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Resumen 

La óptica adaptativa es una tecnología usada para mejorar el rendimiento de 

diferentes tipos de sistemas ópticos. Lo hace corrigiendo las posibles 

aberraciones que son introducidas por la atmósfera. Para corregirlo se usa un 

sensor de frente de onda, habitualmente un Shack-Hartmann. En esta técnica, 

hasta centenas de centroides de imágenes deben ser calculados. De este modo 

el frente de onda original puede ser reconstruido.  

La óptica adaptativa impone restricciones temporales muy acusadas, el proceso 

completo debe ser realizado en un tiempo del orden de un milisegundo. Debido 

a esta limitación los algoritmos usados para calcular cada centroide son rápidos, 

pero normalmente su precisión es baja.  

En la misión Gaia de la ESA se ha desarrollado un algoritmo de cálculo de 

centroides de máxima verosimilitud, teniendo el mismo una precisión muy 

cercana al máximo teórico, la cota inferior de Crámer-Rao. Como este algoritmo 

es computacionalmente complejo, es normalmente demasiado lento para se 

usado en óptica adaptativa. Una versión simplificada que usa look-up tables fue 

desarrollada para estudiar si esta podría cumplir los requisitos temporales.  

En un trabajo previo, una primera versión de un sistema basado en FPGA que 

implementa este algoritmo fue creada. Consiste en un sistema empotrado que 

usa un procesador soft Microblaze para controlar un sistema con un 

coprocesador. Este coprocesador fue creado usando herramientas de síntesis de 

alto nivel, lo que se probó adecuado para implementar algoritmos intensivos en 

el cálculo con datos.  

Este prototipo tenía una funcionalidad reducida, y estaba seriamente limitado. 

El tamaño de la tabla usada era demasiado pequeño, y sólo realizaba una 

iteración del algoritmo de cálculo de centroides. En este proyecto se presenta 

una versión más completa de este prototipo, así como un estudio de la precisión 

alcanzada por tabla de diferentes tamaños y un estudio de la convergencia del 

algoritmo.  

Además, se compara la precisión de algoritmo ya implementado con el mismo 

en una plataforma software. La aceleración del algoritmo ha sido medida y un 

estudio multinúcleo ha sido realizado.   
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Abstract 

Adaptive optics is a technology used to improve the performance of different 

kinds of optical systems. It does so correcting the possible aberrations that are 

introduced by the atmosphere. To correct it, a wave front sensor is used, often 

a Shack-Hartmann. In this technique, up to hundreds of image centroids have to 

be determined. In this way the original wave front can be reconstructed.   

Adaptive optics imposes a very restrictive time constraint, the whole process 

must be completed in a time of the order of one millisecond. Due to this time 

limitation the algorithms used to calculate each centroid are fast, but usually 

achieve low precision.  

A maximum likelihood algorithm to calculate centroids was developed for ESA 

Gaia mission, providing a precision very close to the theoretical maximum, the 

Crámer-Rao lower bound. As this algorithm is computationally complex, it is 

usually too slow for adaptive optics. A simplified version using look-up tables 

was developed to study if it could comply with the time requirements.  

In a previous work, a first version of a FPGA-based system that implements this 

algorithm has been created. It consists of an embedded system that uses a 

Microblaze soft processor to control a system with a coprocessor. This 

coprocessor was created using high level synthesis tools, which proved to be 

adequate to implement data intensive algorithms.  

This prototype covered a basic functionality, and had several limitations. The 

size of the used look-up table was too small, and it only performed one iteration 

of the centroid algorithm. In this project a more complete version of this 

prototype is provided, as well as a study of the precision achieved by different 

look-up table sizes and a study of the convergence of the algorithm.  

Also the precision of the implemented algorithm is compared with the one 

achieved by the same algorithm in a software platform. The acceleration of the 

algorithm has also been measured, and a multicore study has been done.  
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1. Introduction 

This project is the continuation of the project “Aceleración de algoritmos en 

óptica adaptaviva usando FPGA” [1], and therefore building over the results of 

the previous project. As [1], the project has been carried out in relation with 

European Space Astronomy Centre (ESAC). This project aims to study the 

application of adaptive optics algorithms using a reconfigurable hardware 

platform (FPGA), testing and improving the system already developed.  

1.1. Motivation and objectives 

Adaptive optics goal is to modify an arriving wavefront in order to recover its 

original shape, then boosting the quality of the image recovered in a optic 

system. This technique is used in telescopes and other devices. The analysis and 

calculus centroids of images is an extremely important part of the process, being 

its precision key to the results of the whole process.  

As adaptive optics works by definition in real time, the time requirements for 

each part of the whole flow are very strict, typically being in the order of 1 ms 

[2].  Because of the described time constraint fast algorithms are very commonly 

used, as the centre of gravity or correlation ones, not achieving the best 

precision possible.  

In fact, the best precision achievable comes limited by the Crámer-Rao lower 

bound [3] [4]. The maximum likelihood algorithms created during the 

development of the ESA Gaia mission [5] achieve a precision very close to this 

limit. Based on forward modelling they are computationally heavy, and then not 

suitable for adaptive optics under typical requirements. 

FPGA platform have proved to be an interesting way to speed many algorithms, 

also image processing ones [6]. A FPGA system has already been created in [1], 

resulting in a first step to study the possibilities of the implementation of the 

maximum likelihood algorithms. The time to create the system was limited and 

therefore it lacked completion.  

The objectives of this project are the following:  
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 Upgrade the size of the used look-up table (LUT): Since in the first 

prototype a very small LUT was used in order to easily test the 

functionality, in this second version a larger one should be used, for the 

algorithm to operate in conditions closer to reality.  

 Test bench creation:  The algorithm needs to be tested with realistic 

images, in order to prove its convergence and also produce comparable 

results.   

 Determine the number of iterations needed in order to achieve necessary 

precision.  

 Further optimization of the accelerator, if possible.   

 Time and acceleration analysis.  

 Evaluate further improvement of the system, exploiting FPGA parallelism.  
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2. State of the art of Adaptive 

Optics 

2.1. Introduction to adaptive optics 

Adaptive optics (AO) is the technology that is used to correct distortions in a 

wavefront (WF) in real-time. It does so measuring the phase alteration in the WF 

and restoring it, usually with a deformable mirror [7].   

Adaptive optics in astronomy is used intensively to obtain more accurate 

images. There is an example in Figure 1, where the difference in the quality is 

very noticeable, especially in sharpness.  

 

Figure 1: Left, Neptune picture taken with AO; right, same picture without AO. 

In this section a very brief resume of the state of the art in adaptive optics is 

presented.  For more information about it go to these sources [1] and [2].  

2.2. The adaptive optics challenge 

The main challenge of AO is the time scale in which it has to operate to be 

effective. The entire process has to be finished in around 1 ms. This is the typical 

coherence time of the atmosphere [8]. In this time hundreds of centroids of point 

have to be calculated. These calculus allows a Shack-Hartmann wavefront sensor 

(WFS) to determine how the wavefront (WF) has been deformed, and therefore to 

retrieve the necessary parameters to correct it [9]. This time constraint greatly 

limits the complexity of the centroid algorithms, and therefore their precision, 

which is critical for the result of the WF correction.  
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2.3. Centroids and their precision 

There are two steps when it comes to calculate the WF distortion in a Shack-

Hartmann WFS: First calculate the centroid of each PSF (diffracted light 

points) and then the reconstruction itself of the WF, using the calculated 

slopes between centroids in comparison with a known position. This work 

is centred on the calculation of the centroids with the maximum precision 

available, because it is critical for the posterior reconstruction.  

There are several well-known algorithms to calculate the centroid of a point 

spread function (PSF), like the simple centroid, centre of gravity and correlation 

algorithms [10]. These algorithms are quite basic ones, which is explained by the 

time constrain that is characteristic of the AO. However, a much more complex 

algorithm has been developed during ESA Gaia mission. Its precision approaches 

the theoretical limit for the precision of the algorithm given a certain amount of 

information: The Crámer-Rao lower bound [3] [4]. 

Reaching this precision is a difficult task, but it can be done fitting the 

coordinates of the centroid, and some other nuisance variables, with a 

mathematical model of the WFS. In this way the initial centroiding problem has 

been transformed to a weighted least square minimization problem. There are 

several ways to solve this kind of problem, such as Gauss-Newton [11] or 

Levenberg-Marquardt ones [12].  

