

UNIVERSIDAD AUTÓNOMA DE MADRID

ESCUELA POLITÉCNICA SUPERIOR

TRABAJO DE FIN DE MÁSTER

FPGA prototype for wavefront

reconstruction acceleration

Máster Universitario en Investigación e Innovación en TIC

Raúl Martín Lesma

Septiembre, 2016

FPGA prototype for wavefront

reconstruction acceleration

AUTOR: Raúl Martín Lesma

TUTOR: Gustavo Sutter

High Performance Computing and Networking group

Dpto. de Ingeniería Telecomunicación

Escuela Politécnica Superior

Universidad Autónoma de Madrid

Septiembre 2016

i

Resumen

La óptica adaptativa es una tecnología usada para mejorar el rendimiento de

diferentes tipos de sistemas ópticos. Lo hace corrigiendo las posibles

aberraciones que son introducidas por la atmósfera. Para corregirlo se usa un

sensor de frente de onda, habitualmente un Shack-Hartmann. En esta técnica,

hasta centenas de centroides de imágenes deben ser calculados. De este modo

el frente de onda original puede ser reconstruido.

La óptica adaptativa impone restricciones temporales muy acusadas, el proceso

completo debe ser realizado en un tiempo del orden de un milisegundo. Debido

a esta limitación los algoritmos usados para calcular cada centroide son rápidos,

pero normalmente su precisión es baja.

En la misión Gaia de la ESA se ha desarrollado un algoritmo de cálculo de

centroides de máxima verosimilitud, teniendo el mismo una precisión muy

cercana al máximo teórico, la cota inferior de Crámer-Rao. Como este algoritmo

es computacionalmente complejo, es normalmente demasiado lento para se

usado en óptica adaptativa. Una versión simplificada que usa look-up tables fue

desarrollada para estudiar si esta podría cumplir los requisitos temporales.

En un trabajo previo, una primera versión de un sistema basado en FPGA que

implementa este algoritmo fue creada. Consiste en un sistema empotrado que

usa un procesador soft Microblaze para controlar un sistema con un

coprocesador. Este coprocesador fue creado usando herramientas de síntesis de

alto nivel, lo que se probó adecuado para implementar algoritmos intensivos en

el cálculo con datos.

Este prototipo tenía una funcionalidad reducida, y estaba seriamente limitado.

El tamaño de la tabla usada era demasiado pequeño, y sólo realizaba una

iteración del algoritmo de cálculo de centroides. En este proyecto se presenta

una versión más completa de este prototipo, así como un estudio de la precisión

alcanzada por tabla de diferentes tamaños y un estudio de la convergencia del

algoritmo.

Además, se compara la precisión de algoritmo ya implementado con el mismo

en una plataforma software. La aceleración del algoritmo ha sido medida y un

estudio multinúcleo ha sido realizado.

ii

Abstract

Adaptive optics is a technology used to improve the performance of different

kinds of optical systems. It does so correcting the possible aberrations that are

introduced by the atmosphere. To correct it, a wave front sensor is used, often

a Shack-Hartmann. In this technique, up to hundreds of image centroids have to

be determined. In this way the original wave front can be reconstructed.

Adaptive optics imposes a very restrictive time constraint, the whole process

must be completed in a time of the order of one millisecond. Due to this time

limitation the algorithms used to calculate each centroid are fast, but usually

achieve low precision.

A maximum likelihood algorithm to calculate centroids was developed for ESA

Gaia mission, providing a precision very close to the theoretical maximum, the

Crámer-Rao lower bound. As this algorithm is computationally complex, it is

usually too slow for adaptive optics. A simplified version using look-up tables

was developed to study if it could comply with the time requirements.

In a previous work, a first version of a FPGA-based system that implements this

algorithm has been created. It consists of an embedded system that uses a

Microblaze soft processor to control a system with a coprocessor. This

coprocessor was created using high level synthesis tools, which proved to be

adequate to implement data intensive algorithms.

This prototype covered a basic functionality, and had several limitations. The

size of the used look-up table was too small, and it only performed one iteration

of the centroid algorithm. In this project a more complete version of this

prototype is provided, as well as a study of the precision achieved by different

look-up table sizes and a study of the convergence of the algorithm.

Also the precision of the implemented algorithm is compared with the one

achieved by the same algorithm in a software platform. The acceleration of the

algorithm has also been measured, and a multicore study has been done.

1

Table of contents

Resumen ... i

Abstract ... ii

Table of figures .. 3

Glossary ... 5

1. Introduction .. 7

1.1. Motivation and objectives .. 7

2. State of the art of Adaptive Optics ... 9

2.1. Introduction to adaptive optics .. 9

2.2. The adaptive optics challenge .. 9

2.3. Centroids and their precision ... 10

2.4. Maximum likelihood algorithm for centroids ... 10

3. The use of reconfigurable HW for adaptive optics 12

3.1. Benefits of reconfigurable hardware and FPGAs ... 12

3.2. Commercial FPGA families .. 13

3.3. High Level Synthesis tools benefits .. 13

4. Previous work ... 15

4.1. Introduction .. 15

4.2. Coprocessor .. 15

4.2.1. Directives ... 16

4.2.2. Code optimization: thinking in hardware .. 17

4.3. Design of complete System: Design decisions .. 17

4.3.1. Embedded system ... 18

4.4. Results ... 18

5. Hardware implementation: Zynq embedded system 21

5.1. Introduction .. 21

5.2. Platform change .. 21

5.3. Architecture changes .. 23

5.4. Additional coprocessor optimizations .. 25

5.5. Single core architecture .. 26

5.6. Resources used ... 27

6. Look-up table generation .. 31

6.1. Gaia WFS LUT creation software .. 31

2

6.2. Endianness issue ... 31

6.3. LUT Geometry: trade-off between size and effectiveness 32

6.4. Memory limitations and its effect on LUT density ... 33

6.5. Several LUT constructions .. 34

7. Convergence and precision tests ... 35

7.1. Introduction .. 35

7.2. Description of the algorithm in a Java program ... 35

7.3. Achieving convergence on an initial image .. 37

7.4. Studying convergence over an image with added noise 38

7.5. Enlarging the parameter space covered by the LUT .. 40

7.6. Effects of the grid density on the precision .. 40

7.7. Relation between error in pixels and length units ... 44

8. Time analysis .. 47

8.1. Time tables .. 47

8.2. Time conclusion .. 52

9. Precision evaluation ... 53

9.1. Precision results between implementations .. 53

9.2. Precision of the algorithm .. 56

9.3. Precision conclusions .. 60

10. Multicore study .. 63

10.1. Analysis from a suboptimal point of view: current architecture 63

10.2. Analysis from a more optimal point of view: changes in coprocessor and
control ... 64

10.3. Analysis from an optimal approach ... 65

11. Conclusion and Future work .. 67

11.1. Conclusion .. 67

11.2. Future work .. 68

12. References ... 69

3

Table of figures

Figure 1: Left, Neptune picture taken with AO; right, same picture without AO. 9

Figure 2: Algorithm applied to a multiplication of matrix of sizes 4×100 and

100×1 ... 17

Figure 3: Previous work system schematic .. 18

Figure 4: Architecture in ML605 board .. 21

Figure 5: Zedboard and its main features .. 23

Figure 6: Zynq architecture .. 24

Figure 7: Complete schematic of monocore design in Vivado 29

Figure 8: Initial image to fit .. 37

Figure 9: Initial image to fit .. 37

Figure 10: Initial image with added noise .. 39

Figure 11: Absolute error in X parameter for noiseless images in pixels 41

Figure 12: Absolute error in Y parameter for noiseless images in pixels 42

Figure 13: Absolute error in X parameter for noisy images in pixels 43

Figure 14: Absolute error in Y parameter for noisy images in pixels 43

Figure 15: PSF before being sampled .. 45

Figure 15: PSF before being sampled .. 45

Figure 16: Projection of an elliptical PSF over 10x10 pixels 45

Figure 17: Circular PSF .. 45

Figure 18: 2 coprocessors time schematic ... 64

file:///F:/Dropbox/Master%20i2TIC/PFM/Work/PFM%20-%20v1.3.docx%23_Toc460963996
file:///F:/Dropbox/Master%20i2TIC/PFM/Work/PFM%20-%20v1.3.docx%23_Toc460964002
file:///F:/Dropbox/Master%20i2TIC/PFM/Work/PFM%20-%20v1.3.docx%23_Toc460964003
file:///F:/Dropbox/Master%20i2TIC/PFM/Work/PFM%20-%20v1.3.docx%23_Toc460964004
file:///F:/Dropbox/Master%20i2TIC/PFM/Work/PFM%20-%20v1.3.docx%23_Toc460964005

5

Glossary

AO Adaptive Optics

ASIC Application-specific Integrated Circuit

BRAM Block RAM

CCD Charged-Coupled Device

CPU Central Processing Unit

DDR Double Data Rate

DSP Digital Signal Processor

ESA European Space Agency

ESAC European Space Astronomy Centre

FMC FPGA Mezzanine Card

FPGA Field Programmable Gate Array

GPU Graphics Processor Unit

HDL Hardware Description Language

HLS High Level Synthesis

HLST High Level Synthesis Tools

JTAG Joint Test Action Group

LUT Look-up Table

PSF Point Spread Function

RAM Random Access Memory

RMS Root Mean Square

6

RTL Register Transfer Level (Language)

VHDL VHSIC Hardware Description Language

VHLS Vivado High Level Synthesis

WF Wavefront

WFS Wavefront sensor

XPS Xilinx Platform Studio

7

1. Introduction

This project is the continuation of the project “Aceleración de algoritmos en

óptica adaptaviva usando FPGA” [1], and therefore building over the results of

the previous project. As [1], the project has been carried out in relation with

European Space Astronomy Centre (ESAC). This project aims to study the

application of adaptive optics algorithms using a reconfigurable hardware

platform (FPGA), testing and improving the system already developed.

1.1. Motivation and objectives

Adaptive optics goal is to modify an arriving wavefront in order to recover its

original shape, then boosting the quality of the image recovered in a optic

system. This technique is used in telescopes and other devices. The analysis and

calculus centroids of images is an extremely important part of the process, being

its precision key to the results of the whole process.

As adaptive optics works by definition in real time, the time requirements for

each part of the whole flow are very strict, typically being in the order of 1 ms

[2]. Because of the described time constraint fast algorithms are very commonly

used, as the centre of gravity or correlation ones, not achieving the best

precision possible.

In fact, the best precision achievable comes limited by the Crámer-Rao lower

bound [3] [4]. The maximum likelihood algorithms created during the

development of the ESA Gaia mission [5] achieve a precision very close to this

limit. Based on forward modelling they are computationally heavy, and then not

suitable for adaptive optics under typical requirements.

FPGA platform have proved to be an interesting way to speed many algorithms,

also image processing ones [6]. A FPGA system has already been created in [1],

resulting in a first step to study the possibilities of the implementation of the

maximum likelihood algorithms. The time to create the system was limited and

therefore it lacked completion.

The objectives of this project are the following:

8

 Upgrade the size of the used look-up table (LUT): Since in the first

prototype a very small LUT was used in order to easily test the

functionality, in this second version a larger one should be used, for the

algorithm to operate in conditions closer to reality.

