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Abstract

Artificial neural networks are powerful learners of the information embedded in speech sig-
nals. They can provide compact, multi-level, nonlinear representations of temporal sequences
and holistic optimization algorithms capable of surpassing former leading paradigms. Artifi-
cial neural networks are, therefore, a promising technology that can be used to enhance our
ability to recognize speakers and languages–an ability increasingly in demand in the context
of new, voice-enabled interfaces used today by millions of users. The aim of this thesis is to
advance the state-of-the-art of language and speaker recognition through the formulation,
implementation and empirical analysis of novel approaches for large-scale and portable
speech interfaces. Its major contributions are: (1) novel, compact network architectures
for language and speaker recognition, including a variety of network topologies based on
fully-connected, recurrent, convolutional, and locally connected layers; (2) a bottleneck com-
bination strategy for classical and neural network approaches for long speech sequences; (3)
the architectural design of the first, public, multilingual, large vocabulary continuous speech
recognition system; and (4) a novel, end-to-end optimization algorithm for text-dependent
speaker recognition that is applicable to a range of verification tasks. Experimental results
have demonstrated that artificial neural networks can substantially reduce the number of
model parameters and surpass the performance of previous approaches to language and
speaker recognition, particularly in the cases of long short-term memory recurrent networks
(used to model the input speech signal), end-to-end optimization algorithms (used to predict
languages or speakers), short testing utterances, and large training data collections.





Resumen

Las redes neuronales artificiales son sistemas de aprendizaje capaces de extraer la información
embebida en las señales de voz. Son capaces de modelar de forma eficiente secuencias
temporales complejas, con información no lineal y distribuida en distintos niveles semanticos,
mediante el uso de algoritmos de optimización integral con la capacidad potencial de mejorar
los sistemas aprendizaje automático existentes. Las redes neuronales artificiales son, pues,
una tecnología prometedora para mejorar el reconocimiento automático de locutores e
idiomas; siendo el reconocimiento de de locutores e idiomas, tareas con cada vez más
demanda en los nuevos sistemas de control por voz, que ya utilizan millones de personas. Esta
tesis tiene como objetivo la mejora del estado del arte de las tecnologías de reconocimiento
de locutor y de idioma mediante la formulación, implementación y análisis empírico de
nuevos enfoques basados en redes neuronales, aplicables a dispositivos portátiles y a su uso
en gran escala. Las principales contribuciones de esta tesis incluyen la propuesta original de:
(1) arquitecturas eficientes que hacen uso de capas neuronales densas, localmente densas,
recurrentes y convolucionales; (2) una nueva estrategia de combinación de enfoques clásicos
y enfoques basados en el uso de las denominadas redes de cuello de botella; (3) el diseño del
primer sistema público de reconocimiento de voz, de vocabulario abierto y continuo, que es
además multilingüe; y (4) la propuesta de un nuevo algoritmo de optimización integral para
tareas de reconocimiento de locutor, aplicable también a otras tareas de verificación. Los
resultados experimentales extraídos de esta tesis han demostrado que las redes neuronales
artificiales son capaces de reducir el número de parámetros usados por los algoritmos de
reconocimiento tradicionales, así como de mejorar el rendimiento de dichos sistemas de
forma substancial. Dicha mejora relativa puede acentuarse a través del modelado de voz
mediante redes recurrentes de memoria a largo plazo, el uso de algoritmos de optimización
integral, el uso de locuciones de evaluation de corta duración y mediante la optimización del
sistema con grandes cantidades de datos de entrenamiento.
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Chapter 1

Introduction

In recent years, there has been increasing interest–in the scientific community and in private
and governmental sectors–in automatic systems that leverage information from a variety of
digital sources, including speech, images and documents. This increased interest is a result
of the fast development of new algorithms, the availability of large, annotated collections
of data, and an increase in the computational scale of modern processors that allows faster
optimization of algorithms and the deployment of such technologies in our everyday life (for
example, in portable devices).

The availability of computing scale has allowed us to rethink and question the previously
accepted approaches to computer science in many disciplines. It has also allowed us to
reconsider methods that, in the past, had been considered prohibitively expensive. Research
has developed around a family of algorithms, namely artificial neural networks [4, 26, 43]
(ANNs). ANNs have recently shown remarkable success in tackling some of the world’s
most difficult machine learning challenges, including in the areas of image recognition [41],
translation [76], sentiment analysis in text [20], speech recognition [33], face recognition [66],
document retrieval [42] and model visualization techniques [55], to name a few.

1.1 Artificial Neural Networks for Speech Recognition

ANNs have been investigated for many years as an approach to leverage information from
speech signals [15, 74]. It was not until circa 2012, however, that neural networks revo-
lutionized the field of speech recognition [33], setting a new precedent for other speech
technologies that would follow.

During this technological revolution, ANNs have proven to be a particularly successful
technique for characterizing the acoustic model component of speech recognition systems.
ANN-based acoustic models are able to predict with remarkable accuracy the spoken phoneme
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in a short (approximately 100ms long) speech segment. Research has shown that ANNs
are particularly successful in surpassing previous acoustic modeling approaches when very
large amounts of training data are available, as the benefits of holistic optimisation tend
to outweigh the benefits of optimisations based on prior knowledge. Additionally, fewer
assumptions about the data representation are needed.

1.2 Demand for Speaker and Language Recognition

Today, large vocabulary continuous speech recognition (LVCSR) systems are becoming
increasingly relevant for industry, tracking the technological trend toward increased hu-
man interaction using hands-free voice-operated devices [64]. For example, dialogue and
command-and-control systems (e.g., Google Assistant, Apple’s Siri and Amazon Echo) are
now used by millions. As the transcription accuracy progressively improves in modern
LVCSR systems, certain obstacles remain, diminishing user experience of these dialogue and
command-and-control systems.

One such obstacle is the ability to authenticate the identity of each speaker. This ability
is convenient for transparently personalizing the system’s feedback and providing a layer
of security by granting access only to known speakers. Speaker recognition can also help
to improve the performance of speech recognition [67] and keyword spotting [8] systems.
In such cases, a speaker independent model is adapted using a small amount of data from a
single speaker, with the resulting speaker-specific model performing better on test data from
that speaker.

For multilingual users, another perceived obstacle to natural interaction with devices is
the monolingual character of LVCSR systems, meaning that users are limited to speaking a
single, preset language. This could be considered a severe limitation as, according to several
sources [70] [30] [73], multilingual speakers already outnumber monolingual speakers
globally, and predictions point toward increasing numbers of multilingual speakers in the
future.

1.3 Thesis Goals

The capacity to transparently and accurately recognize both the speaker and the language
spoken is a desirable feature of ‘smarter’ and more natural, speech-based interfaces. This
thesis addresses the problems associated with and contributions made toward language
identification and speaker verification technologies in the context of global public speech
services. The author’s goals are to: 1) provide research results that improve speaker and
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language recognition technologies through the use of modern ANNs, and 2) make these
technologies suitable for the most common portable devices, a challenge that imposes severe
limitations on the algorithm, including small disk and memory usage (i.e., model footprint),
small lapsed time between the user’s end of interaction and the system’s provided response
(i.e., latency), and small battery and power consumption, which limit the algorithm’s possible
number of operations per second.





Chapter 2

Dissertation Structure and Claims

2.1 Dissertation Structure

This dissertation is presented in the format of a compendium of academic contributions, which
includes journal papers, conference papers and patents. It is divided into two independent
documents that comply with university regulations.

1. The first of the two documents consists of this thesis, which comprises six chapters:
Chapter 1 is an introduction to the domains of speaker and language recognition for
real-world applications. This chapter (chapter 2) describes the overall dissertation’s
structure and and claims. The definition and classical formulation of language and
speaker recognition is summarized in chapter 3. Chapters 4 and 5 introduces artificial
neural networks and summarizes the author’s contributions to the fields of language and
speaker recognition. Finally, conclusions and ideas for future research are presented in
chapter 6.

2. The second document is divided into three appendices that are attached to this thesis
and that list the author’s academic contributions (three journal papers [Appendix A],
seven conference papers [Appendix B], and four patents [Appendix C] relevant to
language and speaker recognition). A brief description of each publication/patent is
provided, along with a summary of the author’s specific contributions to the work and
the publication’s/patent’s full text.



6 Dissertation Structure and Claims

2.2 Claims

As summarized in this dissertation, the author has contributed to the fields of language and
speaker recognition through the formulation, implementation and empirical analysis of the
following novel neural network approaches:

Contributions to Language Recognition

• A novel, feed-forward deep neural network (DNN) system for large-scale language
recognition. This approach, when compared with alternative approaches, reduced the
error rate in short utterances by more than a factor of three [23, 45].

• A combination strategy for a DNN-based language recognition system and multiple
large vocabulary continuous speech recognition (LVCSR) backends, with minimum
negative impact in latency, CPU load and word error rate (WER) [21].

• The first successful long short-term memory (LSTM) model for large-scale language
recognition. By using LSTM models, the number of parameters required by the
language recognition model was reduced by a factor of twenty [24].

• A novel bottleneck strategy for DNN-based language recognition. When combined
with state-of-the-art speaker recognition techniques, this approach showed remarkable
performance on both short and long utterances [44].

Contributions to Speaker Recognition

• The first successful feed-forward DNN system for large-scale, text-dependent speaker
recognition, a technique that achieved performance comparable to other standard
benchmarks [71].

• A novel approach using locally connected layers that succeeded in reducing the number
of parameters and computations of a DNN-based, text-dependent speaker recognition
system by a factor of three, with no negative effects on performance [9].

• A novel "end-to-end" optimization protocol for speaker recognition. This protocol
enables all of a system’s components to be trained with a single algorithm that uses
the same evaluation metric during both training and testing. This approach led to
remarkable improvements in text-dependent speaker recognition, reducing errors by
more than half [31].
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Additional engineering contributions of the author include: a) novel contributions to
classic i-vector techniques [46, 65, 67]; b) the acquisition of large speaker and language
datasets; and c) collaborating in the implementation of inference engines suitable for Google’s
production systems, which are available to millions of users. The author has also been a
major contributor to the launch of the first multilingual speech recognition service and the
Trusted Voice service (a speech-based biometric service for unlocking android devices).





Chapter 3

Language and Speaker Recognition

This chapter provides a formal definition of language identification and speaker verification, a
brief introduction to the classical formulations thereof, and a rationale for why these classical
approaches may be sub-optimal in real-world applications.

3.1 Supervised Learning

Language and speaker recognition, at its core, is a problem of machine learning [5, 14]. The
problems of machine learning can be considered variations on data-driven function estimators
f (x). In supervised learning, a set of pairs (X ,Y ) is provided as inputs X = (x1,x2, . . . ,) and
outputs Y = (y1,y2, . . . ,), with the goal of training a model f : x 7→ y that approximates the
function’s behavior in a generalizable fashion. This is different from unsupervised learning,
which is used for unlabeled datasets with no target outputs (X ,−) or rewards from the
environment. Semi-supervised learning is a class of supervised learning that makes use of
labeled (X ,Y ) and unlabeled (X ,−) data for training (typically a small amount of labeled
data and a large amount of unlabeled data), and is generally motivated by the fact that large,
labeled datasets are difficult to acquire.

When the elements of Y correspond to independent classes, the learning problem is
referred to as classification (e.g., a color recognition problem comprising targets such as
green, red, blue), whereas, in regression problems, Y stands for continuous values sampled
from a target function (e.g., energy demand in the electrical grid).

In supervised learning, modelling the distribution p(y|x) is a natural approach for classi-
fying a given example x into a class y, which is why algorithms that model this directly are
called discriminative algorithms. Generative algorithms, on the other hand, model p(x,y),
which, by applying Bayes rule, can be transformed into p(y|x) and then used for classification.
Discriminative models generally outperform generative models in classification tasks [37];
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however, modeling p(x,y) can be used for other purposes, such as to generate likely (x,y)
pairs.

3.2 Open-Set and Closed-Set Classification

This thesis deals exclusively with supervised classification problems. This subset of machine
learning problems can be further divided into two categories: open-set and closed-set
classification. The distinction between open-set and closed-set classification is mainly a
technical one. Although the definitions are conceptually similar, these two types of machine
learning problems often have very different solutions.

In closed-set classification, often referred to as identification (Fig. 3.1), the set of classes
(Y ) with which the algorithm is trained is identical to the set of classes (Y ′) that exist
in a disjointed testing dataset. One common criticism of systems trained to optimize an
identification metric is that they may underperform in cases where they have to learn to reject
examples from unseen classes.

Fig. 3.1 A depiction of language recognition as a closed-set recognition problem (i.e., identification
problem). Language identification aims to determine which language is being spoken out of a list of
known candidates.

Open-set classification covers the more general classification problem in which two sets
(Y and Y ′) overlap partially or not at all. One approach to addressing this problem is to
formulate it as a verification problem where the goal is to determine (yes or no) if two
samples belong to the same category (Fig. 3.2). Generally, verification systems are trained
with large quantities of labeled examples in the hope that they will generalize learning to the
unseen classes of Y ′ by using a very limited set of labeled reference examples (i.e., enrollment
examples).
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Contributions to Speaker Recognition Technology:

 Same Person or 
Different People ?

Speaker model

Fig. 3.2 Speaker recognition depicted as a verification problem. Speaker verification aims to determine
the speaker’s identity based on one or more reference examples that are usually represented by a
parametric model.

3.3 Language Identification

Automatic language recognition refers to the process of automatically determining the
language in a given speech sample [56], with output categories such as English or Spanish.
In language recognition problems, the list of languages with which the algorithm will be
evaluated is typically known at training time. Thus, the problem is often referred to as a
language identification (LID) problem (Fig. 3.1).

In general, language discriminant information is spread across different structures or
levels of the speech signal, ranging from low-level, short-term acoustic and spectral features
to high-level, long-term features (i.e. phonotactic, prosodic). However, even though several
high-level approaches are used to get meaningful information from complementary sources
[16, 51, 79], most language identification systems still rely on acoustic modelling [22, 68],
which mostly targets short-term features. This is because acoustic models tend to have better
scalability and computational efficiency.

LID is used in several applications, including multilingual speech recognition sys-
tems [21], translation systems and emergency call routing (where the response time of
a fluent native operator may be critical) [1, 56].

3.4 Speaker Verification

Automatic speaker recognition is the process of verifying, based on a speaker’s known
utterances, whether an utterance belongs to that speaker or not (e.g., same speaker or
different speaker). In speaker recognition problems, it is typically required that a system be
generalizeable to recognize any arbitrary speaker, rather than just those speakers found in the
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training set Y . Thus, as the list of candidate speakers is typically unknown at training time,
this problem is often referred to as the speaker verification (SV) problem (Fig. 3.2).

As in the case of LID, speaker discriminant information is spread across different levels of
speech as a result of morphological and behavioural patterns [36]. Morphological information
originates from physical differences in speech organs, such as the size and shape of the vocal
tract, lungs and larynx, which mostly effect short-term features. Behavioral information,
on the other hand, originates from characteristic manners of speaking, such as the use of a
particular rhythm, intonation, pronunciation style and vocabulary, which mostly influences
long-term features. Currently, most successful automatic SV approaches extract discriminant
information using acoustic models that primarily target short-term features and morphological
differences among individuals [13, 17, 39].

When the lexicon of spoken utterances is constrained to a single word or phrase across all
users, the process is referred to as global password, text-dependent speaker verification. By
constraining the lexicon, text-dependent speaker verification aims to compensate for phonetic
variability, which poses a significant challenge to the process of speaker verification [2].
The speaker recognition part of this thesis is focused on text-dependent speaker verification
with the global password ”Ok Google.” The choice of this particularly short, approximately
0.6 second-long global password is due to its use in Google’s Keyword Spotting system [58]
as an entry-point to Google’s Voice Search system [64].

Applications of SV include forensics [25, 61], authentication in security-critical sys-
tems [49], the personalization of speech interfaces [67], and when searching for speakers in
large databases [65].

3.5 Classical Approaches

I-vector-based systems have become the standard approach for LID [52] and SV [13], and
have grown in popularity in a wide range of other fields, including personalized speech recog-
nition [67], emotion recognition [47], age estimation [3] and intelligibility assessment [50].