2.4. Maximum likelihood algorithm for centroids 

In the section 2.6 “Adaptive optics algorithm” of [1] the bases for the algorithm 

implemented in the project are described. Here it is a reproduction of part of it, 

as it is essential to understand this project:  

The algorithm used in this project is based in a maximum likelihood algorithm 

developed for the ESA Gaia mission, and described in deep in [13]. It provides a 

precision very close to the Crámer-Rao limit. It is based in a forward-modelling 

algorithm: the weighted Gauss-Newton optimization of a function similar to the 

observed data [11].  
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A noiseless image of nx by ny pixels (10 by 10 in this case) can be described as a 

matrix, in which each number will be the electrons collected by each pixel. This 

matrix can be described also as the total number of electrons produced by the 

sensor multiplied by the PSF (described in 2.4 subsection): 

𝑁𝑖 = 𝑁𝑇 · 𝑃𝑆𝐹 (𝑥𝑖 − 𝑥𝑐 , 𝑦𝑖 − 𝑦𝑐 , 𝑠) 

Note that (xc, yc) are the PSF centroid, that is unknown, and s the shape factor of 

the PSF. The PSF forward modelling function includes a priori knowledge of the 

optical system, so Ni can be compared to the real number of electrons collected 

Oi (the real image). There is then a set of parameters that characterize Ni:  

𝒙 = {𝑁𝑇 , 𝑥𝑐 , 𝑦𝑐 , 𝑠} 

These are the parameters that have to be fitted minimizing the weighted RMS 

sum. 

∆𝒙 = 𝑀(𝑂 − 𝑁) 

In this equation M is a 4 × 100 values matrix (100 because of the 10 by 10 size 

of the image matrix), O and N are respectively the observational and model 

vectors composed by all the rows of its corresponding matrix (image). The steps 

to calculate these matrices include several non-trivial integrations. A strategy 

has been developed to bypass this situation, pre-computing in lookup tables 

(LUT) these matrices. A general description of the algorithm would be: 

1. Apply centre of mass algorithm to obtain an initial guess for the final 

centroid. 

2. Construct observation vector (O) by linking together the rows of the 

10×10 image received. 

3. Retrieve from LUT the M and N matrices that match the values of the 

initial guess.  

4. Compute the operation: ∆𝒙 = 𝑀(𝑂 − 𝑁) 

5. Update initial parameters: 𝒙𝑛+1 =  𝒙𝑛 + ∆𝒙 

6. Return to 3. and repeat until the difference between one iteration and the 

next one is below a certain threshold.  
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3. The use of reconfigurable HW 

for adaptive optics 

3.1. Benefits of reconfigurable hardware and FPGAs 

For a long time, reconfigurable hardware (FPGA) is a growing alternative to the 

classic ASIC (application-specific integrated circuit) approach to custom 

application hardware chips.  

These are some of the most important benefit of FPGA technology in comparison 

with other options: 

 Performance: FPGA are more flexible than digital signal processors, 

allowing the user to implement hardware parallelism. They designer is in 

control of everything, including low level operations, which has an 

enormous potential for fine-grain optimization.  

 Flexibility: FPGA can be used with a full custom approach, while they are 

also capable of reproduce complex systems as full System on a Chip 

(SOC), with an integrated processor, RAM memory, etc. In the last years 

the main FPGA manufacturers are releasing combinations of hard 

processors along with FPGA area in the same chip, making SoC systems 

even more powerful.  

 Time to prototype: FPGA offers quick prototype capabilities in 

comparison with other technologies, allowing the designer to test a 

concept directly on hardware and then even implement incremental 

changes. 

 Cost: FPGA are very interesting in terms of cost while the project does 

not have the scale economy to make ASICs profitable.  

 Reliability and other advantages: FPGA provide a true hardware 

implementation, allowing the user to make a deterministic latency 

system, for example. Its lack of operative system and few abstraction 

layers allow designers to perform time-critical tasks without the risk of 

another one interrupting due to true parallelism. 
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3.2. Commercial FPGA families 

There are two main manufacturers of high performance FPGA: Xilinx and Altera. 

These are their most powerful series of products: 

 Xilinx Virtex 7: With nearly 2 million of logic cells this family of FPGAs is 

one of the most powerful FPGA in the market. Built in 28 nm they are 

capable of lower power consumption than older generations, even with a 

greater performance. This new generation comes with 85 Mb in BRAM, 

which is the largest capacity among common families of FPGA. It also has 

up to 3600 DSP, which are the main blocks used for float operations, for 

example. It supports DDR3 external RAM memory at up to 1,866 Mbps 

[14].   

 Xilinx Virtex Ultrascale: A new product family with the most powerful 

devices from Xilinx. It is built in 16 or 20 nm, with FinFET technology. 

There are devices with up to 5 million logic cells [15]. It supports DDR4 

external RAM at a maximum throughput of 2666 Mbps.  

 Xilinx Zynq an Zynq Ultrascale: Zynq is the SoC family form Xilinx. It 

always includes a hard ARM processor (ranging from a dual core Cortex 

A9 to a quad-core Cortex-A53) along with a variable FPGA. In these 

devices the reconfigurable logic is not as powerful as in the other families, 

being the maximum logic cells around one million [16] [17]. 

 Altera Stratix 10: Stratix is the most powerful product family in Altera. 

Built in 14 nm they have a hard processor system built in the same FPGA 

chip, making them a SoC by themselves. They have a similar number of 

logical elements in comparison with the Virtex Ultrascale family, around 

5 million on the largest devices [18].  

3.3. High Level Synthesis tools benefits 

In this project the development of the system that implements the AO algorithm 

is based on a SoC architecture, being the auxiliary hardware built using a High 

Level Synthesis tool: Vivado-HLS [19]. These tools have been quite recently 

adopted by the most important FPGA manufacturers. Altera uses Altera SDK for 

OpenCL as high level synthesis approach, while Xilinx integrates it in Vivado-

HLS.   
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In [1] there is a comparison between the traditional FPGA design flow, including 

HDL coding and simulation, synthesis, implementation, timing closure, etc. and 

the design flow when the main development is done with High level synthesis 

(HLS) tools. These tools allow generally a faster development of the modules at 

some cost in flexibility and freedom. Here the main differences are showed:  

 The traditional FPGA design flow is slow, while an HLS flow should 

accelerate the whole process, at least for certain types of modules. This 

allows the user to prototype fast, and then progressively refine the 

design.  

 The traditional flow makes it difficult to make posterior changes to the 

architecture, while it is a shorter process with HLS tools. For example, 

changing types in a high level language is quite easy, while in VHDL it can 

be very challenging, especially for certain types which traditionally have 

not been used in FPGAs, like floating point representation.  

 The HLS flow lets the compiler decide by default how the described 

algorithm is going to be implemented. While it is true that most of the 

options can be modified to implement the design the way the user wants, 

the user has to have a deep knowledge of the tool defaults and it options. 

In the traditional flow the user has to specify most of the parameters, 

leaving less for the compiler to guess.  

 HLS tools are particularly interesting to implement data intensive 

algorithms, as they produce better results than in control modules  
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4. Previous work 

4.1. Introduction 

As stated in the introduction, this project is a continuation of the work done in 

[1]. Therefore, its main achievements are explained in this section, putting 

special focus on the system developed.  

One of the main tasks of the PFC was to create coprocessor which efficiently 

would implement the maximum likelihood algorithm, and more specifically one 

iteration of it, with the aim of integrating it in an embedded system. In this way 

the coprocessor or accelerator would process the most computationally heavy 

part of the algorithm, while mainly the initialization, control and storing tasks 

will be assumed by the general purpose processor.  

All the system is based in a ML605 boards, which includes a Virtex 6 FPGA and 

several devices as DDR3 RAM, Compact Flash memory reader or Ethernet port 

[20].  

4.2. Coprocessor 

Created with a high-level synthesis tool (Vivado-HLS), this accelerator performs 

one iteration of the maximum likelihood algorithm. It mainly consists of a large 

matrix multiplication and a few other operations done over floating point 

represented data. The main operation is this one:  

𝑀 ∗ (𝑂 − 𝑁) 

These data, the matrices, are provided from the exterior at the beginning of each 

iteration. The size of the matrices is 4x100 for M, and 100*1 for O and N, thus 

giving as result a vector of dimension 4x1. They matrices are retrieved from one 

node of the LUTs stored in the system, defined by four parameters:  

{𝑥, 𝑦, 𝑁, 𝑠} 

From left to right these variables represent the position of the centroid in the 

horizontal axis, in the vertical axis, the number of electrons that hit the sensor, 

and finally the shape factor. 
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4.2.1. Directives 

The multiplication has been optimized with several directives, which are the 

tools Vivado-HLS compiler use to determine how to transform the given 

algorithm into hardware.  

