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Gaussian processes are non-parametric models that can be used to carry
out supervised and unsupervised learning tasks. As they are non-parametric
models, their complexity grows with the number of data instances, and as
a consequence, they can be used to explain complex phenomena associated
with the training dataset. They are also very useful to introduce a priori
knowledge in the learning problem, because the characteristics that they
can describe are given by a covariance function. Finally, these models are
Bayesian models, thus they allow to obtain the uncertainty of the predic-
tions and perform model comparison in an automated way. Despite all
these advantages, in practice Gaussian processes have certain limitations.
The first one is that the computations needed to train the model are only
tractable in regression problems with Gaussian additive noise, and for any
other case they need to be approximated. The other problem is their scala-
bility, given that the training cost is cubic with respect to the number of ob-
served data points N . In this master thesis, we propose a method for multi-
class classification with Gaussian processes that scales well to very large
datasets. For that, it uses the Expectation Propagation algorithm, along
with the Fully Independent Training Conditional approximation (which in-
troduces M � N pseudo-inputs), stochastic gradients and some extra as-
sumptions that reduce the training cost to O(M3). Experimental results
show that this method is competitive with other approaches based on vari-
ational inference.
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Chapter 1

Introduction to Machine
Learning

In this chapter we will make a brief introduction to machine learning prob-
lems and the basic methods for solving them.

We can define machine learning as a set of methods that can automati-
cally detect patterns in data, and then use the uncovered patterns to predict
future data, or to perform other kinds of decision making under uncertainty
(Murphy, 2012: p1).

Machine learning is usually divided into two main categories, accord-
ing to the type of problem that we wish to solve: supervised learning and
unsupervised learning. There is a third type of machine learning, called re-
inforcement learning, but it is less commonly used and it goes beyond the
scope of this thesis.

1.1 Bayesian machine learning

First of all, we need to understand the Bayesian approach for solving ma-
chine learning problems. Let the data be a set of observed points X =
(x1, . . . ,xN ).

1.1.1 Likelihood

The likelihood function describes the information obtained from the observed
data. It is the distribution of the observed data conditional on some param-
eters p(X|θ). If we just consider this as a function of θ and we optimize
the parameters θ by maximizing the likelihood function we obtain what is
called the maximum likelihood estimation (MLE).

1.1.2 Prior

The prior distribution introduces the values that we expect to obtain for the
parameters before observing the data, or the prior knowledge that we may
have about the problem. It is the distribution of the parameter(s) before any
data is observed p(θ). This prior knowledge is particularly important in
small datasets, where we do not get enough information from the observed
data.
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1.1.3 Posterior

The posterior distribution combines the prior and the likelihood by means of
the Bayes’ theorem in order to capture the values for θ that are compatible
with the observed data.

p(θ|X) =
p(X|θ)p(θ)

p(X)
. (1.1)

In general, when we have enough data, the posterior p(θ|X) becomes peaked
on a single concept, namely the maximum a posteriori (MAP) estimate
(Murphy, 2012: p68).

The denominator in Bayes’ theorem p(X) is a normalization constant
and is called the marginal likelihood. It is useful for comparing several
possible models given the observed data (Bishop, 2006: p161).

1.1.4 Posterior predictive distribution

The posterior predictive distribution is the distribution of a new data point x∗
conditional on the observed data. It is given by:

p(x∗|X) =

∫
θ
p(x∗|θ)p(θ|X)dθ , (1.2)

where we have marginalized out the parameters θ and p(x∗|θ) is the pre-
dictive distribution given θ for the new data point.

1.2 Supervised learning

The goal is to learn a mapping from inputs x to outputs y given a set of
labeled examples {(xi, yi)}Ni=1.

When the output variable y is a real-valued variable the problem is
known as regression, and when is categorical (it takes a value from a fi-
nite set), the problem is known as classification.

1.2.1 Regression

The simplest method to solve regression problems is called linear regression
and it consists in fitting a linear combination of the input variables (Bishop,
2006: p138)

y(x,w) = w0 + w1x1 + . . .+ wNxN , (1.3)

where x is the input vector and w is a weight vector. We will choose the
vector w such that it minimizes an error function (usually the least square
error) using the maximum likelihood estimator.

To make the model more expressive we can define a new method by
considering linear combinations of fixed nonlinear functions of the input
variables
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y(x,w) = w0 +
M−1∑
j=1

wjφj(x) , (1.4)

where φj(x) are known as basis functions and the total number of parameters
in this model will be M.

It is often convenient to define an additional dummy ’basis function’
φ0(x) = 1 so that

y(x,w) =

M−1∑
j=0

wjφj(x) = wTφ(x) . (1.5)

The main issue with this approach is that we can make the model too
complex and end up over-fitting the data. This happens when we try to
model every minor variation in the output, since this is more likely to be
noise than true signal (Murphy, 2012: p22). The consequence is that the
model will have poor predictive performance, as it overreacts to minor fluc-
tuations in the training data. In order to avoid it, a regularization term can
be added to the error function so that we can control the bias-variance trade-
off, which comes from the decomposition of the expected error in bias error,
variance error and irreducible error. The last one cannot be reduced regard-
less of the algorithm. Biases are simplifying assumptions which tend to
generate simpler models, so algorithms with high variance may under-fit
the training data. Variance can be seen as the sensitivity of the algorithm
to small fluctuations in the training set, so algorithms with high variance
tend to over-fit. In general, increasing the variance will decrease the bias
and viceversa.

If we use a Bayesian treatment of linear regression we will avoid the
over-fitting problem and it will allow us to know the uncertainty of the pre-
dictions made by the model and to compare easily the different models.

We assume that the target variable t is given by a deterministic function
y(x,w) with additive Gaussian noise so that

t = y(x,w) + ε , (1.6)

where ε is a zero mean Gaussian random variable with precision β. Thus
we can write

p(t|x,w, β) = N (t|y(x,w), β−1) , (1.7)

whereN (x|µ, σ2) is the probability density function of a Gaussian distribu-
tion with mean µ and variance σ2. This is, for the univariate case:

N (x|µ, σ2) =
1√

2σ2π
e−

(x−µ)2

2σ2 . (1.8)

Making the assumption that the observed data points are drawn indepen-
dently from (1.7), the likelihood function will be
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p(t|X,w, β) =
N∏
n=1

N (tn|wTφ(x) .β−1) (1.9)

The conjugate prior probability distribution over the model parameters
w is given by a Gaussian distribution of the form

p(w) = N (w|m0,S0) , (1.10)

having mean m0 and covariance S0.

The posterior distribution p(w|t, β) is proportional to the product of the
likelihood function and the prior and due to the choice of a conjugate Gaus-
sian prior, the posterior will also be Gaussian. This is important because the
predictive distribution is defined by

p(t|t, β) =

∫
p(t|w, β)p(w|t, β)dw , (1.11)

in which t is the vector of target variables in the training set. This integral
will be analytically tractable because all the terms in it are Gaussian.

1.2.2 Classification

In classification, given some observed data with attributes X = (x1, . . . ,xn)
and with associated labels y = (y1, . . . , yn) where the yi are categorical vari-
ables , the task is to predict the class label of a new instance.

A discriminant is a function that receives an input vector x and assigns
it to one of C classes.

The simplest discriminants are linear discriminants, those for which the
decision surfaces are hyperplanes. We can then extend to nonlinear prob-
lems by using basis functions, as explained in the previous section.

For multiple classes, we can consider the use of C − 1 classifiers each of
which solves a two-class problem of separating points in a particular class
Ck from points not in that class. This is known as a one-versus-the-rest clas-
sifier. However, it can lead to regions that are ambiguously classified.

Another option is to introduce C(C − 1)/2 binary discriminant func-
tions, one for every possible pair of classes. This is known as a one-versus-
one classifier. It can also lead to ambiguously classified regions.

In order to avoid these difficulties we can use instead a single C-class
discriminant comprisingC linear functions of the form (Bishop, 2006: p183)

yk(x) = wT
k x + wk0 , (1.12)

and then assign an input point x to class Ck if yk(x) > yj(x) for all j 6= k
(Bishop, 2006: p183).
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Once we have defined discriminant functions, we can adopt two differ-
ent approaches:

Generative models: will try to model the class-conditional densities p(x|Ck)),
as well as the class priors p(Ck), and then use them to compute the poste-
rior probabilities p(Ck|x) through Bayes theorem.

Considering the two class case, the posterior probability for class C1 can
be written as

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a)
= σ(a) ,

(1.13)

where we have defined

a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)
, (1.14)

and σ(a) is the logistic sigmoid function.

Similarly, for the multi-class case, the posterior probability of class Ck is
given by

p(Ck|x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

=
exp(ak)∑
j exp(aj)

(1.15)

which is known as the softmax function and can be viewed as a generaliza-
tion of the sigmoid. Here the ak are defined by

ak = ln p(x|Ck)p(Ck) (1.16)

One disadvantage of generative models is that they directly estimate den-
sities, which is a very difficult task in high dimensions.

Discriminative models: try to model directly the posterior distribution
p(Ck|x). One advantage of this approach is that it will have less parameters
to be determined. It focuses on estimating classification frontiers, instead
of directly estimate densities.

Linear regression models can be generalized to the binary classification
setting easily by replacing the Gaussian distribution for t with a Bernoulli
distribution and then passing a linear combination of the inputs through
the sigmoid function

p(t|x,w) = Ber(t|σ(wTx)) , (1.17)
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Figure 1.1: Examples of machine learning problems

where Ber(p) is a Bernoulli distribution with success probability p.This
model is called logistic regression. However, when using a Bayesian treat-
ment of the logistic regression model, computation of the posterior distri-
bution over the parameters cannot be done exactly, since there is no conve-
nient conjugate prior.

The integral in eq. (1.11) needed to compute the predictive distribution
is analytically intractable for logistic regression, so we will have to use an
approximated solution as well. In chapter 3 we will see some methods to
perform approximate inference, which are very useful to compute approx-
imate posterior and predictive distributions.

1.3 Unsupervised learning

Here the goal is to discover some interesting patterns from a set of unla-
beled data points. As we are not told what the desired output is for each
input, this is a much less well-defined problem.

Some examples of unsupervised learning problems are:

• Clustering: It is the most common example of unsupervised learning.
The goal is to cluster data into K clusters or groups. k-means is one of
the most popular algorithms to perform clustering.

• Dimensionality reduction: Sometimes it is convenient to reduce the
dimensionality of the data before applying any machine learning al-
gorithm. An example of a method for dimensionality reduction is
PCA (Principal Components Analysis).

• Data completion: When some of the points in the data are missing
we may use unsupervised learning to learn them.
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Chapter 2

Introduction to Gaussian
Processes

In this chapter we will introduce Gaussian processes and how to use them
in regression and classification problems.

A Gaussian process is a collection of random variables, any finite num-
ber of which have a joint Gaussian distribution (Rasmussen and Williams,
2005: p13).

The random variables represent the value of a function f(x) (possibly
corrupted by noise) at location x. In our case, x takes the values of possible
inputs.

A Gaussian process is specified by its mean function m(x) and covari-
ance function k(x,x′). We define mean function and the covariance func-
tion of a real process f(x) as

m(x) = E[f(x)]

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] .
(2.1)

Usually, we will consider the mean function to be equal to zero for sim-
plicity, although it is not strictly necessary.

The covariance function is the crucial ingredient of Gaussian process, it
encodes the assumptions about the function we wish to learn. Since a Gaus-
sian process is a collection of random variables, a consistency requirement
must be fulfilled. That is, if for example the GP specifies (y1, y2) ∼ N (µ,Σ),
then it must be true that y1 ∼ N (µ1,Σ11), where µ1 is the first element of
the mean vector and Σ11 is a sub-matrix of Σ. This means that working
with a larger set of variables does not change the distribution of the smaller
set.

2.1 Regression

One can think of a Gaussian process as defining a distribution over func-
tions, and inference taking place directly in the space of functions, this is
the function-space view.
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In order to perform inference directly in function space, first of all we
need to define the covariance function.

Prediction with Noise-free Observations

We will first consider the case where the input points are noise-free.

All along this thesis we will make use of the RBF (Radial Basis Function)
or Gaussian covariance function, which is the most used due to its univer-
sality (Micchelli et al., 2006) and to the fact that it is infinitely differentiable,
so it is leads to smooth functions (Rasmussen and Williams, 2005: p83). The
definition of this function is

cov(f(xp), f(xq)) = k(xp,xq) = σ2f exp

− d∑
j=1

(xpj − xqj)
2

2`2j

 , (2.2)

where the free parameters or hyperparameters are:

• σ2f : The signal variance.