One i-vector can be understood as a fixed-size compact representation of an utterance,
which is derived from an unsupervised data-driven algorithm capable of capturing the
accumulated long-term effects of multiple sources embedded in speech. I-vector-based
systems are therefore semi-supervised systems that use i-vectors as a way to parametrize an
utterance, while the classification task is performed by a subsequent recognition backend.
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3.5.1 Feature Extraction

The first step in LID and SV systems consists of providing a time-frequency representation
of the speech signal that is derived from a short-term frequency analysis of the waveform
and produces the so-called short-term, low-level acoustic features.

Specifically, the audio is segmented into sliding windows of typically 25ms that have
10ms overlap. Each window is then transformed into a vector of frequency coefficients
and further transformed using algorithms that seek to reflect the human auditory frequency
analysis, such as mel-frequency cepstral coefficients (MFCCs) [12] or shifted delta cepstral
(SDC) [69]. SV systems tend to use MFCC features together with their first-order temporal
differences, while LID systems use SDC features more frequently.

MFCC and SDC are approaches to pre-process audio that are not data-driven, but rather
based on prior knowledge. They are designed to discard information in the audio that
is considered irrelevant and express the remaining information in a form that facilitates
differentiation among languages and speakers.

3.5.2 I-vector Extraction

The i-vector model is an unsupervised generative model derived from the joint factor analysis
(JFA) framework [38]. It assumes that every utterance is generated by a different GMM
that represents its distribution of short-term acoustic features, an idea first proposed for
GMM-supervectors [60]. The i-vector is a compact representation of the parameters of such
GMM supervectors and efficiently captures the inter- and intra-dependencies across Gaussian
components.

The i-vector is formulated as follows: First, the prior distribution of a generality of
short-term acoustic features is modelled by a single GMM model using an expectation-
maximization algorithm (EM). This initial GMM model is known as a universal background
model (UBM). Utterance-specific supervectors are then obtained by a maximum a posteriori
(MAP) estimate of the mean of a posterior distribution computed over the UBM [38]. The
relationship between the utterance supervector m and the utterance i-vector w is formulated
as:

M = m+Tw (3.1)

where u is the mean GMM supervector and T is a low-rank rectangular matrix representing
the bases spanning the sub-space, which contains most of the variability in the supervector
space.
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It is worth mentioning that equation 3.1 simply denotes the mean of the distribution of
p(M|w) imposed by the i-vector model. However, during i-vector estimation, it is frequently
more useful to formulate p(w|M). The Bayes rule estimation of p(w|M) for two types of
priors of p(w) is detailed in [40]. The i–vector w is then a MAP estimate of a low-dimensional
latent variable. The estimation algorithm for the low-rank matrix T is presented in [38].

Typical values for this approach range from the use of a = 1024 . . .2048 Gaussian
components for the GMM models, b = 400 . . .600 dimensional i-vectors, and c = 24 . . .56
dimensional features (MFCC or SDC). The total number of parameters of an i-vector system
can be estimated by ac(b+ 2), which means that i-vector models often require 10 . . .70
millions of parameters, a relatively large number for small embedded devices.

3.5.3 Classification Backends

The i-vector is therefore a compact representation of a whole utterance that is derived
as a point estimate of the latent variables in a factor analysis model [13, 40]. However,
i-vector-based systems still require a supervised backend classifier to accomplish LID or SV.

The simplest of those backends is a non-parametric approach that uses the cosine kernel
between the test i-vector w and the mean language, or speaker i-vector w′ [13]. The resulting
value is then compared to a threshold in order to make the final decision.

Recently, more sophisticated backends have shown to better deal with unwanted variabil-
ity factors affecting performance. In particular, classical approaches for LID typically use the
Gaussian backend [52], whereas probabilistic linear discriminant analysis (PLDA) [17, 59]
is more frequently used for SV problems.

The Gaussian backend used for LID characterizes the i-vectors of each language by
estimating a single Gaussian distribution via maximum likelihood, where the covariance
matrix is shared among languages and is equal to the within-class covariance matrix of the
training data. During evaluation, every new utterance is evaluated against the model of all
candidate languages.

Alternativelly, the PLDA backend used in SV problems can be seen as a special unimodal
case of joint factor analysis (JFA) [38] that takes a combination of two i-vectors as the
input and directly evaluates the likelihood ratio between the two verification hypotheses (i.e.,
whether the two i-vectors were generated by the same speaker or not).
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3.6 Limitations of Classical Approaches

While proven to be successful in a variety of scenarios, i-vector-based approaches suffer
from four major drawbacks when used in the context of real-world applications:

1. In real-time applications, most of the costs associated with i-vector computation
occur after completion of the utterance, which introduces an undesirable latency
to the application’s user. This latency effect is particularly problematic when the
application requires an implementation embedded in a portable device with relatively
small computational power.

2. Research largely develops assuming the existence of long segments of audio. In some
applications, however, it is difficult to find collaborating speakers willing to speak for
more than a few seconds in a systematic way. Short utterances, despite being easier to
collect, have a particularly negative effect on the i-vector estimation (which is a point
estimate) and its robustness quickly degrades as the amount of data used to derive it
decreases.

3. I-vector systems cope with incomplete assumptions about the speech data’s represen-
tation, including the assumption of pseudo-independence of neighbouring segments
of speech (even for segments as close together as a few tens of milliseconds) and the
assumption that the distribution of the time-frequency information of the speech signal
can be compactly estimated with a GMM with a finite number of components with
diagonal covariance matrices [33].

4. I-vector systems break down LID and SV problems into more tractable, but loosely
connected subproblems or stages, which includes the computation of the i-vector
and backend models and the extraction of hand-crafted features. These problems are
therefore not jointly optimized to reduce the same metrics as those used during testing.

3.7 The Role of Classical Approaches in this Dissertation

In this thesis, the author shows that SV and LID systems can rely on ANNs to overcome
the limitations that exist in classical i-vector-based approaches. Performance, latency and
model size benchmarks were used to conduct side-by-side comparisons between classical
and ANN-based approaches using large-scale public and private datasets. Benchmarks used
include i-vector systems that are followed by the cosine distance backend to model languages
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in [23, 24, 45], and speakers in [31, 71]. A variety of Gaussian backends were developed for
LID in [44, 45], whereas PLDA was used for speaker recognition in [31].

Additionally, this thesis explores how novel ANN systems and classical approaches can
complement each other by combining independently-leveraged discriminant information. For
example, score-level fusion was used for SV in [71] and score-level fusion and calibration was
used for LID in [24]. In [44], the author proposed using ANNs as a sophisticated, trainable
feature extractor whose sequence of outputs can be used to replace or augment SDC features
for classical systems. In [67], i-vectors are used as an additional input signal to ANNs used
for speech recognition to facilitate speaker, channel and background normalization.

Finally, novel classification backends for classical LID systems were proposed in [46] and
scoring optimization techniques for large-scale speaker recognition were proposed in [65].



Chapter 4

Artificial Neural Networks for Speaker
and Language Recognition

In Chapter 3, we reviewed the definition of LID and SV and the classical approaches
used to address these challenges. This chapter provides a rationale for why ANNs are a
potential alternative to these classical approaches and presents the most relevant approaches
to modeling LID and SV using ANNs.

4.1 ANN-based and GMM-based Models

Most current SV and LID systems use some form of hand-crafted features, such as MFCC or
SDC, followed by some form of GMM- and i-vector-based representation of an utterance’s
features. Recent findings in the fields of speech recognition and deep learning have shown that
remarkable accuracy improvements can be achieved through the use of modern ANNs and
low-level mel-filterbank features, which replace GMM schemes trained with, for example,
MFCC features [33]. One interpretation of these improvements is that ANNs may be
considered universal approximators that, using a single algorithm, can holistically optimize
the tasks of feature extraction and classification [10] (Figure 4.1).

In [33], additional advantages of ANNs, as compared to GMM models, have been listed.
Among them: a) Multilayer ANNs use a multi-level distributed representation of the input,
which makes the ANN an exponentially more compact model than a GMM model and allows
the modeling of larger input examples, with additional contextual information, without
incurring a linear increment of the number of parameters; b) ANNs have the potential to
create better models of data that lie on or near a non-linear manifold; c) ANNs do not
require detailed assumptions about the input data’s distribution [54]; d) Using computer
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Fig. 4.1 Example of feature visualization produced by a network trained on Imagenet. Figure adapted
from [78].

scale and regularization, ANNs can successfully exploit large amounts of data, resulting in
more robust models without lapsing into overtraining; and e) ANNs have shown to be robust
to low-precision quantization of weights, a technique used to reduce a model’s footprint [53].

These are particularly interesting features to be considered when developing real-time,
embedded architectures and have motivated the use of ANNs as an alternative to GMM
models for LID and SV. Next, we describe the novel ANN-based architectures developed by
the author for practical implementation.

4.2 Deep Neural Networks

The term Artificial Neural Network refers to the system formed from the interconnections
between simple mathematical units, often called nodes or neurons. ANNs admit a recurrent
formulation where each unit j computes a function f : {yi}i 7→ y j that outputs an activation
y j from the activations received from other units {yi}i , where i is an index that iterates
over the received connections. Typically, f (·) is defined in terms of a weighted sum of the
activations of other units that output an activation, which is a nonlinear function g(·) of that
sum (top of Figure 4.2).
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Fig. 4.2 A depiction of the set of operations computed by a DNN during inference time. An input
layer (green) provides external features {oi}i=1...4. The DNN has two hidden layers and two nodes
per layer (blue) computing activations y, and a softmax classifier (red) that computes the predicted
probabilities p over two possible classes. i is an index over the input nodes and j is a label of the
current node. There is a one-to-one map between nodes and classes in the output layer. The softmax
classifier is divided into two layers according to equations 4.1, 4.2 and 4.4.
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y j = g(x j) (4.1)

x j = b j +∑
i

wi jyi (4.2)

The terms in {wi j} refer to the weights associated with the incoming activations received
at unit j, whereas b j is a bias term associated with that unit. An example of a nonlinear acti-
vation function g(·) is the rectified linear units (ReLu) function, where ReLU(x) = max(0,x).
ReLU is one of the most frequently used nonlinear activation functions in speech recognition
algorithms [11].

Typically, these units are hierarchically arranged in layers, where each node in a layer
receive its inputs {yi}i from units in the previous layer. The input layer receives its inputs
from provided features {oi}i, such as the filter-bank energies of one frame of speech. If each
node in the layer l receives inputs from all the units in the layer l − 1, then the layer l is
referred to as a fully-connected layer. Other alternatives are listed in section 4.3.

These networks can be trained to approximate a desired output function by back-
propagating the gradients of an error function [26]. Such error functions, known as fitting
functions, are the result of comparing the network output to a desired target value t j provided
for each training input example. An example of a fitting function is the cross-entropy loss
frequently used in identification problems:

C =−∑
c

tc log pc (4.3)

Here, c is an index over all of the targets, pc is the estimated probability for the target
class c, and tc represents the desired target probability for the current evaluated example,
taking a value of either 1 (true class) or 0 (false class). The cross-entropy optimization
involves minimizing the negative log likelihood of the training set and, at the same time,
reducing the Kullback–Leibler divergence between the distributions t and p. At its optimal
value (when t = p), equation 4.3 is referred to as the entropy function, which is associated
with the optimal bit encoder used in information theory [26].

One common way to map hidden units into probabilities, as required by the cross-entropy
function (Equation 4.3), is to configure the output layer as a softmax layer where:

p =
exp(x)

∑c exp(xc)
(4.4)

A softmax layer is an exponential model that can also be formulated as a two-layer model
that follows equations 4.1 and 4.2, where the first layer is a linear layer such that g(x) = x



4.3 Alternative DNN Architectures 21

and, in the second layer, g(·) is computed according to equation 4.4 (Figure 4.2). It is worth
noting that, in the softmax output layer, there is a one-to-one correspondence between nodes
and classes (p j = y j).

ANNs defined in this framework are known as feed-forward ANNs, whereas DNNs are
feed-forward ANNs with more than one hidden layer between the input and output layers.

4.3 Alternative DNN Architectures

Modern DNNs are used extensively for the acoustic modeling of speech recognizers [33] and
various other tasks [41, 43, 66, 76]. However, not all DNNs follow the formulation presented
in Section 4.2, as DNNs are among some of the most heterogeneous pattern recognition
models.

Several possible alternative architectures include: 1) cases where DNNs admit different
nonlinear activation functions (Equation 4.1), such as logistic sigmoid functions, linear
functions, and hyperbolic tangent functions [48]; 2) different types of hidden layers (Equa-
tion 4.2), such as space invariant convolutional layers generally used for image and video
processing [41, 43], dropout and maxout layers [27] used for regularized training, and the
size-efficient locally connected layers introduced in this thesis [9]; and 3) different types
of fitting functions and output layers (Equations 4.3 and 4.4), such as restricted Boltzmann
machines [32] used for unsupervised problems, the triplet loss used for clustering [66], the
MMI optimization criteria used for sequence training [72], the logistic layer used for regres-
sion problems [26], and the end-to-end layer used for verification and also introduced in this
thesis [31]. There are also multiple possible modifications of the standard back-propagation
algorithm, some of which aim to optimize the learning rate, the algorithm parallelization and
the estimation of gradients [26].

4.4 Recurrent Neural Networks

One limitation of feed-forward ANNs is that they assume that input examples are i.i.d.
variables. Given this assumption, feed-forward ANNs may fail to model the long-time
dependencies of time sequences. Recurrent Neural Networks (RNNs) are an attempt to
address this issue. RNNs define a family of ANNs with recurrent, hidden self-connections
that store the temporal state of the network, which changes with the input to the network at
each time step (Figure 4.3). Such recurrent connections provide a powerful mechanism to
model temporal sequences, such as the speech signal and its complex long-range correlations.
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Fig. 4.3 Depiction of a recurrent neural network.

For simplicity, we will now use the vectorial notation to refer to the fact that observations
o⃗ and outputs p⃗ are multidimensional, and that multiple nodes can be present in each layer.
With this notation, RNNs compute a mapping from an input sequence of observations
(⃗o1, ..., o⃗T ) to an output sequence (p⃗1, ..., p⃗T ). In its simplest form, the RNN iteratively
calculates from time step t = 1 to T , the activations for network units, according to the
following equation:

y⃗t = g(Wr⃗yt−1 +Wx⃗ot + b⃗) (4.5)

p⃗t = φ(Wy⃗rt +by) (4.6)

where y⃗0 is a vector typically initialized with zeros; g(·) is either the ReLu or the hyperbolic
tangent activation function; and φ is the softmax output activation function (Equation 4.4).
As in the case of DNNs, RNNs can also be arranged in multilayer "deep" architectures where
the input to each node in a layer is the vector of activations y⃗ of the layer below.

RNN models are typically trained using some version of the back-propagation through
time (BPTT) learning algorithm [62, 63, 75], where the RNN is transformed into a feed-
forward ANN as deep as the number of elements in the sequence. This type of process is
known as unrolling the RNN. This unrolled structure of RNNs can be helpful in illustrating
how RNNs are used to model different types of problems involving sequences and when
using deep architectures (Figure 4.4).

4.5 Long Short-Term Memory Networks

Long short-term memory networks (LSTM) are a type of RNNs [18, 19, 35] that have
recently been shown to outperform the state-of-the-art of feed-forward DNN systems for
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Fig. 4.4 Illustration of unrolled RNN networks used in multiple applications.

acoustic modeling in LVCSR [28, 62]. LSTM have special network units called memory
blocks in the recurrent hidden layer that make them a more powerful tool to model sequence
data than feed-forward neural networks and conventional RNNs. The memory blocks contain
memory cells with self-connections storing the temporal state of the network, in addition to
special multiplicative units called gates to control the flow of information.