Two main directives are applied to the loop that takes care of the multiplication, 

in order to parallelize and pipeline it:  

 Loop unroll directive: By default, only one set of hardware is going to be 

created, and the operation will mainly be sequential. Applying this 

directive makes the compiler create many sets of hardware that will 

process the data in parallel.  

 Pipeline directive: It pipelines the different stages in a loop, using as 

efficiently as possible all the resources created.  

The effectiveness of both directives depends greatly on the dependencies 

between iterations, which leads us to the next point.  
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4.2.2. Code optimization: thinking in hardware 

In order to reduce the dependencies, the code was reorganized. The main loop 

is showed in the Figure 2: Algorithm applied to a multiplication of matrix of 

sizes 4×100 and 100×1Figure 2:  

// Iterate over the cols of the A matrix or the rows of the B matrix  
Prod: for(int k = 0; k < MAT_B_ROWS; k++) { 
  // Iterate over the rows of the A matrix 
 Row: for(int i = 0; i < MAT_A_ROWS; i++) { 
 
   //If first read of c => save c, which is cache of c 
   if (i==0) c_copy[k] = c[k]; 

//If first read of b => save b, which is cache of b 
   if (i==0) b_copy[k] = b[k];        
   if (i==0) diff[k] = c[k] - b[k]; 
 
   //Read a from a internal variable, and not from the FIFO 
      a_i_k = a[i][k];  

//Actual multiplication 
   temp[i] = a_i_k * diff[k];  
   
      if (k == 0) acc[i] = temp[i]; 
   //Accumulate on acc 
      else acc[i] += temp[i]; 
     
          if (k == (MAT_B_ROWS-1)) res[i] = acc[i]; 
    } 
  } 

 

Figure 2: Algorithm applied to a multiplication of matrix of sizes 4×100 and 100×1 

In this way the iterations go over the columns of the matrix A, storing the 

intermediate values in a temporary variable. The reorganization results in a 

better utilization of the resources, as the dependencies between rows 

intermediate results are eliminated, creating 4 data chains.  

In addition to this, initialization variables have been created, ensuring that the 

data is read just once from the external bus, and then stored for its future use.  

4.3. Design of complete System: Design decisions 

This section describes some of the decisions that have been made during the 

development of the system that envelops the coprocessor system.  
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4.3.1. Embedded system 

It was decided to create an embedded system because of the characteristics of 

the algorithm acceleration scheme (initialization, heavy algorithm and storage) 

and because it was the best option to access the peripherals needed, as the 

external storage card and the DDR3 RAM.  

The system control is also assumed by the microprocessor, in this case a 

Microblaze [21], which is a soft-processor. It is connected to its peripherals with 

several AXI buses [22]. The following system peripherals are used:  

 External memory (DDR3 RAM): It stores the LUTs once the system is 

initialized.  

 Permanent storage: The LUTs are retrieved from a Compact flash memory 

during the initialization 

Here it is presented a schematic view of the system as it is in Xilinx Platform 

Studio:  

 

Figure 3: Previous work system schematic 

4.4. Results 

The prototype of the algorithm accelerator is working and the following steps 

are functional:  
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 Storing a reduced LUT (62 KB) in external memory.  

 Gets the initial data from the Microblaze processor, and processes it 

according to one iteration of the algorithm. 

 Returns results, in a prepared format for next iteration. 

The latency achieved by the accelerator is 948 cycles of 10 ns period, which 

makes 9.48 µs. The total time of execution from the processor has also been 

measured, giving a result of 29.83 µs. The difference is mainly the time that is 

necessary to transfer the matrices to the accelerator.  

The results are acceptable, but more optimization is needed if hundreds of 

images have to be processed, each of them requiring several iterations.  
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5. Hardware implementation: 

Zynq embedded system 

5.1. Introduction 

The hardware design in the previous work consists of a Microblaze processor, 

an accelerator core, a Compact Flash and DDR3 RAM, all set on a ML605 Virtex 

6 platform (showed in Figure 4).  

 

Figure 4: Architecture in ML605 board 

It was stated that there were technical difficulties with the access to the whole 

512MB of DDR3 RAM. Also it was not possible to return data from the 

accelerator core to the processor. These problems have not been solved, and 

therefore another solution has been chosen.  

5.2. Platform change 

Since these problems, especially the one with the accelerator, were suspected to 

be associated to the platform and the software used (Virtex 6 and Vivado-HLS, 

respectively) it was proposed to implement the same solutions on a different 

hardware, fully supported by Vivado-HLS.  



 

22 
 

For it to be compatible the new FPGA must be a Xilinx Series 7. The chosen 

hardware is the Zedboard [23], due to the size of the DDR3 memory, availability 

and the new system on a chip (SoC) paradigm, which is in line with the embedded 

system used in this project.  In this way the power of a true hard-processor 

would be exploited. This hardware was provided by the High Performance 

Computing and Networking investigation group (HPCN).   

The Zynq family effectively overcomes the challenge of creating custom 

extensions while giving the engineer the ability to create their own application 

specific, using what is arguably the world’s most widely adopted embedded 

processor [REF] as the basis for an accelerated, custom and application-specific 

solution that would, by definition, otherwise only be available as an ASIC.  

The main features of Zedboard [23] are:  

 Zynq®-7000 All Programmable SoC XC7Z020-CLG484-1 [16]: Includes an 

ARM Cortex-A9 Dual core processor and an Artix-7 FPGA [24].   

 Memory:  

o 512 MB DDR3 RAM 

o 256 Mb Quad-SPI Flash 

o 4 GB SD card 

 On board USB-JTAG Programming 

 10/100/1000 Ethernet 

 USB OTG 2.0 and USB-UART 

The Figure 5 shows the Zedboard and some of its features and ports.  
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Figure 5: Zedboard and its main features 

5.3. Architecture changes 

The Zedboard packs a Zynq®-7000 All Programmable SoC XC7Z020, a system on 

a chip (SoC) which includes an ARM Cortex-A9 dual core processor and an Artix 

7 FPGA within the same housing. The architecture of this solution is showed in 

Figure 6:  
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Figure 6: Zynq architecture 

In the Zynq architecture the processor is a hard core processor, which is 

different than the Microblaze processor (a soft core processor). A hard processor 

is more efficient than a soft processor, which is instantiated in the resources of 

an FPGA [25].  

The Figure 6 also shows an interesting fact: in Zynq architecture most of the 

ports are linked to the ARM processor and not the programmable logic (the 

FPGA). In this case the FPGA is thought to help to the main processor processing 

tasks that are more appropriate for an FPGA because of their intrinsic 

characteristics.    
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5.4. Additional coprocessor optimizations 

In the previous work [1] has been described how the coprocessor was optimized, 

taking advantage of the way in which Vivado-HLS synthesizes the C code into 

hardware. Besides the optimizations done before some more have been added 

that will prove critical for the performance of the coprocessor.  

A usual technique used in Vivado-HLS consists in caching the input data, 

especially if it is going to be used more than once. This allows the synthesizer 

to store them in registers, or Block RAM (BRAM) if they are big enough. This is 

done through variable declaration and initialization with the input. An 

optimization done over these variables that store the input is to set an array 

partition directive. This directive makes the synthesizer to store the data in 

different memories (again registers or BRAM depending on the size). The ideal 

is to make a “partition” for every “chain” of operations that have to be fed. If so, 

every “chain” will be fed at the same time, since different memories can be asked 

for different data at the same time. This is a very important step to improve the 

performance of the module, since having four chains of multipliers and 

summers does not accelerate the operation if they cannot be provided with data 

every cycle.  

An additional step in this direction is the difference between what it will be later 

be labelled as the “non-optimized” approach of the coprocessor, and the 

“optimized” one. The latter implementation makes use of the dual port that the 

BRAM provides. By doing so two 32-bits data can be provided by each BRAM in 

each cycle, so it does the same effect than partitioning the cached version input 

variables again (after the previous partitioning by rows of the matrix A) by a 

factor of two. In order to make use of this new data it is necessary to double the 

number of “production lines”. It improves the performance of the module (in 

the operation part) by a factor of two without using more memory resources. In 

addition, it does use more FPGA area to set the additional multipliers and 

accumulators.  
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This last optimization has a potential to have an effect in the precision of the 

operations in floating point, because it alters significantly the order of the 

operations. Despite of implementing all the previous optimizations, if the 

algorithm implementation is analysed thoroughly, the operation order remains 

basically the same, which helps the “non-optimized” implementation to get the 

same results than the Java one. Despite, the order result is not the same in the 

“optimized” design. Now each half of the basic vector operated (the A rows, C, 

and B) is accessed by a different pipeline, and the two results, which correspond 

to each halve, are summed up in a final step. As relatively small numbers are 

operated, the results of this module are not the same as the ones obtained in 

Java or with the previous module.  

