
Universidad Autónoma de Madrid
Escuela politécnica superior

Doble Grado en Informática y Matemáticas

Trabajo Fin de Grado

Diseño de un filtro de paquetes ASCII
en redes multi-Gb/s

Autor:
Víctor Uceda Uceda

Tutor: Dr. José Luis García Dorado
Ponente: Dr. Javier Aracil Rico

Madrid, 2016

SELECTIVE CAPPING OF PACKET
PAYLOADS AT MULTI-GB/S RATES

Author:
Víctor Uceda Uceda

Supervisors:
Dr. José Luis García Dorado

Dr. Javier Aracil Rico

High Performance Computing and Networking research group
Escuela Politécnica Superior

Universidad Autónoma de Madrid
Madrid, 2016

i

Summary

Abstract

Nowadays, network traces are an important tool to characterize network traffic, detect
anomalies and evaluate performance forensically, among others task.

However, the storage and speed required for traffic traces have been greatly expanded
in the actual multi-Gb/s networks. In this light, as an attempt to reduce such write speed
and storage requirements on hard drives and further reduce the computational burden of
packet analysis, we propose a selectively capping of packet payloads.

Our proposal takes advantage of most packet payloads being useless for analysis pur-
poses, because they are either encrypted or in a proprietary application non-readable
format. Then, such payloads can be capped. Conversely, non-ASCII packets from well-
known protocols and protocols with some ASCII data are fully captured as they may be
potentially useful for network analysis.

We have implemented and integrated this proposal into a high speed network driver
and a software module at user level, to make its operation more transparent and faster
to upper-layer applications. In addition, a detailed cost and analysis of base-algorithm
implemented as well as its optimization are presented throughout this work.

The results are promising, selective capping achieves multi-Gb/s rates by exploiting
low level hardware and software techniques to meet the fastest network rates. Moreover,
storage savings between two and three times are achieved by capping nearly 60% of
packets payloads in multiple realistic scenarios.

Key words

Packet Storage, Traffic capture, Selective Capping, Interleaved ASCII.

iii

Resumen

Actualmente, las trazas de red son una herramienta esencial en el trabajo de los analistas
y administradores de red, ya que les permiten entender el comportamiento del tráfico,
detectar anomalías y ataques y evaluar el desempeño de la red, entre otras tareas. Sin
embargo, las altas velocidad de las redes actuales dificultan en gran medida la captura
de las trazas ya que se requiere un gran espacio de almacenamiento para guardar apenas
tiempo de monitorización. El problema del espacio de almacenamiento se suma al de la
alta tasa de escritura en disco que se debe mantener para no perder información.

En este trabajo, se presenta un filtro selectivo a nivel de paquetes. El método prop-
uesto se aprovecha de que una gran parte de los paquetes que circulan por la red no
son útiles para los analistas, protocolos cifrados o propietarios con contenido no legible,
y por tanto podemos no guardar la carga útil dichos paquetes ahorrando el correspon-
diente espacio y reduciendo la tasa de escritura en disco necesaria para monitorizar la
red. Mientras que los paquetes de protocolos conocidos o de estructura desconocida pero
contenido legible (por ejemplo con codificación ASCII) son capturados enteramente.

Además, se describen dos implementaciones del filtro integrándolo en un driver de red
de altas prestaciones y alternativamente como aplicación de la capa de usuario, y se detalla
un análisis de las prestaciones en ambas arquitecturas. Los resultados aquí presentados
son prometedores, las pruebas realizadas alcanzan tasas de monitorización cercanas a los
10Gb/s y muestran que es posible aplicar un filtro selectivo en la monitorización de redes
de altas prestaciones.

Palabras Clave

Monitorización, Almacenamieno de trazas, Filtro selectivo, ASCII.

iv

Acknowledgements

There are a number of people that have helped me over the last years and to whom I am
greatly indebted. They have allowed me to get my degree and to develop this work.

Firstly, I would like to thank my family who who have enabled me to have this
education. They have provided me always everything I needed. Of course, I am very
grateful to Alicia for your understanding and your happiness.

Very importantly, I would like to thank my supervisors Jose Luis García-Dorado,
Javier Aracil and, of course, Javier Ramos for their close collaboration along the past
two year. They introduced me to the research community. Attain this work with you has
been really easy, thank you. Also, I would like to the HPCN group for their support.

Finally, to my colleagues of university and friends, thanks for your fun and support
inside and outside class time. Specially, I would like to thank Miguel Rodriguez for the
enriching timeshares.

v

Contents

List of Figures ix

List of Tables x

Acronyms xiii

1 Introduction 1

2 Related work 5

3 Theoretical Model: Detection of ASCII traffic 7

3.1 Taxonomy . 7

3.2 Detection Schemes . 9

3.2.1 ASCII-Runs detection scheme . 9

3.2.2 ASCII-Percentage detection scheme 11

3.2.3 Multiple detection schemes . 11

4 ASCII detection algorithm 13

4.1 Accuracy . 15

4.2 Cost Analysis . 16

4.2.1 Vanilla Algorithm . 16

4.2.2 Optimized algorithm . 18

4.2.3 Discussion . 19

4.3 Selective capping sniffer architecture . 20

5 Results and Discussions 23

5.1 Compression Ratio . 23

5.2 Performance Evaluation . 24

6 Conclusions and future work 29

vii

Selective capping of packet payloads at multi-Gb/s rates

Bibliography 32

List of publications 33

viii CONTENTS

List of Figures

3.1 Taxonomy of classes of protocols according to how ASCII data is carried 8

3.2 Representation of Markov chain X . 10

3.3 ASCII run lengths for several predetermined FP rates 10

3.4 Required ASCII percentages for several predetermined FP rates 11

4.1 Optimized algorithm examples for packets with different distributions of
ASCII bytes (L = 12) . 14

4.2 Error probability for a non-ASCII packet using the optimized algorithm
(L = 12) . 15

4.3 FP and FN rates for optimized algorithm 16

4.4 Representation of Markov chain Y . 17

4.5 Number of inspected bytes for algorithms for different packet sizes and
ASCII-occurrence probabilities (L = 12) 19

4.6 Optimized algorithm’s cost (C) for different run lengths (L) and ASCII-
occurrence probabilities (p), (N = 1500) 20

4.7 Selective capping traffic sniffer architecture 20

5.1 Performance of each algorithm for different traces (in memory) 27

ix

List of Tables

4.1 Protocols and traces used . 17

5.1 Traffic shares in different environments 24

5.2 Compression for different traces . 24

5.3 Compression for different protocols . 25

5.4 Performance and packet loss for different traces 26

5.5 Performance for different protocols (in memory) 26

xi

Acronyms

• ASCII: American Standard Code for Information Interchange

• CDF: Cumulative Distribution Function

• DNS: Domain Name System

• DPI: Deep Packet Inspection

• FIX: Financial Information eXchange

• FPGA: Field Programmable Gate Array

• GbE: Gigabit Ethernet

• HPCAP: High Performance Capture engine (1)

• HTTP: Hypertext Transfer Protocol

• HTTPS: Hypertext Transfer Protocol Secure

• IPFIX: Internet Protocol Flow Information Export

• IPSEC: Internet Protocol Security

• IS-IS: Intermediate System to Intermediate System

• ISP: Internet Service Provider

• LDAP: Lightweight Directory Access Protocol

• LLDP: Link Layer Discovery Protocol

• NIC: Network Interface Controller

• NIDS: Network Intrusion Detection System

• P2P: Peer to Peer

• PCAP: Packet Capture

• RADIUS: Remote Authentication Dial-In User Service

• RAID: Redundant Array of Independent Disks

xiii

• RTP: Real-time Transport Protocol

• SAS: Slot Accounting System (protocol)

• SCCP: Skinny Call Control Protocol

• SIP: Session Initiation Protocol

• SMB: Session Initiation Protocol (protocol)

• SMTP: Simple Mail Transfer Protocol

• SNA: Systems Network Architecture

• SNMP: Simple Network Management Protocol

• SSH: Secure Shell

• SSL: Secure Sockets Layer

• TLV: Type Length Value

• TNS: Transparent Network Substrate

• UPnP: Universal Plug and Play

• UTF: Unicode Transformation Format

• EBCDIC: Extended Binary Coded Decimal Interchange Code

xiv

1
Introduction

Network managers and analysts appreciate the importance of network traces as a mech-
anism to understand traffic behavior, detect and reproduce anomalies, as well as test
performance forensically, among other applications. However, traffic capture at multi-
Gb/s speeds poses significant challenges, and so does the corresponding data storage.
Traffic capture at high speed requires either ad-hoc network drivers that incorporate
sophisticated prefetching, core affinity, and memory mapping techniques (2) or specifi-
cally tailored network interface cards based on network processor devices or Field Pro-
grammable Gate Arrays (FPGAs) (3). For FPGAs, packets must be swiftly transferred
to hard disk at the same pace that they are received from the network, or packet losses
will eventually happen, even though they are captured at the Network Interface Card
(NIC).