 Test bench creation: The algorithm needs to be tested with realistic

images, in order to prove its convergence and also produce comparable

results.

 Determine the number of iterations needed in order to achieve necessary

precision.

 Further optimization of the accelerator, if possible.

 Time and acceleration analysis.

 Evaluate further improvement of the system, exploiting FPGA parallelism.

9

2. State of the art of Adaptive

Optics

2.1. Introduction to adaptive optics

Adaptive optics (AO) is the technology that is used to correct distortions in a

wavefront (WF) in real-time. It does so measuring the phase alteration in the WF

and restoring it, usually with a deformable mirror [7].

Adaptive optics in astronomy is used intensively to obtain more accurate

images. There is an example in Figure 1, where the difference in the quality is

very noticeable, especially in sharpness.

Figure 1: Left, Neptune picture taken with AO; right, same picture without AO.

In this section a very brief resume of the state of the art in adaptive optics is

presented. For more information about it go to these sources [1] and [2].

2.2. The adaptive optics challenge

The main challenge of AO is the time scale in which it has to operate to be

effective. The entire process has to be finished in around 1 ms. This is the typical

coherence time of the atmosphere [8]. In this time hundreds of centroids of point

have to be calculated. These calculus allows a Shack-Hartmann wavefront sensor

(WFS) to determine how the wavefront (WF) has been deformed, and therefore to

retrieve the necessary parameters to correct it [9]. This time constraint greatly

limits the complexity of the centroid algorithms, and therefore their precision,

which is critical for the result of the WF correction.

10

2.3. Centroids and their precision

There are two steps when it comes to calculate the WF distortion in a Shack-

Hartmann WFS: First calculate the centroid of each PSF (diffracted light

points) and then the reconstruction itself of the WF, using the calculated

slopes between centroids in comparison with a known position. This work

is centred on the calculation of the centroids with the maximum precision

available, because it is critical for the posterior reconstruction.

There are several well-known algorithms to calculate the centroid of a point

spread function (PSF), like the simple centroid, centre of gravity and correlation

algorithms [10]. These algorithms are quite basic ones, which is explained by the

time constrain that is characteristic of the AO. However, a much more complex

algorithm has been developed during ESA Gaia mission. Its precision approaches

the theoretical limit for the precision of the algorithm given a certain amount of

information: The Crámer-Rao lower bound [3] [4].

Reaching this precision is a difficult task, but it can be done fitting the

coordinates of the centroid, and some other nuisance variables, with a

mathematical model of the WFS. In this way the initial centroiding problem has

been transformed to a weighted least square minimization problem. There are

several ways to solve this kind of problem, such as Gauss-Newton [11] or

Levenberg-Marquardt ones [12].

2.4. Maximum likelihood algorithm for centroids

In the section 2.6 “Adaptive optics algorithm” of [1] the bases for the algorithm

implemented in the project are described. Here it is a reproduction of part of it,

as it is essential to understand this project:

The algorithm used in this project is based in a maximum likelihood algorithm

developed for the ESA Gaia mission, and described in deep in [13]. It provides a

precision very close to the Crámer-Rao limit. It is based in a forward-modelling

algorithm: the weighted Gauss-Newton optimization of a function similar to the

observed data [11].

11

A noiseless image of nx by ny pixels (10 by 10 in this case) can be described as a

matrix, in which each number will be the electrons collected by each pixel. This

matrix can be described also as the total number of electrons produced by the

sensor multiplied by the PSF (described in 2.4 subsection):

𝑁𝑖 = 𝑁𝑇 · 𝑃𝑆𝐹 (𝑥𝑖 − 𝑥𝑐 , 𝑦𝑖 − 𝑦𝑐 , 𝑠)

Note that (xc, yc) are the PSF centroid, that is unknown, and s the shape factor of

the PSF. The PSF forward modelling function includes a priori knowledge of the

optical system, so Ni can be compared to the real number of electrons collected

Oi (the real image). There is then a set of parameters that characterize Ni:

𝒙 = {𝑁𝑇 , 𝑥𝑐 , 𝑦𝑐 , 𝑠}

These are the parameters that have to be fitted minimizing the weighted RMS

sum.

∆𝒙 = 𝑀(𝑂 − 𝑁)

In this equation M is a 4 × 100 values matrix (100 because of the 10 by 10 size

of the image matrix), O and N are respectively the observational and model

vectors composed by all the rows of its corresponding matrix (image). The steps

to calculate these matrices include several non-trivial integrations. A strategy

has been developed to bypass this situation, pre-computing in lookup tables

(LUT) these matrices. A general description of the algorithm would be:

1. Apply centre of mass algorithm to obtain an initial guess for the final

centroid.

2. Construct observation vector (O) by linking together the rows of the

10×10 image received.

3. Retrieve from LUT the M and N matrices that match the values of the

initial guess.

4. Compute the operation: ∆𝒙 = 𝑀(𝑂 − 𝑁)

5. Update initial parameters: 𝒙𝑛+1 = 𝒙𝑛 + ∆𝒙

6. Return to 3. and repeat until the difference between one iteration and the

next one is below a certain threshold.

12

3. The use of reconfigurable HW

for adaptive optics

3.1. Benefits of reconfigurable hardware and FPGAs

For a long time, reconfigurable hardware (FPGA) is a growing alternative to the

classic ASIC (application-specific integrated circuit) approach to custom

application hardware chips.

These are some of the most important benefit of FPGA technology in comparison

with other options:

 Performance: FPGA are more flexible than digital signal processors,

allowing the user to implement hardware parallelism. They designer is in

control of everything, including low level operations, which has an

enormous potential for fine-grain optimization.

 Flexibility: FPGA can be used with a full custom approach, while they are

also capable of reproduce complex systems as full System on a Chip

(SOC), with an integrated processor, RAM memory, etc. In the last years

the main FPGA manufacturers are releasing combinations of hard

processors along with FPGA area in the same chip, making SoC systems

even more powerful.

 Time to prototype: FPGA offers quick prototype capabilities in

comparison with other technologies, allowing the designer to test a

concept directly on hardware and then even implement incremental

changes.

 Cost: FPGA are very interesting in terms of cost while the project does

not have the scale economy to make ASICs profitable.

 Reliability and other advantages: FPGA provide a true hardware

implementation, allowing the user to make a deterministic latency

system, for example. Its lack of operative system and few abstraction

layers allow designers to perform time-critical tasks without the risk of

another one interrupting due to true parallelism.

13

3.2. Commercial FPGA families

There are two main manufacturers of high performance FPGA: Xilinx and Altera.

These are their most powerful series of products:

 Xilinx Virtex 7: With nearly 2 million of logic cells this family of FPGAs is

one of the most powerful FPGA in the market. Built in 28 nm they are

capable of lower power consumption than older generations, even with a

greater performance. This new generation comes with 85 Mb in BRAM,

which is the largest capacity among common families of FPGA. It also has

up to 3600 DSP, which are the main blocks used for float operations, for

example. It supports DDR3 external RAM memory at up to 1,866 Mbps

[14].

 Xilinx Virtex Ultrascale: A new product family with the most powerful

devices from Xilinx. It is built in 16 or 20 nm, with FinFET technology.

There are devices with up to 5 million logic cells [15]. It supports DDR4

external RAM at a maximum throughput of 2666 Mbps.

 Xilinx Zynq an Zynq Ultrascale: Zynq is the SoC family form Xilinx. It

always includes a hard ARM processor (ranging from a dual core Cortex

A9 to a quad-core Cortex-A53) along with a variable FPGA. In these

devices the reconfigurable logic is not as powerful as in the other families,

being the maximum logic cells around one million [16] [17].

 Altera Stratix 10: Stratix is the most powerful product family in Altera.

Built in 14 nm they have a hard processor system built in the same FPGA

chip, making them a SoC by themselves. They have a similar number of

logical elements in comparison with the Virtex Ultrascale family, around

5 million on the largest devices [18].

3.3. High Level Synthesis tools benefits

In this project the development of the system that implements the AO algorithm

is based on a SoC architecture, being the auxiliary hardware built using a High

Level Synthesis tool: Vivado-HLS [19]. These tools have been quite recently

adopted by the most important FPGA manufacturers. Altera uses Altera SDK for

OpenCL as high level synthesis approach, while Xilinx integrates it in Vivado-

HLS.

14

In [1] there is a comparison between the traditional FPGA design flow, including

HDL coding and simulation, synthesis, implementation, timing closure, etc. and

the design flow when the main development is done with High level synthesis

(HLS) tools. These tools allow generally a faster development of the modules at

some cost in flexibility and freedom. Here the main differences are showed:

 The traditional FPGA design flow is slow, while an HLS flow should

accelerate the whole process, at least for certain types of modules. This

allows the user to prototype fast, and then progressively refine the

design.

 The traditional flow makes it difficult to make posterior changes to the

architecture, while it is a shorter process with HLS tools. For example,

changing types in a high level language is quite easy, while in VHDL it can

be very challenging, especially for certain types which traditionally have

not been used in FPGAs, like floating point representation.

 The HLS flow lets the compiler decide by default how the described

algorithm is going to be implemented. While it is true that most of the

options can be modified to implement the design the way the user wants,

the user has to have a deep knowledge of the tool defaults and it options.

In the traditional flow the user has to specify most of the parameters,

leaving less for the compiler to guess.

 HLS tools are particularly interesting to implement data intensive

algorithms, as they produce better results than in control modules

15

4. Previous work

4.1. Introduction

As stated in the introduction, this project is a continuation of the work done in

[1]. Therefore, its main achievements are explained in this section, putting

special focus on the system developed.

One of the main tasks of the PFC was to create coprocessor which efficiently

would implement the maximum likelihood algorithm, and more specifically one

iteration of it, with the aim of integrating it in an embedded system. In this way

the coprocessor or accelerator would process the most computationally heavy

part of the algorithm, while mainly the initialization, control and storing tasks

will be assumed by the general purpose processor.

All the system is based in a ML605 boards, which includes a Virtex 6 FPGA and

several devices as DDR3 RAM, Compact Flash memory reader or Ethernet port

[20].

4.2. Coprocessor

Created with a high-level synthesis tool (Vivado-HLS), this accelerator performs

one iteration of the maximum likelihood algorithm. It mainly consists of a large

matrix multiplication and a few other operations done over floating point

represented data. The main operation is this one:

𝑀 ∗ (𝑂 − 𝑁)

These data, the matrices, are provided from the exterior at the beginning of each

iteration. The size of the matrices is 4x100 for M, and 100*1 for O and N, thus

giving as result a vector of dimension 4x1. They matrices are retrieved from one

node of the LUTs stored in the system, defined by four parameters:

{𝑥, 𝑦, 𝑁, 𝑠}

From left to right these variables represent the position of the centroid in the

horizontal axis, in the vertical axis, the number of electrons that hit the sensor,

and finally the shape factor.

16

4.2.1. Directives

The multiplication has been optimized with several directives, which are the

tools Vivado-HLS compiler use to determine how to transform the given

algorithm into hardware.