• `j : The length scale corresponding to the j-th dimension.

In Figure 2.1a three functions were generated from a GP with the RBF
covariance function.

It can be shown that this covariance function corresponds to a Bayesian
linear regression model with an infinite number of basis functions (Ras-
mussen and Williams, 2005: p96). The joint distribution of the training out-
put f and the test output f∗ is[

f
f∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
, (2.3)

where X are the training points, X∗ are the test points, K(A,B) is the co-
variance matrix between the points in A and B and N (µ,Σ) is the proba-
bility density function of a multi-variate Gaussian distribution in d dimen-
sions with mean vector µ and covariance matrix Σ. This is

N (µ,Σ) =
1√

(2π)d|Σ|
exp(−1

2
(x− µ)TΣ−1(x− µ)) . (2.4)

What we want then is to get the posterior distribution to draw functions
that pass through the training points X. Instead of sampling from this dis-
tribution and discard the functions that do not pass through the training
points, we are going to condition the joint Gaussian prior on the observa-
tions (Roweis, 1999: p2) to give

f∗|X∗,X, f ∼ N (K(X∗,X)K(X,X)−1f ,

K(X∗,X∗)−K(X∗,X)K(X,X)−1K(X,X∗)) .
(2.5)
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Figure 2.1: Panel (a) shows three functions generated at ran-
dom from a GP prior. Panel (b) shows three samples of the
posterior distribution given some observed data. The gray
area represents the the pointwise mean plus and minus two
times the standard deviation for each input value.

We only need to evaluate these expressions for the mean and covariances
and sample function values f∗ from the joint distribution.

In Figure 2.1b you can see an example of GP linear regression where
some samples of the posterior distribution are drawn given some input
points.

Prediction with Noisy Observations

In order to have a more realistic model, it is convenient to consider that the
inputs that we receive are noisy versions of them (y = f(x) + ε). Assum-
ing ε is additive independent identically distributed Gaussian noise with
variance σ2n, the covariance function is now

cov(f(xp), f(xq)) = k(xp,xq) = σ2f exp

(
−(xp − xq)

2

2`2

)
+ σ2nδpq , (2.6)

where δpq is a Kronecker delta which is one iff p = q and zero otherwise.
The joint distribution is slightly different than the noise-free version of it
too [

y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2nI K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
. (2.7)

With this new definition, the equivalent predictive distribution correspond-
ing to eq. (2.5) is derived, giving

f∗|X,y,X∗ ∼ N (f̄∗, cov(f∗)) , where (2.8)

f̄∗ , E[f∗|X,y,X∗] = K(X∗,X)[K(X,X) + σ2nI]−1y (2.9)

cov(f∗) = K(X∗,X∗)−K(X∗,X)[K(X,X) + σ2nI]−1K(X,X∗) . (2.10)
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Note that eq. (2.9) is the mean function and eq. (2.10) the covariance func-
tion of the posterior process, which is also a Gaussian process.

One of the advantages of the Bayesian treatment of machine learning
problems is that model selection can be easily accomplished by means of
the marginal likelihood (or evidence) p(y|X) (Bishop, 2006: p162).

We compute the marginal likelihood by marginalizing over the function
values f (integrating the likelihood times the prior over f )

p(y|X) =

∫
p(y|f ,X)p(f |X)df . (2.11)

Because under the Gaussian process model the prior is Gaussian, p(f |X) ∼
N (0,K) with covariance matrix K, and the likelihood is a factorized Gaus-
sian, p(y|f ,X) ∼ N (f , σ2nI), we can assure the product will be another Gaus-
sian (Roweis, 1999: p2). Therefore, we can make use of this identities to
perform the integration yielding the log marginal likelihood

log p(y|X) = −1

2
yT (K + σ2nI)−1y − 1

2
log |K + σ2nI| −

n

2
log 2π . (2.12)

The log marginal likelihood is usually maximized to find the optimal hyper-
parameters. For that, we need to compute its gradient with respect to the
hyperparameters. Let θj be a hyperparameter of the prior. Then, the gra-
dient of log p(y|X) with respect to a hyperparameter θj will be (Rasmussen
and Williams, 2005):

∂ log p(y|X)

∂θj
=

1

2
yTK−1

∂K

∂θj
K−1y − 1

2
tr
(

K−1
∂K

∂θj

)
=

1

2
tr
((
ααT −K−1

) ∂K

∂θj

)
.

(2.13)

where α = K−1y and we have used the identities about the trace and the
chain rule for matrix derivatives in (Petersen and Pedersen, 2012).

2.2 Binary Classification

In this section we are going to try to find a generalization of the logistic re-
gression model explained in Section 1.2.2.

So as to apply Gaussian processes to the binary classification problem
the idea is to place a GP prior over the latent function f(x) and then pass
it through the logistic function to obtain a prior on π(x) , p(y = +1|x) =
σ(f(x)) (Rasmussen and Williams, 2005: p39). In Figures 2.2a and 2.2b an
example of the effect of applying a squashing function σ(·) on the function
f(x) is shown.

Here, we are not particularly interested in the values of the latent func-
tion f , but in π, in particular for test cases π(x∗).
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Figure 2.2: Panel (a) shows a sample function f(x) gener-
ated from a GP . Panel (b) shows the probability of the class
π(x) obtained by squashing the function f(x) through the
logistic logit function.

First, we need to compute the distribution of the latent variable corre-
sponding to a test case x∗

p(f∗|X,y,x∗) =

∫
p(f∗|X,x∗, f)p(f |X,y)df , (2.14)

where p(f |X,y) = p(y|f)p(f |X)/p(y|X) is the posterior distribution over
the latent variables of the training data. Given p(f∗|X,y,x∗) we can use it
to make predictions

π∗ , p(y∗ = +1|X,y,x∗) =

∫
σ(f∗)p(f∗|X,y,x∗)df∗ . (2.15)

Once again, the problem in classification is that the integral required to
compute the marginal likelihood p(y|X) is analytically intractable due to
the non-Gaussian likelihood.

Thus we need to use either analytic approximations of these integrals
like the Laplace approximation method (Williams and Barber, 1998) or Monte
Carlo methods to make inference in this type of problem. In Chapter 3 we
will see some of these methods.

2.3 Multi-class Classification

For the multi-class case, each of the N points has C latent functions, one for
each class. We define the latent function vector as

f =
(
f1(x1), . . . , f

1(xN ), f2(x1), . . . , f
2(xN ), . . . , fC(x1), . . . , f

C(xN )
)

= (f11 , . . . , f
1
n, f

2
1 , . . . , f

2
n, . . . , f

C
1 , . . . , f

C
N ) .

(2.16)

The prior over f has the form f ∼ N (0,K) (Rasmussen and Williams, 2005:
p48), where the covariance matrix of the prior K is defined as
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K =


K1(X,X) 0 · · · 0

0 K2(X,X) · · · 0
...

... · · · ...
0 0 · · · KC(X,X)

 , (2.17)

where each Kj(X,X) is the covariance matrix of the latent values related to
class j (Kim and Ghahramani, 2006).

Let y be a vector of the same length as f , which for each i = 1, . . . , n
has an entry of 1 for the class which is the label for example i and 0 for
the other C − 1 entries (Rasmussen and Williams, 2005: p48). Let define
fi = (f1i , . . . f

C
i ) as a vector containing the values of the latent functions for

the i-th example. The likelihood p(yci |fi) at training point i for the class c is
defined by using a softmax function as follows

p(yci |fi) = πci =
exp(f ci )∑
c′ exp(f c

′
i )

. (2.18)

Then π is a vector of the same length as f with entries πci (Rasmussen and
Williams, 2005: p48).
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Figure 2.3: One-dimensional classification problem with
three classes generated from samples of a GP prior. Panel
(a) shows samples of the GP prior corresponding to each of
the classes. Panel (b) shows the class label for each instance
tagged following the rule yi = arg maxk f

k
i (x). Best seen in

color.

However, eq. (2.18) is not the only suitable likelihood available for this
kind of problems. An alternative approach considers that yi = arg maxk f

k
i (x).

This means that the class corresponding to the i-th example is the one that
takes the maximum latent value for that example. More formally:

p(yci |fi) =

{
1 if f ci > fki ∀k 6= c

0 otherwise
. (2.19)

So the likelihood for the i-th input point can be expressed as follows:

p(yi|fi) =
∏
c 6=yi

Θ(fyii − f ci ) , (2.20)
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where Θ(·) is the Heaviside step function, whose value is 1 if its argument
is positive and 0 otherwise.

As usual, we can get the posterior of f by using Bayes’ theorem:

p(f |X,y) =

[∏
i

∏
c 6=yi Θ(fyii − f ci )

]
p(f)

p(y|X)

=

[∏
i

∏
c 6=yi Θ(fyii − f ci )

]∏C
k=1 p(f

k)

p(y|X)
,

(2.21)

where fk = (fk1 , . . . , f
k
N ) is a vector containing the values of the latent

function associated with the class k for every input point. We will also
need some approximation in order to make predictions, because the inte-
gral needed to compute the marginal likelihood is not tractable, like in the
binary case. In the next chapter, we will see some of these approximate
methods to perform inference. The hyperparameter selection will be done
by maximizing the approximation to the marginal likelihood p(y|X).

An issue with the previous likelihood functions is that they do not con-
sider errors in the labels of the data, so over-fitting can become a seri-
ous problem when errors far from the decision boundaries are observed
(Hernández-Lobato et al., 2011).

Following (Hernández-Lobato et al., 2011) we can define a more robust
likelihood function:

p(y|X, z, f) =
n∏
i=1

∏
c 6=yi

Θ(fyii − f ci )

 (1− ε) +

[
1

C

]
ε

 , (2.22)

where C is the number of classes and ε is the probability of a labeling error.
It indicates whether the labeling of that instance is wrong and if so, we
assume that the label has been randomly selected with uniform probability
among the possible classes.
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Chapter 3

Approximate Inference

In the previous chapter, we have seen that sometimes exact inference is not
possible due to the intractability of some of the integrals needed to achieve
it. We will present some of the methods and algorithms available to carry
out approximate inference.

3.1 Deterministic methods

These methods are based on analytical approximations to the posterior dis-
tribution, which is replaced with a simpler distribution for which the re-
quired expectations can be computed analytically.

3.1.1 The Laplace approximation

The idea behind this method is to replace a distribution p(z) over an M -
dimensional space z with a Gaussian approximation q(z) (Bishop, 2006:
pp213-216). Suppose the distribution p(z) is defined as

p(z) =
1

Z
f(z) , (3.1)

where Z =
∫
f(z)dz is the normalization constant, which is analytically in-

tractable . The goal is to find a Gaussian approximation q(z) centered in the
mode of the real distribution p(z).

For that, we need to find its maximum z0 (where the gradient ∇f(z)
vanishes) and do a second order Taylor expansion of log f(z) around it

log f(z) ' log f(z0)−
1

2
(z− z0)

TA(z− z0) , (3.2)

where A = −∇∇ log f(z)|z=z0 is the Hessian evaluated at the mode. Taking
the exponential in both sides we get

f(z) ' f(z0) exp

(
−1

2
(z− z0)

TA(z− z0)

)
, (3.3)

which is an unnormalized Gaussian with mean z0 and covariance A−1. The
distribution q(z) is proportional to f(z) and the normalization constant is
found using the standard constant for a multivariate Gaussian

q(z) =
|A|1/2
2πM/2

exp

(
−1

2
(z− z0)

TA(z− z0)

)
= N (z|z0,A−1) , (3.4)
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Figure 3.1: Laplace approximation to a Beta distribution.
The blue shaded curve is the real Beta distribution and the
black curve is the Laplace approximation to that distribu-
tion.

where M is the number of dimensions.
In Figure 3.1 an example of a Laplace approximation to a Beta distribu-

tion is shown.

3.1.2 Variational Inference

The Kullback–Leibler divergence is a quantity that measures the similarity
between two probability distributions p and q (Kullback and Leibler, 1951).
It is always positive and equal to zero if and only if p = q.

Let Z be the set of latent variables and parameters and X the set of
observed data. Our goal is to find an approximation for the posterior distri-
bution p(Z|X) as well as for the model evidence p(X) (Bishop, 2006: p463).
The KL divergence is defined as follows

KL(q ‖ p) = −
∫
q(Z) log

{
p(Z|X)

q(Z)

}
dZ ≥ 0 . (3.5)

We want to find the latent variables and parameters such that this quantity
is minimized. However, this is hard to compute, since p(Z|X) is assumed to
be intractable. To bypass this problem we can decompose the log marginal
probability using

log p(X) = L(q) + KL(q ‖ p) ≥ L(q) , (3.6)

where the lower bound L(q) is

L(q) =

∫
q(Z) log

{
p(X,Z)

q(Z)

}
dZ . (3.7)

It is easy to see that minimizing the KL divergence is equivalent to maximiz-
ing the lower bound L(q) because log p(X) is constant. This is illustrated in
Figure 3.2.

