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“I stand amid the roar 

Of a surf-tormented shore, 

And I hold within my hand 

Grains of the golden sand- 

How few! yet how they creep 

Through my fingers to the deep, 

While I weep- while I weep! 

... 

Is all that we see or seem 

But a dream within a dream?” 

Edgar Allan Poe 
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Despite the tremendous effort undertaken so far to decipher the cellular response in 

cardiac repair many questions remain unanswered. The recent advances in omics 

technology have opened up the possibility to address these questions and to 

understand the cell type specific functional contribution. However, the massive amount 

of generated data requires thorough bioinformatics work by implementing a plethora 

of statistical analysis and mathematical methods that have to be chosen with care to 

understand underlying molecular mechanisms. Another integral part of the data 

analysis process is the visualization of the obtained results. Due to the high-

dimensionality of the data this step is rather challenging and further improvement is 

needed to provide advanced methods that facilitate the combination of various data 

types to enhance graphical representation of context-dependent, relevant information. 

For this purpose, we developed the R package GOplot to visually combine 

expression data with functional information (results chapter 1). The R package further 

supported the exhaustive bioinformatics analysis of ad-hoc generated transcriptomics 

data of murine cardiac macrophages (Mφ; results chapter 2) and distinct porcine 

cardiac cells (results chapter 3) in the healthy heart and after myocardial infarction 

(MI). The analysis revealed that murine cardiac Mφ can be distinguished from other 

tissue-resident Mφ by cardiac specific transcriptional programs and the expression of 

cardiac specific markers. The global transcriptional profile of murine post-MI Mφ could 

be matched to M1/M2 polarization states but systematic gene expression analysis and 

partial deconvolution revealed that these Mφ are a mix of described in vitro 

phenotypes. Simulated dynamics and experimental validation of identified core 

regulatory genes showed that the initial inflammatory response of murine Mφ is limited 

by hypoxia-mediated up-regulation of Il10. We also found that targeted mRNA 

degradation contributes to the resolution of inflammation and the Mφ phenotype 

transition. In swine, gene signatures could be identified for each cell type that were 

linked to distinct biological functions. In silico analysis of the secretome and receptome 

indicated a complex network of intercellular communication with numerous potential 

interactions between Mφ and endothelial cells (EC) and cardiomyocytes (CM) and 

fibroblasts (FB) post-MI.  

Collectively, the gathered data provide a useful resource to improve the 

understanding of the regulatory network of cardiac repair and suggest potential targets 

for tissue and cell type specific therapeutic interventions to manipulate cardiac repair. 



 

4 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

5 
 

 

 

 

 

 

 

 

 

RESUMEN 

 

 

 

 

 

 

 

 



 

6 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

7 
 

A pesar del gran esfuerzo llevado a cabo para entender la respuesta celular durante 

la reparación del daño cardiaco todavía existen muchos ámbitos desconocidos. Los 

recientes avances en tecnologías ómicas han aumentado la posibilidad de entender 

mejor este proceso tanto a nivel global como el papel específico de cada tipo celular. 

Estas tecnologías, sin embargo, generan una ingente cantidad de datos que requiere 

del uso adecuado de herramientas bioinformáticas capaces de implementar análisis 

estadísticos y modelos matemáticos para entender los mecanismos moleculares 

subyacentes a en los datos.  Otra parte fundamental del proceso es la visualización 

de los resultados obtenidos. Debido a la multidimensionalidad de este tipo de datos 

esta tarea supone un reto que requiere de nuevas aproximaciones para facilitar la 

combinación de datos heterogéneos de manera visual, y así ser capaces de extraer y 

transmitir la información relevante para cada contexto. 

Esta tesis presenta los resultados obtenidos gracias al detallado análisis 

bioinformático de dos conjuntos de datos transcriptómicos generados ad-hoc en el 

corazón sano y en diversos tiempos tras el infarto en (dataset 1) macrófagos cardiacos 

de ratón (Mφ; capítulo 2 de resultados) y en (dataset 2) macrófagos, células 

endoteliales, fibroblastos y cardiomiocitos de cerdo (capítulo 3 de resultados). Los 

análisis llevados a cabo revelan que, en ratón, los Mφ cardiacos son claramente 

distinguibles a nivel transcripcional de los macrófagos residentes en otros tejidos. Por 

otra parte, el uso de técnicas de deconvolución de la expresión génica in silico reveló 

que después del infarto los Mφ cardiacos son una mezcla de los fenotipos funcionales 

(M1/M2) descritos in vitro. Adicionalmente, gracias al modelado de la red génica 

fundamental durante el proceso utilizando un modelo booleano, se descubrió que la 

respuesta inicial a la inflamación en este contexto está limitada por un incremento de 

Il10 en respuesta a las señales de hipoxia, resultado que fue validado 

experimentalmente. Del mismo modo, encontramos que la regulación post-

transcripcional contribuye a la resolución de la inflamación y a la transición M1/M2.  

En el modelo de infarto en cerdo se identificaron perfiles transcripcionales 

específicos de cada tipo de celular y de cada estado fisiológico de la célula, que a su 

vez fueron relacionados con funciones distintas, sugiriendo un papel propio de cada 

tipo celular en la respuesta al daño por infarto. Asimismo el análisis in silico del 

secretoma y del receptoma evidenció una compleja red de interacciones después del 

infarto, entre Mφ y células endoteliales por un lado y entre cardiomiocitos y fibroblastos 
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por otro. En todas las fases del análisis se utilizó el paquete de R GOplot que fue 

desarrollado específicamente para facilitar la interpretación de los resultados gracias 

a la combinación de información funcional y de expresión (capítulo de resultados 1). 

En conjunto, los datos generados y analizados en esta tesis han contribuido a una 

mejor comprensión de la red de regulación responsable de la recuperación del daño 

cardiaco después del infarto de miocardio, sugiriendo dianas específicas de tejido y 

tipo celular y que podrán ser utilizadas para mejorar la reparación cardiaca. 
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1. CARDIAC SYSTEMS BIOLOGY 

Over the last decade, the cardiovascular system and its broad range of diseases 

have been subjected to the most intensive studies (Leal et al., 2006). Although the 

structure and anatomy of the mammalian heart are well known and have been 

described decades ago, knowledge about the complex cellular and molecular 

interactions and their outcomes controlling both normal and pathological 

cardiophysiology is limited. The mammalian heart is predominantly composed of CM, 

FB, EC, and hematopoietic-derived cells (Bergmann et al., 2015; Pinto et al., 2016). 

Each cell lineage contributes in a distinct way to maintain cardiac homeostasis or to 

restore homeostasis in case of tissue injury, which creates a complex and highly 

connected network of cell interactions. It is of prime importance to understand these 

fine- tuned underlying regulatory networks and the specific contribution of the distinct 

cardiac cell types in order to be able to develop efficient targeted treatment.    

1.1. Systems biology to understand biological complexity 

It has only been during the last decade that the critical developments in genome 

sequencing, expression profiling, proteomics, and metabolomics high-throughput data 

can be used to thoroughly elucidate transcriptional changes and the spatio-temporal 

properties of multifaceted regulatory networks (Jojic et al., 2013; Robinette et al., 

2015). Furthermore, it is becoming more and more apparent that a comprehensive 

understanding of intricate biological processes (BP) can only be obtained through the 

integration of different molecular levels. The classical way of dissecting complex 

biological systems has been a reductionistic one, by breaking the systems down into 

individual, more traceable parts (Ahn et al., 2006). A reductionistic approach is very 

useful if the origin of a given disease can be traced back to a single factor but is 

challenged if multiple factors come into play. The recently established field of systems 

biology aims to improve the understanding of complex mechanisms by combining 

mathematical modeling and computational biology with experimental data, integrating 

different levels of regulation - a characteristic of many clinically relevant diseases such 

as MI (Dimmeler et al., 2005; Shay and Kang, 2013). 
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1.2. The bioinformatics workflow towards systems biology 

 

Figure 1: Flow chart for computational analysis of high-throughput experimental data. 

1.2.1. Data acquisition and preprocessing 

In order to answer the biological question of interest, the selection of appropriate 

methods and technologies is of prime importance. Due to the development of 

sequencing technologies such as DNA microarray and RNA- sequencing (RNA-seq), 

which allow to easily perform large-scale measurements, many biological questions 

are addressed by the analysis of genomics and transcriptomics data (Gautier et al., 

2012; Miller et al., 2012).  

In the case of microarray studies, fluorescently labeled target sequences are 

hybridized with nucleic acid probes with complementary sequence that are attached to 

glass slides. The slides are scanned, the obtained images are converted into signal 

intensities, and array specific software is used to process the data. Microarray data 

contain very high background noise and require a number of preprocessing steps to 

convert the raw data to measures with biological meaning (Silver et al., 2009). 

Normalization is a critical step in the data preprocessing process that differs according 

to the used technology and is used to remove systematic technical effects. In our study 

we used single channel Agilent microarrays and it has been shown that for these arrays 

quantile normalization performs best (Bolstad et al., 2003). The aim of this 

normalization technique is to make all arrays have the same distribution of probe 
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intensities (Irizarry et al., 2003), which allows gene expression comparisons between 

arrays and over various conditions. The state of the art package for gene discovery 

through differential expression (DE) analyses of microarray data is limma (Ritchie et 

al., 2015), that applies linear models to identify differentially expressed genes (DEG), 

which build the basis for further downstream analysis.     

Hybridization-based approaches are reliable and cost effective techniques but  

suffer from limitations such as reliance upon existing knowledge about genome 

sequence, high background levels owing to cross-hybridization (Uva and De Rinaldis, 

2008), and limited dynamic range of detection (Zhao et al., 2014). RNA-seq overcomes 

these drawbacks and has become the most popular method for transcriptome analysis 

(including messenger RNAs (mRNA), non-coding RNAs and small RNAs) and to 

quantify changing expression levels of each transcript under different conditions 

(Tachibana, 2015). 

The general procedure of RNA-seq consists in the conversion of a population of 

fragmented RNA to a library of cDNA fragments with adaptors attached to one or both 

ends. Each molecule, with or without amplification, is then sequenced in a high-

throughput manner to obtain short sequences from one end (single-end sequencing) 

or both ends (paired-end sequencing) of the fragment. The reads are typically 30-400 

base pairs (bp), depending on the used sequencing technology. The resulting reads 

are then aligned to either the reference genome or reference transcriptome. In the 

absence of a reference genome the sequences have to be assembled de novo. To 

estimate transcript abundance from a mapping to the genome the most commonly 

used program is Cufflinks (Trapnell et al., 2010), whereas algorithms that quantify 

expression from transcriptome mappings include RSEM (RNA-Seq by Expectation 

Maximization) (Li and Dewey, 2011), eXpress (Roberts and Pachter, 2013), Sailfish 

(Patro et al., 2014), and Kallisto (Bray et al., 2016). In this dissertation reads were 

mapped to the transcriptome and transcript expression was estimated applying RSEM. 

For large transcriptomes alignment is complicated by the fact that a significant portion 

of sequence reads match multiple locations in the genome. This issue can be 

addressed in different ways of which the simplest approach involves discarding these 

multi-mapped reads entirely. Another way of handling these multi-mapped reads 

involves the partition and distribution of their expression values between all transcripts 

that are mapped to the reads. RSEM improves this procedure by applying an 
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Expectation- Maximization algorithm to estimate maximum likelihood expression 

levels. Raw read counts obtained from RNA-seq are affected by factors such as 

transcript length and total number of reads and hence have to be normalized for 

correctly ranking gene expression levels within a sample. Feature-length and library-

size effects can be reduced through within-sample normalizations resulting in reads 

per kilobase of exon model per million reads (RPKM) and its subsequent derivatives 

fragments per kilobase of exon model per million reads (FPKM) and transcripts per 

million (TPM). For comparisons across samples and species, the TPM measure, as 

reported by RSEM, is preferred over RPKM and FPKM measures due to its 

independence of the mean expressed transcript length (Li and Dewey, 2011).  

For DE analysis a correction for gene length is not necessary, because the gene 

length does not differ between different conditions. Nevertheless, normalization 

methods such as trimmed mean of M-values (TMM) (Robinson and Oshlack, 2010), 

DESeq (Anders and Huber, 2012) or PoissonSeq (Li et al., 2011) are necessary to 

correct for a potential heterogeneous transcript distribution. Thus, if certain transcripts 

are highly expressed in one experimental condition a DE analysis without 

normalization might be skewed towards this condition. The edgeR (Robinson et al., 

2010) package can be used to perform an combined normalization and DE analysis by 

integration of TMM normalization factors into the statistical model used to test for DE. 

Methods such as edgeR and DESeq use the negative binomial distribution to compute 

DE genes to account for overdispersion – a characteristic feature of RNA-seq data 

(Trapnell et al., 2013).     

1.2.2. Data integration 

An essential part of systems biology approaches is the integration of different 

datasets to analyze and discover potential relationships and connections that 

otherwise would remain unnoticed. There are two levels of data integration: the 

combination of experimental data of the same (e.g. inter-experimental comparisons of 

gene expression profiles) or different molecular levels (e.g. integration of mRNA, 

microRNA (miRNA), long non-coding RNA (lncRNA)).  

Integration of gene expression profiles that originate from different experiments 

requires an efficient correction for systemic errors (batch effects) that are introduced 

by laboratory conditions, reagents lots, as well as personnel differences and are 
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unrelated to biological variables in a study (Leek et al., 2010). Such a correction is 

necessary because batch effects can be correlated with an outcome of interest and 

the lack of batch correction would lead to inaccurate conclusions. Different methods 

have been developed or used to identify and remove batch effects from high-

throughput data, but the Empirical Bayes method ComBat performs best (Chen et al., 

2011a). ComBat robustly adjusts batches with small sample size by estimation of 

parameters for location and scale adjustment of each batch for each gene 

independently. The estimates are subsequently used to adjust the data for batch 

effects. A detailed description of the procedure can be found in (Johnson et al., 2007).  

The integration of mRNA expression data with miRNA and/or lncRNA expression 

profiles has the potential to unravel the impact of post-transcriptional regulation on 

gene expression and adds an additional layer of information to reconstructed gene 

regulatory networks. The analysis is, however, rather challenging due to the high 

number of false miRNA target predictions and the limited knowledge of regulatory 

mechanisms of lncRNAs. The details of the computational analysis will be discussed 

in later sections.   

1.2.3. Functional profiling of high-throughput data 

The biological interpretation of high-throughput data is rather challenging due to 

its high-dimensional nature and the identification of DE genes is only the first step in 

the process of inferring knowledge from the obtained expression data. To gain further 

insight into altered BPs and pathways, DE genes are mapped to their biological 

annotation, e.g. gene ontology (GO) terms, and an enrichment analysis is performed. 

Alternatively, gene set enrichment analysis (GSEA) can be used to identify 

overrepresented processes (Subramanian et al., 2005). Obviously, such functional 

analysis requires the availability of sufficient functional annotation data for the species 

under study; otherwise, detected protein coding genes with unknown function might be 

functionally annotated through the identification of orthologs of better studied 

organisms. Once, the overrepresented processes and pathways are identified, 

pathway interaction and gene regulatory networks can be built as an attempt to 

understand the intrinsic nature of interlaced cell and/or molecular activities.  
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1.2.4. Network analysis 

Within the context of systems biology, networks and their analysis (including both, 

topology and dynamics) aim to understand molecular and cellular interactions and 

effects of those interactions on a global scale. Networks are a collection of elements, 

represented as nodes or vertices, and the relationships between these elements are 

depicted as edges between two nodes. Intercellular biological networks, such as gene 

regulatory networks (GRN), are typically constructed with nodes representing 

molecules (genes/proteins) and edges corresponding to positive or negative 

interactions between them (Ma’ayan, 2011). Observation of networks over time might 

reveal two kinds of changes: changes in node state (e.g. activation, deactivation) and 

changes in network structure (e.g. rewiring of interactions).  

In contrast to other molecules (e.g. cytokines) genes are less pleiotropic, i.e. one 

gene affects only a small number of other genes, and mainly operate within regulatory 

modules (Wagner and Zhang, 2011), which leads to networks that comprise only a few 

highly connected nodes or hubs. Network structure analysis can be used to extract 

meaningful subnetworks, including the identification of connected and strongly 

connected components (SCC), using the algorithm of Tarjan (Tarjan, 1975).  A SCC is 

a group of genes, where every pair of genes is connected through directed paths 

(Albert 2007). The high interconnectivity of the SCC makes it an interesting target for 

network stability analysis because changes in the state of one of the genes are likely 

to affect the state of all remaining genes of the SCC and obtained results are often 

experimentally testable.  

Modeling the dynamics of GRNs can be broadly categorized into continuous and 

discrete modeling approaches (Garg et al., 2009). The continuous modeling approach 

uses coupled ordinary differential equations (ODEs) to model evolution of gene 

expression over time and requires knowledge of kinetic rate constants. Although high-

throughput technologies significantly improved our knowledge of molecular 

interactions, stoichiometry and kinetics are still largely unknown for gene regulatory 

processes, limiting the application of ODEs. Discrete modeling approaches on the 

other hand, such as Boolean networks, are mostly independent of quantitative data. In 

Boolean networks each node, or gene, has a discrete value of 1 (activated/present) or 

0 (deactivated/absent) and the interaction between the genes are modeled applying 
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Boolean functions (e.g. AND, OR). In a Boolean network the state of a gene i at time t 

is represented by a variable xi(t). In order to model the dynamics of each gene the state 

of each gene at time t+1 is described as a function of the state of those genes that 

influence the state of the gene in question. The overall state of the network at time t is 

described as the activation state of all genes in the network and its dynamics can be 

modeled by combining the dynamics of the individual genes. For that purpose a 

transition function T(xt, xt + 1) is defined that represents the transition from the present 

state xt to the next state xt +1.   

Transition functions can be either synchronous or asynchronous. In a synchronous 

dynamic model, all genes change their expression levels simultaneously in 

consecutive time points, whereas in asynchronous updating schemes all genes take 

different time for making a transition (Garg et al., 2008). Asynchronous updating 

schemes capture biological processes more accurately but they are also more complex 

to model and are computationally intense, even when modeling moderately sized 

networks. Synchronous models on the other hand can be computed within a few 

minutes (Garg et al., 2008). Nevertheless, due to the fact that in real biological systems 

not all genes undergo changes in expression at the same time the synchronous models 

are less precise.  

It is well known that gene expression and its regulation are stochastic processes 

(Chalancon et al., 2012). In Boolean networks stochastic effects are included by 

flipping node states from 0 to 1 or vice versa with some predefined flip probability 

(Liang and Han, 2012). The integration of stochastic effects is required in order to 

simulate the differentiation of a Boolean model into multiple stable states (Garg et al., 

2009). However, biological functions are characterized by different levels of complexity 

and show varying levels of stochasticity. Hence, it has been proposed to model 

stochastic effects on the level of biological functions rather than at the level of gene 

expression and the functionality of this approach has been demonstrated by modeling 

the T-helper network (Garg et al., 2009).    

The simulated network evolves over time and reaches finally a stable state (or 

attractor), which represents the long-term behavior of the genes that build the network. 

It has been shown that these attractors can be associated with cellular steady states 

or phenotypes (Huang et al., 2005; Maamar et al., 2007). Here it is interesting to note, 
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that some cells seem to reach a robust stable state whereas other cells, such as Mφ, 

exhibit high plasticity and continuously shift their functional phenotype, i.e. transit from 

one attractor to another (Mantovani et al., 2013; Martinez and Gordon, 2014). 

Hypothesis and predictions derived from GRN modeling can then be tested and 

validated by in vitro or in vivo experiments.  

2. MYOCARDIAL INFARCTION AND THE TEMPORAL CHANGES 

DURING INFARCT HEALING  

With worldwide over 17 million deaths cardiovascular diseases (CVD), including 

diseases of the heart and vasculature such as MI, cardiac arrhythmias and stroke, are 

the leading cause of death as reported in World Health Statistics 2014 (Organization, 

2015). In the case of MI, coronary artery occlusion results in an insufficient oxygen 

supply to the downstream myocardium. Sudden induction of ischemia, if left untreated 

for a prolonged period of time, leads to massive necrotic cell death within the infarcted 

tissue, initiating sterile inflammation and immune cell infiltration (Frangogiannis et al., 

2002). The infiltrating cells clear the site of inflammation of cellular debris and the 

emerging gap is filled with granulation tissue, which subsequently develops into a 

dense scar (Boudoulas and Hatzopoulos, 2009). The temporal phases of the cardiac 

repair process are explained in detail in the subsequent section.  

After coronary artery occlusion the sudden induction of ischemia triggers 

necrotic CM death within the affected myocardium, accompanied by impaired vascular 

EC integrity that facilitates leukocyte infiltration (Eltzschig and Eckle, 2011)(Figure 2). 

Danger associated molecule patterns (DAMP) released from necrotic cells lead to the 

onset of an intense sterile inflammation which is further amplified by infiltrating immune 

cells (Figure 2). Neutrophils are the first cells to enter the damaged heart and start to 

clear necrotic cellular debris from the tissue (Sun, 2008). The initial beneficial effect of 

neutrophil activity results later into further tissue damage and recruitment of pro-

inflammatory monocytes to the infarcted area (Horckmans et al., 2016), which 

replenish the cardiac Mφ pool (Heidt et al., 2014; Lavine et al., 2014). These Mφ 

resemble an M1-like phenotype (Figure 2) and contribute to the inflammatory response 

by the release of cytokines, growth factors, and the generation of reactive oxygen 

species (ROS), which may activate the complement system and nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-kB) (Wang et al., 2007). NF-kB activation 
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in turn leads to the upregulation of cytokine and chemokine production, which effect 

cardiac repair in an autocrine or paracrine fashion (Masters and Riley, 2014). ECs and 

mononuclear phagocytes produce a variety of chemokines and cytokines in response 

to the same stimulus, amplifying and extending the inflammatory reaction. Cytokines 

are characterized by functional pleiotropy and redundancy: different cell types can be 

affected by the same cytokine, providing that they express the adequate receptor, and 

structurally related cytokines can activate similar pathways and trigger overlapping 

functions on the same cell type. The robust up-regulation of pro-inflammatory cytokines 

has to be timely confined in order to prevent chronic inflammation and to start the 

reparative phase with resolution of inflammation, FB proliferation, scar formation, and 

neovascularization over the next several days (Frangogiannis et al., 2002; Sedlyarov 

et al., 2016).  

 

Figure 2: Temporal phases after MI and their characteristics. 

The transition from a pro- to an anti-inflammatory program is mainly driven by 

changes in the molecular composition of the cardiac microenvironment. One of the key 

players that affect the resolution of inflammation in multiple ways are apoptotic 

neutrophils (Figure 2), which upon uptake polarize Mφ to an M2-like phenotype. M2-

like Mφ are characterized by the secretion of anti-inflammatory and profibrotic factors 

such as interleukin 10 (IL10) and transforming growth factor beta (TGF-β), which 
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promote tissue repair. IL10 is known as a potent anti-inflammatory mediator, that 

inhibits inflammation and attenuates left ventricular remodeling post-MI 

(Krishnamurthy et al., 2009). TGF-β, a major pro-fibrogenic cytokine, becomes rapidly 

induced and activated in the infarcted heart (Bujak and Frangogiannis, 2007). The 

exact role of TGF-β in cardiac repair still remains to be elucidated, but accumulating 

evidence suggests three main functions of TGF-β in healing infarcts: repression of 

inflammation, modulation of FB phenotype, and induction of interstitial fibrosis (Euler, 

2015). Immune cells have been identified as key players in the fibrotic cascade, with 

the capacity to exert either injury-inducing or repair-promoting effects. In particular Mφ, 

that can be found in close proximity with collagen-producing myofibroblasts, play a 

crucial role in fibrosis (Wynn and Barron, 2010). The accumulation of pro-fibrogenic 

myofibroblasts is a central feature of tissue fibrosis and upregulation of collagen 

production and promotion of extracellular matrix (ECM) deposition results in the 

formation of a collagen scar to stabilize contractile function of the damaged ventricle 

(Sutton and Sharpe, 2000). The scar formation is accompanied by myocyte 

hypertrophy and neovascularization (Nelissen-Vrancken et al., 1996). Nevertheless, 

the developing microvascular networks are not capable to fulfill the demands of the 

growing tissue, resulting in inadequate oxygenation and nutrient supply (Kocher et al., 

2001). As a result, there is dilatation of the chamber arising from the infarct region, 

which bears the risk of heart failure. 

Nonetheless, the knowledge about the exact molecular and cellular 

mechanisms and regulatory networks involved in cardiac repair is limited and further 

research is needed to decipher this multifaceted process as a requirement for the 

development of efficient target treatments that improve cardiac repair.  