The modern LSTM RNN architecture [18, 19, 35] is shown in Figure 4.5. The input
gate controls the flow of input activations into the memory cell. The output gate controls
the output flow of cell activations into the rest of the network. The forget gate scales the
internal state of the cell before adding it as input through self-recurrent connection to the
cell, therefore adaptively forgetting or resetting the cell’s memory. In addition, the LSTM
RNN architecture contains "peephole connections" that connect the internal cells to the gates
in the same cell to learn the precise timing of the outputs [19]. With this architecture, LSTM
RNNs compute a mapping from the input sequence to an output sequence according to the
following set of operations:
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Fig. 4.5 Depiction of a single member block of a long short-term memory recurrent neural network
architecture.

i⃗t = σ(Wix⃗ot +Wir⃗yt−1 +Wic⃗ct−1 + b⃗i) (4.7)

f⃗t = σ(Wf x⃗ot +Wf r⃗yt−1 +Wf c⃗ct−1 + b⃗ f ) (4.8)

c⃗t = f⃗t ⊙ c⃗t−1 + i⃗t ⊙ tanh(Wcx⃗ot +Wcr⃗yt−1 + b⃗c) (4.9)

ω⃗t = σ(Wox⃗ot +Wor⃗yt−1 +Woc⃗ct + b⃗o) (4.10)

y⃗t = ω⃗t ⊙ tanh(⃗ct) (4.11)

where the W terms denote weight matrices (e.g., Wix is the matrix of weights from the input
gate to the input); Wic,Wf c,Woc are diagonal weight matrices for peephole connections; the b
terms denote bias vectors (bi is the input gate bias vector); σ is the logistic sigmoid function;
and i⃗, f⃗ , ω⃗ and c⃗ are the input gate, forget gate, output gate and cell activation vectors,
respectively, all of which are the same size as the cell output activation vector y⃗; ⊙ is the
element-wise product of the vectors; and tanh is the hyperbolic tangent activation function
for cell inputs and cell outputs.

In [34], it is shown that the BPTT optimization algorithm is a more stable algorithm for
training LSTM networks than conventional RNN networks. LSTM’s gating strategy does not
suffer from the so-called "vanishing gradient" problem, which in conventional RNNs causes
the value produced from activation functions to shrink rapidly or explode, depending largely
on the length of the input sequence. This is a feature that makes LSTM networks a good
candidate model for LID and SV problems with input sequences of arbitrary length.



Chapter 5

Original Contributions

Previous chapters have provided an introduction to the concepts most relevant to this the-
sis, including LID (Section 3.3), SV (Section 3.4), classical approaches to LID and SV
(Section 3.5), DNNs (Section 4.2) and LSTMs (Section 4.5). This chapter summarizes the
author’s contributions to LID and SV problems, building on previous references and linking
to the author’s most relevant publications.

5.1 Contributions to LID Problems Using ANNs

The author’s contributions to LID are focused on the development of language recogni-
tion technology with applications for multilingual continuous LVCSR systems, as well as
speech-to-speech translation systems.

[23, 45] introduce novel discriminative approaches for addressing LID problems using
DNNs, the architecture of which is depicted in figure 5.1. We demonstrate that DNNs are
particularly suitable for performing LID in the context of real-time applications, due to their
capacity to emit language posteriors at each new frame of the test utterance (Figure 5.3).
Furthermore, combining frame-level posteriors into utterance-level scores leads to remarkable
improvements for short utterances when compared to state-of-the-art approaches (Figure 5.2).
Finally, we analyse various key aspects of the system, such as the amount of required training
data, the number of hidden layers, the significant relevance of contextual information and the
effect of test utterance duration.

Similarly, [24] presents a novel approach for addressing LID using LSTM, which is moti-
vated by their better ability to model sequences with respect to the feed-forward networks
used in previous works. We show that LSTM RNNs can effectively achieve better perfor-
mance than the best DNN system, with an order of magnitude fewer parameters, and found
that a many to one architecture was critical for model convergence (Figure 4.4). Table 5.1



26 Original Contributions

Short-Term
Frequency Analysis

Stack Consecutive
Frames

Speech Detection

Normalize Frames

DNN

DNN Ouput Posterior

o1

oi

...

ov

h11

h12

h1i

...

h1i

h j1

h j2

h ji

...

h ji

p1

pi

pNL

Fig. 5.1 Example of a DNN model used for LID (right) and the pipeline process from the waveform
to the DNN output posteriors (left). The input (i.e., visible units) of the DNN is a fixed-size vector
o ∈ Rv. The output (i.e., output units) is a vector p ∈ RNl with the predicted values of probability for
each language. There are j ∗ i hidden units arranged in j layers. DNN outputs are computed every
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Fig. 5.2 Performance comparison of the DNN-based LID system and multiple i-vector-based systems
using state-of-the-art Gaussian backends. All system are evaluated on a test set formed by audio logs
sampled from Google speech recognition services in 34 languages. Systems are ranked according to
the Cavg (average cost) error metric defined in NIST [7, 57]. Figure extracted from [45].

summarizes the performance of DNN- and LSTM-based systems for models of different
sizes.

In [44], we propose an architecture where the DNN is used to extract bottleneck features
that are then used as inputs for a state-of-the-art i-vector system. This DNN-based system
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Fig. 5.3 Frame-level probabilities of a DNN-based LID system (8 languages selected) evaluated over
an English-USA (4s) test utterance. DNN outputs are computed every 10ms over a sliding window of
time-frequency coefficients and further combined into a final score for the complete utterance [23].

Size EERavg(%) Cavg

i-vector (Cosine Backend) ∼16M 15.89 0.1968
DNN_2_layers ∼8M 11.61 0.1727
DNN_4_layers ∼21M 8.79 0.1292
DNN_8_layers ∼48M 9.58 0.1376
LSTM RNN ∼1M 8.35 0.0944

Fusion ∼94M 6.47 0.0649

Table 5.1 LID performance for a subset of the LRE’09 evaluation (3s test segments, 8 languages) [57].
Systems are ranked according to the equal error rate averaged per language (EERavg) and the average
cost (Cavg) defined in NIST [7, 57]. We show that LSTM networks can achieve equal or better
performance than DNN models that are one order of magnitude larger, and can achieve much better
performance than classical i-vector systems. Best performance is achieved by combining results from
all previous systems. Table adapted from [24].

is shown to outperform other state-of-art systems when dealing with utterances of different
lengths (Figure 5.2).

Finally, in [21], we build on previous advances using ANNs for LID to present an end-to-
end multi-language LVCSR architecture developed and deployed at Google that allows users
to select arbitrary combinations of spoken languages. We leverage their previous advances
in LID and a novel method of real-time language selection to achieve similar recognition
accuracy and nearly identical latency characteristics as a monolingual system.
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EERavg(%)

03 seconds 10 seconds 30 seconds
i-vector (Gaussian Backend) 15.74 5.30 2.33
DNN_4_layers 13.49 6.38 4.37
Bottleneck 13.52 5.58 3.24
i-vector + DNN_4_layers 11.93 3.80 1.94
i-vector + Bottleneck 11.19 3.61 1.85

Table 5.2 LID performance for the full LRE’09 evaluation [57]. Results are sorted by test duration.
Systems are ranked according to the equal error rate averaged per language (EERavg). We show that
for 30s-long utterances, the i-vector system tends to outperform the best DNN, while the combination
of i-vector and bottleneck systems outperforms all other approaches. Table adapted from [44].

5.2 Contributions to SV Problems Using ANNs

The author’s contributions to SV are focused on the development of speaker recognition
technology that has applications for continuous voice authentication systems used in portable
devices.

[71] presents a novel approach to addressing SV problems using DNNs; in this case,
for a small footprint text-dependent speaker verification task. In the development stage,
a DNN is trained to classify speakers at the frame level and, during speaker enrollment,
the trained DNN is used to extract speaker-specific features from the last hidden layer.
The average of these speaker features (or d-vector) is taken as the speaker model. At the
evaluation stage, a d-vector is extracted for each utterance and compared to the enrolled
speaker model to make a verification decision using the cosine distance backend. Initial
experimental results conducted in [71] show that the performance of the d-vector SV system
is reasonably good compared to an i-vector system, and further gains can be achieved by
combining both systems. Furthermore, experiments conducted in [31] have shown that, when
additional training data is available, a d-vector system similar to the one presented here
(referred to as DNN/sofmax in Table 5.4), can achieve more than 15% better performance
than a state-of-the-art i-vector/PLDA system.

In [9], we exploit locally-connected networks (LCN) and convolutional neural networks
(CNN) to better model the local time-frequency correlations of the speech signal as an
alternative to the fully-connected DNN used in previous work. We demonstrate that both an
LCN and CNN can reduce the total model footprint and latency to 30% of the original size of
the model presented in [71], with minimal impact on performance (Table 5.3). This reduction
in the model size and latency allowed for the deployment of the first voice biometric unlock
mechanism for Android.
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Size Multiplies EER(%)

Fully Connected 787k 787k 3.88
LCN 234k 234k 4.02
CNN 234k 345k 4.04

Table 5.3 Performance comparison of fully-connected, LCN and CNN approaches used for the first
hidden layer of a text-dependent SV system. We show that LCN and CNN can reduce the total
model footprint and latency (multiplies) to 30% of the original value, with only a small impact on
performance. Table adapted from [9].

SV system Size EER(%)

i-vector (Cosine Backend) [13, 71] 12M 5.77
i-vector (PLDA Backend) [17] 12M 4.66
DNN, softmax [9] 813k 3.86
DNN, end-to-end [31] 813k 1.87
LSTM, end-to-end [31] 1M 1.36

Table 5.4 A comparison of the performance of the end-to-end models and other technologies used for
text-dependent SV. We show that end-two-end optimization can largely outperform previously used
approaches and is particularly useful in combination with many to one LSTM models (Figure 4.4).
Table adapted from [31].

Finally, in [31], we define a new fitting function for verification problems and use it
to optimize both DNN and LSTM models, namely end-to-end optimization. Using this
fitting function, we define an integrated approach to SV that maps a test utterance and a few
enrollment utterances directly to a single score for verification, using the same evaluation
protocol as at test time. Such an approach results in simple and efficient systems that require
little domain-specific knowledge, require few model assumptions and result in remarkable
performance improvements compared to other state-of-the-art approaches with a similar or
larger number of parameters (Table 5.4.)

5.3 Contributions to Classical Approaches.

The author’s contributions to classical SV and LID approaches are focused on the application
of i-vector models to the speech recognition domain, as well as on developing new backend
systems with applications for LID and SV.
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[67] shows that using the utterance i-vectors as input features to a DNN used for speech
recognition provides the network with valuable information that brings about a roughly 4%
relative reduction in word error rate (WER). This technique can be applied on any utterance,
without requiring any speaker information or speaker adaptation or model storage. The
technique has been shown to combine well with model adaptation, delivering an overall 9%
WER reduction for models that are small enough to be run in real-time on portable devices,
making this an ideal technique for speaker-adapted models.

The work in [46] proposes novel classification backends for classical LID systems using
i-vector features. The backends use the von Mises-Fisher distribution to assign language
conditioned probabilities to language data. The two proposed methods use kernel density
functions and mixture models. The experiments show that von Mises-Fisher mixture models
can outperform the baseline cosine backend for short-duration utterances by 25% for most of
the considered experimental conditions.

Finally, in [65], we propose a fast retrieval method for SV in large data sets. The research
is based on combining two approaches that interact via the cosine distance: locality sensitive
hashing (LHS), which enables fast nearest neighbor search, and i-vectors, which provide
good identification accuracy. Results on a realistic, large data set from YouTube show that
speedups of one to two orders of magnitude can be achieved, while sacrificing only a small
fraction of the identification accuracy. This approach is a promising candidate for large-scale
SV and could also be useful for other large-scale clustering applications of i-vectors or
d-vectors.



Chapter 6

Conclusions and Future Work

The aim of this thesis was to advance the state-of-the-art in speaker and language recognition
technologies for application in large-scale and portable speech interfaces. This research was
motivated by recent findings in the fields of speech recognition and deep learning (Chapter 4),
and showed that holistic optimizations can overcome the incomplete assumptions of classical,
prior knowledge-based approaches to language and speaker recognition (Section 3.6). The
author formulated, implemented and conducted empirical analyses of novel deep learning
approaches for language and speaker recognition, with the aim of addressing an important gap
in the literature (Chapter 5). These novel approaches were optimized and tested in the context
of several new speech interfaces that were being developed and launched at Google, including
a multilingual large vocabulary continuous speech recognition system, a speech-to-speech
translation system, and an always-on voice authentication system for portable devices. It
was largely thanks to the improvements that resulted from this research that the performance,
footprint and latency needs of these new speech interfaces were satisfied.

This research demonstrates that feed-forward deep neural networks (DNNs) [23, 45] and
long short-term memory networks (LSTMs) [24] directly trained to discern languages can
obtain significantly improved results (as compared to classical i-vector-based systems) when
working with short-duration utterances. The proposed architectures are able to generate
an accurate local decision regarding the language spoken in every single frame, with no
perceivable latency. The research also demonstrated that straight-forward, incremental
decisions can be made at any point during an utterance, making this approach particularly
suitable for multilingual speech recognition systems that incrementally combine and emit
results from individual language and speech recognizers [21]. In the case of applications
involving utterances over ten seconds in length, a bottleneck-based combination of ANNs
and i-vector systems was found to provide additional gains [44].
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In the domain of speaker recognition, this research shows that DNNs can successfully
be used to map utterances directly to vectors of hidden variables–namely d-vectors–which
can be used for classifying speakers with simple classification backends [71]. The d-vector
model is different from the classical i-vector model because it follows a speaker discriminant
optimization process with fewer assumptions about the underlying data representation.
In addition, the research shows that locally connected networks substantially reduce the
model footprint and latency by exploiting the exponentially compacted representation of
the DNN model parameters [9]. Finally, the research summarized in [31] shows that the
novel end-to-end loss function presented for verification problems can jointly optimize
all components involved in the d-vector model by using a single algorithm that, during
training time, optimizes the same metric as that used for evaluation. We tested the proposed
end-to-end loss function for the internal ”Ok Google” benchmark, showing that both DNN
and LSTM models can achieve remarkable improvements over all current state-of-the-art
approaches.

Future research should be conducted to develop additional architectures and optimization
functions that can efficiently capture the long-term information of long (up to 10-minute)
speech segments. Promising initial results have already been seen when using deep LSTM
models, which could be further combined with bidirectional LSTMs [29] and attention
models [77]. Additionally, research is recommended to investigate the use of the end-to-end
optimization function to solve verification problems with inputs of variable length, such as
the problems of text-independent speaker verification, speaker clustering, and diarization [6].
Finally, research is recommended to develop scalable multilingual systems that can provide
multilingual transcriptions of utterances involving two or more languages spoken in the same
sentence.
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Abstract

In this work, we present a comprehensive study on the use of deep neural networks (DNNs) for automatic language identifica-
tion (LID). Motivated by the recent success of using DNNs in acoustic modeling for speech recognition, we adapt DNNs to the
problem of identifying the language in a given utterance from its short-term acoustic features. We propose two different DNN-
based approaches. In the first one, the DNN acts as an end-to-end LID classifier, receiving as input the speech features and pro-
viding as output the estimated probabilities of the target languages. In the second approach, the DNN is used to extract bottleneck
features that are then used as inputs for a state-of-the-art i-vector system. Experiments are conducted in two different scenarios:
the complete NIST Language Recognition Evaluation dataset 2009 (LRE’09) and a subset of the Voice of America (VOA) data
from LRE’09, in which all languages have the same amount of training data. Results for both datasets demonstrate that the DNN-
based systems significantly outperform a state-of-art i-vector system when dealing with short-duration utterances. Furthermore,
the combination of the DNN-based and the classical i-vector system leads to additional performance improvements (up to 45% of
relative improvement in both EER and Cavg on 3s and 10s conditions, respectively).
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).

Keywords: LID; DNN; Bottleneck; i-vectors

1. Introduction

Automatic language identification (LID) refers to the process of automatically determining the language of a given
speech sample (Muthusamy et al., 1994). The need for reliable LID is continuously growing due to a number of factors,
including the technological trend toward increased human interaction using hands-free, voice-operated devices and
the need to facilitate the coexistence of multiple different languages in an increasingly globalized world
(Gonzalez-Dominguez et al., 2014).
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Driven by recent developments in speaker verification, current state-of-the-art technology in acoustic LID systems
involves using i-vector front-end features followed by diverse classification mechanisms that compensate for speaker
and session variabilities (Brummer et al., 2012; Li et al., 2013; Sturim et al., 2011). An i-vector is a compact repre-
sentation (typically from 400 to 600 dimensions) of a whole utterance, derived as a point estimate of the latent vari-
able in a factor analysis model (Dehak et al., 2011; Kenny et al., 2008). While proven to be successful in a variety of
scenarios, i-vector based approaches have two major drawbacks. First, i-vectors are point estimates and their robust-
ness quickly degrades as the duration of the utterance decreases. Note that the shorter the utterance, the larger the
variance of the posterior probability distribution of the latent variable; and thus, the larger the i-vector uncertainty.
Second, in real-time applications, most of the costs associated with i-vector computation occur after completion of
the utterance, which introduces an undesirable latency.

