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ABSTRACT
We report the results from a search in Super-Kamiokande for neutrino signals coincident with the first detected
gravitational-wave events, GW150914 and GW151226, as well as LVT151012, using a neutrino energy range
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from 3.5MeV to 100PeV. We searched for coincident neutrino events within a time window of±500 s around the
gravitational-wave detection time. Four neutrino candidates are found for GW150914, and no candidates are found
for GW151226. The remaining neutrino candidates are consistent with the expected background events. We
calculated the 90% confidence level upper limits on the combined neutrino fluence for both gravitational-wave
events, which depends on event energy and topologies. Considering the upward-going muon data set (1.6 GeV–
100 PeV), the neutrino fluence limit for each gravitational-wave event is 14–37 (19–50) cm−2 for muon neutrinos
(muon antineutrinos), depending on the zenith angle of the event. In the other data sets, the combined fluence limits
for both gravitational-wave events range from 2.4×104 to 7.0×109 cm−2.

Key words: astroparticle physics – gravitational waves – neutrinos

1. INTRODUCTION

On 2015 September 14 at 09:50:45 UT, LIGO identified the
first evident signal of a gravitational wave as a coincidence of
two chirp signals observed by two distant independent
interferometers (Abbott et al. 2016c). It has been suggested
that the gravitational-wave event, namely, GW150914, was due
to a merger of two black holes having masses of approximately
30 to 60 solar mass. After the announcement of the discovery
by the LIGO team on 2016 February 11, many efforts to search
for coincidences in the observational data in complementary
experiments have been made (Abbott et al. 2016b); no
astronomical counterpart has been identified, except a weak
coincident excess reported by Fermi GBM ∼0.4 s after
GW159014 (Connaughton et al. 2016), although this result is
controversial (Greiner et al. 2016). Because of the tremendous
energies involved and the unknown nature of the region of the
black hole merger, it is possible to imagine coincident
production of neutrinos. For example, the possibility of high-
energy neutrino emission from relativistic jets when an
accretion disk is formed around the source has been discussed
(Eichler et al. 1989; Woosley 1993). IceCube and ANTARES
have searched for high-energy neutrinos above ∼100 GeV in a
time window of±500 s around the real-time alert for
GW150914 issued by LIGO, but reported no positive evidence
for coincident neutrino events (Adrián-Martínez et al. 2016).

Following this event the second gravitational-wave signal,
GW151226, was reported (Abbott et al. 2016a). It was
observed on 2015 December 26 at 03:38:53 UT and was
predicted to be due to a merger of two black holes having
masses of 14.2 and 7.5 solar mass. KamLAND reported no
positive coincident neutrino events for both of these two
gravitational-wave events (Gando et al. 2016).

We report the results of a search for neutrinos in coincidence
with GW150914 and GW151226 in Super-Kamiokande (SK).
It is a water Cherenkov detector located at2700-meters-water-
equivalent underground in Kamioka, Japan. A detailed
description of the detector can be found elsewhere (Fukuda
et al. 2003). In this detector, the Cherenkov ring pattern
reconstruction identifies final state electron and muon direction
and energy from which we infer the neutrino direction, flavor,
and energy. Our search includes the neutrino energy region of
1–100 GeV, which is not covered by the previous searches
with neutrino telescopes. Moreover, SK has unique sensitivity
to MeV neutrinos either from a core-collapse supernova in the
Local Group or from some other similarly efficient mechanism.
The neutrino events with reconstructed energies above
100MeV are categorized as the “high-energy data sample” in
SK and are typically used to study atmospheric neutrinos and
search for proton decay. Neutrino events with reconstructed
energies down to 3.5 MeV are categorized as the “low-energy
data sample” and are typically used to study solar neutrinos and

to search for core-collapse supernova neutrinos. The back-
ground events in the search for astrophysical neutrinos for the
high-energy data sample are almost entirely atmospheric
neutrinos, while radioactive impurities, spallation products
from cosmic-ray muons, atmospheric and solar neutrinos are
the main backgrounds in the low-energy data sample.