In general we will be not able to work directly with the posterior distri-
bution, thus we need to restrict the family of distributions q(Z) in which to
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L(q)

KL(q ‖ p) log p(X)

Figure 3.2: Decomposition of the log marginal probability

seek. This restriction is imposed to achieve tractability but we must try to
use a family of approximations as rich as possible.

In order to restrict the family of distributions, we can use a parametric
distribution p(Z|ω) with a set of parameters ω, e.g a Gaussian distribution,
and then apply some of the standard nonlinear optimization techniques,
e.g. gradient ascent, to maximize L(q), which is equivalent to minimizing
KL(q ‖ p).

Another option is to partition the elements of Z in M disjoint groups Zi
and then assume that the distribution q(Z) factorizes with respect to these
groups, so that

q(Z) =
M∏
i=1

qi(Zi) . (3.8)

This approach is called mean field theory (Parisi, 1988). Substituting (3.8)
in (3.7) we get

L(q) =

∫ M∏
i=1

qi(Zi)

{
log p(X,Z)−

M∑
i=1

log qi(Zi)

}
dZ

=

∫
qj(Zj)


∫

log p(X,Z)
∏
i 6=j

qi(Zi)dZi

 dZj

−
∫
qj(Zj) log qj(Zj)dZj + const

=

∫
qj(Zj) log p̃(X,Zj)dZj −

∫
qj(Zj) log qj(Zj)dZj + const ,

(3.9)

where we have taken out the factor qj(Zj) and we have defined the distri-
bution log p̃(X,Zj) to be

log p̃(X,Zj) = Ei 6=j [p(X,Z)] + const . (3.10)
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The optimal solution for log qj(Zj) is obtained by fixing the values of the
other factors and noting that (3.9) is a negative KL between qj and p̃. This
means that the optimal qj has the following form:

log q∗j (Zj) = Ei 6=j [log p(X,Z)] + const . (3.11)

Taking the exponential and normalizing we get the solution

q∗j (Zj) =
exp(Ei 6=j [log p(X,Z)])∫

exp(Ei 6=j [log p(X,Z)])dZj
. (3.12)

3.1.3 Expectation Propagation

The last of the deterministic methods we are going describe is Expectation
Propagation or EP (Minka, 2001).

This algorithm also minimizes in an approximate way the KL diver-
gence but in the reverse form KL(p ‖ q), instead of KL(q ‖ p), which is
believed to work better.

In EP, q(z) needs to be a member of the exponential family, which is
closed under product and division (Seeger, 2005: p2). This is

q(z) = exp(ηTu(z)− g(η)) , (3.13)

where η is a vector of the natural parameters of q, u(z) are the sufficient
statistics and g(η) is the log normalizer, which forces q to be normalized
(see Appendix A). This is

g(η) = log

∫
exp(ηTu(z))dz . (3.14)

If we express the KL divergence in terms of η we get

KL(p ‖ q) = g(η)− ηTEp(z)[u(z)] + const . (3.15)

We want to minimize this function. For that, we set the gradient with re-
spect to η equal to zero, giving

∂KL(p ‖ q)
∂η

= 0⇐⇒ ∂g(η)

∂η
= Ep(z)[u(z)] . (3.16)

By computing the gradient of eq. (3.14) with respect to η we get

∂g(η)

∂η
=
∂ log

∫
exp(ηTu(z))dz

∂η

=
1

log
∫

exp(ηTu(z))dz

∂
∫

exp(ηTu(z))dz

∂η

=

∫
u(z) exp(ηTu(z))dz

log
∫

exp(ηTu(z))dz
= Eq(z)[u(z)] .

(3.17)

If we combine eq. (3.16) and eq. (3.17) we get:

Ep(z)[u(z)] = Eq(z)[u(z)] , (3.18)
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and we can conclude that minimizing the KL divergence between two dis-
tributions is equal to matching their moments (expected sufficient statis-
tics).

Minimizing KL(p ‖ q) directly is not tractable analytically. Neverthe-
less, with EP we can do it in an iterative way.

For many probabilistic models, the joint distribution of data D and hid-
den variables (including parameters) θ comprises a product of factors (Bishop,
2006: p506) in the form

p(D,θ) =
∏
i

fi(θ) . (3.19)

This is the case of independent identically distributed data. Then, by using
the Bayes’ theorem we know that the posterior distribution is

p(θ|D) =
1

p(D)

∏
i

fi(θ) . (3.20)

Expectation propagation assumes that the approximate posterior factorizes
too in a set of approximate factors, each one corresponding to one of the
factors in the real posterior

q(θ) =
1

Z

∏
i

f̃i(θ) , (3.21)

so that f̃i ' fi in regions of high posterior probability and where the nor-
malization constant Z approximates the marginal likelihood p(D). Then,
it refines iteratively each approximate factor. For that, in each iteration it
removes one of the factors first by defining the unnormalized cavity distri-
bution

q\j(θ) =
q(θ)

f̃j(θ)
. (3.22)

q\j will have similar form to that of q because of the closure property of the
exponential family. For example, if q is Gaussian, q\j will also be Gaussian.
After that, it updates the distribution by multiplying by the actual factor
and normalizing

1

Zj
q\j(θ)fj(θ) = p̂(θ) , (3.23)

where the normalization constant is defined as

Zj =

∫
q\j(θ)fj(θ)dθ . (3.24)

Now, qnew(θ) is updated by setting its moments equal to those of p̂(θ). This
minimizes KL[p̂ ‖ q]

The factor f̃j(θ) can be found by evaluating the expression

f̃j(θ) = Zj
qnew(θ)

q\j(θ)
. (3.25)
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This guarantees that qnew is obtained when fj is replaced by f̃j in (3.23),
and that fj and f̃j integrate the same with respect to q\j . Namely, Zj .

Algorithm 1 Expectation Propagation

1: Initialize the approximate factors f̃i(θ) to be uniform
2: Initialize the posterior approximation by multiplying all the factors to-

gether

q(θ) ∝
∏
i

f̃i(θ)

3: repeat
4: Choose a factor f̃j(θ) to refine
5: Remove that factor from the approximation

q\j(θ) =
q(θ)

f̃j(θ)

6: Evaluate the new posterior qnew(θ) by setting its moments equal to
those of q\j(θ)fj(θ) and compute the value of the normalization con-
stant

Zj =

∫
q\j(θ)fj(θ)dθ

7: Find the new factor f̃j(θ)

f̃j(θ) = K
qnew(θ)

q\j(θ)

8: until convergence
9: Find the approximation to the model evidence

p(D) =

∫ ∏
i

f̃i(θ)dθ

As we said before, the exponential family is closed under product and
division. As a consequence,

∏
i f̃i(θ) has a simple form and

∫ ∏
i f̃i(θ)dθ is

easy to compute.

Once EP has converged, the moments of p(z) and q(z) match, so the
factors f̃i(θ) can be considered to be fixed (Seeger, 2005). This simplifies
the computations needed for the gradient of the marginal likelihood with
respect to the hyperparameters.

3.2 Monte Carlo techniques

Often, we do not need to know the posterior distribution itself, but to com-
pute expectations with respect to it (Bishop, 2006: p523)

Ep(z)[f(z)] =

∫
f(z)p(z)dz . (3.26)
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These expectations can be approximated by numerical sampling, also known
as Monte Carlo techniques. These methods do not have bias, but their com-
putational cost is higher.

The idea is to draw samples from the distribution p(z) and then com-
pute the arithmetic mean of the function applied to the samples (Murphy,
2012: p53). Thus

Ep(z)[f(z)] =

∫
f(z)p(z)dz ≈ 1

N

N∑
i=1

f(zi) , (3.27)

where the zi are drawn independently from p(z).

These methods may achieve high accuracy with relatively small num-
ber of samples.

However, the main difficulty with this kind of techniques is how to
draw samples from the distribution p(z).

3.2.1 Sampling from standard distributions

If we want to draw samples from a distribution of standard form, we can
use the inverse probability transform. Let F be the cumulative distribution
function or cdf of some distribution we want to sample from, and let F−1 be
its inverse (Murphy, 2012: p815).

The inverse probability transform states that given a uniform random
variable U ∼ U(0, 1), then F−1(U) ∼ F .

Proof.

Pr(F−1(U) ≤ x) = Pr(U ≤ F (x)) (applying F to both sides) (3.28)
= F (x) (because Pr(U ≤ y) = y) , (3.29)

where the first line follows since F is a monotonic function, and the second
line follows since U is uniform on the unit interval (Murphy, 2012: p816).

This means that we can draw samples x from a distribution with cumu-
lative distribution function F by generating random samples u ∼ U(0, 1)
and then computing x = F−1(u) ∼ f(x), where f(x) is its probability den-
sity function.

3.2.2 Rejection sampling

An alternative when the inverse probability transform cannot be used is re-
jection sampling.

Suppose that the objective function from which we want to draw sam-
ples has the following form:
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p(z) =
1

Zp
p̃(z) , (3.30)

where we can readily draw samples from p̃(z) and Zp is the normalization
constant.

We define a simpler distribution q(z) called proposal distribution and a
constant k whose value is chosen such that kq(z) ≥ p̃(z). The function
kq(z) is called a comparison function (Bishop, 2006: p529) and provides an
upper envelope for p̃(z) (Murphy, 2012: p817).

We first sample z0 ∼ q(z), which corresponds to picking a random x lo-
cation, and then we sample u0 ∼ U [0, kq(z0)], which corresponds to picking
a random height. We accept the generated sample u0 if u0 ≤ p̃(z0), we reject
it otherwise (Bishop, 2006: p529).

The success of this approximation depends on how well the sampling
distribution q(z) matches the desired distribution p(z).

3.2.3 Importance sampling

Sometimes the purpose of sampling from a certain distribution is to com-
pute expectations of the following form:

E[f ] =

∫
f(z)p(z)dz , (3.31)

which can be done through the importance sampling framework. The idea
is, like in rejection sampling, to use a proposal distribution q(z), from which
it is easy to draw samples. Then the expectation 3.31 can be expressed as:

E[f ] =

∫
f(z)

p(z)

q(z)
q(z)dz . (3.32)

We can then approximate the expectation by summing over a finite number
of samples {z(l)} drawn from q(z) in the following way (Bishop, 2006: p533):

E[f ] ' 1

L

L∑
l=1

p(z(l))

q(z(l))
f(z(l)) , (3.33)

where the quantities p(z(l))/q(z(l)) are known as importance weights.

It is often the case that we can evaluate the unnormalized target distri-
bution p̃(z), but not its normalization constant Zp (Murphy, 2012: p821).
We may wish to use a proposal distribution q(z) = q̃(z)/Zq, where Zq could
also be unknown, although most times it is known. We then have (Bishop,
2006: p533):

E[f ] =
Zq
Zp

∫
f(z)

p̃(z)

q̃(z)
q(z)dz

' Zq
Zp

1

L

L∑
l=1

p̃(z(l))

q̃(z(l))
f(z(l)) .

(3.34)
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The ratio Zp/Zq can be evaluated as follows:

Zp
Zq

=
1

Zq

∫
p̃(z)dz =

∫
p̃(z)

q̃(z)
q(z)dz

' 1

L

L∑
l=1

p̃(z(l))

q̃(z(l))
,

(3.35)

and hence we can redefine E[f ] as:

E[f ] '
L∑
l=1

p̃(z(l))/q̃(z(l))∑
m p̃(z

(m))/q̃(z(m))
. (3.36)

As with rejection sampling, the success of the importance sampling ap-
proach depends crucially on how well the sampling distribution q(z) matches
the desired distribution p(z) (Bishop, 2006: p534).

3.3 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a more general and powerful frame-
work for sampling from a wider range of target distributions and which
scales well with the dimensionality of the sample space.

Here we also have a proposal distribution, but now we keep the current
state z(τ) and the proposal distribution q(z|z(τ)) depends on this current
state (Bishop, 2006: p537). The sequence of the states z(1), z(2), . . . forms a
Markov chain.

3.3.1 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithms (Hastings, 1970) is a generalization of
the more basic Metropolis algorithm (Metropolis et al., 1953), which con-
siders a symmetric proposal distribution, that is q(zA|zB) = q(zB|zA) for
all values of zA and zB (Bishop, 2006: p539).