Hard disks are sensitive to packet size for traffic dumping, the larger the packet
the more likely are traffic losses and the higher the required storage investment. The
aim is to reduce the write throughput to the hard disk, which is the hard disk perfor-
mance figure of merit and bottleneck. Many studies have investigated this issue based
on sampling (4), omitting packets fulfilling certain characteristics (e.g. the last packets
of flows (5), non-failure packets (6), multimedia (7)), removing redundant traffic (8),
data summarization (9) or, very often, capping packet payloads to a predefined snaplen
size (10). These various approaches are not necessarily mutually exclusive.

Regarding payload capping, many packets contain a payload that is useless for subse-
quent analysis, e.g. encrypted or proprietary application non-readable packets. In other
words, network analysts may only find of interest those payloads that can be interpreted
and provide information relevant to understanding traffic behavior and its dynamics,
detect anomalies, evaluate performance issues, etc.

Since hard disk performance decreases with packet size, this work proposes a data
thinning technique, selective capping, where useless payload packets are dropped by se-
lectively capping their length to the packet header. The benefit of this approach is
threefold:

1

Selective capping of packet payloads at multi-Gb/s rates

1. The hard disk bottleneck is alleviated, since the write speed requirements decrease.

2. Storage space is reduced, which is very large for a high speed network, even if the
capture duration is small.

3. The computational burden required to analyze capped packets is lowered, e.g. the
RAM requirements of Network Intrusion Detection System (NIDS) applications,
such as Snort, are less stringent.

We propose to mark a packet payload of interest, and record the whole packet, ac-
cording to two conditions. The first one, the packet payload is from a well-known service,
i.e., it can be interpreted by a traffic dissector. To do so, one has to identify such net-
work services beforehand and only apply selective capping on such services, while leaving
the rest untouched. Second, the payload contains human-readable data, i.e., ASCII,
UTF-8, UTF-EBCDIC, or equivalent, which can be interpreted by a network analyst or
application designer. For example, in a banking network, one may be interested in the
error messages from certain transactions, which may be written in plain ASCII in the
application level payload.

It is important note that the human-readable case entails a harder workload as it
embraces not only pure ASCII protocols, e.g. Session Initiation Protocol (SIP), but also
protocols with interleaved binary (i.e., any value between 0 and 255) and ASCII parts.
Indeed, there are a number of popular internet protocols that merge non-ASCII and
ASCII formats. This is the case for HTTP for example, where binary content (e.g. pic-
tures, videos, etc.) is interleaved with ASCII text. The binary part is not useful for most
performance analysis, such as web profiling or HTTP server response times. Up to 60% of
typical HTTP traffic is composed of binary content. Consequently, if the binary content
were removed, the hard disk input rate would be greatly reduced. Similarly to HTTP,
other protocols interleave binary and ASCII formats, e.g. the Financial Information eX-
change (FIX) protocol is used for trading in banking networks and the data payload is
amenable for further analysis, such as response times between query and reply. Routing
and login protocols such as Remote Authentication Dial-in User Service (RADIUS) and
IS-IS, monitoring oriented protocols such as IP Flow Information Export (IPFIX), and
database management systems such as Transparent Network Substrate (TNS) are further
examples of this behavior. In the case of encrypted protocols, such as HTTPS, all packet
payloads are useless for network analysis, and may be discarded. However, encryption
is not strongly present in enterprise scenarios, where monitoring may be performed after
the IPSEC tunnel and traffic is captured unencrypted.

To sum up, we deem a packet payload of interest if:

1. it is from a well-known protocol, or

2. it contains ASCII data (where we use ASCII as a synonym of human-readable data,
regardless its codification).

To address the first task, should be used flow director filters (11) on port numbers or
IP address ranges. The use of flow director allows packets with a given destination/origin
port range to be directed to separate queues in the NIC, which in turn can be treated
differently at the user level.

2 CHAPTER 1. INTRODUCTION

Selective capping of packet payloads at multi-Gb/s rates

Regarding the second point, detection of ASCII packets appears to be as simple as
inspecting the payload and checking if every byte belongs to a given ASCII alphabet.
However, collision with random binary bytes occur, because such alphabets typically
encompass close to half the possible byte values, e.g. ASCII encodes 128 specified char-
acters into 7 bit binary integers, so a random byte will fall within the alphabet range one
out of two times. Therefore, some context information must be considered. propose the
following mechanisms:

1. Search for a set of consecutive ASCII characters on the payload, i.e., a run, which
occurs for words in the natural language.

2. Identify the percentage of byte candidates to be classified as ASCII.

To conclude, our proposal is, on the one hand to deploy hardware filters to forward
well-known services to the hard drive, and on the other hand to detect those packets in
the rest of the traffic that include ASCII data, bearing in mind the diversity of ways
ASCII data is carried.

This dissertation is organized as follows. First, Chapter 2 elaborates on previous data
thinning techniques for traffic captures. Next, Chapter 3 presents a taxonomy based
on how the Internet carries ASCII data and describes the two different mechanisms to
detect ASCII packets presenting a formal description of the false positive (FP) rate of
both. Chapter 4 presents how such mechanisms translate into a vanilla selective capping
algorithm, which is after optimized and both accuracy and cost figures are provided. Sec-
tion 4.3 presents the architecture and implementation details of a traffic sniffer equipped
with selective capping at driver and user levels. Chapter 5 evaluates the proposed algo-
rithms in terms of processing and compression rate. They provide sustainable multi-Gb/s
network to hard disk throughput. Finally, Chapter 6 outlines the conclusions and relevant
results, and discusses possible future developments.

CHAPTER 1. INTRODUCTION 3

Selective capping of packet payloads at multi-Gb/s rates

4 CHAPTER 1. INTRODUCTION

2
Related work

Reducing the amount of stored traffic (often referred as to data thinning) while keeping
its most significant pieces of information has received considerable attention from the
research community. The first approaches were typically based on transforming traffic
into another thinner representation, as in the popular Netflow and subsequent optimiza-
tions (12), smart summarizations (9) or, simple time-series (13).

Given the importance of traffic traces for monitoring tasks, other works focus on
mechanisms to keep the packet semantic intact (14; 5; 15; 16; 17). Most have the common
approach to first capture the traffic and then construct flows. Subsequently, they decide
what packets or fraction of payloads to exclude and apply compression mechanisms to
the headers and payloads for the (remaining) set of packets comprising each flow.

More specifically, the authors in (14; 5) developed a system, Time Machine, which
excludes the last packets of a flow, i.e., packets beyond an arbitrary threshold. The
rationale is that such packets are less informative for monitoring purposes, i.e., the rel-
evant signal tends to be at the beginning of communications. Together with the heavy
tail distribution of internet flow, where a small fraction of flows account for most of the
traffic, fixing a maximum recorded flow size of 15 kB reduces the required capacity to
less than 10% of the original size, while keeping adequate records for most of the flows.
Subsequently, the authors in (15) extended the set of possible thresholds to the maximum
number of bytes per packet and packets per flow with similar purposes and motivation.

However, the construction of flows is a demanding task. In a high-speed network, it is
necessary amounts of memory and computing resources often not available. This entails
a significant limitation in the maximum rate achieved by these approaches.