2. SEARCH METHOD AND RESULTS

2.1. High-energy Data Sample

The high-energy data samples consist of three distinct
topologies: fully contained (FC), partially contained (PC), and
upward-going muon (UPMU). FC neutrino events have recon-
structed interaction vertices inside the fiducial volume with little
light detected in the outer detector. PC neutrino events also have
interaction vertices within the fiducial volume of the inner
detector, but there is significant light in the outer detector volume.
UPMU neutrino events are the highest-energy events in the SK
detector and are due to muon neutrino interactions in the
surrounding rock that produce penetrating muons. These muons
either stop in the inner detector volume (stopping events) or
continue through the inner detector (through-going events). All
three data topologies are considered for this search. Further
information about the event topologies, as well as the selection
cuts used to identify them, can be found in Ashie et al. (2005).
A search window of±500 s around the LIGO detection time

of each gravitational-wave event is selected. This is consistent
with the time window chosen by the authors of Adrián-
Martínez et al. (2016). Using data from 2339.4 days of livetime
in SK, the number of neutrino events we expect to see in a
1000 s time window is (9.41± 0.07)×10−2 for the FC data
set, (7.52± 0.23)×10−3 for the PC data set, and
(1.65± 0.03)×10−2 for the UPMU data set. In the search
window around both GW150914 and GW151226, no neutrino
events were found in the FC, PC, or UPMU data sets. This null
result is used in the calculation of the upper limit on neutrino
fluence in the subsequent sections of this Letter.

2.2. Low-energy Data Sample

There are two neutrino event selection algorithms for the low-
energy data sample: the supernova relic neutrino (SRN) search
(Bays et al. 2012) and the solar neutrino analysis (Abe et al.
2016). The largest cross section in this energy region is the
inverse beta decay of electron antineutrinos (n +  ++p e nē ).
Neutrino elastic scattering (n n+  +- -e e ) is sensitive to all
neutrino flavors, but dominated by electron neutrinos. The
observable signal in the detector originates from the charged
particle, i.e., positron or electron in these interactions. There are
other charged-current and neutral-current interactions with 16O
nuclei that are subdominant.

2
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The target energy range for the SRN analysis is from 15.5 to
79.5 MeV. Backgrounds relevant to the SRN analysis are
atmospheric neutrino interactions (decay electrons from
invisible muons, neutral-current interactions, low-energy pions
and muons), solar neutrino interactions, and spallation products
from cosmic-ray muons. The detailed analysis method and the
reduction criteria are described in Bays et al. (2012), which, as
well as this analysis, does not require a neutron capture in
delayed coincidence (Zhang et al. 2015). After all the reduction
steps, no neutino events are observed for the SRN analysis in
the±500s search window around both GW150914 and
GW151226. The expected number of background events in a
1000 s time window is (1.45±0.09)×10−3 based on 1888.9
days of data. The absence of neutrino events in this energy
region excludes the scenario of a coincidence between the
gravitational-wave and a core-collapse supernova within a
distance of 260kpc at 90% C.L.

The energy region considered in the solar neutrino analysis
is lower than that of the SRN search, from 3.5 to 19.5 MeV.
The fluence calculation will be applied below 15.5MeV to
avoid double counting with the SRN sample. After applying all
the reduction steps for the solar neutrino analysis, four neutrino
event candidates remain within the±500 s search window
around the LIGO detection time of GW150914, while no
neutrino event candidates remain around GW151226. Figure 1
shows the detection time and the energy of neutrino event
candidates passing the reduction cuts for GW150914 (left) and
the energy spectrum of the remaining events, which is
consistent with the background spectrum (right). On 2015
May 1, the trigger threshold was changed from 34 observed
PMT signals within 200ns to 31hits (Yamada et al. 2009;
Nakano 2016). Using the data after that (306.6 days of
livetime) we expect (2.90±0.01) events due to random
coincidence for each 1000 s time window centered around a
gravitational-wave incident. For GW150914 the probability of
seeing four or more events passing the reduction cuts is