3. THE DIFFERENT CELL TYPES OF THE HEALTHY HEART AND 
AFTER MYOCARDIAL INFARCTION  

The tissues of the mammalian body are composed of a wide variety of cell types 

that closely interact to maintain and regain homeostasis in case of tissue injury, such 

as MI. The mammalian heart is composed of different cell types and around 70% of 

the cells in the healthy heart are nonmyocytes, including primarily FBs and ECs (Zhou 

and Pu, 2016). A recent study reassessed the cardiac cellular composition and 

revealed that ECs constitute more than 60% of the adult mouse heart, followed by FBs 

(< 20%), and hematopoietic-derived cells (5-10%) (Pinto et al., 2016). Only recently it 
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has been shown that Mφ also populate the healthy myocardium, interspersed between 

CMs, FBs, and ECs (Heidt et al., 2014; Pinto et al., 2012).  

3.1. Cardiac macrophage activation and function 

Mφ reside in virtually every tissue of the body and are very heterogeneous. 

Many tissue-resident Mφ populations arise from embryonic precursors and circulating 

monocytes contribute to only a few tissues, including the gut, dermis and heart 

(Ginhoux and Guilliams, 2016). Tissue Mφ, including cardiac Mφ, have remarkable 

proliferative capacity and maintain themselves through local proliferation with tissue-

dependent turn-over rates (Heidt et al., 2014; Lavine et al., 2014). The functions of 

tissue resident Mφ are tissue specific and range from tissue homeostasis and iron 

processing to wound healing after inflammation (Figure 3). Mφ are highly influenced 

by the microenvironment in which they reside and in vivo Mφ transplantation 

experiments demonstrated that the functional phenotype of tissue-resident Mφ is not 

terminal. Transplanted Mφ can be reprogrammed and adopt the transcriptional 

signature of the new microenvironment they reside in (Lavine et al., 2014).  

 

Figure 3: Overview of tissue specific functions of resident Mφ and typical stimuli of Mφ 

activation. LPS, lipopolysaccharide; IFNγ, interferon gamma; IL4, interleukin 4; IL13, 

interleukin 13; IC, immune complex; IL-1β, interleukin 1-beta; IL10, interleukin 10; GC, 

glucocorticoid. 

Depending on their surroundings Mφ adapt different functional phenotypes and 

have been classified according to a simplified bipolar classification system with pro- 
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and anti-inflammatory macrophages on opposite ends of the activation spectrum 

(Martinez and Gordon, 2014). Mφ activated with pro-inflammatory signals, such as 

lipopolysaccharides (LPS) and interferon gamma (IFNγ), are termed M1 or “classically-

activated” Mφ, whereas anti-inflammatory signals, such as interleukin 4 (IL4) and other 

stimuli lead to M2 or “alternatively-activated” Mφ (Mackaness, 1962; Nathan et al., 

1983; Stein et al., 1992)(Figure 3). M1-like Mφ contribute to immune response, 

whereas anti-inflammatory M2-like Mφ support the resolution of inflammation and 

tissue remodeling mainly through the production of IL10. The M1/M2 classification 

system derives from the pre-genomic era and recent findings have shown that Mφ 

activation is best described with a multi-dimensional model (Xue et al., 2014). Studies 

of in vivo Mφ in different disease contexts have shown that the different Mφ populations 

do not exhibit either of the M1/M2 polarization states (Daley et al., 2010; Novak et al., 

2014; Varga et al., 2016).  

Cardiac tissue- resident Mφ (CRM) display typical Mφ characteristics, such as 

phagocytosis, and express markers associated with an anti-inflammatory phenotype 

(Pinto et al., 2012). Although only a few functional studies of cardiac Mφ and their role 

in tissue homeostasis exist, transcriptional analyses suggest a role in angiogenesis, 

fibrosis, and maintenance of immune quiescence (Pinto et al., 2014; Pinto et al., 2012). 

However, the exact mechanisms remain still elusive and further studies are needed to 

improve the knowledge of CRMs. 

Intensive cell tracking studies showed a complete loss of tissue-resident Mφ in 

the heart following sterile tissue injury with subsequent infiltration of inflammatory 

monocytes to replenish the Mφ pool (Heidt et al., 2014). These Mφ resemble an M1-

like phenotype and are characterized by their phagocytic, inflammatory, and fibrolytic 

properties (Heidt et al., 2014; Lambert et al., 2008). Within hours after MI the 

microenvironment is dominated by inflammatory mediators, such as IFNγ. Various 

studies established IFNγ as an immune-activating cytokine for Mφ (Flynn et al., 1993). 

Although Mφ can also be a source of IFNγ production (Darwich et al., 2009) the major 

sources of IFNγ are T-cells, specifically Th1, and natural killer cells (NK) (Hansson et 

al., 2006). Mφ bind IFNγ and the IFNγ-induced signaling is mainly mediated by signal 

transducer and activator of transcription 1 (STAT1) and janus kinase 2 (JAK2), resulting 

in the activation of the JAK/STAT signaling cascade (Martinez and Gordon, 2014). 

However, T-cells and NK cells are not the only cells or environmental factors capable 
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to activate Mφ. A common feature of inflammation sites are low levels of oxygen which 

trigger necrotic CM death. Necrotic CMs and the damaged ECM of the infarcted area 

release endogenous molecules (DAMPs) into the extracellular environment (Chen and 

Nuñez, 2010). DAMPs trigger an inflammatory response and activate immune cells 

through engagement with membrane-bound pattern recognition receptors. In order to 

fulfill the demands of the energy-intensive inflammatory response, pro-inflammatory 

Mφ are known to undergo a metabolic switch to favor glycolysis (Bordbar et al., 2012; 

Freemerman et al., 2014; Rath et al., 2015). The pro-inflammatory response is 

sustained by Mφ secreted molecules but intercellular programs as well as changes in 

the molecular composition of the microenvironment lead to an attenuation of 

inflammation and the onset of anti-inflammatory transcriptional programs (Martinez 

and Gordon, 2014; Sedlyarov et al., 2016). A recent study related to skeletal muscle 

injury has shown that the subsequent shift of Mφ to a M2-like phenotype is 

accompanied by the increased production and secretion of ECM components (Varga 

et al., 2016). Although many studies have demonstrated the importance of Mφ during 

wound healing (Diegelmann and Evans, 2004; DiPietro, 1995) the exact mechanisms 

and functions of these Mφ are not well known. However, the secretion of ECM 

components and the reported function of Mφ in fibrosis (Wynn and Barron, 2010) 

suggest that Mφ mainly act through the activation of myofibroblasts. 

3.4. Fibroblasts, fibrosis and myocardial infarction 

FBs are one of the most abundant cell types in the healthy myocardium (Pinto 

et al., 2016) and are responsible for maintaining the integrity of the cardiac matrix 

network due to their elevated production of ECM proteins. MI and other heart diseases 

lead to the expansion and activation of cardiac FBs, which play critical roles in the 

reparative response of the tissue and are implicated in left ventricle remodeling (Porter 

and Turner, 2009). It is now evident that FBs are more than just matrix-producing cells, 

performing a variety of functions ranging from the activation of the inflammasome 

during the inflammatory phase to cell migration, cell proliferation, and endothelial to 

mesenchymal transition during the proliferative phase of infarct healing (Chen and 

Frangogiannis, 2013). Since the adult mammalian heart has only a limited regenerative 

capacity, necrotic CMs are replaced by a collagen-based scar. FB are less susceptible 

to low oxygen levels than CM but hypoxic conditions polarize cardiac FBs to a 
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fibrogenic phenotype with increased collagen production (Tamamori et al., 1997). FBs, 

like MΦ, undergo dynamic phenotype alterations during the process of cardiac repair 

and, mediated by various factors such as TGF-β/ SMAD Family Member 3 (SMAD3) 

signaling (Dobaczewski et al., 2010), transdifferentiate into myofibroblasts during the 

proliferative phase of cardiac repair. The contractile force produced by myofibroblasts 

effectively promotes tissue remodeling and is reinforced by the deposition of collagen 

(Baum and Duffy, 2011). Once the tissue repair is terminated myofibroblasts undergo 

apoptosis and disappear (Desmouliere et al., 1995). While MΦ are the key players of 

the inflammatory response, modulated FBs (myofibroblasts) become the dominant cell 

type during the reparative phase (Hinz, 2007).    

3.5. Endothelial function and myocardial infarction 

 Cardiac ECs can be found in the endocardium, cardiac valves, and the interior 

lining of blood vessels (Xin et al., 2013). The endothelium senses the sheer stress of 

flowing blood and contributes significantly to cardiac homeostasis through dynamic 

regulation of vascular permeability, blood vessel caliber, and the maintenance of blood 

fluidity (Brutsaert, 2003). The capillaries are in very close proximity to CM and EC-CM 

interactions are not only essential for normal heart development and growth but seem 

also to be relevant to promote cardiac repair (Hsieh et al., 2006). Cardiac EC are 

characterized by an extensive secretome, including vasoconstricting and vasodilating 

factors, pro- and anticoagulant factors, and many other mediators that directly impact 

cardiac metabolism, growth, contractile performance, and rhythmicity of the adult heart 

(Zhang and Shah, 2014).  

Following MI circulating ECs can be detected in the blood, indicating severe 

damage to the vasculature and cardiac endothelial dysfunction (Mutin et al., 1999). 

The rapture of the vasculature results in reduced coronary vasodilator function post-

MI in both, the infarct and the remote zone (Uren et al., 1994), limiting the oxygen and 

nutrient supply of the myocardium. Endothelial dysfunction also affects the coronary 

microcirculation (Sellke et al., 1990). Hence, the revascularization of damaged tissue 

is one of the crucial events of cardiac remodeling. The formation of new blood vessels 

does not only salvage ischemic myocardium but is also essential to prevent the 

transition to heart failure (Cochain et al., 2013). It has been shown that the formation 

of new microvessels starts as early as 3 days post-MI and occurs first at the border 
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zone of the infarct (Zhao et al., 2010). The same study proposed that vascular 

endothelial growth factor (VEGF) signaling is responsible for the initiation of the cardiac 

angiogenic response but might not be crucial for angiogenesis at later time points. 

Although angiogenesis is often associated with VEGF-signaling many different, VEGF- 

independent, signaling pathways exist, which are highly connected (Ferrara, 2010; 

Shibuya, 2008). Due to the importance of angiogenesis in cardiac remodeling EC-

based proangiogenic therapies seem to be a promising strategy. Nevertheless, the lack 

of success of these approaches indicates the involvement of multiple cell types 

(Cochain et al., 2013) and further studies are needed to decipher the exact regulatory 

interactions and mechanisms.  

3.6. Cardiomyocytes and myocardial infarction 

 CMs take up the largest cell volume of the healthy myocardium and are 

characterized by a high mitochondrial density, which allows them to fulfill the energy 

demand of the muscle metabolism. The sudden onset of ischemia following MI leads 

to a massive necrotic death of CMs, which release endogenous factors into the 

extracellular environment due to decreased plasma membrane integrity, triggering an 

inflammatory response. Recently, interleukin 1 alpha (Il-1α) and RNA, released by 

necrotic CMs, have been identified as key danger signals that induce an inflammatory 

response post-MI (Lugrin et al., 2015). The pro-inflammatory effect of necrotic CMs 

might be amplified by surviving CMs in the infarct border zone that produce and secrete 

pro-inflammatory cytokines (Prabhu and Frangogiannis, 2016). These cytokines 

support the recruitment of leukocytes and polarize them to a pro-inflammatory 

phenotype, establishing a strong inflammatory response.  

The loss of CMs in the infarcted area is irreversible and results with time in the 

formation of scarred tissue. The number of dead CMs defines the size of the infarct 

which directly impacts the outcome of cardiac repair. Smaller infarcts have been 

associated with reduced remodeling and improved cardiac repair (Chareonthaitawee 

et al., 1995). For this reason, the development of efficient therapies predominantly 

focused on limiting infarct size. In order to do so many studies tried to identify the 

crucial factors that impact CM survival. It has been shown that CM- EC interactions 

significantly decrease myocyte death, implying a crucial role for the endothelium in 

formation and maintenance of myocardial structure (Narmoneva et al., 2004). 
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Moreover, it has been shown that granulocyte colony-stimulating factor (G-CSF) 

treatment improved cardiac function through the induction of anti-apoptotic proteins 

and inhibition of apoptotic death of CMs (Harada et al., 2005). The treatment also led 

to increased vascularization, caused by reduced apoptosis of ECs, indicating a 

reciprocal communication between CMs and ECs. These findings indicate that CMs 

are involved in functional communication during cardiac repair and most likely not only 

with ECs but also other non-CM.  

4. POST-TRANSCRIPTIONAL REGULATION IN THE HEALTHY HEART 

AND AFTER MYOCARDIAL INFCARTION 

Heart development and infarct healing are highly orchestrated processes 

incorporating different cell types and different layers of regulation. Only 1.5% of the 

genome encodes for protein coding genes (Alexander et al., 2010) and it is becoming 

increasingly apparent that non-coding RNAs (ncRNAs) play key roles in normal 

development and in regulating complex diseases such as MI. The non-coding genome 

is broadly divided into two subcategories based on the length of the transcripts. All 

transcripts with a length < 200 nucleotides (nt) are considered as small ncRNAs, 

whereas lncRNA are RNA molecules with > 200 nt. The relevance and function of 

ncRNAs has mainly been studied for small ncRNAs, especially miRNAs, whereas the 

analysis of lncRNAs is still in its infancy. The network of mediators is extended by RNA-

binding proteins, which contribute significantly to the resolution of inflammation through 

degradation of pro-inflammatory cytokines. 

4.1. Modulation of mRNA stability by RNA binding proteins 

The timed shut down of the inflammatory response following MI is necessary to 

ensure effective cardiac repair. In contrast to anti-inflammatory mediators most 

cytokines and chemokines are primarily regulated by changes in mRNA abundance 

(Schott et al., 2014). The expression of these inflammatory signaling molecules is 

suppressed by RNA-binding proteins such as tristetraprolin (TTP, symbol = Zfp36) at 

a post-transcriptional level, as demonstrated by the development of generalized 

inflammation in TTP- knockout mice (Taylor et al., 1996). TTP accelerates the 

degradation of cytokine mRNAs by binding to AU-rich elements (ARE) in the 3'-

untranslated region (3’UTR) of its target mRNAs. Recent studies have shown that TTP 
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significantly contributes to the resolution of inflammation through the degradation of 

approximately one third of inflammation induced mRNAs in Mφ, shifting their functional 

phenotype to a more anti-inflammatory state (Kratochvill et al., 2011; Sedlyarov et al., 

2016). It has been shown that a timed phenotype transition improves cardiac repair 

(Harel-Adar et al., 2011), which underlines the importance of TTP activity and post-

transcriptional regulation of the immune response. On a more global scale it has been 

shown that mRNA stability stronger correlates with structural features of genes than 

their function (Sharova et al., 2009). mRNAs coding for regulatory proteins, such as 

transcription factors (TF), cytokines, and chemokines, are predominantly less stable 

than mRNAs related to metabolism and structure, such as ECM and cytoskeleton 

components (Sharova et al., 2009). Nevertheless, RNA-binding proteins are not the 

only modulators of mRNA stability. mRNA degradation can also be initiated by miRNA 

binding to the 3’UTR of target genes.  

4.2. microRNA structure, function, and computational analysis 

miRNAs are ~22 nt endogenous, single-stranded, non-coding RNAs that 

regulate gene expression by mRNA binding to direct transcript destabilization, 

translational repression, or both (Bartel, 2004; Friedman et al., 2009; Preusse et al., 

2016). Different studies have shown that the majority of miRNA-induced gene 

repression can be explained by reduced expression levels of targeted mRNAs (Lu et 

al., 2008). To date, 1193 murine and 382 porcine miRNAs are annotated in the 

miRBase database (miRBase version 21). miRNAs are predicted to regulate hundreds 

of genes in mammals and are evolutionary highly conserved (Bartel, 2004). 

Consequently, miRNAs are implicated in nearly all developmental and pathological 

processes in animals. A single miRNA is capable of regulating several mRNAs, 

interfering with a wide range of functions and pathways at the same time. On the other 

hand, one mRNA can be targeted by multiple miRNAs and the regulatory effect might 

depend on combined miRNA actions (Preusse et al., 2016). miRNAs capture tissue 

and cell type specific effects and their expression profiles can be used to distinguish 

between samples of different physiological and pathological conditions (Liang et al., 

2007).  

The integration of mRNA and miRNA expression data might add an additional 

regulatory layer to reconstructed GRN and has the capability to reveal regulatory 
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mechanisms which otherwise would go unnoticed. The main requirement for such 

integration is the accurate identification of miRNA target genes. Based on the high 

preservation of miRNA- mRNA pairings, miRNA targets can be predicted by searching 

for conserved 6-8mer matches to miRNA seed regions (Figure 4A)(Friedman et al., 

2009). Nevertheless, perfect sequence complementarity alone is not always sufficient 

for repression. A combination of computational and experimental approaches has been 

used to identify further features of site context, including positioning of the miRNA seed 

within high local AU composition, proximity to sites for co-expressed miRNAs and 

specific positioning of miRNA binding sites within the 3’UTR of their target genes 

(Grimson et al., 2007).  

 

Figure 4: miRNA- mRNA pairing and the role of miRNAs in the heart. A) Sites matching 

the miRNA seed region. B) Functional impact of cardiac miRNAs. 

Different target prediction algorithm have been developed, including TargetScan 

(Agarwal et al., 2015) and miRWalk (Dweep and Gretz, 2015). miRWalk provides the 

largest collection of predicted and experimentally verified miRNA- target interactions 

(~949 million) including three different organisms: human, mouse, and rat. Target 

prediction can be carried out applying multiple established algorithms (e.g. TargetScan, 

miRanda) and/or using the miRWalk algorithm, which relies on Watson-Crick 

complementarity between the miRNA seed (7mer) and the mRNA 3’UTR. TargetScan 

does not only rely on sequence complementarity but also requires conservation of 

identified 8mer, 7mer or 6mer sites in five vertebrate genomes (human, mouse, rat, 

chicken, dog)(Lewis et al., 2005). A comprehensive review of available target prediction 

algorithms can be found in (Yue et al., 2009).  

miRNA activity plays a key role in many different BPs (Figure 4B), including 

heart and cardiovascular development (Cordes and Srivastava, 2009; Liu and Olson, 
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2010; Olson, 2006), acute MI (Dong et al., 2009), and cardiac fibrosis (Pan et al., 2012; 

Van Rooij et al., 2008; Wang et al., 2012). It is well accepted that the integration of 

miRNA activity into cardiac signaling and transcriptional pathways is a necessary step 

to gain a comprehensive understanding of the regulatory interactions that govern 

cardiac gene expression (Liu and Olson, 2010). In the case of MI, the cardiac miRNA 

expression profile undergoes changes that differ between the infarcted and non-

infarcted area (Dong et al., 2009). Moreover, circulating miRNAs (e.g. miR-499, miR-

208b, miR-1) have been found to be sensitive biomarkers of MI that can be used in 

diagnostic medicine for early detection of MI (Adachi et al., 2010; Ai et al., 2010; Wang 

et al., 2010).  

4.3 Long noncoding RNAs 

lncRNAs are endogenous RNA molecules with a transcript length > 200 nt. 

Although little is known about their exact function and regulatory mechanisms, growing 

evidence indicates that they play important roles in diverse cellular processes and 

diseases (McHugh et al., 2015; Xiang et al., 2014; Yang et al., 2012). Recent studies 

revealed changes in lncRNA expression in the infarcted heart, identifying new 

candidates for potential target treatment (Ounzain et al., 2015; Vausort et al., 2014; 

Zangrando et al., 2014). However, originally the existence of lncRNAs was attributed 

to transcriptional ‘noise’, which is supported by the facts that individual lncRNAs are 

transcribed at much lower levels than individual mRNAs and the low sequence 

conservation between species (Derrien et al., 2012). In contrast, the promotor 

sequences of lncRNAs show a higher conservation compared to protein coding genes. 

Thus, the level of lncRNA transcription seems to be highly conserved but not the 

nucleotide sequence itself.  

             LncRNAs are usually located close to protein coding genes in the 

genome and can be categorized into five criteria (Ponting et al., 2009): sense, 

antisense, bidirectional, intronic and intergenic (Figure 5). Due to their close proximity 

to protein coding genes it is assumed that neighboring lncRNAs and mRNAs are co-

expressed and thus co-regulated (Rinn and Chang, 2012). Based on this assumption 

a method termed "guilt by association" can be applied to estimate the function of 

unannotated lncRNAs depending on the function of their co-expressed protein coding 

genes. 
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Figure 5: Categorization of lncRNAs based on genomic location. Red arrows indicate 

protein coding genes, grey arrows indicate lncRNAs.  

Furthermore, it has been suggested that some lncRNAs are precursors to short 

ncRNAs, such as miRNAs. An example of this is the lncRNA H19 which contains the 

exon that encodes the miRNA mir-675 (Cai and Cullen, 2007). LncRNAs share many 

features with mRNAs, such as transcription by RNA polymerase II, the presence of 

multiple exons, 5’capping, and polyadenylation, but they lack a long open reading 

frame (Derrien et al., 2012). Genome-wide stability analysis in mouse further revealed 

a comparable range of half-lives between lncRNAs and mRNAs with only a minority of 

unstable lncRNAs (Clark et al., 2012). Furthermore, a striking similarity between 

lncRNA sequences and the 3'UTR of protein coding genes in terms of structural 

features and sequence composition has been found (Niazi and Valadkhan, 2012). In 

accordance with this finding, it has been reported that lncRNAs can act as miRNA 

sponges, titrating miRNAs away from their respective mRNA targets (Cesana et al., 

2011; Wang et al., 2013). Recently, the competitive endogenous RNA (ceRNA) 

hypothesis was introduced to build a large-scale regulatory network across the 

transcriptome, involving protein coding genes, pseudogenes, lncRNAs and miRNAs, 

which are all linked via miRNA response elements (MREs) (Salmena et al., 2011). It is 

one of the first systematic approaches to capture the intrinsic complexity of BPs by 

integrating different levels of regulation. Another appeal of the hypothesis is its attempt 

to elucidate the yet unknown function of many lncRNAs encoded in the genome. 

However, the hypothesis is rather controversial and experimental quantifications of the 

ceRNA effect do not support the proposed regulatory mechanism (Thomson and 

Dinger, 2016). 
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The main goal of this thesis is to decipher the transcriptional network of distinct 

cardiac cell types (CM, FB, EC, Mφ) in the healthy heart and post-MI through 

bioinformatics analysis of two sets of ad-hoc generated transcriptomic data acquired 

from different animal and MI models.  

Specific aims: 

1. Development and implementation of novel and original visualization 

methods for the integration and representation of functional annotations and 

quantitative variables, such as expression levels.  

2. Characterization of the molecular changes in the transcriptome of distinct 

cardiac cells (EC, CM, FB, Mφ) in the healthy heart and after MI using 

exhaustive bioinformatics analysis of transcriptomics data of two MI and 

animal (mouse and pig) models.  

3. Implementation of data integration approaches to achieve appropriate 

comparison of publicly available data of tissue resident Mφ and in vitro 

activated Mφ. The comparison aims to identify cardiac specific 

transcriptional programs and to determine the polarization state of post-MI 

Mφ. 

4. Application of mathematical models to identify key regulatory elements of 

the transcriptional network and to simulate phenotypic changes upon 

perturbation of the modeled biological system.  

5. Integration of different molecular and regulatory levels to elucidate the 

impact of post-transcriptional regulation on cardiac Mφ gene expression and 

to estimate its potential in controlling Mφ phenotype transition.      

6. In silico construction of a cell- cell interaction network to shed light on the 

potential interplay of cardiac Mφ and other cardiac cell lineages.  
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Materials and Methods – murine cardiac macrophages (project 2) 

All experimental procedures were carried out by other members of the laboratory and 

are only described in brief to provide the necessary background for the in silico analysis 

of the gathered data.  

Mice 

2-3 months old C57BL/6 (males and females, Charles Rivers) and CX3C chemokine 

fractalkine receptor knock-in (CX3CR1GFP/+) mice (36) were used in this study. All 

animal procedures were conducted in accordance with EU Directive 2010/526/EC, and 

enforced in Spanish law under Real Decreto 1201/2005. 

Mice model of myocardial infarction 

Cryoinjury was used as MI model in this study. The procedure was performed as 

previously described (van Amerongen et al., 2008). Briefly, mice were weighed, 

anesthetized, and intubated for artificial ventilation. A thoracotomy was performed 

through the fourth left intercostal space, the pericardium was opened, and the heart 

was exposed. Cryoinjury was induced applying a 3 mm diameter cryoprobe, cooled to 

-196°C with liquid nitrogen to the anterior left ventricle free wall for 10 seconds. After 

this, the procedure was repeated two times. The exact position of the probe was 

carefully set using the left atrium and pulmonary artery as anatomic landmarks. 

Animals were randomly sacrificed by CO2 inhalation 3, 7 and 30 days post-MI. Mφ 

samples from healthy animals were not subjected to any surgery and were included as 

physiological condition (day 0).  

