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14719-C02-01 y por la Cátedra Universidad Autónoma de Madrid-Telefónica.





Los trabajos preliminares de esta Tesis se recogen en el Trabajo Fin de Máster del

autor, “Temporal Contours in Linguistic Units for Automatic Text-Independent

Speaker Recognition”, que fue finalista del “Premio MAVIR 2013 al Mejor Trabajo
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Resumen

El reconocimiento automático de personas mediante la voz, o reconocimiento automáti-

co de locutores, ha experimentado en los últimos años un gran avance gracias a la incorporación

de técnicas de caracterización y modelado cada vez más complejas, situando a los sistemas

biométricos basados en este rasgo en tasas de error impensables hace una década. Si bien estas

técnicas han permitido mejorar la seguridad biométrica, entendida como sistemas de control de

acceso o aquellos que permiten evitar la suplantación de la identidad de las personas, aspectos

importantes como el carácter interpretable de dichas caracteŕısticas y modelos se han dejado de

lado. La misma situación se da en el ámbito del reconocimiento de idioma, donde el objetivo de

mejorar las tasas de identificación está muy por encima del de obtener otros tipos de información

que permitan interpretar qué distingue a una lengua de otra. En este contexto, esta Tesis se cen-

tra en el uso y aplicación de técnicas de caracterización y modelado con carácter eminentemente

interpretable, de forma que permitan no sólo distinguir entre locutores o idiomas, sino también

ofrecer información de qué aspectos son los que los hacen diferentes.

Una de las herramientas empleadas en esta Tesis para este fin es el uso de relaciones de

verosimilitud. La relación de verosimilitud (o likelihood ratio, LR) se ha adoptado en el ámbito

forense como el marco teórico más apropiado para la presentación de evidencias, y representa

el cociente de probabilidades de la evidencia dadas dos hipótesis opuestas: que las muestras

dubitadas e indubitadas proceden de la misma fuente, por una parte, y que proceden de fuentes

diferentes, por otra. Aśı, el resultado de la comparación de dos conjuntos de muestras tiene una

interpretación directa, frente a las puntuaciones crudas, carentes de significado por śı mismas,

proporcionadas por los sistemas de identificación clásicos. Pero además, facilita la combinación

de información procedente de diversas fuentes gracias a su interpretación probabiĺıstica.

Esta Disertación comienza afrontando el problema de la segmentación de audio, una etapa

crucial para la identificación de locutor e idioma en entornos no controlados ya que permite aislar

los tramos de la grabación que sólo contengan voz. La segmentación de audio tiene por objetivo

general dividir el flujo de audio en segmentos homogéneos en lo que al contenido acústico se

refiere. Esta segmentación suele abordarse como un problema de clasificación, en el que cada

trama de audio debe asignarse a una de las posibles clases (por ejemplo, voz con ruido de fondo,

voz con música, voz aislada, etc.). Dada la amplitud de esta casúıstica, en esta Tesis se plantea

la segmentación como un problema de detección de clases acústicas en un sentido más amplio,

de forma que la segmentación final venga dada por la combinación de varios de estos detectores.

Aśı, por ejemplo, se tendŕıa un detector de voz en cualquier contexto (voz asilada, voz con ruido

de fondo, voz con música de fondo, etc.), un detector de ruido (ruido asilado, ruido en presencia

de voz, etc.) y un detector de música (música aislada, etc.). Cada uno de estos detectores asigna

un LR a cada trama de audio, de forma que sus salidas pueden combinarse de forma natural para

determinar la presencia de alguna de las posibles combinaciones de ellos, e incluso la ausencia



de todos ellos.

La forma habitual de obtener LRs en el ámbito del reconocimiento automático consiste

en aplicar una transformación a las puntuaciones crudas proporcionadas por el sistema. Para

ello, es necesario disponer de un conjunto de datos adicional a partir del cual entrenar dicha

transformación. Sin embargo, en el ámbito forense los datos suelen ser un recurso escaso, por

lo que la aproximación habitual está basada en modelos probabiĺısticos que dan lugar a la

obtención de LRs directamente a partir de las caracteŕısticas empleadas. El modelo concreto a

aplicar depende de la distribución de muestras en la llamada población de referencia; cuando

esta distribución no puede aproximarse de forma paramétrica, debe recurrirse a técnicas de

estimación para caracterizarla. En esta Tesis también se aborda este problema, proponiéndose

una nueva aproximación mediante mezclas de modelos de gaussianas (gaussian mixture models,

GMMs) frente a la clásica estimación mediante una función kernel.

Otra de las herramientas empleadas en esta Tesis para proporcionar información interpreta-

ble adicional al proceso de identificación en śı mismo es la caracterización de locutor e idioma

en términos fonético-acústicos. En el caso del reconocimiento de idioma, se ha combinado la

información procedente de sistemas acústicos clásicos (basados en caracteŕısticas cepstrales) con

la proporcionada por sistemas fonotácticos. Estos sistemas hacen uso de la información fonética

para construir un modelo del idioma en base a la frecuencia de repetición de determinadas secuen-

cias de fonemas (n-gramas), con la particularidad de que la fonética del reconocedor puede ser

distinta a la del idioma que se pretende identificar. Como se mostrará, la combinación de varios

sistemas fonotácticos junto con sistemas acústicos da lugar a mejoras significativas, además de

proporcionar información fácilmente interpretable sobre las diferencias de unos idiomas respecto

a otros.

Una aproximación similar se ha seguido para abordar el problema del reconocimiento de

locutores. Una de las aplicaciones más directas de los sistemas de reconocimiento automático de

locutores es el reconocimiento de locutor forense, donde intenta determinarse si la persona que

habla en una grabación determinada (muestra dubitada) es el acusado en cuestión, a partir otras

grabaciones de éste (muestras indubitadas). Sin embargo, el reconocimiento de locutor forense y

el reconocimiento automático de locutor han seguido caminos separados debido, en gran parte,

a la dificultad de interpretar los resultados obtenidos por estos últimos, que son vistos por la

mayoŕıa de la comunidad forense como sistemas de caja negra.

Esto es debido, por una parte, a que los sistemas automáticos se basan en caracteŕısticas cuya

relación con las propiedades anatómicas de los individuos se desdibujan debido a la cadena de

procesado a la que se somete a la señal de voz con el objetivo de eliminar la componente de señal

indeseada y de realzar la información discriminante. Y por otra, a que los sistemas automáticos

reducen la comparativa entre dos grabaciones de voz a una única puntuación que integra toda

la información presente en ambas grabaciones. La comparación de voz forense, en cambio, suele

hacer uso de caracteŕısticas directamente ligadas a aspectos anatómicos del individuo, como

por ejemplo las frecuencias formantes. Aśı mismo, es habitual que la comparación se realice

atendiendo a criterios fonético-acústicos, comparando unidades equivalentes entre śı desde un



punto de vista lingǘıstico.

En esta Tesis se aborda el problema del reconocimiento de locutor desde una perspectiva que

intenta ligar ambas ramas, automática y forense. Para ello, se hace uso de sistemas automáticos

para segmentar la señal de audio en base al contenido fonético y extraer caracteŕısticas fácil-

mente interpretables como las frecuencias formantes. A partir de esta información, se construyen

sistemas automáticos de reconocimiento de locutor independientes para cada unidad lingǘısti-

ca, lo que permite analizar qué unidades son más discriminativas en término medio, o si los

locutores presentan particularidades que les hacen más distinguibles entre śı en base a determi-

nadas unidades lingǘısticas. Además, la información discriminativa repartida entre las distintas

unidades lingǘısticas puede combinarse de forma natural gracias la obtención de relaciones de

verosimilitud para cada unidad.





Abstract

Automatic recognition of speakers from their voices, or automatic speaker recognition,

has experienced a great advance in recent years with the addition of feature extraction and

modeling techniques increasingly complex, which have boosted biometric systems based on this

trait up to error rates unthinkable a decade ago. Even though these techniques have allowed

improving biometric security, in the sense of access control systems or those that avoid the

impersonation of people, important issues as the interpretable nature of these features and

models have been left apart. The same situation happens in the language identification field, in

which the goal of improve the identification rates is much more important than obtaining other

types of information that allow to interpret what makes a language different from another.

In this context, this Thesis is focused on the use and application of feature extraction and

modeling techniques eminently interpretable, allowing not only to distinguish between speakers

or languages, but also to provide information regarding which aspects makes them different.

One of the tools used in this Thesis to achieve this goal is the use of likelihood ratios. The

likelihood ratio (LR) has been adopted in the forensic field as the more convenient theoretical

framework for evidence reporting, and is the ratio between the likelihoods of the evidence under

two competing hypotheses: that both control and recovered samples come from the same source,

on the one hand, and that control and recovered samples come from different sources, on the

other hand. Thus, the result of the comparison of two sets of samples has a straightforward

interpretation, unlike the raw scores provided by classical identification systems, meaningless

by themselves. Moreover, the use of LRs eases the combination of different information sources

thanks to its probabilistic interpretation.

This Dissertation begins by tackling the problem of audio segmentation, a crucial stage for

speaker and language identification in uncontrolled scenarios, as it allows isolating only-speech

segments in audio recordings. The general goal of audio segmentation is to split the audio stream

in homogeneous segments regarding the acoustic content. Audio segmentation is usually tackled

as a classification problem in which each audio frame must be assigned to one of the possible

classes (for instance, speech with noise in the background, speech with music in the background,

isolated speech, etc.). Due to the large number of possible combinations, audio segmentation

is tackled in this Thesis as a detection problem of acoustic classes defined in a broader sense,

being the final segmentation given by the combination of several of these detectors. Thus, the

proposed segmentation system consists in a speech detector for speech in any given context

(isolated speech, speech with noise in the background, speech with music in the background,

etc.), a noise detector (isolated noise, noise with speech in the foreground, etc.) and a music

detector (isolated music, etc.). Each of these detectors provides a LR for each audio frame so

that their outputs can be naturally combined to determine the presence of any of the possible

combinations, or even the absence of all of them.



Likelihood ratios are usually obtained in the automatic recognition field by transforming the

raw scores provided by the system. In order to do that, an additional dataset is needed in order

to train the transformation step. However, data is scarce in forensics, so the usual approach is

based on probabilistic models that directly provide LRs from the features. The specific model

to be applied depends on the distribution of samples in the so-called reference population; when

this distribution cannot be approximated in a parametric way, density estimation techniques are

required in order to model it. This problem is also faced in this Thesis, and a new approach is

proposed that uses Gaussian mixture models (GMMs) instead of the classical estimation through

kernel functions.

Another tool used in this Thesis to provide interpretable information in addition to the iden-

tification process itself is the speaker and language characterization through acoustic-phonetic

information. In the case of language recognition, the information provided by classical acoustic

systems (based on cepstral features) have been combined with that provided by phonotactic

systems. Phonotactic systems make use of phonetic information in order to train a language

model based on the frequency of occurrence of particular phoneme sequences (n-grams), with

the particularity that the language of the phone recognizer may be different to the language

we are attempting to identify. As it will be shown, the combination of several phonotactic sys-

tems with acoustic systems gives rise to significant improvements, in addition to provide easily

interpretable information regarding the differences between languages.

A similar approach has been followed in order to tackle the speaker recognition problem. One

of the most straightforward applications of automatic speaker recognition systems is forensic

speaker recognition. Forensic speaker recognition attempts to determine if the person speaking

in some given recording (recovered sample) is the suspect, by using some additional recordings

from him/her (control samples). However, forensic speaker recognition and automatic speaker

recognition have gone their separate ways due, to a great extent, to the difficulty of interpret

the results obtained by the latter ones, which are seen by most of the forensic community as

black-box systems.

This is due, on the one hand, to the fact that automatic systems are based on features whose

relationship with anatomical characteristics of individuals is blurred due to the processing chain

used to remove the undesired component in the audio signal and to enhance the discriminative

information. And, on the other hand, to the fact that automatic systems summarize the compa-

rison between two given speech recordings into one single score integrating all the information

present in both recordings. Instead, forensic voice comparison is usually performed using features

directly related to anatomical traits, as for example formant frequencies. Likewise, it is usual

to perform the comparison according to acoustic-phonetics criteria, comparing equivalent units

from a linguistic point of view.

In this Thesis, the speaker recognition problem is tackled from a perspective that attempts

to link both branches, automatic and forensic. To do this, automatic systems are used to seg-

ment the audio signal based on the phonetic content and to extract easily interpretable features

as formant frequencies. Starting with this information, independent automatic speaker recog-



nition systems are developed for each linguistic unit, allowing to analyze which units are more

discriminative on average, or whether speakers have particularities that allow better distinguish

between them by using specific linguistic units. Furthermore, the discriminative information

spread among the different linguistic units can be naturally combined thanks to obtaining like-

lihood ratios for each unit.
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Bloque 1

Introducción

1.1. Motivación

Los sistemas automáticos de reconocimiento de locutor e idioma han experimentado en los

últimos años un gran avance gracias al desarrollo de técnicas de reconocimiento de patrones y

aprendizaje automático cada vez más complejas. Si bien estas técnicas han permitido reducir

las tasas de error de los sistemas de reconocimiento hasta ĺımites impensables hace una década

(Gonzalez-Rodriguez [2014]), los procedimientos aplicados, debido al bajo nivel al que operan,

dificultan la interpretación de los resultados obtenidos. Es decir, permiten determinar con gran

precisión que la voz en dos grabaciones corresponde al mismo (o distinto) locutor/idioma, pero

no aśı explicar porqué (Gonzalez-Rodriguez et al. [2014]). Por otra parte, la acústica fonética es

una rama de la fonética que estudia la voz desde el punto de vista de sus caracteŕısticas acústicas,

relacionando la información lingǘıstica con los sonidos del habla codificados en la onda sonora.

Aśı, este análisis proporciona información de alto nivel que, incorporada al proceso de reconoci-

miento, puede dar lugar a resultados fácilmente interpretables de gran utilidad, especialmente en

el ámbito forense. Con este objetivo, esta Tesis se centra en el desarrollo de sistemas automáticos

de reconocimiento de locutor e idioma mediante caracterización fonético-acústica.

El campo de la comparación de voz forense podŕıa beneficiarse en gran medida de la adop-

ción de sistemas automáticos por varios motivos. Por una parte, ahorraŕıan gran cantidad de

trabajo humano, ya que el procesado de las grabaciones suele realizarse de forma manual. Por

otra parte, al no haber intervención humana, se eliminaŕıan posibles subjetividades en la to-

ma de decisiones, que pueden llevar a conclusiones distintas en condiciones similares; aunque

los sistemas automáticos no están libres de error, dichos errores son sistemáticos. Finalmente,

los sistemas automáticos son fácilmente evaluables, pudiéndose comprobar tanto su capacidad

discriminativa como sus propiedades de calibración en conjuntos de datos tan grandes como se

quiera en un tiempo reducido.

A pesar de estas ventajas potenciales, varios estudios (Gold and French [2011]; Morrison et al.

[2016]) revelan que la mayoŕıa de los laboratorios forenses continúan aplicando procesos manuales

o semi-automáticos para la comparación de voz (ver Figura 1.1). Esto es debido en gran medida

1
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a que el reconocimiento automático sigue una aproximación muy diferente a las empleadas

tradicionalmente por los expertos forenses. Por ejemplo, en las aproximaciones acústico-fonéticas,

la comparación de voz suele centrarse en la comparación de los sonidos entre unidades lingǘısticas

equivalentes (Rose [2002]). En cambio, los sistemas automáticos en el estado del arte utilizan

todo el contenido acústico de ambas grabaciones independientemente del contexto lingǘıstico

(Dehak et al. [2011]; Kinnunen and Li [2010]), lo que les lleva a ser vistos en este ámbito como

sistemas de caja negra. Por lo tanto, el desarrollo de sistemas de reconocimiento automático

que implementen aproximaciones tradicionales puede facilitar la adopción de estos sistemas por

parte de la comunidad forense.

Figura 1.1: Aproximaciones al reconocimiento forense de locutor y número de páıses que las utilizan.

Fuente: Morrison et al. [2016].

Para que este proceso de adopción pueda llevarse a cabo, es necesario también que la eva-

luación de evidencias por parte de los sistemas automáticos se ajuste al marco probabiĺıstico de

presentación de resultados cada vez más aceptado en ciencias forenses (Figura 1.2). Este marco

establece, entre otras cosas (European Network of Forensic Science Institutes [2015]), que la

evaluación de evidencias debe realizarse por medio de la asignación de una relación de verosi-

militudes (likelihood ratio, LR). El LR mide el grado de apoyo que las pruebas proporcionan a

las dos proposiciones o hipótesis alternativas de interés: que el acusado está en el origen de las

muestras cuestionadas o que se trate de cualquier otro individuo. En el ámbito del reconocimien-

to automático de locutor (Gonzalez-Rodriguez et al. [2007]), los LRs se obtienen por medio de

la transformación de las puntuaciones crudas proporcionadas por el sistema (scores), mediante

una etapa adicional conocida como calibración (Brümmer and du Preez [2006]; Ramos-Castro

et al. [2006]). Para obtener LRs por medio de este proceso (conocidos como score-based LRs),

es necesario un conjunto de datos adicional que permita obtener los parámetros de la trans-

formación. En esta Tesis, se aborda también el problema de la obtención de LRs mediante un

método alternativo en el que el proceso de comparación proporciona directamente relaciones de

verosimilitud (feature-based LRs), evitando aśı el proceso de calibración posterior que requiere

datos adicionales para su entrenamiento.
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Figura 1.2: Marcos de evaluación de evidencias y número de páıses que las utilizan. Fuente: Morrison

et al. [2016].

Finalmente, debe tenerse en cuenta que las grabaciones de voz, especialmente las que se

presentan en el ámbito forense, pueden adquirirse en condiciones no controladas, apareciendo

en ese caso fuentes acústicas distintas a la de interés (voz), como por ejemplo ruido o música,

que pueden darse de forma simultánea o no junto con la señal de voz. Por ello, una etapa previa

crucial para el reconocimiento de locutor o idioma es la segmentación de audio, ya que permite

aislar los tramos de la grabación que contengan voz. Si, además, el sistema de segmentación

fuese capaz de proporcionar LRs, podŕıa integrarse en el marco probabiĺıstico de evaluación

de evidencias para su aplicación en entornos forenses. En esta Tesis, además, se aprovecha el

marco probabiĺıstico que proporcionan los LRs para abordar la segmentación de audio como

un problema de detección de clases acústicas mediante detectores calibrados, lo que permite

combinarlos de forma flexible.

1.2. Objetivos

Teniendo en cuenta el carácter multidisciplinar de esta Tesis, son varios los objetivos que se

persiguen:

estudiar y validar aproximaciones que combinen técnicas tradicionales (fonético-acústi-

ca) y automáticas al reconocimiento del locutor e idioma con el fin de aprovechar sus

sinergias. Por una parte, el reconocimiento automático permite el procesado eficiente de

grandes cantidades de datos integrando técnicas muy potentes de reconocimiento de patro-

nes, obteniendo aśı resultados estad́ısticamente concluyentes y reproducibles. Por otra, las

técnicas tradicionales aportan resultados interpretables basados en caracteŕısticas directa-

mente relacionadas con las particularidades fisiológicas y anatómicas de los individuos, de

gran valor en aplicaciones forenses.
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analizar la aplicabilidad en entornos forenses de las aproximaciones aśı desarrolladas. La

evaluación de evidencias en entornos forenses debe realizarse en forma de relaciones de

verosimilitud, para lo cuál los sistemas desarrollados deben proporcionar este tipo de in-

formación a su salida, no bastando con las habituales puntuaciones crudas de similitud

que suelen proporcionar los sistemas de reconocimiento biométrico. Además, se requiere

que dichas relaciones de verosimilitud sean útiles, proporcionando información fiable sobre

el resultado de la comparación; es decir, deben estar calibradas.

estudiar técnicas de cálculo de LRs directamente a partir de caracteŕısticas y validar su

aplicación en sistemas de reconocimiento automático. Existen varias técnicas de cálculo

de LRs a partir de caracteŕısticas que se han propuesto en otras disciplinas forenses; sin

embargo, el procedimiento habitual en sistemas de reconocimiento automático es obtener

una puntuación de similitud y luego transformarla a un LR mediante un proceso de cali-

bración. Aunque este procedimiento en dos pasos no resta validez a los LRs aśı obtenidos,

tiene el inconveniente de que el proceso de calibración debe ser entrenado, lo que requiere

de datos adicionales.

estudiar y validar técnicas de segmentación de audio que puedan integrarse en el proce-

so de toma de decisiones forense. Aunque existen gran cantidad de aproximaciones a la

segmentación de audio, estas realizan una asignación ŕıgida a una de las posibles clases con-

sideradas, siendo éstas mutuamente excluyentes. La integración de un marco probabiĺıstico

en forma de LRs en este proceso puede aportar información útil cuando se emplean estos

sistemas automáticos en entornos forenses, por ejemplo considerando la incertidumbre de

que las muestras de voz a evaluar incorporen, además, fuentes acústicas de otra naturaleza

(ruido o música) que influyan en el resultado de la comparación.

finalmente, divulgar los resultados obtenidos es un aspecto fundamental para poner en

conocimiento de la comunidad cient́ıfica los estudios realizados. En este sentido, son de

especial interés tanto los foros de reconocimiento automático como los de ciencias forenses.

1.3. Trabajos desarrollados: aportación original del autor

En esta sección se enumeran los trabajos desarrollados a lo largo de esta Tesis Doctoral. En

primer lugar se detallan las publicaciones compendiadas, aquellos trabajos que constituyen hitos

de importancia destacada debido a su publicación como art́ıculos de revista o caṕıtulo de libro.

Aśı mismo, se compendian algunos art́ıculos de congreso que complementan a alguna de estas

publicaciones o ligan varias de ellas. En segundo lugar se detallan otros trabajos relacionados

con la tesis que han dado lugar a publicaciones de congreso, y que en muchos casos son trabajos

previos de las publicaciones compendiadas o desarrollos intermedios.
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1.3.1. Publicaciones compendiadas

ATVS-UAM System Description for the Albayzin 2014 Audio Segmentation Eva-

luation. Javier Franco-Pedroso, Elena Gomez Rincon, Daniel Ramos and Joaquin Gonzalez-

Rodriguez. Proceedings of IberSPEECH 2014: “VIII Jornadas en Tecnoloǵıas del Habla” and

“IV Iberian SLTech Workshop”, November 19-21th, 2014, LasPalmas de Gran Canaria (Spain),

pp: 247-252

Este trabajo describe en detalle el sistema de segmentación automática de audio diseñado e

implementado para la evaluación competitiva Albayźın 2014 (Ortega et al. [2014]) organizada

por la Red Temática en Tecnoloǵıas del Habla (RTTH). La segmentación de audio se aborda

habitualmente mediante una de las dos siguientes aproximaciones: segmentación basada en dis-

tancia, en la que se evalúa la similitud entre dos conjuntos de datos en ventanas adyacentes para

determinar los puntos de cambio entre clases acústicas, y el posterior agrupamiento o clasifica-

ción en clases acústicas mutuamente excluyentes de los segmentos aśı definidos; y segmentación

basada en modelos, en la que los distintos segmentos surgen a partir de la clasificación directa de

las tramas de audio por comparación con modelos predefinidos de clases acústicas mutuamente

excluyentes. El sistema planteado por el autor, en cambio, aborda el problema de la segmen-

tación mediante el uso de detectores calibrados de clases acústicas en un sentido amplio, de

forma que las clases predefinidas no son mutuamente excluyentes entre śı, sino que pueden estar

solapadas. En este sistema, la segmentación final viene dada por la combinación de las relaciones

de verosimilitud obtenidas por cada uno de estos detectores.

Albayźın-2014 evaluation: audio segmentation and classification in broadcast news

domains. Diego Castán, David Tavarez, Paula Lopez-Otero, Javier Franco-Pedroso, Héctor

Delgado, Eva Navas, Laura Docio-Fernández, Daniel Ramos, Javier Serrano, Alfonso Orte-

ga and Eduardo Lleida. EURASIP Journal on Audio, Speech, and Music Processing. 2015

Dec;2015(1):1-9. doi: 10.1186/s13636-015-0076-3

Factor de impacto1: 0.386/0.624 (Q4)

Esta publicación recoge los resultados del sistema de segmentación automática de audio des-

crito en el anterior trabajo, junto con los del resto de grupos de investigación participantes en

la evaluación Albayźın 2014 de segmentación de audio (Ortega et al. [2014]). Aśı mismo, para

esta publicación se llevaron a cabo experimentos de fusión entre los sistemas de los distintos

participantes. Aunque el rendimiento del sistema diseñado por el autor no estuvo entre los siste-

mas ganadores, los experimentos de fusión demuestran que la aproximación seguida proporciona

información muy complementaria a aquellos, pues la fusión que obteńıa mejores resultados era

una de las que inclúıa el sistema diseñado por el autor.

1Datos extráıdos de Thomson Reuters 2012. Factor de impacto último año (2014)/últimos 5 años (cuartil).
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Gaussian Mixture Models of Between-Source Variation for Likelihood Ratio Compu-

tation from Multivariate Data. Javier Franco-Pedroso, Daniel Ramos and Joaquin Gonzalez-

Rodriguez. PLoS ONE, 2016 Feb;11(2):1-25. doi: 10.1371/journal.pone.0149958

Factor de impacto: 3.234/3.702 (Q1)

En el ámbito forense, es común el uso de un marco probabiĺıstico para la obtención de

relaciones de verosimilitud en términos bayesianos que permita determinar si dos conjuntos de

muestras proceden o no de la misma fuente. Una de las técnicas más empleadas (Aitken and

Lucy [2004]; Zadora et al. [2014]) hace uso de un modelo generativo para representar las muestras

a evaluar en términos de la variabilidad intra-fuente y de la variabilidad inter-fuente. En él, la

variabilidad intra-fuente se asume distribuida en forma de gaussiana multivariada mientras que

la variabilidad inter-fuente puede no estarlo. Cuando la variabilidad inter-fuente no responde

a una distribución paramétrica conocida, debe estimarse su función densidad de probabilidad

mediante alguna técnica. Una de las más usadas es la estimación mediante funciones kernel. En

este trabajo compendiado se exponen las limitaciones de esta técnica y se propone el uso de

modelos de mezclas de gaussianas para la estimación de dicha función densidad de probabilidad.

Aśı mismo, se derivan las expresiones necesarias para el cálculo de LRs considerando este tipo

de distribución, y se compara su eficacia respecto a las funciones kernel en varias bases de datos

forenses de distinta naturaleza.

Multilevel and Session Variability Compensated Language Recognition: ATVS-

UAM Systems at NIST LRE 2009. Javier Gonzalez-Dominguez, Ignacio Lopez-Moreno, Ja-

vier Franco-Pedroso, Daniel Ramos, Doroteo Torre Toledano and Joaquin Gonzalez-Rodriguez.

IEEE Journal of Selected Topics in Signal Processing, 2010 Sep. 4(6):1084-1093. doi: 10.1109/JS-

TSP.2010.2076071

Factor de impacto: 2.373/3.681 (Q1)

Este trabajo presenta el sistema desarrollado para la evaluación de reconocimiento de idioma

organizada por el Instituto Nacional de Estándares y Tecnoloǵıa estadounidense (NIST, por sus

siglas en inglés) en el año 2009 (National Institute of Standards and Technology [2009]). Dicho

sistema consist́ıa en la combinación de sub-sistemas que explotaban, de forma independiente,

información acústica (bajo nivel) y fonética (alto nivel). La información fonética se utilizaba para

crear un modelo del idioma en base a la frecuencia de aparición de determinadas secuencias de

fonemas, lo que se conoce como sistemas fonotácticos. Aunque el uso de sistemas fonotácticos ya

era habitual en reconocimiento de locutor e idioma, en esta publicación se explota la combinación

de un gran número de este tipo de sistemas entre śı, primero, y con sistemas acústicos después,

mediante la técnica conocida como anchor modelling. Esta técnica permite desarrollar un modelo

para un idioma espećıfico aunque no se disponga de audio de entrenamiento suficiente, utilizando

para ello las puntuaciones de las grabaciones de test de ese idioma frente a los modelos acústicos
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o fonotácticos de otros idiomas.

Fine-grained automatic speaker recognition using cepstral trajectories in phone

units. Javier Franco-Pedroso, Joaquin Gonzalez-Rodriguez, Javier Gonzalez-Dominguez and

Daniel Ramos. Quantitative approaches to problems in linguistics. LINCOM Studies in Phonetics

08, 2012. ISBN: 9783862883844

Este trabajo presenta la primera aproximación automática al reconocimiento de locutor

forense mediante caracterización de trayectorias cepstrales en unidades lingǘısticas. Aunque

las trayectorias cepstrales en unidades lingǘısticas hab́ıan sido empleadas con anterioridad en

reconocimiento automático de locutor, únicamente se hab́ıa empleado la información lingǘıstica

en el proceso de extracción de caracteŕısticas, prescindiendo luego de esta información a la hora

de caracterizar a los distintos locutores. En este trabajo se construyen sistemas automáticos

de reconocimiento de locutor independientes para cada fonema, de forma que el proceso de

comparación entre dos grabaciones de voz se descompone en función de los fonemas comunes

entre ambas locuciones. Esto permite establecer una relación con procedimientos seguidos en

otros campos del reconocimiento de locutor forense, como por ejemplo la acústica fonética,

poniendo a disposición de la comunidad cient́ıfica los resultados obtenidos para distintos fonemas.

Aśı mismo, se analizan diversas estrategias de selección de unidades y su fusión para integrar

estas informaciones en una única relación de verosimilitud por comparación.

Linguistically-constrained formant-based i-vectors for automatic speaker recogni-

tion. Javier Franco-Pedroso and Joaquin Gonzalez-Rodriguez. Speech Communication, 2016

Feb;76(C):61-81. doi: 10.1016/j.specom.2015.11.002

Factor de impacto: 1.256/1.786 (Q2)

Siguiendo la ĺınea de la publicación anterior, este trabajo profundiza en las técnicas de ca-

racterización del locutor a partir de información directamente relacionada con las caracteŕısticas

anatómicas del individuo y actualiza la tecnoloǵıa de reconocimiento automático empleada en el

proceso de verificación. Aśı, se hace uso de frecuencias formantes y su dinámica temporal en uni-

dades lingǘısticas para caracterizar a los locutores, extrayendo un i-vector por unidad lingǘıstica

para cada locución. Al igual que en la publicación anterior, se construyen sistemas automáticos

de reconocimiento de locutor independientes para cada unidad lingǘıstica, permitiendo aśı un

análisis detallado de la capacidad discriminativa de las frecuencias formantes en cada unidad.

Las frecuencias formantes en unidades lingǘısticas son ampliamente utilizadas en la comparación

de voz forense, pero hasta la fecha no hab́ıa estudios publicados en aplicaciones de gran escala

como el que se presenta en este trabajo compendiado, donde se usan bases de datos estándar

de facto en el ámbito del reconocimiento automático de locutor y se presentan resultados para

un gran número de unidades lingǘısticas. Además, se presenta un análisis comparativo de las
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unidades más discriminativas por locutor, con el fin de observar si existen unidades particulares

que permiten distinguir con suficiente precisión a la mayoŕıa de los locutores, o si por el contrario

cada locutor presenta particularidades que hacen que pueda distinguirse mejor de otros a partir

de unidades espećıficas.

Feature-based likelihood ratios for speaker recognition from linguistically-constrained

formant-based i-vectors. Javier Franco-Pedroso and Joaquin Gonzalez-Rodriguez. Procee-

dings of Odyssey 2016: The Speaker and Language Recognition Workshop, Bilbao, Spain, June

2016 (to appear)

En esta publicación se parte de dos de los trabajos anteriores, “Linguistically-constrained

formant-based i-vectors for automatic speaker recognition” y “Gaussian Mixture Models of

Between-Source Variation for Likelihood Ratio Computation from Multivariate Data”, para

profundizar en el desarrollo de técnicas de reconocimiento de locutor que conecten las aproxi-

maciones forense y automática. En ella también se hace uso de i-vectors obtenidos a partir de

frecuencias formantes en unidades lingǘısticas, pero en este caso se usan como caracteŕısticas de

entrada a un modelo generativo que permite proporcionar relaciones de verosimilitud directa-

mente calibradas. De esta forma, se evita la etapa de calibración final utilizada habitualmente en

los sistemas automáticos, que suele requerir de datos adicionales (un recurso escaso en entornos

forenses).

1.3.2. Otras publicaciones relacionadas

Segmentación automática de audio

ATVS-UAM System Description for the Audio Segmentation and Speaker Diariza-

tion Albayźın 2010 Evaluation. Javier Franco-Pedroso, Ignacio Lopez-Moreno, Doroteo

T. Toledano and Joaquin Gonzalez-Rodriguez. Proceedings of FALA: “VI Jornadas en Tecno-

loǵıa del Habla” and “II Iberian SLTech Workshop”, November 10-12th, 2010, Vigo (Spain), pp:

415-418

Esta publicación describe los sistemas desarrollados para las evaluaciones Albayźın 2010

de segmentación de audio (Butko and Nadeu [2011]) y de diarización de locutores (Zelenák

and Hernando [2012]), organizadas por la Red Temática en Tecnoloǵıas del Habla. Para la

segmentación automática de audio se planteó un sistema de segmentación basado en modelos

por decodificación del flujo de audio mediante un HMM hergódico de 5 estados, en el que cada

estado consist́ıa en un GMM. Cada uno de estos GMMs constitúıa una de las clases acústicas a

reconocer y fue entrenado de forma discriminativa respecto al resto de clases con el objetivo de

maximizar la separación entre ellas, al ser mutuamente excluyentes. El sistema de diarización,

por su parte, implementaba un sistema de agrupamiento jerárquico a partir de i-vectors extráıdos
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en ventanas de corta duración, seguido de una decodificación de Viterbi para alinear los cambios

de locutor de forma más precisa.

Análisis perceptual en reconocimiento de locutor

Calibration and weight of the evidence by human listeners: the ATVS-UAM submis-

sion to NIST Human-Aided Speaker Recognition 2010. Daniel Ramos, Javier Franco-

Pedroso and Joaquin Gonzalez-Rodriguez. Proceedings of the 2011 IEEE International Confe-

rence on Acoustics, Speech and Signal Processing (ICASSP), May 22-27th, 2011, Prague (Czech

Republic), pp: 5908-5911. doi: 10.1109/ICASSP.2011.5947706

De forma adicional a las habituales evaluaciones de reconocimiento de locutor mediante siste-

mas automáticos organizadas por el NIST, en el año 2010 se planteó también una evaluación de

reconocimiento de locutor que permit́ıa la interacción de personas con los sistemas automáticos

(National Institute of Standards and Technology [2010]), o incluso que las tareas de reconoci-

miento fueran llevadas a cabo únicamente por personas (en un conjunto de datos reducido). El

grupo de investigación ATVS tomó parte en esta modalidad repartiendo las pruebas de reco-

nocimiento entre un conjunto de personas no expertas que pod́ıan escuchar las grabaciones y

visualizar su forma de onda y espectrograma a la hora de puntuar el parecido entre los locutores.

Esta publicación recoge los resultados obtenidos y su comparación con los proporcionados por

sistemas automáticos en el mismo conjunto de datos, aśı como un análisis de los efectos de la

calibración en las puntuaciones proporcionadas por las personas, exponiendo aśı el problema de

la evaluación de evidencias llevado a cabo por personas de forma perceptual.

What are we missing with i-vectors? A perceptual analysis of i-vector-based falsely

accepted trials. Joaqúın Gonzalez-Rodriguez, Juana Gil, Rubén Pérez and Javier Franco-

Pedroso. Proceedings of Odyssey 2014: The Speaker and Language Recognition Workshop,

June 16-19th, 2014, Joensuu (Finland), pp: 33-40

En este trabajo se presenta un análisis perceptual llevado a cabo por fonetistas sobre parejas

de locuciones erróneamente identificadas como pertenecientes al mismo locutor por un sistema

de reconocimiento automático. El objetivo del análisis es determinar si existen elementos per-

ceptuales claramente discordantes entre dichas parejas de locuciones que son ignorados por las

técnicas del estado del arte en reconocimiento automático, con el fin de desarrollar caracteŕısti-

cas cuantitativas o detectores automáticos a partir de dichos elementos que puedan combinarse

con los sistemas clásicos de reconocimiento de locutor.

Caracterización de locutores en unidades lingǘısticas
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Cepstral Trajectories in Linguistic Units for Text-Independent Speaker Recogni-

tion. Javier Franco-Pedroso, Fernando Espinoza-Cuadros and Joaquin Gonzalez-Rodriguez.

Proceedings of IberSPEECH 2012: “VII Jornadas en Tecnoloǵıa del Habla” and “III Iberian

SLTech Workshop”, November 21-23th, 2012, Madrid (Spain), pp: 20-29. doi: 10.1007/978-3-

642-35292-8 3

Este trabajo constituye una ampliación de la publicación compendiada “Fine-grained auto-

matic speaker recognition using cepstral trajectories in phone units” en la que se construyen

sistemas automáticos de reconocimiento de locutor a partir de unidades lingǘısticas de mayor

duración como los difonemas. Aśı mismo, se analizan nuevas estrategias de selección y combi-

nación de unidades lingǘısticas, cuya fusión da lugar a un rendimiento mejor que el del sistema

de referencia.