calculated to be 33.0%, the probability of seeing none for
GW151226 is 5.5%. Therefore, our findings are consistent with
all of these neutrino event candidates being background.
The background events in the solar neutrino analysis consist

mainly of radioactive impurities below 5.5 MeV and spallation
products above 5.5 MeV. The first and second events are most
likely remaining spallation events caused by 16N (Zhang et al.
2016). The transverse distance between each event and its
preceding muon are 1.7 and 1.2 m, the timing differences
between the event and the preceding muon are 10.77 and
17.38 s, and the energies are above 6MeV, making these
consistent with spallation production. Additionally, the like-
lihood value of the spallation product falls close to the cut
value applied in the reduction steps. The expected number of
background events above 5.5 MeV that survive the reduction
cuts is (1.169±0.007); therefore the probability of two or
more events remaining in our sample is 32.6%. The third event
is most likely a radioactive background event caused by the
beta decay of Bi214 from the radon decay chain. This is the
dominant background near this energy region (3.6MeV;
Nakano 2016). The expected number of background events
below 5.5 MeV that survive the reduction cuts is
(1.735±0.008); therefore, the probability that one or more
events remains in our sample is 82.4%. The fourth event is
most likely a solar neutrino event because the reconstructed
direction is close to the solar direction (cosine of the angle
between them ( qcos Sun) is 0.96 with an angular resolution of
22.9°) and its recoil electron kinetic energy is 11.3 MeV, which
is typical for solar neutrino event. The main background of this
energy region is spallation events; however, the chance of
accidental coincidence of these background events with the
solar direction is quite small since the reduction of spallation
events are already fairly efficient. The expected number of solar
neutrino events is (0.229±0.005) from the latest solar
neutrino measurement in SK. The probability of one or more
solar events remaining in our sample is 20.5%.

Figure 1. Detection time and the observed kinetic energy of the charged particle (left) and the energy spectrum with the expected background spectrum (right) after
reduction cuts for the solar neutrino analysis are applied to the 1000 s search window around GW150914. The detection time of the four neutrino event candidates are
as follows; No.1 9:46:07, No.2 9:51:00, No.3 9:57:40, No.4 9:58:28 UT. The energy threshold of this analysis, shown with the blue dashed line, is 3.5 MeV in kinetic
energy.

3

The Astrophysical Journal Letters, 830:L11 (6pp), 2016 October 10 Abe et al.



Figure 2 shows the sky map using the reconstructed direction
of the charged particle in the remaining four events associated
with GW150914, along with the 90% CL contour for the
location of GW150914 according to LALInterference data
(Abbott et al. 2016b). The angular resolution of the charged
particle is calibrated by electron LINAC (Nakahata et al. 1999).
Because the energy spectrum and species of the incoming
neutrinos is not known, an estimate of the angular uncertainty
on the direction of the incoming neutrino is difficult; however,
the direction of the charged particle has a strong correlation
with the incident neutrino direction for the case of neutrino–
electron scattering, while a very weak anti-correlation exists in
the case of inverse beta decay (Strumia & Vissani 2003).

2.3. LVT151012

In addition to two gravitational-wave signals, LIGO reported
a third binary black hole candidate with a smaller significance,
named LVT151012, on 2015 October 12 at 09:54:43 UT
(Abbott et al. 2016a). We also searched for a coincident
neutrino signal within a±500 s search window around the
LVT151012 event. No neutrino events are found in the FC, PC,
UPMU, and relic supernova neutrino data sample, while five
neutrino event candidates remain after applying reduction steps
for the solar neutrino analysis. The probability of five or more
events remaining in the solar neutrino data sample is calculated
to be 16.8%, which is also consistent with background events.

3. NEUTRINO FLUENCE LIMIT

The number of neutrino candidate events observed in the
search window can be converted to an upper limit on neutrino
fluence for both of the gravitational-wave events. This is done
separately for the low-energy, FC+PC, and UPMU data sets.
The procedure used to extract the fluence limit will be
described briefly here, but uses the same prescription laid out
in Thrane et al. (2009), which follows from Swanson
et al. (2006).