In this case the proposal distribution is no longer symmetric. At step τ ,
in which the current state is zτ , we draw a sample z∗ from q(z|z(τ)). The
sample is accepted with probability A(z∗, z(τ)), where:

A(z∗, z(τ)) = min

(
1,

p̃(z∗)q(z(τ)|z∗)
p̃(z(τ))q(z∗|z(τ))

)
. (3.37)

If the candidate sample is accepted, then z(τ+1) = z∗, otherwise z∗ is dis-
carded (Bishop, 2006: p538).

3.3.2 Gibbs sampling

Gibbs sampling (Geman and Geman, 1984) can be seen as a special case of
the Metropolis-Hastings algorithm.
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Consider the distribution p(z) = p(z1, z2, . . . , zm). This algorithm re-
places at each step one of the variables by a new sample drawn from the
distribution of that variable conditioned on the values of all the other vari-
ables (Bishop, 2006: p542).

Algorithm 2 Gibbs Sampling

1: Initialize {zi : i = 1, 2, . . . ,m}
2: for τ = 1, . . . , T do
3: Sample zτ+1

1 ∼ p(z1|z(τ)2 , z
(τ)
3 , . . . , z

(τ)
m )

4: Sample zτ+1
2 ∼ p(z2|z(τ+1)

1 , z
(τ)
3 , . . . , z

(τ)
m )

5: · · ·
6: Sample zτ+1

m ∼ p(zm|z(τ+1)
1 , z

(τ+1)
2 , . . . , z

(τ+1)
m−1 )

7: end for

Both Gibbs sampling and Metropolis-Hastings generate Markov chains
with a stationary distribution equal to the target distribution p(z), so the
samples of this Markov chains approximate p(z). Nevertheless, the gener-
ated samples are not independent and we need to generate a lot to obtain
just a few independent samples from p(z).
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Chapter 4

Scalable Gaussian Processes

4.1 Introduction

A significant problem with Gaussian process prediction is that it typically
scales as O(N3) where N is the number of instances. In addition, for large
datasets, the storage of the Gram matrix and solving the associated linear
systems can be prohibitive (Rasmussen and Williams, 2005: p171).

Over the years, there have been a lot of proposals to deal with this prob-
lem. In this chapter we present some of these approximations.

4.1.1 Reduced-rank Approximations of the Gram Matrix

To solve the GP regression problem, we need to invert the matrix K + σ2nI
(Rasmussen and Williams, 2005: p171). If the matrix K has rank q, we can
decompose it like K = QQT and then apply the matrix inversion lemma
(Press et al., 1992: p75) to simplify the calculations

(QQT + σ2nIn)−1 = σ−2n In − σ−2n Q(σ2nIq + QTQ)−1QT . (4.1)

Now the matrix to be inverted is a q x q matrix.

It is not always the case that K is low rank. Nevertheless, we can still use
a reduced-rank approximation by using its decomposition in eigenvalues
and eigenvectors (Golub and Van Loan, 2012). But computing the eigende-
composition is an O(N3) operation, so we need to find an approximation
as well.

For that, we can use the Nyström approximation (Press et al., 1992).
Consider selecting a subset I of the data of size M < N , called the inducing
points. The remaining (N −M) form the subset R. Then K has the form

K =

(
KMM KM(N−M)

K(M−M)M K(N−M)(N−M)

)
(4.2)

where KMM is the covariance matrix for the inducing points and KM(N−M)

is the covariance matrix between the inducing points and the observed data
points. KM(N−M) will be referred to as KMN (and its transpose as KNM )

and the eigenvalues and eigenvectors of KMM are denoted by {λ(m)
i }Mi=1

and {u(m)
i }Mi=1. These are extended to the N points
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λ̃
(n)
i ,
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M
λ
(m)
i , i = 1, . . . ,M (4.3)

u
(n)
i ,

√
M

N

1

λ
(m)
i

KNMu
(m)
i , i = 1, . . . ,M (4.4)

If we take the first M eigenvalues we obtain an approximation to K as

K̃ = KNMK−1MMKMN (4.5)

where K̃ is the Nyström approximation to K, and its computation takes
O(M2N) (Rasmussen and Williams, 2005: p172).

4.1.2 Greedy Approximation

Many of the methods described next in this chapter use an active set I of
data points of size M (see previous section), and it is computationally im-
possible to find the optimal subset of this size (Rasmussen and Williams,
2005: p174).

Instead of selecting the active set randomly, it is more suitable to use
a greedy algorithm where we start with an empty active set I and a set R
with the indices of all training examples. Then, iteratively add one point
that optimizes a criterion ∆. As sometimes computing ∆ for all the points
is unfeasible, it can be first chosen a subset J ⊂ R, usually at random from
R (Rasmussen and Williams, 2005: p174).

In Algorithm 3 a general framework for greedy approximation is given.

Algorithm 3 Greedy approximation

1: input: m, the subset size
2: Initialize I = ∅, R = {1, . . . , N}
3: for j := 1 . . .M do
4: Select working set J ⊂ R
5: Compute ∆j for all j ∈ J
6: i = argmaxj∈J∆j

7: Include input example i in I
8: end for
9: return: I

4.2 Approximations for GPR with Fixed Hyperparam-
eters

In this section, we will present some methods to perform Gaussian process
regression (GPR) that use the techniques described in Section 4.1 and con-
sider the hyperparameters to be fixed.
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4.2.1 Subset of Regressors (SR)

As shown in (Silverman, 1985), a GP regressor can be obtained from a gen-
eralized linear regression model

f(x∗) =
N∑
i=1

αik(x∗,xi) (4.6)

with a prior α ∼ N (0,K−1).

A simple approximation can be obtained by using only a subset of M
regressors

fSR(x∗) =
M∑
i=1

αik(x∗,xi) (4.7)

with a prior αm ∼ N (0,K−1MM ).

This subset can be selected randomly or in a greedy manner. The time
complexity to perform the necessary matrix operations isO(M2N), the pre-
diction of the mean for a new point takesO(M), and the predictive variance
takes O(M2) (Rasmussen and Williams, 2005: p176).

This method was proposed, among others, in (Wahba, 1990).

4.2.2 The Nyström Method

This method simply replaces the matrix K by the Nyström approximation
K̃ in the mean and variance prediction (Williams and Seeger, 2001).

The time complexity to perform the matrix operations needed isO(M2N),
O(N) for the predictive mean of a new point and O(MN) for the predictive
variance (Rasmussen and Williams, 2005: p177).

In (Williams et al., 2002) it is suggested that the performance of this ap-
proximation is similar to SR for large M , but for small M the performance
of the Nyström method can be quite poor. However, this method can per-
form well when the (M + 1)-th eigenvalue of K is much smaller than the
noise variance σ2n (Rasmussen and Williams, 2005: p177).

4.2.3 Subset of Datapoints (SD)

An alternative to the subset of regressors method is to keep the full regres-
sor and use a subset of M data points.

The problem again is how to select these data points in an efficient way,
such that the predictions are sufficiently accurate. Typically this is achieved
by greedy algorithms (Rasmussen and Williams, 2005: p177).

A criterion to choose the next data point (or site) to include in the active
set I is the differential entropy score, as suggested in (Lawrence et al., 2003).
It is defined as
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∆j , H[p(fj)]−H[pnew(fj)] (4.8)

where H[p(fj)] is the entropy of the Gaussian at site j ∈ J and H[pnew(fj)]
is the entropy of the Gaussian after the inclusion of the point j.

The inversion of the matrix KMM + σ2nI can be done in O(M3), but if
we consider incrementally growing the matrices, the cost is O(MN) per in-
clusion, giving an overall cost of O(M2N). This can be done by using use a
more numerically efficient strategy, like the Cholesky decomposition, pro-
posed in (Lawrence et al., 2003).

As the number of points selected M grows it makes sense to select a
smaller subset in which to evaluate ∆j . This approach is called randomized
greedy selection method (Lawrence et al., 2003).

There are other criteria available in order to choose the next site, e.g. the
information gain criterion (Seeger et al., 2003).

4.2.4 Projected Process Approximation (PP)

This approximation selects only M < N latent function values, but projects
them up to N dimensions when computing the likelihood (Rasmussen and
Williams, 2005: p178).

We are going to denote the M f-values in I as fM , and the remain-
ing N − M in R as fN−M . These last values will have a conditional dis-
tribution p(fN−M |fM ), the mean of which is given by E[p(fN−M |fM )] =
K(n−m)mK−1MM fM (Rasmussen and Williams, 2005: p179). Provided that we
replace the true likelihood term for the points inR byN (yNM |E[fN−M |fM ], σ2nI),
if we include also the likelihood contribution of the points in I we get

q(y|fM ) = N (y|KNMK−1MM fM , σ
2
nI) = N (y|E[p(f |fM )], σ2nI) (4.9)

where the information of the N points is present into the M points of I .

As for the SR model the time complexity of the needed matrix opera-
tions is O(M2N), the computation of the predictive mean for a new point
takesO(M) and the predictive variance takesO(M2) (Rasmussen and Williams,
2005: p180).

The problem of choosing which point to include in the active set I arises
again. In (Csató and Opper, 2002) they compute the novelty of a new point
to decide whether to include it or not. (Seeger et al., 2003) suggest a greedy
alternative to the subset selection problem using the information gain crite-
rion, as well as a cheap way of computing it that allows to run the greedy
algorithm on all points in R in each iteration.



4.3. The Generalized FITC Approximation 35

4.2.5 Bayesian Committee Machine (BCM)

The Bayesian committee machine (BCM) as a way of speeding up Gaus-
sian process regression was introduced in (Tresp, 2000). Let f∗ be the vec-
tor of function values at the test locations. For this method we split the
dataset into p parts D1, . . . ,Dp where Di = (Xi,yi) and make the approx-
imation p(y1, . . . ,yp|f∗,X) ' ∏p

i=1 p(yi|f∗,Xi) (Rasmussen and Williams,
2005: p180). This implies that

q(f∗|D1, . . .Dp) ∝ p(f∗)
p∏
i=1

p(yi|f∗,Xi) = c

∏p
i=1 p(f∗|Di)
pp−1(f∗)

(4.10)

where c is a normalization constant.

There are several ways of partitioning the dataset D. (Tresp, 2000) as-
signed randomly the points to the partitions, but (Schwaighofer and Tresp,
2002) recommended clustering the data to improve performance.

Schwaighofer and Tresp also recommended making test predictions on
blocks of size M . In this case, the computational complexity of BCM is
O(pM3) = O(M2N) for predicting M test points, or O(MN) per test point.

4.2.6 Iterative Solution of Linear Systems

In the GP regression problem we need either to invert the matrix K + σ2nI
or to solve the linear system (K + σ2nI)v = y.

This linear system can be solved using an iterative method, such as con-
jugate gradients (GC) (Golub and Van Loan, 2012: sec. 10.2). InN iterations
GC will give the exact solution, but in k < N iterations it will give an ap-
proximate solution with time complexity O(kN2).

4.3 The Generalized FITC Approximation

As we have seen in previous sections, a usual scheme in order to acceler-
ate training and prediction times is using a sparse approximation where
we use an auxiliary set of size M � N , also known as active set, inducing
points or pseudo-inputs, denoted by X = (x1,x2, . . . ,xM ). (Quiñonero-
Candela and Rasmussen, 2005) demonstrated that many of these schemes
are related through different approximations to the joint prior over training
and test points.

The “Fully Independent Training Conditional” or FITC approximation
appeared originally in (Snelson and Ghahramani, 2006) as the sparse pseudo-
input GP (SPGP).

We define a vector f that contains the latent values associated with the
observed points for each class and a vector u with the latent values associ-
ated with the inducing points for each class. Namely:
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f =
(
f1(x1), . . . , f

1(xN ), f2(x1), . . . , f
2(xN ), . . . , fC(x1), . . . , f

C(xN )
)

= (f11 , . . . , f
1
N , f

2
1 , . . . , f

2
N , . . . , f

C
1 , . . . , f

C
N )

(4.11)

u =
(
f1(x1), . . . , f

1(xM ), f2(x1), . . . , f
2(xM ), . . . , fC(x1), . . . , f

C(xM )
)

= (u11, . . . , u
1
M , u

2
1, . . . , u

2
M , . . . , u

C
1 , . . . , u

C
M ) .