5.5. Single core architecture 

While the complete architecture is shown in Figure 7, the main parts of it are 

explained here:  

ARM processor:  It executes most of the code, which basically copies the 

required LUT from the SD card to de DDR3 RAM at the beginning of the 

execution and then provides the coprocessor Accelerator with the data needed 

in order to iterate over the algorithm. It serves as control during the operation 

and writes the results of a 1000-image test in “csv” files for its later analysis. It 

is the only component that is not instantiated inside the FPGA logic.  

Coprocessor “Accelerator”: executes in an efficient way the matrix 

multiplication required by one iteration of the algorithm. Is coded in Vivado-

HLS, and makes use of the BRAM (Block RAM) dual port. Receives the matrices 

from the DMA.  

DMA (Direct Memory Access): A core that allows the Accelerator to efficiently 

retrieve the matrices from the DDR3 RAM without the active usage of the ARM 

processor. The hard processor serves only as a trigger for the operation. In the 

schematic showed in the figure 4 is linked to the Zynq processing system 

because the DDR3 RAM is only attached to the ARM processor (fig. 3). Despite 

of this the data goes through the AMBA bus to the coprocessor without involving 

the main processor.  

DDR3 RAM: The matrices needed for every iteration are stored here, so it is 

accessed every iteration.  
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AXI Timer: It allows the measurement of times in a precise way. It runs with a 

clock of 100MHz, as the rest of the FPGA.  

5.6. Resources used 

The following table describes the resources used by the whole system in 

xc7z020 SoC FPGA (notice that the ARM processor is a hard processor and has 

no effect of the resources utilization):  

Table 1: Utilization report summary 

Resource Utilization Available Utilization % 

FF 6056 106400 5,69 
LUT 5313 53200 9,99 
Memory LUT 208 17400 1,20 
BRAM 9 140 6,43 
DSP48 10 220 4,55 
BUFG 1 32 3,13 

If this resource usage would scale maybe another 8 coprocessors could be 

added. This is not a definitive conclusion: due to the increasing route space 

needed when the design complexity grows the maximum amount of instances 

may be lower.  
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Table 2: Utilization per module 

 

 

Figure 7: Complete schematic of monocore design in Vivado
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6. Look-up table generation 

6.1. Gaia WFS LUT creation software 

A program was created within the Gaia team [26], in order to create the Look-up 

table (LUT) that will be stored in the DDR3 RAM in the embedded system.  

The program starts with several configurations that are read from a 

configuration file. Among the most important, the characteristics defining the 

wavefront sensor itself: lenslet spacing and diameter, central pixel of each sub-

pupil, number of pixels per PSF in AL and AC dimensions…  

The configuration parameters for the LUT are set in the beginning of the 

program, as constants. They are the start, end and number of knots for every 

dimension (x, y, electrons and diameter).  

Then, inside four loops (one for every dimension) the Jacobian matrix resulting 

from the function that defines the wavefront sensor is retrieved and the 

operations referred in subsection 2.6 of [1] are calculated (pseudoinverse, 

transposed, etc.). This gives as result the transfer matrix, which is stored in a 

binary file.  

6.2. Endianness issue  

After the LUT is created it has to be read by the embedded system, with an 

intermediate step of copying the binary file from the PC to a SD card. It had to 

be proved that the data written in the LUT file was going to be read in the same 

way from the SD card in the embedded system.  

The solution consists on writing a certain and known stream of data resembling 

the LUT. In this case single precision floating point data written to binary file, 

and then reading it in the system just as the real LUT would be read. As the 

embedded system is little-endian, the data written with Java in a binary file had 

to be read reversing the byte order in each word.  

With the LUT creator program it was created a LUT of 64 MB, which had 12, 12, 

11 and 21 knots in x, y, s and N parameters, respectively. The resulting size is 

exactly 33264 arrays of 500 floats, which makes a total of 66528000 bytes, so 

63.446 MB.  
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6.3. LUT Geometry: trade-off between size and 

effectiveness 

The algorithm is written in Java language, in order to comply with previous 

versions of it. The most critical resource that affects the algorithm is the 

effective size of the DDR3 RAM memory, which strongly constrains the 

maximum grid density of the stored LUT.  

The algorithm has been tested before with LUT interpolation, which requires 

bringing 2𝑛 tables of 2000 bytes, where “n” is the number of dimensions of the 

LUT, only considering linear interpolation. Although in a non-realistic software 

system the time loading the tables may not be important, in a time constrained 

hardware system it is crucial. This is why in an embedded system interpolation 

is not the first option to consider, as it may affect the performance of the 

algorithm.  

With this in mind, if there is no interpolation the algorithm has to be modified, 

because there will be a point in which the parameters of the matrix that have to 

be retrieved are not going to match with a stored one.  

For example, if the algorithm needs to retrieve the matrix corresponding to 

X=4.5623 and the stored LUT only contains the ones corresponding X=4.56 and 

4.57 the algorithm will assume that the matrix of the nearest LUT knot (4.56 in 

this case) is the same matrix that is needed (the one corresponding to 4.5623). 

This statement is not true, and then the effects of this assumption have to be 

analysed.   

Because of this assumption, if the LUT is denser, there will be a lower difference 

between the ideal transfer matrix and image and the retrieved ones. Therefore, 

the error of the algorithm will be lower and its behaviour more predictable. 
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6.4. Memory limitations and its effect on LUT density  

The embedded system is built on a Zedboard [23], which has 512MB of DDR3 

RAM as a peripheral device of the processor-FPGA set. Therefore, the system was 

expected to store any LUT of less than the maximum RAM size. Despite of this, 

and because of the technical reasons explained in the third section of this 

document, it only has been possible to store without failure only 64 MB of 

information. The project is therefore limited to this LUT size and the expected 

precision is not going to be as good as it would be with a less-restricted LUT. 

This point will be discussed on the section 7. 

As it is derived in [26], the total size of the LUT is the result of the following 

operation:  

𝑆𝑖𝑧𝑒(𝑏𝑦𝑡𝑒𝑠) = (𝑁𝑢𝑚 𝑝𝑎𝑟𝑎𝑚 + 1) ∗ 𝑝𝑖𝑥𝑒𝑙𝑥 ∗ 𝑝𝑖𝑥𝑒𝑙𝑦 ∗ 𝑘𝑛𝑜𝑡𝑠𝑥 ∗ 𝑘𝑛𝑜𝑡𝑠𝑦 ∗ 𝑘𝑛𝑜𝑡𝑠𝑑 ∗ 𝑘𝑛𝑜𝑡𝑠𝑁 ∗

𝑠𝑖𝑧𝑒𝑜𝑓(𝑓𝑙𝑜𝑎𝑡)  

In this case 𝑁𝑢𝑚 𝑝𝑎𝑟𝑎𝑚  equals 4, because there are 4 parameters, 𝑝𝑖𝑥𝑒𝑙𝑥  and 

𝑝𝑖𝑥𝑒𝑙𝑦 are the number of pixels in both axes of the PSF, and as the values are 

stored in single precision floating point each value needs 4 bytes to be stored.  

These four parameters refer to the four variables that define an image (PSF) in 

this system:  

 X or AC: Is the coordinate in the X or across scan axis which indicates 

where the centre of the PSF is.  

 Y or AL: Is the coordinate in the Y or along scan axis which indicates 

where the centre of the PSF is.  

 Electrons (N): Is the total number of electrons that constitute the image. 

 Diameter (d): Measures microlens diameter in meters (usually around 

380µm).   

Once these variables are fixed, all that can be changed is the number of knots 

for each variable, that will define a grid. At each point of this grid (every 

combination of the 4 parameters values) there will be a matrix stored, composed 

by the corresponding image and the transfer matrix. The total space required 

for both matrices is 2000 bytes (500 simple precision floating point values). So 

in this case the above formula can be simplified to:  

𝑆𝑖𝑧𝑒(𝑏𝑦𝑡𝑒𝑠) = 2000 ∗ 𝑘𝑛𝑜𝑡𝑠𝑥 ∗ 𝑘𝑛𝑜𝑡𝑠𝑦 ∗ 𝑘𝑛𝑜𝑡𝑠𝑑 ∗ 𝑘𝑛𝑜𝑡𝑠𝑁 
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It is clear then that limitations on the maximum amount of data that the system 

will store constrains the maximum LUT density. 