Motivated by the prominence of deep neural networks (DNNs), which surpass the performance of the previous
dominant paradigm, Gaussian mixture models (GMMs), in diverse and challenging machine learning applications –
including acoustic modeling (Hinton et al., 2012; Mohamed et al., 2012), visual object recognition (Ciresan et al.),
and many others (Yu and Deng, 2011) – we previously introduced a successful LID system based on DNNs in
Lopez-Moreno et al.. Unlike previous works on using neural networks for LID (Cole et al., 1989; Leena et al., 2005;
Montavon, 2009), this paper represented, to the best of our knowledge, the first time a DNN scheme was applied at
large scale for LID and was benchmarked against alternative state-of-the-art approaches. Evaluated using two differ-
ent datasets – the NIST LRE’09 (3s task) and Google 5M LID – this scheme demonstrated significantly improved
performance compared to several i-vector-based state-of-the-art systems (Lopez-Moreno et al.). This scheme has also
been successfully applied as a front-end stage for real-time multilingual speech recognition, as described in
(Gonzalez-Dominguez et al., 2014).

This article builds on our previous work by extensively evaluating and comparing the use of DNNs for LID with
an i-vector baseline system in different scenarios. We explore the influence of several factors on the DNN
architecture configuration, such as the number of layers, the importance of including the temporal context and the
duration of test segments. Further, we present a hybrid approach between the DNN and the i-vector system – the
bottleneck system – in an attempt to take the best from both approaches. In this hybrid system, a DNN with a
bottleneck hidden layer (40 dimensions) acts as a new step in the feature extraction before the i-vector modeling
strategy is implemented. Bottleneck features have recently been used in the context of LID (Jiang et al., 2014;
Matĕjka et al., 2014; Richardson et al.). In these previous works, the DNN models were optimized to classify the
phonetic units of a specific language, following the standard approach of an acoustic model for automatic speech
recognition. Unlike in these previous works, here we propose using the bottleneck features from a DNN directly
optimized for language recognition. In this new approach, i) the DNN optimization criterion is coherent with the
LID evaluation criterion, and ii) the DNN training process does not require using transcribed audio, which is
typically much harder to acquire than language labels. Note that the transcription process involves handwork from
experts that are familiarized with specific guidelines (e.g. transcriptions provided in the written domain, or the
spoken domain); it is slow, as each utterance typically contains about 2 words/sec and moreover, word level
transcriptions needs to be mapped into frame level alignments before a DNN such as the one used in previous works
can be trained. That requires bootstrapping from another pre-existing ASR system, typically a GMM-based acoustic
model iteratively trained from scratch. Instead, in the process of training lang-id networks, no previous alignments
are needed, only one label per utterance is required and annotation guidelines are significantly simpler. Overall, that
facilitates the adoption of a bottleneck lang-id system, which has the additional advantage that targets language
discrimination in all its intermediate stages.

For this study, we conducted experiments using two different datasets: i) a subset of LRE’09 (8 languages) that
comprises equal quantities of data for each target language, and ii) the full LRE’09 evaluation dataset (23
languages), which contains significantly different amounts of available data for each target language. This approach
enabled us to assess the performance of all the proposed systems in cases of both controlled and uncontrolled
conditions.

The rest of this paper is organized as follows: Sections 2 and 3 present the i-vector baseline system and the archi-
tecture of the DNN-based system. In Section 4, we describe the proposed bottleneck scheme. In Sections 5 and 6, we
outline fusion and calibration, and the datasets used during experimentation. Results are then presented in Section 7.
Finally, Section 8 summarizes final conclusions and potential future lines of this work.
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2. The baseline I-vector based system

2.1. Feature extraction

The input audio to our system is segmented into windows of 25ms with 10ms overlap. 7 Mel-frequency cepstral
coefficients (MFCCs), including C0, are computed on each frame (Davis and Mermelstein, 1980). Vocal tract length
normalization (VTLN) (Welling et al., 1999), cepstral mean and variance normalization, and RASTA filtering (Hermansky
and Morgan, 1994) are applied on the MFCCs. Finally, shifted delta cepstra (SDC) features are computed in a 7-1-
3-7 configuration (Torres-Carrasquillo et al., 2002), and a 56-dimensional vector is obtained every 10 ms by stacking
the MFCCs and the SDC of the current frame. The feature sequence of each utterance is converted into a single i-vector
with the i-vector system described next.

2.2. I-vector extraction

I–vectors (Dehak et al., 2011) have become a standard approach for speaker identification, and have grown in pop-
ularity also for language recognition (Brummer et al., 2012; Dehak et al., 2011; Martinez et al., 2011; McCree, 2014).
Apart from language and speaker identification, i–vectors have been shown to be useful also for several different clas-
sification problems including emotion recognition (Xia and Liu, 2012), and intelligibility assessment (Martínez et al.,
2013). An i–vector is a compact representation of a Gaussian Mixture Model (GMM) supervector (Reynolds et al.,
2000), which captures most of the GMM supervectors variability. It is obtained by a Maximum–A–Posteriori (MAP)
estimate of the mean of a posterior distribution (Kenny, 2007). In the i–vector framework, we model the utterance-
specific supervector m as:

m u Tw= + , (1)

where u is the UBM GMM mean supervector and T is a low-rank rectangular matrix representing the bases spanning
the sub-space, which contains most of the variability in the supervector space. The i–vector is then a MAP estimate
of the low-dimensional latent variable w. In our experiments, we have used a GMM containing 2048 Gaussian com-
ponents with diagonal covariance matrices and the dimensionality of i-vectors was set to 600.

2.3. Classification backends

For classification, the i-vectors of each language are used to estimate a single Gaussian distribution via maximum
likelihood, where the covariance matrix is shared among languages and is equal to the within-class covariance matrix
of the training data. During evaluation, every new utterance is evaluated against the models of all the languages. Further
details can be found in (Martinez et al., 2011).

3. The DNN-based LID system

Recent findings in the field of speech recognition have shown that significant accuracy improvements over clas-
sical GMM schemes can be achieved through the use of DNNs. DNNs can be used to generate new feature repre-
sentations or as final classifiers that directly estimate class posterior scores. Among the most important advantages of
DNNs is their multilevel distributed representation of the model’s input data (Hinton et al., 2012). This fact makes
the DNN an exponentially more compact model than GMMs. Further, DNNs do not impose assumptions on the input
data distribution (Mohamed et al., 2012) and have proven successful in exploiting large amounts of data, achieving
more robust models without lapsing into overtraining. All of these factors motivate the use of DNNs in language iden-
tification. The rest of this section describes the architecture and practical application of our DNN system.

3.1. Architecture

The DNN system used in this work is a fully-connected feed-forward neural network with rectified linear units (ReLU)
(Zeiler et al., 2013). Thus, an input at level j, xj, is mapped to its corresponding activation yj (input of the layer above) as:
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y ReLU x xj j j= ( ) = ( )max ,0 (2)
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where i is an index over the units of the layer below and bj is the bias of the unit j.
The output layer is then configured as a softmax, where hidden units map input yj to a class probability pj in the

form:
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where l is an index over all of the target classes (languages, Fig. 2).
As a cost function for backpropagating gradients in the training stage, we use the cross-entropy function defined

as:

C t pj j
j

= −∑ log (5)

where tj represents the target probability of the class j for the current evaluated example, taking a value of either 1
(true class) or 0 (false class).

3.2. Implementing DNNs for language identification

From the conceptual architecture explained above, we built a language identification system to work at the frame
level as follows:

As the input of the net, we used the same features as the i-vector baseline system (56 MFCC-SDC). Specifically,
the input layer was fed with 21 frames formed by stacking the current processed frame and its ±10 left/right neigh-
bors. Thus, the input layer comprised a total number of 1176 (21 × 56) visible units, v.

On top of the input layer, we stacked a total number of Nhl (4) hidden layers, each containing h (2560) units. Then,
we added the softmax layer, whose dimension (s) corresponds to the number of target languages (NL), plus one extra
output for the out-of-set (OOS) languages. This OOS class, devoted to unknown test languages, could later allow us
to use the system in open-set identification scenarios.

Overall, the net was defined by a total of w free parameters (weights + bias), w v h N h h h shl= +( ) + −( ) +( ) + +( )1 1 1 1
(~23M). The complete topology of the network is depicted in Fig. 1.

In terms of the training procedure, we used asynchronous stochastic gradient descent within the DistBelief frame-
work (Dean et al., 2012), which uses computing clusters with thousands of machines to train large models. The learn-
ing rate and minibatch size were fixed to 0.001 and 200 samples.1

Note that the presented architecture works at the frame level, meaning that each single frame (plus its correspond-
ing context) is fed-forward through the network, obtaining a class posterior probability for all of the target lan-
guages. This fact makes the DNNs particularly suitable for real-time applications because, unlike other approaches
(i.e. i-vectors), we can potentially make a decision about the language at each new frame. Indeed, at each frame, we
can combine the evidence from past frames to get a single similarity score between the test utterance and the target

1 We define sample as the input of the DNN: the feature representation of a single frame besides those from its adjacent frames forming the
context.
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languages. A simple way of doing this combination is to assume that frames are independent and multiply the pos-
terior estimates of the last layer. The score sl for language l of a given test utterance is computed by multiplying the
output probabilities pl obtained for all of its frames; or equivalently, accumulating the logs as:

s
N

p L xl l t
t

N

= ( )
=
∑1

1

log ,θ (6)

where p L xl t,θ( ) represents the class probability output for the language l corresponding to the input example at time
t, xt by using the DNN defined by parameters θ.

4. Bottleneck features: A hybrid approach

Another interesting way to leverage the discriminative power of a DNN is through the use of bottleneck features
(Fontaine et al., 1997; Grézl et al., 2009). Typically, in speech recognition, bottleneck features are extracted from a
DNN trained to predict phonetic targets, by either using the estimated output probabilities (Hermansky et al., 2000)
or the activations of a narrow hidden layer (Grézl et al., 2007), the so-called bottleneck layer. The bottleneck features
represent a low-dimensional non-linear transformation of the input features, ready to use for further classification.

Utilizing this approach, we extracted bottleneck features from the DNN directly trained for LID, as explained in
Section 3, and replaced the last complete hidden layer with a bottleneck layer of 40 dimensions. Then, we modeled

Fig. 1. Pipeline process from the waveform to the final score (left). DNN topology (middle). DNN description (right).

Fig. 2. Frame level probabilities of a DNN-based LID system (8 languages selected) evaluated over an English-USA (4s) test utterance.
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those new bottleneck features by using an i-vector strategy. That is, we replaced the standard MFCC-SDC features
with bottleneck features as the input of our i-vector baseline system.

The underlying motivation of this hybrid architecture is to take the best from both the DNN and the i-vector system
approaches. On one hand, we make use of the discriminative power of the DNN model and its capability to learn
better feature representations; on the other, we are still able to leverage the generative modeling introduced by the
i-vector system.

5. Fusion and calibration

We used multiclass logistic regression in order to combine and calibrate the outputs of individual LID systems
(Brümmer and van Leeuwen, 2006). Let s xkL i( ) be the log-likelihood score for the recognizer k and language L for
utterance xi. We derive combined scores as

ŝ x s xL i k kL i
k

K

L( ) = ( ) +
=
∑α β

1

(7)

Note that this is just a generic version of the product rule combination, parameterized by α and β. Defining a multiclass
logistic regression model for the class posterior as

P L s x
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we found α and β to maximize the global log-posterior in a held-out dataset of I utterances
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where wl ( l NL= 1, ,… ) is a weight vector that normalizes the number of samples for every language in the develop-
ment set (typically, wL = 1 if an equal number of samples per language is used). This fusion and calibration proce-
dure was conducted using the FoCal (Multi-class) toolkit (Brümmer).

6. Databases and evaluation metrics

6.1. Databases

We evaluate all proposed systems in the framework of the NIST LRE 2009 (LRE’09) evaluation. The LRE’09 in-
cludes data from two different audio sources: Conversational Telephone Speech (CTS) and, unlike previous LRE evalu-
ations, telephone speech from broadcast news, which was used for both training and test purposes. Broadcast data
were obtained via an automatic acquisition system from “Voice of America” news (VOA) that mixed telephone and
non-telephone speech. Up to 2TB of 8kHz raw data containing radio broadcast speech, with corresponding language
and audio source labels, were distributed to participants, and a total of 40 languages (23 target and 17 out of set) were
included. While the VOA corpus contains over 2000 hours of labeled audio, only the labels from a fraction of about
200 hours were manually verified by the Linguistic Data Consortium (LDC).

Due to the large disparity in the amounts of available training material by language and type of audio source, we
created two different evaluation sets from LRE’09: LRE09_FULL and LRE09_BDS. LRE09_FULL corresponds to
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the original LRE’09 evaluation, which includes the original test files and all development training files for each language.2

LRE09_BDS, on the other hand, is a balanced subset of 8 languages from automatically labeled VOA audio data.
While the LRE09_FULL set uses data from the manually annotated part of the VOA corpus, the LRE09_BDS con-
tains audio from both automatically and manually annotated parts. This dual evaluation approach served two pur-
poses: i) LRE09_FULL, which is a standard benchmark, allowed us to generate results that could be compared with
those of other research groups, and ii) LRE09_BDS allowed us to conduct new experiments using a controlled and
balanced dataset with more hours of data for each target language. This approach may also help identify a potentially
detrimental effect on the LRE09_FULL DNN-based systems due to the lack of data in some target languages. This is
important because we previously found that the relative performance of a DNN versus an i-vector system is largely
dependent on the amount of available data (Lopez-Moreno et al.).

Table 1 summarizes the specific training and evaluation data per language used in each dataset.

6.2. Evaluation metrics

Two different metrics were used to assess the performance of the proposed techniques. As the main error measure
to evaluate the capabilities of one-vs.-all language detection, we used Cavg (average detection cost), as defined in the
LRE 2009 (Brummer, 2010; NIST, 2009) evaluation plan. Cavg is a measure of the cost of making incorrect decisions
and, therefore, considers not only the discrimination capabilities of the system, but also the ability of setting optimal
thresholds (i. e., calibration). Further, the well-known metric Equal Error Rate (EER) is a calibration-insensitive metric
that indicates the error rate at the operating point where the number of false alarms and the number of false rejections

2 We used the training dataset defined by the I3A research group (University of Zaragoza) in its participation in the LRE’11 evaluation (Martínez
et al., 2011).

Table 1
Distribution of training hours per languages and eval files in used datasets LRE09_BDS and LRE09_FULL.

LRE09_BDS LRE09_FULL

Train (#hours) Eval (#files) Train (#hours) Eval (#files)

– 03s 10s 30s – 03s 10s 30s

amha – – – – 6h 411 391 379
bosn – – – – 2h 371 359 331
cant – – – – 39h 349 347 375
creo – – – – 6h 347 312 307
croa – – – – 1.5h 390 369 364
dari – – – – 6h 397 382 369
engi – – – – 18h 511 533 580
engl 200h 383 369 373 127h 866 836 913
fars 200h 338 338 338 38h 385 383 391
fren 200h 395 395 395 35.5h 401 394 388
geor – – – – 5h 403 396 398
haus – – – – 6h 430 382 345
hind – – – – 69h 640 614 668
kore – – – – 77.5h 460 450 453
mand 200h 404 390 387 244h 977 971 1028
pash 200h 406 391 388 6h 404 391 388
port – – – – 6h 457 377 339
russ 200h 257 253 254 66h 484 479 523
span 200h 402 383 370 114h 398 383 370
turk – – – – 6h 396 394 392
ukra – – – – 1h 403 383 375
urdu 200h 358 344 339 13h 386 372 371
viet – – – – 56h 282 279 315
OOS 200h – – – 2510h – – –
TOTAL 1800h 2943 2863 2844 3458.5h 10548 10177 10362
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are equal. Since our problem is a detection task where a binary classification is performed for each language, the final
EER is the average of the EERs obtained for each language.