Fluorescence-activated cell sorting (FACS) analysis and cell sorting 

Single cell suspensions were obtained from heart, spleen, lung and peritoneum. Mice 

were euthanized by CO2 inhalation and immediately perfused by intracardiac injection 

of ice-cold phosphate buffered saline (PBS). Right and left atria were removed and the 

ventricles were minced with fine scissors, and digested in collagenase IV 0.1% (528 

U/mg Sigma) in PBS at 37°C for 45 min under gentle shaking. Whole spleen was 

collected and mechanically disrupted. Peritoneal cells were harvested by peritoneal 

cavity lavage (10mL of cold PBS). Alveolar cell suspension was obtained by 

bronchoalveolar lavage (6 times) with 1ml of FACS buffer using a blunt syringe. 
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All samples were filtered through nylon mesh of 100 μm (BD biosciences) to obtain a 

homogeneous cell suspension, and heart and spleen suspensions were subjected to 

red blood cells lysis with 1x RBC Lysis buffer solution (eBioscience, CA). The resulting 

single-cell suspensions were Fc-blocked using anti-mouse CD16/CD32 antibody (BD 

Pharmingen) for 30min at 4ºC in FACS buffer. Antibodies were incubated for 30 min at 

4ºC in FACS buffer. Where appropriate, cells where further incubated with streptavidin 

conjugates for 30min at 4ºC. Flow cytometry studies were performed on a BD 

FACSCantoTM II and subsequently analysed with FlowJo Software (Tree Star). Cell 

sorting was performed using BD FACS-ARIATM II cell sorter (BD Biosciences) and all 

the samples were sorted into PBS supplemented with 10% fetal bovine serum (FBS). 

Within the CD45+ and CD11b+ population a Ly6clow/CX3CR1high population and a 

Ly6chigh/CX3CR1low population was distinguished.   

 

RNA isolation and quantitative Real Time PCR (q-RT-PCR) 

Sorted cells were placed in Tri Reagent (Ambion) for RNA isolation. Total RNA, 

including small RNA, was isolated from three independent biological replicates using 

miRNeasy Micro Kit with RNeasy MinElute Spin Columns (Qiagen) with DNaseI 

treatment. RNA was analyzed with the NanoDrop (Thermo Scientific) and the 

Bioanalyzer (Agilent Technologies) system for measuring RNA quality and quantity. 

Complementary DNA (cDNA) synthesis was performed with 500 ng of total RNA by 

using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). For relative 

quantification of expression, quantitative real-time polymerase chain reaction (PCR) 

analysis was performed using Sybr Green probes (genes analysed) in AB7900 FAST 

384 Detection System (Applied Biosystems), according to the manufacturer´s 

instructions. Gene expression values were normalized to the housekeeping genes 

36b4 and cyclophilin, and expressed as relative mRNA level. Data were analyzed by 

qBASE program (Biogazelle, Zwijnaarde, Belgium) obtaining the cycle threshold (Ct) 

of the amplification products. Primer sequences can be provided by request.  

Cell culture 

Peritoneal thioglycollate-elicited Mφ were isolated from the peritoneal cavity 3 days 

after injection of thioglycollate. Cells were plated in Roswell Park Memorial Institute 
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(RPMI) medium supplemented with 10% of heat-inactivated FBS and 1% penicillin-

streptomycin solution. Cells cultured in normoxia were incubated in the presence or 

the absence of 10 ng/mL IFNγ (ThermoFisher) for 24h. 

Hypoxic conditions 

Cells were routinely cultured in 21% O2 and 5% CO2 (normoxic conditions). To expose 

the cells to hypoxia, they were placed in an in vivo SCI-tive Hypoxia Workstation (Baker 

Ruskinn) that was infused with a mixture of 0.5% O2, 5% CO2 and 94.5% N2. Cells 

cultured in hypoxia were incubated in the presence or the absence of 10 ng/mL IFNγ 

(ThermoFisher) for 24h. 

RNA Sequencing 

For RNASeq 2 ng of total RNA from three independent biological replicates was used. 

cDNA was amplified using the Ovation® RNA-seq System v2 (NuGEN® Technologies, 

San Carlos CA). Amplified cDNA (1 μg) was sonicated to an average size of 100-300 

bp and used with the TruSeq DNA Sample Preparation v2 Kit (Illumina) to generate 

index-tagged sequencing libraries. Libraries were sequenced using the Genome 

Analyzer IIx (Illumina) followed by standard RNA sequencing protocol to generate 

single reads of 75 bps. Fastq files containing reads for each library were extracted and 

demultiplexed using Casava (Ilumina) pipeline. Sequencing adaptor contaminations 

were removed from reads using cutadapt software (version 1.3) and the resulting reads 

were mapped and quantified on the transcriptome (GRCm38) using RSEM (version 

1.2.20).  

 

mRNA abundance and differential gene expression 

TMM normalization method was applied to estimated counts from RSEM. The resulting 

log2 counts per million (CPM) were used as a proxy of gene expression in each sample. 

Genes were kept if they were expressed in at least six samples. Gene expression 

differences were assessed using the edgeR package with correction for multiple 

testing (Benjamini-Hochberg). Genes with an adjusted p-value < 0.05 and an absolute 

log2 fold-change (logFC) > 1 were considered differentially expressed.  
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Exploratory analysis of mRNA expression profiles 

Due to the high dimensionality of high-throughput data, unsupervised exploratory 

analysis techniques are used to analyze gene expression data and to obtain a first 

insight into the dataset. Classical techniques include principal component analysis 

(PCA) and different clustering algorithms such as hierarchical clustering (HC) and k-

means clustering. PCA performs an orthogonal transformation of the data into a new 

set of linearly uncorrelated variables (the principle components), reducing the 

dimensionality of the data while capturing most of its variation. Here PCA was applied 

to the log2 CPMs of filtered genes and Mφ samples from the healthy heart and post-

MI.  

Normalized Mφ samples were clustered applying HC with average linkage as 

clustering method and Euclidean distance as distance measure. To identify groups of 

genes with similar expression profiles k-means clustering was used. Whereas HC 

determines the number of clusters automatically, k-means clustering requires this 

information as an input. Here the R package clValid (Brock et al., 2011) was used to 

determine the optimal number of clusters (often referred to as k) based on internal 

measures. K-means clustering was performed on normalized log2 CPMs (z-score) of 

genes DE in at least one condition using GENESIS software (Sturn et al., 2002). The 

result was visualized as a heatmap of normalized expression values for each cluster, 

created with ggplot2.  

 

Functional analysis 

To identify overrepresented biological categories PANTHER classification system 

version 10.0 (Mi et al., 2016), based on the GO database (version 1.2), was applied 

with default settings for mouse using the annotation dataset ‘GO biological process 

complete’. Bonferroni correction was used to correct for multiple testing. If not indicated 

otherwise, terms with a fold enrichment > 2 and an adjusted p-value < 0.01 were 

considered for further analysis.  

 

Data integration and comparison with publicly available datasets 

Comparison with in vitro polarized Mφ 

For the comparison of in vivo Mφ from the healthy heart and post-MI with in vitro 

activated murine Mφ, two gene expression data series were downloaded from the 
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National Center for Biotechnology Information (NCBI) Gene Expression Omnibus 

(GEO): GSE32690 and GSE53321. The data was normalized, log2 transformed and 

adjusted for batch effects using the comBat function implemented in the R package 

sva (Leek et al., 2012). Whole gene expression profiles were clustered using average 

linkage and the result was visualized as an unrooted dendrogram using the R package 

ape (Paradis et al., 2004). 

 

Comparison with other tissue resident Mφ 

To compare in vivo cardiac Mφ with other tissue resident Mφ and immune cells, gene 

expression data series for brain, peritoneum, spleen, liver, lung, large intestine and 

small intestine tissue Mφ (GSE15907, GSE63340), monocytes and neutrophils 

(GSE15907) were downloaded from the NCBI GEO. The data was normalized, log2 

transformed and adjusted for batch effects using the comBat function implemented in 

the R package sva. Samples with and without batch correction were clustered applying 

HC, to underscore the necessity of batch removal techniques. A correlation matrix of 

all samples (batch corrected) was calculated and visualized with the heatmap.2 

function of the R package gplots (Warnes et al., 2013). DE analysis of quantile 

normalized data was carried out with the edgeR package, where experiment batches 

were included as covariates in the statistical model. Genes DE in at least one of the 

contrasts (adjusted p-value < 0.05) were further grouped by k-means clustering (k = 

15). A heatmap of normalized expression values for each cluster was created using 

the ggplot2 package.  

 

Computational deconvolution of post-MI Mφ gene expression profiles 

The R package CellMix (Gaujoux and Seoighe, 2013) was used for in silico gene 

expression deconvolution analysis (Figure 1). Gene expression deconvolution has 

been mostly used to identify the contribution of different cell types within 

heterogeneous samples, like brain and blood (Capurro et al., 2015; Kuhn et al., 2012; 

Shen-Orr et al., 2010). Although the exact relationship between cell type specific gene 

expression and gene expression of mixed samples is not well defined, the 

deconvolution of mixed gene expression profiles is assumed to be linear (Shen-Orr et 

al., 2010). Hence, gene expression deconvolution methods are formulated as linear 

models, where the global expression value of gene i in sample j is the sum of its 
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expressions in the r cell types: 

𝑥𝑖 =  ∑ 𝑤𝑖𝑘ℎ𝑘𝑗 +  𝜀

𝑟

𝑘=1

  

where wik is the specific gene expression in cell type k, and hkj the proportion of 

cell type k in sample j. Considering all genes together, the following matrix 

decomposition problem arises: 

𝑋 ≈ 𝑊𝐻 

where X is the gene expression matrix, W is the signature matrix, containing cell 

type specific expression profiles, and H is the cell type proportion matrix. To solve the 

matrix decomposition problem, different methods exist that also depend on the 

availability of additional data such as known marker genes or cell type proportions. If 

neither the signature matrix W nor the proportion matrix H is available, then complete 

deconvolution methods estimate both the cell signatures and proportions directly from 

the provided gene expression data (Repsilber et al., 2010). If at least one of the 

matrices is available, then partial deconvolution methods can be applied.  

 

Figure 1: Workflow to computationally estimate phenotype proportions in post-MI Mφ 

gene expression profiles. Transcriptional profiles of in vivo cardiac Mφ isolated from the 

healthy heart and in vitro activated Mφ (GSE53321) were used as signatures.    

 

Here we were interested in estimating the contribution of M1/M2 transcriptional 
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programs in our ad-hoc generated transcriptomics data of post-MI Mφ. For that 

purpose, we used quadratic programming (Gong et al., 2011) to estimate phenotype 

proportions using the in vivo control sample and in vitro derived, phenotype-specific 

expression profiles as expression signatures (Figure 1). The advantage of the 

quadratic programming approach is that it efficiently identifies the global optimum of 

the matrix decomposition while at the same time preserving non-negativity of the 

phenotype proportions. In gene expression deconvolution, non-negativity of the 

phenotype proportions is a necessity to obtain biologically relevant results.   

 

Identification of transcriptional regulators 

 

Figure 2: Workflow to identify transcriptional regulators of co-expressed genes. 

 

In order to efficiently identify transcriptional regulators of co-expressed genes we 

followed the workflow depicted in Figure 2. The iRegulon App (Janky et al., 2014) was 

applied to each gene cluster to search for enriched motifs 20kb centered around the 

transcription start site (TSS) of the co-expressed genes and to link enriched motifs to 

known TF binding sites. The resulting list of enriched motifs was filtered and only motifs 

that are potentially recognized by at least one DE TF were kept. Enriched motifs were 

ranked by decreasing normalized enrichment score (NES) applying the default 

iRegulon NES cutoff of 3.0. Identified TFs were linked to their target genes and the 

resulting list of TF – target gene pairs was imported into cytoscape. In order to enhance 

and to simplify the resulting network, target genes were grouped according to their 

cluster membership. Although gene products can influence the expression of their 

regulators, the network only represents interactions going from the TFs to the target 

genes and not vice versa. Hereby we took into account that TFs can be activators or 

repressors and filtered the list of predicted interactions by correlation between the TF 

and its target gene. Only interactions with an absolute correlation coefficient (CC, 
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spearman) > 0.7 were kept. As a subgroup of transcriptional regulators we focused on 

the identification of nuclear receptors and the GOCluster function of the R package 

GOplot (project 1) was used to visualize hierarchical clustering and expression profiles 

of DE nuclear receptors (adjusted p-value < 0.05).  

 

In silico analysis of the secretome and receptome 

To estimate the extracellular signaling potential of cardiac Mφ, genes DE in at least 

one comparison were classified according to their cellular location and a list of secreted 

molecules (ligands; SM) and membrane proteins (receptors; MP) was curated 

semiautomatically. As a preliminary step, the list of DEGs was filtered, excluding all 

genes that were not annotated with one of the following terms from the GO_CC 

hierarchy: “extracellular region” (GO:0005576), “extracellular space” (GO:0005615), 

“cell surface” (GO:0009986) and “extracellular matrix” (GO:0031012). Subsequently, 

the Human Protein Atlas (Uhlen et al., 2015) was used to classify cellular location of 

the proteins encoded by our list of selected genes more precisely. The cellular 

localization of the encoded proteins was manually confirmed in the literature. 

PANTHER classification system was used to perform the functional analysis of the 

SMs and MPs per cluster. We were further interested in estimating the homeotypic 

paracrine signaling potential of the identified SMs and hence used the STRING 

database (Szklarczyk et al., 2015) to extract predicted interactions for all SMs and 

MPs. The active prediction methods “co-expression”, “experiments”, “databases” and 

“text mining” and a score > 0.8 were selected. Subsequently, the list of possible 

interactions for SMs was crossed with the list of predicted MP-ligand pairs to 

distinguish in silico between heterotypic and homeotypic paracrine signaling. 

Homeotypic paracrine signaling pairs and their expression were visualized using the 

GOChord() function of GOplot.    

 

miRNA microarray data analysis 

Intensity data from microarray images were extracted with Feature Extraction Software 

(Agilent Technologies). The total gene signal was quantile normalized and miRNAs 

were kept if they were expressed in at least six samples. PCA was applied to the whole 

miRNA expression profile of all samples. Limma (Smyth, 2005) was used to perform 

the DE analysis for miRNAs with correction for multiple comparisons (Benjamini-
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Hochberg). miRNAs with an adjusted p-value < 0.05, an absolute logFC > 1 and an 

average expression value > 4.0 were considered differentially expressed.  

 

miRNA – mRNA interactions  

miRNA – mRNA interactions were analyzed through three different approaches, 

following the workflow depicted in Figure 3. 

 

Figure 3: Computational analysis of miRNA – mRNA interactions. 

 

Motif enrichment 

miRvestigator (Plaisier et al., 2011) was used to search for enriched motifs within the 

3'UTR of co-expressed genes and to identify the most likely miRNAs regulating these 

genes. The parameters used were default settings except: seed models = 6mer, 7mer 

and model wobble base – pairing = ‘yes’. In brief, miRvestigator determines cis-

regulatory signatures within the 3’UTR of co-expressed genes using the Weeder 

software package (Pavesi et al., 2006). A hidden Markov model is then used to 

systematically compare enriched motifs as a matrix (position specific scoring matrix) 

to miRNA seed sequence strings, which leads to a more probabilistic solution in 

identifying the most likely complementary miRNA seed. The resulting list of potential 

mRNA – miRNA interactions was filtered by expression and only miRNAs anti-

correlated (CC < -0.7) to the median expression profile of the target cluster were kept.  
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Temporal miRNA – mRNA interaction network 

All DE miRNAs were used as input for mirWalk (Dweep et al., 2011) to predict mRNA 

targets based on the mirWalk and TargetScan algorithm. Only predicted mRNA target 

genes that were DE in at least one of the comparisons were kept and the remaining 

list of miRNA – mRNA pairs was filtered based on expression (anti-correlation, CC < -

0.9). Subsequently, the resulting list of 31196 miRNA – mRNA interactions was 

imported into cytoscape to visualize and analyze the miRNA - mRNA interaction 

network. Due to the high complexity of the network, the perfuse force directed layout 

was applied to improve comprehensibility. The algorithm assigns forces among the set 

of edges and the set of nodes and reduces the number of crossing edges by minimizing 

the energy (Kobourov, 2012). Node color (genes and miRNAs) was mapped to the 

normalized expression values (z-score) at various temporal stages, to highlight the 

dynamical changes in transcription.  

 

Functional analysis of miRNAs 

To identify the role of miRNAs in Mφ transition, miRNAs DE in the contrast Day 7 vs 

Day 3 were used as input for mirWalk to predict mRNA targets. The interactions were 

filtered as described before and they were automatically split into two networks 

according to miRNA expression (miRNA up-regulation at day 3 or day 7). Functional 

analysis of the networks was performed with the cytoscape plugin ClueGO (Bindea et 

al., 2009). ClueGO performs common enrichment analysis based on the 

hypergeometric distribution and creates functionally organized GO/pathway term 

networks. Here we selected as ontologies/pathways GO Biological process and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) Pathway databases with evidence on 

the level 'All_experimental'. Optionally ClueGO also simplifies the resulting network by 

fusing GO terms that are in a parent-child relation and preserving the most 

representative term. The 'GO Term Fusion' option was applied and only terms with an 

adjusted p-value < 0.05 (Bonferroni step down) were considered. ClueGO then 

connects the selected terms based on their shared genes, which serves as a similarity 

measure. The actual strength of the connection is calculated based on corrected kappa 

statistics. Similar to clustering approaches, functional groups are finally created by 

iteratively merging the different groups. In this analysis the initial group size was set to 

2 and a 35% overlap was set as threshold to merge groups with fixed group coloring. 
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For each group the most significant term was displayed.   

 

lincRNA analysis 

In order to get a first impression of the number of lincRNAs in our data, Ensembl 

biotype information from biomaRt (Durinck et al., 2005) was used to classify DEGs as 

long intergenic non-coding RNAs (lincRNAs), protein coding genes and pseudogenes. 

Based on the ceRNA hypothesis, which proposes that the different RNAs are linked 

through MRE, we aligned mRNA 3'UTR sequences with lincRNA sequences and 

searched for common miRNA seed sequences (7mer, perfect match, starting at 1st 

position). Extracted mRNA - lincRNA - miRNA triangles were further filtered by 

expression and only interactions with CC > 0.7 or CC < -0.7 were kept. The nature of 

the interactions was determined by plotting the CC values between mRNA and lincRNA 

expression profiles on the x-axis, the CC values between lincRNA and miRNA 

expression profiles on the y-axis, and mapping the CC values between mRNA and 

miRNA expression profiles to the fill color of the displayed points. The four different 

cases of lincRNA – miRNA – mRNA interactions were subsequently summarized in the 

middle of the figure as small graphics. Based on the available literature, lincRNA – 

miRNA – mRNA interactions of interest were selected and the R package HiveR (HiveR 

Version 0.2.55, academic.depauw.edu/~hanson/HiveR/HiveR.html) was used to 

create a hive plot of these interactions. 

Based on the “guilt by association” principle, the BEDOPS closest-features 

program (Neph et al., 2012) with --no-overlaps option was used to identify the closest 

protein coding genes upstream and downstream of each lincRNA. The reported list 

was further filtered to exclude protein coding genes that were not DE. Subsequently, 

cytoscape was used to create small networks where two protein coding genes were 

connected through at least one lincRNA. ClueGO was used to perform the functional 

analysis of the networks with the same settings as described above.   

 

Network-based analysis of cardiac Mφ mRNA expression 

To obtain a more detailed understanding of the regulatory mechanisms that drive 

cardiac Mφ gene expression we used a network-based approach following the 

workflow depicted in Figure 4. 
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Figure 4: Workflow of network-based analysis of cardiac Mφ mRNA expression. 

 

The initial step of the analysis aimed at the identification of pathways enriched in any 

post-MI stage compared to control. The pathway analysis was performed using 

PathVisio (version 3.2.2)(Kutmon et al., 2015). The mouse pathway collection from 

WikiPathways (Kelder et al., 2012) was used to perform an over-representation 

analysis with the transcriptomics data set. Subsequently, the pathways were ranked 

based on a standardized difference score (z- score). Pathways with a z-score > 2.0, p 

value < 0.05 and minimum number of four measured genes were considered 

significant. Enriched pathways were imported as networks into cytoscape using the 

WikiPathways app (Kutmon et al., 2014) and subsequently merged into one network. 

In order to increase the number of DEGs in the network, the network was extended 

with protein – protein interactions (first neighbours) extracted from Ingenuity software 

(Ingenuity Systems, Mountain View, CA) between the genes in the pathways and 

DEGs. Next, the jActiveModules app (Ideker et al., 2002) was used to identify active 

modules, i.e., small, connected subnetworks with significant changes in expression, 

within the molecular interaction network. The details of the method can be found in 

(Ideker et al., 2002), in brief, the method is comprised of a rigorous statistical measure 

for scoring subnetworks and a search algorithm to identify high scoring subnetworks. 

First, an aggregated z-score is calculated per subnetwork, summarizing the individual 

z-scores, which are converted p-values obtained with the program VERA (Ideker et al., 

2000), over all genes in the subnetwork. In order to estimate the significance of an 

obtained aggregated z-score, the value is compared to the distribution of scores for 

random gene sets of similar size. After scoring the different subnetworks, a simulated 

annealing approach is used to find the subnetworks with the highest scores. Here, the 

subnetwork with the highest score was selected for further analysis.  

The topology of the selected subnetwork was analyzed and the SCC was calculated 

using the BiNoM app (Zinovyev et al., 2008). Within the SCC every pair of genes is 
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connected through a directed path and changes in the state of one gene might affect 

the genes of the remaining SCC. Hence, a Boolean dynamical model with a 

synchronous updating scheme (Garg et al., 2007), as described before, was used to 

identify stable states (attractors) of the SCC. 

Materials and Methods – Porcine cardiac cells (Project 3) 

All experimental procedures were carried out by other members of the CardioNext 

project and are only described in brief to provide the necessary background for the in 

silico analysis of the gathered data.  

Pig 

Experiments were performed in male Large-White pigs weighing 30 kg to 40 kg. The 

study was approved by the Institutional Animal Research Committee and conducted in 

accordance with the recommendations of the Guide for the Care and Use of Laboratory 

Animals. 

Pig myocardial infarction model 

Closed-chest ischemia-reperfusion was used as MI model in this study. The procedure 

was performed following the protocol described in (Garcia-Prieto et al., 2014). Briefly, 

pigs were anesthetized, intubated, and mechanically ventilated with oxygen. An 

angioplasty balloon was introduced via the percutaneous femoral route and the left 

anterior descending coronary artery was occluded for 30 minutes. Following 

reperfusion pigs were sacrificed at 3 days and 7 days post-MI. Control pigs were 

sacrificed without any intervention. 

Cell isolation 

Single cell suspensions were obtained for CM, Mφ, FB, and EC. In brief, the heart was 

harvested from sacrificed pigs and immediately perfused. The heart was chopped into 

small pieces and digested in collagenase at 37°C with maximal shaking. Following 

digestion, the suspension was centrifuged for 4 minutes at 500 revolutions per minute. 

The supernatant was collected for the isolation of EC, Mφ, and FBs. CMs were 

extracted and further purified, by repeated steps of digestion and centrifugation, from 
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the pellet. ECs, Mφ, and FBs were isolated from the collected supernatant through 

FACS. CD45high/CD68high cells were selected as Mφ, and within the CD45- cell 

population CD31high/CD46high cells were selected as ECs and CD31low/CD46high cells 

were selected as FBs.   

RNA Sequencing 

For RNASeq 2 ng of total RNA were used and amplified cDNA (1 μg) was sonicated to 

an average size of 100-300 bp and used with the TruSeq DNA Sample Preparation v2 

Kit (Illumina) to generate index-tagged sequencing libraries. Libraries were applied to 

Genome Analyzer IIx (Illumina) followed by standard RNA sequencing protocol to 

generate single reads of 75 bps. Fastq files containing reads for each library were 

extracted and demultiplexed using Casava (Illumina) pipeline. Sequencing adaptor 

contaminations were removed from reads using cutadapt software (version 1.7.1.) and 

the resulting reads were mapped and quantified on the transcriptome (Sscrofa10.2.73) 

using RSEM (version 1.2.20.). 

mRNA profile and exploratory analysis of porcine cardiac cells 

Log2 TPM values from RSEM were used as a proxy of gene expression in each 

sample. The gene expression profiles were further filtered and only genes which were 

expressed in at least six samples were kept. As described for murine cardiac Mφ, PCA 

was applied to the whole gene expression profile of all samples. Due to the lack of 

biological replicates, we selected genes with expression intensities ranked above the 

95th percentile (i.e., top 5% of expression intensities) for each cell type and time point 

for downstream analysis. The selected top expressed genes were clustered applying 

HC with average linkage and Euclidean distance. 