Two main directives are applied to the loop that takes care of the multiplication,

in order to parallelize and pipeline it:

 Loop unroll directive: By default, only one set of hardware is going to be

created, and the operation will mainly be sequential. Applying this

directive makes the compiler create many sets of hardware that will

process the data in parallel.

 Pipeline directive: It pipelines the different stages in a loop, using as

efficiently as possible all the resources created.

The effectiveness of both directives depends greatly on the dependencies

between iterations, which leads us to the next point.

17

4.2.2. Code optimization: thinking in hardware

In order to reduce the dependencies, the code was reorganized. The main loop

is showed in the Figure 2: Algorithm applied to a multiplication of matrix of

sizes 4×100 and 100×1Figure 2:

// Iterate over the cols of the A matrix or the rows of the B matrix
Prod: for(int k = 0; k < MAT_B_ROWS; k++) {
 // Iterate over the rows of the A matrix
 Row: for(int i = 0; i < MAT_A_ROWS; i++) {

 //If first read of c => save c, which is cache of c
 if (i==0) c_copy[k] = c[k];

//If first read of b => save b, which is cache of b
 if (i==0) b_copy[k] = b[k];
 if (i==0) diff[k] = c[k] - b[k];

 //Read a from a internal variable, and not from the FIFO
 a_i_k = a[i][k];

//Actual multiplication
 temp[i] = a_i_k * diff[k];

 if (k == 0) acc[i] = temp[i];
 //Accumulate on acc
 else acc[i] += temp[i];

 if (k == (MAT_B_ROWS-1)) res[i] = acc[i];
 }
 }

Figure 2: Algorithm applied to a multiplication of matrix of sizes 4×100 and 100×1

In this way the iterations go over the columns of the matrix A, storing the

intermediate values in a temporary variable. The reorganization results in a

better utilization of the resources, as the dependencies between rows

intermediate results are eliminated, creating 4 data chains.

In addition to this, initialization variables have been created, ensuring that the

data is read just once from the external bus, and then stored for its future use.

4.3. Design of complete System: Design decisions

This section describes some of the decisions that have been made during the

development of the system that envelops the coprocessor system.

18

4.3.1. Embedded system

It was decided to create an embedded system because of the characteristics of

the algorithm acceleration scheme (initialization, heavy algorithm and storage)

and because it was the best option to access the peripherals needed, as the

external storage card and the DDR3 RAM.

The system control is also assumed by the microprocessor, in this case a

Microblaze [21], which is a soft-processor. It is connected to its peripherals with

several AXI buses [22]. The following system peripherals are used:

 External memory (DDR3 RAM): It stores the LUTs once the system is

initialized.

 Permanent storage: The LUTs are retrieved from a Compact flash memory

during the initialization

Here it is presented a schematic view of the system as it is in Xilinx Platform

Studio:

Figure 3: Previous work system schematic

4.4. Results

The prototype of the algorithm accelerator is working and the following steps

are functional:

19

 Storing a reduced LUT (62 KB) in external memory.

 Gets the initial data from the Microblaze processor, and processes it

according to one iteration of the algorithm.

 Returns results, in a prepared format for next iteration.

The latency achieved by the accelerator is 948 cycles of 10 ns period, which

makes 9.48 µs. The total time of execution from the processor has also been

measured, giving a result of 29.83 µs. The difference is mainly the time that is

necessary to transfer the matrices to the accelerator.

The results are acceptable, but more optimization is needed if hundreds of

images have to be processed, each of them requiring several iterations.

21

5. Hardware implementation:

Zynq embedded system

5.1. Introduction

The hardware design in the previous work consists of a Microblaze processor,

an accelerator core, a Compact Flash and DDR3 RAM, all set on a ML605 Virtex

6 platform (showed in Figure 4).

Figure 4: Architecture in ML605 board

It was stated that there were technical difficulties with the access to the whole

512MB of DDR3 RAM. Also it was not possible to return data from the

accelerator core to the processor. These problems have not been solved, and

therefore another solution has been chosen.

5.2. Platform change

Since these problems, especially the one with the accelerator, were suspected to

be associated to the platform and the software used (Virtex 6 and Vivado-HLS,

respectively) it was proposed to implement the same solutions on a different

hardware, fully supported by Vivado-HLS.

22

For it to be compatible the new FPGA must be a Xilinx Series 7. The chosen

hardware is the Zedboard [23], due to the size of the DDR3 memory, availability

and the new system on a chip (SoC) paradigm, which is in line with the embedded

system used in this project. In this way the power of a true hard-processor

would be exploited. This hardware was provided by the High Performance

Computing and Networking investigation group (HPCN).

The Zynq family effectively overcomes the challenge of creating custom

extensions while giving the engineer the ability to create their own application

specific, using what is arguably the world’s most widely adopted embedded

processor [REF] as the basis for an accelerated, custom and application-specific

solution that would, by definition, otherwise only be available as an ASIC.

The main features of Zedboard [23] are:

 Zynq®-7000 All Programmable SoC XC7Z020-CLG484-1 [16]: Includes an

ARM Cortex-A9 Dual core processor and an Artix-7 FPGA [24].

 Memory:

o 512 MB DDR3 RAM

o 256 Mb Quad-SPI Flash

o 4 GB SD card

 On board USB-JTAG Programming

 10/100/1000 Ethernet

 USB OTG 2.0 and USB-UART

The Figure 5 shows the Zedboard and some of its features and ports.

23

Figure 5: Zedboard and its main features

5.3. Architecture changes

The Zedboard packs a Zynq®-7000 All Programmable SoC XC7Z020, a system on

a chip (SoC) which includes an ARM Cortex-A9 dual core processor and an Artix

7 FPGA within the same housing. The architecture of this solution is showed in

Figure 6:

24

Figure 6: Zynq architecture

In the Zynq architecture the processor is a hard core processor, which is

different than the Microblaze processor (a soft core processor). A hard processor

is more efficient than a soft processor, which is instantiated in the resources of

an FPGA [25].

The Figure 6 also shows an interesting fact: in Zynq architecture most of the

ports are linked to the ARM processor and not the programmable logic (the

FPGA). In this case the FPGA is thought to help to the main processor processing

tasks that are more appropriate for an FPGA because of their intrinsic

characteristics.

25

5.4. Additional coprocessor optimizations

In the previous work [1] has been described how the coprocessor was optimized,

taking advantage of the way in which Vivado-HLS synthesizes the C code into

hardware. Besides the optimizations done before some more have been added

that will prove critical for the performance of the coprocessor.

A usual technique used in Vivado-HLS consists in caching the input data,

especially if it is going to be used more than once. This allows the synthesizer

to store them in registers, or Block RAM (BRAM) if they are big enough. This is

done through variable declaration and initialization with the input. An

optimization done over these variables that store the input is to set an array

partition directive. This directive makes the synthesizer to store the data in

different memories (again registers or BRAM depending on the size). The ideal

is to make a “partition” for every “chain” of operations that have to be fed. If so,

every “chain” will be fed at the same time, since different memories can be asked

for different data at the same time. This is a very important step to improve the

performance of the module, since having four chains of multipliers and

summers does not accelerate the operation if they cannot be provided with data

every cycle.

An additional step in this direction is the difference between what it will be later

be labelled as the “non-optimized” approach of the coprocessor, and the

“optimized” one. The latter implementation makes use of the dual port that the

BRAM provides. By doing so two 32-bits data can be provided by each BRAM in

each cycle, so it does the same effect than partitioning the cached version input

variables again (after the previous partitioning by rows of the matrix A) by a

factor of two. In order to make use of this new data it is necessary to double the

number of “production lines”. It improves the performance of the module (in

the operation part) by a factor of two without using more memory resources. In

addition, it does use more FPGA area to set the additional multipliers and

accumulators.

26

This last optimization has a potential to have an effect in the precision of the

operations in floating point, because it alters significantly the order of the

operations. Despite of implementing all the previous optimizations, if the

algorithm implementation is analysed thoroughly, the operation order remains

basically the same, which helps the “non-optimized” implementation to get the

same results than the Java one. Despite, the order result is not the same in the

“optimized” design. Now each half of the basic vector operated (the A rows, C,

and B) is accessed by a different pipeline, and the two results, which correspond

to each halve, are summed up in a final step. As relatively small numbers are

operated, the results of this module are not the same as the ones obtained in

Java or with the previous module.

5.5. Single core architecture

While the complete architecture is shown in Figure 7, the main parts of it are

explained here:

ARM processor: It executes most of the code, which basically copies the

required LUT from the SD card to de DDR3 RAM at the beginning of the

execution and then provides the coprocessor Accelerator with the data needed

in order to iterate over the algorithm. It serves as control during the operation

and writes the results of a 1000-image test in “csv” files for its later analysis. It

is the only component that is not instantiated inside the FPGA logic.

Coprocessor “Accelerator”: executes in an efficient way the matrix

multiplication required by one iteration of the algorithm. Is coded in Vivado-

HLS, and makes use of the BRAM (Block RAM) dual port. Receives the matrices

from the DMA.

DMA (Direct Memory Access): A core that allows the Accelerator to efficiently

retrieve the matrices from the DDR3 RAM without the active usage of the ARM

processor. The hard processor serves only as a trigger for the operation. In the

schematic showed in the figure 4 is linked to the Zynq processing system

because the DDR3 RAM is only attached to the ARM processor (fig. 3). Despite

of this the data goes through the AMBA bus to the coprocessor without involving

the main processor.

DDR3 RAM: The matrices needed for every iteration are stored here, so it is

accessed every iteration.

27

AXI Timer: It allows the measurement of times in a precise way. It runs with a

clock of 100MHz, as the rest of the FPGA.

5.6. Resources used

The following table describes the resources used by the whole system in

xc7z020 SoC FPGA (notice that the ARM processor is a hard processor and has

no effect of the resources utilization):

Table 1: Utilization report summary

Resource Utilization Available Utilization %

FF 6056 106400 5,69
LUT 5313 53200 9,99
Memory LUT 208 17400 1,20
BRAM 9 140 6,43
DSP48 10 220 4,55
BUFG 1 32 3,13

If this resource usage would scale maybe another 8 coprocessors could be

added. This is not a definitive conclusion: due to the increasing route space

needed when the design complexity grows the maximum amount of instances

may be lower.

29

Table 2: Utilization per module

Figure 7: Complete schematic of monocore design in Vivado

31

6. Look-up table generation

6.1. Gaia WFS LUT creation software

A program was created within the Gaia team [26], in order to create the Look-up

table (LUT) that will be stored in the DDR3 RAM in the embedded system.

The program starts with several configurations that are read from a

configuration file. Among the most important, the characteristics defining the

wavefront sensor itself: lenslet spacing and diameter, central pixel of each sub-

pupil, number of pixels per PSF in AL and AC dimensions…

The configuration parameters for the LUT are set in the beginning of the

program, as constants. They are the start, end and number of knots for every

dimension (x, y, electrons and diameter).

Then, inside four loops (one for every dimension) the Jacobian matrix resulting

from the function that defines the wavefront sensor is retrieved and the

operations referred in subsection 2.6 of [1] are calculated (pseudoinverse,

transposed, etc.). This gives as result the transfer matrix, which is stored in a

binary file.