Alternate approaches have been based on compressing packet headers or data. In this
sense, the authors in (18) exploited the particularities of network traffic to overcome the
compressing capacity of standard tools over traffic headers, such as zip or rar. Traffic
follows a very specific format where some fields appear in the same position and with
similarity, e.g. within a capture, IP addresses tend to share a prefix and appear in the
same positions. Similarly, the authors in (17) employed a dictionary based mechanism

5

Selective capping of packet payloads at multi-Gb/s rates

to reduce workload for HTTP and DNS traffic. Strings found in such protocols were
hash mapped to numbers previously indexed in a database, and replaced in the capture
traces. However, this meant the trace could not be accessed by well-known packet oriented
libraries, such as libpcap or libpcap-like (19). This is not necessarily an inconvenience in
terms of accessibility and storage capacity, but becomes a challenge for usability.

Precisely in this regard, the authors in (16) focused on high speed, i.e., multi-Gb/s,
networks, and exploited the NIC’s capacity to configure hardware filters on the fly. Their
proposal, Scap, constructs flows similar to (5), but once maximum flow size is exceeded, an
NIC filter is applied to remove subsequent packets from the corresponding flow. Packets
that would have been removed at the application layer are removed in the network stack,
which saves resources. Thus, Scap is able to deal with traffic rates up to 2.2–5 Gb/s,
depending on traffic patterns and configuration. However, discarding packets at the lowest
level is often inconvenient as such discarded packets, or at least their headers, may be of
interest for monitoring purposes. Furthermore, real time filter reconfiguration becomes a
time challenge, since setting the NIC filter takes 55 µs (11), while the inter-arrival times
of packets can be as small as 68 ns in 10 GbE networks.

Other approaches focus on thinning the traffic traces after they are stored. For exam-
ple, in (6) traffic is thinned only after ensuring that it contains the same failure events
as the original trace. This approach allows testing for anomalous patterns.

In contrast to previous approaches, this work proposes to decide whether the payload
of a given packet is potentially of interest, and therefore, entirely captured as the first
step, prior to other resource intensive tasks. Indeed, other approaches, such as those
reviewed above, may be subsequently applied for additional storage capacity reduction
if desired. We call this process selective capping as rather than capping the number of
packets or payload size to an arbitrary threshold, the reduction is attained by storing
only those bytes that could usefully be analyzed in the future.

6 CHAPTER 2. RELATED WORK

3
Theoretical Model: Detection of ASCII traffic

The ASCII standard and other equivalent text representations span a large fraction of
the 256 possible values for a byte. ASCII codification serves well as a generalization for
human-readable data, as UTF-8 is the most common encoding over the Internet, and it
uses the ASCII representation for Latin characters, which accounts for approximately 40%
of the possible byte configurations (ignoring non-printable characters). Consequently,
there is a significant likelihood a byte falls into the ASCII range regardless of whether it
represents an ASCII character or not. In this light, It is necessary to find more complex
patterns to consider a packet as ASCII. Given the diversity of ways ASCII data is carried,
first, the next section 3.1 presents a taxonomy of how ASCII bytes are distributed in
internet traffic. Then, section 3.2 translates the observations derived from the taxonomy
into two different ASCII detection schemes.

3.1 Taxonomy

After inspecting a diverse set of traces including academic and private networks from
banks and large enterprises (20), the Internet carries ASCII data with a variety of proto-
cols, services, and scenarios, as summarized in Fig. 3.1. The ASCII part of each packet
of a given class of protocols is marked in black, the white part represents binary bytes.

The classes shown in Fig 3.1 are:

• Class I: Purely binary protocols, e.g. Real-time Transport Protocol (RTP) and
encrypted protocols such as Secure Sockets Layer (SSL) or Secure Shell (SSH).

• Class II: Protocols that exchange ASCII data at the beginning of a connection,
typically signaling, with some sort of content that is sent subsequently. This con-
tent is usually binary, e.g. pictures, documents, etc. Typically, protocols in this
class are grouped into the term flow oriented, e.g. non-persistent HTTP. Given its

7

Selective capping of packet payloads at multi-Gb/s rates

ASCII

Packets

C
la

ss
es

 o
f

A
S

C
II

 p
ro

to
co

ls

Binary

Class I

Class II

Class III

Class IV

Class V

Class VI

Figure 3.1: Taxonomy of classes of protocols according to how ASCII data is carried

importance for internet traffic, the amount of bytes that can be saved by dropping
the non-ASCII part of such connections is promising.

• Class III: Protocols where each packet carries an ASCII header along with binary
content. These are often referred as packet oriented, e.g. the Universal Plug and
Play (UPnP) protocol.

• Class IV: Protocols that interleave ASCII and binary content with short runs hav-
ing only a small fraction of pure ASCII or non-ASCII, e.g. Domain Name Sys-
tem (DNS) and Skinny Call Control Protocol (SCCP). In particular, Type Length
Value (TLV) protocols are in this class. In TLV, a binary code provides the mean-
ing of the subsequent, often ASCII, values. Other significant protocols, such as
Lightweight Directory Access Protocol (LDAP), Simple Network Management Pro-
tocol (SNMP), RADIUS, IS-IS and H.323, etc., follow this functionality. In this
case, the problem cannot be addressed by keeping only the ASCII bytes of a given
packet, the surrounding non-ASCII values must also be captured to provide mean-
ing to the ASCII data. Hence, the entire packet is of interest as it contains legible
data. In addition, once TLV behavior is found, it is likely that there will be more
such occurrences.

• Class V: Protocols that interleave both binary and ASCII data with long runs of
each. The most significant example is persistent HTTP, given its contribution to
internet traffic volumes. From (21), approximately 60% of all HTTP requests are
persistent and represent more than 30% of the total volume transferred over HTTP.
A number of management and banking protocols also follow this pattern. Such
protocols are of paramount importance for network analysts on banking networks,
as some are proprietary protocols and reverse engineering is required to study them.
An important example of this class is Oracle’s TNS, used for database transfers that
encompass a request, which typically include ASCII data, and bulk data transfer
for requested objects, e.g. a file, list of records, etc. Other examples are proprietary

8 CHAPTER 3. THEORETICAL MODEL: DETECTION OF ASCII TRAFFIC

Selective capping of packet payloads at multi-Gb/s rates

bank transfer accounting protocols or communication protocols such as Link Layer
Discovery Protocol (LLDP) among others.

• Class VI: Pure ASCII protocols, e.g. SIP.

3.2 Detection Schemes

Two observations arise:

1. ASCII characters tend to be consecutive, as they often represent words in natural
language. We refer to this proposed detection method as the ASCII-runs detection
scheme.

2. It is very unlikely that a large set of ASCII characters falls by chance in a random
packet payload. Thus, we may parameterize the possibility of a random packet
containing more than a given fraction of ASCII bytes by chance. This method is
referenced as the ASCII-percentage detection scheme.

which provide the following selective capping schemes.

3.2.1 ASCII-Runs detection scheme

In most text based protocols, ASCII characters represent words, often keywords in English
such as GET or POST in the HTTP case. In such protocols, ASCII will not be randomly
distributed, rather there will be runs, i.e., consecutive ASCII characters. Consequently,
this work proposes a method to seek runs of ASCII bytes in a packet payload. If at least
one significant run is found, the packet is marked as ASCII, and otherwise as non-ASCII.

We define a significant run as being when its length achieves as much as a param-
eterized FP rate with respect to a random payload distribution in a packet (i.e., bytes
are independent and uniformly distributed random variables). Here, we define the FP
rate, often referred as to type I error, as the probability of a random packet payload
to be erroneously marked as ASCII when it is non-ASCII (as a run of arbitrary length
appeared by chance). The following calculations are performed to determine the required
ASCII run length threshold to achieve a certain FP value.

Let us consider a packet formed by random bytes. On the other hand, let us consider
that a packet is tagged as ASCII, in accordance to the ASCII-runs detection scheme if,
say, an ASCII-run of length L at least is found within the packet. In order to derive the
FP rate versus the value of L, we wish to estimate the probability of finding a run of at
least L ASCII characters by chance. If the byte values are uniformly distributed 0–255,
the probability, p, of a byte corresponding to an ASCII character will be approximately
0.4. Let us denote by X = {Xi ∈ {0, . . . , L}, i ∈ {0, . . . , N}} the discrete-time finite
Markov chain that represents the number of consecutive ASCII characters in a run of L
bytes, being N the length of the packet under examination, and N ≥ L.