Formant Trajectories in Linguistic Units for Text-Independent Speaker Recogni-

tion. Javier Franco-Pedroso, Fernando Espinoza-Cuadros and Joaquin Gonzalez-Rodriguez.

Proceedings of the 2013 International Conference on Biometrics (ICB), June 4-7th, 2013, Madrid

(Spain), pp: 1-6. doi: 10.1109/ICB.2013.6613001

Esta publicación representa uno de los trabajos intermedios entre las publicaciones compen-

diadas “Fine-grained automatic speaker recognition using cepstral trajectories in phone units”

y “Linguistically-constrained formant-based i-vectors for automatic speaker recognition”, en la

que se caracteriza a los locutores a partir las trayectorias temporales de las frecuencias formantes

en unidades lingǘısticas, y se estudia su aplicabilidad al ámbito forense.

Otros trabajos en reconocimiento de locutor

Speaker Clustering for Variability Subspace Estimation. Alicia Lozano-Dı́ez, Ivan Gomez-

Piris, Javier Franco-Pedroso, Javier Gonzalez-Dominguez and Joaquin Gonzalez-Rodriguez.

Proceedings of IberSPEECH 2014: “VIII Jornadas en Tecnoloǵıas del Habla” and “IV Iberian

SLTech Workshop”, November 19-21th, 2014, LasPalmas de Gran Canaria (Spain), pp: 61-70

Los sistemas de reconocimiento de locutor en el estado del arte hacen uso de técnicas que

modelan la variabilidad intra-locutor e inter-locutor. Para ello, es necesario disponer de bases de

datos etiquetadas que permitan estimar ambos tipos de variabilidad. Sin embargo, puede darse el

caso de que no se disponga de etiquetas de locutor para la base de datos de desarrollo; un ejemplo

de este caso seŕıa el de una aplicación para reconocimiento de locutores a partir de grabaciones de

Youtube donde, a lo sumo, podŕıan separarse las grabaciones en segmentos donde sólo aparezca

un único locutor gracias a técnicas de diarización. Posteriormente, debeŕıa determinarse cuáles

de estos segmentos pertenecen al mismo locutor mediante técnicas de clusternig. Este trabajo
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1.3 Trabajos desarrollados: aportación original del autor

presenta un análisis de técnicas de clusternig con este objetivo, cuyos resultados se aplicaron en

la evaluación de reconocimiento de locutor del NIST de 2014 (National Institute of Standards

and Technology [2013]).
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Bloque 2

Resultados, discusión y conclusiones

2.1. Resultados y discusión

En esta Sección se resumen y discuten los principales resultados obtenidos en los trabajos

troncales de la Tesis. Mientras los detalles de implementación y resultados espećıficos (en térmi-

nos de valores de rendimiento) se dejan para las publicaciones compendiadas, aqúı se tratan los

resultados desde una perspectiva global, destacando su importancia en relación con los objetivos

planteados.

Estos resultados se han agrupado en tres grandes bloques atendiendo a los principales obje-

tivos planteados en la Tesis:

en primer lugar, se resumen los resultados obtenidos en segmentación de audio por medio

de detectores calibrados, y se discute su aplicabilidad en el ámbito forense.

en segundo lugar, se resumen y discuten los resultados obtenidos tras la revisión y propues-

ta de nuevas técnicas de cálculo de LRs directamente a partir de caracteŕısticas (feature-

based LRs).

finalmente, se resumen los estudios realizados en reconocimiento automático de locutor

e idioma mediante distintas aproximaciones a la caracterización fonético-acústica, y se

discuten los resultados obtenidos en su aplicación al ámbito forense mediante distintas

aproximaciones (feature-based y score-based LRs).

2.1.1. Segmentación de audio mediante combinación de detectores calibrados

Con motivo de la participación del Grupo de Reconocimiento Biométrico ATVS en la eva-

luación de segmentación de audio Albayźın 2014 (Ortega et al. [2014]), organizada por la Red

Temática de las Tecnoloǵıas del Habla (RTTH), se diseñó e implementó un sistema de segmen-

tación de audio basado en detectores de clases acústicas calibrados, cuya descripción se incluye

en la publicación compendiada Franco-Pedroso et al. [2014] (Sección 3.1). En esta evaluación, el

objetivo era detectar los segmentos de audio en que pod́ıan aparecer cualquiera de las siguientes

13



2. RESULTADOS, DISCUSIÓN Y CONCLUSIONES

clases acústicas, solapadas o no: voz, ruido y música. Los resultados de este sistema en la citada

evaluación se incluyen en la publicación compendiada Castán et al. [2015] (Sección 3.2).

La aproximación habitual de los sistemas de segmentación de audio es dividir el flujo de audio

completo en segmentos disjuntos que presenten un contenido homogéneo (voz aislada, voz sobre

música, etc.) mediante un proceso de clasificación en clases mutuamente excluyentes. De esta

manera, el sistema debe diseñarse desde el inicio considerando todas las posibles combinaciones

en que pueden presentarse las clases acústicas consideradas; en el caso de esta evaluación: voz,

voz+música, voz+ruido, voz+música+ruido, música, música+ruido, ruido y silencio. Para ello,

debe entrenarse un modelo por cada combinación o un clasificador que considere todas estas

sub-clases mutuamente excluyentes, lo que hace los sistemas dif́ıcilmente escalables si en un

momento dado quiere considerarse alguna clase acústica adicional o simplemente detectar de

forma separada casos especiales de alguna de las anteriores (por ejemplo, distintos idiomas).

El sistema desarrollado, en cambio, se basa en sistemas independientes cuyo objetivo es

detectar cada una de las clases acústicas propuestas por separado: un detector de voz, uno de

música y uno de ruido. Aśı, cada uno se encarga de detectar la presencia de la clase en cuestión,

independientemente de que también se presente alguna de las otras, generando una segmentación

o etiquetado paralelo como muestra la Figura 2.1.
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Figura 2.1: Ejemplo de etiquetado de una señal de audio (arriba) en clases no solapadas (en medio) y

en clases solapadas (abajo).

Esta aproximación constituye un sistema fácilmente escalable, pues cada detector puede

mejorarse o sustituirse por varios más especializados sin afectar al resto. Por ejemplo, el detector

de voz puede sustituirse por dos detectores, uno de voz de hombre y otro de voz de mujer, sin

necesidad de volver a entrenar el resto de detectores; en este caso, los detectores de ruido y

música seguirán detectando ruido y música en presencia (o no) de voz, con independencia de

que sea de hombre o mujer.
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2.1 Resultados y discusión

Por otra parte, la salida de cada detector en forma de LR permite la aplicación de este

tipo de sistemas en el ámbito forense de forma que, por ejemplo, pueda tenerse en cuenta en el

proceso de evaluación de evidencias la influencia de la presencia ruido o música en las muestras

a evaluar. En este caso, las hipótesis asociadas a la relación de verosimilitud son:

en la trama de audio se presenta la clase acústica c (Hc).

en la trama de audio no se presenta la clase acústica c (Hc).

donde c = {v,m, r} representa a las clases acústicas antes mencionadas (voz, música y ruido).

Es decir, sea xt una trama de audio en un instante dado t, cada uno de los detectores proporciona

la siguiente relación de verosimilitud:

LRc
t =

p(xt|Hc)

p(xt|Hc)
(2.1)

Al incorporar el proceso de calibración, el resultado de cada detector puede además combi-

narse fácilmente con el resto gracias al marco probabiĺıstico que suponen los LRs, lo que permite

transformar la segmentación en clases solapadas a una segmentación en clases no solapadas. Aśı,

en la publicación compendiada Castán et al. [2015] (Sección 3.2) se incluyen, además de los re-

sultados para cada sistema individual, una serie de experimentos de fusión entre los sistemas de

los cuatro laboratorios participantes en la evaluación. Para ello, fue necesario proporcionar pun-

tuaciones por trama para cada una de las sub-clases mutuamente excluyentes: voz, voz+música,

voz+ruido, etc. Aunque el sistema de segmentación desarrollado no consideraba sub-clases no

solapadas, las puntuaciones para estos casos fueron fácilmente derivadas a partir de los LRs

obtenidos por cada detector. Por ejemplo, en el caso de la sub-clase no solapada voz+música,

los LRs se obtuvieron mediante:

LRvm
t =

p(xt|Hv ∩Hm)

p(xt|Hv ∩Hm)
=

p(xt|Hv) · p(xt|Hm)

p(xt|Hv) · p(xt|Hm)
= LRv

t · LRm
t (2.2)

pues en el esquema de segmentación propuesto la presencia de una clase acústica es independiente

de que se presente cualquiera de las otras. Aunque el rendimiento del sistema diseñado por el

autor no estuvo entre los sistemas ganadores, los experimentos de fusión demuestran que la

aproximación seguida proporciona información muy complementaria a aquellos, pues la fusión

que obteńıa mejores resultados era una de las que inclúıa el sistema diseñado por el autor.

2.1.2. Cálculo de relaciones de verosimilitud a partir de datos multivariados

Una de las caracteŕısticas de las aplicaciones forenses es la escasez de datos adicionales a

los del caso a evaluar, que presenten condiciones similares y sean de relevancia para el caso en

cuestión (lo que se denomina población de referencia). Esto dificulta su separación en conjuntos

independientes para entrenar, por una parte, un sistema automático que permita la obtención

de puntuaciones de similitud (scores), y por otra, un proceso de calibración posterior para su

transformación a LRs (score-based LRs). Por ello, en la publicación compendiada Franco-Pedroso
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2. RESULTADOS, DISCUSIÓN Y CONCLUSIONES

et al. [2016] (Sección 3.3) se aborda el problema de la obtención de LRs en entornos forenses

directamente a partir de las caracteŕısticas medidas sobre las muestras a evaluar (feature-based

LRs).

Una técnica habitualmente utilizada para este fin es la presentada en Aitken and Lucy [2004],

donde se aplica un modelo generativo probabiĺıstico que modela la variabilidad que se presenta,

por una parte, entre muestras correspondientes a la misma fuente (variabilidad intra-fuente),

y por otra, la que aparece entre muestras de distintas fuentes (variabilidad inter-fuente). Para

la primera de ellas, se asume una distribución gaussiana común a las distintas fuentes. Para la

segunda, se evalúa la distribución de las medias correspondientes a los conjuntos de muestras

de cada fuente; en función de esta distribución, se aportan soluciones para el caso gaussiano y,

cuando no se cumple esta condición, se aproxima mediante una función de densidad kernel. Estas

variabilidades se estiman sobre la denominada población de referencia (o background population).

En la publicación compendiada Franco-Pedroso et al. [2016] (Sección 3.3), se revisa esta

técnica y se propone para el segundo caso (distribución inter-fuente no gaussiana) el uso de

modelos de mezcla de gaussianas (gaussian mixture model, GMM) para aproximar la distribución

inter-fuente. Los análisis realizados muestran que la aproximación kernel tiende a sobrestimar la

densidad de probabilidad en una amplia zona del espacio cuando las distintas fuentes se agrupan

en zonas separadas. Los GMMs, en cambio, se ajustan mejor a los datos de esta naturaleza, como

puede verse en la Figura 2.2.

−3 −2 −1 0 1 2 3

−2

0

2

4

x
1

x
2

 

 

Sources means

−2
0

2
−2

0
2

4

0.1

0.2

0.3

x
1

x
2

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

(a) KDF

−3 −2 −1 0 1 2 3

−2

0

2

4

x
1

x
2

 

 

Sources means

−2
0

2
−2

0
2

4

0.5

1

1.5

2

x
1

x
2

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

(b) GMM (2 componentes)

Figura 2.2: Funciones densidad de probabilidad KDF y GMM para la variabilidad inter-objeto en un

conjunto de datos sintético.

El resultado de este mejor ajuste a la distribución de los datos en la población de referencia

es una mejor calibración de los LRs obtenidos, medida por medio del log-likelihood ratio cost

o Cllr (van Leeuwen and Brümmer [2007]). Aśı mismo, por medio de las curvas APE (van

Leeuwen and Brümmer [2007]), se observa que la mejora se produce para distintos valores de las
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2.1 Resultados y discusión

probabilidades a priori. Además, esta mejora es consistente entre las diferentes bases de datos

forenses empleadas (tintas, fragmentos de cristal y pinturas de coches).

Aunque no se destaca en la publicación compendiada anteriormente citada, otra de las ven-

tajas de la aproximación mediante GMMs es el menor coste computacional que conlleva. La

aproximación KDF puede verse como una suma equiponderada de funciones gaussianas, cada

una centrada en la media de las muestras de una fuente; para los conjuntos de datos utiliza-

dos en el citado estudio, esto implica evaluar decenas de funciones gaussianas. La aproximación

GMM, en cambio, al agrupar varias fuentes por componente, sólo necesita evaluar un número

de funciones gaussianas igual al de componentes utilizadas; en el caso de los conjuntos de datos

utilizados, del orden de unidades. La Tabla 2.1 muestra una comparativa entre ambos méto-

dos para los conjuntos de datos utilizados en la publicación compendiada Franco-Pedroso et al.

[2016] (Sección 3.3).

Base de datos KDF GMM

Tintas (40 fuentes) 40 1

Fragmentos de cristal (62 fuentes) 62 4

Pinturas de coche (36 fuentes) 36 5

Tabla 2.1: Número de funciones gaussianas a evaluar para las aproximaciones KDF y GMM.

Finalmente, es de especial importancia la incorporación de este tipo de técnicas al recono-

cimiento automático de locutor para su aplicación en entornos forenses. En la publicación com-

pendiada Franco-Pedroso and Gonzalez-Rodriguez [2016a] (Sección 3.7), se utiliza este modelo

probabiĺıstico (asumiendo distribución gaussiana de la variabilidad inter-fuente) en un sistema

de reconocimiento de locutor que incorpora caracterización acústico-fonética. Las muestras de

entrada al modelo son, en este caso, i-vectors (Dehak et al. [2011]) obtenidos a partir de las

repeticiones de una unidad lingǘıstica determinada en una grabación del locutor a modelar. De

esta forma, el sistema proporciona directamente LRs calibrados, evitando aśı el habitual proceso

de calibración que requeriŕıa de datos adicionales para su entrenamiento.

2.1.3. Caracterización acústico-fonética de locutor e idioma

2.1.3.1. Reconocimiento de idioma

Aunque la principal motivación de la caracterización acústico-fonética son las aplicaciones

forenses del reconocimiento automático de locutor, en esta Tesis también se ha explorado su uso

para el reconocimiento automático de idioma por dos motivos principales:

por una parte, existen gran cantidad de ejemplos en la literatura cient́ıfica que muestran

que la información de alto nivel es muy complementaria a los sistemas en el estado del

arte basados en caracteŕısticas acústicas de bajo nivel.

por otra, la identificación de idioma mediante sistemas que incorporen información fonética
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2. RESULTADOS, DISCUSIÓN Y CONCLUSIONES

puede proporcionar información útil en el estudio de las lenguas, por ejemplo para la

caracterización de dialectos o establecer relaciones entre distintos idiomas.

En la publicación compendiada Gonzalez-Dominguez et al. [2010a] (Sección 3.4) se describe

el sistema automático de reconocimiento de idioma desarrollado por el Grupo de Reconocimiento

Biométrico ATVS para la evaluación de reconocimiento de idioma organizada por el NIST en

el año 2009 (National Institute of Standards and Technology [2009]). Dicho sistema se basa en

la combinación de varios sub-sistemas, uno de los cuales (indicado como ATVS4 en la citada

publicación) es, a su vez, la combinación de varios sistemas fonotácticos.

Un sistema fonotáctico modela, a partir de la transcripción proporcionada por un reconoce-

dor fonético, la frecuencia de aparición de fonemas o determinadas secuencias de ellos (llamadas

n-gramas), caracterizando aśı a un idioma particular en base a los sonidos más habituales en esa

lengua. Esta combinación (reconocedor fonético más modelo estad́ıstico del idioma) se conoce

como Phone Recognizer Language Modelling (PRLM). La Figura 2.3 muestra un ejemplo de

verificación de idioma con un sistema de estas caracteŕısticas, mediante un esquema de com-

paración respecto a un modelo universal (universal background model, UBM). La aproximación

usada en el trabajo compendiado, en cambio, utiliza directamente las frecuencias de repetición

como caracteŕısticas de entrada a un clasificador SVM, lo que se conoce como Phone-SVM.

Figura 2.3: Proceso de verificación mediante un esquema PRLM.

La particularidad de este tipo de sistemas es que la codificación fonética usada no tiene porqué

coincidir con la del idioma a reconocer; por ejemplo, puede usarse un reconocedor fonético de

inglés para crear un modelo de español (u otros idiomas) en base a esa codificación fonética. En

este contexto, el reconocedor fonético se usa para definir los distintos sonidos a considerar en

el modelado del idioma, por lo que pueden usarse reconocedores fonéticos de distintos idiomas.
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De hecho, el procedimiento más habitual es usar varios de estos sistemas en paralelo, cada uno

basado en un reconocedor fonético (idioma) distinto, lo que se conoce como Parallel PRLM. Aśı,

distintos reconocedores fonéticos aportan distintas caracterizaciones acústico-fonéticas, lo que

enriquece el sistema global.

En la publicación compendiada Gonzalez-Dominguez et al. [2010a] (Sección 3.4) se muestra

cómo un sistema formado por la combinación de 10 sub-sistemas fonotácticos obteńıa resultados

de identificación equivalentes, e incluso mejores en alguna de las distintas condiciones de evalua-

ción, a los de un sistema acústico en el estado del arte. Además, combinando los dos anteriores,

se lograba mejorar el rendimiento frente a cualquiera de ellos por separado, demostrando que

ambas aproximaciones son complementarias.

2.1.3.2. Reconocimiento de locutor

Los principales trabajos realizados por el autor en el ámbito del reconocimiento automático de

locutor (Secciones 3.5, 3.6 y 3.7) tienen en común el modelado de éste de forma independiente

para distintas unidades lingǘısticas. De esta forma, se adapta el proceso de reconocimiento

automático a uno de los procedimientos habitualmente usados en entornos forenses, en los que

las comparaciones de voz se realizan entre unidades lingǘısticas equivalentes. Para ello, se hace

uso de sistemas de reconocimiento automático de voz, con el objetivo de delimitar los intervalos

de tiempo en los que se producen las distintas realizaciones de las unidades lingǘısticas de

interés. A partir de estas transcripciones, se filtra el flujo de caracteŕısticas extráıdas de forma

que el modelo de locutor se construya sólo a partir de las asociadas a la unidad de interés, como

muestra la Figura 2.4.

Speaker 
utterance 

Feature 
vectors 

{ f1, f2, …, fL } 

ASR 
segmentation M EH DX AX AX K L 

‘AX’-phone 
constrained-features 
{ f1

AX, f2
AX, …, fN

AX } 

Figura 2.4: Filtrado de caracteŕısticas mediante transcripciones automáticas.
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Gracias a los trabajos previos del Grupo de Reconocimiento Biométrico ATVS en el ámbito

de las aplicaciones forenses del reconocimiento de locutor, los autores fueron invitados a escribir

un caṕıtulo de libro para un compendio de trabajos forenses como homenaje al fonetista Phil

Rose. La publicación compendiada Franco-Pedroso et al. [2012c] (Sección 3.5) constituye aśı uno

de los primeros trabajos en que se aborda la aplicabilidad a entornos forenses del reconocimiento

automático de locutor en base a unidades lingǘısticas.

En esta publicación, las caracteŕısticas asociadas a las unidades lingǘısticas consisten en la

codificación de la trayectoria seguida por los coeficientes MFCC a lo largo del fonema, conca-

tenando finalmente las trayectorias de las distintas dimensiones en un único vector. A partir

de estas caracteŕısticas, se construyen sistemas de reconocimiento GMM-UBM (Reynolds et al.

[2000]) independientes para cada uno de los fonemas analizados, seguidos de una etapa de ca-

libración, como muestra la Figura 2.5 para un fonema determinado. De esta forma, fue posible

analizar las capacidades discriminativas y de calibración de distintos fonemas, proporcionando

además la correspondencia entre la codificación fonética utilizada por el sistema automático y

el alfabeto fonético internacional para facilitar la interpretación de resultados por parte de los

expertos en fonética.

Figura 2.5: Sistema automático de reconocimiento de locutor en base a las caracteŕısticas del fonema

’Z’.

Los resultados muestran que, en promedio, existen grandes diferencias de rendimiento de-

pendiendo del fonema en base al cual se realice el reconocimiento de locutor, aunque las tasas

de error en todos los casos están muy por encima de un sistema equivalente con modelado de

locutor independiente de fonema (sistema de referencia). No obstante, se demuestra que es po-

sible calibrar los resultados por fonema, obteniendo aśı LRs informativos utilizables en entornos

forenses. Por otra parte, se observa que la combinación de varios de estos sistemas dependientes

de fonema permite integrar satisfactoriamente la información discriminativa de locutor repartida

entre ellos, llegando a rendimientos equivalentes a los del sistema de referencia.

A ráız de esta publicación, se profundizó en el estudio de este tipo de sistemas extendiendo

el análisis a unidades lingǘısticas más largas como los difonemas (Franco-Pedroso et al. [2012a]).
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Aunque cabŕıa esperar que el mayor recorrido de las trayectorias en difonemas podŕıa propor-

cionar más poder de discriminación entre locutores , sucede que la frecuencia de aparición de

difonemas es mucho menor que la de fonemas, lo que reduce la cantidad de datos disponible para

el entrenamiento de modelos dependiente de unidad. No obstante, se observa que para algunos

difonemas particulares, el rendimiento puede ser tan bueno como el de los mejores fonemas, lo

que invita a pensar que ciertas transiciones entre fonemas incorporan información muy discrimi-

nativa. Aśı mismo, se profundizó en el análisis de estrategias de selección de unidades y técnicas

de fusión para su combinación (2.6), lo que dio lugar a rendimientos superiores a los del sistema

de referencia cuando se combinaban distintos fonemas y difonemas.

Figura 2.6: Proceso de combinación de unidades en un único LR por comparación.

En una publicación posterior (Franco-Pedroso et al. [2013]) se empleó el mismo esquema de

verificación sobre trayectorias de frecuencias formantes calculadas de forma automática, incorpo-

rando aśı caracteŕısticas fácilmente interpretables y ampliamente utilizadas en entornos forenses.

En este caso, aunque el rendimiento por unidad era similar al de trayectorias de MFCCs para

los fonemas, los difonemas presentaban, en promedio, mayores tasas de error. Aśı mismo, el ren-

dimiento obtenido por la mejor combinación de unidades era inferior al del sistema de referencia

GMM-UBM. Sin embargo, la combinación de ambas aproximaciones daba lugar a tasas de error

más bajas que cuando se combinaba el sistema de referencia con los basados en trayectorias de

MFCCs, demostrando que ambos tipos de caracteŕısticas son muy complementarios a pesar de

estar ambos basados información frecuencial.

Aunque las trayectorias en unidades lingǘısticas demostraron aportar información muy útil

en la caracterización acústico-fonética del locutor, el esquema de codificación y concatenación en

un único vector por repetición de una unidad lingǘıstica presenta dos inconvenientes importan-

tes a la hora de aplicar un modelado estad́ıstico. Por una parte, reduce la cantidad de vectores

disponibles para el entrenamiento, y por otra, aumenta la dimensión de estos, agravando el pro-

blema anterior. Esto dificultaba la aplicación de técnicas de modelado en el estado del arte como
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Figura 2.7: Trayectorias de formantes en un difonema.

los i-vectors (Dehak et al. [2011]), que requieren de gran cantidad de datos para la estimación

de subespacios de variabilidad.

Por ello, en la publicación compendiada Franco-Pedroso and Gonzalez-Rodriguez [2016b]

(Sección 3.6) se adopta un esquema diferente para incorporar la información temporal de las

frecuencias formantes, aplicando los conocidos como coeficientes delta, ampliamente utilizados

en procesado de voz para incorporar la información temporal en un entorno localizado de los

coeficientes cepstrales. De esta forma, se consiguió aplicar de forma eficiente un esquema de

verificación basado en i-vectors (Figura 2.8), cuyos resultados mejoraban significativamente a

los obtenidos mediante trayectorias de formantes y un esquema de verificación GMM-UBM.
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Figura 2.8: Esquema de verificación mediante i-vectors basados en las frecuencias formantes del fonema

’AX’.

Además del análisis de rendimiento promedio por unidad realizado en publicaciones anterio-

res, en este trabajo se analizó además el rendimiento de las distintas unidades para locutores

espećıficos. Este análisis demuestra que, aunque existen determinadas unidades lingǘısticas con

mejor rendimiento promedio entre distintos locutores, cada locutor presenta ciertas particula-

ridades que hacen que las unidades que presentan mejor rendimiento para él sean distintas de

las de otros locutores. Es decir, para cada locutor existe un conjunto determinado de unidades

lingǘısticas en base a las cuales es más fácil distinguirlo de otros. Además se demuestra que,

si el reconocimiento de esos locutores se basara únicamente en la unidad lingǘıstica con mejor

rendimiento para ellos, se obtendŕıan tasas de error tan bajas como las del sistema de referencia
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(basado también en i-vectors, pero a partir de caracteŕısticas cepstrales y sin modelado por

unidad).

Finalmente, cabe destacar de nuevo la publicación compendiada Franco-Pedroso and Gonzalez-

Rodriguez [2016a] (Sección 3.7). En ella, usando el mismo esquema de extracción de i-vectors

por unidad que en la publicación anterior, se aplican técnicas de cálculo de LRs directamente a

partir de dichos i-vectors. Aunque los LRs aśı obtenidos (feature-based LRs) presentan pérdidas

de calibración ligeramente mayores que en el caso de aplicar un paso espećıfico de calibración

(score-based LRs), estas son suficientemente bajas, con la ventaja de no necesitar datos adi-

cionales para el entrenamiento de este proceso. Además, el rendimiento por unidad mejora en

promedio respecto a la aproximación previa.

2.2. Resumen de contribuciones espećıficas

A continuación se listan las contribuciones espećıficas de esta Tesis, agrupadas por temática

(algunas publicaciones son comunes a distintas temáticas):

Revisiones bibliográficas:

1. Técnicas de extracción de caracteŕısticas mediante sistemas automáticos de recono-

cimiento de voz: Franco-Pedroso and Gonzalez-Rodriguez [2016b]

2. Uso de frecuencias formantes para reconocimiento locutor: Franco-Pedroso and Gonzalez-

Rodriguez [2016b]

3. Estrategias de segmentación automática de audio: Castán et al. [2015]

4. Técnicas de cálculo de LRs a partir de datos multivariados: Franco-Pedroso et al.

[2016]

5. Reconocimiento automático de idioma: Gonzalez-Dominguez et al. [2010a]

Nuevos métodos:

1. Incorporación de información dinámica de frecuencias formantes en unidades lingǘısti-

cas mediante coeficientes delta: Franco-Pedroso and Gonzalez-Rodriguez [2016b],

2. Modelado de variabilidad inter-fuente mediante GMMs para el cálculo de LRs a partir

de datos multivariados: Franco-Pedroso et al. [2016]

3. Cálculo de LRs a partir de caracteŕısticas en reconocimiento automático de locutor:

Franco-Pedroso and Gonzalez-Rodriguez [2016a]

4. Segmentación de audio mediante combinación de detectores calibrados: Franco-Pedroso

et al. [2014]

Aplicación a otras disciplinas forenses:

1. Cálculo de LRs a partir de datos multivariados en fragmentos de cristal, tintas y

pinturas de coche: Franco-Pedroso et al. [2016].
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Nuevas técnicas de caracterización del locutor:

1. Técnicas basadas en trayectorias de coeficientes cepstrales en unidades lingǘısticas:

Franco-Pedroso et al. [2012c], Franco-Pedroso et al. [2012a]

2. Técnicas basadas en trayectorias de frecuencias formantes en unidades lingǘısticas:

Franco-Pedroso et al. [2013]

3. Técnicas basadas en valores instantáneos de frecuencias formantes en unidades lingǘısti-

cas: Franco-Pedroso and Gonzalez-Rodriguez [2016b], Franco-Pedroso and Gonzalez-

Rodriguez [2016a]

Nuevos estudios experimentales:

1. Análisis de la capacidad discriminativa y propiedades de calibración en unidades

lingǘısticas: Franco-Pedroso et al. [2012c], Franco-Pedroso et al. [2012a], Franco-

Pedroso et al. [2013], Franco-Pedroso and Gonzalez-Rodriguez [2016b], Franco-Pedroso

and Gonzalez-Rodriguez [2016a]

2. Reconocimiento de locutor mediante análisis perceptual: Gonzalez-Rodriguez et al.

[2014], Ramos et al. [2011]

3. Técnicas de selección y combinación de sistemas: Gonzalez-Dominguez et al. [2010a],

Franco-Pedroso et al. [2012c], Franco-Pedroso et al. [2012a], Franco-Pedroso et al.

[2013], Franco-Pedroso and Gonzalez-Rodriguez [2016b], Franco-Pedroso and Gonzalez-

Rodriguez [2016a]

Difusión de resultados:

1. Foros de reconocimiento automático:

2. Reconocimiento automático de idioma: Gonzalez-Dominguez et al. [2009], Franco-

Pedroso et al. [2010], Franco-Pedroso et al. [2012a], Franco-Pedroso et al. [2013],

Franco-Pedroso et al. [2014], Gonzalez-Rodriguez et al. [2014], Franco-Pedroso and

Gonzalez-Rodriguez [2016a]

3. Foros de ciencias forenses: Franco-Pedroso et al. [2012b], Franco-Pedroso [2013]

Mejoras de la capacidad discriminativa en sistemas automáticos:

1. Contribuciones a la mejora de los sistemas automáticos de reconocimiento de locutor

e idioma del Grupo de Reconocimiento Biométrico ATVS: Gonzalez-Dominguez et al.

[2010a], Gonzalez-Dominguez et al. [2010b], Khoury et al. [2013] Lozano-Diez et al.

[2014]

2. Contribuciones a la mejora de los sistemas automáticos de segmentación de audio y

diarización de locutores: Franco-Pedroso et al. [2010], Franco-Pedroso et al. [2014]

24



2.3 Conclusiones

2.3. Conclusiones

Resumiendo, los principales resultados y contribuciones obtenidos en esta Tesis son:

en el ámbito del reconocimiento de idioma, se ha demostrado que las aproximaciones basa-

das en sistemas fonotácticos son tan eficaces en esta tarea como las basadas en información

acústica de bajo nivel, y muy complementarias a ellas.

en el ámbito del reconocimiento de locutor, se han estudiado y validado varias aproxi-

maciones a la caracterización acústico-fonética, siendo de especial interés las basadas en

frecuencias formantes por el carácter interpretable de estas caracteŕısticas. Los análisis

realizados en base a este tipo de modelado han servido para demostrar que cada locutor

tiene particularidades que hacen que sea más fácil distinguirlos de otros en base a deter-

minadas unidades. Aśı mismo, se ha analizado la aplicabilidad de este tipo de sistemas en

entornos forenses.

se han estudiado y desarrollado técnicas de cálculo de relaciones de verosimilitud directa-

mente a partir de las caracteŕısticas, y se ha validado su uso tanto en reconocimiento de

locutor a partir de caracterizaciones acústico-fonéticas como en bases de datos de otras

disciplinas forenses.

se han diseñado sistemas de segmentación automática integrables en el ámbito forense

gracias a una aproximación basada en detectores calibrados. Además, esta aproximación

proporciona una gran flexibilidad que permite distintos tipos de etiquetado (clases solapa-

das o no-solapadas) que pueden usarse indistintamente dependiendo de la aplicación final,

y supone un sistema fácilmente escalable al no considerar clases mútuamente excluyentes.

finalmente, se ha contribuido a la divulgación de aproximaciones que combinan técnicas

tradicionales y automáticas tanto en foros de acústica-fonética como en los propios del

reconocimiento automático.
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Abstract. This document describes the audio segmentation system developed 
by the ATVS – Biometric Recognition Group, at Universidad Autonoma de 
Madrid (UAM), for the Albayzin 2014 Audio Segmentation Evaluation (ASE). 
This system is based on three independent GMM-UBM acoustic-class detectors 
based on MFCC-SDC features. Each acoustic-class detector (‘mu’, ‘no’, ‘sp’) 
evaluates test recordings in a frame-by-frame manner, and the score-streams are 
filtered and calibrated previous to the detect-decision stage. Although the per-
formance of the independent acoustic-class detectors is far from being perfect in 
terms of EER, the resulting audio segmentation systems achieves low miss 
(7.9%), false alarm (10.6%) and class error (3.0%) rates, given a final 21.43% 
SER on our development subset. 

Keywords: audio segmentation, MFCC-SDC, GMM-UBM, calibration 

1 Introduction 

In contrast to our previous participation in Albayzin ASE campaigns (the 2010 edition 
[2]), this year we present a lighter but more robust system that avoids the overfitting 
introduced by Maximum Mutual Information discriminative training when the availa-
ble data is scarce. Moreover, the system developed fits better the approach followed 
in this campaign by the organizers to the problem of evaluating automatic segmenta-
tion systems [3]: instead of labeling non-overlapping segments of (maybe overlapped) 
different acoustic classes, the presence of each acoustic class should be independently 
annotated in different segments (maybe overlapped with other acoustic classes). Alt-
hough the problem can be solved from both perspectives (training different models 
for each possible acoustic-classes combination as we did in 2010 campaign), consid-
ering one independent detector for each acoustic class provides a more scalable solu-
tion and avoids the constraints regarding the available data for training the acoustic 
models. 

The system developed consists in three independent acoustic-class detectors 
(speech –‘sp’-, music -‘mu’-, and noise –‘no’-) based on the classical GMM-UBM 

IberSPEECH 2014 – VIII Jornadas en Tecnología del Habla and IV Iberian SLTech Workshop, November 19-21, 2014
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framework [4]. Each detector performs a frame-by-frame scoring of the test record-
ings, obtaining one log-likelihood stream per acoustic class. These score-streams are 
smoothed through a mean filter over a sliding window in order to deal with the high 
variability of frame-scores. Finally, smoothed frame-scores are independently cali-
brated by means of a linear logistic regression trained on a subset of the development 
dataset. 

The remainder of this paper is organized as follows. Section 2 describes the feature 
extraction process. Sections 3 and 4 describe, respectively, the acoustic-class model-
ing and the acoustic-class detection stage. Section 5 explains the experimental proto-
col followed, and shows the results obtained in our development subset. Finally, Sec-
tion 6 summarizes the key points of our submission, exposes the computational re-
quirements and draws some conclusions. 

2 Feature Extraction 

Shifted Delta Coefficients (SDC) [5] have been widely used in Language Recognition 
due to the fact that they capture the time dependency structure of the language better 
than the speed or acceleration coefficients (also known as delta and delta-delta). Simi-
larly, SDC features are expected to capture the different time dependency of the mu-
sic over the speech or noise. In fact, experiments carried out over a subset of the de-
velopment tracks revealed that GMM-UBM detectors build from MFCC-SDC fea-
tures outperform those trained on MFCC plus delta coefficients. 

For both development and evaluation tracks, one feature vector was extracted eve-
ry 10 ms by means of a 20 ms Hamming sliding window (50% overlap). For each 
window, 7 MFCC features (including C0) were computed from 25 Mel-spaced mag-
nitude filters over the whole available spectrum (0-8000 Hz). These features have 
been mean-normalized, RASTA filtered and Gaussianized through a 3-second win-
dow. Finally, their SDC were computed on a 7-1-3-7 (N-D-P-K) configuration and 
concatenated with them in a 56-coefficient feature vector. 

3 Acoustic-Class Modeling 

Acoustic classes have been modeled adopting the classical GMM-UBM framework 
[4] widely used for speaker recognition. First, a 1024-component UBM was trained 
by means of a 1-iteration k-means initialization followed by a 5-iteration EM stage. 
For this purpose, one half of the development dataset provided was used (tracks 01-
10). Secondly, acoustic-class models were MAP-adapted [4] from this UBM through 
1 single iteration and using a relevance factor r=16. Again, tracks 01-10 were used 
also for this step. 

For each acoustic class, training data were extracted from segments belonging to 
the same acoustic-class as appeared in the provided development labels. This means 
that, for instance speech segments may contain not only isolated speech but also any 
of the other acoustic classes overlapped with it. As we are aiming to develop an 
acoustic-class detector, our assumption is that the acoustic-class models should collect 
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their own acoustic class in any possible condition it may appear. On the other hand, 
segments where each class can be found isolated are very scarce in the database pro-
vided, so robust acoustic-class models cannot be trained from such small amount of 
data, as we found out in our preliminary experiments. 

4 Acoustic-Class Detection Stage 

Acoustic-class detection stage is based on a frame-by-frame scoring of the test track 
against every acoustic-class model. Frame-by-frame log-likelihoods are highly varia-
ble over time, as it can be seen on Figure 1. For a segment with an isolated acoustic-
class, it is expected that the mean log-likelihood will converge to a stable value as 
long as more frames are incorporated, as it has been shown for the speaker recogni-
tion task in [6]. For this reason, these score-streams were smoothed through a mean 
filter over a sliding window in order to have a more stable frame-score that approach-
es the “true” score of the acoustic class present in the surrounding frames. Figure 2 
shows the result of applying this mean filtering stage for a 700-frame sliding window. 
The window length was independently optimized for each acoustic-class detector, 
looking for the length that provides the best detection performance in terms of EER. 
Results are shown in Figure 3 for our development subset (tracks 11-15). 