(4.12)

The relationship between f and u is:

p(f) =

∫
p(f |u)p(u|X)du . (4.13)

Let place a Gaussian prior on the latent values associated with the induc-
ing inputs p(u|X) ∼ N (u|0,KMM ), where KNM is the covariance matrix
between the training and the inducing points and KMM is the covariance
matrix of the inducing points. If we set

p(f |u) ≈
n∏
i=1

p(fi|u) = N (f |KNMK−1MMu,diag(KNN −QNN )) , (4.14)

where QNN = KNMK−1MMKMN , we obtain an equivalent prior of the fol-
lowing form (Quiñonero-Candela and Rasmussen, 2005):

p(f) ≈ N (f |0,QNN − diag(KNN −QNN )) , (4.15)

where QNN − diag(KNN − QNN ) is an approximation to the covariance
matrix K. The marginal likelihood after observing y = f(x) + ε is

p(y) =

∫
p(y|f)p(f)du ≈ N (y|0,QNN −diag(KNN −QNN )+Iσ2) , (4.16)

where σ2 is the variance of the noise. The computation of the marginal
likelihood is exact in the case of regression, but it will need to use approx-
imate inference (see previous chapter) for classification problems. By max-
imizing the log marginal likelihood we can then optimize the location of
the pseudo-inputs and the hyperparameters of the model. The gradient
of log p(y) with respect to a hyperparameter will be similar to the one in
(2.13), but using the approximate covariance matrix. This gradient is not
expressed as a sum over the data instances, so it will not allow for stochas-
tic optimization.

A main advantage of the FITC approximation versus the other approx-
imations explained in this chapter is that the inducing points are not nec-
essarily a subset of the training points and their location is optimized au-
tomatically during the training process by maximizing the marginal likeli-
hood in eq (4.16).

With this approximation, the training time complexity reduces toO(NM2).
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Chapter 5

Scalable GP Multi-class
Classification via EP

In this chapter, we briefly introduce the proposed method. After that, we
show how to use the expectation propagation (EP) algorithm to train this
model and how the model hyperparameters can be optimized by using a
stochastic approximation of the gradient of the estimate of the marginal
likelihood. For full details on the proposed EP method see Appendix B.

5.1 Model specification

We want to solve multi-class classification problems. For that, we follow
the approach described in Section 2.3 and we define the vector f contain-
ing one latent function for each instance and each class (see eq. (2.16)). We
choose as the likelihood function the Heaviside function, like in eq. (2.20).

In order to speed up the training process we are going to use the FITC
approximation. As we have seen in the previous chapter, the FITC approx-
imation introduces M � N inducing points and makes the assumption
described in eq. (4.14), that allows for approximate inference with a cost
that depends linearly on N . These inducing points will be different for
each class and we will have a vector of latent values uk associated with the
inducing points Xk for each class k. Namely:

uk = (f(xk1), f(xk2), . . . , f(xkM )) , (5.1)

where xkM is the vector of features for the M -th inducing point and for class
k. By integrating out the latent values f and applying Baye’s rule, we can
obtain the posterior on u:

p(u|y) =

∫
p(f ,u|y)df =

∫
p(y|f)p(f |u)p(u|X )df

p(y|X )
, (5.2)

where u = (u1, . . . ,uC), X = (X1, . . . ,XC), p(u|X ) =
∏C
k=1 p(u

k|Xk), C
is the number of classes and each p(uk|Xk) ∼ N (uk|0,Kk

MM ) is the prior
corresponding to the k-th latent function on the inducing points.

One of the objectives of this method is the use of stochastic gradients,
that will allow to significantly accelerate the training process. For that rea-
son, we would like the estimate of the marginal likelihood to be a sum over
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data instances.

For that, we use that p(y|f) already factorizes over the instances, we take
advantage of the factorization defined in eq. (4.14) and we do not marginal-
ize uk , k = 1, . . . , C unlike in the original FITC formulation. Hence:

p(u|y) ≈
∏N
i=1

∫
p(yi|fi)p(fi|u)dfi p(u|X )

p(y|X )

=

∏N
i=1

∫
p(yi|fi)

∏C
k=1 p(f

k
i |uk)dfi p(u|X )

p(y|X )
,

(5.3)

where fi = (f1i , . . . , f
C
i )T . We use the likelihood in eq. (2.20). So:

p(u|y) =

∏N
i=1

∫ [∏
c6=yi Θ(fyii − f ci )

]∏C
k=1 p(f

k
i |uk)dfi p(u|X )

p(y|X )
. (5.4)

The problem with this expression is that each factor corresponding to a data
instance involves solving an intractable integral. We can also note that the
integral is equivalent to the probability that the latent function correspond-
ing to the class of the instance is the one with the higher value:

∫ [ ∏
c 6=yi

Θ(fyii − f ci )

]
C∏
k=1

p(fki |uk)dfi =

p(fyii > f1i , . . . , f
yi
i > f

yi−1

i , fyii > f
yi+1

i . . . , fyii > fCi ) =

p(fyii > f1i |fyii > f2i , . . . , f
yi
i > f

yi−1

i , fyii > f
yi+1

i . . . , fyii > fCi )

p(fyii > f2i |fyii > f3i , . . . , f
yi
i > f

yi−1

i , fyii > f
yi+1

i ) · · · p(fyii > fCi )

, (5.5)

where we have omitted the condition on uk for better readability. Then, we
can approximate the last expression by:

∫ [∏
c 6=yi

Θ(fyii − f ci )

]
C∏
k=1

p(fki |uk)dfi '

p(fyii > f1i ) · · · p(fyii > fyi−1i )p(fyii > fyi+1
i ) · · · p(fyii > fCi ) ,

(5.6)

where we have also omitted the condition on uk.
Each of the factors p(fyii > f ci ) will have the following form:

p(fyii > f ci ) = p(fyii − f ci > 0) = Φ

 âyii − âci√
b̂yii + b̂ci

 , (5.7)

where Φ(·) is the cumulative distribution function of the standard Gaus-
sian distribution, âyii and âci are the expressions for the means of fyii and f ci
respectively and b̂yii and b̂ci are the expressions for their variances. Namely:
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âyii = Kyi
i,M (Kyi

MM )−1uyi (5.8)

âci = Kc
i,M (Kc

MM )−1uc (5.9)

b̂yii = Kyi
i,i −Kyi

i,M (Kyi
MM )−1Kyi

M,i (5.10)

b̂ci = Kc
i,i −Kc

i,M (Kc
MM )−1Kc

M,i , (5.11)

where Kc
i,M is a row vector with the covariances between the i-th input and

the inducing points of the covariance matrix corresponding to the class c
and Kc

i,i is the prior variance of f ci . For this derivations we have used eq.
(2.5). So the approximate posterior distribution on u will be:

p(u|y) '

[∏N
i=1

∏
c!=yi

Φ

(
â
yi
i −â

c
i√

b̂
yi
i +b̂ci

)]∏C
k=1 p(u

k|Xk)

p(y|X )
. (5.12)

5.1.1 Robust Likelihood

We will also consider the likelihood defined in eq. (2.22), which is robust to
possible wrong labeled examples. In this case we compute the correspond-
ing one-dimensional integrals by quadrature, so its running time may be
higher.

5.2 Approximate Inference

The proposed method is based on the expectation propagation algorithm
(see Section 3.1.3), which will obtain a Gaussian posterior approximation q
that factorizes over the examples.

The posterior defined in eq. (5.12) is not tractable because of the non

Gaussian factors φci (u
yi ,uc) = Φ(âyii − âci/

√
b̂yii + b̂ci ). Each of these factors

will be approximated by

φci (u
yi ,uc) ' φ̃ci (uyi ,uc) = s̃i,c Ñ (uyi |m̃yi , Ṽyi)

Ñ (uc|m̃c, Ṽc) ,
(5.13)

where Ñ (uyi |m̃yi , Ṽyi) and Ñ (uc|m̃c, Ṽc) are unnormalized Gaussian dis-
tributions defined by

Ñ (uyi |m̃yi , Ṽyi) = exp

{
−1

2
(uyi)T Ṽyiu

yi + (uyi)T m̃yi

}
(5.14)

Ñ (uc|m̃c, Ṽc) = exp

{
−1

2
(uc)T Ṽcu

c + (uc)T m̃c

}
, (5.15)

and s̃i,c is a constant.
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The posterior approximation q is obtained by replacing each factor φci
by its approximation φ̃ci .

q(u) =
1

Zq

N∏
i=1

∏
c 6=yi

φ̃ci (u
yi ,uc)

 C∏
k=1

p(uk|Xk) , (5.16)

where Zq is an approximation to the marginal likelihood p(y|X). All factors
in q are Gaussian, so q will be a product of C multivariate Gaussians in
M dimensions. The log of the approximation to the marginal likelihood
p(y|X) is:

logZq = g(θ)− g(θprior) +
N∑
i=1

∑
c 6=yi

log s̃i,c (5.17)

log s̃i,c = logZi,c + g(θ\i,c)− g(θ) , (5.18)

where θ, θ\i,c and θprior are the natural parameters of q, q\i,c ∝ q/φ̃ci and
p(u|X ) respectively and g(θ′) is the log-normalizer of a multivariate Gaus-
sian with natural parameters θ′.

Expectation propagation updates the hyperparameters at convergence,
where the gradient of logZq with respect to the parameters of each approx-
imate factor is zero (Seeger, 2005). In particular, the gradient of logZq with
respect to a hyperparameter ξj is (Seeger, 2005):

∂ logZq
∂ξj

= ηT
∂θprior
∂ξj

− ηTprior
∂θprior
∂ξj

+

N∑
i=1

∑
c 6=yi

∂ logZi,c
∂ξj

, (5.19)

where η and ηprior are the expected sufficient statistics (see eq. (3.16)) under
q and p(u|X ) respectively. We can use these gradients to update the hyper-
parameters by maximizing logZq. At this point, the cost of EP is O(NM2),
because of several simplifications when computing the derivatives with re-
spect to the inducing points (Snelson, 2007).

5.2.1 Robust likelihood

When using the robust likelihood in eq. (2.22) the exact factors are:

φi =

∏
c6=yi

Θ(fyii − f ci )

 (1− ε) +

[
1

C

]
ε

 C∏
k=1

p(fki |uk)dfki , (5.20)

which will be approximated by

φi =
C∏
k=1

Ñ (uk|m̃k, Ṽk) , (5.21)

where Ñ (uk|m̃k, Ṽk) is an unnormalized Gaussian distribution with mean
vector m̃k and covariance matrix Ṽk, corresponding to the k-th class. The



5.2. Approximate Inference 41

integral in eq. (5.20) can be evaluated using one-dimensional quadrature
techniques.

5.2.2 Scalable Expectation Propagation
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Figure 5.1: Value of logZq obtained when the updates of
the hyperparameters are performed after EP has converged
(outer) and after each update of the approximate factors φci
(inner), with the exact gradient, and the approximation.

Expectation propagation needs to wait until convergence in order to up-
date the hyperparameters, which is when eq. (5.19) is valid. This will cause
the algorithm to be very inefficient at the beginning, since EP will take sev-
eral iterations to converge. We follow (Hernández-Lobato and Hernández-
Lobato, 2015) and update the approximate factors φ̃ci and the hyperparame-
ters at the same time. This implies adding some extra terms to the gradient
in eq. (5.19) because EP has not converged and the moments of Z−1i,c φ

c
iq
\i,c

and q do not match, but in practice the extra terms are very small and
can be ignored (Hernández-Lobato and Hernández-Lobato, 2015). Figure
5.1 shows the evolution of logZq on the Vehicle dataset of the UCI reposi-
tory (Lichman, 2013) when updating the hyperparameters after EP has con-
verged and when updating the hyperparameters and the approximate fac-
tors in parallel. It can be seen that doing the inner updates is significantly
faster because it does not need to wait until convergence, giving similar
results when the approximate gradient is used instead of the exact one.

Training using minibatches

Stochastic optimization can be used with the described method. For that,
the training data is split in minibatches Mk of size at most the number
of inducing points M . For each minibatch Mk, each factor φ̃ci is refined
and q is updated afterwards. The gradient used in this case to update the
hyperparameters is a stochastic approximation of (5.19):
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∂ logZq
∂ξj

≈ ηT ∂θprior
∂ξj

− ηTprior
∂θprior
∂ξj

+
N

|Mk|
∑
l∈Mk

∑
c 6=yi

∂ logZl,c
∂ξj

. (5.22)

This training scheme updates more often the hyperparameters, since there
is no need to go through all the data. When using minibatches, the training
cost scales like O(M3).