Functional analysis  

Ensembl gene IDs (Sus scrofa) of top expressed (top 5%) genes were provided as 

input for the PANTHER classification system to determine overrepresented biological 

categories. PANTHER was applied with default settings for pig, using the annotation 

dataset ‘GO biological process complete’. Bonferroni correction was used to correct 

for multiple testing. Terms with an adjusted p-value < 0.05 were further considered. 
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Secreted molecules and membrane proteins 

For each cell type a list of SMs and MPs was curated semiautomatically, based on the 

top 5% expressed genes per time point. The Human Protein Atlas was used to classify 

cellular location of the proteins encoded by the top expressed genes. Subsequently, 

the cellular localization of the molecules was confirmed in the literature. Venny 

(Oliveros, 2013) was used to create Venn diagrams of SMs and MPs of the different 

cell types per time point. As described in the paragraph above, PANTHER was used 

to perform the functional analysis of the SMs and MPs. In an attempt to reconstruct a 

cell-cell interaction network, Ingenuity software (IPA®, QIAGEN Redwood City, 

www.qiagen.com/ingenuity) was used to extract experimentally validated interactions 

between identified SMs and MPs. The resulting list of interactions was imported into 

cytoscape, with nodes representing SMs (circle) and MPs (arrowhead). Nodes were 

manually arranged in a circular pattern based on their shared expression between cell 

lineages.   

miRNA sequencing 

1 ng of total RNA was used and amplified cDNA (1 μg) was used with the TruSeq Small 

RNA Sample Preparation Kit (Illumina) to generate index-tagged sequencing libraries. 

Libraries were applied to Genome Analyzer IIx (Illumina) followed by standard RNA 

sequencing protocol to generate single reads of 75 bps. Fastq files containing reads 

for each library were extracted and demultiplexed using Casava (Illumina) pipeline. 

Sequences were trimmed, size selected and miRDeep2 software (Friedländer et al., 

2012) was used to map the reads to all miRBase mature pig miRNAs (Sscrofa10.2) for 

quantification.  

miRNA analysis 

PCA was applied to the whole miRNA expression profile of all samples. The miRNA 

expression profiles were further filtered and only miRNAs which were expressed in at 

least six samples were kept. EdgeR was used to identify cell type- specific miRNAs. 

miRNAs with an expression intensity above the 95th percentile were considered as top 

expressed. miRNA – mRNA interaction networks were created considering only top 

expressed miRNAs and mRNAs. Based on expression, a correlation matrix (rows = 

miRNAs, columns = mRNAs) of all miRNAs and mRNAs was calculated and only 
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possible interactions with CC < -0.8 were kept. The resulting list of miRNA – mRNA 

pairs was further filtered based on perfect sequence complementarity between 3’UTR 

of mRNAs and miRNA seed region. Only 6mer and 7mer-m8 sites (Friedman et al., 

2009) were taken into consideration. miRNA – mRNA interaction networks were 

visualized with cytoscape and node fill was mapped to z-score of mRNA and miRNA 

expression. Functional analysis of resulting subnetworks was performed applying 

PANTHER.
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PROJECT 1: GOplot: AN R PACKAGE FOR VISUALLY 

COMBINING EXPRESSION DATA WITH FUNCTIONAL 

ANALYSIS 

Despite the plethora of methods available for the functional analysis of omics data, 

obtaining comprehensive-yet detailed understanding of the results remains 

challenging. This section introduces the R package GOplot which is available via 

CRAN- The Comprehensive R Archive Network: https://cran.r-

project.org/web/packages/GOplot/index.html. A detailed manual of the package can be 

found at https://wencke.github.io/. 

1.1. Package description 

 GOplot uses ggplot2, one of the three graphic systems in R, as a scaffold to 

create a collection of pre-specified and multilayered charts. In order to customize the 

provided charts, two input datasets are needed: a list of selected molecules with their 

expression levels and the results of a functional analysis. The package takes the output 

of any general enrichment analysis and generates visualizations of gene expression 

data and enriched biological functions with varying levels of complexity and detail. 

Although it is not mandatory to use the implemented preprocessing functions before 

using the plotting functions, it is highly recommended to ensure an easy and smooth 

workflow. 

So far the package includes three preprocessing functions: circle_dat(), 

reduce_overlap(), and chord_dat(). The circle_dat() function was 

designed to easily integrate the gene expression data with the results of the enrichment 

analysis and to transform the datasets into the appropriate format for the majority of 

plotting functions. The function does not only combine the two datasets it also 

computes the z-score for each enriched process. This z-score has to be clearly 

differentiated from the standard score from statistics and is calculated as follows: 

𝑧 − 𝑠𝑐𝑜𝑟𝑒 =  
(𝑢𝑝 − 𝑑𝑜𝑤𝑛)

√𝑐𝑜𝑢𝑛𝑡
 

https://cran.r-project.org/web/packages/GOplot/index.html
https://cran.r-project.org/web/packages/GOplot/index.html
https://wencke.github.io/
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Where up and down are the number of assigned genes up-regulated (logFC > 

0) or down- regulated (logFC < 0) in the data, respectively; and count is the overall 

number of genes assigned to the enriched process.  

reduce_overlap()is a function that can be applied to the data if the created 

plots are difficult to comprehend due to overplotting. The function eliminates redundant 

terms that share more than a user- defined number of genes (parameter overlap) and 

takes as an input a data frame created with circle_dat().The exclusion of highly 

similar terms significantly improves the readability of plots without losing informational 

value. The third preprocessing function, chord_dat(), generates a binary matrix that 

assigns the genes to each predefined functional term, which is elementary to display 

their relationship with, for example, a chord diagram. The exact input format for the 

different preprocessing functions can be checked with the help function in R. 

After the preprocessing step the user can choose between seven plotting 

functions with different levels of complexity. In general, the exploratory data analysis 

starts at a very general level to gain a global overview of the dataset(s). At the entry 

level GOBar() and GOBubble() provide intuitive comparative charts that focus on the 

significance of the enrichment (-log10 of the adjusted p-value) and the z-score of the 

terms. Displayed terms in the bar plot (GOBar()) can be sorted according to their 

significance or z-score to answer different research questions. The bubble plot 

(GOBubble()) additionally provides the information of the count as the displayed 

circles are area-proportional to the number of genes in the given category. Based on 

these charts a list of relevant terms can be selected. In the next step the user can add 

quantitative information of gene expression to the plots through the application of one 

of the more elaborated charts created with GOCircle(), GOChord(), GOHeat() 

and/or GOCluster(). Due to the fact that the calculated z-score is a rather crude 

measure of process activation it is sometimes difficult to interpret the obtained result. 

The circular plot created with GOCircle() facilitates the interpretation by displaying 

the logFC value of each gene assigned to a specific term. GOChord() creates a chart 

that shows the relationship between the list of selected genes and enriched terms and 

is based on the Circos plot developed by Martin Krzywinski (Krzywinski et al., 2009). 

GOHeat() serves a similar purpose as GOChord() and generates a heatmap of the 

relationship between genes and terms. GOCluster() on the other hand groups genes 
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either according to their expression profile or based on the assigned functions and 

creates a circular dendrogram of the provided data. Furthermore, we implemented with 

GOVenn() a Venn diagram that does not only display the number of overlapping 

elements but also the expression pattern (commonly up-regulated, commonly down-

regulated, contra-regulated). This addition to a common Venn diagram makes a 

significant difference when comparing list of genes because it is not only important to 

identify genes that are commonly altered under different conditions but also how the 

expression changes.   

1.2. Examples 

The package and its original visualization styles was used throughout the 

different projects in order to gain a better insight into the different datasets. It was not 

only used to produce figures that summarize obtained results but was also widely 

applied during the exploratory phase of the data analysis process to guide further 

analyses. The following paragraph will briefly exemplify some of the functionalities of 

the GOplot package and create visualizations that have not been used for the analysis 

of the ad-hoc generated transcriptomic data of cardiac cells. For that purpose, I will 

use the manually compiled sample dataset of GOplot.  

The calculated z-score is only a crude measure to estimate the level of activation 

for each enriched process and might sometimes be difficult to interpret. The Circle plot 

(Figure 1) tries to improve the understanding by displaying a scatter plot of gene 

expression for each selected term. By default, up-regulated genes are displayed in red 

and down-regulated genes in blue, respectively. The inner ring is a barplot where the 

height of the bar indicates the significance of the term ( -log10 adjusted p-value), and 

color corresponds to the z-score. The plot was created with the following the R code:  

library(GOplot) 

# Load the dataset 

data(EC) 

# Generate the plotting object 

circ  circle_dat(EC$david, EC$genelist) 

# Generate a circular visualization of the results of gene- annotation enrichment 

analysis 

GOCircle(circ) 
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Figure 1: Output of GOCircle(). The outer circle shows a scatter plot for each term of the 

logFC of the assigned genes. Red circles display up- regulation and blue ones down- 

regulation. The inner ring is a bar plot where the height of the bar indicates the significance of 

the term ( -log10 adjusted p-value), and color corresponds to the z-score. 

Another chart that will not appear in the later sections is the heatmap of enriched 

processes (Figure 2). The GOHeat() function generates a heatmap of the relationship 

between genes (columns) and terms (rows). Each column is divided into smaller cells 

and the coloring of the cells depends on the presence or absence of logFC values in 

the input data. This information is passed to the function through the nlfc argument. If 

the logFC is provided, the cells are colored according to the logFC of the genes, 

otherwise the cells are colored according to the number of assigned genes per term 

(count). In order to highlight groups of genes with similar annotated functions, a 

column-wise hierarchical clustering is performed.     

library(GOplot) 

# Load the dataset 

data(EC) 

# Generate the plotting object 

circ  circle_dat(EC$david, EC$genelist) 

chord  chord_dat(data = circ, genes = EC$genes, process = EC$process) 
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# Generate a circular visualization of the results of gene- annotation enrichment 

analysis 

GOHeat(chord, nlfc = 1, fill.col = c('red', 'yellow', 'green')) 

 

 

Figure 2: Output of GOHeat(). Heatmap displaying the relationship between genes 

(columns) and terms (rows). Cells are colored according to the logFC values of the assigned 

genes. 

 We tracked GOplot downloads through CRAN download logs provided by R 

Studio to get an idea of its usage. The daily download statistics of GOplot were 

downloaded starting from its release (31 January 2015) to the first week of December 

2016. The overall number of downloads for this period accumulates to 17 343. The 

median number of downloads per week is 53 (Figure 3A). To get an impression of the 

worldwide usage of GOplot a world map was colored according to the overall absolute 

number of GOplot downloads per country (Figure 3B). China, India and the United 

States are the countries with the highest downloads, followed by various countries from 

Europe. Since only 9.3% of all internet users are inhabitants of African countries 

(www.internetworldstats.com), the number of GOplot downloads was very low for these 

countries. To put the downloads of GOplot into perspective we compared the absolute 

number of weekly downloads to the R package BACA (Fortino et al., 2015), a package 

that allows the user to combine multiple annotation charts into one output graph, and 

RCircos (Zhang et al., 2013a), the R implementation of the Circos plots developed by 

Martin Krzywinski.  
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Figure 3: Download statistics of GOplot. Daily downloads of GOplot in the period from late 

January 2015 to early December 2016 were obtained from CRAN download logs provided by 

R Studio. (A) Barplot displaying absolute numbers of weekly downloads of GOplot. (B) Overall 

downloads of GOplot per country. (C) Comparison of weekly downloads of the R packages 

BACA, RCircos and GOplot.
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PROJECT 2: TRANSCRIPTIONAL ANALYSIS OF MURINE MΦ 

FROM THE HEALTHY HEART AND AFTER MYOCARDIAL 

INFARCTION 

2.1. Phenotypical characterization of cardiac Mφ in the healthy heart and after MI 

To investigate the specific characteristics of in vivo cardiac Mφ green 

fluorescence protein positive (GFP+) cells were isolated from CX3CR1GFP/+ knock-in 

mouse hearts at different post-MI stages. The CX3CR1GFP/+ reporter mouse has been 

used to identify resident Mφ in a wide variety of tissues (Jung et al., 2000; Lee et al., 

2010; Soos et al., 2006) and also enabled the detection of CRMs in the healthy heart 

(Pinto et al., 2012). Firstly, we performed a temporal study of the chosen mouse model 

by flow cytometry and analyzed the kinetics of GFP+ and Ly6c+ cells within the CD45+ 

and CD11b+ cells (Figure 4). 

 

Figure 4: Characterization and isolation of cardiac Mφ in CX3CR1GFP/+ mice. Cardiac cell 

suspensions from healthy or cryoinjured hearts of CX3CR1GFP/+ mice were analyzed by FACS. 

Representative contour plots depict the kinetics of the different subsets of murine 

tissue/resident Mφ in the healthy heart and after cryoinjury. Within the CD45+ and CD11b+ 

population we distinguished a Ly6clow/CX3CR1high population (red) and a Ly6chigh/CX3CR1low 

population (blue). 

Ly6clow/CX3CR1high cells were selected to investigate CRMs and the same 

population was chosen to assess the functions and characteristics of Mφ in the 

reparative phase (7 and 30 days post-MI). In order to characterize Mφ in the 

inflammatory phase (3 days post-MI) Ly6chigh/CX3CR1low cells were selected. The Mφ 

populations were sorted from single cell suspensions of digested hearts at different 

post-MI stages using FACS. 

Collectively, the obtained data confirms the existence of CRM in the healthy 
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heart and proves that the applied strategy can be used to identify Mφ populations at 

different post-MI stages. 

2.2. Gene expression analysis of cardiac Mφ in the healthy heart and after MI 

Mφ respond to a broad spectrum of external stimuli and the accompanied Mφ 

activation is orchestrated by intricate transcriptional regulatory networks which still 

remain mostly elusive. Comprehension of the process is further hindered by the lack 

of available transcriptome data of in vivo Mφ. Here we present the gene expression 

profile of CRMs and post-MI Mφ obtained by RNA-seq.  

 PCA of the global transcriptional profiles of all samples revealed clear 

separation between the different temporal stages (Figure 5A). Pairwise comparison of 

each post-MI stage to the healthy heart and between each other led to the identification 

of 4988 DEGs with an adjusted p-value < 0.05 and |logFC| > 1 in at least one 

comparison (Figure 5B).  

 

Figure 5: Global gene expression analysis. (A) PCA of gene expression. Numbers in 

parentheses indicate the percentage of variation explained by each of the three first principal 

components. (B) Number of differentially expressed genes (DEG) for every comparison across 

time. Numbers in blue rectangles indicate down-regulated genes (logFC < -1); numbers in red 

rectangles indicate up-regulated genes (logFC > 1). 

The observed dissimilarity of Mφ 3 days post-MI to other temporal stages in 

PCA and DE analysis, indicated major transcriptional changes in cardiac Mφ at this 

temporal stage. It was interesting to note, that both analyses revealed a high similarity 

between the latest post-MI stage monitored (30 days) and CRMs, which might indicate 

a reestablishment of resting conditions. PCA and DE analysis also showed that Mφ 

isolated 7 days post-MI could be clearly distinguished from the other time points but 

were more similar to CRMs than to 3 days post-MI Mφ.     
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We performed unsupervised k-means clustering for the 4988 genes DE in at 

least one comparison to better characterize the global dynamic changes in gene 

expression and to identify groups of co-expressed genes (k = 6, Figure 6A). In order 

to gain a better understanding of the grouped genes, PANTHER was used to perform 

functional analyses of each cluster (Figure 6B). The clustering revealed three clusters 

(clusters I, II, and III) that exhibited a time point specific expression profile. Genes 

assigned to cluster I showed an elevated expression in the healthy heart and included 

cardiomyocyte structural genes like Myl2 (Figure 6B, C) associated to the enriched 

processes heart development and myofibril assembly. The cluster was further enriched 

for biological adhesion associated to genes like Lyve-1 and cell adhesion molecules 

such as Esam, Bcam, and Mcam, which might indicate close interactions between Mφ 

and other cardiac cells, such as CMs and ECs in homeostasis, as previously suggested 

(Pinto et al., 2012).  

Genes with primarily elevated expression 3 days post-MI were assigned to 

cluster II and enriched for immune response, programmed cell death, apoptotic 

signaling pathway, and regulation of ROS metabolic process, suggesting a pro-

inflammatory phenotype for these Mφ population (Figure 6B). Interestingly, a query of 

the interferome database v2.01 (Rusinova et al., 2013) revealed, that approximately 

20% of the genes assigned to cluster II were potential targets of IFNγ – induced 

signaling (e.g. Stat1, Zfp36, Il6). Although Mφ can also be a source of IFNγ production 

(Darwich et al., 2009), the major sources of IFNγ after MI are T-cells, specifically Th1, 

and natural killer cells (Hansson et al., 2006), indicating a T-cell mediated IFNγ -priming 

of cardiac Mφ after infarct (Mosser, 2003). In addition, we found an up-regulation of 

Hif1a and its target genes Vegfa, Glut1, and Pgk1, which might indicate a hypoxic 

environment at 3 days post-MI, a common microenvironmental feature at the site of 

inflammation (Murdoch et al., 2005).  

Genes assigned to cluster III showed a primarily elevated expression 7 days 

post-MI and were associated with ECM and collagen fibril organization (e.g. Lum, 

Col3A1), indicating an active role in tissue remodeling (Figure 6A, B, C). The 

identification of regulators of cell proliferation (e.g. Sox9, Sox4) together with the 

enrichment of the process indicate proliferative capacity of 7 days post-MI Mφ, in 

accordance with previous findings in Mφ isolated after skeletal muscle injury (Varga et 
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al., 2016).  

 

Figure 6: Analysis of dynamic gene expression of cardiac Mφ in the healthy heart and 

after MI. (A) K-means clustering (k = 6) of the 4988 genes differentially expressed in at least 

one time point compared to control. (B) Chord diagram of a manually curated selection of 

significantly enriched (B-H adj-p < 0.01, Fold-Enrichment > 2) PANTHER biological processes. 

Biological processes are displayed on the left and clusters on the right side. (C) Gene 

expression profile of selected genes from each cluster. Y-axis displays normalized counts. 

Error bars indicate standard error.  

The highly specific gene signature found for CRMs, 3 and 7 days post-MI Mφ 

contrasted with the absence of genes specifically expressed 30 days post-MI. Genes 

of the latest post-MI stage were either co-expressed with CRMs (cluster VI) or at both, 

day 0 and day 3 (cluster IV). Genes assigned to cluster IV were also associated with 
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inflammatory response and included a high number of TFs like Atf3, Fos and Jun and 

the cytokine Il10. Recently it has been shown that Mφ up-regulate the expression of 

Il10 as early as 3 days post-injury in the context of skeletal muscle injury (Novak et al., 

2014). Additionally, cluster V contained genes with comparably high expression values 

at 0 and 7 days post-MI. The cluster was characterized by cell cycle and cell 

proliferation (e.g. Glul, Mxd4, Fcrls) associated processes, confirming self-renewal 

potential of CRMs (Heidt et al., 2014) and proliferative capacity of Mφ involved in tissue 

repair (Varga et al., 2016). Already the PCA (Figure 5A) and the overall number of 

DEGs (Figure 5B) showed that CRMs and 30 days post-MI Mφ were the most similar 

samples. K-means clustering (Figure 6A) confirmed that these two time points shared 

a high number of co-expressed genes (cluster VI). These genes were mainly involved 

in cell cycle processes (e.g. Bmp2) and cytoskeleton organization (e.g. Syne2), 

indicating restoration of homeostasis at 30 days post-MI.  

All together the transcriptional characterization of cardiac Mφ revealed very 

heterogeneous expression profiles that were associated with time point specific 

functions, indicating a highly dynamic, yet coordinated, transcriptional landscape of Mφ 

activation in response to MI. 

2.3. Cardiac Mφ contribute to tissue heterogeneity of Mφ 

Mφ reside in nearly all tissues of the body but differ in their ontogeny origin, 

epigenetic imprinting, and gene expression (Gautier et al., 2012; Lavine et al., 2014). 

The transcriptional analyses that led to these findings compared multiple tissues but 

did not include the heart. For this reason, we compared cardiac resident Mφ with two 

published datasets (GSE15907, GSE63340) of tissue-resident Mφ, including also 

neutrophils and monocytes. The datasets were obtained from different experiments 

and we applied batch correction to reduce the impact of systematic non-biological 

differences in later analyses (Leek et al., 2012). The HC shows the effect of the batch 

correction and clearly underscores the necessity of such batch effect removal 

technique (Figure 7). In contrast to the dendrogram of normalized but not batch 

corrected samples (Figure 7A), in which samples clustered primarily according to the 

different experimental batches, batch correction led to distinct tissue-specific clusters 

(Figure 7B). The data reveals a clear batch-specific bias that could be reduced through 
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the application of batch correction methods, emphasizing the necessity of batch 

correction to generate robust gene expression profiles.  

 

Figure 7: Hierarchical clustering of tissue resident Mφ. A) Quantile normalized dataset 

without batch correction. B) Quantile normalized dataset of tissue resident Mφ with batch 

correction. 

PCA of all samples (Figure 8A) revealed that tissue- resident Mφ from the heart 

are most similar to Mφ from the small and large intestine, with a relatively greater 

distance to the other tissues. Nevertheless, pairwise correlation analysis (Figure 8B) 

revealed that cardiac Mφ were not only very similar to the intestine but also exhibited 

high CC compared to other tissues (mean = 0.84, SD = 0.03), whereas the CC between 

the other tissues ranged from 0.68 (lung versus brain) to 0.89 (liver versus spleen). 

From all the tissue resident Mφ microglia were the most dissimilar samples (Figure 8A, 
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Figure 8B). Interestingly, monocytes clustered together with resident Mφ from 

peritoneum, heart, and gut, which might suggest an increased monocyte influx to these 

populations in homeostasis. 

 

Figure 8: Global gene expression comparison of tissue resident Mφ, monocytes and 

neutrophils. A) PCA of gene expression of all samples. Numbers in parentheses indicate the 

percentage of variation explained by each of the principle components. B) Pairwise spearman 
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correlation of transcriptional profiles of all samples. Labels indicate origin of data, cell type, 

and tissue of origin. 

In order to explore the heterogeneity of tissue resident Mφ in more detail, k-

means clustering (k = 15, Figure 9A) was used to identify sets of co-expressed genes. 

The clustering revealed tissue specific gene signatures for resident Mφ, including 

previously described tissue specific genes such as Siglech in microglia, Tgfb2 and 

Gata6 in peritoneal Mφ, Pparg and Spi-c in splenic red pulp Mφ and Car4 in lung Mφ 

(Lavine et al., 2014). The clustering further revealed a yet undescribed set of cardiac 

specific genes (Figure 9A, cluster XII). Amongst these genes, three surface markers 

were selected and tested via real-time polymerase chain reaction (qPCR). The 

experiments confirmed the cardiac specific expression of Osmr, Lifr and Egfr 

compared to Mφ from lung, spleen, and peritoneum (Figure 9B). Previously a set of 35 

heart specific genes had been identified comparing the transcriptional profile of cardiac 

resident Mφ to spleen and brain (Pinto et al., 2012). Our integrated analysis showed 

that several genes of this signature (e.g. Tnnt2, Myh6, Steap4) were indeed specifically 

expressed in the heart (Figure 9B, cluster XII), but around 20% (e.g. Stab1, Mmp13, 

Sdc4, Retnla) were expressed in heart and intestine, consistent with the observed high 

similarity between the global gene expression profile of heart and gut (Figure 8A, 

Figure 8B). As already indicated by the correlation analysis, k-means clustering 

showed that cardiac Mφ shared gene sets with many other tissues. Brain and heart 

shared one of the larger clusters (Figure 9A, cluster II), including the TF Mef2c, the F-

box protein Fbox11, which is associated with metal ion binding, members of the Toll-

like receptor family (Tlr3, Tlr5), and the chemokine receptor Ccr5. Genes commonly 

expressed in the peritoneum and heart included the pro-angiogenic factor Lyve1 which 

was previously proposed as a cardiac specific Mφ surface marker (Pinto et al., 2012) 

and the TF Crem, which binds to the cyclic adenosine monophosphate (cAMP) 

responsive element in the promoters of its target genes, regulating various complex 

processes. The surface markers Cd163 and Mrc1, which are associated with a M2-like 

phenotype, were commonly expressed by spleen and heart (Figure 9A, cluster XI). 

Collectively, these data support the heterogeneity of tissue resident Mφ, which 

possess significant differences in their transcriptional profiles. The detected high 

similarity between intestine and heart might suggest a high percentage of mature but 

monocyte-derived cardiac Mφ in the healthy myocardium.  
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Figure 9:  Gene signatures of tissue resident Mφ. A) K-means clustering (k = 15) of genes 

differentially expressed in at least one tissue comparison. Genes highlighted in bold were 

selected for qPCR. B) Gene expression profile of cardiac specific membrane proteins obtained 

by qPCR. Data represent the mean + standard error (SE) of three independent experiments. 