7. Results

In this section, we present a comprehensive set of experiments that compare and assess the two systems of inter-
est, as well as a combined version of the two. Besides the i-vector-based baseline system, we evaluate the following
three family of systems:

• DNN refers to the end-to-end deep neural network based system presented in Section 3, which is used as a final
classifier to predict language posteriors.

• DNN_BN: refers to an end-to-end DNN system where the last hidden layer is replaced by a bottleneck layer. This
DNN is used as a final classifier to predict language posteriors.

• BN refers to the i-vector system where the inputs are bottleneck features, as explained in Section 4.

Individual systems vary in the number of layers used (4 or 8 layers) and the size of their input context (0, 5 or 10
left/right frames). Hereafter, we will use the family name to refer a specific system {DNN, DNN_BN, BN}, fol-
lowed by a set of suffixes {4L, 8L} and the {0-0C, 5-5C, 10-10C} to denote the number of layers and input context,
respectively. For instance, the system name DNN_BN_4L_5-5C refers to a DNN system with 4 layers where the last
hidden layer is a bottleneck layer, which uses an input of 11 concatenated frames (5 to the left and 5 to the right of
the central frame). Note that the difference between DNN_BN and BN is that in the first, the DNN with a bottleneck
layer is used directly as an end-to-end classifier, while in the second the DNN is used to extract bottleneck features
which are used as input to an i-vector system.

7.1. Results using LRE09_BDS

7.1.1. DNN vs i-vector system
As the starting point of this study, we compare the performance of the proposed DNN architecture (with 4 layers

and input context of ±10 frames) and the i-vector baseline system. Fig. 3 shows the difference in performance using
test segments with a duration of 3s, 10s and 30s. The trend of the lines in the figure illustrates one of the main con-
clusions of this work: the DNN system significantly outperforms the i-vector system for short duration utterances (3s),
while the i-vector system is more robust for test utterance over 10s.

Unlike i-vectors, the DNN system does not process the complete test utterance at once. Instead, posterior scores
are computed at each individual frame and combined as if each frame was independent (Eq. 6). This is a frame-by-
frame strategy that allows for providing continuous labels for a data stream, which may be beneficial in real time
applications (Gonzalez-Dominguez et al., 2014).

Fig. 3. DNN versus i-vector system performance (average EER) in function of test utterance segment duration (LRE09_BDS corpus).

I. Lopez-Moreno et al. /Computer Speech and Language 40 (2016) 46–59 53



7.1.2. Bottlenecks
Next, we explore the use of bottleneck features in the bottleneck system. As previously stated, it is a hybrid DNN/

i-vector system where the DNN model acts as a feature extractor, whose features are used by the i-vector model instead
of the standard MFCC-SDC. Specifically, we present the results of a bottleneck system that uses a DNN model with
4 layers, where the last hidden layer was replaced by a 40 dimensional bottleneck layer. Table 2 compares the results
from the hybrid bottleneck system with those of the standalone alternative approaches presented previously. Results
show significantly improved performance for 10s and 30s utterances when using the bottleneck system (BN), as com-
pared with the DNN system without bottleneck (DNN) (28% and 54% relative improvement in EER, respectively),
while results for 3s utterances are similar. With respect to the i-vector, results obtained with the BN system are better
in 3s and 10s (20% and 34% relative improvement in EER, respectively), whereas in 30s i-vectors still obtain better
performance. Again, these results demonstrate the robustness of the i-vector system when evaluating longer test seg-
ments. They also suggest that further research into this area could lead to improved results when combining the strengths
of DNN and i-vector systems.

We also analyze the loss in performance of our standalone neural network system when reducing the number of
nodes in the last hidden layer from 2560 (DNN system) to 40 nodes used by the DNN_BN system. That is, the DNN_BN
system uses the same network that extracts the BN features, but is used as an end-to-end classifier. Results collected
in Table 2 show that there is not a significant difference in performance when reducing the number of nodes in the
last hidden layer. This result demonstrates that bottleneck features are an accurate representation of the frame-level
information; at least, comparable to that presented in the complete last hidden layer of the conventional DNN architecture.

7.1.3. Temporal context and number of layers
Another important aspect in the DNN system configuration is the temporal context of the spectral features used as

the input to the DNN. Until now, we have used a fixed right/left context of ±10 frames respectively. That is, the input
of our network, as mentioned in Section 3, is formed by stacking the features of every frame with its corresponding
10 adjacent frames to the left and right. The motivation behind using temporal contexts with a large number of frames
lies in the idea of incorporating additional high-level information into our system (i.e. phonetic, phonotactic and pro-
sodic information). This idea has been widely and successfully implemented in language identification in the past,
using long-term phonotactic/prosodic tokenizations (Ferrer et al., 2010; Reynolds et al., 2003) or, in acoustic ap-
proaches, by using shifted-delta-cepstral features (Torres-Carrasquillo et al., 2002).

Table 3 presents the performance for contextual windows of size 0, ± 5 and ± 10 frames. Unlike the results we
presented in Gonzalez-Dominguez et al. (2015), where we found that the window size was critical to model the con-
textual information, here just small and non-uniform gains were found. This result can be explained by the fact that,
unlike the PLP features used in Gonzalez-Dominguez et al. (2015), the MFCC-SDC features in this paper already
include some degree of temporal information.

In addition, we evaluate the effect of increasing the number of layers to eight, doubling the number of weights in
the network from 22.7M to 48.9M. The results of this evaluation are summarized in Table 3. The 8 layers topology
achieved only small gains for DNN and DNN_BN in 3s segments, so we opted to keep the original 4-layer DNN as
our reference DNN system.

Table 2
Performance for individual and fusion systems – average EER in % and Cavg ×100 – on the balanced LRE BDS09_ dataset by test duration. All
DNN family systems {DNN, DNN_BN and BN} come from a DNN with 4 layers and context of ±10 frames.

Equal error rate (%)/ Cavg (×100)

LRE09_BDS

3s 10s 30s

i-vector 10.20/10.39 1.45/1.54 0.21/0.28
DNN 6.42/6.79 1.62/1.72 0.94/0.94
DNN_BN 6.43/6.61 1.65/1.68 0.97/0.98
BN 6.73/7.03 1.16/1.20 0.43/0.56
i-vector + DNN 5.86/6.17 0.92/1.03 0.20/0.28
i-vector + DNN_BN 5.87/6.02 0.91/1.06 0.19/0.27
i-vector + BN 5.82/6.16 0.81/0.85 0.18/0.20
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7.1.4. Fusion and results per language
The different optimization strategies of DNN and i-vector systems (discriminative vs. generative) and the differ-

ent results observed in the evaluated tasks have demonstrated the complementarity of these two approaches. Such
complementarity suggests that further gains may be achieved through a score level combination of the systems pre-
sented above, the results of which are presented in the last three rows of Table 2. We performed a score-level com-
bination of the baseline i-vector system and various neural network-based systems by means of multiclass logistic
regression (Section 5). The fusion of the i-vector and bottleneck systems achieves the best performance, with relative
improvements over the standalone i-vector system of 42%/40%, 44%/44% and 14%/28% in terms of EER/ Cavg for
the 3s, 10s and 30s evaluated conditions, respectively. Moreover, results are consistent across all the languages and
test duration conditions as shown in Fig. 4. These results confirm that when bottleneck and i-vector systems are com-
bined, they consistently outperform the baseline i-vector system, although the relative improvement diminishes as the
test duration increases (Fig. 5).

7.2. Results using LRE09_FULL

To properly train a DNN system, we ideally need large and balanced amounts of data for each language. In this
section, we evaluate the implications of having an unbalanced training dataset. Specifically, we mirror the experi-
ments in the above section, instead using the entire LRE09_FULL dataset (see Table 1 for the distribution of this dataset).
One of the possible approaches for dealing with an unbalanced dataset is to build a bottleneck system in the follow-
ing way: First, generate a balanced subset of utterances from the most represented languages to train a network that

Table 3
Performance of DNN-based systems as a function of the number of layers and temporal context used. Results on LRE09_BDS are reported as
average EER on the 8 languages (%).

Equal error rate (%)

4 Layers 8 Layers

0C-0C 5C-5C 10C-10C 0C-0C 5C-5C 10C-10C

3s 10s 30s 3s 10s 30s 3s 10s 30s 3s 10s 30s 3s 10s 30s 3s 10s 30

DNN 6.8 2.00 1.07 6.66 1.64 0.95 6.42 1.62 0.94 6.90 1.94 0.98 6.40 1.72 0.92 6.23 1.61 0.94
DNN_BN 7.21 2.17 1.16 6.77 1.83 1.04 6.43 1.65 0.97 6.87 1.91 0.96 6.17 1.71 0.98 6.36 1.58 0.85
BN 7.43 1.32 0.41 7.07 1.13 0.38 6.73 1.16 0.43 9.36 2.01 0.68 8.74 1.43 0.59 9.17 1.84 0.76

Fig. 4. i-vector, BN and fusion system performance comparison (average EER) per language on LRE09_BDS dataset. Errors bars for 30s, 10s
and 3s are superimposed, and therefore, representing the actual error for every condition.
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includes a bottleneck layer. This network may or may not contain all of the target languages. Then, using the previ-
ous network, compute the bottleneck features from the original unbalanced dataset to optimize the remaining stages
involved in the i-vector system. We simulated the unbalanced data scenario by using the eight-language DNN from
Section 7.1 to compute bottleneck features over our LRE09_FULL training set. While one could consider using
non-overlapping sets for the DNN and i-vector optimization to avoid overfitting, we opted to use the entire unbal-
anced dataset due to data scarcity in our training material for LRE09_FULL.

Fig. 6 depicts the performance of the bottleneck system trained as explained above, the i-vector system, and their
fusion, for each of the 3 conditions (3s, 10s, 30s) and the 23 target languages. The vertical line separates the perfor-
mance for the languages included (left) and excluded (right) during the DNN optimization process. The results show
that, despite overall good performance, the bottleneck system performs much better for the languages involved in the
DNN training.

The second approach used was to train a new DNN model using all the target languages in the LRE09_FULL eval-
uation. Note that, in this case, unequal amounts of training data were used to optimize each of the 23 DNN outputs.
The results of this second approach are shown in Fig. 7. By comparing Figs. 7 and 6, in which the only underlying
difference is the training data used for the DNN model, we see that data imbalance may be an issue in the stand-
alone DNN system, but it is not an issue when using the bottleneck system. Moreover, the bottleneck system seems
to benefit from matching the target classes of the underlying DNN model with the target languages in the language
recognition evaluation (see, for instance, the performance improvements on Georgian, Korean or Ukranian).

Fig. 5. DNN vs i-vector system performance (EER) in function of test utterance segment duration (LRE09_FULL corpus).

Fig. 6. i-vector, BN and fusion system performance comparison (average EER) per language on LRE09_FULL dataset. The DNN used to extract
bottleneck features was trained just with the 8 target languages of LRE09_BDS (on the left of the vertical dashed line). Errors bars for 30s, 10s
and 3s are superimposed, and therefore, representing the actual error for every condition.
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Finally, the results for the LRE09_FULL dataset for all the individual systems proposed, including fusions with
the baseline i-vector system, are summarized in Table 4. Note that all DNNs shown in this table were trained using
data of the 23 target languages. The conclusion remains the same as in the case of the LRE09_BDS dataset (Table 2),
but with modest performance improvements. Specifically, when fusing the i-vector and the bottleneck systems, we
achieved improvements of 29%/27%, 32%/34% and 21%/24% in terms of EER/ Cavg for the 3s, 10s and 30s evalu-
ated conditions.

8. Summary

In this work, we presented an extensive study of the use of deep neural networks for LID. Guided by the success
of DNNs for acoustic modeling, we explored their capability to learn discriminative language information from speech
signals.

First, we showed how a DNN directly trained to discern languages obtains significantly improved results with respect
to our best i-vector system when dealing with short-duration utterances. This proposed DNN architecture is able to
generate a local decision about the language spoken in every single frame. These local decisions can then be com-
bined into a final decision at any point during the utterance, which makes this approach particularly suitable for real-
time applications.

Next, we introduced the LID optimized bottleneck system as a hybrid approach between the proposed DNN and
i-vector systems. Here, a DNN optimized to classify languages is seen as a front-end that extracts a more suitable

Fig. 7. i-vector, BN and fusion systems performance comparison (average EER) per language on LRE09_FULL dataset. The DNN used to extract
bottleneck features was trained with all the 23 target languages. Errors bars for 30s, 10s and 3s are superimposed, and therefore, representing the
actual error for every condition.

Table 4
Performance for individual and fusion systems – average EER in % and Cavg × 100 – on full
LRE FULL09_ dataset by test duration. All DNN family systems {DNN, DNN_BN and BN}
come from a DNN with 4 layers and context of ±10 frames.

Equal error rate (%)/Cavg (×100)

LRE09_FULL

03s 10s 30s

i-vector 15.74/16.37 5.30/6.24 2.33/2.90
DNN_BN 13.49/14.21 6.38/7.11 4.37/4.88
BN 13.52/14.19 5.58/6.21 3.24/3.77
i-vector + DNN_BN 11.93/12.76 3.80/4.59 1.94/2.28
i-vector + BN 11.19/11.87 3.61/4.13 1.85/2.21
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representation (in terms of discrimination) of feature vectors. On contrary to previous bottleneck approaches for LID,
where the DNN was trained to recognize the phonetic units of a given language, in this work, the DNN optimization
criterion is coherent with the LID objective. Moreover, the DNN model requires only language labels which are much
easier to obtain than the speech transcriptions.

We observed that the most desirable scenario is to train the DNN with a balanced dataset that includes all the target
languages. In the case of not being able to fulfill this requirement, it is preferable to include data from all target lan-
guages during the DNN optimization stage, even if some languages contain more training hours than others. In ad-
dition, fusion results show that DNN-based systems provide complementary information to the baseline i-vector system.
In particular, the combination of the i-vector and bottleneck systems result in a relative improvement of up to 42%/
40%, 44%/44% and 14%/28% and 29%/27%, 32%/34% and 21%/24% for the balanced dataset LRE09_BDS and the
whole LRE’09 evaluation respectively, in terms of EER/C_avg and for the 3s, 10s, and 30s test conditions.

We believe that the performance of the DNN could be improved further. In the future, we plan to experiment with
other topologies/activation functions and other input features, such as filterbank energies. Further, for the sake of com-
parison, in this work we chose i-vector modeling as the strategy to model the bottleneck features. It is a future line of
this work to experiment with different modeling schemes that might fit better for those bottleneck features .
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Grézl, F., Karafiát, M., Kontár, S., Černocký, J., 2007. Probabilistic and bottle-neck features for LVCSR of meetings. In: Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP 2007). IEEE Signal Processing Society, pp. 757–760.

I. Lopez-Moreno et al. /Computer Speech and Language 40 (2016) 46–5958



Grézl, F., Karafiát, M., Burget, L., 2009. Investigation into bottle-neck features for meeting speech recognition. In: INTERSPEECH 2009, Inter-
national Speech Communication Association, pp. 2947–2950.

Hermansky, H., Morgan, N., 1994. RASTA processing of speech. IEEE Trans. Speech Audio Process. 2 (4), 578–589.
Hermansky, H., Ellis, D.P.W., Sharma, S., 2000. Tandem connectionist feature extraction for conventional HMM systems. In: PROC. ICASSP,

pp. 1635–1638.
Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., et al., 2012. Deep neural networks for acoustic modeling in speech recognition:

the shared views of four research groups. IEEE Signal Process. Mag. 29 (6), 82–97. doi:10.1109/MSP.2012.2205597.
Jiang, B., Song, Y., Wei, S., Liu, J.H., McLoughlin, I.V., Dai, L.-R., 2014. Deep bottleneck features for spoken language identification. PLoS ONE

9 (7), e100795. doi:10.1371/journal.pone.0100795.
Kenny, P., 2007. Joint factor analysis of speaker and session variability: theory and algorithms. <http://www.crim.ca/perso/patrick.kenny/FAtheory.pdf>.
Kenny, P., Oullet, P., Dehak, V., Gupta, N., Dumouchel, P., 2008. A study of interspeaker variability in speaker verification. IEEE Trans. Audio

Speech Lang. Process. 16 (5), 980–988.
Leena, M., Srinivasa Rao, K., Yegnanarayana, B., 2005. Neural network classifiers for language identification using phonotactic and prosodic fea-

tures. In: Intelligent Sensing and Information Processing, 2005. Proceedings of 2005 International Conference on, pp. 404–408. doi:10.1109/
ICISIP.2005.1529486.