Finally, the frame-by-frame log-likelihoods were calibrated by means of a linear 
logistic regression implemented in FoCal toolkit [1]. One different logistic regression 
is used for each acoustic-class detector, all of them trained on the same development 
subset used for the window length optimization (tracks 11-15). 

 

Fig. 1. Detail of the frame log-likelihoods for a 500-second segment of track11. 
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Fig. 2. Detail of the frame log-likelihoods for a 500-second segment of track11 after the mean 

filtering stage. 

 
Fig. 3. EER as a function of the mean-filtering window-length, obtained for our development 

subset (tracks11-15). Best results are highlighted (X: window length, Y: EER). 
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5 Experimental setup and development results 

Table 1 shows how the development data have been partitioned in order to be used for 
different purposes. One half of the development dataset has been devoted to train the 
acoustic models. From the remaining subset, one half has been used to find the opti-
mum window length for the frame-scores mean-filtering, and the resulting frame-
scores used to train the calibration rule; the final 5-track subset has been left apart in 
order to test the developed system. 

Table 1. Dataset partitioning for system development. 

Purpose Track numbers 
UBM training 01-10 

Acoustic-class modeling 01-10 
Window length optimization 11-15 

Calibration training 11-15 
Audio segmentation testing 16-20 

Segmentation results obtained for our test subset (tracks 16-20) are shown in Table 
2. As it can be seen, in spite of having acoustic-class detectors of relatively low detec-
tion performance (9.7% EER for ‘sp’, 17.2% EER for ‘mu’ and 23.4% EER for ‘no’), 
the whole audio segmentation system achieves good performance compared with 
results shown in previous Albayzin ASE campaigns. 

Table 2. Performance of the audio segmentation system: missed class time, false alarm class 
time, class error time and overall segmentation error, in seconds and percentages. 

Error Time (s) % scored class time 
Missed Class 2262.51 7.9 

False Alarm Class 3057.21 10.6 
Class error 853.85 3.0 

Overall Segmentation Error 21.43 % 

6 Summary and conclusions 

ATVS – Biometric Recognition Group has developed an efficient and light audio 
segmentation system. This system is based on three independent GMM-UBM acous-
tic-class detectors that can be developed and tuned independently. For instance, detec-
tors in submitted systems make use of a different mean-filtering window-length and 
independent score-calibration rules, but they could be based in different features as 
well. Moreover, the adopted approach of modeling broad acoustic classes (‘mu’, ‘no’, 
‘sp’) instead of the specific sub-classes given by all the possible combinations 
(‘mu+no’, ‘sp+no’, etc.) allows to develop a more robust system and avoids 
overfitting when the available training data is scarce. Finally, it can be seen in Table 3 
that the computational requirements in terms of CPU time are very low, allowing the 
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testing to be run in 0.225xRT for each track. Experiments were carried out in a ma-
chine equipped with two Xeon Quad Core E5335 microprocessors at 2.0GHz (allow-
ing 8 simultaneous threads) and 16GB of RAM. 

Table 3. Testing time per track (~60 min) for the different stages and total time as a real-time 
(xRT) factor. 

Stage Time 
Feature extraction 19 secs 

Frame-by-frame scoring 13 min 
Scores filtering and calibration 5 sec 

Total (xRT) ~0.225 
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Abstract

Audio segmentation is important as a pre-processing task to improve the performance of many speech technology
tasks and, therefore, it has an undoubted research interest. This paper describes the database, the metric, the systems
and the results for the Albayzín-2014 audio segmentation campaign. In contrast to previous evaluations where the
task was the segmentation of non-overlapping classes, Albayzín-2014 evaluation proposes the delimitation of the
presence of speech, music and/or noise that can be found simultaneously. The database used in the evaluation was
created by fusing different media and noises in order to increase the difficulty of the task. Seven segmentation
systems from four different research groups were evaluated and combined. Their experimental results were analyzed
and compared with the aim of providing a benchmark and showing up the promising directions in this field.

Keywords: Audio segmentation, Broadcast news, Albayzín-2014 evaluation

1 Introduction
Automatic audio segmentation aims at providing bound-
aries to delimit portions of audio with homogeneous
acoustic content. The resulting segments are classified
in different acoustic types according to the final applica-
tion, such as different speakers, languages, speech/non-
speech portions, or acoustic events among others. In
most cases, automatic audio segmentation is considered
a pre-processing tool to improve the performance of the
subsequent system related with speech technologies. For
example, in very large multimedia repositories, the speech
is usually found along with music or environmental noise.
The presence of these acoustic classes must be accu-
rately labeled because it is critical for the subsequent sys-
tems to be successful. Thus, the development of accurate
Audio Segmentation Systems is essential to allow post-
processing systems, such as automatic speech recognition
(ASR) or spoken document retrieval (SDR), to perform
adequately in real-world environments.

*Correspondence: dcastan@unizar.es
1ViVoLab, Universidad de Zaragoza, Zaragoza, Spain
Full list of author information is available at the end of the article

Audio segmentation systems can address the problem in
different fields or contexts. In the first works of automatic
segmentation, the goal was the challenging segmentation
of sports material and commercials. The studies focused
on speech/music segmentation from radio stations as in
[1] and [2] showing the importance of the audio seg-
mentation to improve ASR systems. The following studies
dealt with the recognition of broad classes to produce an
adaptation of the ASRmodels. For example, Srinivasan [3]
classified the audio of a video into mixed classes such as
music with speech or speech with background noise using
a combination of acoustic and perceptual features. Nowa-
days, most of the studies focus on the robust and generic
segmentation of broad classes [4] and the segmentation of
acoustic events [5] for audio retrieval in large multimedia
databases.
A specific task with large multimedia databases is the

segmentation of broadcast news (BN) recordings. This
task is very challenging because the audio contains differ-
ent kinds of sequences with a very heterogeneous style.
Several international evaluation campaigns, such as the
TREC NIST evaluations for SDR [6], the ESTER eval-
uation campaigns for rich transcription (RT) in French
[7], and the COST278 evaluation for segmentation and

© 2015 Castán et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
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speaker clustering in a multi-lingual domain [8], have
already been proposed to face this task in the past.
Nowadays, the amount of audio documents is expo-

nentially increasing due to the audio-sharing websites or
the audio-on-demand systems. Users around the world
can upload and share their contents and, for that rea-
son, the variability of the acoustic conditions is extremely
high. As a result, systems must be able to adapt their role
in high-variability data spaces, providing robust perfor-
mance in different conditions. Due to the importance of
audio segmentation and the need to develop robust sys-
tems capable of operating over a rich variety of audio
conditions, the Albayzín-2014 campaign was proposed as
an international evaluation tomeasure the performance of
segmentation systems for different databases and different
contexts. This segmentation evaluation, which is part of
an open set of evaluations organized by the RTTH1 every
2 years, compares systems and approaches from different
research institutions in an independent way.
In contrast to previous evaluations such as Albayzín-

2010 [9], where five unambiguous acoustic classes were
defined, the Albayzín-2014 evaluation proposed the
delimitation of the presence of speech, music and/or noise
that can be found simultaneously. Another relevant dif-
ference was the composition of the database: while in
previous evaluations the databases were composed of a
unique BNmedia (TV in Albayzín-2010mostly in Catalan
[9] or radio in Albayzín-2012 [10] mostly in Spanish), the
Albayzín-2014 database was a combination and fusion of
three different databases with TV, radio, and noise record-
ings. This composition increased the difficulty of the task
since the resulting database introduced more variability,
presenting more realistic conditions over a wide variety of
acoustic sources.
The remainder of the paper is organized as follows: the

database and the metric used for Albayzín-2014 segmen-
tation evaluation are presented in Section 2. Section 3
briefly describes the submitted systems. The results of the
evaluation and the fusion of the systems are presented
and discussed in Section 4. Finally, the summary and the
conclusions are presented in Section 5.

2 Database and evaluationmetric
The proposed evaluation consisted of segmenting a
broadcast audio document and assigning labels for each
segment indicating the presence of speech, music, and/or
noise. That is, two or more classes could be found simul-
taneously in audio segments and the goal was to indicate
if one, two, or the three aforementioned classes were
present for a given time instant. For example, music could
be overlapped with speech, or noise could be found in
the background when someone was speaking. Therefore,
the presence of these three classes involve the definition
of eight non-overlapping classes: silence, speech, music,

noise, speech with music, speech with noise, music with
noise, and speech with music and noise. In this evaluation,
Speech was present every time that a person was speaking
but not in the background or singing. Music was under-
stood in a general sense and noise was considered every
time some acoustic content was present different than
speech and music (including speech in the background,
which usually comes from a crowd).
The goal was to segment and label audio docu-

ments indicating where speech, music, and/or noise were
present. Unlike 2010 evaluation criteria [9], no prior
classes were defined (speech, music, speech with noise
in background, speech with music in background, other)
and a multiple layer labeling approach was proposed
instead. In summary, the goal was to segment the incom-
ing audio into three (possibly overlapped) acoustic classes:
speech, music, and noise, where the audio was drawn from
different databases that have been merged or even over-
lapped, thus dramatically increasing the difficulty of the
task with regard to previous evaluations.

2.1 Database
The database for this evaluation is a combination of three
databases defined below:
The first dataset is the Catalan broadcast news database

from the 3/24 TV channel proposed for the Albayzín-2010
Audio Segmentation Evaluation [9]. This database was
recorded by the TALP Research Center of the Polytech-
nic University of Catalonia in 2009 under the Tecnoparla
project [11] funded by the Government of Catalonia. The
Corporació Catalana de Mitjans Audiovisuals (CCMA),
owner of the multimedia content, allows its use for tech-
nology research and development. The database consists
of around 87 h of recordings in which speech can be
found 92 % of the time, music is present 20 % of the
time, and noise in the background is present 40 % of the
time. Another class called otherswas defined which can be
found 3 % of the time. Regarding the overlapped classes,
speech can be found along with noise 40 % of the time and
along with music 15 % of the time.
The second dataset is the Aragón Radio database

from the Corporación Aragonesa de Radio y Televisión
(CARTV) which was used for the Albayzín-2012 Audio
Segmentation Evaluation [10]. As the owner of the audio
content, Aragón Radio and the Corporación Aragonesa de
Radio y Televisión allow the use of these data for research
purposes.
The last dataset is composed of environmental sounds

from Freesound.org [12] and HuCorpus [13]. These
sounds were merged with segments from the 3/24 TV and
Aragón Radio databases.
All the data was supplied in PCM format, mono, little

endian 16 bit resolution, and 16 kHz sampling frequency.
The database includes approximately 35 h of audio: 20 h
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Fig. 1 Distribution of the different audio classes in the training set of
the Albayzín-2014 evaluation

were used for the training set and 15 h were used for the
test set. The distribution of the audio classes in the train-
ing set is presented in Fig. 1. The chart shows that the
classes containing speech represent more than 92 % of the
total time. There are two residual classes, isolated noise
and music with noise, that represent less than 0.5 and
0.3 % of the total time, respectively.

2.2 Evaluation metric
As in the NIST RT Diarization evaluations [14], the seg-
mentation error score (SER) was used to measure the
performance of the proposed systems. SER is computed
as the fraction of class time that is not correctly attributed
to that specific class (speech, noise, or music). The SER
score was computed over the entire file to be processed,
including regions where more than one class was present
(overlap regions).
The overall SER score is defined as the ratio of the over-

all segmentation error time to the sum of the durations of
the segments that are assigned to each class in the file.
Given the dataset to evaluate �, each document is

divided into contiguous segments at all “class change
points” which occur each time any reference class (oracle)
or system class (hypothesis) starts or ends. Thus, the set
of active reference classes and/or system classes does not
change during any segment. The segmentation error time
for each segment n is defined as

E(n) = T(n)
[
max

(
Nref(n),Nsys(n)

) − NCorrect(n)
]

(1)

where T(n) is the duration of segment n, Nref(n) is the
number of reference classes that are present in segment n,
Nsys(n) is the number of system classes that are present
in segment n, and NCorrect(n) is the number of reference
classes in segment n correctly assigned by the segmenta-
tion system.

SER =
∑

n∈�

E(n)

∑

n∈�

(T(n)Nref(n))
(2)

The segmentation error time includes the amount of
time that is assigned to the wrong class, missed class time,
and false alarm class time:

• Class error time: The class error time is the amount of
time that has been assigned to an incorrect class. This
error can occur in segments where the number of
system classes is greater than the number of reference
classes but also in segments where the number of
system classes is lower than the number of reference
classes whenever the number of system classes and
the number of reference classes are greater than zero.

• Missed class time: The missed class time refers to the
amount of time that a class is present but not labeled
by the segmentation system in segments where the
number of system classes is lower than the number of
reference classes.

• False alarm class time: The false alarm class time is
the amount of time that a class has been labeled by
the segmentation system but is not present in
segments where the number of system classes is
greater than the number of reference classes.

The forgiveness collar defines a no-score area around
reference segment boundaries. Typically, the collar is 250
ms for speaker diarization tasks [14] and 1 s for segmenta-
tion tasks [9]. A forgiveness collar of 1 s, before and after
each reference boundary, was considered in order to take
into account both inconsistent human annotations and
the uncertainty about when a class begins or ends. This
collar is enough for the purpose of this segmentation task
where the goal is to identify the areas with speech and
their background to allow the adaptation of models for
other systems as ASR. The implementation of the collar
was provided by scoring tool of the NIST RT Diarization
evaluations [14].

3 Segmentation systems
3.1 General description of audio segmentation systems
The general scheme of an audio segmentation system
can be divided into two basic steps: the feature extrac-
tion method and the segmentation/classification strategy.
Lavner in [15] and more recently Theodorou in [16] pro-
vide good reviews of the features and the classification
methods used in the literature.
The acoustic feature extraction is the first step in an

audio segmentation system. The audio input is divided
into overlapping windows and, for each window, a feature
vector is extracted. The feature vectors are descriptors
used to distinguish the differences among classes in the
time and frequency domains. Features can be grouped
into two classes according to the time span they repre-
sent: frame-based and segment-based. Frame-based fea-
tures are extracted within short periods of time (between
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10 and 30 ms) and are commonly used in speech-related
tasks where the signal can be considered stationary over
that frame.Mel Frequency Cepstrum Coefficients (MFCC)
or Perceptual Linear Prediction (PLP) coefficients are gen-
erally used as frame-based features as proposed in [17–22]
among a great collection of works. Frame-based features
have also been proposed for segmenting and classifying
BN audio into broad classes. As an example, two pitch-
density-based features are proposed in [23], the authors
use short-time energy (STE) in [1, 24, 25], and harmonic
features are used in [26–28]. The frame-based features can
be directly used in the classifier. However, some classes
are better described by the statistics computed over longer
periods of time (from 0.5 to 5 s long). These characteris-
tics are referred in the literature as segment-based features
[29, 30]. For example, in [31], a content-based speech dis-
crimination algorithm is designed to exploit the long-term
information inherent in the modulation spectrum; and
in [32], authors propose two segment-based features: the
variance of the spectrum flux (VSF) and the variance of the
zero crossing rate (VZCR).
Once the feature vectors are computed, the next step

deals with the detection and the classification of the
segments. The segmentation/classification strategies can
be divided into two different groups depending on how
the segmentation is performed. The first group detects
the break-points in a first step and then classifies each
delimited segment in a second step. We refer to them
as segmentation-and-classification approaches but they
are also known in the literature as distance-based tech-
niques. These algorithms have the advantage that they
do not need labels to delimit the segments because the
segmentation is based on a distance metric estimated
for adjacent segments. When the distance between two
adjacent segments is greater than a certain threshold, a
break-point is set and identified as an acoustic change-
point. The resulting segments are clustered or classified in
a second stage. The Bayesian Information Criterion (BIC)
is a well-known distance-based algorithm. It is widely
employed in many studies, such as [33], to generate a
break-point for every speaker or environment/channel
condition change in the BN domain and also, in [34]
and [35], to identify mixed-language speech and speaker
changes, respectively. The second group of segmenta-
tion/classification strategies is known as segmentation-by-
classification or model-based segmentation. In contrast
to the segmentation-and-classification algorithms, these
algorithms classify consecutive fixed-length audio seg-
ments and, therefore, segment labels are required in a
training step because each class of interest is described
by a model. The segmentation is produced directly by
the classifier as a sequence of decisions. This sequence
is usually smoothed to improve the segmentation per-
formance, since the classification of frames produces

some spurious labels because adjacent frames are poorly
considered.
A good and common approach to this procedure can be

found in [36] where the author combines different features
with a Gaussian Mixture Model (GMM) and a maximum
entropy classifier. In [37], the authors use a factor analysis
approach to adapt a universal GMMmodel to classify BN
in five different classes. The final decisions of both sys-
tems are smoothed with a Hidden Markov Model (HMM)
to avoid sudden changes.
Both segmentation/classification strategies were used

by participants in the Albayzín-2014 Audio Segmen-
tation Evaluation: three participating groups chose
segmentation-by-classification algorithms with different
model strategies and one participating group chose a
segmentation-and-classification algorithm based on BIC
for the first stage and on different classification systems
for the second stage. A brief description of the features
and the systems is given below.

3.2 Description of the participating systems
Four research groups participated in this evaluation with
seven different systems: Aholab-EHU/UPV (University
of the Basque Country), GTM-UVigo (University of
Vigo), ATVS-UAM (Autonomous University of Madrid),
and CAIAC-UAB (Autonomous University of Barcelona).
Each participant had 3months to design the segmentation
systemwith the training data. After that time, participants
were given 1 month to process the test data. The partici-
pants had to submit their results with hard-segmentation
labels (in RTTM format from NIST) along with a techni-
cal description of the submitted systems. All participant
teams had to submit at least a primary system but they
could also submit up to two contrastive systems. Also,
for fusion purposes, participants were required to sub-
mit the frame-level scores for each non-overlapping audio
class. Groups are listed in the order in which their primary
systems were ranked in the evaluation. A more detailed
description of the systems can be found in theAdvances in
Speech and Language Technologies for Iberian Languages
proceedings [38].

3.2.1 Group 1
This group presented a single primary system where two
different segmentation-by-classification strategies were
fused to build a robust system.
The first strategy consisted of a hidden Markov model

(HMM) scheme with eight separate HMM models for
each non-overlapping class: silence, speech, music, noise,
speech with music, speech with noise, music with noise,
and speech with music and noise. Thirteen MFCCs with
first and second derivatives were used for the classifi-
cation and each HMM had 3 states with 512 Gaussian
components per state.
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The second strategy consisted of a GMM presegmen-
tation and a speech label refinement by means of i-
vector classification via multilayer perceptron (MLP). Six
GMMs with 32 components for silence, music, noise,
clean speech, speech with noise, and speech with music
were used in a Viterbi segmentation. Twelve MFCCs with
first- and second-order derivatives were used for the clas-
sification (the energy-related coefficient was not used
in this case). Once the speech segments were identi-
fied, the i-vector extraction process was carried out. A
sliding window was used to extract the i-vectors corre-
sponding to each speech segment. Then, an MLP was
used to classify each i-vector as clean speech, speech
with noise, speech with music, or speech with music and
with noise.
The outputs of both subsystems were post-processed to

discard too short segments. Finally, a label fusion algo-
rithm based on the confusion matrices of the systems
involved in the fusion was applied to combine the results
of both subsystems andmaximize the precision of the final
labels.

3.2.2 Group 2
Group 2 presented a primary system and two con-
trastive systems, all of them with a segmentation-and-
classification strategy.
The segmentation stage was common for all the systems

and consisted of a Bayesian Information Criterion (BIC)
approach using 12 MFCCs plus energy and featuring a
false alarm rejection strategy: the occurrence of acoustic
change-points was supposed to follow a Poisson process,
and a change-point was discarded with a probability that
varied in function of the expected number of occurrences
in the time interval going from the previous change-point
to the candidate change-point.
The classification stage was different for each system.

The primary system was developed using i-vector rep-
resentations of the segments obtained from the previous
step with logistic regression classification. Perceptual lin-
ear prediction (PLP) analysis was used to extract 13 cep-
stral coefficients, which were combined with two pitch
features and augmented with their delta features.
The classification in contrastive system 1 consisted of

a Gaussian mean supervector representation of the seg-
ments obtained from the previous step through the adap-
tation of a Universal Background Model (UBM) with 256
components. Classification was performed employing a
support vector machine (SVM) with a linear kernel. The
feature vectors used in this classifier were 12 MFCCs plus
energy as in the segmentation stage, augmented with their
delta and delta-delta coefficients.
The contrastive system 2 used a classic GMMmaximum

likelihood classification with 512 components performed
by doing MAP adaptation of a UBM with full-covariance

matrices. The set of features was the same that was used
in the primary system.

3.2.3 Group 3
Group 3 presented a single primary system based on
three independent GMM-UBM detectors of broad acous-
tic classes (speech, music, and noise in every possible
context) with a segmentation-by-classification strategy.
The system was based on MFCC feature vectors

including shifted delta coefficients to capture the time
dependency structure of the audio. Acoustic classes
were modeled through 1024-component MAP-adapted
GMMs. Each detector performed a frame-by-frame
scoring obtaining one log likelihood stream per acous-
tic class. These score-streams were smoothed through
an average filter over a sliding window in order to deal
with the high variability of frame scores. Finally, the
smoothed frame-level scores were independently cali-
brated for each acoustic class by means of linear logistic
regression.

3.2.4 Group 4
Group 4 presented a primary system and a contrastive
system with a segmentation-by-classification strategy for
both of them.
The proposed system was based on a “binary key” (BK)

modeling approach originally designed for speaker recog-
nition [39] and later applied successfully in a speech activ-
ity detection task [40]. The approach provided a compact
representation of a class model through a binary vector
(vector only containing zeros and ones) by transform-
ing the continuous acoustic space into a discrete binary
one. This transformation was done by means of a UBM-
like model called Binary Key Background Model (KBM).
Once the binary representation of the input audio was
obtained, subsequent operations were performed in the
binary domain, and calculations mainly involve bit-wise
operations between pairs of binary keys. Segment assign-
ment was done by comparing each segment BK with the
N BKs (previously estimated using the KBM and training
data) for each of the N target audio classes. Two alterna-
tives to compute the similarity between two binary keys
were proposed, one for the primary system and other for
the contrastive system, respectively.

4 Experimental results
This section presents and analyzes the results of the
Albayzín-2014 Audio Segmentation Evaluation for all the
primary and contrastive systems of each group.
Table 1 shows the segmentation error rate (as defined

in Eq. 2) for the seven submitted systems. No system
was trained with additional material apart from the audio
provided for the evaluation. As can be seen from the
table, both first (20.68 %) and second (20.80 %) best
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Table 1 Segmentation error rate of participating systems

Primary Contrastive 1 Contrastive 2

Group 1 20.68 - -

Group 2 20.80 29.13 22.52

Group 3 30.67 - -

Group 4 31.59 33.93 -

systems obtained very similar performance even though
the systems represent very different strategies to per-
form the segmentation: the primary system of group 1 is
based on a fusion of two segmentation-by-classification
approaches while the primary system of group 2 is based
on a segmentation-and-classification approach. The pri-
mary systems of group 3 and group 4 also show similar
performance (around 31 %), but they are far from the pri-
mary systems of groups 1 and 2. It is apparent that, for all
groups, the primary systems outperform the contrastive
systems, indicating that the choice of the main strategy of
each group was done properly.
Figure 2 compares the misses (blue columns) and the

false alarms (orange columns) of the participating systems
for the overlapped acoustic classes individually (music,
noise, and speech). Each system is represented by a gX_Y
notation where X indicates the group index and Y indi-
cates if the system is primary (p) or contrastive (c). The
main source of the segmentation error comes from the
noise detection, but the music detection also presents a
considerably high error rate. This is because the music
and noise classes are rarely presented alone but instead
mixed with speech. Also, the lack of data for these iso-
lated classes makes very difficult to train suitable models
to detect them. Note that the two best systems (the pri-
mary systems of group 1 and group 2) have almost the
same error rate coming from the detection of the noise
class and both are much lower than those of the rest of the
systems. The main difference between the systems sub-
mitted by groups 1 and 2 is that the former detects the
music class better than the latter while the latter detects
the speech classes slightly better than the former.

To accurately analyze the source of the errors, Fig. 3
presents the confusion matrices of the primary systems.
The matrices show the percentage of the reference classes
(rows) associated to hypothesized non-overlapping acous-
tic classes (columns). The classes are represented as SI
for “silence,” MU for “music,” NO for “noise,” SP for
“speech,” MN for “music+noise,” SM for “speech+music,”
SN for “speech+noise,” and SA for “speech+music+noise.”
The matrices clearly show that the most common errors
are the confusions between “speech+music+noise” with
“speech+noise” or “speech+music” and also between
“speech+noise” and “speech.” In addition, there is a com-
mon error in all the systems with “music+noise” being
classified as “music.” Note that the systems of group 2
and group 4 incur in a non-negligible error rate coming
from the detection of the “silence” class since these sys-
tems do not implement a silence detector and, therefore,
false alarms are produced.
A fusion of different systems usually improves the

final result because the information comes from various
sources [41]. For that purpose, the participants provided
frame-level scores for each non-overlapping audio class
for the training and test datasets. Table 2 shows the seg-
mentation error rate when the scores of the primary
systems are combined. The fusion was done with different
combinations of the primary systems: group 1 and group 2
in the first row of the table; groups 1, 2, and 3 in the second
row; group 1, 2, and 4 in the third row; and a combina-
tion of all the systems in the fourth row of the table. We
used a set of techniques to combine the scores. Firstly, one
Gaussian distribution is estimated with class-dependent
full covariance andmean withmaximum likelihood on the
training data for each class. This technique is known as
Gaussian Back-End (GBE) and the results are shown in
the first column of the table. We trained the fusion model
with the scores computed over the training dataset, and
we used the test dataset to compute the SER. To smooth
the decisions, a Viterbi algorithm was chosen to deter-
mine the maximum likelihood transitions among classes.
The segments are delimited by the transitions given by
the Viterbi algorithm (second column of Table 2). On the

Fig. 2 Distribution of errors across the eight systems and for each acoustic class
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Fig. 3 Confusionmatrices of the primary systems for the non-overlapped classes: SI (silence), MU (music), NO (Noise), SP (speech), MN (music and noise),
SM (speech with music), SN (speech with noise), and SA (speech with music and noise)

other hand, we used the segments provided by the group
2 since the approach of this group is based on a previous
unsupervised segmentation stage with BIC. In this case,
we accumulated the log likelihood of each frame within
the same segment, which was given the label of the class
with the highest accumulated log likelihood. The results
of this approach can be seen in the third column of the
table. The best performance was attained when fusing the
primary systems of groups 1, 2, and 3. Finally, the last col-
umn of the table gives us an idea about the performance
of the fusion if the segmentation was perfect. It clearly
shows a degradation between 4 and 5 % in the segmenta-
tion stage with regard to the oracle segmentation, because
occasionally the delimitation boundaries among segments
may be fuzzy. However, the fusion reduces the segmenta-
tion error rate for all the approaches compared with the
winning primary system.

Table 2 Segmentation error rate of several score-level fusions of
the primary systems. The result of the system G1 is 20.68 for
comparison purposes

GBE GBE
GBE GBE

Viterbi
AccumLLk AccumLLk
GTM Seg. Oracle Seg.

G1+G2 19.60 19.41 19.30 14.36

G1+G2+G3 19.56 19.31 19.16 14.30

G1+G2+G4 19.94 19.77 19.64 15.58

G1+G2+G3+G4 19.86 19.67 19.62 15.31

5 Conclusions
This article presents the Albayzín-2014 Audio Segmen-
tation Evaluation, including the main features of the
database, an overview of the participating systems and
evaluation and post-evaluation results. The newAlbayzín-
2014 audio segmentation database combines data from
two different media (TV and radio), with added noises
of diverse nature, thus increasing the difficulty of the
task. Using this database an audio segmentation task was
proposed, where the systems were required to identify the
presence of speech, music and/or noise, either isolated
or overlapped. The Albayzín-2014 Audio Segmentation
Evaluation contributed to the evolution of the audio seg-
mentation technology in broadcast news domains by pro-
viding a more general and realistic database, compared to
those used in the Albayzín-2010 and -2012 Audio Seg-
mentation Evaluations [10, 30]. The main features of the
approaches and the results attained by seven segmen-
tation systems from four different research groups have
been presented and briefly analyzed. Three of the systems
were based on a segmentation-and-classification strategy,
while the rest of them were based on a segmentation-by-
classification strategy.
Then, we presented seven segmentation systems and the

results from four different research groups which partic-
ipated in the Albayzín-2014 evaluation. The approaches
and the results of each group were studied and compared.
Three of the seven systems (from the same group) are
based on a segmentation-and-classification strategy while
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the rest of the systems are based on a segmentation-by-
classification strategy. Most of the systems used com-
mon speech recognition features, such as MFCC, LFCC,
or PLP.
The two best systems attained a segmentation error rate

(SER) of around 20 %, following two different strategies
but with a common classification approach based on i-
vectors, showing the competitiveness of this technique.
Both systems revealed that the main source of segmen-
tation error was the detection of the noise class, mainly
due to the low energy of noise signals. The results were
analyzed using the non-overlapping classes through the
confusion matrices of the primary systems. The matrices
showed that the most common errors were the confusions
between “speech+music+noise” with “speech+noise” or
“speech+music” and also between “speech+noise” and
“speech.” Finally, the participating systems were combined
under different approaches, yielding a relative improve-
ment of up to 7.35 % SER.

Endnote
1Spanish Thematic Network on Speech Technologies:

http://www.rthabla.es.
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Abstract
In forensic science, trace evidence found at a crime scene and on suspect has to be evalu-

ated from the measurements performed on them, usually in the form of multivariate data (for

example, several chemical compound or physical characteristics). In order to assess the

strength of that evidence, the likelihood ratio framework is being increasingly adopted. Sev-

eral methods have been derived in order to obtain likelihood ratios directly from univariate

or multivariate data by modelling both the variation appearing between observations (or fea-

tures) coming from the same source (within-source variation) and that appearing between

observations coming from different sources (between-source variation). In the widely used

multivariate kernel likelihood-ratio, the within-source distribution is assumed to be normally

distributed and constant among different sources and the between-source variation is mod-

elled through a kernel density function (KDF). In order to better fit the observed distribution

of the between-source variation, this paper presents a different approach in which a Gauss-

ian mixture model (GMM) is used instead of a KDF. As it will be shown, this approach pro-

vides better-calibrated likelihood ratios as measured by the log-likelihood ratio cost (Cllr) in

experiments performed on freely available forensic datasets involving different trace evi-

dences: inks, glass fragments and car paints.

Introduction
A likelihood ratio represents a ratio of likelihoods between two competing hypothesis. In the
context of forensic science, these two hypotheses are that of the prosecution,Hp (for instance,
the suspect originated the crime scene mark), and that of the defence,Hd (for instance, the sus-
pect is not the origin of the crime scene mark). If some samples of a given material coming
from a known source (control data) and some others coming from an unknown source (recov-
ered data) are given, both known as the evidence (E), and some other information (I) related to
the crime is available, the trier of fact (judge or jury) looks for the ratio between the probabilities
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of theHp andHd hypotheses given by

PðHpjE; IÞ
PðHdjE; IÞ

ð1Þ

expressing the relative strength of one hypothesis versus the other.
However, the role of the forensic scientist must be restricted to evaluate the likelihood of the

evidence assuming that any of the competing hypothesis is true, and it is not the evaluation of
any other information different from that needed to evaluate the strength of the evidence.
Using Bayesian theory, the above described ratio can be decomposed in the following way:

PðHpjE; IÞ
PðHdjE; IÞ

¼ PðHpjIÞ
PðHdjIÞ

� PðEjHpÞ
PðEjHdÞ

¼ PðHpjIÞ
PðHdjIÞ

� LR ð2Þ

making a clear separation of the role of the forensic scientist and that of the judge or jury.
Thus, the likelihood ratio (LR) strengthens (LR> 1) or weakens (LR< 1) the probabilities of
the propositions, in the light of the newly observed evidence. In the process of assigning/com-
puting the LR, additional data, usually known in forensics as background population, is needed
to obtain the likelihood of the parameters for the model used.

A possible statement of the hypotheses at the source level [1] is:

• Hp: the samples found at the crime scene and those obtained from the suspect come from a
common source.

• Hd: the samples found at the crime scene and those obtained from the suspect come from dif-
ferent sources.

Other forms of the hypotheses are possible [1], but the analysis is outside the scope of this
paper.

Likelihood ratios can be either directly derived from the data through the application of
some probabilistic models (also known as feature-based LRs) or by transforming simple raw
scores from a recognition system through a calibration step [2] (also known as score-based
LRs). The score-based approach has been mainly used for biometric systems [3], in which the
pattern recognition process does not follow a probabilistic model but a pattern matching pro-
cedure [4], the assumed conditions does not exactly hold (e.g. observations are not i.i.d. or do
not follow a normal distribution), or the number of dimensions in the feature space makes the
problem intractable (e.g. image vectors [5] or GMM-means supervectors [6]). However, recent
approaches in face and speaker recognition modalities have begun to apply probabilistic meth-
ods with the aid of dimensionality reduction techniques [7–9]. On the other hand, the feature-
based approach is usually followed in applied statistics to forensic science [10–12], where the
observations are quite stable features whose within-source variation can be modelled by a nor-
mal distribution (for instance, measurements of the concentration of some chemical
compounds).

A widely used approach within forensics [12–14] is that presented in [10], where the likeli-
hood ratio is computed from multivariate data through the application of a two-level random
effect model taking into account the variation i) between samples coming from the same
source, known as within-source variation, and ii) between samples coming from different
sources, known as between-source variation. Within-source variation is taken to be constant
and normally distributed, and expressions for both normal and non-normal distribution for
the between-source variation are given. When a normal distribution can not be assumed for
the between-source variation, a kernel density function (KDF) [15] is used. However, as it will

GMMs of Between-Source Variation for LR Computation fromMultivariate Data
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be shown, this KDF approach overestimates the between-source density function in some areas
of the feature space for datasets where sources are grouped in several clusters.

In order to avoid this problem, an alternative approach is presented in this work, in which
the between-source distribution is represented by means of a Gaussian mixture model (GMM)
[16, 17], whose parameters are obtained through a maximum-likelihood (ML) criterion, with
the aim of obtaining a better representation of how the parameter being modelled (sources
mean) varies across the different sources observed in the background population. As being also
a probabilistic method for clustering data, GMMs provide a better representation of such kind
of datasets, which leads to obtain better calibrated likelihood ratios.

The rest of the paper is organized as follows. In Section [Likelihood ratio computation], the
likelihood ratio computation method is presented and the generative model defined. Section
[Models for between-source distribution] describes the expressions to be used for a normally
distributed between-source variation and those to be used when it is represented by means of a
Gaussian mixture; for this latter case, the KDF expression used in [10] is also shown. In Section
[GMMs for non-normal between-source distributions], the GMM training process is
described, and the differences between using the KDF and the GMM approaches are
highlighted. Section [Experimental framework] describes the forensic databases, the experi-
mental protocols and the evaluation metrics, while the results are presented and discussed in
Section [Results and Discussion]. Finally, conclusions are drawn in Section [Conclusions].

Likelihood ratio computation
In order to compute the likelihood ratio, the probability of the evidence has to be evaluated
under the two competing hypothesis, Hp andHd, where the evidence consists in both the con-
trol (y1) and the recovered (y2) datasets (see the mathematical notation given in the [Appen-
dix]). IfHp is assumed true, the joint probability of both datasets has to be evaluated; on the
other hand, ifHd is assumed true, each dataset is generated from a different source and hence
they are independent.

LR ¼ PðEjHpÞ
PðEjHdÞ

¼ Pðy1; y2jHpÞ
Pðy1; y2jHdÞ

¼ pðy1; y2Þ
pðy1Þ � pðy2Þ

ð3Þ

If a generative model with parameters Λ for the observed samples is assumed, the Bayesian
solution is obtained by integrating out these parameters (if they vary from one source to
another) for a given distribution which is usually obtained from a background population data-
set, p(Λ|X).

pðy1; y2Þ
pðy1Þ � pðy2Þ

¼
R
Lpðy1; y2jLÞ pðLjXÞ dLR

Lpðy1jLÞ pðy2jLÞ pðLjXÞ dL ð4Þ

Final expressions for the numerator and denominator of the likelihood ratio will depend on
the assumed generative model, which defines both the parameters Λ and the specific density
functions. In this Section, we will describe the generative model used in [10], and the within-
source distribution will be defined.