6.5. Several LUT constructions  

In [26] it is stated that a reasonable LUT, taking in account the limitations of the 

maximum amount of memory, would be one with 21 knots in each dimension, 

except for the electrons that would have only 20. This LUT results according to 

the above formula in a total size of 370440000 bytes, which is 353.27 MB. It 

would fit in the 512 MB of RAM that the Zedboard has, and it is reasonable 

because it covers a reasonable portion of the parameter space: from 4.0 to 6.0 

pixels for both X and Y axis, microlens diameter within 350 × 10−6  and 

450 × 10−6 meters, and from 0 to 10000 electrons.  

With the new 64 MB limit this LUT had to be modified in order to fit in this size. 

The first decision taken was to reduce the range for X and Y, since it was 

expected that the slopes measured with the WFS would not be so harsh, and 

therefore the PSF would be around the centre. It would be desirable to keep the 

whole range for the electrons axis, in prevision of very different types of stars, 

and as it was thought that the diameter microlens would be similar from one to 

another (near diffraction limited performance), the range was also reduced. As 

it can be deduced from the ranges and the amount of knots in each variable, the 

density was not reduced in any of the parameters, in order to avoid disturbances 

in the performance of the algorithm. In the end, the final range was: 

 

 Range start Range end Knots 

X 4.5 5.5 12 

Y 4.5 5.5 12 

Diameter 380e-6 m 430e-6 m 11 

Electrons 0 10000 21 

Table 3: 64 MB LUT 
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7. Convergence and precision 

tests 

7.1. Introduction 

As it was stated in Subsection 6.3, there is a trade-off between the size of the 

LUT, which consists basically on the number of knots for each parameter, and 

the performance that the algorithm will achieve.  

In this section it will be found out what would be the best LUT under these 

conditions. 

7.2. Description of the algorithm in a Java program 

Two classes were developed, based on [26], which create images (PSFs) and 

perform the fitting algorithm, respectively (TestImageCreation and 

TestLutFitLoop). In order to be able to test the performance of the algorithm 

they have been modified. The aim is that these modules can work together 

producing a realistic test over a large set of noiseless or noisy images, returning 

a file with the real and fitted parameters of each image, along with the error in 

each fit, both relative and absolute.  

At the beginning of the program a set of variables are manually set, for the 

program to know which configuration and LUT file to use. Also here the 

boundaries for the image creation parameters are set, as well as the noise that 

will be added to the image and the amount of values that each parameter will 

take in the LUT coordinates. This late parameter defines the number of images 

that will be created and tested, because there will be as many as all the 

combinations of the parameter values. So, for example, if this parameter is set 

to 10 and there are 3 values included in the LUT, the amount of images created 

will be a thousand (103).  

After setting these parameters two arrays are created in order to store the LUT 

file, which contains the transfer matrix and the model image for each node. This 

process is done reading the file with four loops that change the array indices 

where the values are stored.  
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The next step is to generate an image and fit its values. The purpose of the 

program is to compare the performance of the algorithm using different loops 

but the same set of images, so again four loops are created that set the creation 

parameters for the image to be analysed. The result is a cloud of known points 

for every parameter. Each combination among the parameter knots results in an 

image (either noiseless or not), which is fitted with the algorithm.  

With each combination of values an image creation method from class 

“TestImageCreation” is called. The method “getNoiseLessImage” parses these 

values and then creates a lenslet object which simulates the properties of a real 

lenslet. Then the function that defines this object is retrieved and the image 

defined by the “getInputVariablesCache” is returned.  

The algorithm consists of an iterative fit that get the closest transfer matrix and 

model images in the LUT (already stored in an internal variable) and follows the 

steps that are described in [26]. It basically consists of these two operations: 

 Compute update vector ∆x = M(O − N)  

 Update parameters vector xn+1 = xn + ∆x 

In the Java program M is the transfer matrix, N the model image and O the 

created image. The parameters are subsequently updated and a new iteration is 

carried out.  

After each image is processed the results of the fit are written into a text file, 

including the fit achieved and its error compared with the original coordinates 

with which the PSF was created. With this file it is easy to compute statistics that 

are relevant to select the best LUT.  

It can be seen that the computational core of this algorithm is to perform 

multiplications and subtractions over large matrices, 400 and 100 floating point 

values for the transfer and model image matrices, respectively. In a hardware 

platform, as a FPGA, these operations can be parallelized and pipelined, so the 

time to calculate each iteration would potentially be reduced compared to the 

software implementation.  
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7.3. Achieving convergence on an initial image 

Once the algorithm is ready, the first step is to make sure that it can fit the 

parameters with an easy, noiseless image. It is required that the parameters 

resulting from the fit are reasonably close to the real parameters set in the 

creation of the analysed PSF.  

In order to ensure that the algorithm works as expected it is better to start with 

a very small LUT centred around the final point which the algorithm has to 

recover. Due to its little size the density of the grid is going to be high resulting 

in a reduced chance of algorithm failure. A good initial guess will also help to 

rapidly find some LUT parameters which are good for the algorithm.  

The initial image ( Figure 8) is going to be created with realistic parameters, as 

well as the LUT. 

  

 Figure 8: Initial image to fit 

Table 4 presents the parameters used to create the initial image. They have been 

chosen applying a slight variation over the most typical parameters.  

Table 4: PSF parameters 

 Image parameters 

X_AC 4.457 

Y_AC 4.473 

ELECTRONS 7931 

DIAMETER 375.4x10-6 

 

 

To begin an arbitrary LUT was built with the set of parameters written in Table 

5. The parameter range in this LUT is very narrow because it is easier for the 

algorithm to converge if the LUT density is higher.     
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Table 5: Initial arbitrary LUT parameters 

 
Start End Knots 

X 4.4 4.5 11 

Y 4.4 4.5 11 

N 7900 8000 11 

D 360 379.999 11 

The algorithm did not converge with this LUT. The program that performs the 

fit algorithm also gives information about the failure, which is usually that the 

algorithm tries to retrieve a matrix that is not within the bounds of the LUT in 

some parameter.  

Table 3 presents the LUT parameters (start, end, number of knots and step) at 

which the algorithm converges. It also includes the initial guess, the fit that the 

algorithm achieves and the absolute error according to this formula:  

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 = 𝐹𝑖𝑛𝑎𝑙 𝑓𝑖𝑡 − 𝐼𝑚𝑎𝑔𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

It can be seen in Table 6 that the most conflictive parameter was the diameter 

(D), because it was necessary to have 41 knots for the algorithm to converge. At 

some point the algorithm also went out of the electrons (N) parameter LUT 

limits, so 21 knots were set.   

Table 6: Parameters of first fit 

 Start End Knots Step Image Initial 
Guess 

Final Fit Abs. 
Error 

X 4.4 4.5 11 0.009091 4.457 4.44 4.45746 0.00046 

Y 4.4 4.5 11 0.009091 4.473 4.46 4.47781 0.00481 

N 7900 8000 21 4.761905 7931 7940 7940 9 

D 360 389.999 41 0.731683 375.4 376 377.98 2.58 

7.4. Studying convergence over an image with added 

noise 

The goal is exactly the same as in the previous subsection, but for an image with 

a typical read-out noise of 8.44 electrons per pixel. This amount of noise is 

considered to be usual in a Gaia-like wavefront sensor [27]. The resulting image 

has the same parameters as the preceding one, and is presented in figure 2.    
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Figure 10: Initial image with added noise 

In this case the image depends strongly and arbitrarily of the LUT density and 

bounds of the diameter parameter. It was not an easy task to find some 

parameters at which the algorithm could fit the PSF, because little variations 

which were supposed to be beneficial for the algorithm; like increments of the 

LUT knots in the diameter dimension, decreasing LUT bounds limits so the 

density increased or widening the LUT limits and the number of knots; made the 

algorithm diverge. In most cases the algorithm failed because the diameter was 

diverging without limit, but it sometimes affected also the electrons variable 

making it diverge.  

The most problematic variable being the diameter, it was decided to remove this 

variable, fixing it to the typical value: 378 µm [28]. In consequence the LUT would 

have one less dimension, although it was preferred to keep the program with 

the four dimensions, reducing the diameter to only one knot at the typical value. 

This means the quoted LUT sizes are upper limits, and further size optimisation 

is still required.  

This is an important step, because it indicates that the algorithm will not take 

into account different PSF forms. It could also suggest that the function variation 

over the diameter parameter is not linear, so an algorithm with a non-linear 

interpolation may be required for this parameter to be taken in account.  

Once the diameter dimension was taken away, the algorithm was able to fit the 

image in nearly every case, either for noise or noiseless images. It only diverges 

if the image centre is set very close to the borders of the LUT range.  
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7.5. Enlarging the parameter space covered by the LUT  

Once it was ensured that the algorithm would be able to fit at least a certain 

image with certain a set of parameters, the aim was to create a new LUT which 

covered a wider range. Ideally it should cover the range of parameters presented 

in table 3 in order to fit the parameters of images within that range, which are 

the ones expected to be provided by a WFS pre-processor.  