Li, H., Ma, B., Lee, K.A., 2013. Spoken language recognition: from fundamentals to practice. P. IEEE 101 (5), 1136–1159. doi:10.1109/
JPROC.2012.2237151.

Lopez-Moreno, I., Gonzalez-Dominguez, J., Plchot, O., Martinez, D., Gonzalez-Rodriguez, J., Moreno, P., 2014. Automatic language identifica-
tion using deep neural networks. Acoustics, Speech, and Signal Processing, IEEE International Conference on.

Martínez, D., Villalba, J., Ortega, A., Lleida, E., 2011. I3A language recognition system description for NIST LRE 2011. In: NIST 2011 LRE Work-
shop Booklet. Atlanta, Georgia, USA.

Martínez, D., Green, P.D., Christensen, H., 2013. Dysarthria intelligibility assessment in a factor analysis total variability space. In: INTERSPEECH
2013, 14th Annual Conference of the International Speech Communication Association. Lyon, France, pp. 2133–2137. August 25–29.

Martinez, D., Plchot, O., Burget, L., Glembek, O., Matejka, P., 2011. Language recognition in iVectors space. In: INTERSPEECH. ISCA, pp. 861–
864.
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Abstract—Automatic speech recognition (ASR) systems are used
daily by millions of people worldwide to dictate messages, control
devices, initiate searches or to facilitate data input in small devices.
The user experience in these scenarios depends on the quality of the
speech transcriptions and on the responsiveness of the system. For
multilingual users, a further obstacle to natural interaction is the
monolingual character of many ASR systems, in which users are
constrained to a single preset language. In this work, we present
an end-to-endmulti-language ASR architecture, developed and de-
ployed at Google, that allows users to select arbitrary combina-
tions of spoken languages. We leverage recent advances in lan-
guage identification and a novel method of real-time language se-
lection to achieve similar recognition accuracy and nearly-identical
latency characteristics as a monolingual system.
Index Terms—Automatic speech recognition (ASR), deep neural

network (DNN), language identification (LID), multilingual.

I. INTRODUCTION

A UTOMATIC speech recognition (ASR) has become in-
creasingly relevant to date, tracking the explosive growth

of mobile devices. The use of voice as a natural and convenient
method of human-device interaction is especially applicable to
hands-free scenarios (e.g., while driving) and interaction with
small form-factor devices (e.g., wearables). The quality of the
user experience in these scenarios is primarily affected by the
transcription accuracy and real-time responsiveness of the ASR
system.
For multilingual users, another obstacle to natural interaction

is the commonmonolingual character of ASR systems, in which
users can speak in only a single preset language. According
to several sources [1]–[3], multilingual speakers already out-
number monolingual speakers, and predictions point to a larger
number of multilingual speakers in the future. The capacity to
transparently recognize multiple spoken languages is, therefore,
a desirable feature of ASR systems.
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Several architectures have been considered to achieve mul-
tilingual speech recognition. One technique has been to train
a universal speech model capable of recognizing multiple lan-
guages. Efforts in this direction are presented in [4]–[6]. This
approach seeks to exploit similarities among languages and di-
alects, and lends itself to an easily deployable system. However,
universal models tend to be larger and higher in perplexity rela-
tive to their monolingual equivalents, leading to potentially ad-
verse effects on transcription accuracy and decoding latency.
Other architectures have attempted to detect the language of

an utterance as a preprocessing step, through the use of lan-
guage identification (LID) classifiers [7] [8]. Here, the outcome
of the LID classification determines which of several monolin-
gual speech recognizers is activated. The main drawbacks of
this method are the latency introduced by the LID step, and
the propagation of language classification errors to the final
transcription.
Here, we present an integrated end-to-end multilingual archi-

tecture that builds upon the work described in [9]. In this archi-
tecture, monolingual speech recognizers decode the input signal
simultaneously in each of the selected languages, while the LID
system tries to determine which language is spoken. A decision
is then made, based on the LID decision and on the confidence
scores of the individual recognizers as to which recognition re-
sult best matches the user input. This architecture avoids the
extra latency that an early language decision would introduce,
and benefits from the extra scores from the recognizers to better
decide which result to return to the user. These benefits come
however with an increased processing cost since the input is
recognized multiple times.
In this paper, we further improve upon [9] in two major di-

rections. First, we replace the LID classifier with a more accu-
rate Deep Neural Network (DNN) based classifier. Second, we
propose a method to dynamically combine confidence scores
and LID decisions from partial recognition results together with
various timeout strategies to maintain the streaming nature of
the monolingual system and to greatly reduce computing costs.
One such strategy is shown to perform with near-ideal charac-
teristics in both dimensions, minimizing latency and misrecog-
nitions caused by language confusions.
Both the ASR and LID backend engines are based on

DNNs [10]–[12]. During recent years, DNNs have achieved
outstanding performance in diverse and challenging machine
learning applications. Those including acoustic modelling [13]
[14], visual object recognition [15], and many others [16].
Compared to previous acoustic modelling based on GMMs, the

1932-4553 © 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Diagram showing components of the complete architecture: Client, Frontend and Backends. Within the Frontend, there are several activity pipelines
composed of modules, each of which communicates with a single Backend. In the “multi-recognize search synthesize” activity pipeline, we introduce a
MultiRecognizer module responsible for language selection.

use of DNNs presents several advantages. First, unlike GMMs,
DNNs employ a multilevel distributed representation of the
input [14]. This fact makes DNNs exponentially more compact
than GMMs [17]. Second, DNNs, being purely discriminative,
do not impose any assumptions about the input data distribu-
tion. Further, DNNs have proved successful in exploiting large
amounts of data, achieving more robust models without lapsing
into overfitting. We leverage this last point to employ large
quantities of training data recorded from user traffic.
The rest of this paper is organized as follows.

Section II presents the overall architecture of the system.
Section III describes the frontend component which is
responsible for language selection. Section IV describes the
backend components, with Section IV-A focusing on the
LID classifier and Section IV-B focusing on the monolingual
speech recognizers. In Section V we present the databases and
evaluation metrics used to assess system performance. We
present results in Section VI. Finally, conclusions are outlined
in Section VII.

II. OVERALL ARCHITECTURE

The end-to-end multilingual speech recognition system con-
sists of the following components represented in Fig. 1:
• Client : a mobile phone, browser, or similar internet con-
nected device capable of recording audio, issuing voice re-
quests and displaying results.

• Frontend: an HTTP server exposing a voice recogni-
tion API, which serves as an intermediary between the
client and the backend(s). The frontend supports sev-
eral activity pipelines. For example, one activity called
“recognize” simply converts an audio request to a text
transcription. A more complex activity pipeline called
“ ” executes a web search
based on the transcription, and then synthesizes an audio
summary for the user. Frontend activity pipelines are
composed of modules, each of which performs some task
such as communicating with a backend over RPC. In
the multi-language configuration, we add an additional

MultiRecognizer module which is responsible for making
language selection decisions.

• Backends:
— LID Backend: a Remote Procedure Call (RPC) server

that accepts an audio stream and returns language iden-
tification scores for many languages, as described in
Section IV-A.

— Speech Recognizer Backend: hereafter Recognizer, an
RPC server that accepts an audio stream and streams
back transcription results for a particular language (e.g.,
US English), as described in Section IV-B .

—Web Search Backend: an RPC server that accepts a
recognition transcription and retrieves search results.
The results sometimes include a text summary which is
intended to be read back to the user. Search results are
also determined by the selected language, which affects
the search corpus, query normalization procedure, and
result summarization procedure.

—Voice Synthesizer Backend: an RPC server that ac-
cepts text (in this case the search summary), and pro-
duces a speech waveform. Again, voice synthesis is in-
fluenced by the selected language. For example, de-
pending on which of two dialects is selected, the speech
output will be accented toward that dialect.

All components communicate via bi-directional streams. The
Client begins sending audio segments to the Frontend as soon
an utterance begins. The Frontend forwards those segments to
a Recognizer to obtain partial transcriptions results, which are
then returned to the Client for display. Typically, the Client
receives several partial transcriptions before the user finishes
speaking an utterance, followed by a final transcription. For the
purpose of display, each subsequent transcription overrides the
previous, providing real-time feedback to the user.
In the single-language voice recognition system, the Client

provides one spoken language preference which directs the
Frontend to the corresponding Recognizer. In the multi-lan-
guage system, the client may provide several language
candidates, causing the Frontend to forward the audio stream
to multiple Recognizers in parallel as well as to the LID
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Fig. 2. Pseudocode illustrating how the MultiRecognizer accepts input streams from the LID classifier and monolingual recognizers, and emits an output stream
emulating a universal recognizer.

Backend. The Frontend then makes real-time language selec-
tion decisions based on all of these backend results and some
strategy. Only transcription results from the selected language
are returned to the Client, thus emulating a universal speech
recognizer. In the event that the language selection decision
changes mid-stream, the Frontend emits enqueued transcription
responses for the new selected language, causing the Client to
display the transcription for the new language.

III. MULTILINGUAL RECOGNIZER FRONTEND

A. MultiRecognizer Module
The MultiRecognizer module encapsulates the language se-

lection logic in the Frontend. It accepts as inputs ) a stream
of transcription results from multiple Recognizers, where each
transcription includes a confidence score indicating the proba-
bility that the transcription is correct and ) a stream of lan-
guage classification scores from the LID Backend. Its output is
a single stream of transcription results. As the MultiRecognizer
module receives transcription results from the Recognizers it
adds them to a queue. This queue withholds results until appro-
priate language selection decisions have been made. A Strategy
class examines all Recognizer and LID input events and out-
puts language selection decisions. The decisions are designated
either partial or final, and cause the queue to release partial or
final transcription results for the selected language. Released re-
sults are then returned to the client. Pseudocode for this process
is depicted in Fig. 2.
The Strategy class must decide which language to select, and

also importantly, when to emit its decisions. It will generally
make more accurate decisions as more information becomes
available. However, delaying a decision may introduce latency,
particularly because Recognizers typically respond more slowly
when decoding audio from an unexpected language. Note that
latency is incurred precisely when the correct Recognizer has

finished, but the Strategy is waiting for results from incorrect
ones. In principle, latency could also be incurred waiting for
classification scores from the LID Backend, but in practice this
typically responds faster than any Recognizer, and furthermore
can be tuned to provide frequent partial responses (e.g., every
200 ms) which are cumulatively averaged.
Formally, after an input event at time , the Strategy class

updates partial scores for language , , as a combination
of the speech transcription confidence and the LID Backend
output probability for that language. In this work, we use linear
weighting to combine these as

(1)

where,
is the confidence of the last transcription

received at time using the Recognizer model for language
, .

is the language identification output proba-
bility for language , at time , produced for the LID model

.
and and are adjustable parameters to weight the influence

of the Recognizers and the LID system.
Note that one of or will be equal to depending on

whether the input event is produced by a Recognizer or by
the LID Backend. If the input event was produced by the
LID Backend, we do not compute for languages, , where
the corresponding Recognizer has not yet returned any tran-
scription. The final score for a given language, , is also
updated as in (1) when a final response for the corresponding
Recognizer is received .
After the update step, the Strategy class tests for certain deci-

sion triggers. In this work we consider three timeout strategies
for the final decision trigger. Those are:
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Fig. 3. Pipeline process from the waveform to the final score (left). DNN topology (middle). DNN description (right).

• Infinite timeout strategy: always wait for the final response
from all Recognizers.

• Constant timeout strategy: wait for the first final response
from any Recognizer, then timeout after some constant du-
ration . Setting to 1s provided the best experi-
mental results.

• Variable timeout strategy: modify the constant timeout du-
ration by examining the difference between the highest
available final score and the highest available partial score
from a Recognizer that we are still waiting on. Let be
the set of languages that have already received a final Rec-
ognizer response and let be the remaining languages that
we are still waiting on; formally we set the variable timeout
as:

(2)

with

(3)

Thus, when is positive, the timeout duration is
shorter (or zero). On the other hand when is negative,
is longer. We tune to control the variability of the

timeout. Note that if either or is zero, the equation
degenerates to the Constant timeout strategy. Setting
to 1s and to 2.0 provided the best experimental results.

Given one of the above timeout strategies, the Strategy class
uses the following triggers for emitting partial or final language
decisions:
• Partial language decision: if there exists a previous partial
language decision, , then a new partial decision is trig-
gered when . Otherwise, if does not
yet exist, then the trigger is .

• Final language decision: a final decision is produced when
either there is a final response from all the Recognizers

or the timeout from the given timeout
strategy is exceed .

IV. BACKENDS

We describe in this section the language identification and
monolingual speech recognition backend engines.

A. Deep Neural Networks for LID
1) Architecture: The DNN used for LID is a fully-connected

feed-forward neural network with hidden units implemented as
rectified linear units (ReLU). Thus, an input at level , , is
mapped to its corresponding activation (input of the layer
above) as

(4)
(5)

where is an index over the units of the layer below and is
the bias of the unit .
The output layer is then configured as a softmax, where

hidden units map input to a class probability in the form

(6)

where is an index over all the classes.
As a cost function for backpropagating gradients in the

training stage, we use the cross-entropy function defined as

(7)

where represents the target probability of the class for the
current evaluated example, taking a value of either 1 (true class)
or 0 (false class).
2) Implementing DNN for LID: From the conceptual archi-

tecture explained above, we construct a language identification
system to work at the frame level as follows.
As the input of the net we used 40 mel filterbanks. Specif-

ically, the input layer was fed with 26 frames formed by
stacking the current processed frame and its , left/right
neighbors. Thus, the input layer comprised a total number of

visible units, . The reason behind using an
asymmetric context is to reduce the undesirable latency on
processing every frame in a real-time scenario. Note that just 5
frames in the future are required .
On top of the input layer, we stacked a total number of

(4) hidden layers, each containing (2560) units. Then, we
added the softmax layer, whose dimension corresponds to
the number of target languages .
Overall, the net was defined by a total of free parameters

, .
The complete topology of the network is depicted in Fig. 3.
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Fig. 4. Color map of frame by frame DNN-based LID system output probabilities (8 languages selected) for an English-USA (4s) test utterance.

Regarding the training procedure, we used asynchronous sto-
chastic gradient descent within the DistBelief framework [10],
a software framework that uses computing clusters with thou-
sands of machines. This distributed allows us to exploit large
amounts of data to train large models. The learning rate and
minibatch size were fixed to 0.001 and 200 samples 1.
Note that the presented architecture works at the frame level,

meaning that each single frame (plus its corresponding context)
is fed-forward through the network, obtaining a class poste-
rior probability for all of the target languages. This fact makes
DNNs particularly suitable for real-time applications since, un-
like other approaches (i.e., i-vectors), we can potentially make a
decision about the language at each new frame. Indeed, at each
frame, we can combine the evidence from past frames to get a
single similarity score between the test utterance and the target
languages. A simple way of doing this combination is to assume
that frames are independent and multiply the posterior estimates
of the last layer. The score for the language of a given test
utterance is computed by multiplying the output probabilities
obtained for all its frames; or equivalently, accumulating the

logs as

(8)

where represents the class probability output for the
language corresponding to the input example at time , by
using the DNN defined by parameters .
Fig. 4 shows the frame-by-frame DNN outputs (log proba-

bilities ), produced for an American English test
utterance of 4s duration2. The color intensity of each cell (frame/
language) represents the output probability of the given frame
to belong to the corresponding language.

B. Speech Recognizers

For ASR, we use the same features and similar neural
network architectures as are described in Section IV-A for
language identification. For each language, we use exactly

1We define sample as the input of the DNN: the feature representation of a
single frame besides those from its adjacent frames forming the context.