The chain, showed in Fig. 3.2, serves to measure the event that at least L consecutive
ASCII characters are observed in the packet, whereby all states are transient except the

CHAPTER 3. THEORETICAL MODEL: DETECTION OF ASCII TRAFFIC 9

Selective capping of packet payloads at multi-Gb/s rates

Figure 3.2: Representation of Markov chain X

last state L which is absorbent. As it turns out, the event that at least L consecutive
ASCII characters are found within the packet is equivalent to the event that the chain X
eventually visits state L regardless of its future evolution. Consequently, the stochastic
matrix for this Markov chain is:

ML =

1− p p 0 0 · · · 0
1− p 0 p 0 · · · 0
1− p 0 0 p · · · 0
...

...
...

...
1− p 0 0 0 · · · p
0 0 0 0 · · · 1

The i-th row (the zero-row is the top row) represents the state where i ASCII char-

acters have been consecutively read. The probability of finding such a run of length L
can be computed by observing the Markov chain evolution over N steps, where N is the
length of the packet. The probability of finding an ASCII run of at least length L is then
located in the upper right corner of (ML)

N .

0 500 1000 1500
2

4

6

8

10

12

14

16

Packet size

A
SC

II
 r

un
 le

ng
th

FP <0.1%
FP <1%
FP <5%
FP <10%

Figure 3.3: ASCII run lengths for several predetermined FP rates

From this probability, the minimum ASCII run required can be set to have a prede-

10 CHAPTER 3. THEORETICAL MODEL: DETECTION OF ASCII TRAFFIC

Selective capping of packet payloads at multi-Gb/s rates

termined FP rate. Figure 3.3 shows the required run length for different FP values and
packet sizes. As an example, an FP rate of one packet out of 100, assuming 1000-byte
packets, requires an ASCII run of 12 consecutive characters.

3.2.2 ASCII-Percentage detection scheme

The ASCII-runs detection scheme method is suitable for most of the classes discussed in
Section 3.1 but for Class IV protocols (e.g. TLV) it is likely the value field length is below
the required run length. However, it is unlikely that a random payload packet contains
more bytes falling into ASCII range than those into non-ASCII counterpart, when ASCII
range accounts for only, approximately, 40% of the possible values. Thus, we propose a
method that calculates ASCII character percentages, and marks a packet as of interest
using a percentage threshold.

Similarly to the previous case, to estimate the percentage threshold value given a
certain FP rate, let us consider a packet of length N as a sequence of bytes, each with
probability p of being 1 (which would correspond to an ASCII character) and probability
1 − p of being 0 (some non-ASCII value). Thus, can be used a binomial distribution
with parameters N and p to compute the FP rate. The cumulative distribution function
(CDF), F (x), represents the probability of having less than x ASCII characters in a
packet of length N . The minimum ASCII percentage to guarantee a predetermined FP
rate for classifying packets depends on the packet length. Figure 3.4 shows the required
ASCII percentages for different packet sizes, depending on the FP rate.

0 500 1000 1500

40

50

60

70

80

90

100

Packet size

%
 o

f
A

SC
II

 r
eq

ui
re

d

FP <0.1%
FP <1%
FP <10%

Figure 3.4: Required ASCII percentages for several predetermined FP rates

3.2.3 Multiple detection schemes

The two methods are complementary and are tailored to different ways ASCII data is
distributed over packet payloads. Therefore, we propose to apply both methods, and
mark a packet as ASCII if either one marks the packet as ASCII. The FP rate in this
combination will be at least smaller than the largest, e.g. if FP rates are 0.1 and 1%,
respectively, the effective FP rate will be less than 1%. Thus, there is good reason to

CHAPTER 3. THEORETICAL MODEL: DETECTION OF ASCII TRAFFIC 11

Selective capping of packet payloads at multi-Gb/s rates

apply the methods with the same FP rate, e.g. 1%. Since the methods are simple and
based on similar principles, seeking in the ASCII range, executing both concurrently does
not cause extra overhead on the system, and the slowest method sets the overall pace.

It is worth remarking that false negative (FN) cases can potentially span packets
that, although semantically ASCII, do not meet our decision thresholds, i.e., are deemed
useless for traffic analysis, even though they have ASCII characters. A semantic approach
refers to the extraction of meaning from the content of a packet in the same way a human
does. For example, consider a 1500-byte packet that only contains the word “ERROR”
as ASCII content while the rest of the bytes are non-ASCII. In such a case, the proposed
detection methods will not mark the packet as ASCII. However, a human will not only
detect, visually, the ASCII characters but also extract a meaning from such characters
making the packet potentially of interest. In this way, as a further step in our proposal,
each below-threshold ASCII run could be looked up in an ad-hoc dictionary of interesting
words (e.g. including protocol keywords and typical error messages, possibly in several
languages).

12 CHAPTER 3. THEORETICAL MODEL: DETECTION OF ASCII TRAFFIC

4
ASCII detection algorithm

The detection methods described in Chapter 3 have been trasformed into an ASCII detec-
tion algorithm, presented as pseudocode in Algorithm 1. Let us refer to such an algorithm
as vanilla algorithm. The algorithm traverses the payload of each packet checking if each
byte is within the ASCII value range. Whenever a run of ASCII characters of length
equal to the ASCII-runs threshold is found, the packet is marked for full content storage.
Simultaneously, if the packet contains a percentage of ASCII characters larger than or
equal to the ASCII-percentage threshold, the packet is also marked for full content stor-
age. If neither condition is met, the packet is capped to its transport header length, and
only that header is preserved for subsequent analysis.

Algorithm 1 Vanilla selective capping algorithm
runASCII=0
totalASCII=0
for all bytes in payload do

if MIN_PRINTABLE_ASCII<= byte_value <=MAX_PRINTABLE_ASCII then
runASCII++
totalASCII+=100
if runASCII >= ASCII-RUNS_THRESHOLD then

Do not cap packet and process next one
end if

else
runASCII=0

end if
end for
if totalASCII >= ASCII-PERCENTAGE_THRESHOLD ∗ packet_length then

Do not cap packet and process next one
end if
Cap packet and process next one

13

Selective capping of packet payloads at multi-Gb/s rates

The ASCII-runs and ASCII-percentage thresholds are calculated offline using the
models described in the Section 3.2, targeting a specific FP rate (e.g. 1%). For such FP
rate, either 60% ASCII bytes in a packet, or an ASCII run of length 12 or more characters
are required to mark a packet as ASCII. In what follows, such figures will be used for
illustrative purposes.

Applying Algorithm 1 is expensive in terms of time and computational power, as the
packet is traversed byte by byte and ends only after a suitable ASCII run is detected
or once the whole packet has been read. Inspecting every single byte of a packet is a
demanding task. The maximum achievable speed for Algorithm 1, executing in RAM,
with random packet payloads is slightly lower than 10 Gb/s (22). To achieve higher
rates, we tuned the vanilla algorithm to avoid the inspection of most of the bytes of each
packet, accessing bytes located on positions divisible by a specific run length (L). This
improves the algorithm performance without missing ASCII runs, i.e., if the i-th byte and
the i+ Lth byte are both non-ASCII, then there is no L-byte ASCII run between them.
In practical terms, if an ASCII character is found after an L-byte jump, the payload is
backwardly inspected searching for an L-byte long ASCII run. If a non-ASCII character
is found, the algorithm continues from that position skipping the next L bytes.

The algorithm is illustrated in Fig. 4.1 for the previously selected run length (L = 12).
In Packet 1, the algorithm starts at byte 12 and the payload is backwardly inspected
searching for an ASCII run. In this case, a run is found between bytes 1 and 12 and
the algorithm finishes marking the packet as ASCII. In Packet 2, a non-ASCII character
is found at position 4 which causes the algorithm to jump 12 bytes ahead, i.e., to byte
16, then restarting the process. Eventually the packet is marked as ASCII after the run
located between bytes 15 and 26 is found. Finally, Packet 3 does not contain any 12-byte
length ASCII run which eventually triggers the ASCII-percentage detection scheme.

We note that to avoid the bias induced from analyzing nearby bytes instead of uni-
formly distributed bytes in such scheme, only the last byte of each L-byte jump are
considered after no ASCII runs were found. As an example, in Packet 3, only bytes 12,
24, 35 and 47 would be considered for the ASCII-percentage detection scheme.