6.2. Endianness issue

After the LUT is created it has to be read by the embedded system, with an

intermediate step of copying the binary file from the PC to a SD card. It had to

be proved that the data written in the LUT file was going to be read in the same

way from the SD card in the embedded system.

The solution consists on writing a certain and known stream of data resembling

the LUT. In this case single precision floating point data written to binary file,

and then reading it in the system just as the real LUT would be read. As the

embedded system is little-endian, the data written with Java in a binary file had

to be read reversing the byte order in each word.

With the LUT creator program it was created a LUT of 64 MB, which had 12, 12,

11 and 21 knots in x, y, s and N parameters, respectively. The resulting size is

exactly 33264 arrays of 500 floats, which makes a total of 66528000 bytes, so

63.446 MB.

32

6.3. LUT Geometry: trade-off between size and

effectiveness

The algorithm is written in Java language, in order to comply with previous

versions of it. The most critical resource that affects the algorithm is the

effective size of the DDR3 RAM memory, which strongly constrains the

maximum grid density of the stored LUT.

The algorithm has been tested before with LUT interpolation, which requires

bringing 2𝑛 tables of 2000 bytes, where “n” is the number of dimensions of the

LUT, only considering linear interpolation. Although in a non-realistic software

system the time loading the tables may not be important, in a time constrained

hardware system it is crucial. This is why in an embedded system interpolation

is not the first option to consider, as it may affect the performance of the

algorithm.

With this in mind, if there is no interpolation the algorithm has to be modified,

because there will be a point in which the parameters of the matrix that have to

be retrieved are not going to match with a stored one.

For example, if the algorithm needs to retrieve the matrix corresponding to

X=4.5623 and the stored LUT only contains the ones corresponding X=4.56 and

4.57 the algorithm will assume that the matrix of the nearest LUT knot (4.56 in

this case) is the same matrix that is needed (the one corresponding to 4.5623).

This statement is not true, and then the effects of this assumption have to be

analysed.

Because of this assumption, if the LUT is denser, there will be a lower difference

between the ideal transfer matrix and image and the retrieved ones. Therefore,

the error of the algorithm will be lower and its behaviour more predictable.

33

6.4. Memory limitations and its effect on LUT density

The embedded system is built on a Zedboard [23], which has 512MB of DDR3

RAM as a peripheral device of the processor-FPGA set. Therefore, the system was

expected to store any LUT of less than the maximum RAM size. Despite of this,

and because of the technical reasons explained in the third section of this

document, it only has been possible to store without failure only 64 MB of

information. The project is therefore limited to this LUT size and the expected

precision is not going to be as good as it would be with a less-restricted LUT.

This point will be discussed on the section 7.

As it is derived in [26], the total size of the LUT is the result of the following

operation:

𝑆𝑖𝑧𝑒(𝑏𝑦𝑡𝑒𝑠) = (𝑁𝑢𝑚 𝑝𝑎𝑟𝑎𝑚 + 1) ∗ 𝑝𝑖𝑥𝑒𝑙𝑥 ∗ 𝑝𝑖𝑥𝑒𝑙𝑦 ∗ 𝑘𝑛𝑜𝑡𝑠𝑥 ∗ 𝑘𝑛𝑜𝑡𝑠𝑦 ∗ 𝑘𝑛𝑜𝑡𝑠𝑑 ∗ 𝑘𝑛𝑜𝑡𝑠𝑁 ∗

𝑠𝑖𝑧𝑒𝑜𝑓(𝑓𝑙𝑜𝑎𝑡)

In this case 𝑁𝑢𝑚 𝑝𝑎𝑟𝑎𝑚 equals 4, because there are 4 parameters, 𝑝𝑖𝑥𝑒𝑙𝑥 and

𝑝𝑖𝑥𝑒𝑙𝑦 are the number of pixels in both axes of the PSF, and as the values are

stored in single precision floating point each value needs 4 bytes to be stored.

These four parameters refer to the four variables that define an image (PSF) in

this system:

 X or AC: Is the coordinate in the X or across scan axis which indicates

where the centre of the PSF is.

 Y or AL: Is the coordinate in the Y or along scan axis which indicates

where the centre of the PSF is.

 Electrons (N): Is the total number of electrons that constitute the image.

 Diameter (d): Measures microlens diameter in meters (usually around

380µm).

Once these variables are fixed, all that can be changed is the number of knots

for each variable, that will define a grid. At each point of this grid (every

combination of the 4 parameters values) there will be a matrix stored, composed

by the corresponding image and the transfer matrix. The total space required

for both matrices is 2000 bytes (500 simple precision floating point values). So

in this case the above formula can be simplified to:

𝑆𝑖𝑧𝑒(𝑏𝑦𝑡𝑒𝑠) = 2000 ∗ 𝑘𝑛𝑜𝑡𝑠𝑥 ∗ 𝑘𝑛𝑜𝑡𝑠𝑦 ∗ 𝑘𝑛𝑜𝑡𝑠𝑑 ∗ 𝑘𝑛𝑜𝑡𝑠𝑁

34

It is clear then that limitations on the maximum amount of data that the system

will store constrains the maximum LUT density.

6.5. Several LUT constructions

In [26] it is stated that a reasonable LUT, taking in account the limitations of the

maximum amount of memory, would be one with 21 knots in each dimension,

except for the electrons that would have only 20. This LUT results according to

the above formula in a total size of 370440000 bytes, which is 353.27 MB. It

would fit in the 512 MB of RAM that the Zedboard has, and it is reasonable

because it covers a reasonable portion of the parameter space: from 4.0 to 6.0

pixels for both X and Y axis, microlens diameter within 350 × 10−6 and

450 × 10−6 meters, and from 0 to 10000 electrons.

With the new 64 MB limit this LUT had to be modified in order to fit in this size.

The first decision taken was to reduce the range for X and Y, since it was

expected that the slopes measured with the WFS would not be so harsh, and

therefore the PSF would be around the centre. It would be desirable to keep the

whole range for the electrons axis, in prevision of very different types of stars,

and as it was thought that the diameter microlens would be similar from one to

another (near diffraction limited performance), the range was also reduced. As

it can be deduced from the ranges and the amount of knots in each variable, the

density was not reduced in any of the parameters, in order to avoid disturbances

in the performance of the algorithm. In the end, the final range was:

 Range start Range end Knots

X 4.5 5.5 12

Y 4.5 5.5 12

Diameter 380e-6 m 430e-6 m 11

Electrons 0 10000 21

Table 3: 64 MB LUT

35

7. Convergence and precision

tests

7.1. Introduction

As it was stated in Subsection 6.3, there is a trade-off between the size of the

LUT, which consists basically on the number of knots for each parameter, and

the performance that the algorithm will achieve.

In this section it will be found out what would be the best LUT under these

conditions.

7.2. Description of the algorithm in a Java program

Two classes were developed, based on [26], which create images (PSFs) and

perform the fitting algorithm, respectively (TestImageCreation and

TestLutFitLoop). In order to be able to test the performance of the algorithm

they have been modified. The aim is that these modules can work together

producing a realistic test over a large set of noiseless or noisy images, returning

a file with the real and fitted parameters of each image, along with the error in

each fit, both relative and absolute.

At the beginning of the program a set of variables are manually set, for the

program to know which configuration and LUT file to use. Also here the

boundaries for the image creation parameters are set, as well as the noise that

will be added to the image and the amount of values that each parameter will

take in the LUT coordinates. This late parameter defines the number of images

that will be created and tested, because there will be as many as all the

combinations of the parameter values. So, for example, if this parameter is set

to 10 and there are 3 values included in the LUT, the amount of images created

will be a thousand (103).

After setting these parameters two arrays are created in order to store the LUT

file, which contains the transfer matrix and the model image for each node. This

process is done reading the file with four loops that change the array indices

where the values are stored.

36

The next step is to generate an image and fit its values. The purpose of the

program is to compare the performance of the algorithm using different loops

but the same set of images, so again four loops are created that set the creation

parameters for the image to be analysed. The result is a cloud of known points

for every parameter. Each combination among the parameter knots results in an

image (either noiseless or not), which is fitted with the algorithm.

With each combination of values an image creation method from class

“TestImageCreation” is called. The method “getNoiseLessImage” parses these

values and then creates a lenslet object which simulates the properties of a real

lenslet. Then the function that defines this object is retrieved and the image

defined by the “getInputVariablesCache” is returned.

The algorithm consists of an iterative fit that get the closest transfer matrix and

model images in the LUT (already stored in an internal variable) and follows the

steps that are described in [26]. It basically consists of these two operations:

 Compute update vector ∆x = M(O − N)

 Update parameters vector xn+1 = xn + ∆x

In the Java program M is the transfer matrix, N the model image and O the

created image. The parameters are subsequently updated and a new iteration is

carried out.

After each image is processed the results of the fit are written into a text file,

including the fit achieved and its error compared with the original coordinates

with which the PSF was created. With this file it is easy to compute statistics that

are relevant to select the best LUT.

It can be seen that the computational core of this algorithm is to perform

multiplications and subtractions over large matrices, 400 and 100 floating point

values for the transfer and model image matrices, respectively. In a hardware

platform, as a FPGA, these operations can be parallelized and pipelined, so the

time to calculate each iteration would potentially be reduced compared to the

software implementation.

37

7.3. Achieving convergence on an initial image

Once the algorithm is ready, the first step is to make sure that it can fit the

parameters with an easy, noiseless image. It is required that the parameters

resulting from the fit are reasonably close to the real parameters set in the

creation of the analysed PSF.

In order to ensure that the algorithm works as expected it is better to start with

a very small LUT centred around the final point which the algorithm has to

recover. Due to its little size the density of the grid is going to be high resulting

in a reduced chance of algorithm failure. A good initial guess will also help to

rapidly find some LUT parameters which are good for the algorithm.

The initial image (Figure 8) is going to be created with realistic parameters, as

well as the LUT.

 Figure 8: Initial image to fit

Table 4 presents the parameters used to create the initial image. They have been

chosen applying a slight variation over the most typical parameters.

Table 4: PSF parameters

 Image parameters

X_AC 4.457

Y_AC 4.473

ELECTRONS 7931

DIAMETER 375.4x10-6

To begin an arbitrary LUT was built with the set of parameters written in Table

5. The parameter range in this LUT is very narrow because it is easier for the

algorithm to converge if the LUT density is higher.

38

Table 5: Initial arbitrary LUT parameters

Start End Knots

X 4.4 4.5 11

Y 4.4 4.5 11

N 7900 8000 11

D 360 379.999 11

The algorithm did not converge with this LUT. The program that performs the

fit algorithm also gives information about the failure, which is usually that the

algorithm tries to retrieve a matrix that is not within the bounds of the LUT in

some parameter.

Table 3 presents the LUT parameters (start, end, number of knots and step) at

which the algorithm converges. It also includes the initial guess, the fit that the

algorithm achieves and the absolute error according to this formula:

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 = 𝐹𝑖𝑛𝑎𝑙 𝑓𝑖𝑡 − 𝐼𝑚𝑎𝑔𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

It can be seen in Table 6 that the most conflictive parameter was the diameter

(D), because it was necessary to have 41 knots for the algorithm to converge. At

some point the algorithm also went out of the electrons (N) parameter LUT

limits, so 21 knots were set.