Stochastic Expectation Propagation

An important limitation of EP is that it needs to keep in memory the indi-
vidual approximate factors φ̃ci to be able to compute the cavity distribution
q\i,c ∝ q/φ̃ci . The number of approximate factors increases with the number
of data pointsN , so whenN is big the memory needed can be prohibitively
large. In order to improve the memory usage, what can be done is to only
keep the product of the approximate factors Φ̃ =

∏
φ̃ci and assume that all

the approximate factors are the same so that when EP computes the cavity
distribution it approximates them by obtaining the corresponding fraction
of Φ̃, i.e. φ̃ci ' Φ̃

1
Ñ , where Ñ is the number of factors. This approach, called

stochastic expectation propagation, was first introduced in (Li et al., 2015)
and it can reduce the memory consumption by a factor of N performing
almost as well as full EP. Figure 5.2 illustrates the differences between this
normal EP and the stochastic EP (SEP) when approximating a target distri-
bution p(θ).

EP

SEP

Figure 5.2: Differences between full EP and stochastic EP.
In the stochastic version instead of saving the parameters
of each approximate factor we consider that all the factor
are the same and we save only the parameters of one factor.
Source of the figure 1.

5.3 Related methods

The proposed method is based on the previous work in (Hernández-Lobato
and Hernández-Lobato, 2015), which is a method for binary classification
using Gaussian processes with EP for large datasets. The proposed method
is a generalization that can work with multi-class problems.

1https://jmhldotorg.files.wordpress.com/2015/12/poster_sep_nips2015.pdf
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A related method uses a scalable variational approach instead of expec-
tation propagation to solve multi-class classification problems with Gaus-
sian processes (Hensman et al., 2015b). For that, it maximizes a lower
bound on the log marginal likelihood of the form:

log p(y) ≥
N∑
i=1

Eq(fi)[log p(yi|fi)]− KL[q(u) ‖ p(u)] = L(q) ≥ 0 , (5.23)

which is obtained by using Jensen’s inequality. This method uses the robust
likelihood in (Hernández-Lobato, 2010) and quadrature to approximate the
required expectations.

The other related method is the one in (Kim and Ghahramani, 2006),
which uses the same likelihood as the proposed approach. This method
can be combined with the original FITC approximation (GFITC) (Naish-
Guzman and Holden, 2007) generalized to address classification problems.
However, unlike the proposed approach, the original FITC approximation
marginalizes u (the values associated to the inducing points) and the marginal
likelihood approximation cannot be expressed as a sum across the data in-
stances. This prevents using stochastic gradients.
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Chapter 6

Experiments

We are going to compare the proposed method for Multi-class Gaussian
process classification based on scalable Expectation Propagation (EP) with
(i) the original generalized FITC approximation (GFITC) applied on the
model of (Kim and Ghahramani, 2006), (ii) a version of the method that
updates the hyperparameters once the EP algorithm has converged (EP
outer), (iii) the proposed method that uses the robust likelihood proposed
in (Hernández-Lobato et al., 2011) (REP), (iv) the same method that uses
expectation propagation (SEP) to save memory (Li et al., 2015) and (v) the
scalable variational inference (VI) method from (Hensman et al., 2015b). In
the robust methods a value of ε = 0.001 has been used. This value is the
one employed in (Hensman et al., 2015b). All methods are implemented in
R (R Core Team, 2016).

6.1 Performance on datasets from the UCI repository

The first experiment evaluates the performance (test error and negative test
log likelihood) of all the methods on 8 datasets from the UCI repository
(Lichman, 2013). The training process is done using batch optimization
methods (we go through all the data to compute the gradients). We use
90% of the data from training and the remaining 10% for testing, expect for
the Satellite dataset, where due to the big size of the dataset we have chosen
20% for training and 80% for testing. For the Waveform dataset, which is
synthetic, we have generated 103 instances and split them in 30% for train-
ing and 70% for testing. Finally, for the Vowel dataset we have selected only
the points that belongs to the six first classes, in order to reduce the size of
the problem (From 990 instances to 540). See Table 6.1 for the details of the
datasets used in this experiment.

We report averages over 20 repetitions of the experiments. Both the
training/test splits and the initial location of the inducing points have been
chosen at random from the datasets, and they are the same for all the meth-
ods, as well as the initial hyperparameters. The experiments have been
executed using different values for the number of inducing points M , in
particular 5%, 10% and 20%. All methods are trained using batch optimiza-
tion algorithms for 250 iterations or until convergence.

In Tables 6.3 and 6.2 we report the average negative test log likelihood,
the average test error and the average training time for each method. The
values printed in bold are the best results for each dataset. We can see that
the proposed methods (EP, REP and SEP) have similar performance to that
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Table 6.1: Characteristics of the UCI datasets used in the
experiments

Dataset #Instances #Attributes #Classes
glass 214 9 6
new-thyroid 215 5 3
satellite 6435 36 6
svmguide2 391 20 3
vehicle 846 18 4
vowel 540 10 6
waveform 1000 21 3
wine 178 13 3

of GFITC and VI, and sometimes they obtain the best results. The fastest
method is EP because it does not use quadrature to compute the integrals
in the likelihood. EP outer is slower than EP because it waits until EP has
converged to do an update of the hyperparameters. VI is slightly faster
than REP and SEP even though they all use quadrature to approximate in-
tractable integrals in the likelihood. This is because the lower bound of
VI and its gradients are easier to compute than the corresponding calcula-
tions required in REP and SEP. The negative test log likelihood is in some
datasets much higher for VI than for the other methods, due to the fact that
VI does not optimize logE[p(y|f)] (the log likelihood) directly, but instead
it optimizes E[log p(y|f)], which is a lower bound.

6.2 Learning the location of the inducing points

In this experiment we use a synthetic two dimensional dataset with three
classes, generated by sampling the latent functions from the GP prior and
applying the rule yi = arg maxk f

k
i (x). We want to analyze the behavior

of the different methods (EP, REP, SEP, VI and GFITC) with several values
for the number of inducing points (from M = 1 to M = 256). The initial
location of the inducing points is selected at random and it is the same for
all the methods. As the focus of the experiment is set on the location of the
pseudo-inputs after training, the hyperparameters are fixed to their true
value and they are not updated during the training process. All methods
but VI are trained using batch methods during 2000 iterations. VI is trained
using stochastic gradients for 2000 epochs because the batch version often
gets stuck in local optima otherwise.

The obtained results are shown in Figure 6.1. Each column shows a dif-
ferent number of inducing points. Blue, red and green points represent the
training data, black lines are decision boundaries and black border points
are pseudo-inputs. We can see that as we increase the number of inducing
points GFITC tends to overlap them, which can be understood as a prun-
ing mechanism (Bauer et al., 2016). This behavior is explained in detail in
(Bauer et al., 2016). The proposed methods EP and REP give similar re-
sults. SEP does not overlap the resulting inducing points as M grows. VI
seems to give poorer results with a low value of M . This is due to a worst
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initial estimation of the approximation to the posterior distribution q be-
cause it is initialized to the prior and updated using gradient steps, which
requires several iterations to get a good estimate of this distribution. By
contrast, EP methods do not use gradient steps to update q and, therefore,
do not need a learning rate. They are more efficient at finding a better esti-
mation of q at the beginning of the learning process. VI also places the in-
ducing points near the decision boundaries, which is consistent with the re-
sults reported in (Hernández-Lobato and Hernández-Lobato, 2015)(Hens-
man et al., 2015a) for the binary case.
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6.3 Performance as a function of time

We measure the performance of the different methods as a function of the
training time for the Satellite dataset. For this experiment, only GFITC, EP
and VI are considered for better readability. We use again 90% for training
and 10% for testing. Each of the methods is tested for a different number of
inducing points M = 4, 50, 200. The results are averages over 100 realiza-
tions of the experiments. We use batch training.
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Figure 6.2: Prediction performance (negative test log likeli-
hood on the left and test error on the right) of each method
on the Satellite dataset as a function of the training time
measured in seconds (in a log 10 scale). Different numbers
of inducing points are considered, i.e., M = 4, 50, 200.

The results are shown in Figure 6.2. We observe that EP is the method
that provides the best performance at the lowest training time. Again, it is
faster than GFITC because it optimizes the posterior approximation q and
the hyperparameters at the same time, while GFITC waits until EP has con-
verged to update the hyperparameters. VI is not very efficient in compar-
ison, especially for small values of M , because it requires the computation
of the lower bound by quadrature, which is expensive. It also starts with
a worst estimation of the approximation q as explained in Section 6.2, be-
cause it updates q by gradient descent, which requires several iterations to
get a good estimate of this distribution.

6.4 Training using minibatches and stochastic gradi-
ents

We evaluate the performance of the proposed methods on the MNIST dataset
using minibatches of 200 data points to update the posterior approximation
q and to compute an stochastic approximation of the gradient of the hyper-
parameters. The learning rate for all the methods is computed using the
Adam algorithm with parameters α = 10−3, β1 = 0.9, β2 = 0.999 and
ε = 10−8 (Kingma and Ba, 2014). Note that GFITC does not allow for this
type of stochastic optimization, so it is not considered for comparison. We
use 60, 000 instances for training and 10, 000 for testing. The number of in-
ducing points is set to the same size of the minibatches M = 200. In Figure
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6.3 (top) we report the performance (negative test log likelihood and test er-
ror) as a function of the training time in seconds (in log10 scale). We can see
that in this larger dataset all the methods obtain similar results, but the pro-
posed methods (EP, REP and SEP) converge in a lower training time than
VI.
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Figure 6.3: Performance on the MNIST dataset as a func-
tion of time (in log10 scale) using stochastic gradients with
a minibatch size of 200. (bottom) Same results for the Air-
line delays dataset. The performance of a linear classifier is
also included for comparison.

The last experiment is carried out on a dataset that considers all com-
mercial flights within the USA between January 2008 and April 2008 (avail-
able at http://stat-computing.org/dataexpo/2009). The task is to classify
the flights according to their delay time in three classes: on time, more
than 5 minutes delay or more than 5 minutes before scheduled time. Af-
ter removing the instances with missing data we are left with 2, 127, 068
instances, from which 10, 000 are used for testing and the rest for training.
Like for MNIST we have used Adam algorithm with the same parameters
and a minibatch of 200 data points. We also use M = 200 inducing points.
The results obtained are shown in Figure 6.3 (bottom). It is also shown the
performance of a linear classifier for comparison. In this case, VI starts giv-
ing a better approximation but the methods based on EP converge faster
than VI. Also, the negative log likelihood of VI starts increasing at some
point (the range of the axis have been reduced for readability), which is
due to the difference between the objective that optimizes VI E[log p(y|f)]
(see eq. (5.23)) and the log likelihood logE[p(y|f)]. In Figure 6.4 it can be



6.4. Training using minibatches and stochastic gradients 53

seen that when the objective of VI is optimized, the log likelihood decreases,
giving rise to this behavior.
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Figure 6.4: Comparison between the objective optimized by
VI (E[log p(y|f)]) and the log likelihood (logE[p(y|f)]), eval-
uated in the test set.
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Chapter 7

Conclusions and Future Work

We have proposed a method for multi-class classification with Gaussian
processes that scales well to very large datasets. For that, we have used the
EP algorithm, as well as the FITC approximation by introducing M � N
inducing points. Our method allows for stochastic optimization, since the
estimate of the marginal likelihood is expressed as a sum across the data
instances. We have also considered the use of a robust likelihood (REP)
(Hernández-Lobato et al., 2011) and a stochastic version of EP to reduce
the memory usage (SEP) (Li et al., 2015). The overall training cost for the
method is O(M3).

The proposed methods (EP, REP and SEP) have been compared with
other approaches from the literature, such as a scalable variational method
(VI) (Hensman et al., 2015b), or the model considered by (Kim and Ghahra-
mani, 2006) combined with the original FITC approximation (GFITC) (Naish-
Guzman and Holden, 2007). Our experiments show that EP and REP tend
to overlap the inducing points like GFITC. This can be seen as a pruning
technique. The proposed methods outperform GFITC in large datasets be-
cause the last one does not allow for stochastic gradients. As opposed to EP,
the other methods (REP, SEP and VI) use a likelihood that requires the use
of quadrature to solve the integrals in the likelihood. For that reason, EP is
the faster is small datasets. Our methods are more efficient than VI at find-
ing a better estimation of q at the beginning, because VI uses gradient steps
to update q and the EP updates are free of any learning rate. Finally, the
performance of the proposed methods is better than VI in terms of the test
log likelihood due to the difference between the objective that optimizes VI
E[log p(y|f)] (see eq. (5.23)) and the log likelihood logE[p(y|f)].