 

2.4. The hybrid phenotype of cardiac Mφ during infarct healing 

In order to globally determine the functional phenotype of the in vivo samples 

and to place them within the M1/M2 activation spectrum, the gene expression profiles 

of in vivo cardiac Mφ isolated at different post-MI stages were compared to two in vitro 

datasets (Li et al., 2015; Riquelme et al., 2013). In both in vitro studies bone marrow- 

derived Mφ (BMDM) were cultured for several days in the presence of Mφ colony-

stimulating factor (M-CSF), followed by treatment of the mature Mφ with different 

stimuli. HC of the samples was performed and the resulting tree was visualized (Figure 
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10). The length of the branches corresponds to the Euclidean distance between the 

samples. 

 

Figure 10: Comparison of the global gene expression profile of cardiac Mφ with in vitro 

activated Mφ. Clustering of mouse Mφ samples isolated from the heart at various post-MI 

stages (in vivo, red font color) and bone marrow-derived Mφ treated in vitro with various stimuli 

(light blue and purple font color). Both in vitro datasets were downloaded from the NCBI GEO 

with the accession numbers GSE32690 (purple) and GSE53321 (light blue), respectively. The 

labels of the in vitro samples indicate the applied stimulus. For the in vivo samples the labels 

indicate the post-MI stage at which the cells were isolated. 

Isolated monocytes without stimulation were clearly distinguishable from the Mφ 

samples and formed a separate part of the tree (Figure 10), which further supports the 

Mφ identity of our samples. Taking the monocytes apart, a dichotomous structure 

developed, indicating significant differences in gene expression and function between 

the subtrees. As indicated by PCA and DE analysis (Figure 5A, B), CRMs clustered 

closely together with the latest post-MI stage monitored (30 days). These samples also 

clustered together with BMDMs activated with IFNγ and BMDMs stimulated with 

immune complex (IC) and IFNγ. These Mφ populations have been shown to exhibit an 

immunosuppressive phenotype (Riquelme et al., 2013), suggesting a similar 

phenotype for CRMs, as previously described (Pinto et al., 2012), and Mφ at 30 days 
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post-MI. Interestingly, non-activated BMDMs were not part of this cluster, but were 

grouped together with cardiac Mφ 7 days post-MI amongst others. Mφ from day 7 

clustered closely together with samples treated with dexamethasone, IL4, and a 

combined treatment of IL4 and IL13, further indicating a M2-like phenotype for these 

post-MI Mφ. Mφ isolated at 3 days post-MI clustered together with BMDMs activated 

with LPS and IFNγ, supporting the assigned M1-like phenotype for 3 days post-MI Mφ.  

 

Figure 11: The hybrid phenotype of in vivo Mφ. Frequency of functional phenotypes within 

in vivo samples at different post-MI stages estimated using CellMix. 

Nevertheless, results of the DE analysis revealed a mixture of M1 and M2 

signature genes within the in vivo transcription profiles, suggesting that in vivo Mφ are 

a mix of described in vitro phenotypes. In order to test this hypothesis computationally, 

partial deconvolution was used to estimate the M1 and M2 phenotype contribution to 

the in vivo samples. Mouse BMDMs cultured for 7 days in M-CSF and activated with 

LPS + IFNγ or IL4 + IL13 were used as reference profiles for a M1 and M2 functional 

phenotype, respectively. In addition to the in vitro data, our samples of CRMs were 

used as reference for tissue- resident Mφ (M0). The barplot in Figure 11 shows the 

frequency of the M0, M1, and M2 phenotype within post-MI Mφ. In agreement with the 

HC (Figure 10), the transcriptional profile of Mφ isolated at 3 days post-MI was 

predominated by M1 associated genes (76% M1) but already included activated anti-

inflammatory programs (24% M2). On the other hand, the profile held no gene 

expression pattern reminiscent of CRMs (0%). Mφ gene expression at 7 days post-MI 

was mainly characterized by M2-associated genes (55%) but still held transcriptional 

traces (11%) of a M1-like profile. This result might suggest a transition from pro-
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inflammatory to anti-inflammatory further continuing to resting Mφ, as indicated by the 

contribution (34%) of the M0 profile. The latest post-MI stage was completely 

dominated by the M0 phenotype (92%).  

Both, the partial deconvolution approach and the inter-experimental comparison 

pointed towards a hybrid nature of in vivo Mφ phenotypes and support a dynamical 

phenotype alteration of Mφ in cardiac repair.  

2.5. Global network of transcriptional regulation in Mφ  

Mφ are phenotypically very heterogeneous and the individual cells exhibit a 

remarkable plasticity, swiftly changing their phenotype to cope with changing 

microenvironments. The identity of Mφ is specified by a complex interplay between 

external signals and activated transcriptional programs. In order to explore TF activities 

and to identify master regulators of cardiac Mφ in the healthy heart and after MI, we 

applied sequence-based discovery of regulons per cluster (Janky et al., 2014). The 

program identified enriched motifs per cluster and linked the motif to known TF binding 

sites. 

Table 1: Motif enrichment analysis of co-expressed genes. For each cluster, the motifs 

with the highest normalized enrichment score (NES) up to a maximum of three are displayed. 

The selected motifs were linked to their corresponding TF, considering only DE TFs. 

Cluster Motif TF NES 

 
I 

 

 
Max 

 

 
3.5 

 
 

 

 
Stat1 

 

 
9.1 

 
II 

 

 
Fosl1 

 
5.1 

 
 

 

 
Cebpb 

 
3.6 

 
 

 

 
Runx2 

 
4.1 

 
III 

 

 
Pura 

 
4.0 
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Zbtb18 

 
3.1 

 
 

 

 
Patz1 

 
4.4 

 
V 

 

 
Hinfp 

 
3.5 

 
 

 

 
Rora 

 
3.2 

 
VI 

 

 
Nilf3 

 
4.0 

 

The motif enrichment analysis led to the identification of 66 DE TFs, revealing a 

highly complex regulatory program of in vivo Mφ. The top enriched motif for cluster I 

was linked to Max (Table1), a TF that forms heterodimes with Myc or Mad and 

depending on the combination functions as an activator or repressor of transcription. 

In cluster II two of the top enriched motifs were linked to mediators of IFNγ- induced 

signaling (Stat1, Cebpb), supporting the finding that many genes of this cluster are 

targets of IFNγ-signaling. The top three enriched motifs for cluster III were linked to 

TFs associated to cell maturation (Runx2), cell differentiation (Pura) and skeletal 

muscle tissue development (Zbtb18). Surprisingly, no enriched motif could be found 

for cluster IV. The TFs linked to the top enriched motifs of genes in cluster V were 

involved in cell cycle processes, consistent with the enriched BPs identified for this 

cluster (Figure 6B). The top enriched motif of cluster VI was linked to the survival factor 

Nfil3, which was recently associated with Mφ activation (Roy et al., 2015). 

The identified 66 DE TFs were linked to their target genes from different clusters 

and the list of TF – target gene pairs was imported into cytoscape. To simplify the 

resulting network, target genes were grouped according to their associated k-means 

clusters. Taking into account that TFs can be activators and repressors the list of 

predicted interactions was filtered by correlation between the TF and its target gene. 

Only interactions with an absolute CC > 0.7 were kept, reducing the list of potential 

regulators to 40 TFs (Figure 12). Interactions with anti-correlation were considered as 
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repressive functions of the TFs, whereas TFs with positive correlation to the targeted 

cluster were considered as activators. 

 

Figure 12: Global network of potential regulatory effects of TFs on the different clusters. 

TFs are highlighted in light orange and clusters in purple. Negative interactions are indicated 

by flat line ends, whereas activating interactions are indicated by solid arrows. The node size 

corresponds to the node degree.   

Approximately half of the TFs potentially regulated multiple (> 1) clusters and 

only the clusters III and IV were not linked to cluster-specific TFs. Seven TFs had the 

potential to specifically regulate genes in the healthy heart, including the clock-

controlled Arntl gene, angiogenesis-related genes (Sox18, Hey1), and regulators 

associated with developmental processes (Hes6). The identified transcriptional 

regulators are in line with the determined functions of this cluster (Figure 6B) and 

support the proposed pro-angiogenic function of CRMs (Pinto et al., 2012). Cluster II 

contained the highest number of identified TFs, including regulators of metabolic 

processes (e.g. Rel, Pparg), negative regulators of cell proliferation (e.g. Prdm1, Tgif1, 

Fosl1), regulators of programmed cell death (e.g. Bcl3, Fosl1), and genes involved in 

immune response reactions (e.g. Stat1, Stat2, Cebpb). The high number of identified 

TFs matches the observed massive changes in Mφ gene expression 3 days post-MI 

(Figure 5A, 5B). TFs that belonged to cluster III (Spib, Sox4, Cebpa) were linked to cell 

maturation and cell differentiation, in accordance with the identified motifs. Despite the 
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small number of genes assigned to cluster IV, the cluster included many TFs, such as 

Jun and Fos, known regulators of cell life and death (Shaulian and Karin, 2002). The 

TFs linked to the top enriched motifs of genes in cluster V (Table 1), were involved in 

cell cycle processes, consistent with the identified functions for this cluster (Figure 6B). 

TFs commonly expressed in in the healthy heart and at 30 days post-MI (cluster VI) 

were linked to cell differentiation (e.g. Mybl1, Pura) and apoptotic processes (Pura, 

Irf6), indicating possible differentiation of blood monocytes into tissue Mφ (Schwerk 

and Schulze-Osthoff, 2003).  

The data, taken together, revealed a complex regulatory network of cardiac Mφ 

in homeostasis and in response to tissue injury. The result emphasizes the complexity 

of Mφ activation, reflecting the multifaceted interplay between different intrinsic 

pathways and received activating signals from neighboring cells (Gordon and Taylor, 

2005).  

1.6. Receptome and Secretome contribution to Mφ identity and function 

Mφ are highly influenced by the microenvironment in which they reside in and 

depending on its molecule composition execute specific effector functions (Martinez 

and Gordon, 2014). They also interact with other cardiac cells (e.g. CMs, FBs, ECs) to 

maintain and to regain homeostasis in case of tissue injury (Frantz and Nahrendorf, 

2014). The intercellular crosstalk is most likely mediated through the secretion of 

distinct signaling molecules. Hence, we classified DEGs according to their cellular 

location and analyzed SMs (macrocrines) and MPs (receptome) of cardiac Mφ to 

estimate their cell-cell signaling potential at the different temporal stages. 

After a pre-selection process (Materials & Methods), clustered genes were 

classified as SMs and MPs according to the Human Protein Atlas. Interestingly, the 

highest relative abundance of genes encoding for SMs could be identified for cluster 

III, which was nearly twice as high as the relative abundance of MPs (Figure 13A).  

Functional analysis associated the identified macrocrines with ECM-related 

processes, indicating a key role of Mφ in cell-cell signaling through the secretion of 

ECM components (e.g. Col3a1, Lox, Postn) during the reparative phase of cardiac 

repair (Figure 13B). 
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Figure 13: Transcriptional characterization of macrocrines and the receptome of cardiac 

Mφ. (A)  Relative abundance of secreted molecules (SM, macrocrine) and membrane proteins 

(MP, surface marker) in each cluster (Figure 1C). (B) Hierarchical clustering of a manually 

curated selection of significantly enriched (B-H adj-p < 0.01, Fold-Enrichment > 2) PANTHER 

biological processes for secreted molecules. 

Molecules secreted by Mφ during the inflammatory phase were consistently 

associated with immune response (e.g. Il18bp, Cxcl10, Ccl2), blood vessel 

development (e.g. Thbs1, Mmp19, Vegfa), and apoptotic processes (e.g. Spp1, Osm, 

Serpine1), suggesting maintenance of the inflammatory response through secretion of 

pro-inflammatory factors. In addition, we found a similar relative abundance of SMs 

and MPs for cluster II (Figure 13A), suggesting homeotypic paracrine signaling 

potential of Mφ at 3 days post-MI. The macrocrine of CRMs was associated with the 

regulation of angiogenesis (e.g. Pf4, Cx3cl1, Figure 13B), indicating a contribution of 

Mφ to angiogenesis in the healthy myocardium, most likely carried out through 

reciprocal paracrine signaling with ECs, as previously suggested (Pinto et al., 2012). 

The importance of such signaling has been shown for vascular network formation in 

developing organs (Sunderkötter et al., 1994) and in disease (Ahmad et al., 2002). As 

already indicated by the absence of a time point-specific gene cluster for day 30, we 

couldn’t define either a secretome or a receptome that distinguishes day 30 from the 

other temporal stages. SMs and MPs with elevated expression at day 30 were co-

expressed in day 0, and supported the M2-like phenotype (e.g. Mrc1) of CRMs. 

We further aimed at defining surface markers specific for the different Mφ 

populations at the different temporal stages. The expression of selected surface 
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markers for the clusters I, II, III and VI was tested via qPCR (Figure 14). As previously 

reported (Pinto et al., 2012) we found a high expression of Lyve-1 in CRMs (Figure 

14), which might suggest a role of CRMs in angiogenesis as already indicated by the 

macrocrines. 3 days post-MI Mφ expressed high levels of CD40, which is associated 

with pro-inflammatory signaling upon binding with CD154 on activated CD4+ T cells 

(Stout and Suttles, 1996) supporting the pro-inflammatory character of post-MI Mφ at 

day 3. The anti-inflammatory character of 7 days post-MI Mφ was supported by the 

elevated expression of Trem2, which might also contribute to the resolution of 

inflammation by suppressing the production of pro-inflammatory cytokines (Neumann 

and Takahashi, 2007). Additionally, Mrc1 was primarily expressed in CRMs and at 30 

days post-MI, consistent with its association to alternatively activated Mφ (Stein et al., 

1992).  

 

Figure 14: Gene expression profile analysis of selected surface marker of cardiac 

macrophages. Data represent the mean ± SEM of 3 independent experiments. 

 

To fully understand the macrocrine – receptome interaction at each temporal 

stage, STRING was used to identify SM - MP pairs within the list of selected molecules 

as an indication for homeotypic paracrine signaling. By filtering the list for co-

expression, 28 SM - MP pairs, assigned to three different clusters, were identified 

(Figure 15). 

 The majority of SM - MP pairs could be identified for cluster II, indicating a high 

potential for homeotypic paracrine signaling. We found that 3 days post-MI Mφ 

expressed both, the chemokine receptor Ccr2 and its ligand Ccl2 (Figure 14), which 

might indicate the recent infiltration of circulating monocytes (Lavine et al., 2014) and 

also facilitates further recruitment of monocytes to the site of inflammation (Kuziel et 

al., 1997). Elevated expressions of Cd44 and Spp1 have been previously observed in 

M1-like Mφ and are associated with the regulation of chemotaxis (Marcondes et al., 

2008; Zhu et al., 2004). Cd44 has also been linked to the phagocytosis of apoptotic 

neutrophils, indicating a crucial role in the removal of inflammatory cell debris (Vivers 
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et al., 2002). Together with the expression of other chemokine receptor ligand pairs, 

the result suggests that Mφ sustain the inflammatory response through potential 

homeotypic paracrine signaling (Figure 16).  

 

Figure 15: Potential homeotypic paracrine signaling of cardiac Mφ. Chord diagram of SM 

(black) – MP (purple) pairs. Squares following gene symbols of SMs indicate the z-score 0, 3, 

7, 30 days post-MI. 

We further identified SM- MP pairs of angiogenic factors (e.g. Ang, Pdgfb, 

Pdgfc) expressed in CRMs and at 7 days post-MI, indicating a contribution of Mφ to 

the process of angiogenesis. Despite the extensive macrocrine of cluster III, few SM – 

MP pairs could be identified. Together with the established BPs for the secretome of 7 

day post-MI Mφ it indicates a strong involvement of these cells in intercellular signaling 

and ECM organization through the secretion of ECM components (Figure 16). The low 

number of potential homeotypic paracrine signaling pairs in the healthy heart and at 

30 days post-MI (Figure 15) suggests that the extensive receptome primarily serves 

for immune surveillance (Figure 16), a widely proposed function of tissue resident Mφ 

(Davies et al., 2013; Mosser and Edwards, 2008).  
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Figure 16: Pictographic summary of the potential role of the identified secretome and 

receptome of cardiac Mφ. MP, membrane protein; SM, secreted molecule  

All together the result suggests a strong extracellular signaling potential of Mφ 

3 and 7 days post-MI as opposed to a more receptive role of Mφ in the healthy heart 

and at 30 days post-MI. The result further suggests a high homeotypic paracrine 

signaling potential of Mφ 3 days post-MI, whereas Mφ 7 days post-MI seem to be 

strongly involved in cell-cell signaling by the secretion of ECM components.   

2.7. Specific destabilization of inflammatory mRNAs by TTP-directed mRNA 

decay 

Mφ are critical mediators of inflammation but excessive inflammation can lead 

to pathological conditions (Taylor et al., 1996). RNA-binding proteins, such as TTP, limit 

inflammatory cytokine production through destabilization of their mRNA and it has been 

shown that TTP is responsible for the destabilization of one third of inflammation‐

induced unstable mRNAs in Mφ in vitro (Kratochvill et al., 2011). TTP also plays an 

important role in Mφ polarization (Sedlyarov et al., 2016).  

The DE analysis had shown that TTP was significantly up-regulated 3 days post-

MI (Figure 4A), indicating TTP activity at this temporal stage. TTP enhances mRNA 

decay through binding to AU-rich 3’UTRs. Hence, we tested the clusters of co-

expressed genes for an enrichment of AU-pentamers (“AUUUA”) and AU-heptamers 

(“UAUUUAU”). We found two clusters with an enrichment for ARE: cluster II and VI. 

Genes with an elevated expression 3 days post-MI (cluster II) were associated with 
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immune response and showed a significant enrichment for ARE (Table 2), indicating 

an increased possibility of TTP-directed regulation of inflammation – induced mRNAs 

as previously described (Kratochvill et al., 2011). Additionally, we found an enrichment 

of AREs for genes up-regulated in the healthy heart and at 30 days post-MI. These 

genes were enriched for cell cycle-related processes (Table 2), which is in line with the 

finding that many cell cycle regulators are coded by ARE-mRNAs (Barreau et al., 

2005).  

The median mRNA half-life of co-expressed genes was calculated in hours 

based on the mRNA degradation rates database from the National Institute of Aging 

(Sharova et al., 2009). For all clusters, the calculated AU- content of 3’UTRs was anti- 

correlated to the estimated median half-lives (spearman correlation coefficient = -1). In 

accordance with the results from the AU-motif enrichment analysis the mRNAs of the 

clusters II and VI had a half-life below the reported overall median of 7.1 h (Sharova et 

al., 2009). Genes up-regulated 3 and 30 days post-MI, although not enriched for AU 

elements, had the shortest median mRNA half-life among all clusters (4.7 hours). The 

cluster was enriched for processes such as regulation of transcription, cytokine activity, 

and TF activity, which were previously linked to unstable mRNAs (Sharova et al., 

2009). Interestingly, the mRNAs from cluster III showed a prolonged median half-life 

(9.6 hours) and were enriched for ECM organization and collagen fibril organization 

(Table 2), structural processes that are linked to stable mRNAs.  

 

Table 2: Overview of mRNA stability parameters. Fisher’s exact test was applied to 

test mRNA 3’UTRs for an enrichment of AU-pentamers (“AUUUA”) and AU-heptamers 

(“UAUUUAU”). Obtained p-values were corrected for multiple testing (Benjamini - Hochberg).  

Cluster Median 
3’UTR length 

ARE 
pentamer 

ARE 
heptamer 

Median 
half-life (h) 

Top biological process 

I 964 nt 1 0.87 7.4 Myofibril assembly 
II 908 nt 0.017 0.87 6.6 Immune response 
III 834 nt 1 0.99 9.6 ECM organization 
IV 1043 nt 1 0.87 4.7 Inflammatory response 
V 710 nt 1 0.99 8.1 Cell cycle, M phase 
VI 1204 nt 4.7e-22 1.04e-06 5.9 Cell cycle 

Abbreviations: 3’UTR, 3-untranslated region; lincRNA, long intronic RNA; ECM, extracellular matrix; nt, 

nucleotides 

The 3’UTR of mRNAs contain not only binding sites for regulatory proteins but 

also for miRNAs. Longer 3’UTRs are associated with lower levels of gene expression 

due to increased post-transcriptional modifications (Stark et al., 2005). Therefore, the 
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median length of the 3’UTRs per cluster was calculated to determine the possible 

regulatory effects of RNA binding proteins and miRNAs (Table 2). We found that the 

median 3’UTR length was highest for genes expressed in the healthy heart and 30 

days post-MI, indicating a higher probability for post-transcriptional modification. 

Interestingly, genes with an elevated expression at 7 days post-MI (cluster III and 

cluster V) possessed comparably shorter 3’UTRs, reducing the likelihood of post-

transcriptional regulation.  

In agreement with reported findings (Kratochvill et al., 2011; Sedlyarov et al., 

2016), our data indicates that inflammation‐induced mRNAs are less stable and more 

prone for post-transcriptional regulation due to longer 3’UTRs and an enrichment for 

ARE in their 3’UTRs, targeting them for rapid degradation.  

2.8. The miRnome of cardiac Mφ 

Another level of post-transcriptional regulation that might affect mRNA stability 

is miRNA-mediated gene silencing. miRNAs mediate translational repression and 

degradation of targeted mRNAs and have been shown to play important roles in 

immune response and Mφ polarization (Essandoh et al., 2016; Graff et al., 2012; Wang 

et al., 2013). Hence, we analyzed the miRNA expression following the depicted 

workflow in Figure 17A.  

PCA of the global transcriptional profiles revealed well separated miRNA 

expression signatures at the different post-MI stages (Figure 17B), supporting the idea 

of time point- specific post-transcriptional regulation. DE analysis of miRNAs was 

performed comparing each post-MI stage to the control sample and between each 

other (Figure 17C). Statistical analysis revealed a set of 258 non-redundant miRNAs 

DE in at least one of the comparisons (adjusted p-value < 0.05, logFC > 1|< -1, and 

average expression > 4.0). Only a small number of miRNAs were altered comparing 

CRMs with 7 day post-MI Mφ. The gene expression of the miRNA machinery (Drosha, 

Dicer1, Xpo5, Ran, Dgcr8, Tarbp2) 7 days post-MI was not significantly changed 

compared to all other time points, indicating that the miRNA biogenesis was not 

perturbed but the detected low number of DE miRNAs was due to a low level of post-

transcriptional regulation at that temporal stage, as indicated by the mRNA stability 

analysis. Interestingly, we found similar numbers of DE miRNAs comparing 3 and 30 

day post-MI Mφ to CRMs. It has been proposed that miRNA targeting of ARE is crucial 
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in ARE-mediated mRNA degradation (Jing et al., 2005), which matches the observed 

AU enrichment for clusters II and VI (Table 2).  

 

Figure 17: Global analysis of miRNA expression. (A) Workflow of integrated miRNA 

analysis. (B) PCA of miRNA expression. Number in parenthesis indicate the percentage of 

variation explained by each of the three first principle components. (C) Number of DE miRNAs 

for every comparison across time. 

A first approach to integrate miRNA data with mRNA expression profiles aimed 

at the identification of miRNAs that have the potential to regulate the clusters of co-

expressed genes. 3’UTRs of clustered genes were searched for enriched motifs and 

subsequently linked to miRNAs, based on matching seed sequences and an anti-

correlated miRNA expression profile (Figure 18A). The target genes and expression 

profile of the identified miRNAs (Figure 18B) implied regulatory functions in cell cycle-

related processes, apoptosis, the maintenance of immune quiescence and the 

recovery of homeostasis.  
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Figure 18: Cluster-specific miRNA-mediated regulation. (A) Over-represented sequence 

motifs in the 3'UTRs of co-expressed genes. The top miRNAs (maximum of three) 

corresponding to these motifs are displayed. (B) Hierarchical clustering of the 258 miRNAs 

differentially expressed in at least one time point compared to control. Highlighted are miRNAs 

identified as potential regulators of co-expressed genes by miRvestigator (Plaisier et al., 2011). 

