very insignificant compared to the other partitions. This is however, not the case. 
 

Table 4.6: Successfully Mapped Games: Partition III 12/15 

Game Title Hit rate Group assigned 

War_for_the_Overworld 91% War_for_the_Overworld 

Battleborn 85% Battleborn 

The_Witcher_3 65% DARK_SOULS_III, The_Witcher_3 

ARK_Survival_Evolved 77% ARK_Survival_Evolved 

Rocket_League 73% Rocket_League 

Insurgency  84% Insurgency, Counter_Strike 

GTA_V 85% GTA_V 

Stellaris 86% Stellaris 

DOOM 87% DOOM 

Total_War_WARHAMMER 85% Total_War_WARHAMMER 

METAL_GEAR_RISING_REVENGEANCE 81% METAL_GEAR_RISING_REVENGEANCE 

METAL_GEAR_SOLID_V 72% METAL_GEAR_SOLID_V 

  
Table 4.7: Unsuccessfully Mapped Games: Partition III 3/15 

Game Title Hit rate Group assigned 

DARK_SOULS_III 40% GTA_V 

Warhammer_Vermintide 30% GTA_V 

Counter_Strike 35% GTA_V 

 
As it is shown, the whole unsuccessfully mapped games, now belong to GTA rather than 
to War for the Overworld. This is somewhat a positive change when looked at from a 
gamer’s perspective. First of all, every game has shooting elements, same as GTA V. Every 
game has skills defined and a class system. Most importantly, but less easily seen, is that 
all of these four games have something very relevant in common: a “Raging community”. 
This is a somewhat hard concept to formally explain, and it taps entirely into online 
anthropology. These four games depend on the interaction with other users in order to 
win or lose, this in the long term causes a lot of grudges, and an overall more toxic 
environment. The perfect example to support this claim is the community of League of 
Legends, the most played online game at this moment, that has the two conditions 
mentioned before, interaction with others users for both winning and losing conditions. 16 
                                                      
16

 https://www.reddit.com/r/MMORPG/comments/2ged17/what_game_has_the_worst_community/ last 
accessed 28/06/2016 

https://www.reddit.com/r/MMORPG/comments/2ged17/what_game_has_the_worst_community/
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This could be the cause of the overall feeling of the reviews and the inaccuracy of the 
classifier. This, once again, is an opinion which has tried to be defended, but this is not 
proven in any way.  

4.4 Comparative Study and reflections.  

 
Table 4.8: Successfully Mapped Games: Overall    

Game Title Hit rate Partition I Hit rate Partition II Hit Rate Partition III 

War_for_the_Overworld 91% 97% 91% 

Battleborn 88% 83% 85% 

The_Witcher_3 75% 73% 65% 

ARK_Survival_Evolved 73% 75% 77% 

Rocket_League 77% 73% 73% 

Insurgency  87% 85% 84% 

GTA_V 82% 80% 85% 

Stellaris 80% 81% 86% 

DOOM 85% 85% 87% 

Total_War_WARHAMMER 84% 81% 85% 

METAL_GEAR_RISING 
REVENGEANCE 

85% 77% 81% 

Counter_Strike 29% 29% ---------- 

METAL_GEAR_SOLID_V ---------- 78% 91% 

OVERALL 72% 76% 75% 

 
When looking at the comparative study, it is clear that, on average, the second partition is 
the best classifier. It distributes the probability more evenly and it will be a better overall 
classifier. The one that contains more maximum hit rates is the first classifier, but it does 
not compensate the larger spread with respect to the other classifiers. 
 
Referring back to the results shown, it is clear that overall, the classifiers have a fair 
performance, correctly classifying 12 out of 15 games at the worst, and 13 out of 15 at its 
best. These classifiers have been the outcome of an enormous amount of work put into 
carefully tuning the classifiers, to find the best games, best parameters and best partition 
methods. It is clear by the numbers that they serve its purpose well.  
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5 Future work and conclusions 

 
This project has yielded some very interesting results. It would seem clear that it classifies 
some games better than others, and hence it brings the question whether 
recommendations systems should or should not be based in the average user review, 
which is essentially what has been done here. The problem is not one of processing 
power, or data size, but it lays within the incredibly informal and humor based internet 
society. Memes, sarcasm, ironies, ASCII art, and many other particularities of the corpus 
belonging to these kind of communities make them extremely hard to analyze and 
interpret via Machine Learning.  
 
It has been a difficult project. The crawler was extremely time consuming, and certain 
reasonable upgrades, such as the use of a database, and the removal of the text files 
could have been implemented if not for the long development time that the first part of 
the project had. It is clear that when dealing with online systems that are not 100% static 
(very rare occurrence nowadays), projects such as these are subject to a lot of problems 
due to upgrades, API access changes, and how easy the host makes it for the developer to 
freely extract data from its services. These problems usually have basic solutions, but 
being a bachelor thesis made it more challenging. The second module was trivial and the 
hard courses that excelled at teaching Abstract Data Types and Object Oriented 
Programming made it very easygoing to program the different structures that supported 
this large project. Lastly, looking for new technologies to use in this project was not trivial. 
The absence of a deep understanding that only comes from years of dedication to a field 
such as semantic analysis has been noted, maybe with more time to dedicate to the 
semantic field, a broader spectrum of results could have been created. However, this 
project has not been a failure at all. 
 
The amount of learning that has been achieved in this project is overwhelming, since it is 
a very broad project in terms of techniques and disciplines. Essential parts of what makes 
a good Computer Engineer have been improved. Code commenting, problem solving, 
working with outside teams to manage issues, Java programming, statistics and 
probabilities, algorithm design and many more. There has been new knowledge that has 
been tapped into, such as understanding how the World Wide Web works, semantic 
analysis, statistical processing, neural nets, text processing algorithms, stop words usage, 
LDA, LSA, the use of labels when training test and more specifically, the use of 
technologies such as Mallet and Word2Vec.  
 
Its success not only lies in the long path to its end, and how much it has been learnt 
thanks to it. But the project itself has been a success. By the end, three classifiers were 
trained, each one with its strengths and weaknesses, but each one ready to recommend a 
group of games, or just one based only in user description and information. This is a field 
that is new to the development team, but it seems from what has been researched, that 
it is a relatively new approach to recommending systems, that may or may not be 
successful in the future.  
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It has not been perfect however. Future improvements on this project will surely include 
formalizing data treatment by the implementation of a SQL driver that will manage the 
information, rather than pass it along through text files. Also, taking in a greater number 
of games and opening the project to more information would surely bring forward new  
results that could serve to improve the original TopicModel class. The creation of a 
website with this project so that other users can evaluate its effectivity would also be a 
great stepping stone for this project. Lastly, as explained in the comparative study of 
Chapter 5, combining classifiers to be able to take the strengths of the different models 
and dispose of its weakest parts is something to consider. In order to do all of this 
however, the crawler itself should be improved to become more efficient and mine with 
different threads.  
 