The generative model
The two-level random effect model [18] used in [10] can be seen as a generative model in
which a particular observed feature vector xij coming from source i is generated through

xij ¼ yi þ cj ð5Þ
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where θi is a realization of the source random variable Θ and ψj is a realization of the additive
random noiseC representing its within-source variation. This noisy term is taken to be con-
stant among different sources and randomly distributed following

C � N ð0;WÞ ð6Þ

whereW is the within-source covariance matrix. Thus, the conditional distribution of the ran-
dom variable Xi (from which xij is drawn), given a particular source i, follows a normal distri-
bution with mean θi and covariance matrixW

XijjðY ¼ yiÞ � N ðyi;WÞ ð7Þ

Within-source covariance matrix can be computed from a background population dataset,
comprising N =m � n samples coming fromm different sources, through

W ¼ Sw

N �m
ð8Þ

being Sw the within-source scatter matrix given by

Sw ¼
Xm
i¼1

Xn
j¼1

ðxij � �xiÞðxij � �x iÞT ð9Þ

where �x i is the average of a set of n feature vectors from source i.
As the assumed generative model has only one varying parameter, θ, characterizing the par-

ticular source, and the observed samples are assumed i.i.d. conditioned on the knowledge of θ,
the numerator and the denominator of the likelihood ratio given in Eq 4 can be expressed,
respectively, by

pðy1; y2Þ ¼
Z
y

pðy1jy;WÞ pðy2jy;WÞ pðyjXÞ dy ð10Þ

where the parameter θ jointly varies for both control and recovered conditional probabilities,
as they are assumed to come from the same source (say θ1 = θ2 = θ), and

pðy1Þ � pðy2Þ ¼
Z
y

pðy1jy;WÞ pðyjXÞ dy�
Z
y

pðy2jy;WÞ pðyjXÞ dy ð11Þ

where these conditional probabilities can be integrated out independently as they are assumed
to come from different sources (say θ1 6¼ θ2).

Similarly to the random variable Xij, the conditional distribution of a random variable �X i

representing the average of a set of n feature vectors {x1,x2, ‥,xn} coming from a particular
source i is given by

�X ijðY ¼ yiÞ � N ðyi;DÞ; D ¼ W

n
ð12Þ

Thus, when evaluating the conditional probability of a set of n1 control samples, y1, or a set
of n2 recovered samples, y2, they will be evaluated in terms of their sample mean. That is,

pðyljyl;WÞ ¼ pð�y ljyl;
W

nl

Þ ¼ Nð�y l; yl;DlÞ; l ¼ 1; 2 ð13Þ
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This leads to the following expressions for the previously shown integrals:

pðy1; y2Þ ¼
Z
y

Nð�y1; y;D1ÞNð�y2; y;D2Þ pðyjXÞ dy ð14Þ

and

pðylÞ ¼
Z
y

Nð�y l; y;DlÞ pðyjXÞ dy; l ¼ 1; 2 ð15Þ

where only the distribution of the parameter θ remains undefined.

Models for between-source distribution
Regarding the distribution p(θ|X) from which the parameter characterizing the source θ is
drawn, its shape depends on how the between-source variation is modelled. In this Section,
two different types of distribution of such parameter, obtained from a background population,
are shown. First, we will describe the expressions for a normally distributed between-source
variation. While this is not the case under analysis in this work, it will serve to derive the
expressions for the non-normal case, which is expressed in terms of a weighted sum of Gauss-
ian densities.

Normal case

If sources means can be assumed normally distributed,Y � N ðm;BÞ, then
pðyjXÞ ¼ Nðy; m;BÞ ð16Þ

where μ and B are, respectively, the mean vector and the covariance matrix of the between-
source distribution. These hyperparameters can be obtained from a background population
(withm sources, n samples per source and N total samples) through

m ¼ 1

m

Xm
i¼1

�xi ð17Þ

and

B ¼ Sb

m� 1
� Sw

nðN �mÞ ð18Þ

where the between-source scatter matrix, Sb, is given by

Sb ¼
Xm
i¼1

ð�xi � mÞð�xi � mÞT ð19Þ

Using this distribution for the parameter θ of the generative model, the integrals involved in
the likelihood ratio computation can be written

pðy1; y2Þ ¼
Z
y

Nð�y1; y;D1ÞNð�y2; y;D2ÞNðy; m;BÞ dy ð20Þ

and

pðylÞ ¼
Z
y

Nð�y l; y;DlÞNðy; m;BÞ dy; l ¼ 1; 2 ð21Þ
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Using the Gaussian identities given in the Appendix, the numerator of the likelihood ratio
can be shown to be equal to:

pðy1; y2Þ ¼ Nð�y1; �y2;D1 þD2Þ � Nð�y�; m;D� þBÞ ð22Þ

where

�y� ¼ ðD1 þD2Þ�1ðD2�y1 þD1�y2Þ ð23Þ

and

D� ¼ D1ðD1 þD2Þ�1
D2

ð24Þ

Finally, each of the integrals in the denominator is given by

pðylÞ ¼ Nð�y l; m;Dl þBÞ; l ¼ 1; 2 ð25Þ

Non-normal case
When the normal assumption does not hold for the distribution of sources means among the
background population data, the between-source distribution p(θ|X) can be approximated by a
weighted sum of C Gaussian densities in the following form:

pðyjXÞ ¼
XC
c¼1

pc Nðy; mc;ScÞ ð26Þ

where {πk}c = 1, . . ., C are the weighting factors and have the following constraints

0 � pc � 1;
XC
c¼1

pc ¼ 1 ð27Þ

With this distribution as the prior probability for the parameter θ of the generative model,
the integrals involved in the likelihood ratio computation can be written

pðy1; y2Þ ¼
Z
y

fNð�y1; y;D1ÞNð�y2; y;D2Þ
XC
c¼1

pc Nðy; mc;ScÞg dy

¼
XC
c¼1

pc

Z
y

fNð�y1; y;D1ÞNð�y2; y;D2ÞNðy; mc;ScÞg dy
ð28Þ

and

pðylÞ ¼
Z
y

fNð�y l; y;DlÞ
XC
c¼1

pc Nðy; mc;ScÞg dy

¼
XC
c¼1

pc

Z
y

fNð�y l; y;DlÞNðy; mc;ScÞg dy; l ¼ 1; 2

ð29Þ

As it can be seen, the Gaussian mixture expressions become a weighted sum of the expres-
sions given for the normal case, and so the probabilities involved in the likelihood ratio compu-
tation can be easily derived, resulting in

pðy1; y2Þ ¼ Nð�y1; �y2;D1 þD2Þ �
XC
c¼1

pc Nð�y�; mc;D
� þ ScÞ ð30Þ
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and

pðylÞ ¼
XC
c¼1

pc Nð�y l; mc;Dl þ ScÞ; l ¼ 1; 2 ð31Þ

In [10], between-source distribution p(θ|X) is approximated through a KDF [15] where the
kernel function K(�) is taken to be a multivariate normal function with smoothing parameter,
or bandwidth,H = h2 B:

pðyjXÞ ¼ 1

mjHj1=2
Xm
i¼1

K
y� �x i

H1=2

� �
¼ 1

m

Xm
i¼1

Nðy; �x i; h
2BÞ ð32Þ

where

h ¼ 4

2d þ 1

� � 1
dþ4

m�1=ðdþ4Þ ð33Þ

As it can be seen, this Gaussian KDF is in fact a Gaussian mixture whose parameters, equat-
ing terms in Eq 26, are given by

C ¼ m; pc ¼
1

m
; mc ¼ �x i; Sc ¼ h2B ð34Þ

Thus, the between-source variation is approximated by an equally weighted sum of multi-
variate Gaussian functions placed at every source mean present in the background population,
�xi, being their covariance matrices given by h2 B. That is, a weighted version of the between-
source variation is translated to each source mean present in the background. As we will show
later on, this will lead to overestimations of the between-source density in some areas of the
feature space.

GMMs for non-normal between-source distributions
In this work, we propose to use a Gaussian Mixture Model (GMM) trained by means of a maxi-
mum-likelihood (ML) criterion in order to represent the distribution of the parameter θ char-
acterizing the source. This model assumes that the observations are generated from a mixture
of a finite number of Gaussian densities with unknown hyperparameters. Thus, it has been
widely used to model the distribution of datasets in which the observations are grouped in sev-
eral clusters, being each of them represented by a Gaussian density. In the case at hand, the
observations are the means of the sources (�xi) present in the background population dataset
(X), from which the distribution p(θ|X) is going to be modelled.

GMM training
Maximum likelihood (ML) is a method of determining the parameters F of a model that
makes the observed samples the most probable given that model. Conversely to KDF, where
the parameters (�xi,H) are first established and the density function p(θ|X) arises from them,
in the GMM approach the density function is obtained by maximizing the likelihood of the
observed data given the model, p(X|F), from which the optimum parameters of the model
are derived. In the case of a GMM of C components in the form of Eq 26, the ML parameters
of the model, F = {πc, μc, Sc}c = 1, . . ., C, are obtained [17] by maximizing the following
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log-likelihood:

ln pðXjFÞ ¼
Xm
i¼1

ln
XC
c¼1

pc Nð�x i; mc;ScÞ
( )

ð35Þ

This can be done through the well known expectation-maximization (EM) algorithm [17,
19], which is an iterative method that successively updates the parameters F of the model until
convergence. A recipe for this iterative process can be found in [17].

For a faster convergence of the algorithm, usually some steps of the k-means algorithm [17,
20] are previously iterated in order to obtain a good initialization of the GMM, as this cluster-
ing method provides the mean vectors {μc}c = 1, . . ., C (known as centroids) and the initial assign-
ment of samples to clusters, from which {πc}c = 1, . . ., C and {Sc}c = 1, . . ., C can be obtained.

The specific number of components, C, can be set by different methods. If the feature vec-
tors are low-dimensional, the number of components can be visually estimated by inspecting a
2-D or 3-D projection of the background population data; however, depending on the structure
of the data, there can be a lot of ambiguity in this process. Another option is to apply the elbow
method [21] in the initial clustering stage, in which the cost function is plotted for different
(increasing) number of clusters; for the first number of clusters there will be a great change
when increasing the number of clusters, but at some point the marginal gain will drop indicat-
ing the proper number of clusters. A similar method can be applied by training GMMs for dif-
ferent numbers of components and evaluating the gain in terms of likelihood when increasing
the number of them. Finally, similarly to the previous approach, if different GMMs for differ-
ent number of components are trained, some model selection methods, like the Bayesian infor-
mation criterion (BIC) [22] or the Akaike information criterion (AIC) [23], can be applied.

In this work, results are reported for several number of components in order to analyse how
the evaluation metrics vary depending on this parameter, and the proper number of compo-
nents related to the log-likelihood of the background data given the between-source density.
For a given number of components, the k-means algorithm is iterated until convergence previ-
ously to the EM algorithm. In order to avoid local minima in k-means clustering, 100 random
initializations are performed for a given number of components.

GMM versus KDF
For the purpose of illustrating the differences between KDF and GMM approaches, a synthetic
2-dimensional dataset has been generated (see Fig 1), in which 10 samples from 50 sources are
drawn from normal distributions with the same covariance matrix (having then the same
within-source variation). Sources means are drawn from 2 different normal distributions (25
sources each), each centred at a different separated point of the feature space, and one having a
larger variance than the other in one of the dimensions. As a consequence, samples coming
from different sources are grouped in two clearly separated clusters, one of them having a
larger local intra-cluster between-source variation than the other. Also, the overall between-
source variation is higher in one of the dimensions.

As already shown in Section [Models for between-source distribution], the density function
p(θ|X) given by KDF approach is an equally weighted sum of Gaussian densities centred at
each background source mean with covariance matrices h2 B (see Eq 32). Thus, a weighted ver-
sion of the overall between-source variation is translated to every source mean, reproducing
this variation locally at each source mean. The resulting density function p(θ|X) for our syn-
thetic dataset can be seen in Fig 2, where it is shown that the local intra-cluster between-source
variation in dimension 1 is highly overestimated for both clusters, and slightly overestimated
in dimension 2 for one of them due to the larger variation in the other one.
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Conversely to KDF, in the GMM approach the Gaussian components are not forced to be
centred at each source mean present in the background population, but a smaller number of
components can be established allowing different sources means being generated from the
same Gaussian component. Moreover, covariance matrices are neither fixed in advance, allow-
ing to be locally learned for each component. As a consequence, the resulting density function
can better fit the local between-source variation and the clustered nature of the dataset, as it is
shown in Fig 3 for a 2-component GMM.

However, care must be taken in order to avoid overfitting when computing the density func-
tion through maximum likelihood. For a ML-trained GMM, the degree of fitting to the back-
ground data can be controlled through both the number of components C of the mixture and
the number of EM iterations. In this work, for a given number of components, only two EM
iterations are performed in order to avoid overfitting.

Accounting for within-source variation in the background population
When training a GMM from background sources means by maximizing the log-likelihood in
Eq 35, it is assumed that there is no uncertainty in these mean values. However, the number of
samples per source in the background population can be limited in forensic scenarios, and so
these means cannot be reliably computed. In order to account for the uncertainty in these
mean values, every observation belonging to those sources can be used to train a GMM by

Fig 1. Synthetic dataset. Samples from a 2-dimensional synthetic dataset in which sources are grouped in two separate clusters.

doi:10.1371/journal.pone.0149958.g001
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maximizing the following log-likelihood:

ln pðXjFÞ ¼
Xm
i¼1

Xn
j¼1

ln
XC
c¼1

pc Nðxij; mc;ScÞ
( )

ð36Þ

While there can be not much difference in the values obtained for components means μc in
a well balanced background dataset (same number of samples per source), taking into account
the variation of the samples from each source around its mean value through Eq 36 provides a
more conservative background density, as every background sample is considered as a possible
mean value of a source. Furthermore, this also helps to avoid Gaussian collapsing when a
reduced number of sources are assigned to a particular component. The effect on our synthetic
dataset is shown in Fig 4, where the Gaussian densities are placed at the same locations as in
Fig 3 but larger variances and covariances are obtained, specially for the cluster with lower
intra-cluster between-source variation.

Experimental framework

Forensic datasets
In order to test the approach proposed in this work, several types of forensic datasets have been
used, being one of them the glass-fragments dataset also used in [10], which can be downloaded

Fig 2. KDFmodelling of between-source variation in the synthetic dataset. (Above) Sources means and level contours of the between-source density
function. (Below) 3-dimensional representation of the between-source density function.

doi:10.1371/journal.pone.0149958.g002
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from http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1467-9876/homepage/glass-data.txt.
A detailed description of the other two datasets can be found in [12], and can be downloaded
from http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470972106.html.

• Inks. For this dataset, the features are the measurements of the d = 3 chromaticity coordinates
r, g and b (being r + g + b = 1) taken on samples of blue inks. The dataset comprises the mea-
surements on n = 10 samples for each of them = 40 different ink sources.

• Glass fragments. For this dataset, the features are the measurements of the concentrations in
d = 3 elemental ratios taken on glass fragments: log(Ca/K), log(Ca/Si) and log(Ca/Fe). The
dataset comprises the measurements on n = 5 fragments for each of them = 62 different glass
sources.

• Car paints. For this dataset, the features are the measurements of d = 7 organic components
present in the top layer of different acrylic car paintings. The dataset comprises the measure-
ments on n = 3 samples for each of them = 36 different car-paint sources.

Table 1 gathers the already mentioned characteristics of these three datasets, while Figs 5, 6
and 7 show 2-dimensional projections of their sources means. As it can be seen, sources means
in the last two datasets (glass fragments and car paints) present a clustered nature, while those
in the first one (inks) are normally distributed [12].

Fig 3. GMMmodelling of between-source variation in the synthetic dataset. (Above) Sources means and level contours of the between-source density
function. (Below) 3-dimensional representation of the between-source density function.

doi:10.1371/journal.pone.0149958.g003
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Protocols
The protocol followed in [10] used the whole glass-fragment dataset in order to obtain the
between-source probability density function p(θ|X). Then, for each source, the first 3 samples
(out of 5) were used as control data and the last 3 were used as recovered data, having so both
datasets one sample in common. While this non-partitioning protocol alleviates the lack of
data due to the small size of the dataset, it may lead to overoptimistic results as the different
subsets (background, control and recovered) are overlapped.

In this work, a cross-validation protocol is also used in order to avoid overoptimistic results,
in which the dataset is divided into two non-overlapping subsets devoted to:

• obtain the between-source distribution p(θ|X) (known data or training subset), and

Fig 4. GMMmodelling of between-source variation in the synthetic dataset when taking into account the background within-source variation.
(Above) Sources means and level contours of the between-source density function. (Below) 3-dimensional representation of the between-source density
function.

doi:10.1371/journal.pone.0149958.g004

Table 1. Datasets summary.

m n d

Inks 40 10 3

Glass fragments 62 5 3

Car paints 36 3 7

m, number of sources; n, number of samples per source; d, number of features.

doi:10.1371/journal.pone.0149958.t001
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• compute same-source and different-source likelihood ratios (unknown data or testing sub-
set). This subset is further divided into two non-overlapping halves acting as control and
recovered data.

In order to alleviate the lack of data, this procedure is carried out in the following way. For
each of them(m − 1)/2 possible pairs of sources in the dataset, all the samples belonging to
those two sources are taken apart from the dataset in order to be used as the testing subset,
being the remaining sources used as the training subset. Each of the two sources in the testing
subset is divided into two non-overlapping halves ({1a, 1b} and {2a, 2b}) that can be used either
as control or recovered data to perform 2 same-source comparisons (1a-1b, 2a-2b) and 4 differ-
ent-source comparisons (1a-2a, 1a-2b, 1b-2a, 1b-2b). Although the same control and recovered
data from a particular source is used in all the different pairs in which it is involved, as the
remaining sources change for each different pair, different between-source distributions p(θ|X)
are involved in likelihood ratio computations. This procedure allow us to perform a total num-
ber ofm(m − 1) same-source comparisons and 2 ×m(m − 1) different-source comparisons for
a given dataset, instead of them same-source comparisons andm(m − 1)/2 different-source
comparisons performed in [10], while the between-source distribution p(θ|X) used in every

Fig 5. Sourcesmeans in the inks dataset. The three 2-dimensional projections of the sources means.

doi:10.1371/journal.pone.0149958.g005

Fig 6. Sourcesmeans in the glass-fragments dataset. The three 2-dimensional projections of the sources means.

doi:10.1371/journal.pone.0149958.g006
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comparison is obtained fromm − 2 different sources instead ofm. The specific number of com-
parisons for each evaluation protocol on the different datasets are given in Table 2.

Evaluation Metrics
The main evaluation metric used in order to compare the different approaches is the log-likeli-
hood ratio cost function (Cllr) [2, 24], which evaluates both the discrimination abilities of the
computed log-likelihood ratios and the goodness of their calibration. Given a set of log-likeli-
hood ratios fLg ¼ fL1;L2; :::;LCg obtained from C comparisons, the Cllr can be computed in
the following way:

CllrðfLgÞ ¼
1

2 log 2
1

Nss

X
c2ss

log 1þ e�Lcð Þ þ 1

Nds

X
c2ds

log 1þ eLcð Þ
 !

ð37Þ

where ‘ss’ is the set of Nss same-source comparisons and ‘ds’ is the set of Nds different-source
comparisons. As it is a cost function, the larger the Cllr value, the worse the verification method,
being Cllr = 0 the minimum achievable cost. Note also that this metric allows to define a neutral
reference which does not provide support for any of the two hypothesis (that is, Lc ¼ 0 for
every comparison), providing a reference value of Cllr = 1. Thus, a verification method for
which Cllr is larger than 1 means that it is providing misleading likelihood ratios.

An important aspect of the Cllr is that it can be decomposed into two additive terms, one
due to the discrimination abilities (Cmin

llr ) and another one due to the calibration of the verifica-
tion method (Ccal

llr ) where

Ccal
llr ¼ Cllr � Cmin

llr ð38Þ

Fig 7. Sourcesmeans in the car-paints dataset. Three 2-dimensional projections of the sources means.

doi:10.1371/journal.pone.0149958.g007

Table 2. Number of same-source and different-source comparisons in each dataset for the non-partitioning and cross-validation protocols.

Non-partitioning Cross-validation

Same-source Different-source Same-source Different-source

Glass fragments 62 1891 3782 7564

Inks 40 780 1560 3120

Car paints 36 630 1260 2520

doi:10.1371/journal.pone.0149958.t002
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and Cmin
llr is obtained by means of the Pool Adjacent Violators (PAV) algorithm [25, 26] and rep-

resents the minimum achievable Cllr in the case of having an optimally calibrated log-likelihood
ratios set fL0g (details can be found in [24]).

In order to show the performance over a wide range of prior probabilities, the Empirical
Croos-Entropy (ECE) plots [27, 28] will be used. These figures (see, for example, Fig 8) graphi-
cally represent what would be the accuracy (solid curve) when using the set of logLR values
fLg for each of the prior probabilities (represented as logarithmic odds) in the given range.
Additionally, the discriminating power is also plotted (dashed curve) for the optimally cali-
brated (ideal) logLRs set fL0g, along with the neutral reference (dotted curve).

Fig 8. ECE plots for the KDF and GMM approaches on the inks dataset when applying the cross-validation protocol.GMM is trained by maximizing
Eq 35.

doi:10.1371/journal.pone.0149958.g008
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Results and Discussion

Inks dataset
For this dataset, as the background sources means are normally distributed, GMMs with a sin-
gle component has been trained by maximizing either Eq 35 or Eq 36. Table 3 shows the
detailed results (Cllr, Cmin

llr and Ccal
llr ) for KDF and GMM approaches (Eq 35 and Eq 36) when

applying both the non-partitioning and the cross-validation protocols.
First, it should be noted that results in the non-partitioning protocol are slightly better for

every method as it is an overoptimistic framework where data is shared between training and
testing subsets. Regarding the comparison between methods, it can be seen that no significant
improvement is obtained by the GMM approach as the sources means for this dataset do not
present a clustered nature. Moreover, among the two GMM variants, the results obtained when
maximizing Eq 35 are slightly better, presumably due to the fact that enough number of sam-
ples per source are available (n = 10), compared to the number of features (d = 3), to compute
reliable sources means, and further uncertainty accounted for Eq 36 seems to be counter-
productive.

Finally, Fig 8 show ECE plots for KDF and GMM (Eq 35) approaches when applying the
cross-validation protocol, where it can be seen that both present similar performance for a wide
range of prior probabilities.

Glass-fragments dataset
For this dataset, several GMMs have been trained, by maximizing Eq 35, in order to analyse
how the main evaluation metric (Cllr) varies as a function of the number of components, C. In
the experiments carried out, the maximum number of components has been limited to 6 in
order to avoid Gaussian collapsing due to a reduced number of observations (sources means)
per component (62 total sources in the whole dataset). Results for the non-partitioning protocol
can be seen in Fig 9 for both KDF and GMM (Eq 35) approaches, where also the log-likelihood
of the background data (sources means) given the between-source density has been plotted.

As it was expected for this non-partitioning protocol, Cllr decreases as the number of compo-
nents increases, due to the shared data between training and testing subsets, which can lead to
overfit the background density. However, as soon as the log-likelihood for the GMM surpass
that obtained for the KDF density, better results are obtained with the GMM approach. It is
also worth noting that this happens for a number of components (2–3) around that which
could be expected from visual inspection of the 2-dimensional projections shown in Fig 6.

Fig 10 show the same analysis for the cross-validation protocol. In this case, the log-likeli-
hood is not plotted as the GMM change for every testing sources-pair (being trained on the
remaining sources). Similar conclusions than before can be drawn, but here the overfitting
problem affecting the non-partitioning protocol is revealed, as the Cllr for the cross-validation

Table 3. Performance of KDF and GMM approaches on the inks dataset for the non-partitioning and cross-validation protocols.

Non-partitioning Cross-validation

Cmin
llr Ccal

llr Cllr Cmin
llr Ccal

llr Cllr

KDF 0.1459 0.0224 0.1684 0.1558 0.0214 0.1778

GMM (Eq 35) 0.1430 0.0223 0.1653 0.1533 0.0223 0.1756

GMM (Eq 36) 0.1453 0.0271 0.1724 0.1569 0.0286 0.1855

Cllr ¼ Cmin
llr þCcal

llr

doi:10.1371/journal.pone.0149958.t003
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protocol reaches a minimum value for a given number of components (C = 4) and then
increases. Results are also shown for GMMs trained by maximizing Eq 36, with similar conclu-
sions but slightly better results, presumably due to the small number of samples per source
(n = 5) compared to the number of features (d = 3).

Table 4 shows the detailed results (Cllr, Cmin
llr and Ccal

llr ) for KDF and GMM approaches (Eq 35
and Eq 36) when applying both the non-partitioning and the cross-validation protocols. For
GMM approaches, results are given for the optimum number of components (C = 4) when the
cross-validation protocol is applied. Again, as the non-partitioning protocol constitutes an
over-optimistic framework, results are slightly better for every method compared to the cross-
validation protocol. This is also the reason of obtaining better results when GMMs are trained
by maximizing Eq 36, as the same sources are present in both training and testing subsets.
However, when the cross-validation protocol is applied, there is no shared data between those
subsets, and so the additional uncertainty accounted by Eq 36 provides slightly better results.
In any case, both GMM approaches outperform the KDF one due to their better calibration
properties for this clustered dataset.

Finally, Fig 11 shows the comparative results between KDF and GMM (Eq 36) in the form
of ECE plots when the cross-validation protocol is applied.

Car-paints dataset
An equivalent analysis to that shown for the glass-fragments dataset has been performed for
the car-paints one. Fig 12 shows both the Cllr and the log-likelihood of the background data

Fig 9. Analysis of the number of GMM components for the glass-fragments dataset when applying the non-partitioning protocol.GMM is trained by
maximizing Eq 35. (Above) Log-likelihood ratio cost. (Below) Log-likelihood of the background data given the between-source density function.

doi:10.1371/journal.pone.0149958.g009
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given the model (trained by maximizing Eq 35) as a function of the number of components for
the non-partitioning protocol. Similarly to what happened with the previous dataset, Cllr

decreases as the number of components increases, and as soon as the log-likelihood for the
GMM surpass that obtained for the KDF density, better results are obtained with the GMM
approach. Again, this happens for a number of components (3–4) around that which could be
expected from visual inspection of some of the 2-dimensional projections shown in Fig 7.

Fig 13 show the same analysis for the cross-validation protocol (without showing the log-
likelihood plot), where it can be seen (solid line) that, similarly to what happened with the
glass-fragments dataset, a minimum Cllr value is reached for a particular number of compo-
nents (C = 3) and then it increases. However, when plotting results for GMMs trained by maxi-
mizing Eq 36 instead (dot-dashed line), the number of components for which the minimum

Fig 10. Analysis of the number of GMM components for the glass-fragments dataset when applying the cross-validation protocol.

doi:10.1371/journal.pone.0149958.g010

Table 4. Performance of KDF and GMM approaches on the glass-fragments dataset for the non-partitioning and cross-validation protocols.

Non-partitioning Cross-validation

Cmin
llr Ccal

llr Cllr Cmin
llr Ccal

llr Cllr

KDF 0.0787 0.0394 0.1182 0.0850 0.0410 0.1260

GMM (Eq 35) 0.0785 0.0223 0.1008 0.0863 0.0291 0.1154

GMM (Eq 36) 0.0785 0.0229 0.1013 0.0862 0.0282 0.1144

Cllr ¼ Cmin
llr þCcal

llr

doi:10.1371/journal.pone.0149958.t004
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Cllr value is reached is slightly larger (C = 5); this also happens for the non-partition protocol,
as the log-likelihood of the training data (observations) given the model for the GMM do not
surpass that of the KDF until a larger number of components (C = 4) is reached.

Table 5 shows the detailed results (Cllr, Cmin
llr and Ccal

llr ) for KDF and GMM approaches (Eq 35
and Eq 36) when applying both the non-partitioning and the cross-validation protocols. For
GMM approaches, results are given for the optimum number of components (C = 4 for Eq 35,
C = 5 for Eq 36) when the cross-validation protocol is applied. Similar conclusions to those
obtained for the glass-fragments dataset can be drawn, but much better results are obtained by
GMMs approaches presumably due to the distance among clusters, which lead to KDF densi-
ties which overestimate the between-source distribution in some areas of the feature space (as
shown in Fig 2 for the synthetic dataset). Among GMM approaches, the maximization of Eq
36 leads to much better results for the cross-validation protocol due to the small number of
samples per source (n = 3) compared to the number of features (d = 7), which lead to unreliably
computed sources means when training GMMs by maximizing Eq 35.

Fig 11. ECE plots for the KDF and GMM approaches on the glass-fragments dataset when applying the cross-validation protocol.GMM is trained by
maximizing Eq 36.

doi:10.1371/journal.pone.0149958.g011
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Finally, Fig 14 shows the comparative results between KDF and GMM (Eq 36) in the form
of ECE plots when the cross-validation protocol is applied.

Conclusions
In this work, we present a new approach for computing likelihood ratios from multivariate
data in which the between-source distribution is obtained through ML training of the parame-
ters of a GMM. Using the same generative model as in [10], a common derivation of the LR
expressions is presented for both Gaussian KDF and GMM, in which the between-source dis-
tribution is represented in terms of a weighted sum of Gaussian densities. Then, differences
between KDF and GMM approaches are highlighted, and the effects on the obtained probabil-
ity density are shown for a synthetic dataset. Furthermore, a variant in GMM training has been
tested in order to account for the uncertainty in sources means when few samples per source
are available in the background data.

The proposed approach has been tested on three different forensic datasets and compared
with the KDF approach. Additionally to the non-partitioning protocol applied in [10], a more
realistic cross-validation protocol is applied in order to avoid overoptimistic results, as ML-
trained GMMs can overfit the background population density. Performance is evaluated in
terms of the log-likelihood ratio cost function (Cllr), which allows to decompose the perfor-
mance in a term due to the discrimination abilities and another one due to the calibration

Fig 12. Analysis of the number of GMM components for the car-paints dataset when applying the non-partitioning protocol.GMM is trained by
maximizing Eq 35. (Above) Log-likelihood ratio cost. (Below) Log-likelihood of the background data given the between-source density function.

doi:10.1371/journal.pone.0149958.g012
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properties. ECE plots have been used to show the behaviour in a wide range of prior probabili-
ties, which is needed in forensic science.

Results show that, although KDF and GMM approaches present similar discrimination abil-
ities, when the datasets have a clustered nature, the between-source distribution is better
described by a GMM, leading to better calibrated likelihood ratios. If clusters are not easily dis-
tinguishable, the between-source distribution still can be modelled by one single component,
obtaining similar results to the KDF approach. Specially remarkable are the results obtained
for the car-paints dataset, where*50% improvement in terms of calibration performance is
obtained.

Fig 13. Analysis of the number of GMM components for the car-paints dataset when applying the cross-validation protocol.

doi:10.1371/journal.pone.0149958.g013

Table 5. Performance of KDF and GMM approaches on the car-paints dataset for the non-partitioning and cross-validation protocols.

Non-partitioning Cross-validation

Cmin
llr Ccal

llr Cllr Cmin
llr Ccal

llr Cllr

KDF 0.0819 0.1388 0.2208 0.0972 0.1786 0.2759

GMM (Eq 35) 0.0715 0.0671 0.1386 0.0968 0.1769 0.2737

GMM (Eq 36) 0.0715 0.0729 0.1443 0.0899 0.0934 0.1833

Cllr ¼ Cmin
llr þCcal

llr

doi:10.1371/journal.pone.0149958.t005
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Appendix

Mathematical notation
Throughout this work we consider multivariate data in the form of d-dimensional column vec-
tors x = (x1, x2, . . ., xd)

T. Following the same notation as in [10], a set of n elements of such
data belonging to the same particular source i are denoted by xi = {xij}j = 1, ‥, n = {xi1,xi2, . . .,
xin}, while their sample mean is denoted by �xi. Similarly, xi is used to denote background data
while yl is used to denote either control (y1) or recovered data (y2). The set of feature vectors
coming from different sources present in the background data is denoted by X.

In general, column vectors are denoted by bold lower-case letters and matrices by bold
upper-case letters, while scalar quantities are denoted by lower-case italic letters. Random vari-
ables are denoted by upper-case non-italic letters. P(�) is used to indicate the probability of a
certain event, while p(�) denotes a probability density function. We denote a d-dimensional
Gaussian distribution with mean μ and covariance matrix S byN ðm;SÞ and the corresponding
probability density function by N(x;μ, S) (x 2 R

d).

Fig 14. ECE plots for the KDF and GMM approaches on the car-paints dataset when applying the cross-validation protocol.GMM is trained by
maximizing Eq 36.

doi:10.1371/journal.pone.0149958.g014
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Multivariate Gaussian function

Nðx; m;SÞ ¼ ð2pÞ�d=2 Sj j � 1=2 exp � 1

2
ðx� mÞTS�1ðx� mÞ

� �
¼ Nðm; x;SÞ ð39Þ

Gaussian identities
Product of two multivariate Gaussian functions.

Nðx; a;AÞ � Nðx;b;BÞ ¼ Nða;b; aþBÞ � Nðx; c;CÞ ð40Þ

c ¼ BðAþBÞ�1
aþAðAþBÞ�1

b ð41Þ

C ¼ AðAþBÞ�1
B ð42Þ

Convolution of two multivariate Gaussian functions.Z
x

Nðx; a;AÞNðy� x;b;BÞ dx ¼ Nðy; aþ b;AþBÞ ð43Þ

Expressions for a normal between-source distribution
Derivation of the numerator. First, we solve the product of the two Gaussian functions

depending on either the control or the recovered data means, obtaining the following expression

pðy1; y2Þ ¼
Z
y

fNð�y1; y;D1ÞNð�y2; y;D2ÞNðy; m;BÞg dy

¼
Z
y

fNðy; �y1;D1ÞNðy; �y2;D2ÞNðy; m;BÞg dy

¼
Z
y

fNðy; z;ZÞNð�y1; �y2;D1 þD2ÞNðy; m;BÞg dy

ð44Þ

where

z ¼ ðD1 þD2Þ�1ðD2�y1 þD1�y2Þ ð45Þ

and

Z ¼ D1ðD1 þD2Þ�1
D2

ð46Þ

Being Nð�y1; �y2;D1 þD2Þ independent of θ, we can solve the remaining integral as a convo-
lution of two Gaussian functions:

pðy1; y2Þ ¼ Nð�y1; �y2;D1 þD2Þ
Z
y

fNðz; y;ZÞNðy; m;BÞg dy

¼ Nð�y1; �y2;D1 þD2Þ
Z
y

fNðz� y; 0;ZÞNðy; m;BÞg dy

¼ Nð�y1; �y2;D1 þD2Þ � Nðz; m;ZþBÞ

ð47Þ

GMMs of Between-Source Variation for LR Computation fromMultivariate Data

PLOS ONE | DOI:10.1371/journal.pone.0149958 February 22, 2016 23 / 25



Finally, replacingDl =W/nl, l = 1, 2, in z and Z

z ¼ W

n1

þW

n2

� ��1
W

n2

�y1 þ
W

n1

�y2

� �
¼

1
n2
�y1 þ 1

n1
�y2

1
n1
þ 1

n2

¼ n1�y1 þ n2�y2

n2 þ n1

¼ �y� ð48Þ

Z ¼ W

n1

ðW
n1

þW

n2

Þ�1 W

n2

¼
W
n1n2

1
n1
þ 1

n2

¼ W

n2 þ n1

ð49Þ

we obtain

pðy1; y2Þ ¼ Nð�y1; �y2;
W

n1

þW

n2

Þ � Nð�y�; m;
W

n1 þ n2

þBÞ ð50Þ

Derivation of the denominator. Each of the integrals in the denominator of the LR can be
solved by the convolution of two Gaussian functions

pðylÞ ¼
Z
y

fNð�y l; y;DlÞNðy; m;BÞg dy

¼
Z
y

fNð�y l � y; 0;DlÞNðy; m;BÞg dy

¼ Nð�y l; m;Dl þBÞ ¼ Nð�y l; m;
W

nl

þBÞ

ð51Þ

giving the following final expression for the denominator of the LR under the between-source
normal assumption:

pðy1Þ � Pðy2Þ ¼ Nð�y1; m;
W

n1

þBÞ � Nð�y2; m;
W

n2

þBÞ ð52Þ
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Abstract—This work presents the systems submitted by the
ATVS Biometric Recognition Group to the 2009 Language Recog-
nition Evaluation (LRE’09), organized by NIST. New challenges
included in this LRE edition can be summarized by three main
differences with respect to past evaluations. Firstly, the number
of languages to be recognized expanded to 23 languages from 14
in 2007, and 7 in 2005. Secondly, the data variability has been
increased by including telephone speech excerpts extracted from
Voice of America (VOA) radio broadcasts through Internet in
addition to Conversational Telephone Speech (CTS). The third
difference was the volume of data, involving in this evaluation
up to 2 terabytes of speech data for development, which is an
order of magnitude greater than past evaluations. LRE’09 thus
required participants to develop robust systems able not only to
successfully face the session variability problem but also to do
it with reasonable computational resources. ATVS participation
consisted of state-of-the-art acoustic and high-level systems fo-
cussing on these issues. Furthermore, the problem of finding a
proper combination and calibration of the information obtained
at different levels of the speech signal was widely explored in this
submission. In this work, two original contributions were devel-
oped. The first contribution was applying a session variability
compensation scheme based on Factor Analysis (FA) within the
statistics domain into a SVM-supervector (SVM-SV) approach.
The second contribution was the employment of a novel back-
end based on anchor models in order to fuse individual systems
prior to one-vs-all calibration via logistic regression. Results both
in development and evaluation corpora show the robustness and
excellent performance of the submitted systems, exemplified by
our system ranked 2nd in the 30 second open-set condition, with
remarkably scarce computational resources.

Index Terms—Language Recognition, Factor Analysis, Suffi-
cient Statistics, Linear Scoring, Anchor Models, Calibration.