2For the sake of clarity, just 8 out of 34 outputs (languages) are showed.

the same 26-frame asymmetric window of normalized 40-di-
mensional filterbank energy features, feeding into a network
with eight hidden layers of 2560 ReLUs each. The final layer
is again a softmax, but here trained to estimate posteriors for
14,000 context dependent triphone states. Such a network has
85 million trainable parameters. The network is trained with
asynchronous gradient descent, first to a cross-entropy criterion
and then with sequence discriminative training. [18]. Each
language's neural network is trained on thousands of hours
of speech, using anonymized live traffic utterances. For some
languages these are manually-transcribed and in others they
are machine transcribed using an earlier generation recognizer.
Each language uses a pruned 5-gram language model with
on-the-fly rescoring using a much larger 5-gram language
model. Numerous optimizations are made to enable decoding
in real time on conventional hardware [19].

V. DATABASES AND EVALUATION METRICS

1) Google 5M Language Identification Corpus: We gener-
ated the Google 5M LID corpus dataset by randomly picking
anonymized queries from several Google speech recognition
services such as Voice Search or the Speech Android API. Fol-
lowing the user's phone Voice Search language settings, we la-
belled a total of million utterances, 150 k utterances by 34
different locales languages dialects yielding 87,5 h of
speech per language and a total of h. A held-out test set
of 1k utterances per language was created while the remainder
was used for training and development. Involved languages and
data description is presented in Figs. 5 and 6.
Non-speech queries were discarded. Selected queries ranged

from 1s up to 10s in duration with average speech content of
2.1s. Fig. 6 shows the duration distribution before and after
doing this activity detection process.
2) Google Multilang Corpus: In order to constrain the com-

binatorial explosion of language tuples to be evaluated, we se-
lected 8 languages for the Google Multilang Speech Recogni-
tion Corpus. This list is given in Fig. 5. The Google Multilang
Speech Recognition Corpus is a subset of the Google 5M LID
corpus, containing 1k manually-annotated utterances per lan-
guage. We refer to [20] for more details on the training data
used in our LVCSR systems.
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Fig. 5. List of the Google 5MLID andGoogleMultilang languages considered.

Fig. 6. Histograms of durations of the Google 5M LID and Google Multilang
Speech Recognition test utterances. Original speech signals (above) and after
voice activity detection (below).

It is worth mentioning that focusing on tuples with up to 8
languages also reduces the computational load on our system. In

particular, running many monlingual speech recognizers in par-
allel is computationally expensive. In the final deployed system,
we artificially restrict the number of languages that can be se-
lected, both to improve accuracy and to protect the production
system from excessive load.
3) EvaluationMetrics: Given an utterance with a known lan-

guage and transcription, we evaluate the multilingual recogni-
tion system on three metrics:
• Language Id Accuracy: the ratio of the cases in which the
top scored language is the true language out of a pool of N
candidate languages.

• Word Error Rate (WER): the edit distance between the ex-
pected transcription and the system's transcription.

• Real-time Factor (RTF): the ratio of the speech recogni-
tion response time to the utterance duration. We examine
both mean RTF (average over all utterances), and 90th per-
centile RTF.

Accuracy is the most direct measurement of the system's
language selection performance, but it penalizes language-am-
biguous utterances, consisting for example of names and
loanwords, where multiple recognizers may produce sim-
ilar transcripts. The WER metric typically produces a
weaker penalty on utterances where the language is am-
biguous. It is important to note that the language selection
itself may be an important output of the system, indepen-
dent of the transcription. This is true, for example, in the
“ ” activity pipeline
shown in Fig. 1 where the selected language influences search
results and voice synthesis.
For this work we developed a real-time evaluation frame-

work that streams test utterances to the system at their natural
playback rate and records responses from the system. A typical
test scenario involves choosing some language tuple, sampling
test utterances for each language in the tuple, and querying the
system with all utterances, providing the unordered tuple as the
language candidates. Thus, the system has an equal prior proba-
bility of selecting any of the languages in the tuple. The frame-
work collects Accuracy, WER, and RTF for each utterance in
the test set.

VI. RESULTS
In this section we aim to study the perceived performance of

the multi-language speech recognition system, as compared to a
corresponding monolingual system in which the user selects the
true spoken language for each utterance in advance. In a multi-
language environment, language uncertainty will normally con-
tribute to degraded performance on speech recognition accuracy
and latency. In the following subsections we present data mea-
suring the performance of our system along those dimensions.

A. Language Identification Performance
In previous works we showed our DNN-based LID system

outperforms previous state-of-the-art approaches [12]. Over the
Google 5M LID corpus, our DNN-based system surpassed pre-
vious state-of-the-art i-vector-based systems [21], [22] by 70%
relative. Fig. 10 (in appendix A) depicts the confusion matrix
across languages and dialects. This matrix is built by taking hard
identification decisions (i.e., selecting the language with highest
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Fig. 7. Language identification over the Google Multilang Corpus. Distribution of target/non-target scores by using a) ASR confidences, b) the DNN-based LID
system, c) linear weighting of confidences and DNN-based LID system; and d) as a function of the response time of the speech recognizers.

Fig. 8. Language identification performance for individual and combined sys-
tems. over the Google Multilang Corpus.

associated DNN-output). On average the system achieves an ac-
curacy of .
However, confusion submatrices around dialects (i.e

ar-EG/ar-GULF/ar-LV) illustrate the difficulty of dialect iden-
tification using only acoustic features [23]. This suggests that
complementary high-level features (e.g., phonetic, phonotactic
or prosodic) would be helpful, particularly when dealing with
dialects or non-native accented speech. [24]–[26]. With this
in mind, we use ASR confidence scores to complement the
acoustic LID classifier, since these confidence scores incorpo-
rate language model cost.
Fig. 7 shows various score distributions for trials labelled ei-

ther target or non-target depending on whether the score corre-
sponds to the correct language for the given utterance. It shows
the individual distributions for ASR confidence (7.a) and DNN-
based LID scores after applying Z-norm [27] (7.b), as well as
the linear weighted combination of the two (7.c). The set of
ASR confidence scores with value zero represents trials where a
speech recognizer did not emit a transcription. As expected, this

occurs most often in non-target trials. The average LID accuracy
achieved by these three systems (ASR confidences, DNN-based
LID and Combination) for over the Google Multilang
Corpus is presented in Fig. 8. The DNN-only classifier outper-
formed ASR confidence-only classifier (88% vs 58% of accu-
racy), but the weighted combination achieved the best results
(90% of accuracy).
In Figs. 7 and 8, we also examine ASR response times as a

potential signal for language identification. Supplying a wrong-
language utterance to a speech recognizer typically results in a
wider effective lattice beam, reflecting a greater degree of un-
certainty, and therefore a slower average response time. This
effect can be observed in (7.d), where we show the distribution
of final response times for target and non-target trials. Note that
the non-target distribution is shifted to the right ( ). As
a further illustration, in Fig. 8 we present language identifica-
tion accuracy for a system that simply selects the first language
recognizer to return a final transcription. This system achieved
an accuracy of 44%, which is significantly better than chance
(12.5% when ). These results endorse the use of response
times as a signal for language identification. In our system, this
is exploited through the use of timeout strategies which seek to
reduce latency without adversely affecting accuracy.

B. Monolingual Speech Recognition Performance
The monolingual speech recognition performance defines

the ceiling for the multilingual recognizer in terms speech
recognition performance and latency. We computed WER and
RTF for all 8 languages in the Google Multilang Corpus, which
are presented in Table I. There is significant variation in the
WER metric across languages. This is due to actual variations
in recognition quality, caused for example by differences in
the type or amount of data used in training [20], and also
synthetic variations in the WER metric computation due to
text normalization and word tokenization procedures that vary
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Fig. 9. Language identification accuracy, Word Error Rate (WER) and Real Time Factors (RTF) for the multilingual recognizer as a function of the number of
candidate recognition languages.

by language. Thus, it is difficult to draw conclusions from a
comparison of absolute WER values across languages. How-
ever, WER remains an useful metric for examining relative
performance of language selection strategies over the same set
of test utterances, such as the results presented in Fig. 9.

C. Multilingual Speech Recognition Performance

In order to examine the performance of the system across a
range of language combinations, we adopt the following proce-
dure using test utterances from the Google Multilang Corpus:
• Select a set of languages.
• Sample utterances per language.
• Select a tuple size interval , bounded by

.
• Select the number of language combinations, , to test for
each tuple size in the interval.

• For each tuple size, , randomly select language com-
binations of that size, or at most the number of -combi-
nations ( choose ).

• For each language combination, send utterances from
each of the languages to the multilang system, giving all
languages as candidates; record the metrics described in
Section V-A3.

The resulting number of trials is:

In the results below, , , , ,
for a total of 232,000 trials.We held the adjustable weighting pa-
rameters and constant and varied only the timeout strategy
(Constant, Infinite, and Variable) as described in Section III-A.

TABLE I
WORD ERROR RATE (WER) AND REAL TIME FACTOR (RTF) OF MONOLINGUAL

SPEECH RECOGNIZERS PERFORMANCE

The results from all trials with same number of candidate lan-
guages were averaged to produce the graphs in Fig. 9.
Looking at the plots for the Infinite timeout strategy, we see

that it provides the best Accuracy and WER out of all the strate-
gies, but also had the worst performance on RTF. The plots for
the Constant timeout strategy show improvement on RTF at the
cost of Accuracy and WER.
TheVariable timeout strategywas clearly the best of the three,

closely tracking the Accuracy and WER curve of the Infinite
timeout strategy, while performing close to the monolingual
ceiling on the RTF metric. Indeed, the difference in 90th per-
centile RTF for vs was barely perceptible for the
Variable timeout strategy at relative, compared to a very
noticeable relative for the Infinite timeout strategy.
Under the Infinite (or Variable) strategy, recognition slowly

degrades as the number of candidate languages increases. For
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Fig. 10. Confusion matrix obtained by evaluating the DNN-based LID system on the Google 5M LID corpus.

candidate languages the degradation is around
relative absolute-. Even for , the performance
degradation is still acceptable, relative
absolute-.

VII. SUMMARY

Through this paper we presented a novel end-to-end multilin-
gual speech recognizer architecture developed at Google. This
architecture supports multiple languages, allowing users to nat-
urally interact with the system in several languages.
The language detection relies on the combination of a specific

DNN-based LID classifier and the transcription confidences
emitted by the individual speech recognizers. Thus, comple-
menting the acoustic information exploited by the DNN-based
LID classifier with the high-level information associated to the
language model of the speech recognizer.
Unlike other approaches, this architecture establishes a mech-

anism to perform language selection in nearly real time. This
allows users to transparent switch among different languages
under the appearance of using a monolingual ASR.

We assessed the system in terms of both accuracy (speech
recognition and LID performance) and response time in a large
database including real traffic data and 34 languages. Results
show that the proposed architecture is capable of managingmul-
tiple languages without significant impact on accuracy and la-
tency compared to our monolingual speech recognizers.
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This work addresses the use of deep neural networks (DNNs) in automatic language identification (LID)
focused on short test utterances. Motivated by their recent success in acoustic modelling for speech
recognition, we adapt DNNs to the problem of identifying the language in a given utterance from the
short-term acoustic features. We show how DNNs are particularly suitable to perform LID in real-time
applications, due to their capacity to emit a language identification posterior at each new frame of the test
utterance. We then analyse different aspects of the system, such as the amount of required training data,
the number of hidden layers, the relevance of contextual information and the effect of the test utterance
duration. Finally, we propose several methods to combine frame-by-frame posteriors. Experiments are
conducted on two different datasets: the public NIST Language Recognition Evaluation 2009 (3 s task)
and a much larger corpus (of 5 million utterances) known as Google 5M LID, obtained from different
Google Services. Reported results show relative improvements of DNNs versus the i-vector system of 40%
in LRE09 3 second task and 76% in Google 5M LID.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Automatic language identification (LID) refers to the process of
automatically determining the language in a given speech sam-
ple (Muthusamy, Barnard, & Cole, 1994). The need for reliable LID
is continuously growing due to several factors. Among them, the
technological trend towards increased human interaction using
hands-free, voice-operated devices and the need to facilitate the
coexistence of a multiplicity of different languages in an increas-
ingly globalized world.

In general, language discriminant information is spread across
different structures or levels of the speech signal, ranging from
low-level, short-term acoustic and spectral features to high-level,
long-term features (i.e. phonotactic, prosodic). However, even
though several high-level approaches are used asmeaningful com-
plementary sources of information (Ferrer, Scheffer, & Shriberg,
2010; Martinez, Lleida, Ortega, & Miguel, 2013; Zissman, 1996),
most LID systems still include or rely on acoustic modelling

∗ Corresponding author at: ATVS-Biometric Recognition Group, Universidad
Autonoma de Madrid, Madrid, Spain. Tel.: +34 914977558.

E-mail address: javier.gonzalez@uam.es (J. Gonzalez-Dominguez).

(Gonzalez-Dominguez et al., 2010; Torres-Carrasquillo et al.,
2010), mainly due to their better scalability and computational ef-
ficiency.

Indeed, computational cost plays an important role, as LID sys-
tems commonly act as a pre-processing stage for either machine
systems (i.e. multilingual speech processing systems) or human
listeners (i.e. call routing to a proper human operator) (Li, Ma,
& Lee, 2013). Therefore, accurate and efficient behaviour in real-
time applications is often essential, for example, when used for
emergency call routing, where the response time of a fluent na-
tive operator is critical (Ambikairajah, Li,Wang, Yin, & Sethu, 2011;
Muthusamy et al., 1994). In such situations, the use of high-level
speech information may be prohibitive, as it often requires run-
ning one speech/phonetic recognizer per target language (Zissman
&Berkling, 2001). Lightweight LID systems are especially necessary
in caseswhere the application requires an implementation embed-
ded in a portable device.

Driven by recent developments in speaker verification, the cur-
rent state of the art in acoustic LID systems involves using i-vector
front-end features followed by diverse classification mechanisms
that compensate speaker and session variabilities (Brummer et al.,
2012; Li et al., 2013; Sturim et al., 2011). The i-vector is a com-
pact representation (typically from 400 to 600 dimensions) of a

http://dx.doi.org/10.1016/j.neunet.2014.08.006
0893-6080/© 2014 Elsevier Ltd. All rights reserved.
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whole utterance, derived as a point estimate of the latent variables
in a factor analysis model (Dehak, Torres-Carrasquillo, Reynolds,
& Dehak, 2011; Kenny, Oullet, Dehak, Gupta, & Dumouchel, 2008).
However, while proven to be successful in a variety of scenarios,
i-vector-based approaches suffer from twomajor drawbackswhen
coping with real-time applications. First, the i-vector is a point
estimate and its robustness quickly degrades as the amount of
data used to derive it decreases. Note that the smaller the amount
of data, the larger the variance of the posterior probability dis-
tribution of the latent variables, and thus, the larger the i-vector
uncertainty. Second, in real-time applications, most of the costs as-
sociated with i-vector computation occur after completion of the
utterance, which introduces an undesirable latency.

Motivated by the prominence of deep neural networks (DNNs),
which surpass the performance of the previous dominant para-
digm, Gaussian mixture models (GMMs), in diverse and challeng-
ing machine learning applications – including acoustic modelling
(Hinton et al., 2012;Mohamed, Dahl, & Hinton, 2012), visual object
recognition (Ciresan, Meier, Gambardella, & Schmidhuber, 2010),
and many others (Yu & Deng, 2011) – we previously introduced
a successful LID system based on DNNs in Lopez-Moreno et al.
(2014). Unlike previous works on using shallow or convolutional
neural networks for small LID tasks (Cole, Inouye, Muthusamy,
& Gopalakrishnan, 1989; Leena, Srinivasa Rao, & Yegnanarayana,
2005; Montavon, 2009), this was, to the best of our knowledge,
the first time that a DNN scheme was applied at a large scale
for LID and benchmarked against alternative state-of-the-art ap-
proaches. Evaluated using two different datasets—the NIST LRE
2009 (3 s task) and Google 5M LID—this scheme significantly out-
performed several i-vector-based state-of-the-art systems (Lopez-
Moreno et al., 2014).

In the current study, we explore different aspects that affect
DNN performance, with a special focus on very short utterances
and real-time applications.We believe that the DNN-based system
is a suitable candidate for this kind of application, as it could
potentially generate decisions at each processed frame of the test
speech segment, typically every 10 ms. Through this study, we
assess the influence of several factors on the performance, namely:
(a) the amount of required training data, (b) the topology of the
network, (c) the importance of including the temporal context,
and (d) the test utterance duration. We also propose several blind
techniques to combine frame-by-frame posteriors obtained from
the DNN to get identification decisions.