Figure 4.1: Optimized algorithm examples for packets with different distributions of
ASCII bytes (L = 12)

14 CHAPTER 4. ASCII DETECTION ALGORITHM

Selective capping of packet payloads at multi-Gb/s rates

4.1 Accuracy

Although the proposed optimization ensures detecting an existing L-character long ASCII
run within the packet, different results may be obtained when applying the ASCII-
percentage scheme. In the analytical case, we measure the FP rate. In particular,
assuming independence between bytes in the payload, and considering that the prob-
ability of being ASCII is the same (p ≈ 0.4), the problem follows a binomial distribution
as stated before. However, in this optimized case, the distribution parameters are dN/Le
and p, being N the length of the packet, L the run length and f(x) = dxe the ceiling
function.

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

Packet size

E
rr

or
 p

ro
ba

bi
lit

y

Minimum 60% ASCII required

Figure 4.2: Error probability for a non-ASCII packet using the optimized algorithm
(L = 12)

The FP rate for a non-ASCII packet as a function of its length is shown in Fig. 4.2
for L = 12 and a minimum percentage of ASCII of 60%. Given that the minimum
percentage of ASCII characters comes from a division, and the ceiling function is applied
to the result, oscillations are present depending on the divisibility of N , L and the ASCII
percentage threshold. For large packets, the FP rate is low. On the other hand, in
applying the optimized algorithm increases the FP rates when analyzing small non-ASCII
packets. According to this, small packets should be preferably processed with the vanilla
algorithm.

Empirically, the error induced by the optimization can be illustrated by comparing the
execution of both algorithms (vanilla and optimized). We identify the FPs, non-ASCII
packets marked as ASCII by the optimized algorithm, and FNs, ASCII packets marked
as non-ASCII by the optimized algorithm. FPs are not a significant problem, it will just
lead to useless traffic being stored, increasing the storage space required. However, FNs
mean that packets that should be stored are no longer accessible, resulting in loss of
potentially relevant content.

As the FP and FN rates may vary significantly depending on the type of traffic and
protocols analyzed, this work presents several experiments with real traffic traces that
include a widespread group of the protocols introduced in Section 3.1. These are summa-
rized in Table 4.1, and were captured from an international bank and insurance company

CHAPTER 4. ASCII DETECTION ALGORITHM 15

Selective capping of packet payloads at multi-Gb/s rates

(HTTP proxy) network. Note that some protocols, such as DNS, are not intended to
be processed with the proposed algorithms, as they are known to be always relevant for
subsequent analysis and are forwarded using NIC hardware (HW) filters. However, for
the sake of completeness, these protocols were analyzed as representative examples.

��H���

��H���

��H���

�������

������

�����

������� ������ ����� ����

)
DO
VH
�Q
HJ
DW
LY
H�
UD
WH
�

)DOVH�SRVLWLYH�UDWH

573

'16

+773

/'$3

3�3

6$6 60% 61$66+ 66/

716

Figure 4.3: FP and FN rates for optimized algorithm

Figure 4.3 shows the FP and FN rates from the traffic, where packets with less than
36 bytes of payload were processed using the vanilla algorithm as a successful tradeoff
between accuracy, as shown, and performance, as will be shown. Indeed, rates are very
low, particularly FNs, which are the most critical. As the axes are logarithmic and zero
cannot be represented, FN rates of 2 · 10−7 have been plotted for SAS, SSH, SMB, SSL,
and SNA, where the calculated error rate was exactly zero. Other protocols not shown
in the figure have both FP and FN rates equal to zero.

4.2 Cost Analysis

Now, the cost analysis is presented for both vanilla and optimized algorithms in terms of
number of key comparisons, namely, the number of inspected bytes the algorithms need
to make the decision, ASCII or non-ASCII, for a packet.

4.2.1 Vanilla Algorithm

To find the cost of the vanilla algorithm, another Markov chain is used. While the one
studied in Section 3.2 calculated the probability of finding an L-byte run throughout a
packet, now we are interested in the probability of finding an L-byte run after inspecting
i bytes being the run located at the last L positions. In this way, the average cost comes
from the addition of the number of inspected bytes multiplied by such probability.

16 CHAPTER 4. ASCII DETECTION ALGORITHM

Selective capping of packet payloads at multi-Gb/s rates

Table 4.1: Protocols and traces used

Trace Protocol Number
of packets

Avg. packet size
(Bytes)

1 RTP 220,190 214.00
2 SIP 139,116 297.56
3 HTTP 5,850,632 383.51
4 DNS 6,058,087 175.82
5 LDAP 5,826,266 227.17
6 Netflow 1,077,883 453.09
7 Radius 173,536 349.20
8 SAS 1,968,157 1,026.70
9 SAMBA 9,292,127 175.79
10 SNA 10,000,000 138.04
11 UPnP 44,647 483.95
12 SSL 44,263 573.67
13 TNS 2,992,060 195.79
14 P2P 3,287,599 449.32
15 SMTP 386,075 436.99
16 SSH 203,308 1,134.80

For this purpose, the probability of the absorbent state in the previous Markov chain
must be separate into detecting a run in less than i bytes and exactly after i bytes
inspected. To do so, It is necessary to add a new transient state (L) which corresponds
to having detected an L-byte long run in the last L bytes of i bytes inspected. Hence, the
absorbent state (L+ 1) in this case represents the probability of having found an L-byte
run after inspecting less than i bytes.

Formally, we denote by Y = {Yi ∈ {0, . . . , L + 1}, i ∈ {0, . . . , N}} the discrete-time
finite Markov chain that represents the number of consecutive ASCII characters in a run
of L bytes with the exception of state L + 1, which represents that an L-byte run was
already found. Where N is the length of the packet under examination and N ≥ L. A
representation of Y is showed in Fig. 4.4

Figure 4.4: Representation of Markov chain Y

As it turns out, the event that exactly L consecutive ASCII characters are found
just after i inspections is equivalent to the event that the chain Y visits state L, and
visiting state L+1 is equivalent to have already found an L-byte run. Consequently, the
stochastic matrix for this Markov chain is:

CHAPTER 4. ASCII DETECTION ALGORITHM 17

Selective capping of packet payloads at multi-Gb/s rates

M =

1− p p 0 · · · 0 0

1− p 0 p · · · 0 0
...

...
...

...
1− p 0 0 · · · p 0

0 0 0 · · · 0 1

0 0 0 · · · 0 1

where:

• M i
(1,k) 0 ≤ k < L is the probability of being at the state k after i inspections.

• M i
(1,L) is the probability of finding an L-byte run after exactly i inspections.

• M i
(1,L+1) is the probability of having found an L-byte run previously (i.e., with less

than i inspections).

This gives the following equation for the cost, Cv(N, p, L), for the vanilla algorithm:

Cv(N, p, L) = N · (1−MN+1
(1,L+1)) +

N∑
i=L

i ·M i
(1,L) (4.1)

where the rightmost term represents the average number of bytes inspected when
a run of length L has been found and the left term represents the average number of
inspections when no runs have been found.

4.2.2 Optimized algorithm

The reduction in cost for the optimized algorithm ranges from a factor of 1/L inspections
for pure non-ASCII packets to no gain for those packets whose L first bytes are ASCII. In
paying attention in between these figures, we calculate the average cost for the optimized
algorithm (Co(N, p, L)) following a recurrent approach described by the next equation:

Co(N, p, L) =

N, if N ≤ L

L · pL +
L−1∑
i=0

(1− p) · pi · (i+ 1 + Co(N − (L− i), p, L)), if N > L

(4.2)

where L·pL represents the number of byte inspections when a run of length L is found.
Otherwise, the number of backward inspections carried out until a non-ASCII byte is
found is accounted along with the average cost for the rest of the packet (the recursive
call). Note that i represents the number of backward inspections whose probability is
(1− p) · pi.

18 CHAPTER 4. ASCII DETECTION ALGORITHM

Selective capping of packet payloads at multi-Gb/s rates

4.2.3 Discussion

To compare the cost of both algorithms, we have numerically evaluated equations 4.1
and 4.2. In this way, Fig. 4.5 shows the average cost varying the packet length (N) and
the ASCII-occurrence probability (p).