When taking a last look at the comparative study of Chapter 4, it is clear that each 
classifier is better at classifying certain games than the others, each is better than the 
other in some aspects, so to say. This would bring an interesting argument about which 
one is the “best” classifier or recommender. Scientifically, the one that maximizes overall 
approval, in this case classifier 2, could possibly be the “best” classifier, since it makes 
sure that the system has the highest hit rate. However, it may be more interesting 
building a system that could take a lot of classifiers and consult one or another depending 
on their specialization. For example, an overall classifier could be used to direct the user 
to a group, and then, check a classifier that better recommends a certain group of games 
could be consulted in order to bring a sharper system. However, it would be quite 
complex. There could be a broad range of classifiers, each to recommend a genre, with its 
own parameters (as explained in the last part of Chapter 4, each classifier shown here is 
trained under the same parameters) that would, for example, be trained under a smaller 
max topic parameter, which would force the classifier to be more general, or with a 
higher max topic, that could potentially yield more specific results. Also the classifiers 
could be trained with different portions of the data, for example, they could take in 
reviews only for the “shooter” genre, so as to be able to distinguish better between each 
specific shooter.  
 
The last thing that will be brought up in this report will be the usages of this technology. 
First of all, Steam could use its base to improve the recommendation system that it 
currently has. Secondly, this very same algorithm can be used to predict if comments 
actually relate to the general subject of a video, a movie or a game. Thirdly this 
recommendation system could be expanded to anything that could yield this amount of 
comments, not Amazon, restaurants, or other sale based websites at its current place, 
since the number of comments and product reviews are not that high, but surely there 
has to be another topic that has the same amount of passion as this.  
 
This project has been a great journey, it has brought a lot of stress, a lot of learning, and 
the satisfaction of creating something new and unique. Its hardships have been many, but 
the learning that has brought with it has made it a very valuable experience.  
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Glossary 

 
API Application Programming Interface 
Bag of words It is a model which is characterized by a simplification of the 

representation used in natural language processing. This technique 
considers text as a “bag of words” and takes out grammar and 
word order, but keeping a tally of the words used. 

Casual game It is said that a game is a casual one when it lacks a competitive 
structure and is of a more easygoing nature. 

Competitive game It is said that a game is competitive when it has a ranking system 
that matches players with the same skill level. It also implies a 
certain degree of e-sports 

Crawler A system that is capable to move through a web structure, 
extracting and collecting information. 

E-sports Games that are considered to be a digital sport, such as Counter 
Strike, League of Legends, Defense Of The Ancients 2 . 

First Person Game perspective in which the user is only shown the hands of the 
character s/he is controlling. 

IP ban Security measure used by servers to deny DDoS attacks, it simply 
blocks petitions from a set of IP addresses or an IP address range. 

JS JavaScript. 
LDA  Latent Dirichlet allocation, it is a generative statistical model used 

for topic discovery in some semantic analysis. 
LSA Latent Semantic Analysis, it is a technique used in natural language 

processing based on discovering text concepts and operating with a 
matrix of such concepts to discover similarities between different texts. 

Mature Game genre that implies adult content, such as gore, sexual 
intercourse or nudes.  

Multiplayer A game genre that involves matching players with or against each 
other to reach a determined goal. 

Open World Game genre or trait that implies that the user of the game is left on 
an open area that s/he is free to explore in whichever way the user 
wants.  

PvP Player versus Player, which is a type of game in which users are 
matched against each other. 

REST Representational State Transfer 
RPG Role Playing Game, a game that involves the use of a character in a 

fictional setting, leveling up, and character customization. 
SA Semantic Analyzer. 
Shooter A common game genre based on the usage of guns as the main 

weapon of the game 
Third Person Game perspective in which the user is shown the full body of the 

character that s/he is controlling. 
W2V Word2Vec 
Web Scrapping Technique used to collect data from HTML documents. 
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Appendices 

A Game tags list:  

ARK_Survival_Evolved 
Early Access Survival Dinosaurs Open World Multiplayer Crafting Building Adventure Co-
op Action First-Person Base-Building Sandbox Massively Multiplayer Singleplayer RPG 
Dragons Sci-fi MMORPG Indie 
 
METAL_GEAR_SOLID_V_THE_PHANTOM_PAIN 
Stealth Open World Story Rich Action Tactical Cinematic Great Soundtrack Third Person 
Singleplayer Atmospheric Horses Adventure Multiplayer Third-Person Shooter Replay 
Value Sandbox Shooter Dark Sci-fi Heist 
 
The_Witcher_3_Wild_Hunt 
RPG Open World Story Rich Atmospheric Mature Fantasy Adventure Choices Matter Third 
Person Singleplayer Action Great Soundtrack Nudity Medieval Dark Fantasy Multiple 
Endings Magic Action RPG Dark Sandbox 
 
DOOM 
FPS Action Gore Demons Shooter First-Person Multiplayer Sci-fi Classic Horror 
Singleplayer Fast-Paced Great Soundtrack Atmospheric Difficult Remake Zombies Survival 
Horror Co-op Memes 
 
DARK_SOULS_III 
Dark Fantasy Difficult Atmospheric RPG Lore-Rich Third Person Exploration PvP Story Rich 
Co-op Action RPG Adventure Open World Action Multiplayer Great Soundtrack 
Singleplayer Psychological Horror Nudity Funny 
 
Grand_Theft_Auto_V 
Open World Action Multiplayer First-Person Third Person Crime Adventure Shooter Third-
Person Shooter Singleplayer Atmospheric Mature Racing Sandbox Co-op Great 
Soundtrack Funny Comedy Moddable RPG 
 
Insurgency 
FPS Realistic Tactical Multiplayer Action Shooter Military Team-Based Strategy Co-op 
Indie First-Person Competitive Online Co-Op War Simulation PvP Atmospheric 
Singleplayer Adventure 
 
Battleborn 
FPS Action Multiplayer MOBA Co-op Shooter First-Person Comedy Singleplayer PvP Sci-fi 
Class-Based Funny Action RPG Team-Based Online Co-Op Memes RPG Space Casual 



 
 
 

 II 

Stellaris 
Space Strategy Grand Strategy Sci-fi 4X Real-Time with Pause Exploration Multiplayer 
Singleplayer RTS Simulation Replay Value Great Soundtrack Sandbox Atmospheric 
Moddable Story Rich Open World 
 
Warhammer_Vermintide 
Action Online Co-Op Co-op Dark Fantasy Gore Games Workshop Multiplayer FPS First-
Person Action RPG Atmospheric Fantasy Survival Indie Hack and Slash Horror RPG 
Adventure Female Protagonist Singleplayer 
 
METAL_GEAR_RISING_REVENGEANCE 
Great Soundtrack Action Hack and Slash Spectacle fighter Swordplay Character Action 
Game Third Person Singleplayer Cyberpunk Ninja Fast-Paced Gore Sci-fi Replay Value 
Adventure Difficult Mechs Story Rich Stealth Beat 'em up 
 
Total_War_WARHAMMER 
Strategy Fantasy RTS Games Workshop War Turn-Based Strategy Multiplayer Grand 
Strategy Dark Fantasy Action Tactical Atmospheric Singleplayer Turn-Based Story Rich Co-
op Gore Open World RPG Warhammer 40K 
 
Counter_Strike 
FPS Multiplayer Shooter Action Team-Based Competitive Tactical First-Person e-sports 
PvP Online Co-Op Military Co-op Strategy War Trading Realistic Difficult Fast-Paced 
Moddable 
 
Rocket_League 
Racing Multiplayer Soccer Sports Competitive Team-Based Football Online Co-Op Action 
Co-op Funny Fast-Paced Local Multiplayer Local Co-Op Great Soundtrack Split Screen 4 
Player Local Singleplayer Indie Casual 
 
War_for_the_Overworld 
Strategy Indie RTS God Game Fantasy Kickstarter Sandbox Singleplayer Management 
Villain Protagonist Dungeon Crawler Funny Multiplayer Simulation Base-Building 



 
 