Table 7: Ideal parameters of LUT 

 
Start End 

X 4.5 5.5 

Y 4.5 5.5 

N 1 10001 

Now the diameter parameter is discarded because is being fixed at  378𝑥10−6 

meters, both in the LUT and in the generated images, so it does not affect the 

algorithm.  

These parameters provided good results with an arbitrary number of knots for 

each of them. The algorithm always converged to reasonable values when the 

start values are close-enough and images that were not too close to the borders. 

This later condition is important because if the initial image is too close to the 

LUT limits the algorithm may produce updates outside of the LUT domain. 

7.6. Effects of the grid density on the precision 

The next step is to test the effect of the LUT density on the precision of the 

algorithm. The premise is that, as the LUT becomes denser, the algorithm error 

gets lower. because the algorithm assumes that the retrieved matrix is the 

correct one.  As it is explained in 1.3 subsection it is assumed that the closer 

retrievable matrix is the correct one, which is not true most of the time.  

To test the algorithm LUTs of several sizes are created, starting with 21 knots 

per variable (just for X, Y, and the electrons, the diameter was fixed to one value) 

and continuing with 41, 81 and 101. The boundaries of the LUT remain 

untouched at the ideal values of the previous section.  
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A thousand images were created from a pseudorandom generator. This allows 

the images to be random at grid effects while the same set of images can be 

produced in order to test the different LUTs with the same conditions. By setting 

a random pattern for the image parameters a systematic error is avoided. This 

systematic error would be introduced if the grid of images would be too similar 

to one LUT grid, but very different from another one. The result would be a lower 

error in the first case (because LUT knots would be artificially close to the image 

ideal fit), and a higher one in the second.  

The parameter boundaries for the image creation have been set avoiding the 

closest areas to the LUT borders. This precaution has been taken because if the 

border is very close to the goal value for one parameter the algorithm would 

most likely search for a value out of the LUT range, and the algorithm would fail. 

If such a case would happen it would be necessary to enlarge the LUT, expanding 

its range in order to ensure the effectiveness of the algorithm.  

The next figures show the behaviour of the absolute error (average and average 

deviation) for different LUT constructions (number of knots in each dimension) 

in noiseless images:  

 

Figure 11: Absolute error in X parameter for noiseless images in pixels 
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Figure 12: Absolute error in Y parameter for noiseless images in pixels 

As expected, the average deviation on the absolute error (Ave. Dev. In the 

graphics above) diminishes as the LUT size increases, because the effect of 

quantisation gets smaller as there are more matrices. That is, the matrices are 

closer to the exact point that the algorithm is aiming to.   

It is important to note that, as the LUT gets bigger, the average deviation on the 

absolute error does not get that much smaller. This is because there is a limit to 

the precision that can be achieved, which is set ultimately at the Crámer-Rao 

lower bound, even if there was no quantisation.  

However, these images are noiseless, and therefore not realistic. While in 

noiseless images the average deviation of the error should always decrease as 

the LUT has more knots, because it would be approaching a perfect continuous 

function, it should not always get better if there is noise in them. If the image 

has noise, or the numerical precision impacts the algorithm precision, the limit 

where the algorithm performance improvement is negligible as the density of 

the LUT increases should be reached much sooner.  

The next figures show the behaviour of the error (average and average deviation) 

for different LUT constructions (number of knots in each dimension) in noisy 

images:  
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Figure 13: Absolute error in X parameter for noisy images in pixels 

 

Figure 14: Absolute error in Y parameter for noisy images in pixels 

It can be seen in figures 5 and 6 that the slopes are not as inclined as the ones 

in figures 3 and 4. For example in the Y axis the difference between the error 

with the 81-knot LUT and the one with 101 is negligible. Even the difference 

between 41 and 81 knot LUTs is not that big.  

For the X variable the effect is more or less the same, although the average 

deviation of the error continues to go down even with the 101-knot LUT. This 

suggests that the error is not getting lower in X and Y dimensions at the same 

pace.   
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This is why there is a fifth point in figures 5 and 6, that is noted as Asym (short 

for asymmetrical). Until now all the LUTs were completely symmetrical in the 

remaining three dimensions, so the LUT of 21 nodes has 21 values in X, 21 values 

in Y and 21 values in the electrons axis. But as these last figures suggest that 

the error is not symmetrical, it is thought that a non-symmetrical LUT would 

either reduce the error for the same number of nodes or maintain the error level 

reducing then the size of the LUT.  

Specifically, this LUT is constructed with 121 knots in the X dimension, 41 in the 

Y dimension and 81 in the N dimension, taking the points in which the difference 

in the error with the next LUT was not really big. In this case the LUT has a total 

of 401,841 nodes, while the 101 uniform LUT has 1,030,301, so the asymmetrical 

one is just a 39% of the 101 size. Even comparing its size with the 81 nodes 

symmetrical one the asymmetrical still takes 25% less space.  

The size of the asymmetrical LUT is 766 MB, which would not fit in the DDR3 

RAM in the Zedboard, which has a capacity of 512 MB. Despite of the storage 

convenience of the asymmetrical LUT there is a concern about the increase of 

the average error. It can be seen that the average error is reasonably low with 

the symmetrical LUT, especially in the fifth figure, but there is a peak of it with 

the asymmetrical one. There is still no knowledge about the reason of this 

anomaly, although it is thought that some outsiders could be affecting the 

measure. Despite of this the behaviour of the average deviation is at least as 

good as the 101knots LUT.  

7.7. Relation between error in pixels and length units 

The whole algorithm is based on the way the Gaia wavefront sensor works. The 

main difference of the Gaia WFS with a usual one is that the pixels are not 

squared, but rectangular. The length of one pixel is 10 µm in the Y direction 

(along scan) and 30 µm in X (across scan). This difference between the physical 

lengths of each side of a pixel has consequences on how good the sampling is 

in each direction. In this case it is clear that the sampling is better in the Y axis 

than in the X axis.  
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Although the size of the pixel in each axis would indicate that the error should 

be greater in the X axis than in the Y axis this is not true in pixels. While the star 

PSF is originally circular in the physical space, when this space is translated into 

pixels, the shape of the PSF is not circular anymore, but elliptical, with the 

greater diameter situated along the Y axis. This means that the PSF has more 

pixels in the Y axis than in the X axis (as can be seen in the figure below). As the 

absolute error measuring a large amount is bigger than the absolute error 

measuring something smaller, the error in pixels in the Y axis is bigger than the 

error in pixels in the X axis (the Y axis is longer in pixels than the X axis).  

 

 

 

 

 

Figure 16: PSF before being sampled 

Figure 17: Projection of an 
elliptical PSF over 10x10 pixels 

Figure 18: Circular PSF 
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8. Time analysis 

The algorithm consists of an iterative fit that get the closest transfer matrix and 

model images in the LUT (already stored in an internal variable) and follows the 

steps that are described in [26]. It basically consists of these two operations: 

 Compute update vector ∆x = A(C − B)  

 Update parameters vector xn+1 = xn + ∆x 

In the program A is the transfer matrix, B the model image and C the created 

image. The parameters are subsequently updated and a new iteration is carried 

out.  

8.1. Time tables 

The architecture presented in Figure 7 have been implemented with a first 

version coprocessor which is not taking advantage of the BRAM’s dual port (non-

opt accel in the table), and a more optimized Accelerator that does (opt accel). 

The column that corresponds with ARM are times taken when the algorithm is 

done by the ARM processor. In this case the times corresponding to the matrix 

transference is not that relevant, because burst capacity has not been used. 

However, in both accel case a DMA has been utilised.  

Times have been taken for each part of one iteration of the algorithm, and are 

presented in cycles of 10ns in :  

Table 8: 98% confidence values in 10ns cycles 

 ARM Non-opt accel Opt accel 

Send C Matrix 501 307 307 

Send B Matrix 680 328 327 

Send A Matrix 3727 624 626 

Compute Time 2392 537 308 

Total Time with middle times 7311 1883 1651 

Difference 11 87 83 

Total Time w/o middle times 7124 1693 1478 

    

Send C Matrix (strict)  139 139 

Send B Matrix (strict)  160 160 

Send A Matrix (strict)  459 459 

The times showed in the  are times with a 98% of confidence for 2000 iterations 

of the algorithm. 
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The rows in  match the following descriptions (and difference of times in the 

pseudo-code that follows them):  

Send C Matrix: Cycles required to send the real image matrix (time 8 – time 7). 