Although the over-represented motifs for clusters I and II were the same, the 

clusters were potentially regulated by different miRNAs based on their divergent 

expression profiles. miR-139-5p, miR-3082-5p, and miR-505-3p were detected as the 

three most probable miRNAs to regulate genes with low expression at all temporal 

stages compared to the healthy heart. BPs associated to the targeted cluster and the 

expression profile of these miRNAs imply regulatory functions in cell cycle- related 

processes and cell proliferation. For cluster II the highest ranked motif was linked to 

the miRNAs miR-101c, miR-466q, and miR-466f-3p. Based on their anti-correlation, 

the miRNAs were all characterized by a down-regulation at 3 days post-MI and up-

regulation at other temporal stages. In combination with the biological function of their 

target genes it seems to be likely that these miRNAs are involved in the maintenance 

of immune quiescence or the recovery of homeostasis. The top miRNAs for cluster V 

included miR-1839-5p, miR-3082-5p and miR-542-5p. miR-542-5p has been identified 

as a putative tumor suppressive microRNA (Bray et al., 2011) and the functions of the 

targeted cluster indicate a regulatory role of these miRNAs in cell proliferation. Despite 
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divergent over-represented motifs the clusters IV and VI were potentially regulated by 

the same miRNA, miR-202-3p. It has been observed that miR-202 targets genes with 

a wide variety of different biological functions, such as cell proliferation, apoptosis, and 

inflammatory response (Kumar and Nerurkar, 2014; Zhang et al., 2014; Zhao et al., 

2013).  

The second approach of our integrated analysis focused on the overall temporal 

pattern of post-transcriptional regulation. We constructed a global miRNA-mRNA 

interaction network of all DE genes and miRNAs and mapped the normalized gene 

expression data to the node fill color (Figure 19A). The topology of the networks led to 

the identification of three clusters (S1, S2, S3) with different expression profiles and 

different biological functions (Figure 19A, Figure 19B).  

 

Figure 19: Global mRNA-miRNA interaction network. (A) Temporal expression profile of 

mRNA – miRNA interaction network. Node fill color is mapped to the normalized expression 

(z-score). S1, S2, S3 indicate the three hubs of the network. (B) BPs associated to the three 

hubs of the global mRNA – miRNA interaction network and exemplary miRNAs.  

S1 was characterized by a down-regulation of miRNA expression 3 days post-

MI and up-regulated genes at this temporal stage were associated with defense 

response and cytokine production (Figure 19A, Figure 19B). The result suggests 

miRNA-mediated repression of inflammatory processes to maintain homeostasis in 
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CRMs. Moreover, the result might indicate that miRNA activity contributes to the 

resolution of inflammation through miRNA-mediated degradation of pro-inflammatory 

mediators, enabling the restoration of homeostasis 30 days post-MI. The second 

subnetwork (S2), associated to cell cycle-related processes and cardiovascular 

development (Figure 19A, Figure 19B), exhibited a very heterogeneous gene 

expression profile. In the healthy heart miRNAs associated with heart and 

cardiovascular system development genes (e.g. mmu-miR-1a, mmu-miR-126a, mmu-

miR-342-5p) were down-regulated, in agreement with the enriched processes for 

genes with elevated expression in resting conditions (Figure 6B). 3 days post-MI the 

genes of S2, which were mainly associated with cell cycle, were potentially down-

regulated by miRNA activity (e.g. mmu-miR-504, mmu-miR-181d). Interestingly, the 

subnetwork exhibited opposite gene expression regulation at 7 and 30 days post-MI, 

which might indicate the onset of distinct cell cycle- related processes. It is also 

interesting to note that, in contrast to CRMs, genes related to heart development were 

down-regulated 30 days post-MI, indicating prolonged miRNA repression. Genes of 

the third subnetwork (S3) were related to ECM and collagen fibril organization and 

miRNAs regulating these genes were down-regulated 7 days post-MI (Figure 19A, 

Figure 19B), consistent with the detected up-regulation of genes coding for ECM 

component and collagen proteins at this time point. 

The third approach focused on the comparison of day 7 with day 3 to investigate 

the role of miRNAs in Mφ polarization. Naturally two miRNA – mRNA subnetworks with 

opposite expression profiles emerged. Functional analysis elucidated BPs and 

pathways impacted by post-transcriptional regulation (Figure 20A, Figure 20B). 

miRNAs up-regulated at 3 days post-MI attenuated inflammatory response by 

potentially suppressing processes linked to cell cycle, tissue and blood vessel 

development, metabolism and mesenchymal cell proliferation (Figure 20A). At 7 days 

post-MI miRNAs contributed to a resolution of inflammation by down-regulation of 

immune response- related genes, facilitating the critical transition to an anti-

inflammatory phenotype (Figure 20B). Interesting to note is the miRNA- mediated 

silencing of apoptotic signaling pathways at 7 days post-MI, which suggests that cell 

death related processes increased 3 days post-MI (Figure 6B) might subsequently be 

down-regulated by miRNAs. 
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Figure 20: miRNA activity during Mφ phenotype transition. ClueGO network connecting 

the most significant functional terms (biological process or KEGG pathway) for the targets of 

those miRNAs significantly up (A) and down (B) regulated between day 3 and day 7 post-MI. 

The colors represent different groups. For each group the most significant term is displayed. 
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Taken together with the results from the mRNA stability analysis, the data 

indicates a critical role for TTP and miRNAs in Mφ activation and in the transition from 

a pro-inflammatory to an anti-inflammatory phenotype. With the important difference 

that TTP-driven mRNA decay of immune response related genes occurs in response 

to induced inflammation, whereas miRNA activity might also contribute to immune 

quiescence in the healthy myocardium. In addition, it seems to be likely that miRNA 

activity controls Mφ cell proliferation during cardiac repair. 

2.9. Long non-coding RNAs in cardiac Mφ 

 Another set of post-transcriptional regulators are lincRNAs, which have also 

been recently implicated in CVDs (Ounzain et al., 2015). Based on ensembl biotype 

classification we identified 195 lincRNAs amongst all the clustered genes (Figure 21A). 

In accordance with reported findings (Guttman and Rinn, 2012), lincRNAs were 

on average lower expressed than mRNAs and we found a high similarity of structural 

features such as length and GC content between lincRNAs and the 3'UTR of mRNAs 

(Figure 21B), as previously reported (Niazi and Valadkhan, 2012). Cluster specific 

trends on the mRNA level were mirrored in lincRNA features and the high similarity 

might indicate a common post-transcriptional regulation. The binding of a common 

regulator (e.g. a miRNA) is sequence-dependent and requires high sequence similarity 

between its targets. Hence, we blasted the mRNA 3'UTR sequences against lincRNA 

sequences to search for aligned lncRNA - 3'UTR pairs, which were subsequently 

scanned for common miRNA seed sequences. The emerging list of possible mRNA - 

lincRNA - miRNA triangles was further filtered by expression. Figure 21C displays the 

nature of interactions of all remaining triangles within fixed boundaries. The CCs are 

mapped to three aesthetics: cc between expression profiles of mRNA:lincRN on x- 

axis, CC of lincRNA:miRNA on y- axis, and fill colour of points corresponds to CC of 

mRNA:miRNA. Four different cases of mRNA - lincRNA - miRNA interactions could be 

identified which are summarized in the middle of Figure 21C as small graphics. The 

most abundant type of mRNA - lincRNA - miRNA interactions was characterized by 

positively correlated expression of all RNAs. No BPs were enriched for any of the 

clusters but we found multiple triangles that included the characterized lincRNAs Neat1 

and Pvt1 (Figure 21D, E).  



RESULTS – Project 2 Murine macrophages 

 

 

87 
 

 

Figure 21: LincRNA profile in cardiac Mφ. (A) Percentage of various transcript biotypes per 

cluster (Figure 3A). (B) Structural similarities between 3'UTR of mRNAs and lncRNA 

sequences. (C) Correlation between mRNA – miRNA – lincRNAs expression profiles. X-axis 

displays CC between mRNAs and lincRNAs; Y-axis displays CC between lincRNAs and 

miRNAs;  fill colour of points displays CC between mRNA and miRNAs. (D) Expression profiles 

of selected lincRNAs from various clusters. Y-axis displays normalized counts. Error bars 

indicate SE. (E) Hive plot presentation of mRNA – lincRNA – miRNA triangle for lincRNAs 

Neat1 and Pvt1. Nodes representing lincRNAs and mRNAs are coloured according to clusters 

(Figure 3A). Red lines indicate positive correlation; blue lines indicate negative correlation. (F) 

ClueGO network connecting the most significant functional terms (biological process and 

KEGG pathway) for nearest genes of DE lincRNAs in Day 3 vs Day0. 
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Neat1 was up-regulated 3 days post-MI and has been associated with innate 

immune response (Imamura et al., 2014; Zhang et al., 2013b). Pvt1 on the other hand 

was induced in the healthy heart and at 30 days post-MI and has recently gained 

importance as a ceRNA for Myc (Colombo et al., 2015), associating this lincRNA with 

cell cycle related processes. Both lincRNA characteristics matched the functions 

identified for genes with similar expression profiles (Figure 6B). The identified mRNA-

lincRNA-miRNA triangles including Neat1 were linked through miR-30b, a miRNA that 

has been associated with immune suppression (Gaziel-Sovran et al., 2011).  

We found that cluster IV had the highest relative abundance (15.5%) of 

lincRNAs, including Malat1 that is known to be induced by hypoxia and to play a 

relevant role in CVD (Skroblin and Mayr, 2014). Within the same cluster we found 

Mir17hg, that encodes for the miRNA 17-92 cluster. These miRNAs are associated with 

cell cycle and cell proliferation (Mogilyansky and Rigoutsos, 2013), indicating a 

potential role of Mir17hg in the regulation of Mφ cell proliferation. LincRNAs identified 

for the other time points were only poorly characterized. Hence, we tried to functionally 

characterize them based on association with protein coding genes (Fritah et al., 2014). 

The BEDOPS closest-features program (Neph et al., 2012) with the --no-overlaps 

option was used to identify the closest non-overlapping protein coding genes upstream 

and downstream of each lincRNA. Subsequently, the reported list was filtered to 

exclude protein coding genes that were not DE. ClueGO was used to identify enriched 

non-redundant biological terms of protein coding genes linked to lincRNAs DE between 

different post-MI stages and the control sample. Protein coding genes linked to 

lincRNAs DE between day 0 and day 3 were significantly enriched for processes 

related to antigen and leukocyte activation, suggesting a role for lincRNAs in innate 

immunity (Figure 21F). 

All together our data suggests that lincRNAs extend the regulatory network of 

Mφ transcription by influencing important processes such as cell proliferation and 

innate immune response.  

2.10. Complex regulatory network of in vivo Mφ 

As indicated by our data, the activation of Mφ is a process orchestrated by a 

multitude of factors that build a highly connected network of cooperative or competing 

relationships. In order to gain a global understanding of the underlying regulatory 
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network and its dynamics we reconstructed a literature-based interaction network and 

computed its stable states following the workflow depicted in Figure 22A. 

 

Figure 22: Pathways analysis. (A) In silico analysis workflow. (B) GOBubble of pathways 

enriched in at least one of the displayed contrasts. X-axis displays z-score of selected 

pathways. Y-axis corresponds to negative logarithm of the adjusted p-value. Each circle 

represents one pathway (legend) and the circle size correlates with number of assigned genes 

to pathway. 

Based on the statistical analysis in PathVisio we manually selected a list of 10 

pathways significantly altered in at least one of the comparisons (Figure 22B). 3 days 

post-MI, IL6 signaling and type II interferon signaling pathway were significantly up-

regulated, confirming the pro-inflammatory phenotype of Mφ isolated at 3 days post-

MI. IL6 signaling has been shown to enhance glycolysis (Ando et al., 2010), which 

became activated 3 days post-MI, capturing the known metabolic change of pro-

inflammatory Mφ (Bordbar et al., 2012; Freemerman et al., 2014; Rath et al., 2015). In 

accordance with these findings striated muscle contraction, electron transport chain, 

fatty acid biosynthesis, and purine metabolism pathways were down-regulated in this 

contrast. At 7 days post-MI we observed an increase in the focal adhesion-PI3K-Akt-

mTOR-signaling pathway with a strong up-regulation of ECM receptor interactions, 

supporting the identified involvement of DEGs and SMs in ECM organization (Figure 

13B, Figure 16D) at this temporal stage. The late post-MI stage was characterized by 
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an increase of the TGF-β signaling pathway, consistent with the role of TGF-β signaling 

in cardiac remodeling (Bujak and Frangogiannis, 2007).  

 The pathways were imported as networks into cytoscape using the Wikipathway 

App and subsequently merged into one large network. The network of altered 

pathways contained 251 DEGs. In order to increase the number of DEGs, the network 

was extended by extracting experimentally validated interactions between genes of the 

network and remaining DEGs from Ingenuity. The extended network was submitted to 

the jActiveModule cytoscape App to identify active subnetworks. The most significant 

subnetwork, composed of 45 nodes and 123 edges, was selected for further analysis. 

Network structure analysis revealed a SCC consisting of 21 genes (Figure 23).  

 

Figure 23: Network structure analysis of the most significant subnetwork. Nodes of the 

SCC of the module are highlighted in yellow. 

A SCC is a group of genes, where every pair of genes is connected through 

directed paths (Albert, 2007). The high interconnectivity means that changes in the 

state of one gene potentially affects the state of the remaining genes of the SCC. For 

this reason, we proceeded to analyze the core network stability. A Boolean dynamical 

model with an asynchronous updating scheme was used to compute network stable 

states.  
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Despite training the network with a time series of four time points, the 

computation of the stability of the SCC revealed only three stable states. This result 

matches the observed finding of only three time point- specific clusters (Figure 6A) and 

the high similarity of the global transcriptional profile between the healthy heart and 30 

days post-MI (Figure 10). We identified one stable state with all nodes “off”, indicating 

a non-activated or deactivated state that might be associated with resident Mφ and Mφ 

isolated 30 days post-MI (Figure 24).  

 

Figure 24: First point attractor of network stable state analysis. Blue nodes are “off”. 

 

Another stable state was found for the onset of Prdm1, Bcl6, Stat3 and Eomes 

(Figure 25). Prdm1 is a known transcriptional repressor that becomes activated in 

response to cellular stress in murine Mφ (Tooze et al., 2006). Bcl6 negatively regulates 

Mφ proliferation by inhibition of IL6 autocrine signaling (Yu et al., 2005) and Eomes 

has been associated with cell differentiation (Pearce et al., 2003). The transcription of 

all three genes is regulated by Stat3, which can lead to the onset of a pro- inflammatory 

and anti-inflammatory program, depending on the strength and duration of its activation 

(Braun et al., 2013). The onset of these factors indicates a more repressive, anti-
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inflammatory state and might be associated with Mφ at 7 days post-MI.  

 

Figure 25: Second point attractor of network stable state analysis. Blue nodes are “off”, 

red nodes are “on”. 

 

The third stable state was mainly characterized by an oscillation in activation of 

Hif1a, Stat1 and Il10 (Figure 26). Whereas Hif1a and Stat1 are associated with a pro-

inflammatory program (Mantovani et al., 2004), Il10 is a powerful anti-inflammatory 

mediator, that plays a fundamental role in the transition from the inflammatory into the 

resolution phase of immune response (Wan et al., 2014). The up-regulated genes 

suggest an activation of both, pro- and anti-inflammatory programs, associating this 

stable state to Mφ isolated 3 days post-MI. 

The oscillatory pattern of this stable state suggests that the regulation of Il10 is 

tightly intertwined with the expression of Hif1a and Stat1, whereas a positive regulatory 

effect of Hif1a on Il10 expression seems to be diminished by the presence of Stat1, as 

indicated by the changes in the node states. HIF-1α is the main mediator of hypoxic 

response and it has been shown that hypoxic conditions can positively alter Il10 

expression (Clambey et al., 2013; Dace et al., 2008; Murata et al., 2002; Shehade et 
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al., 2015), whereas IFNγ is known to have a negative effect on Il10 expression through 

suppression of CREB and AP-1 activity (Hu et al., 2006). Based on this result we 

hypothesized that hypoxia, but not IFNγ, leads to the induction of Il10 and tested our 

hypothesis in vitro. Peritoneal Mφ were cultured in normoxic or hypoxic conditions and 

incubated in the absence or presence of IFNγ. The experimental conditions were 

confirmed by the increased expression of target genes (Figure 27A).  

 

 

Figure 26: Cycle attractor of network stable state analysis. Blue nodes are “off”, red nodes 

are “on”, and pink nodes are “off/on”. The pie charts of Hif1a, Stat1 and Il10 indicate the 

changing states of the genes. 

 

To test our hypothesis, we assessed by qPCR the expression of a panel of 

genes from the cycle attractor (Figure 27B). As previously described (Takeda et al., 

2010) we observed a strong up-regulation of Hif1a by IFNγ and the combined treatment 

of IFNγ and hypoxia, whereas we could not observe an up-regulation of Hif1a at the 

mRNA level under hypoxic conditions (Figure 24B). However, it is well known that the 

regulation of Hif1a expression occurs at the post-mRNA level (Kaelin and Ratcliffe, 
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2008) and the up-regulation of Hif1a target genes validated its activation under hypoxic 

conditions (Figure 24A). We further detected increased expression of Il10 in hypoxic 

conditions but not in response to IFNγ treatment or the combined treatment of IFNγ 

and hypoxia, confirming our hypothesis. Hypoxia also induced the expression of c-Jun, 

whereas the expression of Stat1 and Stat3 was exclusively altered in the presence of 

IFNγ and did not change in hypoxic conditions. 

 

Figure 27: In vitro validation of network model. mRNA expression profile of selected HIF1α 

and IFNγ target genes (A) and genes of the cycle attractor (B). Data represent the mean ± 

SEM of 3 independent experiments; **p<0.01, ***p<0.001 (One way-ANOVA followed by Tukey’s 

test)  

 

Collectively, our data suggests the presence of a negative feedback-loop in 

post-MI Mφ that limits the initial inflammatory response through hypoxia-mediated up-

regulation of Il10. 
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PROJECT 3: DECIPHERING THE TRANSCRIPTIONAL 

NETWORK OF THE DISTINCT HEART CELL TYPES POST-MI 

IN PIG 

Following the characterization of cardiac Mφ in the healthy heart and post-MI, 

we aimed to understand their interplay with other cardiac cells. A large animal model 

(pig) was used to decipher the transcriptional network of distinct cardiac cells and their 

function in the healthy heart and after ischemia and reperfusion. For this analysis RNA-

seq of CMs, FBs, ECs, and Mφ was used, integrating different levels of regulation 

(miRNA, mRNA). 

3.1. Phenotypical characterization of distinct cardiac cells in the healthy heart 

and after MI 

 

Figure 28: Characterization and isolation of distinct cardiac cells. Cardiac cell 

suspensions from healthy hearts or post-ischemic reperfusion were analyzed by FACS. 

Representative contour plots depict the kinetics of the different subsets of porcine cardiac cells. 

To investigate the functional contribution of distinct cardiac cells to the process 

of cardiac repair, CMs, MFs, FBs, and ECs were isolated from porcine hearts at 
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different post-MI stages. Firstly, CM were isolated from digested porcine hearts by 

repeated steps of digestion and centrifugation. Secondly, MFs, FBs, and ECs were 

isolated by FACS. To assess the functions and characteristics of porcine cardiac Mφ 

CD45high/CD68high cells were selected. Within the CD45- cell population 

CD31high/CD46high cells were selected to investigate ECs and CD31low/CD46high cells 

were selected to characterize porcine cardiac FBs.  

3.2. Transcriptional characterization of porcine cardiac cells in the healthy heart 

and after MI 

The mammalian heart consists of different cell types that all contribute to the 

maintenance of homeostasis in the healthy heart and to the process of cardiac repair 

after MI. However, the exact functions and activated transcriptional programs of the 

individual cell types are not well known. Here we examined the gene expression of 

purified CMs, ECs, FBs, and Mφ by RNA-seq.  

 

Figure 29: Transcriptional analysis of gene expression. A) PCA of the gene expression 

matrix. Each sample is represented by a point, and colors are assigned according to the cell 

type of the sample. Numbers in parentheses indicate relative scaling of the principal variables. 

B) HC of top 5% expressed genes.  
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In order to gain a global view of the different transcriptional programs we applied 

PCA to the whole mRNA expression profiles. The PCA (Figure 29A) shows that the 

different cell types are well separated and suggests that the cell type and not the time 

drives transcriptional regulation of cardiac cells. Next we aimed to obtain a better 

understanding of the functional potential of the distinct cell types at the various 

temporal stages, for which we selected genes with expression intensities (TPM) ranked 

above the 95th percentile per cell type and time point. The method was chosen due to 

the lack of biological replicates, which hinders population inference for DE analysis and 

makes any p value calculation invalid.   

The HC of the top 5% expressed genes (Figure 29B) revealed that resting CMs 

and CMs isolated 7 days post-MI were set apart from the other samples due to a 

divergent expression profile. Samples of isolated FBs exhibited very similar expression 

profiles 3 and 7 days post-MI, indicating the onset of common transcriptional programs. 

Furthermore, it was interesting to note that the most abundant transcripts in ECs and 

Mφ post-MI showed similar expression profiles, which might indicate similar functions. 

Functional analysis of the selected top 5% expressed genes (Figure 30) 

revealed that the different cell types shared common functions such as regulation of 

apoptotic process, cell migration, and metabolic process but also highlighted the 

functional specificity of the distinct cardiac cells. Highly abundant genes in Mφ were 

enriched for processes such as endocytosis, immune response, and antigen 

presentation, consistent with their phagocytic nature and known function in innate 

immune response. The result suggests further that during the reparative phase of 

cardiac repair (7 days post-MI) Mφ contribute to angiogenesis and ECM organization, 

most likely in combination with other cardiac cells such as ECs and FBs. In accordance 

with the literature, ECs were identified as key mediators of angiogenesis (Coultas et 

al., 2005; Plate et al., 1992). It is interesting to note that the VEGF signaling pathway 

was not enriched, implying potential VEGF-independent regulation of angiogenesis 

(Ferrara, 2010; Shibuya, 2008). It has been proposed that CRMs contribute to 

angiogenesis by non-canonical VEGF-independent pathways (Pinto et al., 2012) and 

the functional analysis might suggest an interplay of Mφ and ECs to promote VEGF-

independent angiogenesis 7 days post-MI. Functional analysis (Figure 30) further 

suggests that ECs contribute to ECM organization, a process strongly enriched in FBs. 
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The enriched processes of FBs were very specifically centered around ECM 

organization (e.g. ECM organization, collagen fibril organization), in accordance with 

the described role of FBs in reparative fibrosis (Weber and Brilla, 1992). The functional 

profile of resting CMs was characterized by adenosine triphosphate (ATP) metabolic 

process, muscle contraction, and oxidative phosphorylation, consistent with contractile 

function of CMs in the healthy heart (Woodcock and Matkovich, 2005). In accordance 

with the described necrotic death of CMs after ischemic heart injury (Uemura et al., 

2006) these functions decreased post-MI. 

Altogether our data suggests, that cardiac cells exhibit cell type- specific 

transcriptional programs which result in divergent sets of functions. Moreover, the 

analysis implies that the transcriptional programs are stable enough to ensure cell type 

identity even in the case of disturbed homeostasis.  

 

 

Figure 30: Functional analysis of top expressed genes per time point and cell type. 

Manually selected list of non-redundant enriched biological processes. Terms with an adjusted 

p-value < 0.05 were significant. Color corresponds to fold enrichment. 

3.3. Cross- talk of cardiac cells orchestrates process such as tissue 

homeostasis and cardiac repair 

The gathered transcriptomic data of the different cell types provides a 

comprehensive resource for in silico creation of cell-cell interaction networks. Cell-cell 

interactions are mediated by signaling molecules and cell surface proteins which can 
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be expressed by the signaling cell or by neighboring cells. In order to decipher the 

signaling network we used the Human Protein Atlas to classify the cellular location and 

extracellular signaling potential of top expressed genes. The extracellular location of 

selected MPs and SMs was further verified in the literature and functional analysis of 

the identified molecules was performed with PANTHER.  

Relative frequency of SMs and MPs (Figure 31A) per cell type and time point 

showed that SMs were more abundant than MPs amongst the genes with the highest 

intensities. Only slight changes of the relative frequency of expressed MPs could be 

detected over time and between the different cell types. In contrast to this finding, SM 

expression exhibited a temporal pattern in all the cell types. It is interesting to note that 

the expression of SMs (Figure 30B) was less cell type- specific compared to the MP 

expression (Figure 30C). The high overlap of SMs between the different cell types was 

also reflected in the similarity of identified overrepresented biological functions 

associated to the cell type and time point- specific secretomes (Figure 31D).  

Mφ were characterized over time by a decrease in SM abundance 3 days 

post-MI compared to the other time points. Molecules secreted by CRMs were 

predominantly associated to leukocyte chemotaxis and ECM organization, regulating 

cell behavior in homeostasis (Wynn et al., 2013). Functional analysis associated the 

MΦ secretome 3 days post-MI with the regulation of cell migration and immune 

system process, in accordance with the role of Mφ in inflammatory response 

(Mantovani et al., 2013). The secretome of Mφ 7 days post-MI was associated with 

ECM organization, angiogenesis, and regulation of cell proliferation, among others. 7 

day post-MI Mφ promote ECM remodeling by inhibiting destructive proteases through 

the production of endogenous tissue inhibitors of metalloproteinases (e.g. TIMP1-3) 

(Newby, 2008). 