 

 III 

B Tables 1: Accuracies for every game in partition 1. 
Table 1.1: War for the Overworld P(B) Classified Hit Rate Miss Rate 

GTA_V 0.007585400557057288 0/93 0% 100% 

DOOM, Warhammer_Vermintide 0.004924070924268071 0/93 0% 100% 

Stellaris 0.006845474316855438 0/93 0% 100% 

Total_War_WARHAMMER 0.009801592456843658 2/93 2% 98% 

War_for_the_Overworld 0.28452104460237587 85/93 91% 9% 

Rocket_League 0. 004659259639611257 0/93 0% 100% 

Insurgency, Counter_Strike 0.007769376585388766 3/93 3% 97% 

ARK_Survival_Evolved 0.004561350290858301 1/93 1% 99% 

DARK_SOULS_III, 
METAL_GEAR_SOLID_V, The_Witcher_3 

0.003082186429845914 0/93 0% 100% 

METAL_GEAR_RISING_REVENGEANCE 0.002053129193490111 0/93 0% 100% 

Battleborn 0.011557036747237738 2/93 2% 98% 

 
Table 1.2: Battleborn P(B) Classified Hit Rate Miss Rate 

GTA_V 0.011472872202340773 6/227 2% 88% 

DOOM, Warhammer_Vermintide 0.0046276330392499496 2/227 1% 99% 

Stellaris 0.005078708708589238 0/227 0% 100% 

Total_War_WARHAMMER 0.006206332754796953 2/227 1% 99% 

War_for_the_Overworld 0.00886726308250212 4/227 2% 98% 

Rocket_League  0.006669945665581839 4/227 2% 98% 

Insurgency, Counter_Strike 0.011721156660981941 4/227 2% 98% 

ARK_Survival_Evolved 0.002891899882923031 1/227 0.5% 99.5% 

DARK_SOULS_III, 
METAL_GEAR_SOLID_V, The_Witcher_3 

0.0029759805034597683 0/227 0% 100% 

METAL_GEAR_RISING_REVENGEANCE 0.004956570210505033 5/227 2% 98% 

Battleborn  0.31389857452537895 200/227 88% 12% 

 
Table 1.3: Witcher_3 P(B) Classified Hit Rate Miss Rate 

GTA_V 0.012978096783094544 24/644 3% 97% 

DOOM, Warhammer_Vermintide 0.004916029114176923 5/644 1% 99% 

Stellaris 0.006543158958912284 11/644 2% 98% 

Total_War_WARHAMMER 0.008677977039394685 21/644 3% 97% 

War_for_the_Overworld 0.010143913128071223 52/644 8% 92% 

Rocket_League 0.005059563401076073 12/644 2% 98% 

Insurgency, Counter_Strike 0.008004706918829693 12/644 2% 98% 

ARK_Survival_Evolved 0.0014141186980278692 1/644 0% 100% 

DARK_SOULS_III, 
METAL_GEAR_SOLID_V, The_Witcher_3 

0.2228708035214046 487/644 75% 25% 

METAL_GEAR_RISING_REVENGEANCE 0.006164975475974835 8/644 1% 99% 

Battleborn 0.006519168431369719 11/644 2% 98% 
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Table 1.4: ARK_Survival_Evolved P(B) Classified Hit Rate Miss Rate 

GTA_V 0.015282618109083277 37/523 7% 93% 

DOOM, Warhammer_Vermintide 0.004722396156249555 4/523 1% 99% 

Stellaris 0.006429031417893845 5/523 1% 99% 

Total_War_WARHAMMER 0.00706331461578811 5/523 1% 99% 

War_for_the_Overworld 0.015163328503587052 51/523 10% 90% 

Rocket_League 0.005875027488655491 12/523 2% 98% 

Insurgency, Counter_Strike 0.008242017639233249 11/523 2% 98% 

ARK_Survival_Evolved 0.2253088623404686 381/523 73% 27% 

DARK_SOULS_III, 
METAL_GEAR_SOLID_V, The_Witcher_3 

0.0038744427589049273 4/523 1% 99% 

METAL_GEAR_RISING_REVENGEANCE 0.003992099417902114 3/523 1% 99% 

Battleborn 0.00849267595516125 10/523 2% 98% 

 
Table 1.5: Rocket_League P(B) Classified Hit Rate Miss Rate 

GTA_V 0.01591773396370788 29/562 5% 95% 

DOOM, Warhammer_Vermintide 0.00684587056169445 7/562 1% 99% 

Stellaris 0.006755119607252276 6/562 1% 99% 

Total_War_WARHAMMER  0.008239351428653929 12/562 2% 98% 

War_for_the_Overworld 0.01051177278819627 42/562 7% 93% 

Rocket_League 0.258431378589074 430/562 77% 23% 

Insurgency, Counter_Strike 0.011276428133504535 19/562 3% 97% 

ARK_Survival_Evolved 0.001471684737568457 2/562 0.5% 99.5% 

DARK_SOULS_III, 
METAL_GEAR_SOLID_V, The_Witcher_3 

0.0027957185546593805 0/562 0% 100% 

METAL_GEAR_RISING_REVENGEANCE 0.0051559870346535456 3/562 0.5% 99.5% 

Battleborn 0.009148355987326209 12/562 2% 98% 

 
Table 1.6: Insurgency P(B) Classified Hit Rate Miss Rate 

GTA_V 0.011139359552082565 20/663 3% 97% 

DOOM, Warhammer_Vermintide 0.007322071145940012 7/663 1% 99% 

Stellaris 0.005874799106440028 3/663 0.5% 99.5% 

Total_War_WARHAMMER 0.008218537101212422 7/663 1% 99% 

War_for_the_Overworld 0.010779572182505446 28/663 4% 96% 

Rocket_League 0.008014912212014981 8/663 1% 99% 

Insurgency, Counter_Strike 0.30989796443502027 574/663 87% 13% 

ARK_Survival_Evolved 0.002697662958749167 3/663 0.5% 99.5% 

DARK_SOULS_III, 
METAL_GEAR_SOLID_V, The_Witcher_3 

0.0037489433059771197 2/663 0.5% 99.5% 

METAL_GEAR_RISING_REVENGEANCE 0.004283162834158655 3/663 0.5% 99.5% 

Battleborn 0.009807544262197737 8/663 1% 99% 
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Table 1.7: GTA_V P(B) Classified Hit Rate Miss Rate 