Send B Matrix: Cycles required to send the model image matrix (time 2 – time 

1). 

Send A Matrix: Cycles requires to send the model matrix (time 4 – time 3).  

Compute time: Cycles used in the matrix multiplication (time 6 – time 5).  

Total Time with middle times: Measuring times is a function and takes its time 

by itself.  The total time is the number of cycles passed from the beginning of 

the iteration until the results are generated, when middle times are taken, in 

order to know how long it takes to send the matrices and computation step by 

step.  

Difference: Difference in cycles between “Total time with middle times” and the 

sum of all the matrix transferences and the compute time.  

Total Time w/o middle times: Total cycles for an iteration without measuring 

particular times.  

Send C/B/A Matrix (strict): It is the same as “Send C/B/A Matrix”, but it does 

not include the call to the function that controls the DMA.  So it only includes 

the transfer itself. C: (time 8 – time 16). B: (time 2 – time 17). A: (time 4 – time 

18). 

The following code is a pseudo-code that shows when each time is measured:  

Begin_time = gettime(); 

Time_7 = gettime(); 

DMA_transfer(C, toCoprocessor); 

Time_16 = gettime(); 

waitForDMAToFinish(); 

Time_8 = gettime(); 

Time_1 = gettime(); 

DMA_transfer(B, toCoprocessor); 

Time_17 = gettime(); 

waitForDMAToFinish(); 

Time_2 = gettime(); 

Time_3 = gettime(); 

DMA_transfer(A, toCoprocessor); 

Time_18 = gettime(); 
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waitForDMAToFinish(); 

Time_4 = gettime(); 

Time_5 = gettime(); 

DMA_transfer(results, toCPU); 

waitForDMAToFinish(); 

Time_6 = gettime(); 

End_time = gettime(); 

There have been extracted two histograms for “A” matrix transference (the strict 

one) and for the processing time in hardware:  
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Histogram 2 

These histograms show that although FPGA circuits are supposed to be 

deterministic, these times are not. The variation may be due to communications 

with DMA, which communicates itself with the DDR3 RAM and the ARM CPU, 

which are not deterministic.  

The Table 9 shows the processing times in µs, in order to compare with Java 

times, which are not measured with the same cycle:  

Table 9: Times for an iteration in µs 

 ARM Non-opt accel Opt accel Java 95% Java 98% 

Time w/o mid times 71.93 µs 17.32 µs 14.85 µs 23.811 µs 25.864 µs 

Times in Java are chosen to be maximum for which 95% and 98% of the iterations 

were done because the distribution of the times is very irregular and varies a lot. 

This point is showed in Histogram 3. This great variation responds to several 

causes. First the virtual machine that Java uses optimizes the loops as it is going 

through them, for example caching the data that is more likely to be used. Also 

the program is running over a machine with an operative system, so the 

scheduler can be delaying this process in order to run another one.  
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Histogram 3: Times for Java iteration (ns) 

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
1

0
0

0

1
7

5
0

2
5

0
0

3
2

5
0

4
0

0
0

4
7

5
0

5
5

0
0

6
2

5
0

7
0

0
0

7
7

5
0

8
5

0
0

9
2

5
0

1
0

0
0

0

1
0

7
5

0

1
1

5
0

0

1
2

2
5

0

1
3

0
0

0

1
3

7
5

0

1
4

5
0

0

1
5

2
5

0

1
6

0
0

0

1
6

7
5

0

1
7

5
0

0

1
8

2
5

0

1
9

0
0

0

1
9

7
5

0

2
0

5
0

0

2
1

2
5

0

2
2

0
0

0

2
2

7
5

0

2
3

5
0

0

2
4

2
5

0

2
5

0
0

0

2
5

7
5

0

2
6

5
0

0

2
7

2
5

0

2
8

0
0

0

2
8

7
5

0

2
9

5
0

0

3
0

2
5

0

3
1

0
0

0

Fr
e

q
u

e
n

cy

Nanoseconds

Java times histogram



 

52 
 

8.2. Time conclusion 

1. As it can be seen in Table 9, the time of the most optimized accelerator 

is smaller than the one in Java, although the accelerator is implemented 

in a low-end FPGA that runs at 100 MHz and the Java application is 

running on an Intel Core i7 processor, which runs at 3.5 GHz.  

2. Despite of this, the acceleration is just 1.74x, which indicates that the 

transaction of matrices from RAM memory to the processing unit is the 

bottleneck in this algorithm. 

3. The maximum performance achievable in an iteration would need to hide 

the processing time (around 300 cycles) behind the transfer time (around 

1250 cycles), which is an improvement of just 24%. That is the limit within 

the current architecture.  
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9. Precision evaluation 

The fact that floating-point numbers cannot precisely represent all real 

numbers, and that floating-point operations cannot precisely represent true 

arithmetic operations, leads to many surprising situations, especially when 

dealing with relatively small numbers [29]. This is related to the finite precision 

with which computers represent numbers. 

Also while floating-point addition and multiplication are both commutative, they 

are not necessarily associative. That is, (a + b) + c is not necessarily equal to a + 

(b + c) [29]. As a consequence, some implementations of one same algorithm 

may not lead to the same results than others. This is of especial application 

when optimizing an algorithm in FPGA, due to the parallelism that can be 

implemented.  

9.1. Precision results between implementations 

There are three implementations whose results may be compared: Java 

implementation, simple coprocessor implementation and optimized 

coprocessor implementation.  

The following histograms show the absolute error in X pixels and Y pixels:  
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Histogram 4 

 

Histogram 5 
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Histogram 6 

 

Histogram 7 
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Not all the errors shown in the previous histograms are real errors. Due to the 

floating point representation for the output in different systems (Java and C) 

numbers that come from Java algorithm have 10 digits of precision, while results 

coming from C one have just 9 digits of precision. As the represented number 

is the subtraction of them both, results with an error smaller than 1e-9, or 

greater than -1e-9, are not real errors.  

There are differences between the histograms due to different reasons:  

Between Histogram 4 and Histogram 5: It is visible at the right end of the 

second histogram that there are some real errors that are not in the first one. 

The reason is that the optimized coprocessor is more parallel, then changing the 

operation order more compared to the Java implementation. This, as stated in 

[30] and [29], is a source of errors if the operated numbers have certain 

characteristics like, for example, being relatively small.  

Between Histograms in X pixels, and histograms in Y pixels (Histogram 4 and 

Histogram 5; and Histogram 6 and Histogram 7): As it was settled in the 7.7 

subsection, the algorithm is based on Gaia sensor pixel dimensions. The pixel 

size along Y axis is 3 times smaller than in the X axis. This leads to a better 

sampling in the Y axis. Then a circular PSF is represented with more pixels in 

the Y axis than in the X axis. As the number of pixels in Y axis is higher, the 

error tends to be higher too.  

Between Histogram 6 and Histogram 7: The effect is just the same as between 

Histogram 4 and Histogram 5, but the difference is much more noticeable as a 

result of the effect described in the previous paragraph.  

In the case of these two histograms it is especially important to know the 

magnitude of the errors that fall in the first and last bins of the histogram. The 

biggest difference between the Java implementation error (respect to the correct 

value known beforehand) and the optimized SoC error is 1.431e-6.  

9.2. Precision of the algorithm 

The following 6 histograms show the difference between the fit achieved by the 

different implementations of the program and the real parameters of each image 

fit. It represents the error of the algorithm, and its distribution over X and Y 

axis.  
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Histogram 8 

 

Histogram 9 
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Histogram 10 

 

Histogram 11 
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Histogram 12 

 

Histogram 13 
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As all the error histograms resemble Gaussians, the mean and standard 

deviation do characterize the error. The Table 10 show their values:   

Table 10: Mean and std. dev. 

LUT41 with noisy images 

 Java  Non-opt accel Optimized accel 

Mean of error in X pixels 0.00069 0.00069 0.00075 
Std. Avg. of error in X pixels 0.01711 0.01711 0.01764 
Mean of error in Y pixels -0.00159 -0.00162 -0.00162 
Std. Avg. of error in Y pixels 0.04219 0.04219 0.04258 

9.3. Precision conclusions 

The histograms above show that the error is 0 (or its equivalent due to 

representation precision) in nearly every case when the non-optimized core is 

used. This is because the order of the floating point operations is the same than 

in the Java implementation, so the possible errors when operating with small 

numbers are the same in both approximations. It also helps that after every 

iteration of the algorithm the result is quantized by retrieving the nearest matrix 

from memory. So, for example, if the result in “x” parameter at the end of one 

iterations of the algorithm is 5.26785 and there are only matrices whose “x” are 

5.265 and 5.270, the matrix retrieved will be 5.270. Even if the result has a small 

error, and while the error is not big enough to change the matrix that will be 

retrieved, the selected matrix will be the same, so the initial values for the next 

iteration will remain unchanged.  