 0
 200

 400
 600

 800
 1000

 1200
 1400

 1600 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 300

 600

 900

 1200

 1500

C(N,p,12)

N (Bytes)

p

 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600

(a) Vanilla

 0
 200

 400
 600

 800
 1000

 1200
 1400

 1600 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 300

 600

 900

 1200

 1500

C(N,p,12)

N (Bytes)

p

 0

 50

 100

 150

 200

 250

 300

 350

(b) Optimized

Figure 4.5: Number of inspected bytes for algorithms for different packet sizes and
ASCII-occurrence probabilities (L = 12)

It becomes apparent that the optimized algorithm outperforms the vanilla one. As
expected, for pure ASCII packets (p = 1), there is no gain while for pure non-ASCII (p =
0) the gain peaks at 12 (namely, the best case). The optimized algorithm’s shape ranges
between narrow intervals (up to 300 inspections) for all possible points of operation.
Similarly, the vanilla algorithm also presents a flat-like behavior but only for p > 0.7
which are the less relevant values (0.4 for ASCII and similar values for other codification
schemes). On the other hand, for values below 0.7 the number of comparisons increment
progressively with the number of bytes up to 1500 comparisons. In this way, from a
practical point of view, the most common cases (e.g. p = 0.4 and N = 600) are located
closer to the best-case gain.

In paying attention to different run lengths, several numerical evaluations were carried
out sweeping values from L = 2 to L = 18. Figure 4.6 depicts the average cost for 1500-
byte packets varying the detection run length and the probability p. The average costs
in all cases are below some 520 comparisons even using minimum values of L. Long
run thresholds benefit from low ASCII-occurrence probabilities given that the packet is
traversed in long jumps. In contrast, short run thresholds benefit progressively from the
increment of p as less backward inspections are carried out as well as from the higher
possibility of occurrence of a run.

CHAPTER 4. ASCII DETECTION ALGORITHM 19

Selective capping of packet payloads at multi-Gb/s rates

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.2 0.4 0.6 0.8 1

C
o
(1

5
0
0
,
p
,
L

)

p

L = 4
L = 6
L = 8

L = 10
L = 12
L = 14
L = 16
L = 18

Figure 4.6: Optimized algorithm’s cost (C) for different run lengths (L) and
ASCII-occurrence probabilities (p), (N = 1500)

4.3 Selective capping sniffer architecture

The implementation of the selective capping sniffer is based on a high performance capture
engine, HPCAP (1), and follows a three-step architecture, as shown in Fig. 4.7.

RX

ring

User LevelDriver Level

Selective capping

module

(driver-level)(a)

NIC

Flow

Director

Filter

Traffic

RX

ring Selective capping

module

(user-level)(b)

Storage

Figure 4.7: Selective capping traffic sniffer architecture

1. Incoming traffic is split into two categories using hardware filters such as Intel flow
director (11): well-known (in the protocol/port sense) traffic that network managers
do want to keep, and other traffic that managers want to cap to transport headers
or keep complete if detected as ASCII. That is, each traffic set is redirected to a
different receive side scaling (RSS) driver queue.

2. The selective capping algorithm is applied to detect non-ASCII packets and trun-
cate them. As a first approach, the network driver layer is entrusted with this
task (22), Fig. 4.7 (a). The motivation is to apply the selective capping as soon
as possible in the network stack, avoiding useless bytes traversing the stack, and,
importantly, provide users with thinned traffic in a total transparent way. That
is, any application that requests traffic will receive the payloads capped without
requiring different operation from a vanilla driver.

20 CHAPTER 4. ASCII DETECTION ALGORITHM

Selective capping of packet payloads at multi-Gb/s rates

This implies a careful low level hardware-software interaction, although this also pro-
vides some advantages. For example, our implementation exploits the advanced packet
descriptor features that modern NICs offer. Such descriptors provide the protocol stack
and header lengths coded in NIC hardware, and so packets can be capped to the protocol
headers without any extra processing.

Alternatively, the filtering process may be executed at user level, as illustrated in
Fig. 4.7 (b). Rather than directly filtering the data received from the driver, a buffer is
inserted between the driver and storage process to absorb traffic peaks. The driver writes
all the captured traffic to the buffer, then, a user level thread reads from the buffer,
applies the ASCII detection method, and writes capped packets to the storage buffer.
Once the storage buffer is full, data moves to the next stage. At this point, both options
converge.

On the upside, this architecture provides more capacity to process traffic. In the first
option, both capture and filter processes share execution on the same CPU, while the
latter option allows moving the filtering task to another CPU, possibly more than one
CPU could be employed where tasks such as flow analysis or DPI could be applied if
desired. If the addition of the capture and filter processes exceeded the CPU capacity,
the first option would result in losses, whereas the user level approach allows us to exploit
parallelizing techniques.

Both driver modifications and software module developed for each approach, respec-
tively, are available under an open-source license at (23).

3. Capped and uncapped packets are stored at user level along with a PCAP like
header on a high-performance storage solution for subsequent access, e.g. (1). Traffic
can also be forwarded to an on-the-fly analysis system (24), or a general purpose
compression system, e.g. gzip, which is particularly effective for ASCII content.

CHAPTER 4. ASCII DETECTION ALGORITHM 21

Selective capping of packet payloads at multi-Gb/s rates

22 CHAPTER 4. ASCII DETECTION ALGORITHM

5
Results and Discussions

The performance of the proposed system has been evaluated using a commodity server
that contained 96 GB of DDR3 memory, two 6 core Intel Xeon E52630 processors run-
ning at 2.30 GHz, on a Supermicro X9DR3 motherboard. The server also had an Intel
RS25DB080 RAID controller with a RAID-0 volume composed of 12 high end mechan-
ical hard disks, Hitachi HUA723030ALA640, that allowed effectively traffic storage at
10 Gb/s. The server network interface was an Intel 10 Gb/s NIC based on the 82599
chip, in a PCIe 3.0 slot, and connected to an FPGA based traffic generator (25) able
to replay PCAP traces at variable rates up to 10 Gb/s regardless of packet size. This
system allowed two classes of experiments: memory-replayed, which tested the algorithm
by reading traces previously loaded in memory; and FPGA-replayed, which represents a
real scenario where traffic from a link is received by the NIC, forwarded to the capping
module, and the resulting traffic is stored on a RAID-0 volume.

Three traces have been used to evaluate the performance as representative scenarios of
domestic, enterprise, and ISP environments. These traces were synthetically constructed
by merging the subtraces discussed in Section 4. The protocol shares for each environment
were based on our experience in monitoring these types of networks. Table 5.1 details
the distribution, in volume, of each protocol in each trace. The three traces have a total
size of 2 GB, and all protocols are uniformly distributed across time.

5.1 Compression Ratio

First the compression level of our proposal is evaluated. To this end, the aforementioned
traces have been replayed at original rates while capturing and storing into disk. After
the replay is complete, the original and captured traces are compared in order to obtain
the compression ratio. Table 5.2 shows the compression ratio values in terms of stored
bytes and the amount of capped packets.

In the three traces, space saving between two and three times is achieved by capping

23

Selective capping of packet payloads at multi-Gb/s rates

Table 5.1: Traffic shares in different environments

Protocol % in Enterprise % in ISP % in Domestic
RTP 5 4 5
SIP 2 0.8 1

HTTP 35 42 50
DNS 3 6 5
LDAP 2 3 0
Netflow 3 5 0
Radius 0 1 0
SAS 10 0 0

SAMBA 2 0.5 1
SNA 3 4 0
UPnP 0 0 1
SSL 12 14.5 17
TNS 5 0.2 0
P2P 0 15 19

SMTP 8 4 1
SSH 10 0 0

nearly 60% of the packets for the three traces (Table 5.2).

Table 5.2: Compression for different traces

Trace Compression rate % of capped packets
Domestic 3.31 64.37

ISP 3.08 62.36
Enterprise 2.32 63.91

Furthermore, the particular compression over each protocol has been analysed, shown
in Table 5.3. Unsurprisingly, pure non-ASCII protocols such as SSH, SSL or Netflow
have a high compression rate (99.34% , 93.08% and 100% of capped packets respectively).
Conversely, there are protocols with most ASCII packets like SMTP (0.05% of capped
packets). We are particularly interested in protocols like HTTP or TNS, a proprietary
protocol, that interleave both binary and ASCII data, in this case the filter caps only
non-ASCII packets (about half) and achieves a compression rate of about 2.