GTA_V 0.23876270225966165 302/376 82% 18% 

DOOM, Warhammer_Vermintide 0.006292809269235388 2/376 0.5% 99.5% 

Stellaris 0.005648971187032399 0/376 0% 100% 

Total_War_WARHAMMER 0.011310128366482684 9/376 2% 98% 

War_for_the_Overworld 0.015423813345866693 38/376 10% 90% 

Rocket_League 0.010122406756854413 6/376 1% 99% 

Insurgency, Counter_Strike 0.012404136836066957 8/376 1% 99% 

ARK_Survival_Evolved 0.0023740273559351038 1/376 0% 100% 

DARK_SOULS_III, 
METAL_GEAR_SOLID_V, The_Witcher_3 

0.007247116664476501 3/376 0.5% 99.5% 

METAL_GEAR_RISING_REVENGEANCE 0.004794774655468415 3/376 0.5% 99.5% 

Battleborn 0.008203929778711067 4/376 0.5% 99.5% 

 
Table 1.8: Stellaris P(B) Classified Hit Rate Miss Rate 

GTA_V 0.009602708208192826 7/273 2% 98% 

DOOM, Warhammer_Vermintide 0.0040311426384515275 3/273 1% 99% 

Stellaris 0.2823264761475659 219/273 80% 20% 

Total_War_WARHAMMER 0.013998918873228232 11/273 3% 97% 

War_for_the_Overworld 0.010124915746691047 17/273 6% 94% 

Rocket_League 0.006786590018307933 9/273 3% 97% 

Insurgency, Counter_Strike 0.006741051109973604 3/273 1% 99% 

ARK_Survival_Evolved 0.0016616261489169701 0/273 0% 100% 

DARK_SOULS_III, 
METAL_GEAR_SOLID_V, The_Witcher_3 

0.0032439953665773635 1/273 0.5% 99.5% 

METAL_GEAR_RISING_REVENGEANCE 0.0036133175323913185 0/273 0% 100% 

Battleborn 0.0057752860085125545 3/273 1% 99% 

 
Table 1.9: DOOM P(B) Classified Hit Rate Miss Rate 

GTA_V 0.01164465587286052 7/585 1% 99% 

DOOM, Warhammer_Vermintide 0.2662121202861144 500/585 85% 15% 

Stellaris 0.005045771168706361 1/585 0.5% 99.5% 

Total_War_WARHAMMER 0.008611813220749585 9/585 1% 99% 

War_for_the_Overworld 0.010894660854893658 23/585 4% 96% 

Rocket_League 0.005060215664375808 6/585 1% 99% 

Insurgency, Counter_Strike 0.014389909937849756 18/585 3% 97% 

ARK_Survival_Evolved 9.907273645369094E-4 1/585 0.5% 99.5% 

DARK_SOULS_III, 
METAL_GEAR_SOLID_V, The_Witcher_3 

0.004859211128674966 4/585 1% 99% 

METAL_GEAR_RISING_REVENGEANCE 0.005783887343512537 7/585 1% 99% 

Battleborn 0.0076550406714747145 9/585 1% 99% 
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Table 1.10: Total_War_WARHAMMER P(B) Classified Hit Rate Miss Rate 

GTA_V 0.011232031197913323 10/321 3% 97% 

DOOM, Warhammer_Vermintide 0.00515910849884074 1/321 0.5% 99.5% 

Stellaris 0.008998889361962269 5/321 1.5% 98.5% 

Total_War_WARHAMMER 0.297325419300726 271/321 84% 26% 

War_for_the_Overworld 0.01160998304090544 19/321 6% 94% 

Rocket_League 0.004025178198556828 3/321 0.5% 99.5% 

Insurgency, Counter_Strike 0.006882914021896591 2/321 0.5% 99.5% 

ARK_Survival_Evolved 0.0017495349317269003 1/321 0.5% 99.5% 

DARK_SOULS_III, 
METAL_GEAR_SOLID_V, The_Witcher_3 

0.0036367604451574436 3/321 0.5% 99.5% 

METAL_GEAR_RISING_REVENGEANCE 0.00546977045959523 2/321 0.5% 99.5% 

Battleborn 0.007666627734898679 4/321 1% 99% 

 
 

Table 1.11: Warhammer_Vermintide P(B) Classified Hit Rate Miss Rate 

GTA_V 0.011849357838544378 27/327 8% 92% 

DOOM, Warhammer_Vermintide 0.007459858086373419 15/327 4% 96% 

Stellaris 0.005957922594972605 16/327 4% 96% 

Total_War_WARHAMMER 0.016504855908924948 42/327 12% 88% 

War_for_the_Overworld 0.01142309177507012 83/327 25% 75% 

Rocket_League 0.00604515265153152 11/327 3% 97% 

Insurgency, Counter_Strike 0.015163814004102398 43/327 12% 88% 

ARK_Survival_Evolved 0.0017281192844108575 5/327 1% 99% 

DARK_SOULS_III, 
METAL_GEAR_SOLID_V, The_Witcher_3 

0.006412003049427793 20/327 7% 93% 

METAL_GEAR_RISING_REVENGEANCE 0.006014714448489843 10/327 1.5% 98.5% 

Battleborn 0.01628535120416342 55/327 17% 83% 

 
Table 1.12: DARK_SOULS_III P(B) Classified Hit Rate Miss Rate 

GTA_V 0.014873771258798641 68/489 14% 86% 

DOOM, Warhammer_Vermintide 0.004919880266670803 16/489 3% 97% 

Stellaris 0.0055465998802126815 22/489 4% 96% 

Total_War_WARHAMMER 0.01090119665454564 55/489 11% 89% 

War_for_the_Overworld 0.009583290821975989 128/489 26% 74% 

Rocket_League 0.00464889139896094 22/489 4% 96% 

Insurgency, Counter_Strike 0.008592626290380444 46/489 8% 92% 

ARK_Survival_Evolved 0.002049468423263892 7/489 1.5% 98.5% 

DARK_SOULS_III, 
METAL_GEAR_SOLID_V, The_Witcher_3 

0.006666578264320777 40/489 8% 92% 

METAL_GEAR_RISING_REVENGEANCE 0.009560235063808029 44/489 9% 91% 

Battleborn 0.007675676238710422 41/489 8% 92% 
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Table 1.13: 
METAL_GEAR_RISING_REVENGEANCE 

P(B) Classified Hit Rate Miss Rate 

GTA_V 0.012236792832138493 9/398 2% 98% 

DOOM, Warhammer_Vermintide 0.005007022751134318 3/398 1% 99% 

Stellaris 0.006357901627951134 2/398 1% 99% 

Total_War_WARHAMMER 0.007742151904571156 5/398 1% 99% 

War_for_the_Overworld 0.00803984501580179 18/398 4% 96% 

Rocket_League 0.00470532372384033 3/398 1% 99% 

Insurgency, Counter_Strike 0.008220399024422098 7/398 2% 98% 

ARK_Survival_Evolved 0.001605599906342483 3/398 1% 99% 

DARK_SOULS_III, 
METAL_GEAR_SOLID_V, The_Witcher_3 

0.005477725118100397 4/398 1% 99% 

METAL_GEAR_RISING_REVENGEANCE 0.29768343809397435 339/398 85% 15% 

Battleborn 0.00825798449403805 5/398 1% 99% 

 
Table 1.14: METAL_GEAR_SOLID_V P(B) Classified Hit Rate Miss Rate 

GTA_V 0.0133021077065471 77/493 16% 84% 

DOOM, Warhammer_Vermintide 0.005478989704696575 21/493 4% 96% 

Stellaris 0.006466242484873808 25/493 5% 95% 

Total_War_WARHAMMER 0.00837355076487079 43/493 8% 92% 

War_for_the_Overworld 0.009225959729886915 114/493 23% 73% 

Rocket_League 0.004717162372880044 23/493 4% 96% 

Insurgency, Counter_Strike 0.012241245835352929 52/493 10% 90% 

ARK_Survival_Evolved 0.0015047399533882001 4/493 1% 99% 

DARK_SOULS_III, 
METAL_GEAR_SOLID_V, The_Witcher_3 

0.00880023124139574 32/493 7% 93% 

METAL_GEAR_RISING_REVENGEANCE 0.015435836357437093 69/493 14% 86% 

Battleborn 0.007128197086277641 33/493 7% 93% 

 
Table 1.15: Counter_Strike P(B) Classified Hit Rate Miss Rate 

GTA_V 0.018062621609523943 68/428 16% 1484% 

DOOM, Warhammer_Vermintide 0.007187740412342022 15/428 4% 96% 

Stellaris 0.007939325278330108 18/428 4% 96% 

Total_War_WARHAMMER 0.009544507208314299 25/428 5% 95% 

War_for_the_Overworld 0.011253789006888313 97/428 22% 78% 

Rocket_League 0.012917866473168373 29/428 6% 94% 

Insurgency, Counter_Strike 0.04822585463063473 123/428 29% 71% 

ARK_Survival_Evolved 0.0018420174415562293 3/428 1% 99% 

DARK_SOULS_III, 
METAL_GEAR_SOLID_V, The_Witcher_3 

0.004279430531055203 14/428 4% 96% 

METAL_GEAR_RISING_REVENGEANCE 0.00455723171243323 7/428 2% 98% 

Battleborn 0.010538669600700495 29/428 6% 94% 
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C Tables 2: Accuracies for every game in partition 2. 