7.1 Future work

A possible improvement to the methods that use the robust likelihood is
to optimize the parameter ε during the training process by maximizing the
marginal likelihood. It could also be interesting to explore other divergence
measures to find the parameters of the approximate factors and q that are
different from KL[p ‖ q] (EP methods) and KL[q ‖ p] (VI). An example is
the minimization of α-divergences (Hernández-Lobato et al., 2015). An-
other potential improvement is to introduce the use of MCMC sampling to
approximate the posterior of the model hyperparameters (Hensman et al.,
2015b). Finally, we could use other sparse approximations instead of FITC,
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i.e. the one in (Lázaro-Gredilla et al., 2010), which places the inducing
points in the frequency domain of the covariance function.
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Appendix A

Gaussian distribution

In this Appendix we are going to describe some interesting properties about
the Gaussian distribution. It is based on the Appendix A.3 of (Hernández-
Lobato, 2010).

The Gaussian distribution is a continuous probability distribution of a
d-dimensional vector x ∈ Rd. It receives as parameters a d-dimensional
vector of means µ and a dxd covariance matrix Σ. The probability density
function of x is usually denoted as N (x) and is given by

N (x|µ,Σ) =
1√

(2π)d|Σ|
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
. (A.1)

The Gaussian distribution belongs to the exponential family as its probabil-
ity density function (A.1) can be written as

N (x|µ,Σ) = exp
{
ηTu(x)− g(η)

}
, (A.2)

where

η = (Σ−1µ,−1

2
Σ−1) (A.3)

u(x) = (x,xxT ) , (A.4)

and g(η) = d
2 log 2π + 1

2 log |Σ| + 1
2µ

TΣ−1µ is the log-normalizer. The nat-
ural moments are obtained by computing the expectation of u(x) under eq.
(A.1)

E[x] = µ , (A.5)

E[xxT ] = Σ + µµT . (A.6)

Let define two d-dimensional vectors x ∼ N (x|µ,Σ) and x′ ∼ N (x′|µ′,Σ′).
The Kullback-Leibler divergence between the two distributions is

KL[x ‖ x′] =
1

2

( |Σ′|
|Σ|

)
+ tr(Σ′−1ΣI) + (µ′ − µ)TΣ′−1(µ′ − µ) . (A.7)

Let t(x) be a function of x and let
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p̃(x) =
1

Z
t(x)N (x|µ,Σ) , (A.8)

Z =

∫
t(x)N (x|µ,Σ)dx . (A.9)

Then, we have that

Ep̃[x] = µ+ Σ
∂ logZ

∂µ
, (A.10)

Ep̃[xxT ]− Ep̃[x]Ep̃[x]T = Σ−Σ

(
∂ logZ

∂µ

(
∂ logZ

∂µ

)T

− 2
∂ logZ

∂Σ

)
Σ . (A.11)

The exponential family of distributions is closed under product and di-
vision. The product of two Gaussian distribution is also Gaussian, but not
normalized. Namely:

N (x|µ1,Σ1)N (x|µ2,Σ2) ∝ N (x|µ,Σ) , (A.12)

where

Σ = (Σ−11 + Σ−12 )−1 , (A.13)

µ = Σ
(
Σ−11 µ1 + Σ−12 µ2

)
, (A.14)

and the normalization constant z of the product is given by

z =

√
|Σ|

(2π)d|Σ1||Σ2|
exp

{
−1

2
(µT1 Σ−11 µ1 + µT2 Σ−12 µ2 − µTΣ−1µ)

}
.

(A.15)
Similarly, the division of two Gaussian distribution is also Gaussian. In
particular,

N (x|µ1,Σ1)/N (x|µ2,Σ2) ∝ N (x|µ,Σ) , (A.16)

where

Σ = (Σ−11 −Σ−12 )−1 , (A.17)

µ = Σ
(
Σ−11 µ1 −Σ−12 µ2

)
, (A.18)

and the corresponding normalization constant z is given by

z =

√
(2π)d|Σ||Σ2|
|Σ1|

exp

{
−1

2
(µT1 Σ−11 µ1 − µT2 Σ−12 µ2 − µTΣ−1µ)

}
.

(A.19)
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Appendix B

Calculations

In this Appendix we give all the details to implement the EP algorithm for
the proposed method described in Chapter 5. In particular, we describe
how to reconstruct the posterior approximation from the approximate fac-
tors and how to refine these factors. We also detail the computation of the
EP approximation to the marginal likelihood and its gradients.

B.1 Reconstruction of the posterior approximation

In this section we show how to obtain the posterior distribution by multi-
plying the approximate factors φ̃ci (u

yi ,uc) and the prior p(u|X ). From the
main manuscript we know that these elements have the following form:

φ̃ci (u
yi ,uc) = s̃i,c Ñ (uyi |m̃yi , Ṽyi)Ñ (uc|m̃c, Ṽc) (B.1)

p(u|X ) =
C∏
k=1

p(uk|Xk) =
C∏
k=1

N (uk|0,Kk
MM ) , (B.2)

where Ñ (uc|m̃c, Ṽc) is an unnormalized Gaussian with natural parameters
m̃c and Ṽc and Kk

MM is a covariance matrix of size MxM with the prior
covariance among the values of the inducing points Xk. Ṽyi , Ṽc, m̃yi and
m̃c have the following especial form (see Section B.3 for the detailed deriva-
tion):

Ṽyi = C1,yi
i,c wyi

i (wyi
i )T (B.3)

Ṽc = C1
i,cw

c
i (w

c
i )
T (B.4)

m̃yi = C2,yi
i,c wyi

i (B.5)

m̃c = C2
i,cw

c
i . (B.6)

where wyi
i = Kyi

i,M (Kyi
MM )−1, wc

i = Kc
i,M (Kc

MM )−1, and C1,yi
i,c , C1

i,c, C
2,yi
i,c

and C2
i,c are:
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C1,yi
i,c =

[α2
i,c + αi,cβi,c

byii + bci

]−1
− (wyi

i )TV\i,cyi wyi
i

−1 (B.7)

C1
i,c =

[α2
i,c + αi,cβi,c

byii + bci

]−1
− (wc

i )
TV\i,cc wc

i

−1 (B.8)

C2,yi
i,c =

[
αi,c√
byii + bci

+ C1,yi
i,c (wyi

i )Tm\i,cyi +
αi,c√
byii + bci

C1,yi
i,c (wyi

i )TV\i,cyi wyi
i

]
(B.9)

C2
i,c =

[
αi,c√
byii + bci

+ C1
i,c(w

c
i )
Tm\i,cc +

αi,c√
byii + bci

C1
i,c(w

c
i )
TV\i,cc wc

i

]
.

(B.10)

We also know from the main manuscript that the posterior approximation
will have the following form

q(u) =
1

Zq

N∏
i=1

∏
c6=yi

φ̃ci (u
yi ,uc)

 C∏
K=1

p(uk|Xk) . (B.11)

Given that all the factors are Gaussian, a distribution that is closed under
product and division, q(u) is also Gaussian. In particular, the posterior
approximation q(u) =

∏C
k=1N (u|,mk,Vk). The parameters of this distri-

bution can be obtained by using the formulas given in the Appendix A,
leading to

Vk = [(Kk
MM )−1 + Wk∆kW

T
k ]−1 (B.12)

mk = VkWkµ̃k , (B.13)

where Wk = (wk
1 , . . . ,w

k
N ) is a MxN matrix, ∆k is a diagonal NxN matrix

where each component of the diagonal has the following form

∆k
i,i = C1

i,k1(k 6= yi) +

∑
k′ 6=yi

C1,yi
i,k′

1(k = yi) , (B.14)

where 1(·) is an indicator function, which will be 1 if the condition holds
and zero otherwise, and µ̃k is a vector where each component is defined by

µ̃ki = C2
i,k1(k 6= yi) +

∑
k′ 6=yi

C2,yi
i,k′

1(k = yi) . (B.15)

B.2 Computation of the cavity distribution

Here we will obtain the expressions for the parameters of the cavity dis-
tribution q\i,c. This distribution is computed by dividing the posterior ap-
proximation by the corresponding approximate factor:
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q(u)\i,c ∝ q(u)

φ̃ci (u
yi ,uc)

. (B.16)

Given that all factors are Gaussian, the resulting distribution will also be
Gaussian. The parameters can be obtain by using again the formulas in the
Appendix A:

V\i,cyi = (V−1yi − Ṽyi)
−1

= (V−1yi − C
1,yi
i,c wyi

i (wyi
i )T )−1

= Vyi + Vyiw
yi
i [(C1,yi

i,c )−1 −wyi
i Vyi(w

yi
i )T ]−1(wyi

i )TVyi

(B.17)

V\i,cc = Vc + Vcw
c
i [(C

1
i,c)
−1 −wc

iVc(w
c
i )
T ]−1(wc

i )
TVc (B.18)

m\i,cyi = V\i,cyi (V−1yi myi − m̃yi)

= V\i,cyi (V−1yi myi − C2,yi
i,c wyi

i )

= V\i,cyi V−1yi myi − C2,yi
i,c wyi

i V\i,cyi

= VyiV
−1
yi myi + Vyiw

yi
i [(C1,yi

i,c )−1 −wyi
i Vyi(w

yi
i )T ]−1(wyi

i )TVyiV
−1
yi myi

− C2,yi
i,c wyi

i V\i,cyi

= myi + Vyiw
yi
i [(C1,yi

i,c )−1 −wyi
i Vyi(w

yi
i )T ]−1(wyi

i )Tmyi −Vyiw
TC2,yi

i,c

−Vyiw
yi
i [(C1,yi

i,c )−1 −wyi
i Vyi(w

yi
i )T ]−1(wyi

i )TVyiw
yi
i C

2,yi
i,c

(B.19)

m\i,cc = mc + Vcw
c
i [(C

1
i,c)
−1 −wc

iVc(w
c
i )
T ]−1(wc

i )
Tmc −Vcw

TC2
i,c

−Vcw
c
i [(C

1
i,c)
−1 −wc

iVc(w
c
i )
T ]−1(wc

i )
TVcw

c
iC

2
i,c ,

(B.20)

where we have used the Woodbury matrix identity and set wyi
i = Kyi

i,M (Kyi
MM )−1,

wc
i = Kc

i,M (Kc
MM )−1 and the constants C1,yi

i,c , C1
i,c, C

2,yi
i,c and C2

i,c are the
same that we mentioned in Section B.1.

B.3 Update of the approximate factors

In this section we show how to find the approximate factors φ̃ci once the
cavity distribution q\i,c has already been computed. We know that the exact
factor is:

φci = Φ

 âyii − âci√
b̂yii + b̂ci

 , (B.21)

where âyii = Kyi
i,M (Kyi

MM )−1uyi , âci = Kc
i,M (Kc

MM )−1uc, b̂yii = Kyi
i,i−Kyi

i,M (Kyi
MM )−1

Kyi
M,i and b̂ci = Kc

i,i −Kc
i,M (Kc

MM )−1Kc
M,i. The normalization constant of

φciq
\i,c has the following form:
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Zi,c =

∫
Φ

 âyii − âci√
b̂yii + b̂ci

N (uyi |m\i,cyi ,V
\i,c
yi )N (uc|m\i,cc ,V\i,cc )duyiduc

= Φ

(
ayii − aci√
byii + bci

)
,

(B.22)

where:

ayii = Kyi
i,M (Kyi

MM )−1m\i,cyi = wyi
i m\i,cyi (B.23)

aci = Kc
i,M (Kc

MM )−1m\i,cc = wc
im
\i,c
c (B.24)

byii = Kyi
i,i −Kyi

i,M (Kyi
MM )−1Kyi

M,i + Kyi
i,M (Kyi

MM )−1V\i,cyi (Kyi
MM )−1Kyi

M,i

(B.25)

bci = Kc
i,i −Kc

i,M (Kc
MM )−1Kc

M,i + Kc
i,M (Kc

MM )−1V\i,cc (Kc
MM )−1Kc

M,i ,

(B.26)

where wyi
i = Kyi

i,M (Kyi
MM )−1 and wc

i = Kc
i,M (Kc

MM )−1. We compute the
derivatives of logZi,c with respect to the parameters of q\i,c:

∂ logZi,c

∂m
\i,c
yi

=
N (βi,c|0, 1)

Φ(βi,c)

1√
byii + bci

wyi
i =

αi,c√
byii + bci

wyi
i (B.27)

∂ logZi,c

∂m
\i,c
c

=
−αi,c√
byii + bci

wc
i (B.28)