Table 6: Parameters of first fit

 Start End Knots Step Image Initial
Guess

Final Fit Abs.
Error

X 4.4 4.5 11 0.009091 4.457 4.44 4.45746 0.00046

Y 4.4 4.5 11 0.009091 4.473 4.46 4.47781 0.00481

N 7900 8000 21 4.761905 7931 7940 7940 9

D 360 389.999 41 0.731683 375.4 376 377.98 2.58

7.4. Studying convergence over an image with added

noise

The goal is exactly the same as in the previous subsection, but for an image with

a typical read-out noise of 8.44 electrons per pixel. This amount of noise is

considered to be usual in a Gaia-like wavefront sensor [27]. The resulting image

has the same parameters as the preceding one, and is presented in figure 2.

39

Figure 10: Initial image with added noise

In this case the image depends strongly and arbitrarily of the LUT density and

bounds of the diameter parameter. It was not an easy task to find some

parameters at which the algorithm could fit the PSF, because little variations

which were supposed to be beneficial for the algorithm; like increments of the

LUT knots in the diameter dimension, decreasing LUT bounds limits so the

density increased or widening the LUT limits and the number of knots; made the

algorithm diverge. In most cases the algorithm failed because the diameter was

diverging without limit, but it sometimes affected also the electrons variable

making it diverge.

The most problematic variable being the diameter, it was decided to remove this

variable, fixing it to the typical value: 378 µm [28]. In consequence the LUT would

have one less dimension, although it was preferred to keep the program with

the four dimensions, reducing the diameter to only one knot at the typical value.

This means the quoted LUT sizes are upper limits, and further size optimisation

is still required.

This is an important step, because it indicates that the algorithm will not take

into account different PSF forms. It could also suggest that the function variation

over the diameter parameter is not linear, so an algorithm with a non-linear

interpolation may be required for this parameter to be taken in account.

Once the diameter dimension was taken away, the algorithm was able to fit the

image in nearly every case, either for noise or noiseless images. It only diverges

if the image centre is set very close to the borders of the LUT range.

40

7.5. Enlarging the parameter space covered by the LUT

Once it was ensured that the algorithm would be able to fit at least a certain

image with certain a set of parameters, the aim was to create a new LUT which

covered a wider range. Ideally it should cover the range of parameters presented

in table 3 in order to fit the parameters of images within that range, which are

the ones expected to be provided by a WFS pre-processor.

Table 7: Ideal parameters of LUT

Start End

X 4.5 5.5

Y 4.5 5.5

N 1 10001

Now the diameter parameter is discarded because is being fixed at 378𝑥10−6

meters, both in the LUT and in the generated images, so it does not affect the

algorithm.

These parameters provided good results with an arbitrary number of knots for

each of them. The algorithm always converged to reasonable values when the

start values are close-enough and images that were not too close to the borders.

This later condition is important because if the initial image is too close to the

LUT limits the algorithm may produce updates outside of the LUT domain.

7.6. Effects of the grid density on the precision

The next step is to test the effect of the LUT density on the precision of the

algorithm. The premise is that, as the LUT becomes denser, the algorithm error

gets lower. because the algorithm assumes that the retrieved matrix is the

correct one. As it is explained in 1.3 subsection it is assumed that the closer

retrievable matrix is the correct one, which is not true most of the time.

To test the algorithm LUTs of several sizes are created, starting with 21 knots

per variable (just for X, Y, and the electrons, the diameter was fixed to one value)

and continuing with 41, 81 and 101. The boundaries of the LUT remain

untouched at the ideal values of the previous section.

41

A thousand images were created from a pseudorandom generator. This allows

the images to be random at grid effects while the same set of images can be

produced in order to test the different LUTs with the same conditions. By setting

a random pattern for the image parameters a systematic error is avoided. This

systematic error would be introduced if the grid of images would be too similar

to one LUT grid, but very different from another one. The result would be a lower

error in the first case (because LUT knots would be artificially close to the image

ideal fit), and a higher one in the second.

The parameter boundaries for the image creation have been set avoiding the

closest areas to the LUT borders. This precaution has been taken because if the

border is very close to the goal value for one parameter the algorithm would

most likely search for a value out of the LUT range, and the algorithm would fail.

If such a case would happen it would be necessary to enlarge the LUT, expanding

its range in order to ensure the effectiveness of the algorithm.

The next figures show the behaviour of the absolute error (average and average

deviation) for different LUT constructions (number of knots in each dimension)

in noiseless images:

Figure 11: Absolute error in X parameter for noiseless images in pixels

-0.004

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

21 41 81 101

P
ix

e
ls

Knots of each parameter of the LUT

Average

Ave. Dev.

42

Figure 12: Absolute error in Y parameter for noiseless images in pixels

As expected, the average deviation on the absolute error (Ave. Dev. In the

graphics above) diminishes as the LUT size increases, because the effect of

quantisation gets smaller as there are more matrices. That is, the matrices are

closer to the exact point that the algorithm is aiming to.

It is important to note that, as the LUT gets bigger, the average deviation on the

absolute error does not get that much smaller. This is because there is a limit to

the precision that can be achieved, which is set ultimately at the Crámer-Rao

lower bound, even if there was no quantisation.

However, these images are noiseless, and therefore not realistic. While in

noiseless images the average deviation of the error should always decrease as

the LUT has more knots, because it would be approaching a perfect continuous

function, it should not always get better if there is noise in them. If the image

has noise, or the numerical precision impacts the algorithm precision, the limit

where the algorithm performance improvement is negligible as the density of

the LUT increases should be reached much sooner.

The next figures show the behaviour of the error (average and average deviation)

for different LUT constructions (number of knots in each dimension) in noisy

images:

-0.004

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

21 41 81 101

P
ix

e
ls

Knots of each parameter of the LUT

Average

Ave. Dev.

43

Figure 13: Absolute error in X parameter for noisy images in pixels

Figure 14: Absolute error in Y parameter for noisy images in pixels

It can be seen in figures 5 and 6 that the slopes are not as inclined as the ones

in figures 3 and 4. For example in the Y axis the difference between the error

with the 81-knot LUT and the one with 101 is negligible. Even the difference

between 41 and 81 knot LUTs is not that big.

For the X variable the effect is more or less the same, although the average

deviation of the error continues to go down even with the 101-knot LUT. This

suggests that the error is not getting lower in X and Y dimensions at the same

pace.

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

21 41 81 101 Asym

P
ix

e
ls

Knots of each parameter of the LUT

Average

Ave. Dev.

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

21 41 81 101 Asym

P
ix

e
ls

Knots of each parameter of the LUT

Average

Ave. Dev.

44

This is why there is a fifth point in figures 5 and 6, that is noted as Asym (short

for asymmetrical). Until now all the LUTs were completely symmetrical in the

remaining three dimensions, so the LUT of 21 nodes has 21 values in X, 21 values

in Y and 21 values in the electrons axis. But as these last figures suggest that

the error is not symmetrical, it is thought that a non-symmetrical LUT would

either reduce the error for the same number of nodes or maintain the error level

reducing then the size of the LUT.

Specifically, this LUT is constructed with 121 knots in the X dimension, 41 in the

Y dimension and 81 in the N dimension, taking the points in which the difference

in the error with the next LUT was not really big. In this case the LUT has a total

of 401,841 nodes, while the 101 uniform LUT has 1,030,301, so the asymmetrical

one is just a 39% of the 101 size. Even comparing its size with the 81 nodes

symmetrical one the asymmetrical still takes 25% less space.

The size of the asymmetrical LUT is 766 MB, which would not fit in the DDR3

RAM in the Zedboard, which has a capacity of 512 MB. Despite of the storage

convenience of the asymmetrical LUT there is a concern about the increase of

the average error. It can be seen that the average error is reasonably low with

the symmetrical LUT, especially in the fifth figure, but there is a peak of it with

the asymmetrical one. There is still no knowledge about the reason of this

anomaly, although it is thought that some outsiders could be affecting the

measure. Despite of this the behaviour of the average deviation is at least as

good as the 101knots LUT.

7.7. Relation between error in pixels and length units

The whole algorithm is based on the way the Gaia wavefront sensor works. The

main difference of the Gaia WFS with a usual one is that the pixels are not

squared, but rectangular. The length of one pixel is 10 µm in the Y direction

(along scan) and 30 µm in X (across scan). This difference between the physical

lengths of each side of a pixel has consequences on how good the sampling is

in each direction. In this case it is clear that the sampling is better in the Y axis

than in the X axis.

45

Although the size of the pixel in each axis would indicate that the error should

be greater in the X axis than in the Y axis this is not true in pixels. While the star

PSF is originally circular in the physical space, when this space is translated into

pixels, the shape of the PSF is not circular anymore, but elliptical, with the

greater diameter situated along the Y axis. This means that the PSF has more

pixels in the Y axis than in the X axis (as can be seen in the figure below). As the

absolute error measuring a large amount is bigger than the absolute error

measuring something smaller, the error in pixels in the Y axis is bigger than the

error in pixels in the X axis (the Y axis is longer in pixels than the X axis).

Figure 16: PSF before being sampled

Figure 17: Projection of an
elliptical PSF over 10x10 pixels

Figure 18: Circular PSF

47

8. Time analysis

The algorithm consists of an iterative fit that get the closest transfer matrix and

model images in the LUT (already stored in an internal variable) and follows the

steps that are described in [26]. It basically consists of these two operations:

 Compute update vector ∆x = A(C − B)

 Update parameters vector xn+1 = xn + ∆x

In the program A is the transfer matrix, B the model image and C the created

image. The parameters are subsequently updated and a new iteration is carried

out.

8.1. Time tables

The architecture presented in Figure 7 have been implemented with a first

version coprocessor which is not taking advantage of the BRAM’s dual port (non-

opt accel in the table), and a more optimized Accelerator that does (opt accel).

The column that corresponds with ARM are times taken when the algorithm is

done by the ARM processor. In this case the times corresponding to the matrix

transference is not that relevant, because burst capacity has not been used.

However, in both accel case a DMA has been utilised.

Times have been taken for each part of one iteration of the algorithm, and are

presented in cycles of 10ns in :

Table 8: 98% confidence values in 10ns cycles

 ARM Non-opt accel Opt accel

Send C Matrix 501 307 307

Send B Matrix 680 328 327

Send A Matrix 3727 624 626

Compute Time 2392 537 308

Total Time with middle times 7311 1883 1651

Difference 11 87 83

Total Time w/o middle times 7124 1693 1478

Send C Matrix (strict) 139 139

Send B Matrix (strict) 160 160

Send A Matrix (strict) 459 459

The times showed in the are times with a 98% of confidence for 2000 iterations

of the algorithm.

48

The rows in match the following descriptions (and difference of times in the

pseudo-code that follows them):

Send C Matrix: Cycles required to send the real image matrix (time 8 – time 7).

Send B Matrix: Cycles required to send the model image matrix (time 2 – time

1).

Send A Matrix: Cycles requires to send the model matrix (time 4 – time 3).

Compute time: Cycles used in the matrix multiplication (time 6 – time 5).

Total Time with middle times: Measuring times is a function and takes its time

by itself. The total time is the number of cycles passed from the beginning of

the iteration until the results are generated, when middle times are taken, in

order to know how long it takes to send the matrices and computation step by

step.