5.2 Performance Evaluation

The maximum throughput that can be achieved on a 10 GbE link depends on the trace
average packet size due to the minimum inter-frame gap of the standard. Thus, the
maximum achievable throughput is 9.23, 9.11, and 8.26 Gb/s respectively. These were
our targets for the FPGA-replayed experiments. For each experiment, the traffic traces
were replayed for 30 minutes to avoid cache effects.

The achieved throughput rates results are shown in Table 5.4. Processing throughputs
for the FPGA-replayed scenario at driver level are 9.22, 9.00, and 8.25 Gb/s for the

24 CHAPTER 5. RESULTS AND DISCUSSIONS

Selective capping of packet payloads at multi-Gb/s rates

Table 5.3: Compression for different protocols

Protocol Compression rate % of capped packets
RTP 3.89 74.35
SIP 1.12 54.06

HTTP 2.86 59.37
DNS 1.25 17.42
LDAP 1.13 30.08
Netflow 5,263.16 100.00
Radius 1.20 38.23
SAS 1.02 29.08

SAMBA 5.60 93.11
SNA 5.10 94.88
UPnP 70.44 97.94
SSL 9.67 93.08
TNS 1.23 54.58
P2P 45.96 62.33

SMTP 1.00 0.05
SSH 135.77 99.34

domestic, ISP, and enterprise environments respectively, with mean packet loss rate 0.3%.
These suggest that after receiving each packet, the driver has minimal time for performing
additional processing tasks, i.e., the driver level approach is very close to the processing
limit with these traces.

Using FPGA-replayed traffic applying the filtering algorithm at user level, the achieved
throughputs are 9.23, 9.11, and 8.26 Gb/s for the domestic, ISP and enterprise environ-
ments, respectively, and no packet losses were observed. This supports the hypothesis
of minimal free processing capability with the driver level application, whereas the user
level option is only limited by the capture process and the filtering task is not a relevant
challenge for the CPU. Thus, for more demanding scenarios (e.g. 40 Gb/s NIC), the user
level option is likely to be the best candidate. The in-memory experiments, where no
10 Gb/s limitation is present, confirmed the hypothesis, as the obtained throughput was
higher than 10 Gb/s. Note that the maximum achieved throughput is highly dependent
on the CPU frequency. The CPU’s in this system are not high end and the figures may
be surpassed if more powerful processors were used.

To evaluate the best and worst cases for the proposed algorithm and how different
parameters and traffic characteristics affect its performance, the in-memory test was
performed over each protocol described in Table 4.1 independently. The throughput rates
achieved are shown in Table 5.5, and the compression rates in Table 5.3. The highest
throughput is achieved with pure ASCII protocols that present a large average packet
size (such as SAS), since only the first bytes are inspected. The worst performance is
achieved for protocols that show high compression rates, as they present binary payloads
and the proposed algorithm must inspect all payload bytes, in the worst case scenario,
searching for ASCII runs.

Figure 5.1 compares the proposed vanilla and optimized algorithms for each of the
protocols and traces discussed above, executing both algorithms in memory, otherwise

CHAPTER 5. RESULTS AND DISCUSSIONS 25

Selective capping of packet payloads at multi-Gb/s rates

Table 5.4: Performance and packet loss for different traces

Trace
Domestic ISP Enterprise

Avg. throughput (Gb/s)
driver-level 9.22 9.00 8.25

Avg. Packet Loss (%)
driver-level 0.31 0.30 0.32

Avg. throughput (Gb/s)
user-level 9.23 9.11 8.26

Avg. Packet Loss (%)
user-level 0.00 0.00 0.00

Avg. throughput (Gb/s)
Memory 10.49 11.71 13.38

Table 5.5: Performance for different protocols (in memory)

Protocol Avg. throughput (Gb/s)
± Std. Dev.

Avg. packet rate (kpps)
± Std. Dev.

RTP 9.26± 0.02 7, 237.90± 15.76
SIP 51.95± 0.40 26, 666.35± 209.75

HTTP 12.77± 0.65 4, 847.15± 249.19
DNS 11.36± 0.02 11, 656.66± 20.76
LDAP 15.61± 0.11 11, 268.51± 86.23
Netflow 30.63± 0.02 9, 593.67± 8.54
Radius 37.92± 0.21 16, 059.85± 92.33
SAS 59.60± 2.90 7, 659.51± 372.74

SAMBA 14.66± 0.08 15, 046.49± 87.97
SNA 15.90± 0.02 23, 654.85± 42.28
UPnP 9.63± 0.02 2, 775.15± 6.60
SSL 9.73± 0.09 2, 340.87± 22.50
TNS 20.40± 0.37 17, 987.15± 332.09
P2P 7.90± 1.12 1, 636.27± 232.11

SMTP 60.34± 0.21 19, 695.01± 70.58
SSH 9.07± 1.38 1, 049.43± 160.45

26 CHAPTER 5. RESULTS AND DISCUSSIONS

Selective capping of packet payloads at multi-Gb/s rates

throughput would be capped at 10 Gb/s due to the link speed. As expected, overall gain
from the optimized algorithm is high, particularly for binary protocols. Interestingly,
the figure shows the potential gain that could be obtained using the proposed optimized
algorithm in a production environment with a 40 Gb/s link, showing that it can manage
throughput five times larger than the experimental cases.

 0

 10

 20

 30

 40

 50

 60

R
T

P
D

N
S

H
T

T
P

L
D

A
P

N
etflow

P2P
R

adius
SA

S
SIP
SM

B
SM

T
P

SN
A

SSH
SSL
T

N
S

U
PnP

D
om

estic
Provider
E

nterprise
P

er
fo

rm
an

ce
 (

G
b

/s
)

Vanilla filter
Optimized filter

Figure 5.1: Performance of each algorithm for different traces (in memory)

CHAPTER 5. RESULTS AND DISCUSSIONS 27

Selective capping of packet payloads at multi-Gb/s rates

28 CHAPTER 5. RESULTS AND DISCUSSIONS

6
Conclusions and future work

This work presents an effective and novel solution for performing selective packet capping
based on retaining the payload of packets with useful content for interpretation by network
managers and analysts. This subset of packets is composed of ASCII protocols as well as
well-known binary protocols (e.g. DNS), and are stored unchanged, whereas the rest of
the packets are truncated to their header.

To detect ASCII-based protocols, we constructed a taxonomy of how ASCII content is
carried, and found significant diversity. This led us to develop two mechanisms to identify
packets as ASCII based on ASCII run detection, and the total percentage of ASCII within
a payload. Unfortunately, the vanilla implementation was unable to achieve multi-Gb/s
rates, and further optimization was required, inspecting a carefully chosen subset of bytes
of the payload rather than all the bytes. Indeed, the analytical study of the optimized
algorithm’s cost showed a significant reduction in the number of inspections, while still
keeping the FP rate below 10% and the FN rate below 1% with respect to the vanilla
algorithm. Moreover, experiments showed that for real traffic traces, space saving was
achievable of 2–3 times when capping packets.

We implemented the proposed algorithm as a real system, comprising two tasks, to
capture and then cap traffic. The algorithm was implemented both as a modification
of the default Intel driver and as a module at the application layer. While the former
provides a more transparent mechanism without user level interaction, the latter allows
exploiting CPU parallelism and, consequently, enhanced performance.

The driver based implementation achieved slightly less than 10 Gb/s with packet loss
of 0.3% using real traffic traces, whereas the user level implementation did not show any
packet loss for the same cases. Replaying traces in memory, processing throughput ranged
11–14 Gb/s for real traffic traces, and peaked over 40 Gb/s for text based protocols, such
as SAS or SMTP. This means that the driver based implementation is very close to the
processing limit, i.e., the combination of capture and the proposed algorithm on the same
CPU achieved maximum rates close to, but lower than the maximum defined in the 10
GbE standard. On the other hand, the user level approach achieved such figure without

29

Selective capping of packet payloads at multi-Gb/s rates

losses and peaks over 40 Gb/s in memory.

To address 100 GbE standard, future work should be conducted to improve the capture
process by devising suitable low level hardware-software interactions, further parallelism
paradigms, or support from FPGA or GPU devices.