Furthermore, we found an increased production of collagen (e.g. COL1A2, 

COL3A1, COL4A1) together with an enrichment in collagen fibril organization, 

indicating a pro-fibrotic effect of Mφ through collagen deposition 7 days post-MI. 

However, it is well known that FBs are the primary collagen-producing cells in the heart 

(Frangogiannis et al., 2002) and Mφ are more likely to regulate fibrosis through TGF-

β1- induced activation of resident and recruited myofibroblasts (Wynn and Barron, 
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2010). 

 

Figure 31: Secretome and receptome profile of distinct cardiac cells. (A) Relative number 

of genes encoding for secreted molecules and membrane proteins per cell type and time point. 

(B) Time-point specific Venn diagrams of secreted molecules. (C) Time-point specific Venn 

diagrams of membrane proteins. (D) Manually selected list of non-redundant enriched 

biological processes of genes encoding for secreted molecules. Terms with an adjusted p-

value < 0.05 were significant. Color corresponds to fold enrichment.  
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 FBs produced the highest levels of SMs at all temporal stages (Figure 31A), 

which were associated with a variety of processes (Figure 31D). It is interesting to note 

that FBs shared many SMs with ECs and CMs (Figure 31B) that were mainly linked to 

ECM organization (e.g. DCN, LAMC1, LAMB2). The result indicates that all cell types 

contribute to changes in ECM composition and organization. In accordance with the 

described crucial role of FBs during the reparative phase of cardiac repair (Chen and 

Frangogiannis, 2013), the secretome of post-MI FBs was characterized by increased 

collagen production (e.g. COL1A2, COL5A2, COL6A2). We further found an 

enrichment of angiogenesis for the secretome of post-MI Mφ, ECs, and FBs. FBs might 

promote angiogenesis through the recruitment of endothelial progenitor cells (Orimo et 

al., 2005) which are reportedly increased in peripheral blood after MI (Shintani et al., 

2001). Whereas it is well known that Mφ impact angiogenesis on many levels (Rahat 

et al., 2014) and such MΦ – EC interactions seems to be reciprocal (Baer et al., 2013).  

In order to gain a better understanding of possible cell-cell interactions we 

created a list of all identified SMs and MPs, independent of cell type and temporal 

pattern of expression, and retrieved experimentally validated interactions between 

these molecules from Ingenuity. The resulting list of 143 interactions, including 68 SMs 

and 42 MPs, was imported into cytoscape and the nodes, representing SMs and MPs, 

arranged according to their cell type (or combination of cell types) expression (Figure 

32, legend).  

In accordance with the calculated overlap of SMs between cell types (Figure 

31B) the SM- MP interaction network showed that only a small set of SMs are uniquely 

expressed by one cell lineage and that FBs expressed the highest number of cell type 

specific SMs (Figure 32, outer circle), whereas ECs expressed the highest number of 

cell type specific MPs (Figure 32, outer circle). SMs (PGF, SEMA3F) and MPs (NRP1, 

NRP2, KDR, FLT1) uniquely expressed by ECs were associated with angiogenesis 

related processes (Carmeliet et al., 2001), which is in accordance with the known role 

of ECs as key mediators of angiogenesis (Coultas et al., 2005). FBs were 

characterized by the secretion of ECM components and fibrotic factors (TGFB2, NOV, 

COL5A3), in line with the dominant role of FBs in fibrosis (Prabhu and Frangogiannis, 

2016).  
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Interestingly we found that many molecules were co-expressed between 

specific combinations of two cell lineages: Mφ - EC and FB – CM (Figure 32, second 

outer circle). The collective expression of different SMs and MPs between Mφ and 

ECs, together with the high similarity of the expression profiles (Figure 29B) suggests, 

that ECs and Mφ might share common functionality in the process of cardiac repair. 

FBs and CMs collectively expressed different SMs, whereas some of these SMs (e.g. 

CHID1, FBLN5, COL14A1) were linked to MPs exclusively expressed by Mφ and ECs 

(e.g. ITGA5, APP), indicating potential crosstalk between the cell type pairs. MMP9, 

which plays a prominent role in ECM remodeling post-MI (Ducharme et al., 2000) was 

expressed by Mφ and CMs and could potentially be bound by all cell types, supporting 

the finding that all cell types were involved in ECM organization (Figure 31D). In 

addition, we found that ADAM9, a molecule that has been shown to be highly 

expressed during tissue remodeling (Rinchai et al., 2015), was solely expressed by 

FBs and Mφ  and could be bound specifically by FBs through ITGAV or by all cell types 

through ITGB1.  

SDC2 was the only molecule expressed by all cell types except ECs and was 

linked to receptors exclusively expressed by Mφ and ECs (COMT, CD40). The result 

is in line with the previous finding that SDC2 plays a fundamental role in angiogenesis 

by influencing EC adhesion and migration (Noguer et al., 2009). In addition, we found 

various MPs (e.g. NRP1, CD9, CD36) that were expressed by all cell types but FBs, 

which are involved in angiogenesis, inflammation, and lipid metabolism (Fantin et al., 

2013; Febbraio et al., 2001). SMs co-expressed by all cell types except Mφ could be 

linked to ECM organization and blood vessel development (Thyboll et al., 2002). In 

contrast to these findings we couldn’t detect a single molecule co-expressed by all cell 

types except CMs.  

All cells expressed various isoforms of the tissue inhibitors of 

metalloproteinases (TIMP1-3), matrixmetalloproteinases (MMP2, MMP14) and 

thrombospondin (THBS1, THBS2, THBS4) which is in line with the finding that all cell 

types seem to contribute to ECM organization (Figure 30). Furthermore, all cell types 

expressed various ECM components (e.g. DCN, BGN, B2M) amongst which FN1 was 

linked to the EC- specific MP STOM in the created interaction network (Figure 32), 

suggesting an activation of STOM by either a homeotypic or heterotypic paracrine 
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circuit. The result matches the reported involvement of STOM in membrane 

organization (Salzer et al., 2007).  

Collectively, the gathered data indicates a highly connected network of 

homeotypic and heterotypic paracrine circuits that does not only ensure the 

maintenance of homeostasis in resting conditions but also governs processes such as 

immune response, angiogenesis and ECM organization post-MI.  

 

Figure 32: Global SM-MP interaction network. Nodes represent SMs (circles, blue) and MPs 

(arrow, orange). Nodes are arranged according to the cell type by which they are expressed 

(legend bottom right). 

3.4. Expression profiling identifies cell type specific miRnome and miRNA-mRNA 

regulatory relationships 

miRNAs are able to interfere with a broad variety of BPs and the affected 

pathways and functions depend on the site accessibility of the miRNA target genes in 

a specific cell type and given biological context (Sood et al., 2006). It has been shown 

that miRNAs play a critical role in cardiac repair and circulating miRNAs have been 
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proposed as diagnostic markers. However, the miRNome of porcine cardiac cells has 

not been analyzed in depth and knowledge about the miRNA contribution to cell type 

identity and function is limited. In order to elucidate the cardiac miRNome in pig we 

analyzed the miRNA expression profile of resting CMs, Mφ, FBs, and ECs and after 

MI.  

 

Figure 33: Cell type- specific miRNA expression profile. Highlighted are representative 

miRNAs based on their implication in relevant biological functions.   

The miRNA expression profiles were analyzed with two different objectives in 

mind: the first analysis aimed at the identification of cell type- specific miRNAs, 

whereas the second approach tried to improve the understanding of the functional 

impact of expressed miRNAs through cell type and time point specific miRNA-mRNA 

interaction networks. The comparison of miRNA expression among cell types led to 

187 significantly altered (adj-pval < 0.05) miRNAs that could be grouped into four 

clusters based on their expression profiles (Figure 33). Three of the four clusters 

exhibited a cell type- specific expression profile for CM, FB and EC, respectively, 

whereas the remaining cluster was characterized by elevated expression in MΦ and 
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EC. Amongst the CM-specific miRNAs (Figure 33, cluster I) we could identify 

modulators of apoptosis (e.g. miR-34a, miR-193a, miR-1), cytoskeletal dynamics (miR-

143, miR-145), cell cycle (e.g. miR-192, miR-215), and cell proliferation (e.g. miR-490, 

miR-133a). The miRNA profile showed an altered expression in the healthy heart and 

7 days post-MI, indicating a relieved miRNA repression 3 days post-MI. Furthermore, 

the cluster contained the miRNAs miR-1, miR-208b, miR-133a and miR-499 that have 

been proposed as diagnostic markers in patients with acute myocardial infarction 

(Widera et al., 2011).  

miRNAs with elevated expression in Mφ (Figure 33, cluster II) included four 

miRNAs of the miR-17/92 cluster, which is highly conserved among vertebrates and 

implicated in a vast variety of functions such as cell cycle and proliferation (Concepcion 

et al., 2012; Mogilyansky and Rigoutsos, 2013). Other miRNAs of the cluster were 

associated to inflammatory response (e.g. miR-9, miR-34c, miR-186), Mφ polarization 

(e.g. miR-191, miR-363), and cell proliferation (e.g. miR-221, miR-222). Within the 

cluster we could further identify porcine- specific miRNAs (miR-7139-7142), of which 

knowledge is limited and further experiments are needed to determine their target 

genes and functions in Mφ. The third cluster included miRNAs expressed in two cell 

types, Mφ and EC. Within this cluster three miRNAs (miR-196a, miR-205, miR-429) 

were specifically expressed in ECs and are implicated in cell proliferation and 

mesenchymal-to-epithelial transition (Chen et al., 2011b; Gregory et al., 2008; Kim et 

al., 2009). The cluster further included miR-126 that mediates angiogenesis (Fish et 

al., 2008) and was reported to be EC-specific in mouse (Wang et al., 2008). Our data 

from pig indicated a strong expression in ECs and an additional expression in Mφ in 

the healthy heart. Other miRNAs from the cluster were primarily associated with cell 

proliferation (e.g. miR-10b, miR-139, miR-182) and apoptosis (e.g. miR-15a, miR-16, 

miR-30). miRNAs specifically expressed in fibroblasts (Figure 33, cluster IV) included 

modulators of TGF-β signaling (e.g. miR-146b, members of let-7 miRNA family, miR-

487b), cell differentiation (e.g. miR-199a, miR-214, miR-335), apoptosis (e.g. miR-708, 

miR-149), and angiogenesis (e.g. miR-130a, miR-320, miR-424). 

Next, we identified the highest expressed miRNAs at each time point for any 

given cell type (Figure 34A). Interestingly, 10 miRNAs were amongst the top expressed 

miRNAs in all cell types but their expression profile differed according to the cell type. 
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Despite the presence of these miRNAs in all cell types the affected functions might 

differ, depending on the site accessibility and expression of their target genes in the 

different cell types. Hence, the top expressed miRNAs were subsequently used to 

create cell type specific miRNA-mRNA interaction networks (Figure 34B-E, Material & 

Methods). Based on network topology and expression different subnetworks emerged 

per cell type. In the case of Mφ two subnetworks could be identified (Figure 34B), as 

already indicated by the expression profile of the top expressed miRNAs (Figure 34A). 

Accordingly, the first subnetwork included miRNAs with elevated expression in the 

healthy heart and 7 days post-MI. The network was primarily enriched for response 

related processes such as immune response and response to stress, indicating a role 

for miRNAs in the inhibition of aberrant inflammatory reactions. mRNAs regulated by 

miRNAs with elevated expression in Mφ 3 days post-MI were significantly enriched for 

developmental and homeostatic processes. The up-regulation of miRNAs that down-

regulate homeostatic processes together with the relief of miRNA-mediated repression 

of immune response genes at day 3 suggest a role for miRNAs in Mφ activation in 

response to stress.  

It was interesting to note that the miRNA-mRNA interactions identified for FBs 

built a single connected network (Figure 34C). The network could not be divided into 

further subnetworks on topology alone but the mapped expression values revealed a 

temporal pattern of activation for different parts of the network. As indicated by the 

expression profile of the top expressed miRNAs (Figure 34A), the majority of miRNAs 

were expressed in resting FBs. The target genes of these miRNAs were enriched for 

developmental processes and the regulation of cell death. Only one miRNA, ssc-let-

7g, was up-regulated at day 3 and the target genes include, ANGPTL2, LRP6, 

COL11A1, and MMP2, suggesting an interference with fibrogenic signaling pathways 

and an inhibitory effect on inflammation (Ren et al., 2013; Santulli, 2014).  

The assumption is supported by a recent study in mice heart, which described 

a similar functional impact of let-7i, a miRNA that shares the seed region with let-7g 

(Wang et al., 2015). At 7 days post-MI the miRNA –mediated repression of tissue 

development related genes was relieved, which matches the detected enrichment of 

heart development in FBs at this temporal stage (Figure 30).  
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Figure 34: Top expressed miRNAs per cell type. (A) Heatmap of top 5% expressed miRNAs 

per cell type. (B - E) miRNA – mRNA interaction network of the different cell types. Node fill is 

mapped to z-score of mRNA and miRNA expression. (B) miRNA – mRNA interaction networks 

for Mφ. (C) miRNA – mRNA interaction network for FB. Node fill is mapped to z-score of 

mRNA/miRNA expression. (D) miRNA – mRNA interaction network for EC. Node fill is mapped 
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to z-score of mRNA/miRNA expression. (E) miRNA – mRNA interaction network for CM. Node 

fill is mapped to z-score of mRNA/miRNA expression. 

Based on network topology and expression the miRNA-mRNA interaction network of 

ECs could be divided into two subnetworks (Figure 34C). The larger network (218 

nodes) was mainly characterized by miRNA activity in resting conditions, which was 

associated with the repression of cell migration, tissue development and apoptosis 

related genes. Nevertheless, the expression profile of this subnetwork was rather 

heterogeneous and 7 days post-MI a small subset of six miRNAs (ssc-miR-126, ssc-

miR-99a, ssc-miR-27b, ssc-miR-24, ssc-miR-100, ssc-miR-126) was strongly down-

regulated.  

Although functional analysis did not result in any enriched processes, the 

associated genes were linked to ATP-binding (e.g. DDX3Y, ITM2C, CSNK1E), 

mitochondria (e.g. ODC1, RANBP2), and included the nuclear receptor NR4A3 

(NOR1), which regulates the survival response of ECs to hypoxia (Martorell et al., 

2009) and is involved in EC growth (Rius et al., 2006). The smaller network, composed 

of two miRNAs and 133 mRNAs, was characterized by an elevated miRNA expression 

3 and 7 days post-MI and associated with the regulation of the mitogen-activated 

protein kinase (MAPK) cascade, which might be linked to cell proliferation processes 

(Zhang and Liu, 2002).  

With 622 nodes the miRNA – mRNA interaction network of CMs was the largest 

network amongst the investigated cell types. Based on topology and expression the 

network could be roughly divided into two subnetworks, with some straying nodes. 

Functional analysis of the genes potentially down-regulated by miRNA activity at day 

0 did not reveal much but the miRNAs involved in this subnetwork included, amongst 

others, the cardiac/skeletal muscle specific miRNAs miR-1 and miR-133b, which are 

known to regulate CM proliferation (Tang et al., 2009; Townley-Tilson et al., 2010). Both 

miRNAs are dysregulated after MI in humans (Boštjančič et al., 2009), which is 

supported by our data that shows a down-regulation of these miRNAs post-MI. The 

CM-enriched miRNA miR-378 was also up-regulated in the healthy heart and has been 

associated with postnatal remodeling and cell survival (Knezevic et al., 2012). miRNAs 

up-regulated 3 days post-MI (e.g. miR-148a, miR-21, let-7g) potentially regulated 

genes associated with myofibril assembly and heart and blood vessel development. 
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This finding is in line with the described cardiac protective function of miR-21 and miR-

148a (Bao and Lin, 2014; Cheng et al., 2010). Furthermore, we found an up-regulation 

of miR-27a that regulates myosin heavy chain gene expression in neonatal rat (Nishi 

et al., 2011) and might affect myofibril assembly. It was interesting to note that the 

expression levels of involved miRNAs and mRNAs were remarkably lower 7 days post-

MI compared to the other temporal stages. The expression profile further indicated a 

restoration of miRNA activity to resting conditions with functional impact on CM 

proliferation related processes.  

Taken together the data showed that the different cell types, except from ECs, 

expressed distinct sets of miRNAs, and cell type specific miRNA – mRNA interaction 

networks associated miRNA activity to a broad spectrum of BP that differed in a cell 

type and time point dependent manner. The data further supported the general notion 

that the different cell types contribute distinctively to complex processes such as 

homeostasis and cardiac repair. 
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The biological world is driven by data and due to the continuous improvement 

in technology the rate of generation of genomics, transcriptomics, proteomics, and 

metabolomics data is exploding. The challenge now is no longer obtaining the data but 

putting the data to effective use and to infer knowledge from large volumes of collected 

“omics”- data. Analyzing these massive amounts of data is a computationally intensive 

task and also requires different statistical techniques compared to smaller sets of data, 

adding additional layers of complexity. Although the need for new methods to deal with 

big data is far from being fulfilled, effective solutions have been created that reduce 

the impact of systematic non-biological differences and permit the identification of 

biologically meaningful expression patterns.  

 

Due to the high-dimensional nature of “omics”- data, exploratory data analysis 

techniques are used to get a first glance at the most characteristic features of the 

generated data and to guide downstream analysis. Statistical analyses are then 

applied to identify subsets of elements, which have the potential to provide valuable 

insight into underlying structures of the investigated BPs or disease. In order to 

establish functional connections between the identified elements enrichment analysis 

can be applied to determine potentially activated pathways and BPs. Depending on 

the annotation of the investigated organism, the resulting list of enriched processes 

can be rather long, which makes it more difficult to uncover underlying pattern of 

functional activity. The visualization of this data is an integral and challenging part of 

the data analysis process, because making data more accessible has the potential to 

change the quality of the information itself.  

 

Although many visualization methods, tools and packages exist that focus on 

the visualization of enrichment data (Supek et al., 2011; Yin et al., 2012; Zhang et al., 

2013a), none of them enables the user to combine expression data with the results of 

functional analysis in a way that preserves the information value of both analyses. We 

addressed this need by developing the R package GOplot (Walter et al., 2015) that 

provides the user with easy to use plotting functions that create original and informative 

charts to explore the obtained enrichment data. The importance and need for such a 

visualization tool is supported by the approximately 17 000 downloads within 20 

months of its release. The package allows the user to create publication-quality 
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graphics with only a few lines of code and the high quality and originality of the created 

plots is demonstrated by their appearance in prestigious scientific journals such as 

Nature Cell Biology, Circulation Research and BMC Genomics (D'Amato et al., 2016; 

Gifford and Srivastava, 2016; MacGrogan et al., 2016; Paolinelli-Alfonso et al., 2016; 

Strikoudis et al., 2016). The package is implemented within the R environment, a 

powerful and flexible language that is widely used to analyze “omics” data, making it 

easy accessible for many data analysts. Although other packages have been 

developed for similar purposes (Kolde and Vilo, 2015; Waardenberg et al., 2015; Yin 

et al., 2012; Young et al., 2005; Zhang et al., 2013a), GOplot is set apart by its 

capability to generate plots at different levels of detail: from a general overview to 

identify the most enriched categories to a more detailed view displaying different types 

of information for molecules in a given set of categories. Hence, the plots cover all 

phases of the data analysis processes and are very powerful in the practice of data-

driven decision making. 

 

The need to combine and integrate data from multiple sources goes far beyond 

functional analysis and has led to the emergence of systems biology for a more precise 

modeling and improved understanding of complex processes and diseases. It is now 

widely recognized and accepted that multiple levels of regulation have to be 

considered simultaneously to gain a comprehensive understanding of intricate BPs 

(Ghasemi et al., 2014; Sperling, 2011). We used a systems biology approach to 

elucidate the transcriptional landscape in murine Mφ in the health heart and after MI 

and to decipher the regulatory network of distinct cardiac cells post-MI in pig. 

 

We found that the different cardiac cell types in pig could be distinguished based 

on their gene expression profiles and that the transcriptional programs were stable 

enough to ensure cell type identity even in the case of disturbed homeostasis. The 

result suggested that the different cell types carry out distinct functions during 

homeostasis and the process of cardiac repair post-MI, which was supported by the 

result of the performed functional analysis. We found that Mφ were associated with 

processes such as endocytosis, immune response, and antigen presentation, 

consistent with their phagocytic nature and known function in innate immune response 

(Gordon, 2007). Our analysis further confirmed the key role of ECs in angiogenesis 
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(Coultas et al., 2005; Plate et al., 1992) and suggested VEGF-independent regulation 

of angiogenesis during the reparative phase of cardiac repair potentially mediated by 

all of the investigated cell types. Although ECs are the predominant mediators of 

angiogenesis our finding implies a regulatory interaction network of multiple cell types, 

which is supported by the failure of EC-based proangiogenic therapies that indicate 

that a single cell type does not sufficiently support angiogenesis to promote cardiac 

repair (Cochain et al., 2013). In agreement with the described role of FBs in reparative 

fibrosis (Weber and Brilla, 1992) we found an enrichment in ECM organization and 

collagen fibril organization for genes highly abundant in cardiac FBs. FBs also 

contribute to the maintenance of ECM homeostasis and play a critical role in 

myocardial architecture in the healthy heart (Camelliti et al., 2005; Goldsmith et al., 

2014). CMs form interlacing bundles that are the building blocks of cardiac muscle 

(Bursac et al., 2002) and in line with their contractile function (Zimmermann et al., 

2002) resting CMs were characterized by ATP metabolic process, muscle contraction, 

and oxidative phosphorylation. The processes decreased after MI, consistent with the 

described necrotic death of CMs after ischemic heart injury (Uemura et al., 2006). 

 

The results imply that the distinct cardiac cell types possess divers regulatory 

elements that influence functional activity through specific modulations in gene 

expression. Moreover, the activated transcriptional programs are stable enough to 

ensure cell type identity post-MI, suggesting a stronger impact of cell type specific 

imprinting compared to changes in the microenvironment. Nevertheless, when we 

compared different murine tissue Mφ we found that the tissue of origin and the 

ontogeny of the Mφ population were additional driving factors that shaped the 

transcriptional landscape, resulting in tissue heterogeneity of Mφ populations, as 

previously described (Davies et al., 2013; Ginhoux and Guilliams, 2016; Gordon et al., 

2014). Although it has been shown that these transcriptional programs are less stable 

and can be reprogrammed if Mφ are transplanted from one tissue into another (Lavine 

et al., 2014).   

 

Recent studies explored the heterogeneity of murine Mφ populations on a 

transcriptional and epigentic level and identified tissue-dependent programs (Gosselin 

et al., 2014; Lavine et al., 2014). Our inter-experimental comparison of different murine 



DISCUSSION 

 

 

115 
 

tissue resident Mφ extended these findings with the identification of a yet unknown 

cardiac specific gene signature. Among these genes we found three novel surface 

markers (Lifr, Egfr, Osmr) that were tested by qPCR and had not been identified in 

CRMs before. The membrane expression of LIFR ensures biological activity of 

leukemia inhibitory factor (LIF) signaling (Ware et al., 1995) and the engagement of 

LIFR with its ligand is implicated in the onset of inflammation (Sugiura et al., 2000), 

indicating a potential role for LIFR as immune surveillance receptor. Moreover, it has 

been shown that the expression of EGFR on Mφ mediates Mφ proliferation (Lamb et 

al., 2004), suggesting a potential role for EGFR in cell survival of CRMs. Genetic 

inactivation of OSMR has been reported to be organ-specific (Poling et al., 2014), 

supporting its appeal as a candidate for tissue-specific therapeutic interventions.  The 

identified surface marker might be used for CRM ablation strategies to further 

determine the functions of cardiac macrophages in in the healthy heart or for targeted 

cell-type and tissue-specific treatments.  

 

Previously a set of 35 heart-specific genes had been identified comparing the 

transcriptional profile of CRMs to spleen and brain (Pinto et al., 2012). Our integrated 

analysis of murine tissue resident Mφ showed that several genes of this signature were 

indeed specifically expressed in the heart, but around 20% were expressed in heart 

and intestine. Indeed, we found a high similarity between the transcriptional profile of 

murine CRMs and Mφ from the intestine. Both Mφ populations have been described 

to possess anti-inflammatory properties resembling an M2-like phenotype (Bain and 

Mowat, 2014; Pinto et al., 2012). Intestinal Mφ reside in a microbiota-exposed 

environment and are characterized by antigen-presenting processes (Bain and Mowat, 

2014; Lavine et al., 2014), whereas CRMs are less exposed to microorganisms and 

our analysis showed that specific CRM genes were enriched in myofibril assembly and 

heart development. Thus, environmental cues and resulting functions differ in a tissue-

dependent manner and are unlikely the underlying cause for the high similarity 

between Mφ from heart and gut. However, circulating monocytes contribute to both 

resident pools of Mφ (Ginhoux and Guilliams, 2016), but whereas the intestinal Mφ 

pool requires continual renewal from circulating blood monocytes (Bain and Mowat, 

2014), CRMs have been found to self-maintain locally with age dependent increase in 

monocyte contribution (Hashimoto et al., 2013; Molawi et al., 2014). The high similarity 
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between intestine and heart might suggest a high percentage of mature but monocyte-

derived CRMs in the healthy heart. 