Difference: Difference in cycles between “Total time with middle times” and the

sum of all the matrix transferences and the compute time.

Total Time w/o middle times: Total cycles for an iteration without measuring

particular times.

Send C/B/A Matrix (strict): It is the same as “Send C/B/A Matrix”, but it does

not include the call to the function that controls the DMA. So it only includes

the transfer itself. C: (time 8 – time 16). B: (time 2 – time 17). A: (time 4 – time

18).

The following code is a pseudo-code that shows when each time is measured:

Begin_time = gettime();

Time_7 = gettime();

DMA_transfer(C, toCoprocessor);

Time_16 = gettime();

waitForDMAToFinish();

Time_8 = gettime();

Time_1 = gettime();

DMA_transfer(B, toCoprocessor);

Time_17 = gettime();

waitForDMAToFinish();

Time_2 = gettime();

Time_3 = gettime();

DMA_transfer(A, toCoprocessor);

Time_18 = gettime();

49

waitForDMAToFinish();

Time_4 = gettime();

Time_5 = gettime();

DMA_transfer(results, toCPU);

waitForDMAToFinish();

Time_6 = gettime();

End_time = gettime();

There have been extracted two histograms for “A” matrix transference (the strict

one) and for the processing time in hardware:

Histogram 1

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

50

100

150

200

250

300

350

Fr
e

cu
e

n
ci

a

10 ns cycles

Cycles to transfer A matrix strict

Frecuencia % acumulado

50

Histogram 2

These histograms show that although FPGA circuits are supposed to be

deterministic, these times are not. The variation may be due to communications

with DMA, which communicates itself with the DDR3 RAM and the ARM CPU,

which are not deterministic.

The Table 9 shows the processing times in µs, in order to compare with Java

times, which are not measured with the same cycle:

Table 9: Times for an iteration in µs

 ARM Non-opt accel Opt accel Java 95% Java 98%

Time w/o mid times 71.93 µs 17.32 µs 14.85 µs 23.811 µs 25.864 µs

Times in Java are chosen to be maximum for which 95% and 98% of the iterations

were done because the distribution of the times is very irregular and varies a lot.

This point is showed in Histogram 3. This great variation responds to several

causes. First the virtual machine that Java uses optimizes the loops as it is going

through them, for example caching the data that is more likely to be used. Also

the program is running over a machine with an operative system, so the

scheduler can be delaying this process in order to run another one.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

50

100

150

200

250

300

350

400

450

500
Fr

e
cu

e
n

ci
a

10 ns cycles

Cycles to receive hardware results

Frecuencia % acumulado

51

Histogram 3: Times for Java iteration (ns)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
1

0
0

0

1
7

5
0

2
5

0
0

3
2

5
0

4
0

0
0

4
7

5
0

5
5

0
0

6
2

5
0

7
0

0
0

7
7

5
0

8
5

0
0

9
2

5
0

1
0

0
0

0

1
0

7
5

0

1
1

5
0

0

1
2

2
5

0

1
3

0
0

0

1
3

7
5

0

1
4

5
0

0

1
5

2
5

0

1
6

0
0

0

1
6

7
5

0

1
7

5
0

0

1
8

2
5

0

1
9

0
0

0

1
9

7
5

0

2
0

5
0

0

2
1

2
5

0

2
2

0
0

0

2
2

7
5

0

2
3

5
0

0

2
4

2
5

0

2
5

0
0

0

2
5

7
5

0

2
6

5
0

0

2
7

2
5

0

2
8

0
0

0

2
8

7
5

0

2
9

5
0

0

3
0

2
5

0

3
1

0
0

0

Fr
e

q
u

e
n

cy

Nanoseconds

Java times histogram

52

8.2. Time conclusion

1. As it can be seen in Table 9, the time of the most optimized accelerator

is smaller than the one in Java, although the accelerator is implemented

in a low-end FPGA that runs at 100 MHz and the Java application is

running on an Intel Core i7 processor, which runs at 3.5 GHz.

2. Despite of this, the acceleration is just 1.74x, which indicates that the

transaction of matrices from RAM memory to the processing unit is the

bottleneck in this algorithm.

3. The maximum performance achievable in an iteration would need to hide

the processing time (around 300 cycles) behind the transfer time (around

1250 cycles), which is an improvement of just 24%. That is the limit within

the current architecture.

53

9. Precision evaluation

The fact that floating-point numbers cannot precisely represent all real

numbers, and that floating-point operations cannot precisely represent true

arithmetic operations, leads to many surprising situations, especially when

dealing with relatively small numbers [29]. This is related to the finite precision

with which computers represent numbers.

Also while floating-point addition and multiplication are both commutative, they

are not necessarily associative. That is, (a + b) + c is not necessarily equal to a +

(b + c) [29]. As a consequence, some implementations of one same algorithm

may not lead to the same results than others. This is of especial application

when optimizing an algorithm in FPGA, due to the parallelism that can be

implemented.

9.1. Precision results between implementations

There are three implementations whose results may be compared: Java

implementation, simple coprocessor implementation and optimized

coprocessor implementation.

The following histograms show the absolute error in X pixels and Y pixels:

54

Histogram 4

Histogram 5

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

100

200

300

400

500

600

700

800
<

=2
,0

0
E-

0
9

-2
,0

0
E-

0
9

-1
,8

0
E-

0
9

-1
,6

0
E-

0
9

-1
,4

0
E-

0
9

-1
,2

0
E-

0
9

-1
,0

0
E-

0
9

-8
,0

0
E-

1
0

-6
,0

0
E-

1
0

-4
,0

0
E-

1
0

-2
,0

0
E-

1
0

0
,0

0
E+

0
0

2
,0

0
E-

1
0

4
,0

0
E-

1
0

6
,0

0
E-

1
0

8
,0

0
E-

1
0

1
,0

0
E-

0
9

1
,2

0
E-

0
9

1
,4

0
E-

0
9

1
,6

0
E-

0
9

1
,8

0
E-

0
9

2
,0

0
E-

0
9

2
,0

0
E-

0
9

>
2

,0
0

E-
0

9

Fr
e

q
u

e
n

cy

Error in X pixels

Difference in X error between Java and non-
optimized SoC

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

100

200

300

400

500

600

700

800

<
=-

2
,0

0
E-

0
9

-1
,8

0
E-

0
9

-1
,6

0
E-

0
9

-1
,4

0
E-

0
9

-1
,2

0
E-

0
9

-1
,0

0
E-

0
9

-8
,0

0
E-

1
0

-6
,0

0
E-

1
0

-4
,0

0
E-

1
0

-2
,0

0
E-

1
0

0
,0

0
E+

0
0

2
,0

0
E-

1
0

4
,0

0
E-

1
0

6
,0

0
E-

1
0

8
,0

0
E-

1
0

1
,0

0
E-

0
9

1
,2

0
E-

0
9

1
,4

0
E-

0
9

1
,6

0
E-

0
9

1
,8

0
E-

0
9

2
,0

0
E-

0
9

>
2

,0
0

E-
0

9

Fr
e

cu
e

n
ci

a

Error in X pixels

Diference in X error between Java and
optimized SoC

55

Histogram 6

Histogram 7

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

100

200

300

400

500

600

700

800
<

=-
2

,0
0

E-
0

9

-1
,8

0
E-

0
9

-1
,6

0
E-

0
9

-1
,4

0
E-

0
9

-1
,2

0
E-

0
9

-1
,0

0
E-

0
9

-8
,0

0
E-

1
0

-6
,0

0
E-

1
0

-4
,0

0
E-

1
0

-2
,0

0
E-

1
0

0
,0

0
E+

0
0

2
,0

0
E-

1
0

4
,0

0
E-

1
0

6
,0

0
E-

1
0

8
,0

0
E-

1
0

1
,0

0
E-

0
9

1
,2

0
E-

0
9

1
,4

0
E-

0
9

1
,6

0
E-

0
9

1
,8

0
E-

0
9

2
,0

0
E-

0
9

>
2

,0
0

E-
0

9

Fr
e

q
u

e
n

cy

Error in Y pixels

Diference in Y error between Java and non-
optimized SoC

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

100

200

300

400

500

600

700

<
=-

2
,0

0
E-

0
9

-1
,8

0
E-

0
9

-1
,6

0
E-

0
9

-1
,4

0
E-

0
9

-1
,2

0
E-

0
9

-1
,0

0
E-

0
9

-8
,0

0
E-

1
0

-6
,0

0
E-

1
0

-4
,0

0
E-

1
0

-2
,0

0
E-

1
0

0
,0

0
E+

0
0

2
,0

0
E-

1
0

4
,0

0
E-

1
0

6
,0

0
E-

1
0

8
,0

0
E-

1
0

1
,0

0
E-

0
9

1
,2

0
E-

0
9

1
,4

0
E-

0
9

1
,6

0
E-

0
9

1
,8

0
E-

0
9

2
,0

0
E-

0
9

>
2

,0
0

E-
0

9

Fr
e

q
u

e
n

cy

Error in Y pixels

Diference in Y error between Java and
optimized SoC

56

Not all the errors shown in the previous histograms are real errors. Due to the

floating point representation for the output in different systems (Java and C)

numbers that come from Java algorithm have 10 digits of precision, while results

coming from C one have just 9 digits of precision. As the represented number

is the subtraction of them both, results with an error smaller than 1e-9, or

greater than -1e-9, are not real errors.

There are differences between the histograms due to different reasons:

Between Histogram 4 and Histogram 5: It is visible at the right end of the

second histogram that there are some real errors that are not in the first one.

The reason is that the optimized coprocessor is more parallel, then changing the

operation order more compared to the Java implementation. This, as stated in

[30] and [29], is a source of errors if the operated numbers have certain

characteristics like, for example, being relatively small.

Between Histograms in X pixels, and histograms in Y pixels (Histogram 4 and

Histogram 5; and Histogram 6 and Histogram 7): As it was settled in the 7.7

subsection, the algorithm is based on Gaia sensor pixel dimensions. The pixel

size along Y axis is 3 times smaller than in the X axis. This leads to a better

sampling in the Y axis. Then a circular PSF is represented with more pixels in

the Y axis than in the X axis. As the number of pixels in Y axis is higher, the

error tends to be higher too.

Between Histogram 6 and Histogram 7: The effect is just the same as between

Histogram 4 and Histogram 5, but the difference is much more noticeable as a

result of the effect described in the previous paragraph.

In the case of these two histograms it is especially important to know the

magnitude of the errors that fall in the first and last bins of the histogram. The

biggest difference between the Java implementation error (respect to the correct

value known beforehand) and the optimized SoC error is 1.431e-6.

9.2. Precision of the algorithm

The following 6 histograms show the difference between the fit achieved by the

different implementations of the program and the real parameters of each image

fit. It represents the error of the algorithm, and its distribution over X and Y

axis.