Indeed, this work is fairly compatible with parallelism paradigms. Note that both
versions of the algorithm proposed only analyse bytes of one package at a given time to
determine the individual result of the filter, and no flow processing is used.

Furthermore, a fine-grained parallelism can be implemented to achieve higher mon-
itoring rates. A packet can be split into several parts and to compute (e.g. using a
map-reduce strategy) both schemes described in this work for each fragment. The re-
duction would be different for each scheme, while the final ASCII-Percentage only have
to be the sum of each fragment, the ASCII-Runs detection scheme should consider the
runs length present at the beginning, at the end and inside of each fragment in order to
determine if a L-length run is present in the full package.

Finally, to increase accuracy, some dictionary-based mechanisms could be used. After
detecting a ASCII-run, it would be looked up in a dictionary to decide if it is, semantically,
a word. With this additional mechanism, smaller words could be detected without an
increase of the false positive rate. It becomes apparent that this mechanism would reduce
the speed of the filter, which calls for a trade-off between monitoring rate and accuracy.

30 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] V. Moreno, J. Ramos, J. L. García-Dorado, I. Gonzalez, F. J. Gómez-Arribas, and
J. Aracil, “Testing the capacity of off-the-shelf systems to store 10Gbe traffic,” IEEE
Communications Magazine, vol. 53, no. 9, pp. 118–125, 2015.

[2] V. Moreno, J. Ramos, P. Santiago del Rio, J. Garcia-Dorado, F. Gomez-Arribas, and
J. Aracil, “Commodity packet capture engines: tutorial, cookbook and applicability,”
IEEE Communications Surveys Tutorials , vol. 17, no. 3, pp. 1364–1390, 2015.

[3] M. Forconesi, G. Sutter, S. López-Buedo, J. E. López de Vergara, and J. Aracil,
“Bridging the gap between hardware and software open-source network develop-
ments,” IEEE Network, vol. 28, no. 5, pp. 13–19, 2014.

[4] A. N. Mahmood, J. Hu, Z. Tari, and C. Leckie, “Critical infrastructure protection:
Resource efficient sampling to improve detection of less frequent patterns in network
traffic,” Journal of Network and Computer Applications, vol. 33, no. 4, pp. 491–502,
2010.

[5] G. Maier, R. Sommer, H. Dreger, A. Feldmann, V. Paxson, and F. Schneider, “En-
riching network security analysis with time travel,” in ACM SIGCOMM, 2008, pp.
183–194.

[6] Y.-D. Lin, C.-N. Lu, Y.-C. Lai, and Z. Eliezer, “Bug traces: identifying and down-
sizing packet traces with failures triggered in networking devices,” IEEE Communi-
cations Magazine, vol. 52, no. 4, pp. 112–119, 2014.

[7] J. van der Merwe, R. Cáceres, Y.-H. Chu, and C. Sreenan, “Mmdump: A tool for
monitoring internet multimedia traffic,” ACM SIGCOMM Computer Communica-
tion Review, vol. 30, no. 5, pp. 48–59, 2000.

[8] N. T. Spring and D. Wetherall, “A protocol-independent technique for eliminating
redundant network traffic,” in ACM SIGCOMM, 2000, pp. 87–95.

[9] D. Hoplaros, Z. Tari, and I. Khalil, “Data summarization for network traffic moni-
toring,” Journal of Network and Computer Applications, vol. 37, pp. 194–205, 2014.

[10] CAIDA, “Caida data - overview of datasets, monitors, and reports,” http://www.
caida.org/data/overview/ [20 May 2016].

[11] Intel, “82599 10 Gbe controller datasheet,” 2012, http://www.intel.com/content/
www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html, [20 May
2016].

31

http://www.caida.org/data/overview/
http://www.caida.org/data/overview/
http://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html
http://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html

Selective capping of packet payloads at multi-Gb/s rates

[12] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better NetFlow,” in
ACM SIGCOMM, 2004, pp. 245–256.

[13] J. L. García-Dorado, J. Aracil, J. A. Hernández, and J. E. López de Vergara,
“A queueing equivalent thresholding method for thinning traffic captures,” in
IEEE/IFIP Network Operations and Management Symposium, 2008, pp. 176–183.

[14] S. Kornexl, V. Paxson, H. Dreger, A. Feldmann, and R. Sommer, “Building a time
machine for efficient recording and retrieval of high-volume network traffic,” in ACM
Conference on Internet Measurement, 2005, pp. 267–272.

[15] Y.-D. Lin, P.-C. Lin, T.-H. Cheng, I.-W. Chen, and Y.-C. Lai, “Low-storage capture
and loss recovery selective replay of real flows,” IEEE Communications Magazine,
vol. 50, no. 4, pp. 114–121, 2012.

[16] A. Papadogiannakis, M. Polychronakis, and E. P. Markatos, “Stream-oriented net-
work traffic capture and analysis for high-speed networks,” IEEE Journal on Selected
Areas in Communications, vol. 32, no. 10, pp. 1849–1863, 2014.

[17] T. Taylor, S. E. Coull, F. Monrose, and J. McHugh, “Toward efficient querying of
compressed network payloads,” in USENIX Annual Technical Conference, 2012, pp.
113–124.

[18] F. Fusco, M. Vlachos, and X. Dimitropoulos, “Rasterzip: Compressing streaming
network monitoring data with support for partial decompression,” in ACM Internet
Measurement Conference, 2012, pp. 51–64.

[19] V. Jacobson, C. Leres, and S. McCanne, “libpcap,” Lawrence Berkeley Laboratory,
Berkeley, CA, 1994.

[20] naudit, “Detect-pro,” 2013, http://www.naudit.es/, [20 May 2016].

[21] F. Schneider, B. Ager, G. Maier, A. Feldmann, and S. Uhlig, “Pitfalls in HTTP
traffic measurements and analysis,” in Passive and Active Measurement Conference,
2012, pp. 242–251.

[22] V. Uceda, M. Rodríguez, J. Ramos, J. L. García-Dorado, and J. Aracil, “Selective
capping of packet payloads for network analysis and management,” in Workshop on
Traffic Monitoring and Analysis, 2015, pp. 3–16.

[23] CapAs, “ASCII-based traffic capping solution,” 2015, https://github.com/
hpcn-uam/CapAs, [20 May 2016].

[24] A. Finamore, M. Mellia, M. Meo, M. Munafò, and D. Rossi, “Experiences of Internet
traffic monitoring with Tstat,” IEEE Network, vol. 25, no. 3, pp. 8–14, 2011.

[25] J. Zazo, M. Forconesi, S. Lopez-Buedo, G. Sutter, and J. Aracil, “TNT10G: A high-
accuracy 10 GbE traffic player and recorder for multi-Terabyte traces,” in Conference
on ReConFigurable Computing and FPGAs, 2014, pp. 1–6.

32 BIBLIOGRAPHY

http://www.naudit.es/
https://github.com/hpcn-uam/CapAs
https://github.com/hpcn-uam/CapAs

List of publications

This work has led to two publications. First, initial results were presented in the inter-
national conference TMA, then full work has been published in JSAC:

International conferences

• V. Uceda, M. Rodríguez, J. Ramos, J. L. García-Dorado, and J. Aracil: Selective
capping of packet payloads for network analysis and management, in International
Workshop on Traffic Monitoring and Analysis (TMA), 2015, pp. 3–16.

Journals

• V. Uceda, M. Rodríguez, J. Ramos, J. L. García-Dorado, and J. Aracil: Selective
capping of packet payloads at multi-Gb/s rates. IEEE Journal on Selected Areas in
Communications (JSAC), 2016. DOI: 10.1109/JSAC.2016.2559198. Impact Factor:
3.453, Q1 (4/77 TELECOMMUNICATIONS).

33

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Related work
	Theoretical Model: Detection of ASCII traffic
	Taxonomy
	Detection Schemes
	ASCII-Runs detection scheme
	ASCII-Percentage detection scheme
	Multiple detection schemes

	ASCII detection algorithm
	Accuracy
	Cost Analysis
	Vanilla Algorithm
	Optimized algorithm
	Discussion

	Selective capping sniffer architecture

	Results and Discussions
	Compression Ratio
	Performance Evaluation

	Conclusions and future work
	Bibliography
	List of publications