I. INTRODUCTION

RECENTLY, Spoken Language Recognition (SLR) has
experienced an increase in interest mainly due to its

use in a wide range of applications such as audio indexing,
information retrieval or call center monitoring. While interest
in the field has been latent for nearly 40 years [1], it has not
been up to the last decade when systems have experienced a
major research development. Among the driving factors of this
rapid development and performance improvement of state-of-
the-art technologies, the efforts of the US National Institute of
Standards and Technologies (NIST) deserve special mention
[2]. The Language Recognition Evaluations (LRE), organized
by NIST since 1996, with editions in years 1996, 2003,
2005, 2007 and 2009 have established a common framework
for the development and assessment of language recognition

technology, succesfully focusing the efforts of the scientific
community in the field. This framework includes common
protocols and databases for experimental evaluation as well
as well-defined evaluation methodologies [2]. Currently, the
LRE evaluation has become the major and reference forum
for scientific researchers and technology developers in the area
who aim at adapting their systems to real-world challenges.
Following such objectives, the ATVS Biometric Recognition
Group of the Universidad Autonoma de Madrid (hereafter,
ATVS) has been participating in LRE’s since 2005, submitting
systems at both lower (spectral) and higher levels (phonotactic,
prosodic) for blind and public competition. From the perspec-
tive of the scientific community, the problem of automatic SLR
represents a very attractive task for several reasons. On the
one hand, in order to yield good performance, different levels
of information across the speech signal have to be exploited.
This fact implies the use of efficient methods to combine
complementary information extracted from the speech signal.
This is one of the major challenges in the field and it is
an underlying theme in this paper. Moreover, SLR systems
share most of the problems with other related research areas
such as speech and speaker recognition and therefore similar
solutions can be ported across to each of these fields. A good
example is the inter-session variability problem, understood
as the set of acoustic differences between utterances, which
are not related respectively to the speaker or language to
recognize. In fact, this problem, caused by several variability
sources (such as channel conditions or environmental noise), is
still a major source of system performance degradations in all
recognition disciplines involving speech signals [3]. Because
of its configuration, the LRE’09 edition clearly focused on
these challenges. Session variability is present in the task by
including telephone speech from Voice Of America (VOA)1, a
vast multilanguage data source new to those evaluations in ad-
dition to well-known Conversational Telephone Speech (CTS).
In addition to this, a larger number of languages (23) were
included, involving more language pairs difficult to distinguish
(e.g Dari-Farsi, Hindi-Urdu, Bosnian-Croatian). Moreover, a
huge amount of data was available to develop the systems,
which required to proccess a much larger quantity of trials with
respect to other evaluations. This fact highlighted the impor-
tance of systems with an acceptable balance between recog-
nition performance and computational resources. The aim of

1http://www.voanews.com/english/index.cfm
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this article is to describe the systems submitted by ATVS
to LRE’09, which were focused on these new challenges as
well as to explain some original contributions which were
incorporated. The ATVS submission consisted of four different
combinations of acoustic and phonotactic subsystems. The
two ATVS spectral (also known as acoustic) subsystems were
based in session variability compensated first-order sufficient
statistics via Factor Analysis (FA) [4][5][6][7]. These statistics
were calculated in our primary acoustic system which is based
on the FA-GMM linear scoring framework [4], also outlined
in this work as being a critical part of our acoustic systems.
A novel approach, using a SVM supervector [8] acoustic
system feeded from session variability compensated first-
order statistics is included. The phonotactic components were
based on PhoneSVM [9] composed of seven ATVS tokenizers
and three tokenizers made available by Brno University of
Technology (BUT). System combination is performed in a
front-end-back-end configurarion. The front-end consists of
recognizers trained for different languages for each of the
systems used in the submission. In particular, 22 recognizers
trained with VOA speech and 14 CTS recognizers trained with
CTS speech were used for each system. Each recognizer for
each system yielded a score, and all scores together formed a
vector. After that, a back-end stage was used for classifying the
resulting vector for each target language. A contribution of our
submission was the use of a novel Anchor-Model approach for
back-end fusion, where score vectors were classified using an
SVM. Front-end scores were channel-dependent (22 VOA/14
CTS) t-normalized [10] while back-end scores are channel-
independent (23 VOA+CTS) t-normalized. Calibration was
achieved by the use of linear, two-class logistic regression
[11], where scores were transformed into two-class, one-vs.-
all log-likelihood-ratios (log-LR). In this way, a score can be
interpreted as a degree of support towards any of the relevant
hypotheses in the recognition process, namely ✓0 (the language
in the utterance is the target language) and ✓1 (the language
in the utterance is not the target language) [12]. This also
allows to use Bayes thresholds for decision making, which
are independent of the distribution of the output scores. The
same logLR sets were submitted to the closed- and open-set
conditions of the evaluation.

This paper is organized as follows. First, the ATVS individ-
ual spectral and high-level systems are described in Sections II
and III respectively. Section IV presents the fusion scheme and
calibration carried out in order to obtain final submitted scores,
while Section V details the experimental framework for both,
development and evaluation assessment. Section VI presents
the ATVS submitted systems and notes on implementation
details. Achieved results are presented in Section VII. Finally,
future work and conclusion are outlined in Section VIII.

II. ATVS SPECTRAL SYSTEMS

A. FA-GMM Linear Scoring System

The ATVS Factor Analysis Linear Scoring GMM system
(hereafter, FA-GMM-LS) is based on the work developed by
Niko Brummer in [4]. This system establishes a robust and
efficient generative GMM framework where data sufficient

statistics, relative to an Universal Background Model (UBM),
play a central role. Indeed, once these are computed, both
features and UBM can been discarded for next steps, with the
corresponding computational savings. The linear term refers
to novel scoring approach based on a linear approximation
to log-likelihood ratios via first-order Taylor series [13].
Thus, scoring procedure simplifies to a single vector dot
product. Further, session variability compensation via Factor
Analysis (FA) [14] [7] is applied directly at the statistics
level in both train and test stages. This subsection gives an
overview of this system in four steps, where foundations
for the original contributions presented in II-B are established.

1) Sufficient statistics: Given a utterance, with set of
features O = {o1, o2, ..., on} in <D, and a reference model
"UBM = {wk, µk,⌃k}, k = 1, ...C, zero and first-order
Baum-Welch statistics, for gaussian k of "UBM , are defined
as follows:

zero−order statistic −! nk =

X

t

Pkt (1)

first−order statistic −! xk =

X

t

Pktot (2)

where Gaussian Occupation Probability Pkt is given by:

Pkt = P (k|ot,"UBM ) =

wkpk(ot)
CP

j=1
wjpj(ot)

(3)

being:

pk(x) =
1

(2⇡)
D
2
⌃

1
2
exp(−1

2

(x− µk)
0
⌃

−1
k (x− µk)) (4)

For convenience first-order statistics xk use to be measured
relative to the means of the model:

xnorm,k =

X

t

Pkt(ot − µk) (5)

Hereafter, we refer as x to first-order statistics supervector
built as the concatenation of all xnorm,k and N as the
CDxCD diagonal matrix built as C blocks defined as
Nk = nkI , being I the DxD identity matrix.

2) Classical MAP: As in classical GMM-UBM framework
[15], a GMM for each language is derived via Maximum
a Posteriori Estimation (MAP) [16] from the UBM and
available training data. However, here, only means are adapted
and this is performed via a single MAP iteration. This shortcut
besides the linear scoring approach allow to calculate only
once sufficient statistics from the data and make independent
the rest of the system with respect to the UBM .
In terms of sufficient statistics, MAP process to obtain a
new means of a language model "L can be resumed as the
following equation in matrix form:

µ0
L = µUBM + (⌧I +N)

−1x (6)

where ⌧ is the relevance factor and N , x resumes available
training data for language L. Note that second order statistics
are not neccessary because variances are not adapted.
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3) Session variability via Factor Analysis at statistic level:
Session variability subspace adaptation in model domain can
be also seen as a mean adaptation restricted to a subspace
[5][7] in the form:

µ0
L = µ0

UBM + Uz (7)

where U is a low rank matrix whose columns define the
session variability subspace, and z are the channel factors.
Given U and assuming that z is normal distributed N(O, I),
it can be shown that finding a point estimate of z which
maximizes (7) can be done by solving:

z = A−1b = A−1U 0
⌃

−1x (8)

where:
A = I + U 0

⌃

−1NU (9)

b = U 0
⌃

−1x (10)

(N.B. adapting only means, ⌃ = ⌃UBM )
However, it is desirable to apply the compensation in a

stage before rather than in model domain as this would
allow applying the compensation to test data without the need
to create a model. In order to apply channel compensation
directly in the statistics domain, the work in [6] where channel
compensation is applied in the feature domain will serve as
inspiration.
In [6], channel compensation is applied in every feature of an
utterance i as follows:

ˆ

o
(i)
t = o

(i)
t −
X

k

PktUkz (11)

This idea can be reused in statistics domain in order to get
a channel-compensated first-order statistic y, in the following
way:

y = x− Uz = x−NUA−1U 0
⌃

−1x (12)

This approach has the desirable property of avoiding the need
of a computational expensive frame by frame compensation.

4) Classical scoring vs linear scoring: Classical GMM-
UBM scoring of a dataset X and a target model "L is
presented as a likelihood ratio as:

scoreX,!L =

P (X|"L)

P (X|"UBM )

(13)

taking logarithms for practical issues this simplifies to:

scoreX,!L = log(P (X|"L))− log(P (X|"UBM )) (14)

Linear scoring proposes a linear approximation of
log(P (X|"L)) based on its first-order Taylor’s series
expansion evaluated in µUBM :

logP (X|"L) ' logP (X|"UBM ) + (15)
+5µ logP (X|"UBM )

0
(µ− µUBM )

Several advantages of this approach with respect to classical
scoring, arise by carefully analizing the above Equation (15).

First of all, the need to compute term logP (X|"UBM ) is re-
moved, being cancelled as easily shown substituting Equation
(15) into Equation (14) as follows:

scoreX,!L = logP (X|"UBM ) +5µ log p(X|"UBM )

0

(µ− µUBM )− log(P (X|"UBM ))

= 5µ log p(X|"UBM )

0
(µ− µUBM ) (16)

Further, term (µ − µUBM ) is just the offset in a classical
MAP adaptation in which only a EM iteration is done. Taking
advantage of this fact, target models can be expressed in FA-
GMM-LS as the offsets in MAP adaptation, m = (⌧I+N)

−1x
(see Equation (6)), since the need of using a UBM is removed
from this step on.

Moreover, it can be shown that term 5µ log p(X|"UBM )

0

is the first-order statistics x but normalized by the diagonal
covariance matrix [17]. Thus, the scoring function is reduced
to a dot product between the MAP offset model m and the
first-order statistics calculated from X with respect to the
UBM and normalized by the diagonal covariances matrix.

Summarizing the previous analysis, the score between a
model "L generated from sufficient statistics Ntrain and
xtrain and a test dataset X represented by its first-order
statistic xtest is defined by:

scoreX,!L = (µ− µUBM ) · (⌃−1xtest) (17)
= (⌧I +Ntrain)

−1xtrain · (⌃−1xtest)

Note that in order to apply session variability compensation
in both train and test phases, first order statistics xtrain and
xtest must be replaced by compensated stats ytrain and ytest
following Equation 12.

B. SVM Working on Session Variability Compensated Su-

pervectors

The ATVS SVM supervector (SVM-SV) system is based on
the work proposed in [18] where a GMM mean supervector is
considered a point in the high-dimensional transformed space
where the SVM works. Each GMM mean supervector repre-
sents a mapping between an utterance and a high-dimensional
vector and thus, the need for explicitly performing a mapping
from a lower dimensional space as in GLDS approach [8]
is avoided. Then, an hyperplane is estimated in this SVM
subspace to discriminatively separate a target class from non-
target classes.

A modification to the work in [18] was introduced into
our system by employing a session variability compensation
scheme within the statistics domain, by using the channel com-
pensated first-order statistics from the FA-GMM-LS system.
Then, a single MAP adaptation was applied in order to obtain
compensated GMM supervectors.

Even though others channel compensated techniques applied
to SVM have been proposed in the literature [19][6][20],
as far as author’s knowledge, none of them have been de-
signed to work at this level, where its application implies
some advantages. On one hand, although session variability
compensation techniques applied to the feature domain such
as feature Nuissance Attribute Projection (fNAP) [21] or
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feature Latent Factor Analysis (fLFA) [6][21] have the prime
advantage of allowing any type of posterior modeling, its
application implies a frame-by-frame compensation over the
set of features rather than a single compensation in model
or statistics domain. This becomes a major drawback when
large amounts of data must be processed, as in language
recognition. On the other hand, once first-order statistics are
channel compensated, no other FA techniques applied at model
domain such as [20] or NAP [19] were necessary. This turned
out in a major saving of computational time in our acoustic
systems as well as a significant benefits in terms of recognition
performance.

III. HIGH LEVEL SYSTEMS

Even though the ATVS submissions to recent LRE’s have
also included a prosodic system, in LRE’09 all our high-level
systems were based on phonotactic systems. Among high-level
systems, phonotactic systems are one of the most successful
and classic approaches in the field of language recognition
[22]. Phonotactic systems try to model the sequences of
phonemes that are characteristic of a particular language by
processing speech with a Phonetic Recognizer (PR) that trans-
forms speech into a sequence of phonetic tokens. Systems can
use a single PR or many different PRs in different languages
(Parallel PR, or PPR) for better performance. The set of
languages of the PRs does not need to meet with those to
be recognized, which is highly desirable because otherwise it
would be necessary to train a new PR for each new language
to recognize.

The sequence of recognized phonetic tokens can be used in
different ways for language recognition. The most classical
approach is to use statistical Language Modelling (LM )
techniques to model the frequencies of phones and phone
sequences (n-grams) for each particular language. The com-
bination of a single PR and LM gives the Phone Recognition
Language Modelling (PRLM) approach [22]. The language
model (LMi) is previously trained on the phonetic sequences
obtained by the PR from utterances known to be of language
i. It is common to use also a Universal Background Model
with a structure similar to the language models but trained on
phonetic sequences obtained from many languages to represent
the generality of all languages through a PR. Once these two
models are available, the first step to verify the language of
the utterance is to process it with the PR to produce the
phonetic sequence, X . Then, the phonetic decoding of the
test utterance, X , and the statistical models (LMi, UBM )
are used to compute the likelihoods of the phonetic decoding,
X , given the language model LMi and the background model
UBM . The recognition score is the log of the ratio of both
likelihoods, normalized by the number of phonemes in the
phonetic sequence. Global scheme of this process is shown
in Figure 1. As different PRs can be used for the same task,
it is common to use a combination of several PRs and LM
in an approach known as Parallel-PRLM (PPRLM) [22]. This
approach dominated the field of language recognition for years
and is still, with some evolutions and improvements, one key
subsystem of state-of-the-art language recognition systems.

Phonetic

Recognizer

(PR)
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Fig. 1: Verification process in PRLM scheme.

One of the most important recent improvements in terms
of performance is the use of SVMs for classifying the whole
n-gram probability matrices [9], instead of using them in a
likelihood ratio framework. This last type of system is usually
referred to as Phone-SVM and is the type of system used in
ATVS submission to LRE’09.

IV. FUSION AND CALIBRATION

As previously stated, a complete language recognition sys-
tem is usually a combination of many individual subsystems.
Combining this information by efficiently using the comple-
mentary information of every subsystem involved is known as
fusion. The back-end/fusion strategy presented in this work
and used in the LRE’09 evaluation is based on the use of an
anchor models scheme [23].

Recently, the anchor models approach has been successfully
used for both speaker verification and language identification
[24][25] but not with the goal of fusion. The idea behind
this approach is not only modelling the distribution of the
scores for a target language with the scores for every utterance
belonging to this language but to take advantage of the
distribution of these scores against non-target models as well.
By using anchor models, each utterance is mapped into a
model space, called anchor model space, where the relative
behaviour of the speech utterance with respect to other models
can be learned. A point in this space is built by simply stacking
scores obtained for testing an utterance over the cohort of
pre-trained model as shown in Figure 2 (a). Once the set
of stacked scores vectors are obtained for each language,
these are used as inputs of a SVM system for discriminative
purposes. Incorporating new subsystems to this fusion scheme
is trivial as can be shown in Figure 2 (b).

In order to take the actual detection decision we have
followed a per-language detection approach to calibrate the
output log-likelihood-ratios (log-LR). Each score for each of
the 23 target languages in the evaluation has been mapped to a
logLR assuming a target-language-vs-rest configuration (one-
vs-all). Therefore, each score can be interpreted as follows:

scal = log (LR) = log

p (s| ✓0)
p (s| ✓1)

(18)
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Fig. 2: a) n-class parallel language detection problem where Sxi stacks the similarities of xi (input signal) over the set of models mj , b)
Generation of features (scores) in the anchor model space.

where scal is the calibrated score, s is the score to be
calibrated, and the hypotheses are defined as follows:

• ✓0: the language in the test utterance is the target lan-
guage.

• ✓1: the language in the test utterance is not the target
language.

Thus, a different score-to-log-LR mapping is performed
per target language, and therefore the calibration strategy has
been conducted independently for each target language. Linear
logistic regression [11] has been trained, using the FoCal
toolkit 2, on the complete development set of scores for each
language.
After calibrating log-LR values, the logarithm of the Bayes

threshold has been used in order to take decisions, defined as:

log (⌧B) = log

PntCfa

PtCfr
(19)

where Pnt = Pt = 0.5 and Cfa = Cfr = 1 as defined by
NIST, and therefore log (⌧B) = 0. If the calibration process
is correctly performed, this is equivalent to choosing the
minimum-cost threshold for each target language detection
sub-system. Thus, after the log-LR transformation, both ob-
jective functions to optimize, namely CllrAvg and Cavg as
defined by NIST [26] tend to be as best as possible. However,
a per-language one-vs-all calibration approach as this one will
be slightly sub-optimal due to the fact that is does not take
into account that this is actually a multiclass problem [27].

V. DATABASES, PROTOCOL AND PERFORMANCE METRIC

LRE’09 evaluation included, for the first time, data coming
from two very different audio sources. Besides CTS, used
in past evaluations, telephone speech belonging to broadcast
news was used for both train and test purposes. Broadcast data
was obtained via an automatic acquisition system from “Voice
of America” news (VOA) where telephone and non-telephone
speech is mixed. Up to 2 terabytes of speech, automatically

2Available at http://niko.brummer.googlepages.com/

labeled in language and type, were distributed to participants.
Further, around 80 audited segments for each target language
(of aproximately 30 seconds duration each) was provided too
for development purposes.

Both closed and open-set modes were defined as tasks in
this evaluation each one tested with duration segments of 3, 10
and 30 seconds. We refer to closed-set as the task when only
target languages are included in the test trials set, and to open-
set when other non-target languages (unknown to participants)
are also included. In this evaluation, 23 target languages were
involved in closed-set as it was shown in Table I and 40
in open-set. More detailed information can be found in the
LRE’09 evaluation plan [26].

In order to face this new challenge, where database mis-
match play and important role [28], an ATVS development
dataset was set up, ATVS-Dev09 onwards. This dataset was
built to reproduce in the most accurately possible way, blind
evaluation conditions by using different sets of CTS and
VOA data provided by NIST. ATVS-Dev09 covered all target
evaluation languages and test evaluation duration segments (3,
10 and 30 seconds). Table I shows the 23 evaluation target
languages along with ATVS available data type per language.
Specifically, the CTS training material (ATVS-DevTrain09)
consisted of the “Callfriend” database, the full-conversations
of LRE’05 and development data of LRE’07. For Russian data
we used also “RuSTeN”3. Telephone broadcast data was ob-
tained from speech segments (minimum length 30s.) extracted
from VOA long files using telephone labels provided by NIST.
The test material (ATVS-DevTest09) was obtained from the
test part of LRE’07 (for target languages in both LRE’07
and LRE’09), and from manually labeled data from VOA
provided by NIST. Finally, about 15,000 segments, balanced
in segments of 3, 10 and 30 seconds, while LRE’09 evaluation
included about 15,000 segments per duration (⇠45,000 seg-
ments) and therefore about 1 million trials since every segment
is tested against every target language.

In order to assess performance, two different metrics were
3LDC 2006S34 ISBN 1-58563-388-7, www.ldc.upenn.edu
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Language Abbreviation Data Type (VOA/CTS)
Amharic amha V OA/−
Arabic arab −/CTS
Bengali beng −/CTS
Bosnian bosn V OA/−
Chinese (Cantonese) cant V OA/−
Chinese (Mandarin) mand V OA/CTS
Creole creo V OA/−
Croatian croa V OA/−
Dari dari V OA/−
English (Indian) inen −/−
English (American) usen V OA/CTS
Farsi fars V OA/CTS
French fren V OA/−
Georgian geor V OA/−
German germ −/CTS
Hausa haus V OA/−
Hindi hind V OA/CTS
Japanese hind −/CTS
Korean kore V OA/CTS
Pashto pash V OA/−
Portuguese port V OA/−
Russian russ V OA/CTS
Spanish span V OA/CTS
Tamil tami −/CTS
Thai thai −/CTS
Turkish turk V OA/−
Ukranian ukra V OA/−
Urdu urdu V OA/−
Vietnamese viet V OA/CTS

TABLE I: Alphabetical list of available languages. In bold, LRE’09
target languages.

used, both evaluating the capabilities of one-vs.-all language
detection. On the one hand, DET curves measure the dis-
crimination capabilities of the system. On the other hand,
Cavg which is a measure of the cost of taking bad decisions,
and therefore it considers not only discrimination, but also
the ability of setting optimal thresholds (i. e., calibration). In
this work, while DET and Cavg results are shown, all our
development process was based on Cavg , showing now also
DET’s just to visually observe the discrimination ability of the
systems.

VI. SUBMITTED SYSTEMS AND NOTES ON
IMPLEMENTATION DETAILS

Different combinations of systems presented in Sections II
and III were submitted leading to a total of four different
systems built under different criteria:

• ATVS4 is a phonotactic-only submission, fusion of the
10 PhoneSVM systems in use (seven from ATVS plus
three from BUT)

• ATVS3 is a fast and reliable acoustic-only submission
with just the FA-GMM-LS system, designed to optimize
the computational time but with a high level of recogni-
tion performance.

• ATVS2 consisted of a fusion of all our acoustic (FA-
GMM and SVM-SV) and phonotactic (PhoneSVM) sys-
tems, as shown in figure 3.

• ATVS1 (primary) is a fusion of ATVS2 with primary
system from other participant (TNO), where the latter
consisted of a fusion of six acoustic systems: three GMM-
SVM and three FA-GMM linear scoring as in [4].

Fig. 3: Fusion scheme for ATVS2 submitted system.

A design decision was to generate language models for
every target language in both VOA and CTS data where
possible depending on data availability, using as well available
data on other non-target languages. In that sense 14 CTS
and 22 VOA front-end models were trained for every system
(VOA IndianEnglish was trained only in the back-end due to
data scarcity) as shown in table I. This was done with the
goal of later fusing information provided for each model type.
Figure 3 shows the fusion scheme for all our systems (ATVS2),
remaining fusion systems following similar schemes.

Implementation details for each type of system as well as
fusion and calibration notes are shown in the rest of this
section.

A. Spectral Systems
A parameterization consisting of 7 MFCCC with CMN-

Rasta-Warping [29] concatenated to 7-1-3-7 SDC-MFCCs was
used [30] for spectral systems.

According to the data type, two UBMs namely UBMCTS

and UBMV OA with 1024 gaussians were trained. Data from
CallFriend, LRE’05 and train part of LRE’07 was used for
training UBMCTS , while the training of UBMV OA was
composed by VOA development data provided by NIST.
Distribution per hours of this training is as follows. A total of
38.5 hours was used in UBMCTS training, incluiding about
2.75 hours per 14 available languages. For UBMV OA a total
number of 31.2 hours balanced on 1.42 hour per 22 languages
was used (IndianEnglish was not included due to data scarcity
for this language).

Further, two different FA-GMM-LS systems were developed
by using above UBMs. Two session variability subspaces
matrices were trained from CTS and VOA data respectively,
UCTS and UV OA. We found this approach to outperform
the approach where mixed data (CTS,VOA) is processed to
train a unique session variability subspace. In this work,
session variability subspaces were trained via EM algorithm
after a PCA initialization based on [31][7] and only top-50
eigenchannels were taken into account turns out in a CDx50
dimension matrix. In order to train the session variability
subspaces, a large amount of data was used. UCTS was trained
with a total number of 350 hours by using 600 segments
of about 150 seconds per the 14 languages available; while
UV OA was trained with 550 hours, using 600 segments of
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about 150 seconds as well but of the 22 languages available.
Data distribution for training UBMs and session variability
subspaces is summarized in Table II.

Compensated statistics via Factor Analysis by using UCTS

and UV OA as described in II-A3 were also used on the SVM-
SV system.

B. High Level Systems

The phonotactic ATVS system is a fusion of 10 different
Phone-SVM subsystems (Ph1 to Ph10) as described in Section
III. Ph1 to Ph7 use phonetic tokenizers developed by ATVS
and Ph8 to Ph10 use phonetic tokenizers trained with Hun-
garian, Czech and Russian data respectively 4. The ATVS
phonetic tokenizers are based on Hidden Markov Models
(HMMs), trained with HTK [32] and later transformed to be
used by the SPHINX [33] speech recognition engine for faster
recognition. The phonetic HMMs are three-state left-to-right
models with no skips, and the output pdf of each state is
modeled as a weighted mixture of 20 Gaussians. The acoustic
processing is based on 13 Mel Frequency Cepstral Coefficients
(MFCCs) (including C0) and velocities and accelerations for
a total of 39 components, computing a feature vector each
10 ms and performing Cepstral Mean Normalization (CMN).
The languages of the phonetic decoders from Ph1 to Ph6 and
the corresponding corpora used for training are English (with
the corpus with ELDA catalogue number S0011), German
(S0051), French (S0185), Arabic (S0183 + S0184), Basque
(S0152) and Russian (S0099)5. Ph7 uses a phonetic decoder
in Spanish trained on Albayzin spanish speech database [34]
downsampled to 8 kHz, which contains about 4 hours of
high-quality phonetically labelled speech. Once the speech
segment has been transformed into a sequence of recognized
phonetic tokens (with any of the phonetic decoders), this
sequence is used to estimate count-based 1-grams, 2-grams
and 3-grams, pruned with a probability threshold, resulting
in about 40,000 n-grams. These are rearranged as a feature
vector, which is taken as the input of an SVM that classifies
the test segment as corresponding (or not) to one language.
PhoneSVMs are combined in different ways to obtain different
front-end systems. Each PhX system consists of 22 VOA and
14 CTS models trained separately. Channel dependent t-norm
is the last stage of those phonotactic front-ends.

C. Fusion and calibration

Input vectors to our fusion systems anchor model
based back-end had dimension 216 (36 ATVS models -
14CTS+22VOA- x 6 component systems) while primary was
438 adding scores output of other site. Back-end t-norm was
design as channel-independent (VOA+CTS), while calibration
was duration-dependent. Anchor model training was 90/10
bootstrapped while calibration training was bootstrapped with

4These have been developed and made available for research purposes by
the Speech Processing Group at Faculty of Information Technology, Brno
University of Technology.

5www.elda.org.

80/20 using available training data. A channel independent T-
Norm (models from VOA and CTS) stage was applied for
scoring normalization.

LRE’09 considered three different nominal durations for the
test segments: 3, 10 and 30 seconds of speech. The same indi-
vidual subsystems were used to perform language recognition
tests for the different durations. However, calibration has been
trained specifically for the estimated different durations and an
automatic voice activity detector has been used to classify test
segments. As the calibration was applied after the back-end, a
single score for each test segment was used, and scores from
all the speech types (VOA, CTS) were pooled for training.
Thus, all the available scores for each duration from each
target language were used to train logistic regression, and the
linear transformation obtained was used to calibrate the scores
from testing data.

VII. DEVELOPMENT AND EVALUATION RESULTS

The performance of ATVS submitted systems is summa-
rized in Figure 4 for development (ATVSDev09) and evalua-
tion (LRE’09) tests. Here, the discrimination per each system
(ATVS1-4) and test segment duration (3, 10 and 30 seconds)
is showed in a pooled DET curve. Several global observations
can be inmediately extracted. Firstly, the good behaviour of the
anchor models fusion scheme introduced is justified as being
ATVS1 (fusion of systems) the system with lower error rates.
The effect of test segment duration in system performance is
also highlighted and it affects in a similar manner to both,
acoustic and high level systems. Further, a slight degradation
in the evaluation results with respect to development ones
is showed. This degradation performance, common to all
participants, is usually due to the database mismatch among
the development and testing databases, and is a common effect
in LRE’s. Table III summarizes this information in terms of
meanCavg (mean of Cavg per language) per system, evaluation
dataset and test segment durations. It is also worth pointing out
that acoustic systems outperform phonotactic ones except for
short durations, and this with a much smaller computational
complexity, but fusion of both kind of systems improve
results, which encourages the use of multilevel approaches for
language recognition.

In more detail, Figure 5 compares systems performance
per target language. Again, results are presented on both,
development and evaluation, but only for 30s test segment
duration. Analysis shows the varying degrees of recognition
difficulty among the different target languages (or better said,
among the data available from those target languages). In the
same way, Figure 6 presents in detail the effect of test segment
duration per language for our primary system (ATVS1).

The need of proper session variability compensation is
showed in Figure 7 where both spectral systems, FA-GMM-LS
and SVM-SV are assesed with and without compensation via
factor analysis on ATVSDev09. Results shows that channel
compensation via FA is crucial in GMM modelling perfor-
mance, getting an improvement of about 82% in meanCavg

terms. Also, system SVM-SV take advantage of this com-
pensation but to a lesser extent (4%). This effect appears
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Prior model Databases #Languages #Hours/language Total
UBMCTS CallFriend, LRE05, T rainLRE07 14 2.75 38.5
UCTS CallFriend, LRE05, T rainLRE07 14 25 350
UBMV OA V OA 22 1.42 31.2
UV OA V OA 14 25 550

TABLE II: Distribution of data used for training Universal Background Models and Session Variability Subspaces.

ATVS Systems Performance
ATVS-Dev09 LRE’09

03s 10s 30s 03s 10s 30s
ATV S1 16.50 6.48 1.56 17.97 7.87 3.71
ATV S2 16.17 7.25 2.02 17.92 8.39 4.26
ATV S3 20.37 10.30 3.25 21.93 10.65 5.67
ATV S4 18.80 9.41 3.73 20.87 10.81 6.55

TABLE III: ATVS submitted systems performance (meanCavg x 100)
on development and evaluation datasets.

ATVS1 on LRE09
03s 10s 30s

closed− set 17.97 7.87 3.71
open− set 18.69 8.80 4.58

TABLE IV: ATVS1 performance (meanCavg x 100) on LRE’09
closed- and open-set.

due to differences in SVM and GMM modelling. In GMM,
target languages models, trained with huge amount of data,
are far shifted with respect UBM reference model after even a
single MAP adaptation. This mean shifting includes not only
information belonging to the language but session variability
found in the training database which it is mainly independent
of the languages. This leads to models that are growing
strongly affected by session variability effects. On the contrary,
the SVM exhibits a higher robustness to this problem due to
its ability to estimate an hyperplane separating target single
utterances models against all non-target ones. However, once
session variability compensation is applied, GMM outpeforms
SVM-SV system.

Table VII presents the system performance of our primary
system on the closed- and open-set where a total of 40
languages were involved (23 target + 17 non-target). Results
for the core condition (closed-set, 30s) are comparable to the
best systems in the evaluation. It is worth highlighting the
excellent performance of the ATVS primary system in the
open-set condition, where a second rank position was obtained.
Results in that task prove the robustness of anchor models
working under unseen languages.

VIII. CONCLUSION AND FUTURE WORK

In this article we have described the ATVS-UAM submis-
sion to the 2009 NIST Language Recognition Evaluation.
This submission was particularly successful since our systems
achieved the 2

nd position in the open-set condition with
speech segments of 30 seconds. The article has discussed
and presented the state-of-the-art technologies used in our
systems, with emphasis on the two main research innovations
introduced. Firstly, anchor models based fusion has been
proposed and has proven to be an excellent scheme for fusion

Fig. 4: Pooled DETs per ATVS submitted systems on development
(ATVS-Dev09) and evaluation (LRE’09) per all target test segment
durations (3, 10 and 30 seconds)

of a set of different subsystems. Secondly, session variability
compensation has been applied on statistics domain and has
shown to outperform the SVM-SV system, thus avoiding the
need for a frame by frame compensation and allowing statistics
extracted from the linearized FA-GMM system to be reused.
Besides these innovations, the LRE’09 task included several
new research challenges with respect to former evaluations,
as huge amount of data to process and a larger number of
target languages (23). A special mention deserves the broad
session variability due to the use of telephone data from two
different sources, broadcast news (extracted from Voice of
America news -VOA-) and conversational telephone speech
(CTS). ATVS acoustic and high level systems were built taking
into account all these factors and achieved good performance
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Fig. 5: Comparision of ATVS submitted systems on both, development
(ATVS-Dev09) and evaluation (LRE’09) datasets for 30 seconds test
duration segments.

Fig. 6: ATVS primary system performance on both, development
(ATVS-Dev09) and evaluation (LRE’09) datasets (3, 10 and 30s).
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Fig. 7: Effect of session variability compensation on SVM-SV and
FA-GMM-LS systems. Results on ATVS-Dev09 using VOA models and
UV OA.

in the task with remarkable results in all submitted tasks. To
achieve this goal, the use of a powerful session variability
compensation scheme via Factor Analysis have demonstrated
to be crucial for acoustic systems performance, obtaining
significant improvements in both the SVM-SV and the FA-
GMM-LS models submitted. Future work includes several
lines such as to explore new accurate ways to better extract and
combine complementary information from different systems;
to build systems more independent to the effects of test
duration and to explore new techniques for fast adaptation
to new channel conditions in session variability compensation
when a limited set of unseen background data is available.
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Fine-grained automatic speaker 
recognition using cepstral-trajectories in 

phone units* 
Javier Franco-Pedroso, Joaquin Gonzalez-Rodriguez, Javier Gonzalez-

Dominguez and Daniel Ramos 
Universidad Autonoma de Madrid 

In this paper, the contributions to speaker identity from different phone units are explored 
through the analysis of the temporal trajectories of their Mel-Frequency Cepstral Coefficients 
(MFCC). Inspired by successful work in forensic speaker identification, we extend the 
approach based on temporal contours of formant frequencies in linguistic units to design a 
fully automatic system, bringing together both forensic and automatic speaker recognition 
worlds. The combination of MFCC feature extraction and variable-length unit-dependent 
trajectories coding provides a powerful tool to extract individualizing information. At a fine-
grained level, we provide a calibrated likelihood ratio per linguistic unit under analysis 
(extremely useful in applications such as forensics), and at a coarse-grained level, we 
combine the individual contributions of the different units to obtain a single calibrated 
likelihood ratio per trial. This approach has been tested with datasets and protocols used in 
the 2006 Speaker Recognition Evaluation (SRE) carried out by the US National Institute of 
Standards and Technology (NIST), consisting of 9,720 trials from 219 male speakers for the 
1side-1side English-only task, and development data being extracted from 367 male speakers 
from 1,808 conversations from NIST SRE 2004 and 2005 datasets. 

1. Introduction 
Automatic speaker recognition has focused in the last decade on two concurrent problems: the 
compensation of session variability effects, mainly through high-dimensional supervectors 
and latent variable analysis (Dehak et al. 2011; Kenny et al. 2008; Kenny 2010), and the 
production of an application-independent calibrated likelihood ratio per speaker recognition 
trial (Brummer & du Preez 2006), able to elicit useful speaker identity information to the final 
user with any given application prior. The results are highly efficient text-independent 
systems in controlled conditions, as NIST SRE evaluations, where lots of data from hundreds 
of speakers in similar conditions are available. Thus, all the speech available in every trial is 
used to produce detection performances difficult to imagine a decade ago. 

However, in the presence of strong mismatch (as e.g. in forensic conditions, where 
acoustic and noise mismatch, apart from highly different emotional contexts, speaker roles or 
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preliminary part of this work. Thanks to SRI for providing Decipher phone, word and syllable labels 
for SRE04 and SRE06. 
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health/intoxication states can be present between the control and questioned speech), those 
acoustic/spectral systems could be unusable as all our knowledge about the two speech 
samples is deposited into a single likelihood ratio, obtained from all the available speech in 
the utterance, that could be strongly miscalibrated (being then highly misleading) as the 
system has been developed under severe database mismatch between training and testing data. 
Moreover, it is difficult (or even impossible) to collect enough data to develop a system robust 
to every combination of mismatched factors present in actual case data, an important problem 
in real applications. 

A usual procedure in forensic laboratories is that a speech expert, typically a 
linguist/phonetician, can isolate or mark segments of compatible/comparable speech between 
both samples, segments being from seconds long to just some short phonetic events in given 
articulatory contexts. The number and types of comparable units for analysis is always a case-
dependent subject, and therefore flexible strategies for analysis and combination are needed. 

The proposed approach proposes an improvement to this application framework, 
providing informative calibrated likelihood ratios for every linguistic unit under analysis. 
Moreover, the combination of the different units yields good discrimination capabilities 
allowing one to obtain speaker detection performance levels similar to equivalent 
acoustic/spectral systems when enough usable units are available. 