57

Histogram 8

Histogram 9

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

5

10

15

20

25

30

35

40

45

-5
,1

6
E-

0
2

-4
,6

9
E-

0
2

-4
,2

2
E-

0
2

-3
,7

5
E-

0
2

-3
,2

8
E-

0
2

-2
,8

1
E-

0
2

-2
,3

4
E-

0
2

-1
,8

8
E-

0
2

-1
,4

1
E-

0
2

-9
,3

7
E-

0
3

-4
,6

8
E-

0
3

1
,6

5
E-

0
5

4
,7

1
E-

0
3

9
,4

0
E-

0
3

1
,4

1
E-

0
2

1
,8

8
E-

0
2

2
,3

5
E-

0
2

2
,8

2
E-

0
2

3
,2

9
E-

0
2

3
,7

6
E-

0
2

4
,2

2
E-

0
2

4
,6

9
E-

0
2

5
,1

6
E-

0
2

5
,6

3
E-

0
2

6
,1

0
E-

0
2

6
,5

7
E-

0
2

Fr
e

q
u

e
cy

Error in pixels

Error of Java implementation X axis

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

5

10

15

20

25

30

35

40

45

-5
.1

6
E-

0
2

-4
.6

9
E-

0
2

-4
.2

2
E-

0
2

-3
.7

5
E-

0
2

-3
.2

8
E-

0
2

-2
.8

1
E-

0
2

-2
.3

4
E-

0
2

-1
.8

8
E-

0
2

-1
.4

1
E-

0
2

-9
.3

7
E-

0
3

-4
.6

8
E-

0
3

1
.6

5
E-

0
5

4
.7

1
E-

0
3

9
.4

0
E-

0
3

1
.4

1
E-

0
2

1
.8

8
E-

0
2

2
.3

5
E-

0
2

2
.8

2
E-

0
2

3
.2

9
E-

0
2

3
.7

6
E-

0
2

4
.2

2
E-

0
2

4
.6

9
E-

0
2

5
.1

6
E-

0
2

5
.6

3
E-

0
2

6
.1

0
E-

0
2

6
.5

7
E-

0
2

Fr
e

q
u

e
n

cy

Error in pixels

Error of non-optimized SoC implementation X axis

58

Histogram 10

Histogram 11

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

5

10

15

20

25

30

35

-5
,1

6
E-

0
2

-4
,6

9
E-

0
2

-4
,2

2
E-

0
2

-3
,7

5
E-

0
2

-3
,2

8
E-

0
2

-2
,8

1
E-

0
2

-2
,3

4
E-

0
2

-1
,8

8
E-

0
2

-1
,4

1
E-

0
2

-9
,3

7
E-

0
3

-4
,6

8
E-

0
3

1
,6

5
E-

0
5

4
,7

1
E-

0
3

9
,4

0
E-

0
3

1
,4

1
E-

0
2

1
,8

8
E-

0
2

2
,3

5
E-

0
2

2
,8

2
E-

0
2

3
,2

9
E-

0
2

3
,7

6
E-

0
2

4
,2

2
E-

0
2

4
,6

9
E-

0
2

5
,1

6
E-

0
2

5
,6

3
E-

0
2

6
,1

0
E-

0
2

6
,5

7
E-

0
2

Fr
e

q
u

e
n

cy

Error in pixels

Error of optimized SoC for X axis

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

5

10

15

20

25

30

35

40

-1
,3

1
E-

0
1

-1
,2

0
E-

0
1

-1
,0

8
E-

0
1

-9
,6

6
E-

0
2

-8
,5

2
E-

0
2

-7
,3

7
E-

0
2

-6
,2

2
E-

0
2

-5
,0

8
E-

0
2

-3
,9

3
E-

0
2

-2
,7

8
E-

0
2

-1
,6

4
E-

0
2

-4
,8

9
E-

0
3

6
,5

8
E-

0
3

1
,8

0
E-

0
2

2
,9

5
E-

0
2

4
,1

0
E-

0
2

5
,2

5
E-

0
2

6
,3

9
E-

0
2

7
,5

4
E-

0
2

8
,6

9
E-

0
2

9
,8

3
E-

0
2

1
,1

0
E-

0
1

1
,2

1
E-

0
1

1
,3

3
E-

0
1

1
,4

4
E-

0
1

1
,5

6
E-

0
1

Fr
e

q
u

e
n

cy

Error in pixels

Error of Java for Y axis

59

Histogram 12

Histogram 13

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

5

10

15

20

25

30

35

40

-1
,3

1
E-

0
1

-1
,2

0
E-

0
1

-1
,0

8
E-

0
1

-9
,6

6
E-

0
2

-8
,5

2
E-

0
2

-7
,3

7
E-

0
2

-6
,2

2
E-

0
2

-5
,0

8
E-

0
2

-3
,9

3
E-

0
2

-2
,7

8
E-

0
2

-1
,6

4
E-

0
2

-4
,8

9
E-

0
3

6
,5

8
E-

0
3

1
,8

0
E-

0
2

2
,9

5
E-

0
2

4
,1

0
E-

0
2

5
,2

5
E-

0
2

6
,3

9
E-

0
2

7
,5

4
E-

0
2

8
,6

9
E-

0
2

9
,8

3
E-

0
2

1
,1

0
E-

0
1

1
,2

1
E-

0
1

1
,3

3
E-

0
1

1
,4

4
E-

0
1

1
,5

6
E-

0
1

Fr
e

q
u

e
n

cy

Error in pixels

Error of non-optimized SoC for Y axis

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

5

10

15

20

25

30

35

40

-1
,3

1
E-

0
1

-1
,2

0
E-

0
1

-1
,0

8
E-

0
1

-9
,6

6
E-

0
2

-8
,5

2
E-

0
2

-7
,3

7
E-

0
2

-6
,2

2
E-

0
2

-5
,0

8
E-

0
2

-3
,9

3
E-

0
2

-2
,7

8
E-

0
2

-1
,6

4
E-

0
2

-4
,8

9
E-

0
3

6
,5

8
E-

0
3

1
,8

0
E-

0
2

2
,9

5
E-

0
2

4
,1

0
E-

0
2

5
,2

5
E-

0
2

6
,3

9
E-

0
2

7
,5

4
E-

0
2

8
,6

9
E-

0
2

9
,8

3
E-

0
2

1
,1

0
E-

0
1

1
,2

1
E-

0
1

1
,3

3
E-

0
1

1
,4

4
E-

0
1

1
,5

6
E-

0
1

Fr
e

q
u

e
n

cy

Error in pixels

Error in optimized SoC for Y axis

60

As all the error histograms resemble Gaussians, the mean and standard

deviation do characterize the error. The Table 10 show their values:

Table 10: Mean and std. dev.

LUT41 with noisy images

 Java Non-opt accel Optimized accel

Mean of error in X pixels 0.00069 0.00069 0.00075
Std. Avg. of error in X pixels 0.01711 0.01711 0.01764
Mean of error in Y pixels -0.00159 -0.00162 -0.00162
Std. Avg. of error in Y pixels 0.04219 0.04219 0.04258

9.3. Precision conclusions

The histograms above show that the error is 0 (or its equivalent due to

representation precision) in nearly every case when the non-optimized core is

used. This is because the order of the floating point operations is the same than

in the Java implementation, so the possible errors when operating with small

numbers are the same in both approximations. It also helps that after every

iteration of the algorithm the result is quantized by retrieving the nearest matrix

from memory. So, for example, if the result in “x” parameter at the end of one

iterations of the algorithm is 5.26785 and there are only matrices whose “x” are

5.265 and 5.270, the matrix retrieved will be 5.270. Even if the result has a small

error, and while the error is not big enough to change the matrix that will be

retrieved, the selected matrix will be the same, so the initial values for the next

iteration will remain unchanged.

In the case when the optimized accelerator is used the number of significant

errors is not negligible. This happens because in order to optimize the

multiplication and make use of the resources the FPGA has, a different operation

order has been implemented. This is mainly because the use of the Block RAM

dual port, which allows the transfer of two values at the same time, so each

vector multiplication is divided into two vector multiplications with a

consolidation step at the end of each half, in order to have the final result. This

optimization is explained with more detail in the section 5.4 Additional

coprocessor optimizations.

61

There is also a big difference between the errors in the X and Y direction. This

difference is because of the physical size of pixels in Gaia sensor, which makes

the PSF better sampled in the Y axis. As a result, the Y direction has more pixels

than the X one, so the error is bigger comparatively.

63

10. Multicore study

In the subsection 8.2 Time conclusion it is reasoned out that each iteration can

only be optimized up to a point where all computational cost is hidden

underneath data transfer cost, which leads to a poor 1.173x acceleration as a

maximum.

Then the only way to achieve more performance would be to add more

coprocessors until the matrices requests done over the DDR3 RAM saturate it.

Thus in the following subsection it is calculated the maximum performance of

optimal and suboptimal approaches to the multi coprocessor architecture.

10.1. Analysis from a suboptimal point of view:

current architecture

The approximation that is going to be described in this subsection has the same

current architecture, but with a multicore system goal.

The times achieved by the current architecture are:

Table 11: 98% confidence times for optimized accelerator

The labels of each of the table times are explained below , in subsection Time

tables.

In the current architecture it would only be needed to put two coprocessors.

This would improve performance by only taking in account the memory transfer

time, and not the computation time. A time schematic of this architecture is

shown below in Figure 19.

 Opt accel

Send C Matrix 307

Send B Matrix 327

Send A Matrix 626

Compute Time 308

Total Time with middle times 1651

Difference 83

Total Time w/o middle times 1478

Send C Matrix (strict) 139

Send B Matrix (strict) 160

Send A Matrix (strict) 459

64

The acceleration achieved over the monocore architecture would be 1.173x,

dividing “total time without middle times” time and the sum of the matrix

transferences.

Figure 19: 2 coprocessors time schematic

10.2. Analysis from a more optimal point of view:

changes in coprocessor and control

Two changes in the architecture would be able to improve the performance:

1. C matrix does not need to be sent in each iteration, can be at BRAM

memory (inside FPGA) 5 out of 6 iterations, because it is the real image

that the algorithm fits.

2. The computation time can be hidden behind the transfer time if a FIFO

architecture is done. It would not be completely hidden, but the compute

time which is not possible to hid would be a fraction of what it is

currently.

Assuming that these two changes are done and in their best cases (C does not

have to be sent and computation time is completely hidden) the necessary time

to complete each iteration would be “Send B Matrix” plus “Send A Matrix”, which

is 953 cycles of 10 ns. This time implies an acceleration of 1.55x from the current

architecture.

65

10.3. Analysis from an optimal approach

In this subsection a fully optimal approach will be taken. The times used are

completely theoretical some times.

In the section Analysis from a more optimal point of view: changes in coprocessor

and control it is said that transfers take 953 cycles of 10 ns, which is 9.53 µs.