 
Table 2.1: War for the Overworld P(B) Classified Hit Rate Miss Rate 

GTA_V 0.0103 1/93 1% 99% 

METAL_GEAR_SOLID_V 0.0043 0/93 0% 100% 

War_for_the_Overworld 0.2929 91/93 98% 2% 

Stellaris 0.0055 0/93 0% 100% 

Total_War_WARHAMMER 0.0064 0/93 0% 100% 

DOOM 0.0039 0/93 0% 100% 

Rocket_League 0.0027 0/93 0% 100% 

Insurgency, Warhammer_Vermintide, Counter_Strike 0.0074 0/93 0% 100% 

ARK_Survival_Evolved 0.0042 0/93 0% 100% 

DARK_SOULS_III, The_Witcher_3 0.0034 0/93 0% 100% 

METAL_GEAR_RISING_REVENGEANCE 0.0011 0/93 0% 100% 

Battleborn 0.0050 1/93 1% 99% 

 
Table 2.2: Battleborn P(B) Classified Hit Rate Miss Rate 

GTA_V 0.0109 5/227 2% 98% 

METAL_GEAR_SOLID_V 0.0035 3/227 1% 99% 

War_for_the_Overworld 0.0084 12/227 5% 95% 

Stellaris 0.0045 2/227 1% 1% 

Total_War_WARHAMMER 0.0029 1/227 1% 1% 

DOOM 0.0034 1/227 1% 1% 

Rocket_League 0.0064 6/227 2% 98% 

Insurgency, Warhammer_Vermintide, Counter_Strike 0.0093 4/227 2% 98% 

ARK_Survival_Evolved 0.0015 1/227 1% 1% 

DARK_SOULS_III, The_Witcher_3 0.0039 2/227 1% 1% 

METAL_GEAR_RISING_REVENGEANCE 0.0051 1/227 1% 1% 

Battleborn 0.2608 189/227 83% 17% 

 
Table 2.3: The_Witcher_3_Wild_Hunt P(B) Classified Hit Rate Miss Rate 

GTA_V 0.0123 35/644 5% 95% 

METAL_GEAR_SOLID_V 0.0048 7/644 1% 99% 

War_for_the_Overworld 0.0098 71/644 10% 90% 

Stellaris 0.0050 4/644 1% 99% 

Total_War_WARHAMMER 0.0041 7/644 1% 99% 

DOOM 0.0042 6/644 1% 99% 

Rocket_League 0.0051 11/644 1% 99% 

Insurgency, Warhammer_Vermintide, Counter_Strike 0.0078 19/644 3% 97% 

ARK_Survival_Evolved 0.0021 4/644 1% 99% 

DARK_SOULS_III, The_Witcher_3 0.2026 474/644 73% 27% 

METAL_GEAR_RISING_REVENGEANCE 0.0029 3/644 1% 99% 

Battleborn 0.0026 3/644 1% 99% 
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Table 2.4: ARK_Survival_Evolved P(B) Classified Hit Rate Miss Rate 

GTA_V 0.0163 33/523 6% 94% 

METAL_GEAR_SOLID_V 0.0033 2/523 0% 100% 

War_for_the_Overworld 0.0127 49/523 9% 91% 

Stellaris 0.0064 9/523 2% 98% 

Total_War_WARHAMMER 0.0041 8/523 2% 98% 

DOOM 0.0037 4/523 1% 99% 

Rocket_League 0.0049 6/523 2% 98% 

Insurgency, Warhammer_Vermintide, Counter_Strike 0.0069 10/523 2% 98% 

ARK_Survival_Evolved 0.2690 394/523 75% 25% 

DARK_SOULS_III, The_Witcher_3 0.0046 3/523 0% 100% 

METAL_GEAR_RISING_REVENGEANCE 0.0018 2/523 0% 100% 

Battleborn 0.0030 3/523 0% 100% 

 
Table 2.5: Rocket_League P(B) Classified Hit Rate Miss Rate 

GTA_V 0.0159 32/562 6% 94% 

METAL_GEAR_SOLID_V 0.0048 3/562 0% 100% 

War_for_the_Overworld 0.0101 63/562 12% 88% 

Stellaris 0.0051 0/562 0% 100% 

Total_War_WARHAMMER 0.0039 3/562 0% 100% 

DOOM 0.0054 5/562 1% 99% 

Rocket_League 0.2434 412/562 73% 27% 

Insurgency, Warhammer_Vermintide, Counter_Strike 0.0118 23/562 4% 96% 

ARK_Survival_Evolved 0.0028 7/562 1% 99% 

DARK_SOULS_III, The_Witcher_3 0.0044 6/562 1% 99% 

METAL_GEAR_RISING_REVENGEANCE 0.0033 3/562 0% 100% 

Battleborn 0.0033 5/562 1% 99% 

 
Table 2.6: Insurgency P(B) Classified Hit Rate Miss Rate 

GTA_V 0.0125 18/663 3% 97% 

METAL_GEAR_SOLID_V 0.0038 2/663 0% 100% 

War_for_the_Overworld 0.0112 32/663 5% 95% 

Stellaris 0.0048 3/663 0% 100% 

Total_War_WARHAMMER 0.0044 7/663 1% 99% 

DOOM 0.0060 8/663 1% 99% 

Rocket_League 0.0086 13/663 2% 98% 

Insurgency, Warhammer_Vermintide, Counter_Strike 0.2944 564/663 85% 15% 

ARK_Survival_Evolved 0.0023 2/663 0% 100% 

DARK_SOULS_III, The_Witcher_3 0.0045 7/663 1% 99% 

METAL_GEAR_RISING_REVENGEANCE 0.0026 2/663 0% 100% 

Battleborn 0.0033 5/663 1% 99% 
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Table 2.7: GTA_V P(B) Classified Hit Rate Miss Rate 