∂ logZi,c

∂V
\i,c
yi

= −1

2

N (βi,c|0, 1)

Φ(βi,c)

ayii − aci√
byii + bci

1

byii + bci
= −1

2
αi,cβi,c

1

byii + bci
wyi
i (wyi

i )T

(B.29)

∂ logZi,c

∂V
\i,c
c

= −1

2

N(βi,c|0, 1)

Φ(βi,c)

ayii − aci√
byii + bci

1

byii + bci
= −1

2
αi,cβi,c

1

byii + bci
wc
i (w

c
i )
T ,

(B.30)

where

αi,c =
N(βi,c|0, 1)

Φ(βi,c)
(B.31)

βi,c =
ayii − aci√
byii + bci

. (B.32)

By following the Appendix A we can obtain the moments of φciq
\i,c (means

m̂yi , m̂c and covariances V̂yi , V̂c) from the derivatives of logZi,c with re-
spect to the parameters of q\i,c. Namely:
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m̂yi = m\i,cyi + V\i,cyi

∂ logZi,c

∂m
\i,c
yi

= m\i,cyi + V\i,cyi

αi,c√
byii + bci

wyi
i (B.33)

m̂c = m\i,cc −V\i,cc

∂ logZi,c

∂m
\i,c
c

= m\i,cc −V\i,cc

αi,c√
byii + bci

wc
i (B.34)

V̂yi = V\i,cyi −V\i,cyi

(∂ logZi,c

∂m
\i,c
yi

)(
∂ logZi,c

∂m
\i,c
yi

)T
− 2

∂ logZi,c

∂V
\i,c
yi

V\i,cyi

= V\i,cyi −V\i,cyi

[
α2
i,c

byii + bci
wyi
i (wyi

i )T +
αi,cβi,c
byii + bci

wyi
i (wyi

i )T

]
V\i,cyi

= V\i,cyi −V\i,cyi

[
α2
i,c + αi,cβi,c

byii + bci
wyi
i (wyi

i )T

]
V\i,cyi

(B.35)

V̂c = V\i,cc −V\i,cc

(∂ logZi,c

∂m
\i,c
c

)(
∂ logZi,c

∂m
\i,c
c

)T
− 2

∂ logZi,c

∂V
\i,c
c

V\i,cc

= V\i,cc −V\i,cc

[
α2
i,c + αi,cβi,c

byii + bci
wc
i (w

c
i )
T

]
V\i,cc .

(B.36)

Now we can find the parameters of the approximate factor φ̃ci , which is ob-
tained as φ̃ci = Zi,cq

new/q\i,c, where qnew is a Gaussian distribution with the
parameters of φciq

\i,c, that we just computed. By following the equations
given in the Appendix A we obtain the precision matrices of the approxi-
mate factor:

Ṽyi
= V̂−1yi

− (V\i,cyi
)−1

=

(
V\i,cyi

−V\i,cyi
wyi

i

[
α2
i,c + αi,cβi,c

byi

i + bci

]
(wyi

i )TV\i,cyi

)−1
− (V\i,cyi

)−1

= (V\i,cyi
)−1 + (V\i,cyi

)−1V\i,cyi
wyi

i

([
α2
i,c + αi,cβi,c

byi

i + bci

]−1
−(wyi

i )TV\i,cyi
(V\i,cyi

)−1V\i,cyi
wyi

i

)−1
(wyi

i )TV\i,cyi
(V\i,cyi

)−1 − (V\i,cyi
)−1

= wyi

i

[α2
i,c + αi,cβi,c

byi

i + bci

]−1
− (wyi

i )TV\i,cyi
wyi

i

−1 (wyi

i )T ,

(B.37)

where we have used the Woodbury matrix identity to invert V̂−1yi . Let de-
fine C1,yi

i,c and C1
i,c as
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C1,yi
i,c =

[α2
i,c + αi,cβi,c

byii + bci

]−1
− (wyi

i )TV\i,cyi wyi
i

−1 (B.38)

C1
i,c =

[α2
i,c + αi,cβi,c

byii + bci

]−1
− (wc

i )
TV\i,cc wc

i

−1 . (B.39)

The precision matrices of the approximate factors will be then:

Ṽyi = C1,yi
i,c wyi

i (wyi
i )T

Ṽc = C1
i,cw

c
i (w

c
i )
T .

(B.40)

For the first natural parameter we proceed in a similar way

m̃yi = V̂−1yi m̂yi − (V\i,cyi )−1m\i,cyi

= ((V\i,cyi )−1 + Ṽyi)m̂yi − (V\i,cyi )−1m\i,cyi

= (V\i,cyi )−1m̂yi + Ṽyim̂yi − (V\i,cyi )−1m\i,cyi

= (V\i,cyi )−1

[
m\i,cyi + V\i,cyi

αi,c√
byii + bci

wyi
i

]

+ Ṽyi

[
m\i,cyi + V\i,cyi

αi,c√
byii + bci

wyi
i

]
− (V\i,cyi )−1m\i,cyi

= (V\i,cyi )−1m\i,cyi + (V\i,cyi )−1V\i,cyi

αi,c√
byii + bci

wyi
i

+ Ṽyi

[
m\i,cyi + V\i,cyi

αi,c√
byii + bci

wyi
i

]
− (V\i,cyi )−1m\i,cyi

=
αi,c√
byii + bci

wyi
i + Ṽyim

\i,c
yi + ṼyiV

\i,c
yi

αi,c√
byii + bci

wyi
i

=
αi,c√
byii + bci

wyi
i + C1,yi

i,c wyi
i (wyi

i )Tm\i,cyi +
αi,c√
byii + bci

C1,yi
i,c wyi

i (wyi
i )TV\i,cyi wyi

i

=

[
αi,c√
byii + bci

+ C1,yi
i,c (wyi

i )Tm\i,cyi +
αi,c√
byii + bci

C1,yi
i,c (wyi

i )TV\i,cyi wyi
i

]
wyi
i ,

(B.41)

where we have used that (V new
yi )−1 = V −1yi + Ṽyi . If we define C2,yi

i,c and C2
i,c

as

C2,yi
i,c =

[
αi,c√
byii + bci

+ C1,yi
i,c (wyi

i )Tm\i,cyi +
αi,c√
byii + bci

C1,yi
i,c (wyi

i )TV\i,cyi wyi
i

]
(B.42)

C2
i,c =

[
αi,c√
byii + bci

+ C1
i,c(w

c
i )
Tm\i,cc +

αi,c√
byii + bci

C1
i,c(w

c
i )
TV\i,cc wc

i

]
, (B.43)

we obtain the following expressions for the first natural parameters:
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m̃yi = C2,yi
i,c wyi

i (B.44)

m̃c = C2
i,cw

c
i . (B.45)

Once we have these parameters we can compute the value of the normaliza-
tion constant s̃i,c, which guarantees that the approximate factor integrates
the same as the exact factor with respect to q\i,c. Let θ be the natural pa-
rameters of q after the update and θ\i,c the natural parameters of the cavity
distribution q\i,c. Then,

s̃i,c = logZi,c + g(θ\i,c)− g(θ) , (B.46)

where g(θ) is the log-normalizer of a multivariate Gaussian with natural
parameters θ.

B.4 Estimate of the marginal likelihood

As we have seen in Chapter 5, the estimate of the log marginal likelihood is

logZq = g(θ)− g(θprior) +
N∑
i=1

∑
c 6=yi

log s̃i,c (B.47)

log s̃i,c = logZi,c + g(θ\i,c)− g(θ) , (B.48)

where θ, θ\i,c and θprior are the natural parameters of q, q\i,c and p(u|X )
respectively and g(θ′) is the log-normalizer of a multivariate Gaussian with
natural parameters θ′. If µ and Σ are the natural parameters of that Gaus-
sian distribution over m dimensions, then

g(θ′) =
m

2
log 2π +

1

2
log |Σ|+ 1

2
µTΣ−1µ , (B.49)

which leads to

logZq =
C∑
k=1

1

2
log |Vk|+

1

2
mT
kV−1k mk −

1

2
|Kk

MM |+
N∑
i=1

∑
c 6=yi

log s̃i,c , (B.50)

with

log s̃i,c = −1

2
log |1− C1w

T
k Vkwk|+

1

2
mT

k wk((Ck
1 )−1 −wT

k Vkwk)−1wT
k mk

+
1

2
(Ck

2 )2wT
k Vkwk +

1

2
(Ck

2 )2wT
k Vkwk((Ck

1 )−1 −wT
k Vkwk)−1wT

k Vkwk

− Ck
2wT

k mk − Ck
2wT

k Vkwk((Ck
1 )−1 −wT

k Vkwk)−1wT
k mk ,

(B.51)

where we have used the Woodbury matrix identity, the matrix determinant
lemma, that (V\i,c)−1 = V−1k − Ṽk, that m

\i,c
k = V\i,c(V−1m − m̃) and

using the vectors wyi
i , wc

i and the constants C1,yi
i,c , C1

i,c, C
2,yi
i,c and C2

i,c already
defined in Section B.1 and Section B.3.
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B.5 Gradient of logZq after convergence

Here we obtain the expression for the gradient of logZq after EP has con-
verged. Let denote ξj to one hyperparameter of the model (parameter of
the covariance function or a component of the inducing points) and θ and
θprior to the natural parameters of q and p(u|X ) respectively. When EP has
converged, the approximate factors can be considered to be fixed (it does
not change with the model hyperparameters) (Seeger, 2005). In this case, it
is only necessary to consider the direct dependency of logZi,c on ξj (Seeger,
2005). Then, the gradient is given by:

∂ logZq

∂ξj
=

(
∂g(θ)

∂θ

)T
∂θ

∂ξj
−
(
∂g(θprior)

∂θprior

)T
∂θprior
∂ξj

+

N∑
i=1

∑
c6=yi

∂ logZi,c

∂ξj

= ηT ∂θ

∂ξj
−
(
ηprior

)T ∂θprior
∂ξj

+

N∑
i=1

∑
c6=yi

∂ logZi,c

∂ξj

= ηT ∂θprior
∂ξj

−
(
ηprior

)T ∂θprior
∂ξj

+

N∑
i=1

∑
c 6=yi

∂ logZi,c

∂ξj
,

(B.52)

where we have used the chain rule of matrix derivatives (Petersen and
Pedersen, 2012), the especial form of the derivatives when using inducing
points (Snelson, 2007) and that θ = θprior +

∑N
i=1

∑
c 6=yi θ

c
i , with θci the nat-

ural parameters of the approximate factor φ̃ci . This gradient coincides with
the one in eq. (5.19).

B.6 Predictive distribution

Once the training has completed, we can use the posterior approximation to
make predictions for new instances. For that, we first compute an approxi-
mate posterior evaluated at the location of the new instance f(x∗), denoted
by f∗:

p(f∗|y,X ) =

∫
p(f∗|u)p(u|y,X )du ≈

∫
p(f∗|u)q(u)du

≈
C∏

k=1

N (f∗|m∗k,V∗k) ,

(B.53)

where m∗k = Kk
f∗,M (Kk

MM )−1mk and V∗k = Kf∗,f∗−Kk
f∗,M (Kk

MM )−1Kk
M,f∗+

Kk
f∗,M (Kk

MM )−1Vk(K
k
MM )−1Kk

M,f∗ . Kf∗,f∗ is the prior variance of the test
point and Kf∗,M is the covariance matrix between the test point and the
inducing points.

We can use this approximate posterior to obtain an approximate predic-
tive distribution for the class label y∗:
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p(y∗|x∗,y,X) =

∫
p(y∗|x∗, f∗)p(f∗|y,X )df∗

=

∫
p(y∗|x∗, f∗)

C∏
k=1

N (f∗|m∗k,V∗k)df∗

=

∫ ∏
c6=yi

Θ(f∗yi
− f∗c )

 C∏
k=1

N (f∗|m∗k,V∗k)df∗

=

∫ ∏
c6=yi

Θ(f∗yi
− f∗c )

 ∏
c 6=yi

N (f∗|m∗c ,V∗c )df∗N (f∗yi
|m∗yi

,V∗yi
)

=

∫ ∏
c6=yi

Θ(f∗yi
− f∗c )N (f∗|m∗c ,V∗c )df∗

N (f∗yi
|m∗yi

,V∗yi
)

=

∫ ∏
c6=yi

Φ

(
f∗yi
−m∗c√
V∗c

)
N (f∗yi

|m∗yi
,V∗yi

)df∗ ,

(B.54)

where Φ(·) is the cumulative distribution function of a Gaussian distri-
bution. This is an integral in one dimension and can easily be solved by
quadrature.
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