During this time 500 simple precision floating point values are transferred, in

other words, 2000 bytes. Then the binary rate at which these data are transferred

is then:

2000 𝑏𝑦𝑡𝑒𝑠

9.41 𝜇𝑠
 ×

1 𝑀𝐵𝑦𝑡𝑒

10242 𝑏𝑦𝑡𝑒𝑠
 = 202.69 𝑀𝐵𝑦𝑡𝑒𝑠/𝑠

A DMA (Direct Memory Access) device like the one used have an optimal

functioning limit of 1 4-byte data by cycle. Its cycle is the same as the one that

drives the FPGA part of the SoC, as it is implemented inside the FPGA electronics

(100 MHz), so it has a 10 ns period. So the theoretical binary rate limit for a DMA

implemented in an FPGA with a clock of 100 MHz is:

4 𝑏𝑦𝑡𝑒𝑠

10 𝑛𝑠
 ×

1 𝑀𝐵𝑦𝑡𝑒

10242 𝑏𝑦𝑡𝑒𝑠
= 381.47 𝑀𝐵𝑦𝑡𝑒𝑠/𝑠

Despite of this, the Look-up table (LUT) is stored in the DDR3 RAM module

installed in the Zedboard, which are two Micron MT41K128M16HA-15E:D DDR3

memory components. In the 6th page of the Zedboard Hardware user guide [23]

it specifies that these modules are configured with a 32-bit interface and a speed

up to 533 MHz (although the manufacturer of the component specifies that

these modules can reach 666.67 MHz in [31]). This means that 1066 MT/s can

be reached on the Zedboard, each one of 32 bits. The resultant speed is:

1066
𝑀𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠

𝑠
 × 32 𝑏𝑖𝑡𝑠 ×

1 𝑏𝑦𝑡𝑒

4 𝑏𝑖𝑡𝑠
= 8528 𝑀𝐵𝑦𝑡𝑒𝑠/𝑠

This means that if the theoretical top binary rate of the DDR3 RAM would be

reached, it could serve data for up to 22 coprocessors with optimal DMAs, or 42

coprocessors with the DMAs that are currently implemented.

66

However, this point would further increase the complexity of the system,

because all these coprocessors and DMAs would have to be commanded from

the main CPU, and an arbiter would have to be added in order to manage the

access to the RAM limiting the possible conflicts over its use. It is also impossible

to fit 20 to 40 coprocessors on this platform from a resources point of view (this

point was analysed in section Resources used).

67

11. Conclusion and Future work

In what follow we summarize main contributions and achievements of this

thesis, likewise we add some possible and ongoing future works.

11.1. Conclusion

Two of the LUTs have been produced are considered excellent in terms of the

algorithm performance. The first one is the 101 nodes LUT. It provides the best

performance and the smallest the error, both in average and average deviation.

The second one is the asymmetrical LUT, which it reaches the performance of

the 101-node LUT while being 60% smaller, a very valuable asset in the

embedded system. It is not considered the best in general performance because

the average error is bigger compared to any of the other LUTs. This is an

undesirable effect, and the origin is currently unknown, which is a reason to

continue using symmetrical LUTs.

Another conclusion is that the diameter variable prevents the algorithm to reach

convergence when no interpolation between the LUTs is done. It could be due to

a greater variability than expected. However, once the diameter dimension is not

taken into account the algorithm precision improves with larger LUTs, although

from a certain size the improvement is negligible. The improvement becomes

negligible with even smaller LUTs if there is noise in the images, so the amount

of noise limits the algorithm precision.

The main bottleneck for the performance of this algorithm is the access to the

LUT in RAM memory, for both the SoC with the FPGA and the Java software

implementation, for one fit up to 6 matrices have to be read.

A system which would process several lenslets with the current architecture

would also be very inefficient, because with the real times provided by the single

lenslet system, even hiding the operation time with the transference time, the

increase in performance would be rather small.

68

A change in the architecture to solve this problem is out of the scope of the

project due to its complexity and the time required to design and set up the

system. Despite of this, even with an optimal multi-lenslet architecture only 8

or less coprocessors could be placed in the current platform, due to the

resources needed to allocate them.

The precision of the non-optimized FPGA implementation has proved to be

nearly as good as the Java one running on a high performance desktop

computer. With the optimized coprocessor the numerical precision achieved is

worse than in the other implementations, but still delivers perfectly acceptable

results for the purposes of this algorithm.

11.2. Future work

As it has been proposed in the section 10 Multicore study the next step would

be to take advantage of the full area of the FPGA platform using as many

coprocessors as it is possible to run in parallel, saturating either the RAM

throughput or the area of the FPGA. For the Zedboard platform it has been

calculated in the section 5.6 Resources used it would take 8 coprocessors to use

all the resources of the FPGA.

However, this system would require a change in the architecture, in order to be

able to use the RAM memory more efficiently. This architecture would still use

the same coprocessor as it has proved to be precise enough for the requirements

of the algorithm, but the control system would have to change.

69

12. References

[1] R. Martín, “Aceleración de algoritmos en óptica adaptativa usando FPGA,”
Proyecto Fin de Carrera, EPS-UAM, 2014. Available:
https://repositorio.uam.es.

[2] J. Beckers, “Adaptive Optics for Astronomy: Principles, Performance and
Applications,” Annual Review of Astronomy and Astrophysics, pp. 13-62,
1993.

[3] U. Bastian, “The maximum reachable astrometric precision - The Cramer-
Rao Limit,” Gaia DPAC public document, 2004.

[4] K. A. Winick, “Cramer–Rao lower bounds on the performance of charge-
coupled-device optical position estimators,” Journal of the Optical Society
of America, pp. 1809-18015, 1986.

[5] L. Lindegren, “A general Maximum-Likelihood algorithm for model fitting
to CCD sample data,” Gaia DPAC public document, 2008.

[6] B. A. Draper, J. R. Beveridge, A. W. Bohm, C. Ross and M. Chawathe,
“Accelerated image processing on FPGAs,” IEEE transactions on image
processing, vol. 12, no. 12, pp. 1543-1551, 2003.

[7] E. Fernandez and P. Artal, “Membrane deformable mirror for adaptive
optics: performance limits in visual optics,” Optics express, vol. 11(9), pp.
1056-1069, 2003.

[8] E. Masciadri and T. Garfias, “Wavefront coherence time seasonal variability
and forecasting at the San Pedro Mártir site,” Astronomy & Astrophysics,
pp. 708-716, 2001.

[9] B. C. Platt and R. Shack, “History and principles of Shack-Hartmann
wavefront sensing. Journal of Refractive Surgery,” Journal of Refractive
Surgery, vol. 17(5), pp. 573-577, 2001.

[10] S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau and G. Rousset,
“Comparison of centroid computation algorithms in a Shack-Hartmann
sensor,” Monthly Notices of the Royal Astronomical Society, pp. 323-336,
2006.

[11] A. Björk, Numerical methods for least squares problems, Philadelphia:
SIAM, 1996.

[12] J. J. Moré, “The Levenberg-Marquardt algorithm: implementation and
theory,” in Numerial Analysis Biennial Conference, 1978.

70

[13] A. Mora, “WFS sub-pixel centroiding,” Internal report, 2010.

[14] Xilinx Inc. , “UG470 7 Series FPGAs Overview,” 2015. [Online]. Available:
https://www.xilinx.com/support/documentation. [Accessed 2016].

[15] Xilinx Inc. , “UltraScale Architecture and Product Overview,” 2016. [Online].
Available: http://www.xilinx.com/support/documentation/. [Accessed
2016].

[16] Xilinx Inc. , “Zynq-7000 All Programmable SoC Overview,” 2016. [Online].
Available: http://www.xilinx.com/support/documentation/. [Accessed
2016].

[17] Xilinx Inc. , “UltraScale Architecture and Product Overview,” 2016. [Online].
Available: http://www.xilinx.com/support/documentation/. [Accessed
2016].

[18] Altera, “Stratix 10 Device Overview,” 2015. [Online]. Available:
https://www.altera.com/en_US/pdfs/literature. [Accessed 2016].

[19] Xilinx Inc., “UG902 Vivado Design Suite User Guide,” 2014. [Online].
Available: http://www.xilinx.com/support/documentation. [Accessed
2016].

[20] Xilinx, Inc, “UG534 ML605 Hardware User Guide,” 2011. [Online]. Available:
http://www.xilinx.com/support/documentation. [Accessed 2016].

[21] Xilinx Inc., “UG081 Microblaze Processor Reference Guide,” 2012. [Online].
Available: http://www.xilinx.com/support/documentation. [Accessed
2016].

[22] Xilinx Inc. , “UG1037 Vivado Design Suite: AXI Reference Guide,” 2015.
[Online]. Available: http://www.xilix.com/support/documentation.
[Accessed 2016].

[23] AVNET, “Zedboard Hardware User's Guide,” 2014. [Online]. Available:
zedboard.com/support/documentation.

[24] Xilinx Inc., “DS180 7 Series FPGAs Overview,” 2014. [Online]. Available:
http://www.xilinx.com/support/documentation/. [Accessed 2016].

[25] J. Rose, “Hard vs. soft: The central question of pre-fabricated silicon. In
Multiple-Valued Logic,” in Proceedings. 34th International Symposium on
(pp. 2-5). IEEE., 2004.

[26] A. Mora, “FPGA image centroiding” Internal report, 2012.

[27] J. H. J. De Bruijne, “Science performance of Gaia, ESA’s space-astrometry
mission,” Astrophysics and Space Science, vol. 341(1), pp. 31-41, 2012.

71

[28] P. Nussbaum, R. Voelkel, H. P. Herzig, M. Eisner and S. Haselbeck, “Design,
fabrication and testing of microlens arrays for sensors and microsystems,”
Pure and applied optics: Journal of the European optical society, vol. 6(6), p.
617, 1997.

[29] D. Goldberg, “Waht every computer scientist should know about floating-
point arithmetic,” ACM computing surveys, vol. 23, no. 1, p. 195, 1995.

[30] N. Shirazi, A. Walters and P. Athanas, “Quantitative analysis of floating
point arithmetic on FPGA based custom computing machines,” in FPGAs
for Custom Computing Machines, Proceedings IEEE symposium, 1995.

[31] Micron, “2Gb: x4, x8, x16 DDR3L SDRAM Description. DDR3L SDRAM
MT41K512M4 – 64 Meg x 4 x 8 banks MT41K256M8 – 32 Meg x 8 x 8 banks
MT41K128M16 – 16 Meg x 16 x 8 banks,” 2014. [Online]. Available:
https://www.micron.com. [Accessed 2016].

[32] Berkeley Design Technology Inc., “An independent evaluation of: High Level
Synthesis Tools for Xilinx FPGAs,” 2010. [Online]. Available:
xilinx.com/technology/dsp/BDTI_techpaper.pdf.

[33] R. Davies and M. Kasper, “Adaptive Optics for Astronomy,” Annual Review
of Astronomy and Astrophysics, pp. 305-351, 2012.

[34] D. C. Giancoli, “Physics for Scientists and Engineers,” Prentice-Hall, 2000,
p. 896.

[35] Space Telescope Science Institute, “James Webb Space Telescope Near
infrared Camera PSFs,” [Online]. Available:
http://www.stsci.edu/jwst/instruments/nircam/PSFs/. [Accessed 2016].

[36] C. T. Kelley, Iterative methods for optimization, Siam, 1999.

[37] A. Mora and A. Vosteen, “Gaia in-orbit realignement. Overview and data
analysis,” in SPIE Astronomical Telescopes, 2012.

[38] A. Björck, Numerical methods for least squares problems, Siam, 1996.

[39] S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau and G. Rousset,
“Comparison of centroid computation algorithms in a Shack–Hartmann
sensor,” Monthly Notices of the Royal Astronomical Society, pp. 323-336,
2006.