GTA_V 0.2441 304/376 80% 20% 

METAL_GEAR_SOLID_V 0.0054 3/376 0% 100% 

War_for_the_Overworld 0.0103 26/376 7% 93% 

Stellaris 0.0054 2/376 0% 100% 

Total_War_WARHAMMER 0.0053 6/376 1% 99% 

DOOM 0.0058 4/376 1% 99% 

Rocket_League 0.0064 5/376 1% 99% 

Insurgency, Warhammer_Vermintide, Counter_Strike 0.0104 12/376 2% 98% 

ARK_Survival_Evolved 0.0045 4/376 0% 100% 

DARK_SOULS_III, The_Witcher_3 0.0067 7/376 1% 99% 

METAL_GEAR_RISING_REVENGEANCE 0.0032 1/376 0% 100% 

Battleborn 0.0025 2/376 0% 100% 

 
Table 2.8: Stellaris P(B) Classified Hit Rate Miss Rate 

GTA_V 0.0095 9/273 3% 97% 

METAL_GEAR_SOLID_V 0.0035 0/273 0% 100% 

War_for_the_Overworld 0.0125 23/273 8% 92% 

Stellaris 0.2774 222/273 81% 19% 

Total_War_WARHAMMER 0.0075 4/273 1% 99% 

DOOM 0.0038 2/273 1% 99% 

Rocket_League 0.0048 7/273 2% 98% 

Insurgency, Warhammer_Vermintide, Counter_Strike 0.0057 2/273 1% 99% 

ARK_Survival_Evolved 0.0029 1/273 1% 99% 

DARK_SOULS_III, The_Witcher_3 0.0033 1/273 1% 99% 

METAL_GEAR_RISING_REVENGEANCE 0.0014 0/273 0% 100% 

Battleborn 0.0024 2/273 1% 99% 

 
Table 2.9: DOOM P(B) Classified Hit Rate Miss Rate 

GTA_V 0.0109 13/585 2% 98% 

METAL_GEAR_SOLID_V 0.0039 1/585 0% 100% 

War_for_the_Overworld 0.0097 27/585 5% 95% 

Stellaris 0.0055 5/585 1% 99% 

Total_War_WARHAMMER 0.0050 6/585 1% 99% 

DOOM 0.2906 498/585 85% 15% 

Rocket_League 0.0051 5/585 1% 99% 

Insurgency, Warhammer_Vermintide, Counter_Strike 0.0135 18/585 3% 97% 

ARK_Survival_Evolved 0.0016 1/585 0% 100% 

DARK_SOULS_III, The_Witcher_3 0.0038 4/585 1% 99% 

METAL_GEAR_RISING_REVENGEANCE 0.0035 3/585 0% 100% 

Battleborn 0.0046 4/585 1% 99% 
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Table 2.10: Total_War_WARHAMMER P(B) Classified Hit Rate Miss Rate 

GTA_V 0.0160 18/321 6% 94% 

METAL_GEAR_SOLID_V 0.0030 3/321 1% 99% 

War_for_the_Overworld 0.0124 23/321 7% 93% 

Stellaris 0.0078 3/321 1% 99% 

Total_War_WARHAMMER 0.2742 260/321 81% 19% 

DOOM 0.0031 1/321 0% 100% 

Rocket_League 0.0033 1/321 0% 100% 

Insurgency, Warhammer_Vermintide, Counter_Strike 0.0065 3/321 1% 99% 

ARK_Survival_Evolved 0.0051 4/321 1% 99% 

DARK_SOULS_III, The_Witcher_3 0.0045 3/321 1% 99% 

METAL_GEAR_RISING_REVENGEANCE 0.0021 2/321 0% 100% 

Battleborn 0.0026 0/321 0% 100% 

 
Table 2.11: Warhammer_Vermintide P(B) Classified Hit Rate Miss Rate 

GTA_V 0.0109 40/327 12% 88% 

METAL_GEAR_SOLID_V 0.0036 10/327 3% 97% 

War_for_the_Overworld 0.0120 80/327 24% 76% 

Stellaris 0.0063 20/327 6% 93% 

Total_War_WARHAMMER 0.0095 28/327 8% 92% 

DOOM 0.0080 26/327 8% 92% 

Rocket_League 0.0063 25/327 8% 92% 

Insurgency, Warhammer_Vermintide, Counter_Strike 0.0133 53/327 16% 84% 

ARK_Survival_Evolved 0.0014 6/327 2% 98% 

DARK_SOULS_III, The_Witcher_3 0.0052 15/327 4% 96% 

METAL_GEAR_RISING_REVENGEANCE 0.0040 10/327 3% 97% 

Battleborn 0.0040 14/327 4% 96% 

 
Table 2.12: DARK_SOULS_III P(B) Classified Hit Rate Miss Rate 

GTA_V 0.0144 86/489 17% 83% 

METAL_GEAR_SOLID_V 0.0050 17/489 3% 97% 

War_for_the_Overworld 0.0097 162/489 33% 67% 

Stellaris 0.0049 17/489 3% 97% 

Total_War_WARHAMMER 0.0048 21/489 4% 96% 

DOOM 0.0045 22/489 4% 96% 

Rocket_League 0.0046 23/489 4% 96% 

Insurgency, Warhammer_Vermintide, Counter_Strike 0.0078 50/489 10% 90% 

ARK_Survival_Evolved 0.0035 15/489 3% 97% 

DARK_SOULS_III, The_Witcher_3 0.0072 38/489 7% 93% 

METAL_GEAR_RISING_REVENGEANCE 0.0063 29/489 6% 94% 

Battleborn 0.0025 9/489 1% 99% 
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Table 2.13: METAL_GEAR_RISING_REVENGEANCE P(B) Classified Hit Rate Miss Rate 

GTA_V 0.0122 12/398 3% 97% 

METAL_GEAR_SOLID_V 0.0169 21/398 5% 95% 

War_for_the_Overworld 0.0084 29/398 7% 93% 

Stellaris 0.0055 6/398 2% 98% 

Total_War_WARHAMMER 0.0040 2/398 1% 99% 

DOOM 0.0052 4/398 1% 99% 

Rocket_League 0.0054 5/398 1% 99% 

Insurgency, Warhammer_Vermintide, Counter_Strike 0.0069 4/398 1% 99% 

ARK_Survival_Evolved 8.8137 0/398 0% 100% 

DARK_SOULS_III, The_Witcher_3 0.0048 6/398 2% 98% 

METAL_GEAR_RISING_REVENGEANCE 0.2626 308/398 77% 23% 

Battleborn 0.0028 1/398 1% 99% 

 
Table 2.14: METAL_GEAR_SOLID_V_PHANTOM_PAIN P(B) Classified Hit Rate Miss Rate 

GTA_V 0.0171 22/493 4% 96% 

METAL_GEAR_SOLID_V_PHANTOM_PAIN 0.2225 385/493 78% 22% 

War_for_the_Overworld 0.0090 32/493 6% 94% 

Stellaris 0.0057 6/493 1% 99% 

Total_War_WARHAMMER 0.0045 8/493 1% 99% 

DOOM 0.0049 2/493 1% 99% 

Rocket_League 0.0061 9/493 1% 99% 

Insurgency, Warhammer_Vermintide, Counter_Strike 0.0112 11/493 2% 98% 

ARK_Survival_Evolved 0.0013 0/493 0% 100% 

DARK_SOULS_III, The_Witcher_3 0.0067 7/493 1% 99% 

METAL_GEAR_RISING_REVENGEANCE 0.0054 6/493 1% 99% 

Battleborn 0.0036 5/493 1% 99% 

 
Table 2.15: Counter_Strike P(B) Classified Hit Rate Miss Rate 

GTA_V 0.0182 59/428 13% 87% 

METAL_GEAR_SOLID_V 0.0044 10/428 2% 98% 

War_for_the_Overworld 0.0094 120/428 28% 72% 

Stellaris 0.0063 11/428 2% 98% 

Total_War_WARHAMMER 0.0042 10/428 2% 98% 

DOOM 0.0051 15/428 2% 98% 

Rocket_League 0.0107 45/428 10% 90% 

Insurgency, Warhammer_Vermintide, Counter_Strike 0.0429 123/428 28% 72% 

ARK_Survival_Evolved 0.0025 7/428 2% 98% 

DARK_SOULS_III, The_Witcher_3 0.0045 14/428 2% 98% 

METAL_GEAR_RISING_REVENGEANCE 0.0023 8/428 2% 98% 

Battleborn 0.0032 6/428 2% 98% 
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D Tables 2: Accuracies for every game in partition 3. 
Table 3.1: War_for_the_Overworld P(B) Classified Hit Rate Miss Rate 