The remainder of the paper is organized as follows. In Sections 2 and 3 we presentour 
proposed front-end for feature extraction over phone units and the system in use. Section 4 
describes the databases and the experimental protocol used for testing the system. Section 5 
shows results for the different phone units individually and for several combination methods, 
to finally conclude in Section 6 summarizing the main contributions and future extensions of 
this work. 

2. Uniform-length feature extraction from variable-length 
speech segments 

Many attempts have been made to incorporate the temporal dynamics of speech into features, 
from the simplest use of the velocity (delta) and acceleration (delta-delta) derivative 
coefficients to modulation spectrograms, frequency modulation features or even TDCT 
(temporal DCT) features (see Kinnunen & Li, 2010 for a review). However, to the best of our 
knowledge none of the previous approaches, with the exception of SNERFs (Ferrer 2009), 
and Shriberg et al. (2005) for prosodic information, take advantage of the linguistic 
knowledge provided by an automatic speech recognizer (ASR) to extract non-uniform-length 
sequences of spectral vectors to be converted into constant-size feature vectors characterizing 
the spectro-temporal information in a given linguistic unit. Similar approaches, although 
based on F-patterns, have used linguistic information to perform forensic speaker recognition 
(Gonzalez-Rodriguez et al. 2007), motivating this work. In our proposed front-end, we obtain 
a constant-size feature vector from non-uniform-length MFCC features’ sequence within a 
phone unit. 

22.1  ASR region conditioning 
In order to extract the phone units from the speech signal, the phonetic transcription labels 
produced by SRI’s Decipher conversational telephone speech recognition system (Kajarekar, 
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et al., 2009) were used first. For this system, which was trained on English data, the Word 
Error Rate (WER) of native and nonnative speakers on transcribed parts of the Mixer corpus, 
similar to NIST SRE databases used for this work, was 23.0% and 36.1% respectively. These 
labels define both phonetic content and time interval of speech regions containing phone units 
to be segmented. For this work, 39 phone units from an English lexicon were used, 
represented by the Arpabet phonetic transcription code (Wikipedia). The equivalence between 
the Arpabet phonetic symbols and the International Phonetic Alphabet (IPA) is shown in Table 
1. In addition, two filled pauses commonly used (coded as ‘PUH’ and ‘PUM’) were also 
added to this set of phones for speaker recognition purposes. 

22.2  Cepstral-trajectories parameterization 
By means of SRI’s Decipher phone labels, trajectories (i.e., the temporal evolution of each 
MFCC vector dimension) of 19 static MFCC are extracted, yielding a MFCC matrix of 19 
coefficients x #frames/phone for each phone unit. This variable-length segment is then 
duration equalized to a number of frames equivalent to 250 ms by means of an 
interpolation/decimation process. Finally, those trajectories are coded by means of a fifth 
order discrete cosine transform (DCT), yielding our final 19 x 5 fixed-dimension feature 
vector for each phone unit. 

3. System description 

3.1  Phone-dependent acoustic systems 
Our proposed system is based on the GMM-UBM framework (Reynoldset al. 2000), widely 
used not only in the automatic speaker recognition field but also known by the forensic 
community (Rose & Winter, 2010), using duration-equalized DCT-coded MFCC trajectories 
per phone unit as feature vectors. One single 1024-mixtures gender-dependent UBM is trained 
using all existing phone units per utterance for each individual from a background population 
(development dataset). Then, for each target speaker in the evaluation dataset, a speaker 
model is generated by means of maximum a posteriori (MAP) adaptation, using all the phone 
units available. Finally, the scoring process is performed following a phone-dependent 
scheme, using only feature vectors belonging to the phone unit under analysis. This procedure 
yields N scores per trial (N=#phones) that can be either used as individual speaker recognition 
systems or, by contrast, combined in a single fused system. On the one hand, individual 
phone-unit systems allow us to report useful speaker verification LR’s for very short speech 
samples where the usual state-of-the-art automatic speaker recognition systems are not 
directly applicable (as is the case for forensic applications). On the other hand, when more 
data is available, individual phone units can be combined to achieve better discriminative 
capabilities. 

3.2  Fusion schemes 
In addition to obtaining test results for each phone unit, these individual systems were 
combined. First, scores-sets belonging to each individual system were calibrated by means of 
linear logistic regression. Then, the sum fusion rule was applied for simplicity (there are 41 
systems and a lot of combinations were analyzed, so a technique that involves little 
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computational load was needed), but other techniques such as logistic regression fusion could 
be applied to obtain better combination results. 

Another issue is which phones should be selected for fusing. Two strategies have been 
used in this work. The first is to select the n-best performing phones by setting a threshold for 
the Equal Error Rate (EER) of the individual systems to be fused, leaving out the poorer 
performing phones. However, this procedure does not guarantee that the best fused system 
will be achieved because some phones with lower performance could contribute to the fused 
system if its LR’s have a sufficiently small correlation coefficient with those produced by the 
other phones to be fused. On the other hand, testing all of the possible combinations would be 
a very complex task, so we used a phone selection algorithm (similar to that used in Castroet 
al., 2009) based on the following steps: 

- Take the best performing phone in terms of EER as the initial phones set. 
- Take the next best performing phone and fuse with the previous set. If the fusion 

improves the performance of the previous set, this phone is added to the phones set, 
otherwise rejected. 

- The previous step is repeated for all the units in increasing EER order. 
This procedure allows us to find complementarities between phones that otherwise would not 
have been revealed, but avoiding the complex task of testing each possible combination. 

4. Datasets and experimental setup 

44.1  NIST SRE databases and protocols 
The US National Institute of Standards and Technology (NIST) has been conducting Speaker 
Recognition Evaluations (SRE) from 1997 in order to measure the state-of-the-art and to find 
the most promising algorithmic approaches in text-independent speaker recognition. These 
evaluations define datasets and protocols to measure system performance in an objective way, 
so that the results obtained by systems based on very different technologies can be compared 
in a common framework. 

Briefly, for each SRE, NIST provides an evaluation dataset consisting of two subsets: a 
training dataset containing excerpts of target speakers to be modeled, and a test dataset 
containing test segments from unknown individuals to be compared with target speaker 
models. Several conditions in duration (10 sec., 30 sec., 2.5 min., etc.) and audio types 
(several telephone and microphone channels) for training and test segments are established, so 
that different combinations between them define different tasks to be faced. For this work, 
only the 1side-1side task has been evaluated, consisting of 5 minutes telephonic conversations 
(of approximately 2.5 minutes per conversation side) for both training and testing stages. 

4.2  Development and evaluation datasets 
NIST SRE datasets and protocols have been used to develop and test our proposed system, in 
particular those of years 2004, 2005 and 2006. As region conditioning for phone units 
definition and extraction rely on SRI’s Decipher ASR system (trained on English data), 
English-only subsets of the NIST SRE datasets have been used. SRE 2004 and 2005 datasets 
were used as the background dataset for UBM training, consisting of 367 male speakers from 
1,808 conversations (only male speakers were used for this work). The 1side-1side task from 
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the SRE 2006, involving only English male speakers, was used for testing purposes. This 
dataset and evaluation protocol comprises both native and nonnative speakers across 9,720 
same-sex different-telephone-number trials from 298 male speakers. The SRE 2005 
evaluation set was also used to obtain scores in order to train the calibration rule (linear 
logistic regression). 

The performance evaluation metrics used are the EER and the Detection Cost Function 
(DCF) as defined in the NIST SRE 2006 evaluation plan (National Institute of Standards and 
Technology 2006). Cllr and minCllr (Brummer & du Preez 2006) (and its difference, calibration 
loss) are also used to evaluate the quality of the different detectors after the calibration 
process. 

5. Results 

55.1  Individual phone unit performance 
Table 1 shows the individual performance of phone units for the NIST SRE 2006 English-
only male 1side-1side task, while figure 1 shows their Detection Error Tradeoff (DET) curves 
(only the 11 best perfoming phones are highlighted). It can be seen that, although most of the 
phones have high EER and minDCF values, almost all of them are well calibrated (low 
difference between Cllr and minCllr), as we can also see in the tippet plot in figure 2 for the 
best performing phone unit (‘N’). This enables informative calibrated likelihood ratios to be 
obtained from very short speech samples (as low as some phone units). On the one hand, it 
should be noted that, for each individual system, we are using a very small amount of testing 
data compared with our reference system (GMM-UBM based on 19 MFCC + deltas feature 
vectors, whose performance is EER=10.26% and minDCF=0.0457) which uses the entire test 
file (around 2.5 minutes of speech). On the other hand, the phone labeling and time intervals 
annotation rely on a fully automatic speech recognition system, so errors made by this system 
affect the phone-based speaker recognition systems performance. However, there are a lot of 
phone units that can be combined to achieve better discrimination capabilities of the overall 
system, as it is shown in further discussion.  

Figure 1. DET curves 
for individual phone unit 
performance in the NIST 
SRE 2006 English-only 
male 1side-1side task. 
EER and minDCF are 
shown for the eleven best 
performing phones. 
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Table 1. EER (%), minDCF, Cllr and minCllr for phone units in the NIST SRE 2006 
English-only male 1side-1side task. 

Arpabet IPA EER (%) minDCF Cllr minCllr 
AO ɔ 39.90 0.1000 0.9488 0.9316 
AA ɑ 37.33 0.0993 0.9284 0.9137 
IY i 28.16 0.0929 0.8072 0.7810 
UW u 31.80 0.0957 0.8681 0.8468 
EH ɛ 33.56 0.0975 0.8919 0.8679 
IH ɪ 30.99 0.0964 0.8500 0.8252 
UH ʊ 42.49 0.1000 0.9851 0.9654 
AH ʌ/ə 31.94 0.0972 0.8825 0.8468 
AX ə 28.43 0.0895 0.8161 0.7792 
AE æ 23.97 0.0827 0.7230 0.6988 
EY eɪ 32.48 0.0935 0.8734 0.8480 
AY aɪ 23.97 0.0858 0.7347 0.7044 
OW oʊ 33.83 0.0967 0.8829 0.8626 
AW aʊ 40.17 0.1000 0.9549 0.9409 
ER ɝ/ɚ 39.24 0.1000 0.9484 0.9298 
P p 42.59 0.1000 0.9763 0.9683 
B b 38.55 0.0995 0.9453 0.9311 
T t 30.84 0.0912 0.8291 0.8035 
D d 36.03 0.0986 0.9056 0.8885 
K k 33.96 0.0989 0.8932 0.8721 
G ɡ 42.46 0.1000 0.9790 0.9654 
CH tʃ 43.53 0.1000 0.9866 0.9708 
JH dʒ 42.52 0.0997 0.9809 0.9695 
F f 43.00 0.1000 0.9796 0.9701 
V v 42.07 0.1000 0.9678 0.9589 
TH θ 42.19 0.0998 0.9768 0.9662 
DH ð 35.58 0.0973 0.9061 0.8847 
S s 35.18 0.0966 0.8861 0.8708 
Z z 37.61 0.0997 0.9368 0.9234 
SH ʃ 43.41 0.0998 0.9834 0.9736 
HH h 44.35 0.0996 0.9837 0.9673 
M m 28.42 0.0936 0.8198 0.7930 
N n 21.41 0.0806 0.6811 0.6546 
NG ŋ 34.82 0.0993 0.9192 0.8927 
L l 34.89 0.0981 0.8981 0.8804 
R r or ɹ 34.72 0.0973 0.8986 0.8797 
DX ɾ 40.34 0.0997 0.9686 0.9527 
Y j 31.27 0.0969 0.8598 0.8365 
W w 40.44 0.0997 0.9639 0.9531 
PUH  31.12 0.0967 0.8381 0.8185 
PUM  38.95 0.0985 0.9229 0.9019 
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Figure 2. Tippet plot for the best performing phone unit (‘N’) in the NIST SRE 2006 
English-only male 1side-1side task. 

55.2  Phone units combination 
The first of the two fusion schemes proposed in section 3.2 (setting a threshold for the EER of 
the phone units to fuse) yields the results shown in the first six entrances of table 2 and figure 
3. It can be seen that: i) with few phones fused (3-best fusion), system performance is highly 
improved with respect to that of the individual phones (30% improvement with respect to the 
best phone fused, in terms of EER), showing very high complementarity between phones; and 
ii) this complementarity is confirmed as more phones are added to the fusion, improving 
system performance till it stabilizes close to that of the reference system; as a side effect, 
system calibration degrades as more phones are added to the fusion (figures 4 and 5). This 
effect is due to the use of the sum fusion rule: when individual systems are fused, the errors 
made by them are added given a higher misleading LR. This could be avoided by using a 
different fusion technique such as the average rule, so that the fused LR’s wouldn’t be 
amplified. 

Using the second fusion scheme (the phone selection algorithm), a lower EER can be 
achieved (last entry in table 2 and figure 3), using a set of 11 phone units. It is worth noting 
that some of the 13-best performing phones are not included in this set (‘AX’, ‘EY’, ‘IH’, ‘T’ 
and ‘Y’), while others with lower performance are (‘AO’, ‘NG’ and ‘UH’). However, 
calibration metrics are significantly worse than those of the 13-best performing phones fusion. 
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Figure 3. DET curves for different fusion schemes in the NIST SRE 2006 English-
only male 1side-1side task. 
 
 
EER 

threshold #phones EER (%) minDCF Cllr minCllr 

25 3 14.23 0.0604 0.5133 0.4604 
30 6 13.05 0.0556 0.5283 0.4065 
33 13 10.49 0.0486 0.5943 0.3535 
35 19 10.62 0.0487 0.6957 0.3544 
40 28 10.93 0.0459 0.7829 0.3532 
- 41 10.66 0.0452 0.8593 0.3540 
- 11 10.42 0.0518 0.6895 0.3618 

Table 2. EER (%), DCF, Cllr and minCllr for sum of phone units in the NIST SRE 
2006 English-only male 1side-1side task. 
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Figure 4. Tippet plot for the sum fusion of 3-best performing phone units (‘AE’, ‘AY’ 
and ‘N’) in the NIST SRE 2006 English-only male 1side-1side task. 
 

Figure 5. Tippet plot for the sum fusion of 13-best performing phone units (‘AE’, 
‘AH’, ‘AX’, ‘AY’, ‘EY’, ‘IH’, ‘IY’, ‘M’, ‘N’, ‘PUH’, ‘T’, ‘UW’ and ‘Y’) in the NIST 
SRE 2006 English-only male 1side-1side task. 
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55.3  MFCC and cepstral-trajectories systems fusion 
Finally, to analyze the complementarity between our proposed phone-unit systems (based on 
cepstral-trajectories) and clasical speaker recognition systems (based on MFCC features), a 
sum fusion was performed between our reference system and the best performing phones 
fusion found in experiments reported in the preceding paragraph (the 13-best phones sum 
fusion). Results are shown in Figure 6, where it can be seen that it is possible to obtain a 
consistent improvement over the reference system at every system operating point. So, our 
phone-unit systems are not only useful in cases where usual automatic speaker recognition 
systems are not directly applicable, but also in cases where they are, improving the 
performance of the overall system. 

Figure 6. DET curves for MFCC system, cepstral-trajectories system and their sum 
fusion in the NIST SRE 2006 English-only male 1side-1side task. 

6. Summary and conclusions 
In this paper we have presented an analysis of the contributions of individual phone units to 
automatic speaker recognition by means of their cepstral-trajectories, showing that some of 
them exhibit perfectly acceptable performance and likelihood ratios informative to forensic 
applications but with the advantage of being a completely automatic system. This way it is 
possible to deal with uncontrolled scenarios where only some short segments are available to 
be compared, making it possible to infer a conclusion about the speaker identity in the speech 
sample. This procedure cannot be done by the usual automatic speaker recognition systems 
because they use all available speech data as a whole, and are usually tuned to work with 
fixed-length testing segments. Furthermore, when more testing data is available, individual 
phone systems can be combined to improve the discrimination capabilities of the resulting 
system. Finally, we have shown that it is also possible to complement other acoustic/spectral 
systems by means of their fusion with the cepstral-trajectories systems. 
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Abstract

This paper presents a large-scale study of the discriminative abilities of formant fre-
quencies for automatic speaker recognition. Exploiting both the static and dynamic infor-
mation in formant frequencies, we present linguistically-constrained formant-based i-vector
systems providing well calibrated likelihood ratios per comparison of the occurrences of
the same isolated linguistic units in two given utterances. As a first result, the reported
analysis on the discriminative and calibration properties of the different linguistic units
provide useful insights, for instance, to forensic phonetic practitioners. Furthermore, it
is shown that the set of units which are more discriminative for every speaker vary from
speaker to speaker. Secondly, linguistically-constrained systems are combined at score-level
through average and logistic regression speaker-independent fusion rules exploiting the differ-
ent speaker-distinguishing information spread among the different linguistic units. Testing
on the English-only trials of the core condition of the NIST 2006 SRE (24,000 voice compar-
isons of 5 minutes telephone conversations from 517 speakers -219 male and 298 female-),
we report equal error rates of 9.57% and 12.89% for male and female speakers respectively,
using only formant frequencies as speaker discriminative information. Additionally, when
the formant-based system is fused with a cepstral i-vector system, we obtain relative im-
provements of ∼6% in EER (from 6.54% to 6.13%) and ∼15% in minDCF (from 0.0327 to
0.0279), compared to the cepstral system alone.

Keywords: automatic speaker recognition; formant frequencies; formant dynamics;
linguistically-constrained systems

1. Introduction

Most of the studies in automatic speaker recognition over the last two decades have
been based on compact representations of the speech signal in short analysis windows (i.e.
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Recognition Evaluation. ASR: Automatic Speech Recognition.
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MFCC, RASTA-PLP, etc.) [1]. Although they are based on spectral representations of the
speech signal, it is difficult to directly relate the physiological traits of an individual with
the set of such extracted features due to the additional transformations to which they are
subjected (inverse FFT, DCT, etc.) [2]. Moreover, it is hard to interpret such kind of coeffi-
cients inasmuch as they do not correspond to any physical magnitude but to mathematical
abstractions (the so-called cesptral domain). Formant frequencies, on the other hand, rep-
resent the resonant frequencies of the vocal tract of an individual, being easily interpretable
and directly related with anatomical and physiological characteristics [3] [4]. This makes
them specially suitable for forensic purposes [5] [6], where formant measurements have been
used for forensic voice comparison for several decades [7] [4].

Voice comparison is usually performed in the context of linguistic units in forensic-
phonetics [8], but reported studies are usually based on limited experimental frameworks
(in terms of number of speakers, number of analysed linguistic-units, or both) due to the
manual processes involved in order to extract formant frequencies or labelling the analysed
units. So, it is of broad interest to analyse the abilities of formant frequencies for speaker
recognition following a similar approach but applied on a large-scale experimental framework
with the aid of fully automatic systems. In this way, the presented results can give useful
insights for the practitioners in that field.

Furthermore, interpretable features are helpful in order to correlate with human ob-
servations and may lead to find some clues that could be hidden even for very complex
cepstral-based systems [9]. Such kind of interpretable features, or the systems that make
use of them, are usually classified as higher-level [10], and sometimes involve some kind of
constraints [11] that are applied either in the feature extraction process (in order to define
the feature itself), in the speaker modelling process (in order to reduce the intra-speaker
variability), or both of them [10]. Higher-level systems provide very useful and complemen-
tary information that usually leads to performance improvements when they are combined
with short-term acoustic systems [12] [13] [14].

With the objective of using interpretable features as formant frequencies but being
able to evaluate them in the same challenging conditions of the state-of-the-art systems
(e.g. the NIST Speaker Recognition Evaluations framework), we present in this paper a
speaker verification system based on formant frequencies through the combination of differ-
ent linguistically-constrained i-vector systems. While previous approaches [12] [15] [16] [17]
extract the speaker distinguishing information from formant frequency dynamics through
trajectories coding in the context of some linguistic units (phones, diphones, syllables or
pseudo-syllables), in this work we address this issue by means of the classical derivative
coefficients [18] [19], also known as delta (∆) features, widely used in speech processing [20]
in order to account for the dynamic information in the cepstral domain. This approach
has the advantage of not reducing each linguistic segment (e.g. phone, diphone, etc.) to a
single observation vector, relaxing the previous requirements of training data derived from
extracting one single feature vector per linguistic segment.

The rest of the paper is organized as follows. Section 2 presents a brief overview of how
formant frequencies have been used for speaker recognition, while Section 3 describes the
automatic feature extraction process followed in the proposed approach. Section 4 details
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how linguistically-constrained i-vector systems are built from formant features with the aid of
automatically-generated phonetic labels. Section 5 describes the constraint-selection rules
and fusion techniques used in order to combine the linguistically-constrained systems for
text-independent speaker recognition. The experimental framework and evaluation metrics
are presented in Section 6, including a description of our reference cepstral-based speaker
recognition system. Results are shown in Section 7 for both independent linguistically-
constrained systems and for several constraint combinations, as well as for the combination
of formant and cepstral-based systems. Finally, conclusions are drawn in Section 8 and
extended results are reported in a final appendix.

2. Formant frequencies for speaker recognition

Formant frequencies have strong individualization potential [7] and have been used for
forensic voice comparison for several decades [4]. Usually, formant centre frequencies are
extracted at the temporal midpoint of vowels [21] reflecting in part certain anatomical di-
mensions of a speaker as the length and configuration of the vocal tract. Also, the mean
frequencies over the time-course of the vowel [22] have been used.

In order to obtain richer representations, frame-by-frame formant-frequency distributions
have been modelled through either long-term formant distributions (LTFs) [3] or multivariate
Gaussian mixture models (GMMs) [5]. It is also common to incorporate formant bandwidth
measurements in order to complement the information provided by instantaneous formant
frequency values [5] [16], as they are also related to vocal tract conditions.

Formant dynamics were also proposed for speaker recognition [8] under the assumption
of presenting higher inter-speaker variability within linguistic units than the static measure-
ments of formant frequencies: while speakers seems to show very similar acoustic properties
at moments at which ’phonetic targets’ [8] are achieved (e. g. formant frequencies at a
segment’s temporal midpoint), much larger differences are exhibited in the ways they move
between consecutive targets [23].

This transitional information is omitted by statistical distributions obtained from frame-
by-frame formant frequencies. In order to capture this dynamic information, two main
approaches have been used: polynomial fitting [8] [12] and Discrete Cosine Transform (DCT)
[24] [17] of formant trajectories over linguistic units. Both approaches compute a fixed
number of polynomial or DCT coefficients per trajectory and concatenates the coefficients
from the different formant trajectories, yielding a single feature vector that captures the
dynamic information of the different formants in a given linguistic unit. In order to define
the speech region where formant trajectories are computed, both manual segmentations
(mainly in the forensic field) [24] [8] and automatic speech recognition (ASR) systems [12]
[17] have been used. Using coded trajectories as feature vectors, speakers have been modelled
through multivariate kernel distributions (MVK) [24] [16] or GMM’s [17] in a linguistic unit-
dependent manner, or by means of joint factor analysis (JFA), compensating for intersession
variability, by pooling together trajectories from different units [12].

Similarly, the approach proposed in this paper is based on formant frequencies, but ex-
tracts the dynamic information through derivative coefficients [18] [19] regardless of the lin-
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Figure 1: Formant tracking for a speech sample in Wavesurfer©, and its corresponding automatically ex-
tracted word and phone labels.

guistic content. These coefficients are also extracted at a frame-by-frame rate and combined
with the static information of instantaneous formant frequency values. Then, linguistic units
are used as constraints applied to feature vectors in order to develop separate i-vector sys-
tems for each linguistic unit, allowing to independently analyse their speaker-distinguishing
abilities.

3. Feature extraction

3.1. Formant tracking

Several methods and algorithms have been proposed for formant tracking [20], but only
some of them have been implemented and made available within free software packages, as
for example Wavesurfer [25], Praat [26] or WinSnoori [27]. Among them, the first one was
selected for this work because it allows to easily automate this process for large databases.
Wavesurfer is a general-purpose software audio editor widely used for studies of acoustic
phonetics that provides an interactive display for waveform, spectrograms, pitch tracks or
transcriptions visualization, therefore being a graphical user-oriented tool. However, it’s
developed using the Snack Sound Toolkit library [28], so scripts for automatic processing of
large databases can be written in Tcl/Tk [29].

The Snack formant tracker bases its formant-frequency estimates on a linear prediction
analysis performed at each frame, and dynamic programming is used to refine the resulting
trajectories [30]. It was used with default parameters for both male and female speakers,
except for the number of formant frequencies to be tracked. Most formant tracking estima-
tors focus on formants F1-F3 due to the fact that higher formants are progressively weaker
in intensity [20]. Moreover, the average frequency position of F4 is 3500 Hz, which is close
to the cut-off frequency of the telephone-line band-pass filter. As in this work we are dealing
with telephone-line speech, formant frequencies have then been extracted for the first three
formants, with a 10 ms time resolution.

For the sake of simplicity in the feature-extraction phase, and due to the large number of
speakers and linguistic units present in our experimental framework, no specific settings were
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used for different speakers or units but a common one. For similar reasons, no exhaustive
analysis was made regarding the suitability of the settings used, but just some shallower
checks against typical formant values for the measurements obtained. As an automatic
system, it will present errors that the following stages have to deal with.

3.2. Dynamic-information

While frame-by-frame formant frequencies can be estimated regardless of the linguistic
content present in the speech signal, formant trajectories, as they have been used so far
in speaker verification [12] [16] [17], can only be defined by using phonetic segmentations
in order to delimit the speech region on which they are going to be coded. Working with
automatic systems, both formant tracking errors and misalignment of phone label from the
ASR will be observed, leading to erroneous coded trajectories in those cases.

An example is shown in Figure 2, where the phonetic transcription is correct but not
properly aligned with the beginning of the acoustic signal and, therefore, spurious formant
values computed at the beginning of the segment give rise to an artificial trajectory. If,
for example, polynomial fitting is used in order to code the trajectory, the artificial spiky
trajectory will require larger values in the higher order coefficients. Thus, the single feature
vector corresponding to the whole linguistic unit will provide misleading information. Also,
the same problem appears if some isolated spurious formant values arise within a well aligned
phonetic transcription. On the contrary, if a frame-by-frame feature-extraction scheme is
followed as will be used here, isolated spurious formant values only affect to the feature
vectors extracted in these frames instead of the whole linguistic segment.

Figure 2: Example of label temporal misalignment.

Moreover, although the one-vector-per-linguistic-segment coding approach achieves a
highly compact representation of formant trajectories in linguistic units, it greatly reduces
the amount of data that can be used to train the parameters of the system, specially for
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linguistic units with low frequency of occurrence. This problem is aggravated when linguistic
constraints are applied for speaker modelling and comparison. For example, the diphone
units analysed in this work present, on average, a frequency of occurrence of 10 times per
conversation. Thus, if the trajectories of the first three formant frequencies are coded with
the first 5 coefficients of its DCT, and the coefficients concatenated in a single feature vector,
only ten 15-dimensional (3 formant trajectories × 5 coefficients/trajectory) feature vectors
will be available per conversation. Thus, sufficient statistics for the speaker modelling process
have to be computed from a reduced number of observations (even lower than the number
of features per observation). However, if a frame-by-frame feature extraction scheme is
followed instead, the larger length of diphones will provide enough number of feature vectors
in order to extract reliable sufficient statistics even with a low number of occurrences per
conversation. In the previous example, assuming an average number of samples per diphone
equal to 10, one hundred 3-dimensional samples will be available.

For these reasons, the delta (∆) or derivative coefficients have been used to account
for the dynamic information of formant frequencies instead of trajectory coding. Although
delta coefficients cannot include the whole formant trajectory along the linguistic segment,
they can characterize the local dynamic information while keeping a frame-by-frame feature
extraction scheme. Delta coefficients were originally introduced for cepstrum coefficients
[18] [19] in order to characterize the spectral transitional information, and are part of typ-
ical state-of-the-art speaker recognition systems. Applied to formant frequencies, this time
derivative, approximated by a finite difference, has the following form

δFm(t)

δt
≈ ∆Fm(t) =

K∑
k=−K

khkFm(t+ k)

K∑
k=−K

hkk2
(1)

where Fm(t) is the m-th formant frequency at time t and hk is a window of length 2K + 1
frames. In this study, a rectangular window (hk = 1) is used with K = 2.

Finally, derivative coefficients are appended to instantaneous formant frequencies for
each frame, giving rise to our 6-dimensional feature vectors at frame resolution (10 ms), f(t).

f(t) = [F1(t), F2(t), F3(t),∆F1(t),∆F2(t),∆F3(t)] (2)

While additional dynamic information could be added in a similar setting through the
delta-delta (or acceleration) coefficients [20], this option has been discarded for practical
reasons. As it will be shown in the following Section, independent speaker recognition
systems are developed based on the different linguistic constraints. Thus, the number of
feature vectors available for developing each independent system is highly reduced due to the
region-conditioning process. If the dimensionality of the feature vectors is further increased,
the ratio between the number of training samples and the complexity of the models is further
reduced. As a trade-off between the amount of information and the complexity of the models,
only delta features have been included in order to account for the dynamic information of
formant frequencies.
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Similarly, formants bandwidth information, while also used in forensic voice compari-
son, has been discarded based on preliminary experiments where including both formant
frequencies and bandwidths did not improve the average performance across the different
constraints, and have not been considered for further experiments in this work.

4. Linguistically-constrained speaker verification

Linguistically-constrained systems make use of an automatic speech recognition (ASR)
system in order to condition the speech regions to be processed. ASR conditioning has
been applied in automatic speaker recognition systems based on both cepstral [11] and
higher-level [32] features. For cepstral-based systems, ASR conditioning is applied after the
feature extraction process, defining the constraints to be applied by each subsystem to the
features that can be used in speaker modelling and comparison stages. In this way, the
intra-speaker variability due to the different lexical content between training and testing
utterances is reduced. In the case of higher-level features, constraints are needed in order
to define the feature itself, as they usually attempt to capture the dynamic behaviour of a
specific measurement (pitch, energy, etc.) over several speech frames [10]. This is also the
case of formant trajectories coding in the context of linguistic units. However, for systems
based on prosodic information, once the features have been extracted, features belonging to
different linguistic units are usually pooled together [12] [13] for the speaker modelling and
comparison stages.

In this work, although ASR conditioning is avoided in the feature extraction process,
constraints are applied in the speaker modelling and comparison stages. In this way, we aim
not only to reduce the intra-speaker variability but also to test the discriminative abilities
of formant frequencies within each linguistic unit independently, which can provide useful
insights, specially to practitioners in forensic phonetics. Moreover, this allows to adopt
a flexible approach to automatic speaker recognition where the linguistic specificities of
particular speakers can be taken into account by using speaker-dependent constraints.

With this objective, we have developed independent i-vector systems [33] for each of the
linguistic constraints under analysis, running in parallel for each speaker comparison (or
trial in NIST SREs nomenclature) over the set of features belonging to its corresponding
constraint. Additionally, calibrated likelihood-ratios (LRs) from a given subset of constraints
can be combined in order to provide a single LR per trial.

4.1. Region conditioning

For the purpose of automatic region conditioning, we use the labels provided by an auto-
matic speech recognition (ASR) system that produces transcriptions defining both phonetic
content and time interval of speech regions in which the audio stream can be segmented. In
this work, the phonetic transcription labels produced by the SRIs Decipher state-of-the-art
ASR system [34] are used. For this system, trained on English data from telephonic conver-
sations, the Word Error Rate (WER) on native and non-native speakers on the transcribed
parts of the Mixer corpus, similar to NIST SRE databases used for this work, was 23.0% and
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Vowels

Monophthongs Monophthongs

Arpabet IPA Word examples Arpabet IPA Word examples

AO O off; fall; frost AE æ at; fast

AA A father; cot Diphthongs

IY i bee; see Arpabet IPA Word examples

UW u you; new; food EY eI say; eight

EH E red; men AY aI my; why; ride

IH I big; win OW oU show; coat

UH U should; could AW aU how; now

AH
2 but; sun R-coloured vowels

@
sofa; alone Arpabet IPA Word examples

AX discus ER 3 her; bird; heart; nurse

Consonants

Stops Affricates

Arpabet IPA Word examples Arpabet IPA Word examples

P p pay CH tS chair

B b buy JH dZ just

T t take Semivowels

D d day Arpabet IPA Word examples

K k key Y j yes

G g go W w way

Fricatives Liquids

Arpabet IPA Word examples Arpabet IPA Word examples

F f for L ì late

V v very R r or ô run

TH T thanks; Thursday DX R wetter

DH D that; the; them Nasals

S s say Arpabet IPA Word examples

Z z zoo M m man

SH S show N n no

HH h house NG N sing

Table 1: 39 phones from the Arpabet phonetic transcription code and their correspondent IPA symbols
(extracted from [31]).
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36.1% respectively. While these results are equivalent to those obtained by other state-of-
the-art systems on similar databases [35], transcription errors will be non negligible and will
produce that, in order to compute the i-vector for a particular linguistic unit, some frames
belonging to a different one will be taken into account, degrading the performance of the
system based on that unit. In this work, no exhaustive analysis has been done regarding
whether the errors occurred are associated with particular units or speakers, as we have no
transcriptions available for the datasets used.

An analysis of such kind can be found in [36], where it is shown that errors are related
with ”extreme prosodic characteristics, words occurring turn-initially, as discourse makers or
preceding disfluent interruption points, and acoustically similar words that also have similar
language model probabilities”. Thus, errors seem not to be associated with specific units but
influenced by several aspects. It is also highlighted that ”speaker differences cause enormous
variance in error rates”, and this seems to be ”not fully explained by differences in word
choice, fluency, or prosodic characteristics”. Thus, a plausible cause can be the acoustic
specificities of different speakers.

Regarding the results reported in this work, on one hand, a variable ASR performance
across units would affect the relative performance among systems based on them. Thus, if
a particular unit present worse speaker recognition performance than other, this can be due
not only to a less discriminative ability of its formant frequencies but also to the fact that
more ASR errors may occur for that particular unit. On the other hand, a variable ASR
performance across speakers will reflect, in fact, the particularities of the different speakers,
which will be combined with the different discriminative abilities of formant frequencies.

4.2. Types of constraints

Looking for multiple separate contributions to the speaker identity in a speech file, lin-
guistic units are the natural and straightforward group of segments to work with. ASR
labels allow to define a large set of candidate constraints from linguistic units [16], showing
each of them different characteristics in terms of within-unit formant dynamics, unit-length
and frequency of occurrence. Among them, the following were used:

• Phones: although they are the shortest units and can appear in many different lin-
guistic contexts, their high frequency of occurrence allow to develop more robust con-
strained systems. For this work, 39 phone units from an English lexicon plus two filled
pauses (represented as PUH and PUM) were selected. These linguistic units are rep-
resented by the ”2-character” ARPABET symbols [37] in the phonetic transcriptions
provided by the ASR system [34]. Table 1 shows the correspondence between Arpabet
symbols and the International Phonetic Alphabet (IPA) ones, while Figure 3 shows an
example of region conditioning for a particular phone unit.

• Diphones: defined as every possible combination of phone pairs, the 98 most frequent
diphones were selected. Compared with phones, they present longer length but much
lower frequency of occurrence. However, they show less contextual variation, which
may lead to reduce the intra-speaker variability of formant dynamics between different
occurrences of the same diphone.
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Speaker 
utterance 

Feature 
vectors 

{ f1, f2, …, fL } 

ASR 
segmentation M EH DX AX AX K L 

‘AX’-phone 
constrained-features 
{ f1

AX, f2
AX, …, fN

AX } 

Figure 3: Example of region conditioning for a particular phone unit (’AX’).

Although formants obtained from consonants are not regularly analysed within phonetics,
we have not restricted the analysis to some specific units (e.g. only vowels, or vowels and
some voiced consonants) for two main reasons. First, as the authors are neither linguists nor
phoneticians but engineers, the only restriction applied regarding the linguistic units to be
analysed is that they present enough frequency of occurrence. And secondly, working with
a wide range of linguistic units illustrates the power of using automatic systems, providing
a thorough analysis of their individualization potential.

4.3. Linguistically-constrained i-vector systems

An i-vector system [33] is a factor analysis (FA) based front-end for speaker verification
which attempts to summarize the speaker distinguishing information in a given utterance,
represented by a set of L feature vectors {f1, f2, ..., fL}, through a single low-dimensional
vector, the so-called identity vector or i-vector for short. This i-vector w accounts for the
speaker and channel/session information present in a given utterance, representing it in
a low-dimensional variability subspace. This is done converting the speaker- and session-
independent supervector (m), usually taken to be the UBM supervector, into the speaker-
and session-dependent supervector (M ) that represents a given speaker utterance:

M = m+ Tw (3)

where T is a rectangular matrix of low rank defining the total variability (TV) space that
contains the speaker and channel variability. For the purpose of developing linguistically-
constrained systems, this FA model is applied in this work for every given constraint, C :

MC = mC + TCwC (4)

Thus, independent UBMs and TV subspaces are trained on the background dataset (see
Section 6 for details) from every linguistically-constrained set of feature vectors {fC

1 , f
C
2 , ...},
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Figure 4: Linguistically-constrained speaker verification system for a particular phone unit (’AX’).

allowing to obtain a constraint-dependent i-vector (wC) from the occurrences of a given unit
within an utterance (see Figure 4). Both the number of components of the UBM (ranging
from 2 to 256) and the number of dimensions of the TV space (ranging from 5 to 50)
are optimized on the development dataset (see Section 6 for details) for each linguistic-
unit/constraint. Extracted i-vectors are length-normalized and whitened [38] previously to
the scoring stage. Then, for a given constraint C, the similarity measure (score) between
the target speaker (wC

target) and the testing utterance (wC
test) i-vectors is given by the cosine

distance between them:

score(wC
target, w

C
test) =

〈wC
target, w

C
test〉

‖wC
target‖‖wC

target‖
(5)

Finally, constraint-dependent scores are z-normalized [39] and calibrated in an application-
independent way [40] through logistic regression trained on the development dataset, using
the FoCal toolkit [41].