 

Mφ do not only exhibit high tissue heterogeneity, but are also very plastic cells 

that continuously shift their functional phenotype to adapt to changes in their 

surroundings. Mφ activation has been mostly studied in vitro, leading to an 

oversimplified bipolar M1/M2 classification system (Martinez and Gordon, 2014) which 

only possess limited capacity to explain the plethora of observed in vivo phenotypes 

(Novak et al., 2014; Varga et al., 2016). We found that although murine post-MI Mφ 

could be matched on the described M1/M2 polarization system, a more detailed 

analysis revealed that Mφ populations involved in cardiac repair are mixtures of 

described in vitro phenotypes that are characterized by the expression of M1/M2 

markers, consistent with observed in vivo phenotypes in the context of skeletal muscle 

injury (Novak et al., 2014; Varga et al., 2016).  

 

Although the plasticity of Mφ has been widely studied, detailed knowledge about 

the transcriptional regulation of Mφ in the context of complex disease environments is 

limited. We identified a global network of 40 TFs that were associated with the temporal 

regulation of gene expression in murine cardiac Mφ. Among these regulators we 

identified several TFs that potentially coordinate the transcriptional profile of CRMs, 

including angiogenesis-related genes, which support the proposed pro-angiogenic 

function of CRMs (Pinto et al., 2012) and regulators of developmental processes, 

which might further imply CM – Mφ interactions to maintain cardiac homeostasis (Fujiu 

et al., 2014). In addition, our analysis revealed IFNγ signaling via Stat1 as one of the 

main drivers that cause the observed changes in gene expression 3 days post-MI. 

These Mφ were characterized by a pro-inflammatory phenotype and the inflammation- 

induced gene transcription was regulated by multiple TFs, including also regulators of 

metabolic processes, negative regulators of cell proliferation and regulators of 

programmed cell death. With the onset of the reparative phase the identified TFs were 

associated with cell cycle and cell proliferation related processes, supporting recent 

studies that proposed an increase in proliferative capacity of Mφ at later temporal 

stages post-injury (Heidt et al., 2014; Lavine et al., 2014; Varga et al., 2016). The 

multitude of activated TFs and the spectrum of associated processes implied that Mφ 
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present at the site of inflammation encounter a myriad of signals and that many 

different factors and interactions shape the transcriptional response. Thus, it seems 

likely that the classical view, which derived from in vitro experiments, of one signal 

being linked to only one or a few TFs is overly simplistic and does not hold in vivo 

(Schultze, 2015). 

 

In silico deconvolution of the transcriptional profiles of murine post-MI Mφ did 

not only reveal a mixed phenotype but also implied a dynamically shift in the functional 

phenotype to orchestrate cardiac repair, as previously proposed (Novak and Koh, 

2013). The transition from one phenotype to another is key to restrict the inflammatory 

phase which directly impacts the infarct size and ventricle remodeling (Nahrendorf et 

al., 2007). The partial deconvolution approach revealed the activation of anti-

inflammatory programs 3 days post-MI and we detected elevated Il10 expression at 

the same temporal stage, as it has been described previously in the context of skeletal 

muscle injury (Novak et al., 2014). Il10 is the dominant mediator of the anti-

inflammatory program in Mφ and network analysis of the regulatory core of post-MI Mφ 

in mouse disclosed a negative feedback-loop that limits initial inflammation by hypoxia-

mediated up-regulation of Il10. The result was confirmed by the up-regulation of Il10 in 

murine peritoneal Mφ cultured under hypoxic conditions, indicating hypoxia-mediated 

induction of Il10 (Cai et al., 2013; Dace et al., 2008; Murata et al., 2002) or stabilization 

of Il10 mRNA (Németh et al., 2005; Powell et al., 2000) which is most likely followed 

by IL10-mediated auto-regulation (Sarkar et al., 2008). However, we cannot exclude 

the possibility that released molecules of other cells trigger macrophage Il10 

transcription (Saraiva and O'Garra, 2010).  

 

In vitro experiments have shown that the anti-inflammatory effect of IL10 also 

includes the onset of apoptotic programs in M1-like Mφ (Wan et al., 2014). 3 day post-

MI Mφ in mouse, which exhibited a M1-like phenotype, were enriched for apoptotic and 

cell death related processes and 7 days post-MI Mφ were most similar to in vitro Mφ 

treated with dexamethasone, a synthetic glucocorticoid that induces apoptosis (Haim 

et al., 2014). The result suggests that apoptotic Mφ might contribute to the phenotype 

shift, which is supported by the finding that timed treatment of infarcted mice with 

apoptotic-mimicking particles promotes resolution of inflammation (Harel-Adar et al., 
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2011).  

 

The phenotype transition of Mφ is a key event in cardiac repair, which makes it 

an attractive target for therapeutic intervention. A detailed understanding of the 

phenotype transition is fundamental to develop timed strategies that shift the M1/M2 

balance to improve cardiac healing. We found that in addition to microenvironmental 

factors and an intricate network of activated TFs the deactivation of Mφ is also 

regulated on a post-transcriptional level. It has been recently shown that RNA-binding 

proteins such as TTP influence Mφ polarization through the degradation of 

inflammation-induced mRNAs (Kratochvill et al., 2011; Sedlyarov et al., 2016). Our 

mRNA stability analysis supports these findings and indicates that pro-inflammatory 

mRNAs are more prone for degradation due to longer 3'UTRs and an enrichment for 

AREs, the binding element of TTP. Whereas during the reparative phase mRNAs that 

were mainly associated with structural proteins were more stable, as previously 

reported (Sharova et al., 2009). 3’UTRs do not only contain binding sites for RNA-

binding proteins but can also contain sequences that allow miRNA targeting (Preusse 

et al., 2016). We found that miRNAs potentially controlled immune response related 

genes, but whereas TTP-driven mRNA decay occurs in response to induced 

inflammation, the data indicates that miRNA activity might also contribute to the 

suppression of inflammation in the healthy heart. We further found that during the 

inflammatory phase miRNAs potentially down-regulated cell proliferation, whereas with 

the resolution of inflammation Mφ regained proliferative capacity, as previously 

described (Heidt et al., 2014; Varga et al., 2016).  

 

Identified lincRNAs and their association with the closest protein coding genes 

upstream and downstream of each lincRNA revealed potential functions for lincRNAs 

in cardiac Mφ in innate immunity. LincRNAs are believed to play significant roles in 

GRNs (Ounzain 2015) and the identification of altered lincRNA expression in diseases 

(Cheetham et al., 2013; Garzon et al., 2014; Liu et al., 2014) and their association with 

important BPs such as cell cycle (Hung et al., 2011), adaptive and innate immunity 

(Fitzgerald and Caffrey, 2014) and metabolism (Kornfeld and Brüning, 2015) support 

this assumption. The ceRNA hypothesis, which assumes that the various RNA types 

are linked via MRE, provides another promising approach for the functional 
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characterization of lincRNAs (Salmena et al., 2011). Based on this hypothesis we 

identified potential mRNA-lincRNA-miRNA motifs, of which the most abundant type of 

mRNA - lincRNA - miRNA interactions was characterized by positively correlated 

expression of all RNAs. Among these interactions we found Neat1, which was 

positively correlated with miR-30b and various mRNAs associated with immune 

response related processes. The ceRNA hypothesis proposes that lincRNAs function, 

among others, as miRNA sponges, titrating miRNAs away from their mRNA targets 

and hence, interfering with miRNA mediated mRNA repression. Our data suggests that 

the described pro-inflammatory effect of Neat1 (Imamura et al., 2014) might be an 

example of such an indirect regulation, where Neat1 competes with pro-inflammatory 

protein coding genes for the binding of immune suppressive regulators like miR-30b. 

The competition between the different RNAs would lead to a depletion of the shared 

miRNA pool and an attenuation of the repressive effect of miR-30b. However, recent 

in silico modeling of RNA crosstalk (Noorbakhsh et al., 2013) and quantitative 

measurements of miRNA and target abundance (Denzler et al., 2014) indicate that 

miRNA activity is only minimally influenced by ceRNAs (Broderick and Zamore, 2014). 

Despite the mentioned limitations, the identified lincRNAs in cardiac Mφ open up new 

avenues for therapeutic intervention to positively influence the outcome of cardiac 

repair. 

 

The analysis of the porcine miRNome revealed that the miRNA expression 

profiles captured cell type- specific effects, reflecting the fact that miRNA target and 

pathway genes are not uniformly expressed across all cell lineages (Xie et al., 2014). 

The cell type- specific miRNA expression profiles might also be influenced by possible 

ceRNA effects (Xie et al., 2014). In accordance with the literature we found CM-specific 

miRNAs that have been proposed as diagnostic markers in patients with acute MI 

(Widera et al., 2011). Furthermore, we identified CM-specific miRNAs that were 

associated with modulators of apoptosis, cytoskeletal dynamics, cell cycle and cell 

proliferation. The approach included the global miRNA expression profiles, capturing 

temporal changes in CM function and activity. miRNAs of the miR-17/92 cluster were 

highly expressed in porcine Mφ, indicating increased post-transcriptional regulation of 

cell cycle and cell proliferation related processes. Moreover, we found Mφ – specific 

miRNAs with known functions in inflammatory response and Mφ polarization (Zhang 
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et al., 2013c), supporting the key role of miRNAs in Mφ phenotype transition that we 

had detected in murine Mφ. According to the reparative function of FBs (Porter and 

Turner, 2009) and their known differentiation into myofibroblasts (Hinz, 2007), miRNAs 

specifically expressed in FBs were primarily associated with TGF-β signaling and cell 

differentiation. In contrast to the findings for the other cell types, we did not find a EC - 

specific miRNA cluster but identified miRNAs involved in mesenchymal-to-epithelial 

transition (Chen et al., 2011b; Gregory et al., 2008; Kim et al., 2009) that were 

comparably higher expressed in EC than in any other of the investigated cell types. 

miRNAs associated with cell proliferation and apoptosis exhibited similar expression 

profiles in EC and Mφ, suggesting common post-transcriptional regulation of these 

processes in both cell types. Already on the mRNA level EC and Mφ were very similar 

and the common miRNA cluster supported this result. The reconstructed cell type and 

time point specific miRNA – mRNA interaction networks and their associate functional 

impact mirrored the results of the enrichment analysis of the most abundant mRNAs, 

influenced by the availability and expression of the target mRNAs (Preusse et al., 

2016).  

 

Due to the high plasticity of macrophages it remains challenging to identify 

population specific surface markers. However, the identification of specific surface 

markers is an essential requirement for the development of efficient target treatments. 

We found that a subpopulation of murine CRMs highly expressed the pro-angiogenic 

factor LYVE1 (Cho et al., 2007), which indicates the presence of a subpopulation of 

specialized Mφ that might support cardiac angiogenesis in the healthy heart. 3 days 

post-MI Mφ in mouse were characterized by CD40 expression, indicating receptivity of 

these cells for contact-dependent T-cell activation via CD40:CD154 interactions 

(Suttles and Stout, 2009) to further amplify the inflammatory response. 7 days post-MI 

we detected an elevated expression of Trem2, which might also contribute to the 

resolution of inflammation by suppressing the production of pro-inflammatory cytokines 

(Neumann and Takahashi, 2007) and might especially be used to distinguish between 

CRMs and anti-inflammatory Mφ in tissue repair. MRC1, a widely adopted marker for 

M2-like macrophages (Stein et al., 1992), was highly expressed in the healthy heart 

and 30 days post-MI and might also be used as a marker to detect the restoration level 

of post-MI Mφ.  



DISCUSSION 

 

 

121 
 

Cell-to-cell communication is essential to orchestrate complex processes such 

as cardiac repair that involve distinct functional contributions of different cell lineages. 

We found that the dynamical shift of the functional phenotype of murine cardiac Mφ 

was coupled with differences in SM and receptor expression, that led to a strong 

extracellular signaling potential of Mφ at 3 and 7 days post-MI as opposed to a more 

receptive role of Mφ in the healthy heart and 30 days post-MI. These Mφ expressed 

high numbers of genes encoding for receptor proteins but comparably low numbers of 

SMs. By connecting the identified macrocrine and receptome we found a low number 

of potential homeotypic paracrine signaling pairs, which suggests that the receptome 

of both populations primarily serves for immune surveillance, a widely proposed 

function of tissue resident Mφ (Davies et al., 2013). In contrast to this receptive state 

we found that 3 days post-MI Mφ in mouse expressed equal numbers of SM and MPs 

that had a high homeotypic paracrine signaling potential. The existence of such 

positive feedback loop might indicate an important control mechanism in Mφ activation 

to adequately respond to changes in the microenvironment (Junger, 2011). 7 days 

post-MI Mφ on the other hand were characterized by an extensive macrocrine that 

seemed to signal in a heterotypic paracrine fashion. The macrocrine 7 days post-MI 

was mainly composed of ECM components such as diverse types of collagen and Lox, 

an important enzyme that cross-links collagen fibers and gives collagen its strength 

and stability (Hornstra et al., 2003). Although we found an increase in collagen 

production on 7 days post-MI Mφ, it is well known that FBs are the dominant source of 

collagen production (Chen and Frangogiannis, 2013) and it is more likely that Mφ 

support the reparative function of FBs (Porter and Turner, 2009) through the secretion 

of ECM components that contribute to ECM reconstruction and tissue remodeling. The 

increased cell-to-cell communication potential of 7 days post-MI Mφ might further imply 

an intensive crosstalk with different cardiac cells in addition to FBs.   

 

The analysis of the secretome and receptome of the distinct cardiac cells in pig 

showed that SMs were more abundant than MPs among the genes with the highest 

intensity. Moreover, the different cell lineages expressed similar SMs but differed in 

their MP expression. The results might imply, that all cell types contribute to change 

the molecular composition of the microenvironment but only specific cell types are able 

to detect these changes and respond accordingly. The selective receptor expression 
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emanates from cell type specific transcriptional programs and might also regulate the 

gene expression through signal input dependent activation of transcriptional 

regulators, finally resulting in cell type specific functional activity. Our analysis suggests 

further that FBs produced the highest number of cell type specific SMs which were 

predominantly associated with processes related to the turnover of the ECM (Díaz-

Araya et al., 2015), in accordance with the described crucial role of FBs during the 

reparative phase of cardiac repair (Chen and Frangogiannis, 2013). A different pattern 

emerged when calculating the MP overlap between the cell lineages. Whereas ECs 

and FBs expressed the highest number of cell type specific MPs in the healthy heart, 

indicating an alert and receptive state of these cell types, Mφ continuously increased 

the cell type specific expression of MPs over time. Taken together with the comparably 

low number of cell type specific molecules secreted by Mφ, the result indicated that 

post-MI Mφ possessed enhanced receptivity for the over-all produced SMs.  

 

The in silico constructed global SM - MP interaction network revealed an 

intricate interplay between homeotypic and heterotypic paracrine circuits that together 

orchestrate all phases of cardiac repair. Here it was interesting to note that many 

molecules were commonly expressed in Mφ and ECs or in CMs and FBs, indicating 

special communication among these cell types and potentially common functions post-

MI. The importance of Mφ – EC interactions has been shown for vascular network 

formation in developing organs (Sunderkötter et al., 1994) and in disease (Ahmad et 

al., 2002), implying Mφ – EC interactions in angiogenesis related processes during 

cardiac repair. Interactions between FBs and CMs occur not only during CM 

hypertrophy and FB proliferation (Fredj et al., 2005) but also during development (Ieda 

et al., 2009). The actual outcome of FB - CM interactions is age-dependent and while 

paracrine factors derived by embryonic cardiac FBs increase CM proliferation, 

molecules secreted by adult cardiac FBs induce CM hypertrophy (Kakkar and Lee, 

2010). Moreover, it has been proposed that FBs impair CM regeneration following 

tissue injury through repression of CM proliferation (Palatinus et al., 2010). Hence, the 

computationally identified FB – CM interactions might be involved in fibrotic processes, 

which potentially result in CM hypertrophy.  

 

Taken together, the unique data gathered in this study provide a fundamental 
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resource for the investigation of the functional contribution of distinct cardiac cells to 

the process of cardiac repair, their cell type-specific transcriptional programs and 

regulatory mechanisms and the complex network of intercellular communication. 

Furthermore, the systems biology approach that was taken to analyze and integrate 

the different molecular and regulatory layers of the presented data provides a 

comprehensive understanding of the intrinsic and multifaceted regulatory network that 

governs cardiac repair. Following appropriate quantification of the reads into gene 

expression levels for mRNA, miRNA, and lncRNA, and subsequent data normalization, 

artificial intelligence techniques such as PCA and k-means clustering did not only allow 

a thorough examination of the ad-hoc generated transcriptomic data but also enabled 

the comparison with publicly available datasets. The development of new 

visualizations (GOplot) provided a valuable tool that combines functional annotation 

data with gene expression data and guided the exploratory data analysis towards data-

driven decision making. Mathematical modeling of the regulatory core of cardiac Mφ 

provided valuable insight into Mφ phenotype transition during the process of cardiac 

repair and partial deconvolution allowed the estimation of the phenotype contribution 

of M1/M2 to in vivo Mφ. Moreover, thanks to these tools, we could extract detailed 

knowledge about the transcriptional and post-transcriptional regulation of CRMs and 

Mφ activation in the context of MI at different regulatory levels. Despite their importance 

only few studies of cardiac Mφ exist, which makes our data a valuable resource to 

further investigate the role of cardiac Mφ. Our identification of specific surface markers 

might facilitate future studies that aim to develop efficient target treatment. The 

markers might also be used to investigate further the behavior of cardiac Mφ in vivo 

through live- cell imaging techniques and cell ablation strategies. These strategies 

would provide valuable functional information that might support and validate our 

findings. As it has been shown previously that shifting the M1/M2 balance of the Mφ 

population at the site of inflammation greatly benefits tissue repair (Harel-Adar et al., 

2011). Our data might additionally serve as an important resource to identify additional 

targets to positively influence the pro-inflammatory to anti-inflammatory phenotype 

transition to promote cardiac repair. Taking into consideration not only transcriptional 

regulators but also post-transcriptional mechanisms. miRNAs possess tremendous 

therapeutic potential in heart disease (Caroli et al., 2013) and our gathered data might 

be used to select novel candidates for miRNA-based therapies; not only for Mφ 
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polarization but also to influence EC-mediated angiogenesis, the pro-fibrotic effect of 

FBs, and, possibly, CM proliferation. 
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1. The R package GOplot enables the user to combine expression data with the 

results of functional analysis in a unique way that guarantees the preservation 

of the power of both analyses. In particular, the package helped to improve the 

understanding of immunological high-throughput data and guides exploratory 

data analysis towards data-driven decision making. 

 

2. Murine CRMs can be distinguished from other tissue resident Mφ based on their 

gene expression profile and the expression of specific surface markers.  

 

3. During the process of cardiac repair, Mφ sequentially shift their functional 

phenotype to contribute to both the inflammatory phase and the proliferative and 

regenerative phase. The functional complexity is the result of a continuous 

adaptation to molecular changes in the microenvironment, which is mirrored in 

the mixed expression of M1/M2 associated programs in post-MI Mφ. Partial 

deconvolution allowed us to quantify the contribution of pro-inflammatory and 

anti-inflammatory programs in Mφ.    

 

4. A Boolean network model allowed the identification of an experimentally 

verifiable negative feedback mechanism, that could be validated in vitro. This 

feedback loop has the potential to limit the initial inflammatory response of 

murine Mφ through hypoxia-mediated up-regulation of Il10. 

 

5. Post-transcriptional regulators contribute to the phenotype transition of Mφ 

during cardiac repair. Inflammation-induced mRNAs are more prone for rapid 

degradation due to longer 3'UTRs and an enrichment for ARE in their 3'UTRs. 

Hence, identified miRNAs and lincRNAs provide potential targets for the 

development of efficient targeted treatment.  

 

6. Murine cardiac Mφ change their cell signaling behavior during the process of 

cardiac repair. Mφ at 3 and 7 days post-MI possess strong extracellular 
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signaling potential as opposed to a more receptive role of Mφ in the healthy 

heart and 30 days post-MI to fulfill time point specific functions.  

7. The distinct cardiac cells in the porcine heart exhibit cell type- specific gene 

signatures which result in divergent sets of functions. The transcriptional 

programs are stable enough to ensure cell type identity even in the case of 

disturbed homeostasis. 

 

8. The cardiac cells in the porcine heart can be distinguished based on their 

miRNA expression profiles.  Biological processes altered by miRNA activity 

differ in a cell type and time point dependent manner, capturing cell type 

specific effects detected on the mRNA level.  

 

9. The different porcine cardiac cells communicate through a highly connected 

network of autocrine and paracrine circuits that govern processes such as 

immune response, angiogenesis and ECM organization. 

 

10.  Exhaustive bioinformatics analysis and the application of particular 

mathematical methods to transcriptomics data is necessary to access the 

overall information content of high-dimensional data provided by omics 

technology.
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1. El paquete de R GOplot implementado en esta tesis permite al usuario 

combinar datos de expresión con los resultados de un análisis funcional de una 

forma novedosa, garantizando que la información de ambas fuentes no se 

pierda y aumentando su potencial de manera sinérgica. En particular, el 

paquete ha demostrado ser útil para la mejora del entendimiento de datos de 

alta dimensionalidad en el contexto de la respuesta inmune y ha guiado el 

proceso de análisis exploratorio. 

2. Los macrófagos cardíacos de ratón son distinguibles a nivel transcripcional de 

los macrófagos residentes en otros tejidos y expresan marcadores celulares de 

manera específica. 

3. Durante el proceso de reparación del daño cardiaco, los Mφ cambian su 

fenotipo funcional secuencialmente para contribuir tanto a la fase inflamatoria 

como a las etapas proliferativa y regenerativa. La complejidad funcional 

observada es el resultado de una adaptación continua a los cambios 

moleculares que suceden en el micro-ambiente. Esto se ve reflejado en la 

expresión mixta, después del infarto, de los marcadores específicos de los 

programas M1/M2. El uso de deconvolución parcial in silico permitió cuantificar 

la contribución de los programas pro y anti-inflamatorios en Mφ cardiacos tras 

el infarto. 

4. El modelado de la red génica fundamental durante el proceso de reparación 

cardiaca, utilizando un modelo booleano, permitió identificar que la respuesta 

inicial a la inflamación en este contexto viene limitada por una sobreexpresión 

de Il10 en respuesta a las señales de hipoxia, resultado que fue validado 

experimentalmente. 

5. La regulación post-transcripcional juega también un papel esencial en la 

transición entre estados funcionales de Mφ durante la reparación cardiaca. Los 

mRNAs inducidos por la inflamación son más propensos a sufrir una 

degradación rápida debido a que tienen 3’UTRs más largos y a un 

enriquecimiento en motivos ARE en dichas regiones. Es por ello que los 

miRNAs y lncRNAs identificados podrían ser utilizados como dianas en terapias 

personalizados. 
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6. Los Mφ cardiacos del corazón señalizan de diferentes maneras en las distintas 

fases del proceso reparativo. Mientras que a 3 y 7 días después del infarto 

poseen un gran potencial de señalización extracelular, en el corazón sano y 30 

días después del infarto tienen un papel mucho más pasivo/receptivo. 

7. En cerdo, los diferentes tipos celulares presentan perfiles transcriptómicos 

específicos y con distintas funciones. Sin embargo, los programas 

transcripcionales son suficientemente estables para garantizar la identidad 

celular incluso en situaciones de perturbación de la homeostasis. 

8. Las células cardiacas en el corazón porcino también pueden ser distinguidas 

en base a la expresión de sus miRNAs. Los procesos biológicos alterados por 

la actividad de los miRNAs son distintos entre los diferentes tiempos y tipos 

celulares, en paralelo a los cambios acontecidos a nivel de expresión de mRNA. 

9. Las células porcinas se comunican a través de una red altamente conectada 

de circuitos de señales autocrinas y paracrinas que controlan procesos como 

respuesta inmune, angiogenesis y organización de la matriz extracelular. 

Además, es interesante remarcar que la comunicación sucede 

mayoritariamente entre macrófagos y células endoteliales por una parte, y por 

otra entre cardiomiocitos y fibroblastos. 

10.  El análisis bioinformático exhaustivo de los datos en la fase exploratoria 

combinado con la aplicación de modelos matemáticos para la inferencia de 

mecanismos más detallados en una fase posterior es esencial para extraer toda 

la información contenida en los datos multidimensionales generados a partir de 

las tecnologías ómicas. 
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