Grand_Theft_Auto_V 0.0104 2/93 2% 98% 

DOOM, Warhammer_Vermintide 0.0077 0/93 0% 100% 

METAL_GEAR_SOLID_V 0.0028 0/93 0% 100% 

Stellaris 0.0063 1/93 1% 99% 

Total_War_WARHAMMER 0.0049 0/93 0% 100% 

War_for_the_Overworld 0.2798 85/93 91% 9% 

Rocket_League 0.0039 0/93 0% 100% 

ARK_Survival_Evolved 0.0073 2/93 2% 98% 

Insurgency, Counter_Strike 0.0058 1/93 1% 99% 

DARK_SOULS_III, The_Witcher_3_Wild_Hunt 0.0012 0/93 0% 100% 

METAL_GEAR_RISING_REVENGEANCE 0.0018 0/93 0% 100% 

Battleborn 0.0083 2/93 2% 98% 

 

Table 3.2: Battleborn P(B) Classified Hit Rate Miss Rate 

Grand_Theft_Auto_V 0.0121 16/227 7% 93% 

DOOM, Warhammer_Vermintide 0.0061 2/227 1% 99% 

METAL_GEAR_SOLID_V 0.0035 2/227 1% 99% 

Stellaris 0.0060 0/227 0% 100% 

Total_War_WARHAMMER 0.0063 2/227 1% 99% 

War_for_the_Overworld 0.0075 5/227 2% 98% 

Rocket_League 0.0070 4/227 2% 98% 

ARK_Survival_Evolved 0.0011 0/227 0% 100% 

Insurgency, Counter_Strike 0.0099 3/227 2% 98% 

DARK_SOULS_III, The_Witcher_3 0.0010 0/227 0% 100% 

METAL_GEAR_RISING_REVENGEANCE 0.0032 1/227 1% 99% 

Battleborn 0.2899 192/227 84% 16% 

 

Table 3.3: The_Witcher_3 P(B) Classified Hit Rate Miss Rate 

Grand_Theft_Auto_V 0.0142 107/644 16% 84% 

DOOM, Warhammer_Vermintide 0.0060 11/644 2% 98% 

METAL_GEAR_SOLID_V 0.0047 8/644 1% 99% 

Stellaris 0.0071 14/644 2% 98% 

Total_War_WARHAMMER 0.0071 14/644 2% 98% 

War_for_the_Overworld 0.0080 15/644 2% 98% 

Rocket_League 0.0047 12/644 2% 98% 

ARK_Survival_Evolved 0.0037 8/644 1% 99% 

Insurgency, Counter_Strike 0.0064 17/644 2% 98% 

DARK_SOULS_III, The_Witcher_3 0.1799 422/644 65% 35% 

METAL_GEAR_RISING_REVENGEANCE 0.0052 11/644 2% 98% 

Battleborn 0.0048 5/644 1% 99% 
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Table 3.4: ARK_Survival_Evolved P(B) Classified Hit Rate Miss Rate 

Grand_Theft_Auto_V 0.0131 44/523 8% 92% 

DOOM, Warhammer_Vermintide 0.0054 9/523 2% 98% 

METAL_GEAR_SOLID_V 0.0027 4/523 1% 99% 

Stellaris 0.0076 5/523 1% 99% 

Total_War_WARHAMMER 0.0065 9/523 2% 98% 

War_for_the_Overworld 0.0101 20/523 4% 96% 

Rocket_League 0.0061 14/523 3% 97% 

ARK_Survival_Evolved 0.2743 404/523 77% 23% 

Insurgency, Counter_Strike 0.0056 7/523 2% 98% 

DARK_SOULS_III, The_Witcher_3 0.0016 0/523 0% 100% 

METAL_GEAR_RISING_REVENGEANCE 0.0027 1/523 1% 99% 

Battleborn 0.0048 6/523 1% 99% 

 

Table 3.5: Rocket_League P(B) Classified Hit Rate Miss Rate 

Grand_Theft_Auto_V 0.0163 73/562 13% 87% 

DOOM, Warhammer_Vermintide 0.0071 8/562 1% 99% 

METAL_GEAR_SOLID_V 0.0031 5/562 1% 99% 

Stellaris 0.0080 10/562 1% 99% 

Total_War_WARHAMMER 0.0051 4/562 1% 99% 

War_for_the_Overworld 0.0079 8/562 1% 99% 

Rocket_League 0.2268 411/562 73% 27% 

ARK_Survival_Evolved 0.0025 2/562 1% 99% 

Insurgency, Counter_Strike 0.0093 12/562 2% 98% 

DARK_SOULS_III, The_Witcher_3 0.0018 3/562 1% 99% 

METAL_GEAR_RISING_REVENGEANCE 0.0038 4/562 1% 99% 

Battleborn 0.0076 22/562 2% 98% 

 

Table 3.6: Insurgency P(B) Classified Hit Rate Miss Rate 

Grand_Theft_Auto_V 0.0115 35/663 5% 95% 

DOOM, Warhammer_Vermintide 0.0101 15/663 2% 98% 

METAL_GEAR_SOLID_V 0.0034 5/663 1% 99% 

Stellaris 0.0063 2/663 1% 99% 

Total_War_WARHAMMER 0.0058 9/663 1% 99% 

War_for_the_Overworld 0.0100 9/663 1% 99% 

Rocket_League 0.0075 12/663 2% 98% 

ARK_Survival_Evolved 0.0027 4/663 1% 99% 

Insurgency, Counter_Strike 0.2979 554/663 83% 17% 

DARK_SOULS_III, The_Witcher_3 0.0018 3/663 1% 99% 

METAL_GEAR_RISING_REVENGEANCE 0.0028 2/663 1% 99% 

Battleborn 0.0083 13/663 2% 98% 
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Table 3.7: Grand_Theft_Auto_V P(B) Classified Hit Rate Miss Rate 

Grand_Theft_Auto_V 0.2485 323/376 86% 14% 

DOOM, Warhammer_Vermintide 0.0109 8/376 2% 98% 

METAL_GEAR_SOLID_V 0.0058 5/376 1% 99% 

Stellaris 0.0070 5/376 1% 99% 

Total_War_WARHAMMER 0.0074 5/376 1% 99% 

War_for_the_Overworld 0.0091 7/376 2% 98% 

Rocket_League 0.0092 8/376 2% 98% 

ARK_Survival_Evolved 0.0049 3/376 1% 99% 

Insurgency, Counter_Strike 0.0092 6/376 2% 98% 

DARK_SOULS_III, The_Witcher_3 0.0031 2/376 1% 99% 

METAL_GEAR_RISING_REVENGEANCE 0.0047 3/376 1% 99% 

Battleborn 0.0056 1/376 1% 99% 

 