In the case when the optimized accelerator is used the number of significant 

errors is not negligible. This happens because in order to optimize the 

multiplication and make use of the resources the FPGA has, a different operation 

order has been implemented. This is mainly because the use of the Block RAM 

dual port, which allows the transfer of two values at the same time, so each 

vector multiplication is divided into two vector multiplications with a 

consolidation step at the end of each half, in order to have the final result. This 

optimization is explained with more detail in the section 5.4 Additional 

coprocessor optimizations.  
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There is also a big difference between the errors in the X and Y direction. This 

difference is because of the physical size of pixels in Gaia sensor, which makes 

the PSF better sampled in the Y axis. As a result, the Y direction has more pixels 

than the X one, so the error is bigger comparatively.    
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10. Multicore study 

In the subsection 8.2 Time conclusion it is reasoned out that each iteration can 

only be optimized up to a point where all computational cost is hidden 

underneath data transfer cost, which leads to a poor 1.173x acceleration as a 

maximum.  

Then the only way to achieve more performance would be to add more 

coprocessors until the matrices requests done over the DDR3 RAM saturate it. 

Thus in the following subsection it is calculated the maximum performance of 

optimal and suboptimal approaches to the multi coprocessor architecture.  

10.1. Analysis from a suboptimal point of view: 

current architecture 

The approximation that is going to be described in this subsection has the same 

current architecture, but with a multicore system goal.  

The times achieved by the current architecture are:  

Table 11: 98% confidence times for optimized accelerator 

 

 

The labels of each of the table times are explained below , in subsection Time 

tables.  

In the current architecture it would only be needed to put two coprocessors. 

This would improve performance by only taking in account the memory transfer 

time, and not the computation time. A time schematic of this architecture is 

shown below in Figure 19.  

 Opt accel 

Send C Matrix 307 

Send B Matrix 327 

Send A Matrix 626 

Compute Time 308 

Total Time with middle times 1651 

Difference 83 

Total Time w/o middle times 1478 

  

Send C Matrix (strict) 139 

Send B Matrix (strict) 160 

Send A Matrix (strict) 459 
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The acceleration achieved over the monocore architecture would be 1.173x, 

dividing “total time without middle times” time and the sum of the matrix 

transferences.  

 

Figure 19: 2 coprocessors time schematic 

10.2. Analysis from a more optimal point of view: 

changes in coprocessor and control 

Two changes in the architecture would be able to improve the performance:  

1. C matrix does not need to be sent in each iteration, can be at BRAM 

memory (inside FPGA) 5 out of 6 iterations, because it is the real image 

that the algorithm fits.  

2. The computation time can be hidden behind the transfer time if a FIFO 

architecture is done. It would not be completely hidden, but the compute 

time which is not possible to hid would be a fraction of what it is 

currently.  

Assuming that these two changes are done and in their best cases (C does not 

have to be sent and computation time is completely hidden) the necessary time 

to complete each iteration would be “Send B Matrix” plus “Send A Matrix”, which 

is 953 cycles of 10 ns. This time implies an acceleration of 1.55x from the current 

architecture.  
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10.3. Analysis from an optimal approach 

In this subsection a fully optimal approach will be taken. The times used are 

completely theoretical some times.  

In the section Analysis from a more optimal point of view: changes in coprocessor 

and control it is said that transfers take 953 cycles of 10 ns, which is 9.53 µs. 

During this time 500 simple precision floating point values are transferred, in 

other words, 2000 bytes. Then the binary rate at which these data are transferred 

is then:  

2000 𝑏𝑦𝑡𝑒𝑠

9.41 𝜇𝑠
 ×  

1 𝑀𝐵𝑦𝑡𝑒

10242 𝑏𝑦𝑡𝑒𝑠
 = 202.69 𝑀𝐵𝑦𝑡𝑒𝑠/𝑠 

A DMA (Direct Memory Access) device like the one used have an optimal 

functioning limit of 1 4-byte data by cycle. Its cycle is the same as the one that 

drives the FPGA part of the SoC, as it is implemented inside the FPGA electronics 

(100 MHz), so it has a 10 ns period. So the theoretical binary rate limit for a DMA 

implemented in an FPGA with a clock of 100 MHz is:  

4 𝑏𝑦𝑡𝑒𝑠

10 𝑛𝑠
 ×  

1 𝑀𝐵𝑦𝑡𝑒

10242 𝑏𝑦𝑡𝑒𝑠
=  381.47 𝑀𝐵𝑦𝑡𝑒𝑠/𝑠 

Despite of this, the Look-up table (LUT) is stored in the DDR3 RAM module 

installed in the Zedboard, which are two Micron MT41K128M16HA-15E:D DDR3 

memory components. In the 6th page of the Zedboard Hardware user guide [23] 

it specifies that these modules are configured with a 32-bit interface and a speed 

up to 533 MHz (although the manufacturer of the component specifies that 

these modules can reach 666.67 MHz in [31]). This means that 1066 MT/s can 

be reached on the Zedboard, each one of 32 bits. The resultant speed is:  

1066
𝑀𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠

𝑠
 × 32 𝑏𝑖𝑡𝑠 ×

1 𝑏𝑦𝑡𝑒

4 𝑏𝑖𝑡𝑠
=  8528 𝑀𝐵𝑦𝑡𝑒𝑠/𝑠  

This means that if the theoretical top binary rate of the DDR3 RAM would be 

reached, it could serve data for up to 22 coprocessors with optimal DMAs, or 42 

coprocessors with the DMAs that are currently implemented.  
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However, this point would further increase the complexity of the system, 

because all these coprocessors and DMAs would have to be commanded from 

the main CPU, and an arbiter would have to be added in order to manage the 

access to the RAM limiting the possible conflicts over its use. It is also impossible 

to fit 20 to 40 coprocessors on this platform from a resources point of view (this 

point was analysed in section Resources used).  
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11. Conclusion and Future work  

In what follow we summarize main contributions and achievements of this 

thesis, likewise we add some possible and ongoing future works. 

11.1. Conclusion 

Two of the LUTs have been produced are considered excellent in terms of the 

algorithm performance. The first one is the 101 nodes LUT. It provides the best 

performance and the smallest the error, both in average and average deviation. 

The second one is the asymmetrical LUT, which it reaches the performance of 

the 101-node LUT while being 60% smaller, a very valuable asset in the 

embedded system. It is not considered the best in general performance because 

the average error is bigger compared to any of the other LUTs. This is an 

undesirable effect, and the origin is currently unknown, which is a reason to 

continue using symmetrical LUTs.  

Another conclusion is that the diameter variable prevents the algorithm to reach 

convergence when no interpolation between the LUTs is done. It could be due to 

a greater variability than expected. However, once the diameter dimension is not 

taken into account the algorithm precision improves with larger LUTs, although 

from a certain size the improvement is negligible. The improvement becomes 

negligible with even smaller LUTs if there is noise in the images, so the amount 

of noise limits the algorithm precision.  

The main bottleneck for the performance of this algorithm is the access to the 

LUT in RAM memory, for both the SoC with the FPGA and the Java software 

implementation, for one fit up to 6 matrices have to be read.  

A system which would process several lenslets with the current architecture 

would also be very inefficient, because with the real times provided by the single 

lenslet system, even hiding the operation time with the transference time, the 

increase in performance would be rather small.  
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A change in the architecture to solve this problem is out of the scope of the 

project due to its complexity and the time required to design and set up the 

system. Despite of this, even with an optimal multi-lenslet architecture only 8 

or less coprocessors could be placed in the current platform, due to the 

resources needed to allocate them.  

The precision of the non-optimized FPGA implementation has proved to be 

nearly as good as the Java one running on a high performance desktop 

computer. With the optimized coprocessor the numerical precision achieved is 

worse than in the other implementations, but still delivers perfectly acceptable 

results for the purposes of this algorithm. 

11.2. Future work 

As it has been proposed in the section 10 Multicore study  the next step would 

be to take advantage of the full area of the FPGA platform using as many 

coprocessors as it is possible to run in parallel, saturating either the RAM 

throughput or the area of the FPGA. For the Zedboard platform it has been 

calculated in the section 5.6 Resources used it would take 8 coprocessors to use 

all the resources of the FPGA.   

However, this system would require a change in the architecture, in order to be 

able to use the RAM memory more efficiently. This architecture would still use 

the same coprocessor as it has proved to be precise enough for the requirements 

of the algorithm, but the control system would have to change.   
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