5. Combination of linguistically-constrained systems

For a given speaker comparison, the final likelihood ratio can be either any of the
constraint-dependent ones or a combination of a subset of them. In this Section, several
strategies have been followed, regarding different aspects, in order to tackle the issue of how
to combine the different linguistic constraints. First, the type of linguistic constraints taken
into account has to be set. Then, some rule must be followed in order to select the particular
constraints to be fused, according to some criterion. Finally, a specific fusion technique must
be used in order to combine the likelihood ratios corresponding to different constraints.

5.1. Linguistic-constraint types

In a first stage, constraint combinations have been analysed separately for phone and
diphone units. As diphone units are defined as two-phone combinations, they share the same
information as phones, but spread over different diphones. However, dynamic information of
the transition between two specific phone units is only modelled by diphone units, which may
provide significant discrimination ability between speakers. Finally, constraint combinations

11



will be analysed when pooling together both types of linguistic units in order to test if the
transitional information provided by diphone units provide additional discrimination ability
to phone units.

5.2. Constraint-selection rules

We address the issue of constraints selection to be fused as a feature selection process
[42], testing two constraint-selection schemes as in [17]:

• N-best performing units: for this method, constraints are sequentially fused in decreas-
ing performance order on the development dataset. Once the EER is known for every
number of constraints to be fused (see Figure 12a), the subset of constraints with the
best performance on the development dataset is selected and applied in the evaluation
dataset.

• Sequential Forward Selection (SFS): similarly to the previous method, constraints
are sequentially fused in decreasing performance order on the development dataset.
However, instead of keeping every subsequent constraint, they are included into the
fusion subset only if the performance of the fused system increases. This procedure
can be summarized in the following steps:

1. Take the best-performing constraint as the initial subset.

2. Take the next best-performing constraint and fuse with the previous subset. If the
performance of the fused system is increased with respect to that of the previous
step, keep the constraint; otherwise, reject it.

3. Repeat the previous step until the worst performing constraint is reached.

5.3. Fusion techniques

Two different fusion techniques have been analysed in this work. First, a simple fusion
rule consisting on averaging the log-LRs of the subset of N constraints to be combined has
been applied through

logLR =
1

N

∑

∀C in subset

logLRC (6)

where (logLRC) is the log-LR for a particular constraint C. While this technique do not
take into account the different performance of the different constraints, it has the advantage
of not requiring additional training data.

Secondly, a linear combination of log-LRs is applied through

logLR = α0 +
∑

∀C in subset

αC logLRC (7)

where the vector of weights α = [α0, α
C1 , αC2 , ..., αCN ] is obtained by logistic regression [43]

training on the development database, using the FoCal toolkit [41].
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For both fusion techniques, missing trials are handled in the same way as in [44]. Missing
trials may appear when the corresponding constraint is not present in either target-speaker
or testing utterances. In such cases, the corresponding sub-system cannot contribute a
log-LR for that trial. However, as every linguistically-constrained system is independently
calibrated, log-LRs of zero are inserted for missing trials in order to have valid log-LRs for
every sub-system to train the fusion rule.

6. Experimental framework

One of the main goals of this work is to quantify the discriminative power of formant
frequencies and their dynamics on the experimental frameworks used by the automatic
speaker recognition community. NIST SREs have become a de facto standard for testing
automatic speaker recognition systems, providing since 1997 [45] increasingly challenging
datasets and protocols.

In order to develop and test the proposed speaker verification systems, we have used the
datasets and protocols belonging to the NIST SREs carried out on years 2004 [46], 2005
[47] and 2006 [48], mainly those corresponding to the core conditions, which are composed
of 5-minutes length telephone-line recordings of conversational speech. Among them, only
English conversations have been used in order to match the characteristics of the ASR system
[34].

Two are the main reasons for using only those years NIST SREs. First, the authors have
access only to the ASR labels corresponding to those datasets, kindly provided by SRI. And
second, the core condition of the NIST 2006 SRE is the main evaluation benchmark where a
high number of comparative results are available from different high-level systems [10] [49]
[12] [15] [13].

6.1. Performance evaluation metrics

The main evaluation metric used along this work to measure the discriminative perfor-
mance is the equal error rate (EER) [45]. It is also used as the criterion by which the subsets
of constraints are selected for the combination of systems. However, in accordance to the
protocols used [48], the minimum of the CDet (minDCF) is also shown. Finally, the Cllr cost
function and the calibration loss (Closs

llr ) [40] are included as well in order to evaluate the
calibration properties [50] of the different constraints and fusion schemes.

6.2. Background, development and evaluation datasets

The experimental protocol has been carefully designed in order to avoid obtaining overop-
timistic results due to any overlap between datasets belonging to different development
stages. With this aim, different datasets have been devoted to different purposes.

• Background: NIST 2004 SRE dataset [46] has been used as the background dataset
for training UBMs and total variability matrices. This dataset comprises 2,541 files
(1378 5-minutes, 581 30-seconds and 582 10-seconds long) from 125 male speakers and
3,626 files (2022 5-minutes, 802 30-seconds and 802 10-seconds long) from 187 female
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speakers. Also, speakers cohorts for Z-normalization were extracted from this dataset,
using one 5 minute recording per speaker.

• Development: NIST 2005 SRE dataset [47] has been devoted to perform parameter
optimization of the systems. Target speakers from the 1side-1side task were divided
into two halves in order to have two different testing frameworks: sre05-cal and sre05-
val, consisting both of them in ∼5,500 male trials from ∼120 target speakers and
∼7,400 female trials from 171 target speakers. The number of both UBM components
and dimensions of the TV subspace were optimized by minimizing the EER bias and
variance over these two testing frameworks. Once the parameters of the system for each
constraint were set, scores from sre05-cal were used to train the calibration process
(logistic regression) and scores from sre05-val to train the fusion schemes.

• Evaluation: English-only trials from the core condition of the NIST 2006 SRE [48]
were used for evaluating the proposed approach, consisting of 9,720 male trials for 219
target speakers and 14,293 female trials for 298 target speakers.

6.3. Reference system

Our cepstral-based reference system is also an i-vector system developed by using the
same experimental framework as the linguistically-constrained formant-based systems. It is
based on mean-normalized, RASTA-filtered and gaussianized MFCC features (19 coefficients
plus deltas). 1024-component UBMs and 600-dimensional TV subspaces were trained for
each gender. Unlike for the formant-based system, LDA (trained on the background dataset)
was applied in order to compensate for the intersession variability [33]. Thus, the similarity
measure (score) between a target speaker (wtarget) and a testing utterance (wtest) i-vectors
is given by

score(wtarget, wtest) =
(Atwtarget)(A

twtest)√
(Atwtarget)(Atwtarget)

√
(Atwtest)(Atwtest)

(8)

being A the LDA matrix. Finally, scores are z-normalized and calibrated in the same way
as the linguistically-constrained systems.

7. Results

7.1. Independent linguistically-constrained systems

7.1.1. Overall performance per constraint

In this section we show the performance of each linguistically-constrained system inde-
pendently. Table 2 shows the result for each metric on the evaluation dataset for the 10
best-performing phone-constraints (results for every phone are given in Table A.1), while
Figure 5 shows the EER as a function of the frequency of occurrence for each of the 41 anal-
ysed phone-constraints. In both cases male and female trials are independently analysed; it
can be seen that the constraints show similar behaviour for both genders in relative terms
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NIST 2006 SRE, English-only trials

Male Female

Phone EER (%) minDCF Cllr Closs
llr Phone EER (%) minDCF Cllr Closs

llr

AE 21.21 0.0850 0.6668 0.0143 AY 24.59 0.0841 0.7101 0.0111

AY 21.38 0.0825 0.6580 0.0158 AE 24.59 0.0876 0.7308 0.0131

N 22.26 0.0812 0.6896 0.0168 L 24.68 0.0869 0.7355 0.0127

L 23.24 0.0839 0.7083 0.0133 N 24.77 0.0839 0.7256 0.0112

AX 23.80 0.0844 0.7001 0.0150 R 26.49 0.0932 0.7681 0.0132

AH 23.96 0.0964 0.7286 0.0158 AX 27.15 0.0932 0.7764 0.0100

PUH 24.32 0.0933 0.7296 0.0137 OW 27.79 0.0936 0.7830 0.0098

Y 24.68 0.0915 0.7325 0.0180 DH 27.79 0.0940 0.7876 0.0114

EH 24.83 0.0972 0.7544 0.0140 EH 28.06 0.0990 0.8196 0.0157

R 24.96 0.0937 0.7380 0.0149 AH 28.89 0.0974 0.8185 0.0079

Table 2: Results on the evaluation dataset for the 10 best-performing phone-constraints (extended results for
every phone are given in Table A.1).

(Figure 5) except for the shift in absolute performance in favour of male speakers, which
has been also reported in NIST SRE frameworks for cepstral-based systems [33].

It can be seen from Table 2 that, while each of the constraints have limited discriminative
performance by themselves, they have good calibration properties. As an example, prob-
ability density functions of the logLRs provided for the best-performing phone-constraint
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Figure 5: EER vs frequency of occurrence for phone-constraints on the English-only trials of the core condi-
tion of the NIST 2006 SRE. Detailed frequency of occurrence in Table B.1.
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Figure 6: Target and non-target log10-LRs probability density functions for the best phone-constrained system
on the English-only trials of the core condition of the NIST 2006 SRE.

are shown in Figure 6. This allows to obtain informative calibrated LRs for voice com-
parisons from isolated linguistic units, as it has been suggested by some forensic-phonetics
practitioners [24] [4].

Regarding the relationship between discriminative abilities and frequency of occurrence
of each phone-constraint (Figure 5), there is a clear relationship between them in general
terms, obtaining lower EERs those constraints with higher frequency of occurrence. How-
ever, for a subset of phone-constraints with similar frequency of occurrence, the range of
EERs obtained may be wide, suggesting that different linguistic units present different dis-
criminative abilities. In fact, some of the best performing units (’AE’, ’AY’, ’L’, ’R’) are
not among those with the highest frequency of occurrence. However, it should be noted
at this point that neither the formant tracking nor the ASR are error-free processes, and
some particular phone units may present more errors than others, affecting to the relative
difference in performance among them.

In the case of diphone-constraints, it can be seen from Table 3 that the best performing
diphone-constraints are those combining some of the best performing phones (results for
every diphone are given in Table A.2). This is a consequence of the combination of in-
stantaneous frequency values with the derivative coefficients, which do not characterize the
formant dynamics along the whole unit but in a local vicinity. However, there is not a clear
relationship between performance and frequency of occurrence (Figure 7) unlike for phone-
constraints, being in fact the best performing constraint, Y-AE, one of the least frequent
in the database. This suggests that there is significant speaker-distinguishing information
in formant dynamics in the transition between Y and AE phones: although these isolated
phone-constraints are two of those with better performance, other two phone combinations
among the 10-best performing phone-constraints obtain lower performance despite having a
higher frequency of occurrence (e.g. AE-N or AX-N). However, it can be seen that, in aver-
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NIST 2006 SRE, English-only trials

Male Female

Diphone EER (%) minDCF Cllr Closs
llr Diphone EER (%) minDCF Cllr Closs

llr

Y-AE 25.26 0.0867 0.7533 0.0245 Y-AE 28.32 0.0894 0.7960 0.0130

Y-UW 27.69 0.0928 0.8005 0.0135 AX-N 29.34 0.0942 0.8190 0.0154

AX-N 27.79 0.0947 0.7829 0.0132 L-AY 29.71 0.0943 0.8154 0.0199

AE-T 28.42 0.0987 0.8103 0.0195 N-OW 30.71 0.0957 0.8489 0.0159

L-AY 28.42 0.0957 0.8215 0.0277 AE-N 31.71 0.0962 0.8528 0.0097

DH-AE 28.82 0.0949 0.8269 0.0171 AE-T 31.90 0.0997 0.8614 0.0128

AE-N 28.88 0.0945 0.8132 0.0129 L-IY 32.20 0.1000 0.8728 0.0114

L-IY 30.15 0.0966 0.8331 0.0130 Y-UW 32.65 0.0948 0.8667 0.0114

N-D 31.80 0.0974 0.8469 0.0152 N-D 33.00 0.0978 0.8736 0.0082

N-OW 32.15 0.0959 0.8665 0.0128 S-OW 33.22 0.0996 0.8811 0.0116

Table 3: Results on the evaluation dataset for the 10 best-performing diphone-constraints (extended results
for every diphone are given in Table A.2). Sample words for listed diphones are: yeah (Y-AE), you (Y-
UW), second (AX-N), at (AE-T), like (L-AY), that (DH-AE), an (AE-N), firstly (L-IY), and (N-D), know
(N-OW), so (S-OW).

age, diphone-constraints are less discriminative than phone-constraints due to their smaller
average frequency of occurrence, although they also present good calibration properties (Ta-
ble 3).
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Figure 7: EER vs frequency of occurrence for diphone-constraints on the English-only trials of the core
condition of the NIST 2006 SRE. Detailed frequency of occurrence in Table B.2.
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Figure 8: EER (%) per speaker and constraint (only 20 first constraints are shown) on the English-only male
trials of the core condition of the NIST 2006 SRE. In (a), the same unit (columns) performs very differently
for different speakers. In (b), for every speaker (rows), the set and order of best constraints vary widely.

7.1.2. Speaker-dependent performance of different constraints

It is also interesting to analyse how different constraints behave for different speakers,
instead of the average behaviour per unit showed in the previous section. While both
automatic formant tracking and ASR systems may present different behaviour for different
speakers and units, this reflects, in fact, some speaker specificities that are combined with
the discriminative abilities of formant frequencies. Figure 8a shows the EER per speaker for
the 20-best performing constraints, sorted by overall performance on the evaluation dataset.
As the EER has to be computed per each speaker, enough target trials per speaker are
needed in order to obtain reliable metrics; with this aim, in this section only those speakers
with at least 5 target trials have been used, yielding this 65 male speaker-set (only results
for male speakers are shown in Figures 8-11, as similar conclusions can be drawn for female
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Figure 9: EER (%) per speaker (only 10 speakers are shown) for the 3-best overall-performing constraints.
Missing bars indicates that the EER is equal to zero.

speakers).
This analysis shows (Figure 8a) that different constraints present different behaviour for

different speakers. In fact, the best overall-performing constraint (the phone unit ’AE’) may
not be the best-performing one for a particular speaker, but even one of the worst-performing.
For example, this constraint (first column in Figure 8a) presents a high EER (light grey)
for speaker 13 while the performance is much better (dark grey) for speaker 14 and many
others. Similarly, the constraint ’AE-T’ (last column in Figure 8a), as having a much lower
overall-performance (28.42% EER) than the constraint ’AE’ (21.21% EER), presents a high
EER (light grey) for several speakers, while it still presents a very good performance (dark
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Figure 10: EER (%) per constraint sorted by speaker-dependent performance for the 65 speakers (each line
represents a different speaker). As shown, all 65 speakers have a subset of at least 10 speaker-dependent
units with significant discriminative performance (EER per unit below 25%).
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Figure 11: EER (%) per speaker using the best overall constrained-system and the best speaker-dependent
constrained-system. Missing bars indicates that the EER is equal to zero.

grey) for some others. Similar information is shown in higher detail in Figure 9 in a slightly
different way. Here, the EER of the 3-best overall-performing constraints (’AE’, ’AY’ and
’N’) is represented for 10 different speakers, showing their highly variable performance from
one speaker to another.

Moreover, when constraints are sorted by performance independently for each speaker,
the set of N best-performing constraints can be very different from one speaker to another, as
it can be seen in Figure 8b (where only 10 speakers and their 20 best-performing constraints
are shown). This analysis also shows that a very good performance (low EER) could be
achieved for most of the speakers if a speaker-dependent set of constraints is used, as it is
shown in Figure 10 for all 65 speakers and their 70 best-performing constraints (conversely to
Figure 8b, the particular constraints are not shown). It can be seen that, for every speaker,
there is at least one constraint (and usually between 5 and 10 constraints) with better
performance than the best overall-performing constraint (21.21% EER). Moreover, all 65
speakers have a subset of at least 10 speaker-dependent units with significant discriminative
performance (EER per unit below 25%).

As an independent system is built for each isolated constraint in this approach, it would
be possible to take advantage of this fact by using a different linguistically-constrained system
for each speaker in order to adapt to his/her particular specificities if they were known in
advance. For example, in the NIST 2012 SRE the target speakers were known in advance
and several utterances per target speaker were provided; similar conditions may exist in
real-life applications like access control or wiretapping. In such a case, the performance of
the different constrained-systems could be analysed for each target speaker on a development
dataset.

Figure 11 shows how the EER per speaker could be highly improved if the best con-
straint is selected in a speaker-dependent way instead of taking the best overall-performing
constraint. While for these 65 speakers the average EER using the best overall-performing
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constraint (’AE’ phone) is 19.49%, the average EER using the best-performing constraint
of each speaker would be 4.10%, a remarkable result as, for this speaker-set, the average
EER of the reference cepstral system is 3.31%. Although this last result is optimistic as it is
obtained knowing the best-performing speaker-dependent units over the evaluation dataset,
it shows that improved results could be obtained adopting speaker-dependent strategies.

7.2. Performance of speaker-independent combinations of constraints

7.2.1. Comparison of fusion techniques

Figure 12a shows the EER of the fused system as a function of the number of fused
constraints on the sre05-val development dataset for male trials for the two fusion techniques
analysed in this work (namely, the average rule and logistic regression). While the EER of
the fused system through the average rule obtains a minimum value for a certain number of
fused constraints and then begin to increase, the EER of the fused system through logistic
regression keeps going down as the number of fused constraints increases. The logistic
regression fusion, being a trained fusion rule, benefits from the increasing amount of data
provided by the additional constraints to be fused.

However, these are optimistic results as they are obtained in the development dataset,
and the combination of constraints on the evaluation dataset can degrade if the performance
of fused constraints varies from that obtained in development. This effect can be seen in
Table 4. For the logistic regression technique, while the EER of the best fused system on
the development dataset decreases as long as we take into account more constraints (from
41 phones to 41 phones + 98 diphones), the difference with the evaluation results increases,
making them less robust to dataset mismatch for a large number of fused constraints. Con-
versely, the average fusion rule benefits from a higher number of constraints even in the case
of dataset mismatch.

On the other hand, it can be seen also from Figure 12b that the calibration loss increases
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Figure 12: Comparison of fusion techniques on male trials of the sre05-val development dataset.
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Male/female EER (%) for the N-best rule

Phones (P) Diphones (D) P+D

Average
sre05-val 12.35 / 13.67 12.63 / 15.06 11.08 / 13.55

SRE06 10.33 / 14.82 12.72 / 15.10 9.93 / 13.50

Log. Reg.
sre05-val 11.68 / 12.14 10.51 / 12.23 7.88 / 9.84

SRE06 9.57 / 12.89 12.72 / 15.36 11.26 / 12.62

Table 4: EER (%) for male/female trials in development and evaluation datasets when combining different
types of linguistic units through the N-best rule.

Male/female EER (%) for the SFS rule

Phones (P) Diphones (D) P+D

Average
sre05-val 12.25 / 13.18 11.87 / 14.56 10.70 / 12.58

SRE06 10.17 / 14.45 12.99 / 16.15 9.66 / 13.89

Log. Reg.
sre05-val 11.87 / 12.58 11.39 / 13.91 10.70 / 12.08

SRE06 11.15 / 14.11 12.34 / 15.72 10.33 / 14.17

Table 5: EER (%) for male/female trials in development and evaluation datasets when combining different
types of linguistic units through the SFS rule.

for the average fusion as the number of fused constraint increases, while it remains almost
constant for the logistic regression. This makes the logistic regression the preferred fusion
option as eliciting calibrated LRs is among our main objectives.

7.2.2. Comparison of constraint-selection strategies

Table 5 shows the results for the SFS constraint-selection strategy as Table 4 does for the
N-best one. It can be seen that both strategies give similar results on the evaluation dataset
for the average fusion rule, being the EER of the fused systems reduced when constraints
from different linguistic-unit types (phones and diphones) are combined. However, in the
case of the logistic regression fusion technique, there is no such gain for the N-best strategy
on male trials and slight differences on female trials due to the over-fitting and database
mismatch between development and evaluation datasets observed in the previous section.
The SFS strategy does not suffer from this over-fitting as it does not select a number of
constraints as high as the N-best strategy, as constraints that do not increase the performance
of the fused system are discarded. In this way, it still benefits from incorporating diphone
units, which can provide additional dynamic information present in the transition between
phone units.

Finally, Table 6 shows the performance on different evaluation metrics for the best com-
binations of constraint-selection strategies and fusion techniques. In this table, we can see
that logistic regression technique has the advantage of providing well calibrated likelihood
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Male/female results on the NIST 2006 SRE, English-only trials

EER (%) minDCF Cllr Closs
llr

SFS Phones 10.17 / 14.45 0.0495 / 0.0585 0.6759 / 0.6928 0.3069 / 0.2229

Average P+D 9.66 / 13.89 0.0463 / 0.0585 0.8163 / 0.8439 0.4741 / 0.3975

N-best Phones 9.57 / 12.89 0.0456 / 0.0543 0.3742 / 0.4361 0.0277 / 0.0117

Log. reg. P+D 11.26 / 12.62 0.0503 / 0.0590 0.4046 / 0.4531 0.0317 / 0.0202

Table 6: Comparison of the best combinations between constraint-selection strategies and fusion techniques
on the evaluation dataset.

ratios also on the evaluation dataset, as we saw in Figure 12 for the development dataset.
Being this a highly desirable property, the following analysis in Section 7.3 focus on the best
combination of constraints through logistic regression, which is the one using N-best selec-
tion from phone-constraints. In order to highlight the calibration properties of the elicited
LRs from the best formant-based fused system, in Figure 13 we show the log10LR target
and non-target probability density functions.

7.3. Fusion of formant- and cepstral-based systems

Table 7 show the results on the evaluation dataset for the best formant-based fused
system (that using logistic regression fusion of the N-best selected phone units), for the
cepstral-based reference system, and for the average fusion of both. For female trials, al-
though the EER of the fused system is almost the same, there are significant improvements
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Figure 13: Target and non-target log10-LRs probability density functions for the best formant-based fused
system on the English-only trials of the core condition of the NIST 2006 SRE.
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Male/female results on the NIST 2006 SRE, English-only trials
EER (%) minDCF Cllr Closs

llr

Formant-based 9.57 / 12.89 0.0456 / 0.0543 0.3742 / 0.4361 0.0277 / 0.0117
Cepstral-based 6.21 / 6.87 0.0303 / 0.0352 0.2293 / 0.2927 0.0232 / 0.0321

Average fusion 5.41 / 6.86 0.0248 / 0.0311 0.2179 / 0.2789 0.0368 / 0.0393

Table 7: Results on the evaluation dataset for the best formant-based fused system, the cepstral-based reference
system and the average fusion of both.

in both minDCF and Cllr metrics. In the case of male trials, there is also a relative improve-
ment of ∼18% in terms of the EER. Considering both genders, the fused system obtains
relative improvements of 7% and 15% in terms of gender-averaged EER and minDCF, re-
spectively. Although both approaches are based on spectral features, it is shown that they
present a high complementarity like other high-level approaches on the same evaluation
framework [49] [12] [15].

7.4. Comparison with other higher-level systems

Finally, an objective comparison of different high-level approaches in the same evaluation
framework (core condition of the NIST 2006 SRE) is given in Table 8, extending that
presented in [10] with some later works, sorted by performance.

The best performing systems are those based on cepstral information (1,2), using ei-
ther cepstral-derived features (coefficients from MLLR transforms between cepstral-based
GMMs) or MFCC (and prosodic) contours, where ASR is used either only for feature ex-
traction (2) or also for region conditioning (1). Then, there is a group of systems based
on several prosodic (usually including energy, pitch and duration) and/or formant features
(3-7), most of them having very similar performance (ranging from 10.41% to 11.9% EER
for the four best performing ones). Next two systems are based only on duration informa-
tion: (8) models the number of frames of the three states in phone HMMs, while (9) directly
models the duration of phones within specific words. Finally, system (10) is a lexico-prosodic
approach with similar performance to (9).

Among them, our approach is the only one based only on formant frequencies and where
feature extraction does not rely on ASR labels, which are only used for region conditioning.
Also, it is worth noting that our formant-based system does not include NIST 2005 SRE
in the background dataset in order to avoid using overoptimistic scores in the calibration
training; in this way, it is possible to obtain well calibrated LRs per constraint, but better
discriminative performance may be achieved using a richer and larger background database
for UBM and total variability training. However, being its features obtained from short-
term windows every 10 ms, system parameters can be properly trained on limited background
data.
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Male+female results on the NIST 2006 SRE, English-only trials

System (feature type and model) EER (%) Reference
(1) Cepstral-derived MLLR SVM 4.00 [51]

(2) Prosodic and MFCC contours JFA 7.66 [15]
(3) Syllable-based prosody sequence SVM 10.41 [52], [53]

(4) Prosodic contours JFA 11.00 [13]
(5) Formants+∆s i-vector 11.23 -

(6) Formant and prosodic contours JFA 11.9 [12]
(7) Prosodic contours JFA 14.6 [49]

(8) State-in-phone-duration GMM 16.02 [54]
(9) Phone-in-word-duration GMM 22.22 [54]

(10) Duration-conditioned word N-gram SVM 23.46 [55]

Table 8: Results on the core condition of the NIST 2006 SRE (English-only trials) for several high-level
systems compared to our formant-based approach (5).

8. Conclusions and future work

In this work, we have explored the discriminative abilities of formant frequencies and
their dynamics within linguistic units through fully-automatic linguistically-constrained i-
vector systems.

Automatic formant tracking have been used for feature extraction, and dynamic infor-
mation is included through derivative coefficients. In this way, it is possible to combine both
static and dynamic information of formant frequencies while maintaining the frame-by-frame
feature observation rate, instead of reducing each constraint to a single observation feature
vector as it is done in some approaches that code the whole trajectory within a speech re-
gion. This procedure allows us to robustly train the parameters of the system even with
limited background data (NIST SRE 2004) compared with similar higher-level approaches
based on coded trajectories, as it has been shown in Section 7.4.

Then, ASR is used in order to constrain the set of features to be used by each subsystem,
corresponding each of them to a different linguistic unit among two main groups: phones
and diphones. For each of such constraints, one independent i-vector system is developed.
Although linguistically-constrained systems have limited performance by themselves, we
have shown that well calibrated log-likelihood ratios can be provided for each linguistic
unit. Regarding the relative differences in performance among units, it should be noted that
they can be due not only to the different discriminative abilities of their formant frequencies
but also to a different behaviour of the automatic systems involved in the feature extraction
(formant tracking) and region conditioning (ASR labels) processes, which may lead to a
non-uniform distribution of errors among different units. It would be of broad interest to
perform an equivalent analysis in a manually labelled database in order to avoid the effect
of the errors introduced by these automatic systems, but large datasets of spontaneous
conversational speech as those used in this work (∼10,000 5-minute conversations) seem
unlikely to be manually annotated (both formant frequencies and phonetic transcriptions).
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On the other hand, a different behaviour of the formant tracking and ASR systems across
speakers for a particular unit is considered to reflect the specificities of the different speakers.

This fine-grained detail provided by linguistically-constrained systems can be exploited
through speaker-dependent strategies when selecting the constraints to be used. For exam-
ple, in Section 7.1.2 it has been shown that using only the best-performing speaker-dependent
constraint instead of the best overall-performing one for every speaker, the average EER in
the analysed speaker set improves from 19.49% to 4.10%. Furthermore, most of the speak-
ers in the analysed set presents a subset of several constraints (usually between 5 and 10)
that perform better than the overall-performing constraint, so using any of those (different)
constraints for every speaker will lead to an overall performance improvement. Although
this is an optimistic result as it is obtained knowing the best-performing speaker-dependent
units over the evaluation dataset, it shows that improved results could be obtained adopting
speaker-dependent strategies. As a future work, some of this strategies would be tested on
an experimental framework that allows to estimate in advance the best speaker-dependent
set of linguistic units to be used for the different target speakers.

Moreover, we have presented several speaker-independent constraint-combination strate-
gies in order to integrate the speaker distinguishing information spread over the different
linguistic units, achieving for some of them a remarkable combined performance taking into
account the limited size of the background dataset and the nature of features being used.
For these fused systems, discriminative and well calibrated log-likelihood ratios are also
provided.

Finally, significant improvements have been achieved by combining these formant-based
systems with a cepstral-based reference system, showing the complementarity of cepstral
and formant-based approaches.
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Table A.1: Results on the evaluation dataset for every phone-constraint.

NIST 2006 SRE, English-only trials

Male Female
Phone EER (%) minDCF Cllr Closs

llr Phone EER (%) minDCF Cllr Closs
llr

AA 31.21 0.0971 0.8397 0.0112 AA 32.20 0.0982 0.8707 0.0113
AE 21.21 0.0850 0.6668 0.0143 AE 24.59 0.0876 0.7308 0.0131
AH 23.96 0.0964 0.7286 0.0158 AH 28.89 0.0974 0.8185 0.0079
AO 28.47 0.0996 0.8264 0.0151 AO 33.08 0.0989 0.8767 0.0115
AW 33.88 0.0986 0.8907 0.0108 AW 37.48 0.1000 0.9352 0.0075
AX 23.80 0.0844 0.7001 0.0150 AX 27.15 0.0932 0.7764 0.0100
AY 21.38 0.0825 0.6580 0.0158 AY 24.59 0.0841 0.7101 0.0111
B 33.74 0.0956 0.8774 0.0141 B 34.28 0.0988 0.8851 0.0090

CH 41.57 0.0997 0.9665 0.0102 CH 41.87 0.0999 0.9757 0.0061
D 31.21 0.0951 0.8333 0.0130 D 34.28 0.0982 0.8868 0.0097

DH 26.16 0.0932 0.7514 0.0125 DH 27.79 0.0940 0.7876 0.0114
DX 37.59 0.0997 0.9289 0.0134 DX 39.35 0.1000 0.9613 0.0093
EH 24.83 0.0972 0.7544 0.0140 EH 28.06 0.0990 0.8196 0.0157
ER 29.40 0.0996 0.8409 0.0157 ER 33.53 0.0996 0.8816 0.0144
EY 28.42 0.0995 0.8164 0.0132 EY 31.96 0.0978 0.8608 0.0080
F 37.47 0.0986 0.9288 0.0095 F 42.22 0.0995 0.9701 0.0109
G 35.45 0.1000 0.9126 0.0137 G 38.97 0.0999 0.9416 0.0078

HH 31.37 0.0980 0.8624 0.0149 HH 34.46 0.0980 0.8933 0.0112
IH 26.48 0.0931 0.7736 0.0174 IH 31.18 0.0998 0.8554 0.0160
IY 27.25 0.0996 0.7854 0.0151 IY 30.44 0.0975 0.8384 0.0128
JH 37.96 0.0994 0.9338 0.0151 JH 38.58 0.1000 0.9457 0.0098
K 34.13 0.0979 0.8779 0.0101 K 37.51 0.0994 0.9263 0.0109
L 23.24 0.0839 0.7083 0.0133 L 24.68 0.0869 0.7355 0.0127
M 31.21 0.0961 0.8445 0.0114 M 28.89 0.0944 0.8169 0.0121
N 22.26 0.0812 0.6896 0.0168 N 24.77 0.0839 0.7256 0.0112

NG 36.40 0.0975 0.9139 0.0165 NG 33.77 0.0991 0.8809 0.0110
OW 25.49 0.0927 0.7445 0.0152 OW 27.79 0.0936 0.7830 0.0098
P 39.99 0.0998 0.9439 0.0082 P 41.96 0.0999 0.9732 0.0069

PUH 24.32 0.0933 0.7296 0.0137 PUH 31.28 0.0976 0.8420 0.0097
PUM 34.86 0.0983 0.8985 0.0217 PUM 32.46 0.0984 0.8764 0.0142

R 24.96 0.0937 0.7380 0.0149 R 26.49 0.0932 0.7681 0.0132
S 31.48 0.0947 0.8390 0.0095 S 34.18 0.0963 0.8840 0.0123

SH 36.73 0.1000 0.9255 0.0121 SH 40.40 0.0998 0.9571 0.0122
T 29.98 0.0925 0.8247 0.0161 T 32.37 0.0959 0.8624 0.0095

TH 37.10 0.0978 0.9387 0.0159 TH 39.31 0.1000 0.9506 0.0054
UH 39.64 0.0999 0.9471 0.0075 UH 40.31 0.1000 0.9593 0.0106
UW 28.02 0.0950 0.8016 0.0121 UW 33.63 0.0993 0.8980 0.0121
V 37.39 0.0998 0.9286 0.0106 V 38.49 0.0999 0.9456 0.0082
W 31.21 0.0948 0.8307 0.0111 W 30.81 0.0973 0.8509 0.0177
Y 24.68 0.0915 0.7325 0.0180 Y 30.08 0.0923 0.8303 0.0124
Z 32.27 0.0952 0.8658 0.0150 Z 35.20 0.0997 0.9083 0.0091
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Table A.2: Results on the evaluation dataset for every diphone-constraint.