Table 3.8: Stellaris P(B) Classified Hit Rate Miss Rate 

Grand_Theft_Auto_V 0.0097 18/273 7% 93% 

DOOM, Warhammer_Vermintide 0.0056 2/273 0% 100% 

METAL_GEAR_SOLID_V 0.0027 0/273 0% 100% 

Stellaris 0.2764 237/273 86% 14% 

Total_War_WARHAMMER 0.0088 5/273 2% 98% 

War_for_the_Overworld 0.0100 7/273 2% 98% 

Rocket_League 0.0052 2/273 0% 100% 

ARK_Survival_Evolved 0.0015 0/273 0% 100% 

Insurgency, Counter_Strike 0.0059 0/273 0% 100% 

DARK_SOULS_III, The_Witcher_3 0.0017 0/273 0% 100% 

METAL_GEAR_RISING_REVENGEANCE 0.0026 0/273 0% 100% 

Battleborn 0.0044 2/273 0% 100% 

 

Table 3.9: DOOM P(B) Classified Hit Rate Miss Rate 

Grand_Theft_Auto_V 0.0110 28/585 5% 95% 

DOOM, Warhammer_Vermintide 0.3047 506/585 87% 13% 

METAL_GEAR_SOLID_V 0.0027 0/585 0% 100% 

Stellaris 0.0056 6/585 1% 99% 

Total_War_WARHAMMER 0.0058 3/585 1% 99% 

War_for_the_Overworld 0.0092 11/585 2% 98% 

Rocket_League 0.0044 4/585 1% 99% 

ARK_Survival_Evolved 0.0021 1/585 0% 100% 

Insurgency, Counter_Strike 0.0103 12/585 2% 98% 

DARK_SOULS_III, The_Witcher_3 0.0021 3/585 1% 99% 

METAL_GEAR_RISING_REVENGEANCE 0.0042 4/585 1% 99% 

Battleborn 0.0058 7/585 1% 99% 
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Table 3.10: Total_War_WARHAMMER P(B) Classified Hit Rate Miss Rate 

Grand_Theft_Auto_V 0.0118 20/321 6% 94% 

DOOM, Warhammer_Vermintide 0.0074 3/321 1% 99% 

METAL_GEAR_SOLID_V 0.0021 2/321 1% 99% 

Stellaris 0.0097 5/321 1% 99% 

Total_War_WARHAMMER 0.2897 274/321 85% 15% 

War_for_the_Overworld 0.0083 8/321 2% 98% 

Rocket_League 0.0055 3/321 1% 99% 

ARK_Survival_Evolved 0.0018 3/321 1% 99% 

Insurgency, Counter_Strike 0.0052 1/321 1% 99% 

DARK_SOULS_III, The_Witcher_3 0.0014 0/321 0% 100% 

METAL_GEAR_RISING_REVENGEANCE 0.0027 0/321 0% 100% 

Battleborn 0.0041 2/321 1% 99% 

 

Table 3.11: Warhammer_Vermintide P(B) Classified Hit Rate Miss Rate 

Grand_Theft_Auto_V 0.0129 100/327 30% 70% 

DOOM, Warhammer_Vermintide 0.0073 27/327 8% 92% 

METAL_GEAR_SOLID_V 0.0027 10/327 3% 97% 

Stellaris 0.0062 13/327 4% 96% 

Total_War_WARHAMMER 0.0119 34/327 10% 90% 

War_for_the_Overworld 0.0099 34/327 10% 90% 

Rocket_League 0.0058 18/327 5% 95% 

ARK_Survival_Evolved 0.0022 7/327 2% 98% 

Insurgency, Counter_Strike 0.0082 41/327 13% 97% 

DARK_SOULS_III, The_Witcher_3 0.0035 9/327 3% 97% 

METAL_GEAR_RISING_REVENGEANCE 0.0031 7/327 2% 98% 

Battleborn 0.0068 27/327 8% 92% 

 

Table 3.12: DARK_SOULS_III P(B) Classified Hit Rate Miss Rate 

Grand_Theft_Auto_V 0.0117 193/489 39% 61% 

DOOM, Warhammer_Vermintide 0.0059 36/489 7% 93% 

METAL_GEAR_SOLID_V 0.0025 11/489 2% 98% 

Stellaris 0.0063 31/489 6% 94% 

Total_War_WARHAMMER 0.0071 36/489 7% 93% 

War_for_the_Overworld 0.0086 50/489 10% 90% 

Rocket_League 0.0044 25/489 5% 95% 

ARK_Survival_Evolved 0.0025 9/489 2% 98% 

Insurgency, Counter_Strike 0.0053 27/489 5% 95% 

DARK_SOULS_III, The_Witcher_3 0.0041 16/489 3% 97% 

METAL_GEAR_RISING_REVENGEANCE 0.0074 34/489 8% 92% 

Battleborn 0.0047 21/489 4% 96% 
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Table 3.13: METAL_GEAR_RISING_REVENGEANCE P(B) Classified Hit Rate Miss Rate 

Grand_Theft_Auto_V 0.0105 35/398 9% 91% 

DOOM, Warhammer_Vermintide 0.0082 7/398 2% 98% 

METAL_GEAR_SOLID_V 0.0143 19/398 5% 95% 

Stellaris 0.0057 4/398 1% 99% 

Total_War_WARHAMMER 0.0048 1/398 0% 100% 

War_for_the_Overworld 0.0062 2/398 1% 99% 

Rocket_League 0.0046 4/398 1% 99% 

ARK_Survival_Evolved 0.0019 1/398 0% 100% 

Insurgency, Counter_Strike 0.0050 1/398 0% 100% 

DARK_SOULS_III, The_Witcher_3 0.0026 1/398 0% 100% 

METAL_GEAR_RISING_REVENGEANCE 0.2828 321/398 80% 20% 

Battleborn 0.0040 2/398 1% 99% 

 

Table 3.14: METAL_GEAR_SOLID_V P(B) Classified Hit Rate Miss Rate 

Grand_Theft_Auto_V 0.0175 65/493 13% 87% 

DOOM, Warhammer_Vermintide 0.0070 10/493 2% 98% 

METAL_GEAR_SOLID_V 0.2279 356/493 72% 28% 

Stellaris 0.0078 6/493 1% 99% 

Total_War_WARHAMMER 0.0061 3/493 1% 99% 

War_for_the_Overworld 0.0075 10/493 2% 98% 

Rocket_League 0.0050 4/493 1% 99% 

ARK_Survival_Evolved 0.0030 5/493 1% 99% 

Insurgency, Counter_Strike 0.0074 4/493 1% 99% 

DARK_SOULS_III, The_Witcher_3 0.0037 10/493 2% 98% 

METAL_GEAR_RISING_REVENGEANCE 0.0087 17/493 3% 97% 

Battleborn 0.0052 3/493 1% 99% 

 

Table 3.15: Counter_Strike P(B) Classified Hit Rate Miss Rate 

Grand_Theft_Auto_V 0.0122 151/428 35% 65% 

DOOM, Warhammer_Vermintide 0.0097 24/428 5% 95% 

METAL_GEAR_SOLID_V 0.0031 9/428 2% 98% 

Stellaris 0.0075 15/428 3% 97% 

Total_War_WARHAMMER 0.0059 14/428 3% 97% 

War_for_the_Overworld 0.0084 24/428 5% 95% 

Rocket_League 0.0112 46/428 10% 90% 

ARK_Survival_Evolved 0.0016 8/428 2% 98% 

Insurgency, Counter_Strike 0.0372 105/428 24% 76% 

DARK_SOULS_III, The_Witcher_3 0.0016 7/428 2% 98% 

METAL_GEAR_RISING_REVENGEANCE 0.0034 5/428 1% 99% 

Battleborn 0.0074 20/428 5% 95% 

 