For the FC and PC data set, the neutrino fluence can be
calculated using Equation (1):

ò s l
F =

n n n n
-

N

N dE E E E
, 1

T
FC,PC

90
2( ) ( ) ( )

( )

where N90 is the 90% C.L. limit on the number of neutrino
events in the search window calculated using a Poisson

distribution with a background, NT is the number of target
nuclei, σ is the combined cross section for all interactions
particular to that neutrino flavor, ò is the efficiency for
measuring the neutrino event in the detector, and λ is the
number density of the events for a given energy spectrum with
an index of −2. This spectral index is commonly used for
astrophysical neutrinos accelerated by shocks (Gaisser et al.
1995). Since no neutrino candidate events pass cuts within the
search window for the FC and PC data sets, we derive N90

using = - =N ln 0.1 2.3.90 ( ) Fluence limits are calculated
separately for each neutrino species by considering the cross
section and detection efficiency specific to the neutrino type.
Cross sections from NEUT 5.3.5 (Hayato 2009) are used in

the calculation of Equation (1). To determine the detector
efficiency, mono-energetic neutrino interaction files produced
with NEUT 5.3.5 are passed as inputs to the SK Monte Carlo
detector simulation. The resulting output files then undergo the
same reconstruction and reduction procedures that are applied
to the data. The efficiency is determined by calculating the
fraction of remaining events after reduction and selection cuts.
The energy range of 100 MeV–10 GeV is considered.
For the UPMU data set, the neutrino fluence is calculated

using Equation (2):

ò l
F =

n n n n
-

N

A z dE P E S z E E,
. 2UPMU

90

eff
2( ) ( ) ( ) ( )

( )

Here, fluence depends on the zenith-dependent effective area
(Aeff(z)), where z is the zenith angle of the incoming neutrino,
the probability for a neutrino to create a muon with energy
greater than nE min (P(Eν)), the shadowing of the neutrinos due
to interactions in the Earth ( nS z E,( )), and the number density
(λ) of the neutrino events for the given energy spectrum with
an index of −2. Again, since there are no neutrino candidate
events within the search window for the UPMU data set, we
use N90=2.3. The energy range considered for the UPMU
fluence is 1.6 GeV–100 PeV.
For the low-energy data sample, the neutrino fluence

calculation is similar to Equation (1); however, since there is
no reason to assume a power spectrum nor any reliable theory
of neutrino emission spectrum in this energy region, we set the
neutrino energy spectrum to have an index of 0, which is flat.
Therefore, the fluence limit is calculated with the assumption of
flat spectrum of neutrino energy from 3.5 to 75MeV as shown
in Equation (3):

ò l s
F =

n n n

N

N dE E E R E E E,
, 3

T e
lowe

90

vis vis( ) ( ) ( ) ( )
( )

where R is the response function from electron or positron
energy (Ee) to the kinetic energy in SK (Evis). The response
function and the detection efficiency (ò) is calculated using the
SK detector Monte Carlo simulation. N90 is calculated to be
5.41 (2.30) from the remaining four (zero) neutrino candidate
events compared to the expected 2.90 events in this data sample
for GW150914 (GW151226). The accidental coincidence of
solar neutrinos with a gravitational-wave signal are easily
reduced by a factor of 0.9 with an angular cut on the recoil
electron’s direction ( q >cos 0.8Sun ). In this case, the number of
remaining neutrino candidate events is three (zero) compared to
2.46 expected events, and N90 is 4.64 (2.30) for GW150914

Figure 2. Reconstructed directions of the charged particle in the remaining four
events associated with GW150914 (black points), shown here with the 90% CL
contour for the location of GW150914 according to LALInterference data. The
shaded area around SK events shows the 1σ angular resolution of the charged
particle corresponding to the energy of each event. The “×” shows the Sun’s
direction at the time of the GW event.
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(GW151226). In addition, since any emission models for low-
energy neutrinos are not well motivated, we express the fluence
limit that is calculated for monochromatic neutrino energy Eν

obtained by replacing λ(Eν) with a delta function d - nE E( ).
The fluence limits for both GW events are shown in Figure 3.