NIST 2006 SRE, English-only trials

Male Female
Diphone EER (%) minDCF Cllr Closs

llr Diphone EER (%) minDCF Cllr Closs
llr

AA-R 37.99 0.1000 0.9414 0.0085 AA-R 38.03 0.0988 0.9355 0.0123
AA-T 34.80 0.0982 0.9027 0.0175 AA-T 34.46 0.1000 0.9020 0.0122
AE-N 28.88 0.0945 0.8132 0.0129 AE-N 31.71 0.0963 0.8529 0.0098
AE-T 28.42 0.0987 0.8103 0.0195 AE-T 31.90 0.0997 0.8614 0.0128
AE-V 38.53 0.1000 0.9433 0.0131 AE-V 39.77 0.0998 0.9554 0.0078
AH-M 36.93 0.0996 0.9249 0.0120 AH-M 39.38 0.1000 0.9505 0.0090
AH-N 36.67 0.0996 0.9320 0.0102 AH-N 38.10 0.1000 0.9419 0.0124
AH-T 35.20 0.0986 0.9040 0.0137 AH-T 36.02 0.0996 0.9101 0.0102
AO-L 36.73 0.1000 0.9312 0.0101 AO-L 39.22 0.1000 0.9530 0.0092
AO-R 34.60 0.0992 0.8978 0.0149 AO-R 33.28 0.0990 0.8909 0.0103
AW-T 39.32 0.0980 0.9406 0.0190 AW-T 40.59 0.0999 0.9600 0.0095
AX-B 40.39 0.0998 0.9593 0.0118 AX-B 42.38 0.1000 0.9727 0.0102
AX-D 39.94 0.1000 0.9668 0.0105 AX-D 41.50 0.0999 0.9695 0.0070
AX-G 40.57 0.1000 0.9682 0.0088 AX-G 44.77 0.0997 0.9825 0.0078
AX-K 38.26 0.0991 0.9391 0.0102 AX-K 42.51 0.1000 0.9678 0.0077
AX-L 37.07 0.0985 0.9327 0.0123 AX-L 37.00 0.1000 0.9297 0.0083
AX-M 43.84 0.0999 0.9930 0.0204 AX-M 41.71 0.0999 0.9724 0.0068
AX-N 27.79 0.0947 0.7829 0.0132 AX-N 29.34 0.0942 0.8190 0.0154

AX-NG 35.18 0.1000 0.9294 0.0154 AX-NG 38.12 0.1000 0.9321 0.0080
AX-S 34.53 0.0983 0.8957 0.0149 AX-S 36.77 0.0999 0.9240 0.0098
AX-T 33.26 0.1000 0.8946 0.0126 AX-T 38.37 0.0999 0.9482 0.0111
AX-V 43.84 0.1000 0.9835 0.0084 AX-V 44.84 0.0999 0.9873 0.0049
AX-Z 37.86 0.1000 0.9430 0.0113 AX-Z 38.85 0.1000 0.9523 0.0094
AY-D 36.13 0.0987 0.9185 0.0157 AY-D 40.59 0.0996 0.9486 0.0074
AY-K 32.27 0.0976 0.8699 0.0153 AY-K 33.65 0.0988 0.8825 0.0119
AY-M 32.67 0.0970 0.8616 0.0122 AY-M 35.01 0.0993 0.9157 0.0161
AY-N 35.37 0.0988 0.9096 0.0139 AY-N 39.50 0.1000 0.9493 0.0078
AY-T 35.07 0.0989 0.9006 0.0154 AY-T 35.09 0.0998 0.9146 0.0129
B-AH 37.12 0.0993 0.9309 0.0148 B-AH 35.90 0.0998 0.9210 0.0141
B-AX 39.46 0.0998 0.9588 0.0146 B-AX 41.59 0.1000 0.9682 0.0085
B-IY 38.95 0.0997 0.9476 0.0141 B-IY 39.40 0.1000 0.9444 0.0081
D-AX 39.99 0.1000 0.9585 0.0071 D-AX 38.75 0.1000 0.9458 0.0076
D-DH 41.49 0.0998 0.9670 0.0103 D-DH 40.75 0.1000 0.9574 0.0098

DH-AE 28.82 0.0950 0.8270 0.0172 DH-AE 33.47 0.0954 0.8769 0.0127
DH-AX 33.07 0.0996 0.8868 0.0123 DH-AX 35.11 0.1000 0.9142 0.0069
DH-EH 36.73 0.0998 0.9281 0.0134 DH-EH 36.29 0.0999 0.9174 0.0124
DH-EY 35.07 0.0996 0.9194 0.0121 DH-EY 37.12 0.0990 0.9306 0.0111
D-IH 40.95 0.0999 0.9665 0.0119 D-IH 40.74 0.1000 0.9614 0.0076

D-OW 40.47 0.0998 0.9644 0.0099 D-OW 40.81 0.0990 0.9621 0.0161
D-UW 40.27 0.1000 0.9573 0.0133 D-UW 41.62 0.1000 0.9718 0.0097
DX-AX 43.52 0.0998 0.9782 0.0096 DX-AX 42.51 0.1000 0.9782 0.0078
DX-IY 39.19 0.0995 0.9462 0.0112 DX-IY 41.36 0.1000 0.9742 0.0086
EH-L 37.47 0.0998 0.9409 0.0139 EH-L 37.40 0.0999 0.9453 0.0109
EH-N 33.34 0.0999 0.8867 0.0150 EH-N 34.65 0.1000 0.8986 0.0120

Continued on next page
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Table A.2 – continued from previous page
Male Female

Diphone EER (%) minDCF Cllr Closs
llr Diphone EER (%) minDCF Cllr Closs

llr

EH-R 32.27 0.0998 0.8820 0.0111 EH-R 36.53 0.0997 0.9183 0.0125
HH-AE 33.39 0.0993 0.8873 0.0162 HH-AE 34.19 0.1000 0.8944 0.0124
HH-W 44.68 0.1000 0.9875 0.0061 HH-W 44.70 0.1000 0.9878 0.0089
IH-N 37.72 0.0996 0.9299 0.0105 IH-N 37.39 0.1000 0.9261 0.0100

IH-NG 33.47 0.0998 0.8902 0.0156 IH-NG 33.65 0.0995 0.8833 0.0107
IH-T 35.55 0.0996 0.9216 0.0162 IH-T 37.12 0.0998 0.9347 0.0095

IY-AX 38.49 0.0992 0.9368 0.0117 IY-AX 43.52 0.1000 0.9810 0.0075
IY-N 37.47 0.0969 0.9225 0.0126 IY-N 41.31 0.1000 0.9727 0.0060
IY-P 41.98 0.1000 0.9794 0.0137 IY-P 43.52 0.0999 0.9768 0.0093

JH-AX 39.85 0.0994 0.9556 0.0169 JH-AX 39.86 0.1000 0.9574 0.0144
K-AH 39.99 0.0997 0.9510 0.0108 K-AH 40.40 0.1000 0.9566 0.0115
K-AX 39.81 0.0997 0.9573 0.0083 K-AX 41.65 0.1000 0.9738 0.0056
K-S 44.51 0.1000 0.9915 0.0069 K-S 47.25 0.1000 0.9948 0.0054

L-AX 41.98 0.1000 0.9690 0.0122 L-AX 40.96 0.1000 0.9630 0.0061
L-AY 28.42 0.0957 0.8216 0.0277 L-AY 29.71 0.0944 0.8154 0.0199
L-IY 30.15 0.0966 0.8331 0.0130 L-IY 32.20 0.1000 0.8728 0.0114

M-AX 43.58 0.0998 0.9829 0.0103 M-AX 44.98 0.1000 0.9850 0.0076
M-AY 42.25 0.1000 0.9683 0.0110 M-AY 41.05 0.0988 0.9574 0.0110
M-IY 38.12 0.0984 0.9547 0.0248 M-IY 38.12 0.0997 0.9365 0.0122
N-AA 35.86 0.0972 0.9145 0.0157 N-AA 39.22 0.1000 0.9497 0.0088
N-AX 38.21 0.1000 0.9409 0.0136 N-AX 39.86 0.1000 0.9556 0.0066
N-D 31.80 0.0974 0.8469 0.0152 N-D 33.00 0.0978 0.8736 0.0082

N-DH 39.91 0.0998 0.9534 0.0113 N-DH 40.56 0.1000 0.9615 0.0079
NG-K 40.12 0.1000 0.9598 0.0103 NG-K 42.18 0.1000 0.9658 0.0086
N-IY 41.86 0.0993 0.9752 0.0189 N-IY 37.65 0.1000 0.9395 0.0087

N-OW 32.15 0.0959 0.8665 0.0128 N-OW 30.71 0.0958 0.8490 0.0159
N-S 42.82 0.0999 0.9798 0.0111 N-S 43.40 0.1000 0.9809 0.0057
N-T 35.35 0.0990 0.9099 0.0147 N-T 36.57 0.0997 0.9178 0.0096

OW-N 40.39 0.0993 0.9540 0.0116 OW-N 41.05 0.1000 0.9608 0.0092
P-AX 42.25 0.0997 0.9726 0.0107 P-AX 42.15 0.0998 0.9722 0.0093
R-AX 42.69 0.0999 0.9804 0.0163 R-AX 42.60 0.1000 0.9760 0.0053
R-AY 34.88 0.0996 0.9107 0.0239 R-AY 33.65 0.0999 0.8984 0.0174
R-IY 36.25 0.1000 0.9160 0.0138 R-IY 35.20 0.0999 0.9113 0.0124
S-AH 37.99 0.0994 0.9306 0.0124 S-AH 39.95 0.0999 0.9468 0.0099
S-AX 40.92 0.0997 0.9546 0.0114 S-AX 39.00 0.1000 0.9452 0.0083
S-OW 36.13 0.0992 0.9107 0.0102 S-OW 33.22 0.0996 0.8811 0.0116
S-T 38.92 0.0981 0.9333 0.0107 S-T 38.75 0.0999 0.9527 0.0105

T-AX 37.08 0.0985 0.9273 0.0123 T-AX 35.43 0.0999 0.9095 0.0096
T-AY 38.20 0.0983 0.9393 0.0116 T-AY 37.50 0.0996 0.9288 0.0138
T-DH 41.06 0.0995 0.9583 0.0127 T-DH 40.56 0.1000 0.9597 0.0056
TH-IH 36.80 0.0986 0.9122 0.0253 TH-IH 36.11 0.0999 0.9187 0.0106

T-R 43.70 0.0999 0.9832 0.0055 T-R 41.39 0.1000 0.9685 0.0054
T-S 41.06 0.0995 0.9618 0.0081 T-S 40.54 0.0998 0.9591 0.0086

T-UW 38.12 0.0997 0.9393 0.0127 T-UW 37.12 0.0995 0.9279 0.0123
T-W 44.38 0.1000 0.9875 0.0099 T-W 43.33 0.1000 0.9869 0.0073
UH-D 42.45 0.1000 0.9712 0.0090 UH-D 41.02 0.1000 0.9678 0.0067

Continued on next page
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Table A.2 – continued from previous page
Male Female

Diphone EER (%) minDCF Cllr Closs
llr Diphone EER (%) minDCF Cllr Closs

llr

UW-N 34.15 0.0935 0.8771 0.0161 UW-N 33.46 0.0967 0.8781 0.0140
V-AX 40.79 0.1000 0.9763 0.0100 V-AX 42.33 0.1000 0.9718 0.0074
W-AH 37.70 0.1000 0.9415 0.0095 W-AH 37.66 0.1000 0.9341 0.0092
W-AX 41.31 0.1000 0.9632 0.0115 W-AX 44.46 0.1000 0.9831 0.0090
W-EH 38.78 0.0992 0.9397 0.0101 W-EH 40.72 0.0999 0.9614 0.0083
Y-AE 25.26 0.0867 0.7533 0.0245 Y-AE 28.32 0.0894 0.7960 0.0130
Y-UW 27.69 0.0928 0.8005 0.0135 Y-UW 32.65 0.0948 0.8667 0.0114
Z-AX 37.99 0.0986 0.9306 0.0111 Z-AX 39.07 0.1000 0.9478 0.0070

Appendix B. Detailed frequency of occurrence

Table B.1: Frequency of occurrence in NIST SRE 2004, 2005 and 2006 conversations for every phone-
constraint.

Average number of occurrences per conversation

Phone Male Female Phone Male Female Phone Male Female
AA 17.8 16.2 EY 23.5 22.3 PUH 17.9 13.8
AE 45.1 41.4 F 19.8 17.6 PUM 6.3 8.6
AH 33.2 31.0 G 13.3 12.5 R 47.4 43.9
AO 17.7 15.9 HH 20.3 22.7 S 61.1 56.7
AW 8.1 7.6 IH 42.4 39.6 SH 7.1 6.6
AX 118.6 113.4 IY 48.1 46.4 T 101.9 97.7
AY 50.6 48.4 JH 6.9 6.7 TH 10.0 10.1
B 24.0 22.8 K 47.3 44.4 UH 7.9 7.6

CH 4.9 4.7 L 49.1 47.1 UW 34.4 31.1
D 47.8 49.0 M 38.4 37.1 V 22.4 21.8

DH 42.9 40.0 N 90.0 85.5 W 27.6 27.1
DX 8.1 7.3 NG 16.4 16.5 Y 37.8 32.8
EH 33.6 32.5 OW 36.9 36.7 Z 30.3 29.1
ER 21.5 21.3 P 21.0 19.2

Table B.2: Frequency of occurrence in NIST SRE 2004, 2005 and 2006 conversations for every diphone-
constraint.

Average number of occurrences per conversation

Diphone Male Female Diphone Male Female Diphone Male Female
AA-R 24.7 23.5 DH-AE 5.9 6.1 N-DH 4.0 4.1
AA-T 21.2 18.3 DH-AX 6.4 5.9 NG-K 4.2 4.4
AE-N 17.9 17.9 DH-EH 6.0 5.9 N-IY 3.7 3.5
AE-T 14.3 14.1 DH-EY 6.7 6.3 N-OW 4.2 4.0
AE-V 13.7 12.0 D-IH 6.0 5.0 N-S 4.4 3.5
AH-M 13.0 13.4 D-OW 5.8 6.2 N-T 3.6 3.9
AH-N 12.8 12.7 D-UW 5.5 5.8 OW-N 3.7 3.5
AH-T 11.9 9.9 DX-AX 5.8 5.7 P-AX 4.0 3.6
AO-L 11.2 11.3 DX-IY 6.1 5.4 R-AX 3.5 3.4

Continued on next page
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Table B.2 – continued from previous page
Diphone Male Female Diphone Male Female Diphone Male Female

AO-R 9.8 9.0 EH-L 5.1 4.7 R-AY 3.6 4.0
AW-T 10.9 10.9 EH-N 5.5 5.1 R-IY 3.8 3.3
AX-B 11.9 11.0 EH-R 5.1 4.7 S-AH 3.7 3.7
AX-D 9.4 8.6 HH-AE 4.7 4.6 S-AX 3.5 3.2
AX-G 11.4 10.7 HH-W 4.9 4.8 S-OW 3.3 2.9
AX-K 10.2 9.0 IH-N 4.7 5.2 S-T 3.6 3.7
AX-L 9.6 9.4 IH-NG 5.4 4.8 T-AX 3.4 3.2
AX-M 8.9 8.7 IH-T 5.2 4.8 T-AY 3.7 3.5
AX-N 9.3 8.2 IY-AX 5.0 5.0 T-DH 3.1 3.6

AX-NG 8.8 8.2 IY-N 4.6 4.4 TH-IH 3.3 3.2
AX-S 8.2 7.7 IY-P 4.3 4.6 T-R 3.5 3.6
AX-T 8.0 7.9 JH-AX 4.3 4.2 T-S 3.4 3.5
AX-V 8.4 7.6 K-AH 4.3 4.3 T-UW 3.0 3.1
AX-Z 7.6 6.8 K-AX 4.4 4.2 T-W 3.2 2.9
AY-D 7.5 7.2 K-S 4.8 4.4 UH-D 3.0 3.0
AY-K 7.0 6.7 L-AX 4.4 3.9 UW-N 2.9 3.1
AY-M 7.5 7.1 L-AY 4.6 4.7 V-AX 3.2 3.0
AY-N 6.8 6.6 L-IY 4.2 4.4 W-AH 3.1 3.2
AY-T 7.4 6.4 M-AX 4.1 3.7 W-AX 3.2 2.9
B-AH 8.0 7.0 M-AY 4.5 3.7 W-EH 3.0 3.0
B-AX 6.1 6.1 M-IY 4.3 4.4 Y-AE 3.1 2.5
B-IY 6.3 6.5 N-AA 3.9 3.9 Y-UW 2.9 3.2
D-AX 6.6 6.2 N-AX 4.0 3.5 Z-AX 3.1 3.3
D-DH 6.4 6.5 N-D 4.2 3.8
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Abstract
In this paper, a probabilistic model is introduced to obtain
feature-based likelihood ratios from linguistically-constrained
formant-based i-vectors in a NIST SRE task. Linguistically-
constrained formant-based i-vectors summarize both the static
and dynamic information of formant frequencies in the occur-
rences of a given linguistic unit in a speech recording. In this
work, a two-covariance model is applied to these “higher-level”
features in order to obtain likelihood ratios through a proba-
bilistic framework. While the performance of the individual
linguistically-constrained systems are not comparable to that
of a state-of-the-art cepstral-based system, calibration loss is
low enough, providing informative likelihood ratios that can
be directly used, for instance, in forensic applications. Fur-
thermore, this procedure avoids the need for further calibration
steps, which usually require additional datasets. Finally, the
fusion of several linguistically-constrained systems greatly im-
proves the overall performance, achieving very remarkable re-
sults for a system solely based on formant features. Testing on
the English-only trials of the core condition of the NIST 2006
SRE (and using only NIST SRE 2004 and 2005 data for back-
ground and development, respectively), we report equal error
rates of 8.47% and 9.88% for male and female speakers respec-
tively, using only formant frequencies as speaker discriminative
information.

1. Introduction
Formant frequencies have strong individualization potential [1]
and have been used for forensic voice comparison for several
decades [2]. However, most of the studies in automatic speaker
recognition over the last two decades [3] have been based on
higher dimensional representations of the speech signal (i.e.
MFCC, PLP, etc.) due to their ability to extract speaker distin-
guishing information. Although they are based on spectral in-
formation, it is difficult to directly relate the physiological traits
of an individual with the set of such extracted features [4]. For-
mant frequencies, on the other hand, are easily interpretable and
directly related with anatomical and physiological characteris-
tics [5] [1]. Moreover, interpretable features are helpful in order
to correlate with human observations and may lead to find some
clues that could be hidden even for very complex cepstral-based
systems [6].

In forensic-phonetics, voice comparison is usually per-
formed in the context of linguistic units [1, 7], but reported
studies are usually based on limited experimental frameworks
(in terms of number of speakers, number of analysed linguistic-
units, or both) due to the manual processes involved in order
to extract formant frequencies or labelling the analysed units.

So, it is of broad interest to analyse the abilities of formant fre-
quencies for speaker recognition following a similar approach
but applied on a large-scale experimental framework with the
aid of fully automatic systems.

While there have been previous studies on the use of for-
mant frequencies for automatic speaker recognition [8], con-
straints have been used only in the feature extraction stage but
not for speaker modelling. On the other hand, there have been
several studies on text-constrained speaker modelling but using
mainly cepstral [9] or prosodic features [10]. In both cases,
forensic applications have not been addressed in depth. Thus,
to some extent this research fill a gap in the literature, and the
presented results can give useful insights for the practitioners in
the forensic-phonetics field.

In [11], the authors showed that well calibrated likeli-
hood ratios can be obtained per linguistic unit by means of
i-vector systems independently developed from linguistically-
constrained formant features. However, as using a simple scor-
ing method, an additional calibration step was needed in order
to obtain informative likelihood ratios. In this work, a proba-
bilistic framework is applied instead, leading to likelihood ra-
tios that can be directly used avoiding further calibration pro-
cesses, which usually need additional datasets in order to avoid
overoptimistic results. This probabilistic framework is based on
a two-covariance generative model similar to that in [12], but
with a simpler training step as it has been used in some forensic
works [13, 14].

The remainder of the paper is organized as follows. The ex-
traction process of linguistically-constrained formant-based i-
vectors is detailed in Section 2. Section 3 introduces the proba-
bilistic model applied to the linguistically-constrained formant-
based i-vectors in order to obtain feature-based likelihood ra-
tios. Section 4 describes the experimental framework used for
this work, while Section 5 presents the results obtained. Finally,
conclusions are drawn in Section 6.

2. Linguistically-constrained
formant-based i-vectors

Linguistically-constrained formant-based i-vectors are ex-
tracted with the aid of several speech processing tools and at-
tempt to summarize both the static and dynamic information
of formant frequencies in the occurrences of a given linguistic
unit in a speech recording. First, automatic formant tracking is
used in order to obtain the formant frequencies in a given speech
file. In order to account for the dynamic information, delta fea-
tures are also computed and incorporated to the feature vectors.
Then, an automatic speech recognition (ASR) system is used to
split the stream of feature vectors into different linguistic units.



Finally, for each speech recording, the feature vectors corre-
sponding to the occurrences of a given linguistic unit are used
to compute a linguistically-constrained i-vector for that utter-
ance.

2.1. Formant tracking and dynamic information

Automatic formant tracking has been used in order to compute
the formant frequencies along a speech recording. Among the
free software packages available, Wavesurfer [15] has been se-
lected for this work due to the ease of automate this process for
large databases through scripts written in Tcl/Tk [16], as it is
developed using the Snack Sound Toolkit library [17].

The Wavesurfer/Snack formant tracker bases its formant-
frequency estimates on a linear prediction analysis performed
at each frame, and dynamic programming is used to refine the
resulting trajectories [18]. It has been used with default param-
eters for both male and female speakers, except for the number
of formant frequencies to be tracked, limited to three for this
work (F1-F3).

In order to account for the dynamic information of for-
mant frequencies, the delta (∆) or derivative coefficients have
been used. Although delta coefficients cannot summarize the
whole formant trajectory along a linguistic segment as other ap-
proaches attempt [19, 20, 21], they can characterize the local
dynamic information while keeping a frame-by-frame rate and
a low dimensionality [11]. Derivative coefficients are finally ap-
pended to the instantaneous formant frequencies at each frame
(10 ms each), giving rise to our 6-dimensional lower-level fea-
ture vectors.

2.2. Region conditioning and types of constraints

Voice comparison in forensic-phonetics is usually performed in
the context of linguistic units [1, 7], as formant frequencies
present much lower intra-speaker variability and higher inter-
speaker variability [22, 7] when these constraints are applied to
the features to be compared.

Automatic speech recognition (ASR) systems provide both
phonetic content and time interval of speech regions in which
the audio stream can be segmented. This phonetic content allow
to define a large set of candidate constraints among the different
types of linguistic units, showing each of them different charac-
teristics in terms of within-unit formant dynamics, unit-length
and frequency of occurrence. Among them, the following have
been used for this work:

• Phones: although they are the shortest units and can ap-
pear in many different linguistic contexts, their high fre-
quency of occurrence allow to develop more robust con-
strained systems. For this work, 39 phone units from
an English lexicon plus two filled pauses (represented
as PUH and PUM) were selected. These linguistic units
are represented by the “2-character” ARPABET symbols
[23] in the phonetic transcriptions provided by the ASR
system [24] used. Table 1 shows the correspondence be-
tween Arpabet symbols and the International Phonetic
Alphabet (IPA) ones.

• Diphones: defined as every possible combination of
phone pairs, the 98 most frequent diphones were se-
lected. Compared with phones, they present longer
length but much lower frequency of occurrence. How-
ever, they show less contextual variation, which may lead
to reduce the intra-speaker variability of formant dynam-
ics between different occurrences of the same diphone.

In this work, the phonetic transcription labels produced by
the SRIs Decipher ASR system [24] are used. For this sys-
tem, trained on English data from telephonic conversations, the
Word Error Rate (WER) on native and non-native speakers on
the transcribed parts of the Mixer corpus, similar to NIST SRE
databases used for this work, was 23.0% and 36.1% respec-
tively.

2.3. I-vector extraction

An i-vector extractor [25] is a factor analysis (FA) based front-
end which attempts to summarize the speaker distinguishing in-
formation in a given utterance, represented by a set of L fea-
ture vectors {f1, f2, ..., fL}, through a single low-dimensional
vector, the so-called identity vector or i-vector for short. This
i-vector w accounts for the speaker and channel/session infor-
mation present in a given utterance, representing it in a low-
dimensional variability subspace. This is done by converting
the speaker- and session-independent supervector (m), usually
taken to be the UBM supervector, into the speaker- and session-
dependent supervector (M) that represents a given speaker ut-
terance through:

M = m+ Tw (1)

where T is a rectangular matrix of low rank defining the to-
tal variability (TV) space that contains the speaker and channel
variability.

In order to obtain a linguistically-constrained i-vector (wC ),
the i-vector extractor is applied only to the set of feature vec-
tors {fC

1 , f
C
2 , ...} in the utterance belonging to a particular con-

straint, C:
MC = mC + TCwC (2)

For this purpose, independent UBMs and TV subspaces are
trained on the background dataset (see Section 4 for details) for
every linguistic constraint under analysis. Both the number of
components of the UBM (ranging from 2 to 256) and the num-
ber of dimensions of the TV space (ranging from 5 to 50) are
optimized on the development dataset (see Section 4 for details)
for each linguistic unit/constraint.

Finally, linguistically-constrained i-vectors are centred and
whitened on the background dataset, and length-normalized.

3. Probabilistic model
3.1. The generative model

Conversely to [11], were cosine scoring and a further calibra-
tion step were used, in this work likelihood ratios are directly
derived through a probabilistic framework. For this purpose,
a two-covariance model [12] is applied. This is a generative
model in which a particular observed i-vector xij coming from
speaker i is generated through

xij = θi +ψj (3)

where θi is a realization of the speaker random variable Θ and
ψj is a realization of the additive random noise Ψ represent-
ing its within-speaker variation. This noisy term is taken to be
constant among different speakers and randomly distributed fol-
lowing

Ψ ∼ N (0,W) (4)

where W is the within-speaker covariance matrix. Thus, the
conditional distribution of the random variable Xi (from which



xij is drawn), given a particular speaker i, follows a normal
distribution with mean θi and covariance matrix W

Xij |(Θ = θi) ∼ N (θi,W) (5)
On the other hand, speakers means are assumed to be nor-

mally distributed, following

Θ ∼ N (µ,B) (6)

where µ and B are, respectively, the mean vector and the co-
variance matrix of the between-speaker distribution.

3.2. Model training

Conversely to [12], model hyperparameters are directly com-
puted in a single step instead of being iteratively trained to
maximize the likelihood of the true partitioning of m speakers
in the background dataset. This alternative procedure is more
commonly used in forensic studies [13, 14], and it is applied in
this work in order to avoid overfitting to the limited background
dataset (NIST 2004 SRE).

Within-speaker covariance matrix is computed from the
background dataset X, comprising N i-vectors coming from
m different speakers, through

W =
Sw

N −m (7)

being Sw the within-speaker scatter matrix given by

Sw =
m∑

i=1

ni∑

j=1

(xij − x̄i)(xij − x̄i)
T (8)

where x̄i is the average of the set of ni i-vectors from speaker
i.

On the other hand, the mean vector and the covariance ma-
trix of the between-speaker distribution are respectively com-
puted by

µ =
1

m

m∑

i=1

x̄i (9)

and

B =
Sb

m− 1
− Sw

n̄(N −m)
(10)

where n̄ is the average number of i-vectors per speaker and the
between-speaker scatter matrix, Sb, is given by

Sb =
m∑

i=1

(x̄i − µ)(x̄i − µ)T (11)

3.3. Likelihood-ratio computation

Finally, the likelihood ratio between two given linguistically-
constrained i-vectors y1 and y2 is computed as the ratio be-
tween

p(y1,y2) =

∫

θ

p(y1|θ,W) p(y2|θ,W) p(θ|X) dθ (12)

and

p(y1) · p(y2) =

∫

θ

p(y1|θ,W) p(θ|X) dθ×
∫

θ

p(y2|θ,W) p(θ|X) dθ

(13)

where p(yl|θ,W) = N(yl;θ,W) is the probability of a
linguistically-constrained i-vector yl given the knowledge of
the speaker θ, and p(θ|X) = N(θ;µ,B) is the between-
speaker probability density function obtained from the back-
ground dataset X. Closed form expressions for these integrals
can be found, for example, in [26].

4. Experimental framework
4.1. Datasets

In order to develop and test the linguistically-constrained sys-
tems, we have used the datasets and protocols belonging to the
NIST SREs carried out on years 2004 [27], 2005 [28] and 2006
[29]. Among them, only English conversations have been used
in order to match the characteristics of the ASR system [24]. No
other datasets have been used as the authors have access only to
the ASR phonetic labels corresponding to those datasets, kindly
provided by SRI.

The composition of these datasets and the purposes they
have been devoted to are described below:

• Background: NIST 2004 SRE dataset [27] comprises
2,541 files (1378 5-minutes, 581 30-seconds and 582 10-
seconds long) from 125 male speakers and 3,626 files
(2022 5-minutes, 802 30-seconds and 802 10-seconds
long) from 187 female speakers. It has been used as the
background dataset for training UBMs and total variabil-
ity matrices. It also has been reused in order to train the
hyperparameters of the probabilistic model.

• Development: NIST 2005 SRE dataset [28] has been
used in order to optimize both UBMs components and
number of dimensions of the TV subspaces. In [11],
this dataset was divided into two halves for additional
purposes: one half was used to train the calibration pro-
cess and the other one to train the fusion rules. Here,
as the calibration step is avoided through the introduced
probabilistic framework, the whole dataset is used to
train the fusion rules. The 1side-1side task of this NIST
SRE comprises 11,272 trials from 243 male speakers and
14,793 trials from 342 female speakers.

• Evaluation: English-only trials from the core condition
of the NIST 2006 SRE [29] were used for evaluating the
proposed approach, consisting of 9,720 male trials for
219 target speakers and 14,293 female trials for 298 tar-
get speakers.

4.2. Evaluation metrics

Both the calibration and the discriminative properties of
linguistically-constrained systems are analysed in this work.
Discriminative properties are mainly evaluated through the
equal error rate (EER) [30]. It is also used as the criterion by
which the subsets of constraints are selected for the combination
of linguistically-constrained systems. However, in accordance
to the protocols used [29], the minimum of the CDet (minDCF)
is also reported. On the other hand, calibration properties [31]
of linguistically-constrained systems are evaluated through the
Cllr cost function and the calibration loss (Closs

llr ) [32].

5. Results
5.1. Reference systems

First, we want to compare with the previous approach in
[11], were the same linguistically-constrained formant-based i-



vectors were used. In that study, cosine scoring, z-norm and a
calibration step were used to obtain LRs per linguistic-unit. The
results per constraint for this system can be seen in Table 2 (only
the 10 best performing constraints are shown). The best fused
system was obtained through a logistic regression fusion of the
N-best performing constraints (see Section 5.3 or [11] for more
details), trained on the same development dataset used in this
work (NIST 2005 SRE). The performance of this fused system
on the evaluation dataset (NIST 2006 SRE) is shown in Table 1.

Secondly, we wan to compare with a state-of-the-art
cepstral-based system. Our cepstral reference system is based
on an i-vector extractor from (unconstrained) MFCC features
[25] and a Gaussian PLDA scoring stage [33]. Both gender-
dependent 1024-component UBMs and 600-dimensional TV
subspaces are trained on the background dataset (NIST SRE
2004), but GPLDA hyperparameters are trained on both the
background and the development dataset (NIST SRE 2004 and
2005), applying a dimensionality reduction to 200. The per-
formance of this system on the evaluation dataset (NIST SRE
2006) is also shown in Table 1.

Reference systems
Male Female

EER (%) minDCF EER (%) minDCF
Formant-based 9.57 0.0456 12.89 0.0543
Cepstral-based 4.21 0.0232 5.67 0.0303

Table 1: Results on the evaluation dataset for both formant-
based and cepstral-based reference systems.

5.2. Independent linguistically-constrained systems

Table 3 shows the results for the 10-best performing constraints
(in terms of the EER) on the evaluation dataset when the in-
troduced probabilistic framework is applied. As it can be seen,
compared to the previous approach (Table 2), the discriminative
performance per linguistic-unit (in terms of the EER) is signif-
icantly improved (∼15% relative improvement on average for
the shared constraints among the 10-best performing ones). Fur-
thermore, although it is slightly increased compared to the pre-
vious approach, very low calibration losses are obtained (Closs

llr

∼0.04 on average for this 10-best performing set) without the
need for a specific calibration step.

5.3. Fusion of linguistically-constrained systems

Feature-based likelihood-ratios from different linguistic-
constraints can be combined in order to account for the speaker
distinguishing information spread among the different units. In
this work, two fusion techniques have been used:

• First, a simple fusion rule, consisting on averaging the
log-LRs of the subset of N constraints to be combined,
has been applied through

logLR =
1

N

∑

∀C in subset

logLRC (14)

where logLRC is the log-LR for a particular constraint
C.

• Secondly, a linear combination of log-LRs is applied
through

logLR = α0 +
∑

∀C in subset

αC logLRC (15)

where the vector of weights α =
[α0, α

C1 , αC2 , ..., αCN ] is obtained by logistic re-
gression [34] training on the development database,
using the FoCal toolkit [35].

The specific subset of N constraints to be fused is ob-
tained as follows. First, linguistically-constrained systems are
sorted by performance, in terms of the EER, on the development
dataset. Then, different fused systems are obtained by com-
bining the first two, three, etc., best performing linguistically-
constrained systems, up to the total number of constraints.
Among them, the fused system with the best performance on
the development dataset, which is obtained by fusing the N-
best performing constraints, is selected. While this may not be
the set of constraints with the best performance on the evalua-
tion dataset, it is expected that, for a large enough value of N,
most of the best-performing constraints will be shared among
development and evaluation datasets.

Table 4 shows the results obtained for both fusion tech-
niques on the evaluation dataset. As it can be seen, the average
rule make use of a much lower number of constraints than the
logistic regression technique. This issue was analysed in [11],
where it was shown that the performance of the logistic regres-
sion technique on the development dataset improved as more
constraints were fused. For male trials, while the discrimina-
tive capabilities are similar for both techniques in terms of EER
and minDCF, calibration properties are significantly better for
the logistic regression technique, specially the calibration loss.
The latter is also true for female trials, but also the discrimina-
tive capabilities are significantly better compared to the average
rule.

Regarding our reference systems (Table 1), the logistic re-
gression fusion of the feature-based LRs obtains a relative im-
provement in performance, in terms of the EER, of 11.5% and
23.3% for male and female trials, respectively, compared to
our formant-based reference. While the performance is still far
from the cepstral-based reference system, it is a very remark-
able result for a system solely based on formant features which,
in addition, can be directly applied in different forensic settings.

6. Conclusions
In this paper, we have introduced a probabilistic framework in
order to obtain feature-based likelihood ratios from formant-
based linguistically-constrained i-vectors. Linguistically-
constrained formant-based i-vectors summarize both the static
and dynamic information of formant frequencies in the occur-
rences of a given linguistic unit in a speech recording, and are
extracted in a fully automatic way with the aid of several speech
processing tools, including automatic formant tracking and au-
tomatic speech recognition.

A probabilistic model applied to formant-based i-vectors
of a given linguistic constraint allows to provide feature-
based likelihood ratios for isolated linguistic units, avoid-
ing further calibration processes which usually need addi-
tional datasets. Although the discriminative performance of
linguistically-constrained systems is not comparable to that of
a cepstral-based state-of-the-art system, informative calibrated
LRs can be obtained for voice comparisons without the need for
further calibration steps.



Cosine scoring + z-normalization + calibration (log. reg.)
Male Female

Constraint EER (%) minDCF Cllr Closs
llr Constraint EER (%) minDCF Cllr Closs

llr

AE 21.21 0.0850 0.6668 0.0143 AY 24.59 0.0841 0.7101 0.0111
AY 21.38 0.0825 0.6580 0.0158 AE 24.59 0.0876 0.7308 0.0131
N 22.26 0.0812 0.6896 0.0168 L 24.68 0.0869 0.7355 0.0127
L 23.24 0.0839 0.7083 0.0133 N 24.77 0.0839 0.7256 0.0112

AX 23.80 0.0844 0.7001 0.0150 R 26.49 0.0932 0.7681 0.0132
AH 23.96 0.0964 0.7286 0.0158 AX 27.15 0.0932 0.7764 0.0100

PUH 24.32 0.0933 0.7296 0.0137 OW 27.79 0.0936 0.7830 0.0098
Y 24.68 0.0915 0.7325 0.0180 DH 27.79 0.0940 0.7876 0.0114

EH 24.83 0.0972 0.7544 0.0140 EH 28.06 0.0990 0.8196 0.0157
R 24.96 0.0937 0.7380 0.0149 AH 28.89 0.0974 0.8185 0.0079

Table 2: Results on the evaluation dataset for the 10 best-performing constraints obtained with the previous approach in [11].

Two covariance model
Male Female

Constraint EER (%) minDCF Cllr Closs
llr Constraint EER (%) minDCF Cllr Closs

llr

L 18.21 0.0817 0.6074 0.0421 L 20.21 0.0833 0.6542 0.0360
N 18.35 0.0764 0.6373 0.0574 N 21.02 0.0805 0.7455 0.1190

AY 18.43 0.0813 0.6090 0.0318 AE 21.16 0.0849 0.6896 0.0521
AE 19.50 0.0835 0.6411 0.0390 AY 21.58 0.0814 0.6606 0.0261
R 20.61 0.0889 0.6672 0.0275 AX 23.16 0.0898 0.6937 0.0144
Y 21.38 0.0888 0.6918 0.0575 R 23.59 0.0913 0.7147 0.0240

AX 21.50 0.0830 0.7012 0.0460 DH 24.30 0.0925 0.7316 0.0320
IH 21.76 0.0926 0.6885 0.0298 AH 25.05 0.0952 0.7541 0.0209

OW 21.90 0.0899 0.6911 0.0284 Y-AE 25.15 0.0866 0.7976 0.0914
DH 22.32 0.0892 0.6739 0.0231 OW 25.33 0.0906 0.7265 0.0294

Table 3: Results on the evaluation dataset for the 10 best-performing constraints when the introduced probabilistic framework is
applied.

N-best fusion of linguistically-constrained systems
Male Female

N EER (%) minDCF Cllr Closs
llr N EER (%) minDCF Cllr Closs

llr

Average rule 19 8.76 0.0444 0.4318 0.1342 15 11.82 0.0565 0.4743 0.0864
Logistic regression 138 8.47 0.0451 0.3210 0.0269 139 9.88 0.0512 0.3488 0.0140

Table 4: Results on the evaluation dataset for the fusion of the N-best performing linguistically-constrained systems, for the average
rule and the logistic regression fusions.



Furthermore, feature-based LRs can be successfully com-
bined through different fusion techniques, obtaining great im-
provements in discriminative performance compared with the
independent linguistically-constrained systems by themselves.
For a simple average fusion rule, tens of units can be fused at
the cost of slightly higher calibration losses. For the logistic re-
gression technique, as being a trained fusion rule, a larger num-
ber of units can be fused while keeping very good calibration
properties. While the performance is still far from the cepstral-
based reference system, it is a very remarkable result for a sys-
tem solely based on formant features which, in addition, can be
directly applied in different forensic settings.
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A. Mathematical notation
Column vectors are denoted by bold lower-case letters and ma-
trices by bold upper-case letters, while scalar quantities are de-
noted by lower-case italic letters. Random variables are denoted
by upper-case non-italic letters. P (·) is used to indicate the
probability of a certain event, while p(·) denotes a probability
density function. We denote a d-dimensional Gaussian distri-
bution with mean µ and covariance matrix Σ by N (µ,Σ) and
the corresponding probability density function by N(x;µ,Σ)
(x ∈ Rd).

B. Phonetic transcription codes



Vowels
Monophthongs Monophthongs

Arpabet IPA Word examples Arpabet IPA Word examples
AO O off; fall; frost AE æ at; fast
AA A father; cot Diphthongs
IY i bee; see Arpabet IPA Word examples

UW u you; new; food EY eI say; eight
EH E red; men AY aI my; why; ride
IH I big; win OW oU show; coat
UH U should; could AW aU how; now

AH 2 but; sun R-coloured vowels

@
sofa; alone Arpabet IPA Word examples

AX discus ER 3 her; bird; heart; nurse
Consonants

Stops Affricates
Arpabet IPA Word examples Arpabet IPA Word examples

P p pay CH tS chair
B b buy JH dZ just
T t take Semivowels
D d day Arpabet IPA Word examples
K k key Y j yes
G g go W w way

Fricatives Liquids
Arpabet IPA Word examples Arpabet IPA Word examples

F f for L ì late
V v very R r or ô run

TH T thanks; Thursday DX R wetter
DH D that; the; them Nasals
S s say Arpabet IPA Word examples
Z z zoo M m man

SH S show N n no
HH h house NG N sing

Table 1: 39 phones from the Arpabet phonetic transcription code and their correspondent IPA symbols (extracted from [36]).
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