Table 1 shows the fluence limit results for the FC+PC,
UPMU, and low-energy data sets for both gravitational-wave
events separately, as well as for both events combined. To
calculate the combined neutrino fluence limit, the N90 is
calculated using the search windows around both gravitational-
wave events and is then weighted by the number of
gravitational-wave events, which in this case is two. For the
UPMU events, fluence is dependent on zenith angle, and thus we
show the upper limit of neutrino fluence from UPMU events as a
sky map of possible fluence limits in Figure 4. Since the
gravitational-wave events are not well localized, a combined
fluence limit for the UPMU data set is not reported. The UPMU
upper limit fluence values range from (14–37) cm−2 for
neutrinos and from (19–50) cm−2 for antineutrinos, depending
on the direction of the gravitational-wave event. We convert our
UPMU fluence limit to an upper limit on total energy radiated in
neutrinos by convolving Equation (2) by the energy spectrum
and weighting by pd4 GW

2 where dGW is the distance between
the detector and the gravitational-wave source. The resulting
upper limit on total energy is ~ ´nE 1 6 10tot 55( – ) erg for
GW150914 assuming the LIGO-determined distance of
410Mpc and ~ ´nE 2 7 10tot 55( – ) erg for GW151226 assum-
ing the LIGO-determined distance of 440Mpc. For comparison,
the total energy radiated in gravitational waves by GW150914 is
∼5×1054 erg (Adrián-Martínez et al. 2016), and the total
energy radiated in neutrinos from a typical supernova is ∼ a few
×1053 erg (Bethe 1990).

4. CONCLUSION

We search for possible neutrino signals coincident with
GW150914, GW151226, and LVT151012 in the SK detector
using a wide energy range from 3.5 MeV to 100PeV. In the
high-energy data sample, three neutrino interaction categories
are considered: FC, PC, and UPMU. No neutrino candidate
events are found in the search window of±500 s around the
LIGO detection time for both gravitational-wave signals.

Low-energy neutrino events are also examined using the
SRN and the solar neutrino data samples in the same search
time window. No neutrino candidate events are found in the
SRN data sample for both gravitational-wave signals. No
neutrino candidate events are found in the solar neutrino data
for GW151226; however, four neutrino candidate events are
found for GW150914. These four events are consistent with the
estimated background, with one of them possibly associated
with solar neutrinos.
The obtained neutrino fluence limits give the most stringent

limits for neutrino emission in the energy region below
∼100GeV, assuming an E−2 spectrum from GW150914 and
GW151226. The absence of MeV neutrino emission in the
solar neutrino and the SRN data samples is inconsistent with
the source of the gravitational-wave signals being a nearby
core-collapsed astronomical object.

Figure 3. The 90% C.L. limit for GW150914 (left) and GW151226 (right) on fluence obtained by mono-energetic neutrinos at different specific energies from the
low-energy data sample.

Table 1
Limits at 90% C.L. on the Fluence of Neutrinos from GW150914 and

GW151226 Given a Spectral Index of −2 and an Energy Range of 100 MeV–
10 GeV for the FC+PC and 1.6 GeV−100 PeV for the UPMU Data Samples,
and a Flat Spectrum for the Low-energy Data Sample whose Energy Region Is

from 3.5 to 75 MeV

GW150914
Φν (cm

−2) GW151226 Fn(cm
−2)

Combined
Φν (cm

−2)

From FC+PC only
νμ 5.6×104 5.6×104 2.8×104

nm¯ 1.3×105 1.3×105 6.5×104

νe 4.8×104 4.8×104 2.4×104

nē 1.2×105 1.2×105 6.0×104

From UPMU only
νμ 14–37 14–37 K
nm¯ 19–50 19–50 K

From low-energy only
nē 4.2/3.6×107 1.8/1.8×107 1.6/1.5×107

νe 3.0/2.6×109 1.3/1.3×109 1.2/1.1×109

νx 1.9/1.6×1010 8.1/8.1×109 7.0/7.0×109

Note.The values on the left/right in the low-energy sample show the fluence
limit without/with the solar direction cut, respectively.
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