We conduct the experiments using the following LID datasets:
a dataset built from Google data, hereafter, Google 5M LID corpus
and the NIST Language Recognition Evaluation 2009 (LRE’09).
First, by means of the Google 5M LID corpus, we evaluate the
performance in a real application scenario. Second, we check if the
same behaviour is observed in a familiar and standard evaluation
framework for the LID community. In both cases, we focus on short
test utterances (up to 3 s).

The rest of this paper is organized into the following sections.
Section 2 defines a reference system based on i-vectors. The
proposed DNN system is presented in Section 3. The experimental
protocol and datasets are described in Section 4. Next, we examine
the behaviour of our scheme over a range of configuration
parameters in both the task and the neural network topology.
Finally, Sections 6 and 7 are devoted to presenting the conclusions
of the study and potential future work.

2. Baseline system: i-vector

Currently, most acoustic approaches to perform LID rely on
i-vector technology (Dehak, Kenny, Dehak, Dumouchel, & Ouellet,
2011). All such approaches, while sharing i-vectors as a feature
representation, differ in the type of classifier used to perform the

final language identification (Martinez, Plchot, Burget, Glembek,
& Matejka, 2011). In the rest of this section we describe: (a) the
i-vector extraction procedure, (b) the i-vector classifier used in
this study, and (c) the configuration details of our baseline i-vector
system. This system will serve us as the baseline system.

2.1. I-vector extraction

Based on the MAP adaptation approach in a GMM framework
(Reynolds, 1995), utterances in language or speaker recognition
are typically represented by the accumulated zero- and centred
first-order Baum–Welch statistics,N and F , respectively, computed
from aUniversal BackgroundModel (UBM) λ. For the UBMmixture
m ∈ 1, . . . , C , withmean,µm, the corresponding zero- and centred
first-order statistics are aggregated over all frames of the utterance
as

Nm =


t

p(m|ot , λ) (1)

Fm =


t

p(m|ot , λ)(ot − µm), (2)

where p(m|ot , λ) is the Gaussian occupation probability for the
mixture m given the spectral feature observation ot ∈ ℜ

D at
time t .

The total variability model, hereafter TV, can be seen as a clas-
sical FA generative model (Bishop, 2007), with observed vari-
ables given by the supervector (CD × 1) of stacked statistics F =

{F1, F2, . . . , FC }. In the TV model, the vector of hidden variables
w ∈ ℜ

L is known as the utterance i-vector. Observed and hidden
variables are related by the rectangular low rankmatrix T ∈ ℜ

CD×L

N−1F = Tw, (3)

where the zero-order statistics N are represented by a block di-
agonal matrix ∈ ℜ

CD×CD, with C diagonal D × D blocks. The mth
component block is the matrix NmI(D×D). Given the imposed Gaus-
sian distributions of p(w) and p(F |w), it can be seen that the mean
of the posterior p(w|F) is given by

w = (I + T tΣ−1NT )−1T tΣ−1F , (4)

where Σ ∈ ℜ
CD×CD is the diagonal covariance matrix of F . The

TV model is thus a data driven model with parameters {λ, T , Σ}.
Kenny et al. (2008) provides a more detailed explanation of the
derivation of these parameters, using the EM algorithm.

2.2. Classification

Since T constrains all the variabilities (i.e. language, speaker,
session), and it is shared for all the language models/excerpts, the
i-vectors,w, can be seen as a new input feature to classify. Further,
several classifiers—either discriminative (i.e. Logistic Regression)
or generative (i.e. the Gaussian classifier and linear discriminant
analysis)—can be used to perform classification (Martinez et al.,
2011). In this study, we utilized LDA, followed by cosine distance
(LDA_CS), as the classifier.

Even though using a more sophisticated classifier (Lopez-
Moreno et al., 2014) would have resulted in slightly increased
performance, we chose the LDA_CS considering the trade-off
between performance and computational time efficiency. In this
framework, the similarity measure (score) of the two given
i-vectors, w1 and w2, is obtained as

Sw1,w2 =
(Atw1)(Atw2)

√
(Atw1)(Atw1)

√
(Atw2)(Atw2)

(5)

where A is the LDA matrix.
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Fig. 1. DNN network topology.

2.3. Feature extraction and configuration parameters

As input features for this study we used perceptual linear
predictive (PLP) coefficients (Hermansky, 1990). In particular, 13
PLP coefficients augmented with delta and delta–delta features (39
dimensions total) were extracted with a 10 ms frame rate over
25 ms long windows. From those features, we built a Universal
Background Model of 1024 components. The total variability
matrix was trained by using PCA and a posterior refinement of
10 EM iterations (Dehak, Kenny et al., 2011), keeping just the top
400 eigenvectors.We then derived the i-vectors using the standard
methodology presented in Section 2.1. In addition, we filtered out
silence frames by using an energy-based voice activity detector.

3. DNN as a language identification system

Recent findings in the field of speech recognition have shown
that significant accuracy improvements over classical GMM
schemes can be achieved through the use of deep neural networks,
either to generate GMM features or to directly estimate acoustic
model scores. Among the most important advantages of DNNs is
their multilevel distributed representation of the input (Hinton
et al., 2012). This fact makes the DNN an exponentially more
compact model than GMMs. In addition DNNs do not require
detailed assumptions about the input data distribution (Mohamed,
Hinton, & Penn, 2012) and have proven successful in exploiting
large amounts of data, reaching more robust models without
lapsing into overtraining. All of these factors motivate the use of
DNN in language identification. The rest of this section describes
the architecture and the practical implementation of the DNN
system.

3.1. Architecture

The DNN used in this work is a fully-connected feed-forward
neural network with hidden units implemented as rectified linear
units (ReLUs). Thus, an input at level j, xj, is mapped to its
corresponding activation yj (input of the layer above) as

yj = ReLU(xj) = max(0, xj) (6)

xj = bj +


i

wijyi (7)

where i is an index over the units of the layer below and bj is the
bias of the unit j.

The output layer is then configured as a softmax, where hidden
units map input xj to a class probability pj in the form

pj =
exp(xj)
l
exp(xl)

(8)

where l is an index over all the classes.
As a cost function for backpropagating gradients in the training

stage, we use the cross-entropy function defined as

C = −


j

tj log pj (9)

where tj represents the target probability of the class j for the
current evaluated example, taking a value of either 1 (true class)
or 0 (false class).

3.2. Implementing DNN for language identification

From the conceptual architecture explained above, we built
a language identification system to work at the frame level as
follows.

As the input of the net we used the same features as the i-vector
baseline system (39 PLP). Specifically, the input layer was fed with
21 frames formed by stacking the current processed frame and its
±10 left/right neighbours. Thus, the input layer comprised a total
number of 819 (21 × 39) visible units, v.

On top of the input layer, we stacked a total number of Nhl (8)
hidden layers, each containing h (2560) units. Then, we added the
softmax layer, whose dimension (s) corresponds to the number of
target languages (NL) plus one extra output for the out-of-set (OOS)
languages. This OOS class, devoted to non-known test languages
not seen in training time, could in future allow us to use the system
in open-set identification scenarios. Overall, the net was defined
by a total of w free parameters (weights + bias), w = (v + 1)h +

(Nhl −1)(h+1)h+ (h+1)s(∼48M). The complete topology of the
network is depicted in Fig. 1.

Regarding the training procedure, we used asynchronous
stochastic gradient descent within the DistBelief framework (Dean
et al., 2012), a software framework that uses computing clusters
with thousands ofmachines to train largemodels. The learning rate
and minibatch size were fixed to 0.001 and 200 samples.1

Note that the presented architecture works at the frame level,
meaning that each single frame (plus its corresponding context)
is fed-forward through the network, obtaining a class posterior
probability for all of the target languages. This fact makes the
DNNs particularly suitable for real-time applications since, unlike
other approaches (i.e. i-vectors), we can potentially make a
decision about the language at each new frame. Indeed, at each
frame, we can combine the evidence from past frames to get a
single similarity score between the test utterance and the target
languages. A simple way of doing this combination is to assume
that frames are independent and multiply the posterior estimates
of the last layer. The score sl for the language l of a given test
utterance is computed by multiplying the output probabilities pl
obtained for all its frames, or equivalently, accumulating the logs as

sl =
1
N

N
t=1

log p(Ll|xt , θ) (10)

where p(Ll|xt , θ) represents the class probability output for the
language l corresponding to the input example at time t , xt by using
the DNN defined by parameters θ .

1 Wedefine sample as the input of the DNN: the feature representation of a single
frame besides those from its adjacent frames forming the context.
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Table 1
List of the Google 5M LID (above) and LRE’09 (below) languages considered.

Locale/Abbrev. Language

Google 5M

ar-EG Arabic (Egypt)
ar-GULF Arabic (Persian Gulf)
ar-LEVANT Arabic (Levant)
bg-BG Bulgarian
cs-CZ Czech
de-DE German
en-GB English (United Kingdom)
en-IN English (India)
en-US English (USA)
en-ZA English (South Africa)
es-419 Spanish (Latin America/Caribbean)
es-AR Spanish (Argentina)
es-ES Spanish (Spain)
fi-FI Finish
fr-FR French
he-IL Hebrew (Israel)
hu-HU Hungarian
id-ID Indonesian
it-IT Italian
ja-JP Japanese
ko-KR Korean (South Korea)
ms-MY Malay
nl-NL Dutch
pt-BR Portuguese (Brazilian)
pt-PT Portuguese (Portugal)
ro-RO Romanian
ru-RU Russian
sk-SK Slovak
sr-RS Serbian
sv-SE Sweden
tr-TR Turkish
zh-cmn-Hans-CN Chinese (Mandarin)
zh-cmn-Hant-TW Chinese (Taiwan)
zh-yue-hant-HK Chinese (Cantonese)

LRE’09

en English (USA)
es Spanish (Latin America/Caribbean)
fa Farsi
fr French
ps Pashto
ru Russian
ur Urdu
zh Chinese (Mandarin)

Table 2
Data description of the Google 5M LID and LRE09 subcorpus.

Database #NL Train (h) Test (#files) Test length
(avg. on s)

Google 5M 34 2975 51000 4.2
LRE09_VOA_3s 8 1600 2916 3
LRE09_VOA_realtime 8 1600 11276 (0.1 s–3 s)

4. Datasets and evaluation metrics

We conducted experiments on two different databases follow-
ing the standard protocol provided by NIST in LRE 2009 (NIST,
2009). Particularly, we used the LRE’09 corpus and a corpus gen-
erated from Google Voice services. This followed a two-fold goal:
first, to evaluate the proposed methods with a large collection of
real application data, and second, to provide a benchmark compa-
rablewith other relatedworks in the area by using thewell-known
LRE’09 framework.

4.1. Databases

4.1.1. Google 5M LID corpus
We generated the Google 5M LID corpus dataset by randomly

picking anonymized queries from several Google speech recogni-

Fig. 2. Histograms of durations of the Google 5M LID test utterances. Original
speech signals (above) and after voice activity detection (below).

tion services such as Voice Search or the Speech Android API. Fol-
lowing the user’s phone Voice Search language settings, we la-
belled a total of ∼5 million utterances, 150 k utterances by 34
different locales (25 languages + 9 dialects) yielding ∼87,5 h of
speech per language and a total of ∼2975 h. A held-out test set of
1 k utterances per language was created while the remainder was
used for training and development. Involved languages and data
description are presented in Tables 1 and 2 respectively.

An automatic speech recognition system was used to discard
non-speech queries. Selected queries ranged from 1 up to 10 s in
duration with average speech content of 2.1 s. Fig. 2 shows the
duration distribution before and after doing this activity detection
process.

Privacy issues do not allow Google to link the user identity with
the spoken utterance and therefore, determining the exact number
of speakers involved in this corpus is not possible. However, it is
reasonable to consider that the total number of speakers is very
large.

4.1.2. Language recognition evaluation 2009 dataset
The LRE evaluation in 2009 included, for the first time, data

coming from two different audio sources. Besides Conversational
Telephone Speech (CTS), used in the previous evaluations,
telephone speech from broadcast news was used for both training
and test purposes. Broadcast data were obtained via an automatic
acquisition system from ‘‘Voice of America’’ news (VOA) where
telephone and non-telephone speech are mixed.

Due to the large disparity on training material for every lan-
guage (from ∼10 to ∼950 h), out of the 40 initial target languages
(Liu, Zhang, & Hansen, 2012) we selected 8 representative lan-
guages for which up to 200 h of audio were available: US English
(en), Spanish (es), Dari (fa), French (fr), Pashto (ps), Russian (ru),
Urdu (ur), Chinese Mandarin (zh) (Table 1). Further, to avoid mis-
leading result interpretation due to the unbalancedmix of CTS and
VOA, all the data considered in this dataset were part of VOA.

As test material in LRE’09, we used a subset of the NIST LRE
2009 3 s condition evaluation set (as for training, we also discarded
CTS test segments), yielding a total of 2916 test segments of the 8
selected languages. Thatmakes a total of 23328 trials.We refer this
test dataset as LRE09_VOA_3s_test. For evaluating performance
in real-time conditions, we used the VOA test segments for all
the LRE’09 conditions (3 s, 10 s, 30 s) with at least 3 s of speech
(according to our voice activity detector) that made a total of
11276 files. Then we cut these recordings to build different
duration subsets ranging from 0.1 to 3 s of speech. Specifically, we
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Table 3
System performance (EER %) comparison per language on LRE09_VOA_3s_test. The I-vector baseline system vs. the DNN_8layers_200h system.

Equal Error Rate (EER in %) Avg.
en es fa fr ps ru ur zh

Iv_200h 17.22 10.92 20.03 15.30 19.98 14.87 18.74 10.09 15.89
DNN_8layers_200h 8.65 3.74 17.22 7.53 16.01 5.59 13.10 4.82 9.58

Fig. 3. System performance (EER %) comparison per language on Google 5M LID corpus. The I-vector baseline system vs. the DNN_8layers_200h system.

came up with 8 datasets of 11276 files with durations: 0.1 s, 0.2 s,
0.5 s, 1 s, 1.5 s, 2.0 s, 2.5 s, and 3.0 s. We refer those test datasets as
the LRE09_VOA_realtime_test benchmark.

4.2. Evaluation metrics

In order to assess the performance we used the accuracy and
equal error rate (EER)2 metrics. Language identification rates are
measured in terms of accuracy, understanding this as the % of
correctly identified trialswhenmakinghard decisions (by selecting
the top scored language) language detection rates are measured in
terms of per-language EER and for the sake of claritywe do not deal
with the problem of setting optimal thresholds (calibration) as we
previously did in Lopez-Moreno et al. (2014).

5. Experimental results

5.1. Global performance

We start our study by comparing the performance of the
proposed DNN scheme with the baseline i-vector system on the
LRE09_VOA_3s_test corpus. Table 3 summarizes this comparison
in terms of EER. Results show how the DNN approach largely
outperforms the i-vector system, obtaining up to a ∼40% relative
improvement. An even larger improvement is obtained on the
Google 5M corpus, where we found an average relative gain of
∼76% (see Fig. 3). Those results are especially remarkable since
they are found on short test utterances and demonstrate the ability
of the DNN to exploit discriminative information in large datasets.

It is also worth analysing the errors made by the DNN system as
a function of the similarity of the different languages. We present
in Fig. 7 the confusion matrix obtained using the DNN system on
the Google 5M LID corpus. Confusion submatrices around dialects
(i.e. ar-EG/ar-GULF/ar-LEVANT) illustrate the difficulty of dialect
identification from spectral features in short utterances (Torres-
Carrasquillo, Sturim, Reynolds, & McCree, 2008). These results

2 EER is the point on ROC or DET curve where false acceptance and true reject
rates are equal.

suggest that exploiting just acoustic information might be not
enough to reach accurate identificationwhen dealingwith dialects
(Baker, Eddington, & Nay, 2009; Biadsy, 2011; Liu, Lei, & Hansen,
2010).

5.2. Number of hidden layers and training material

In this section, we evaluate two related aspects when training
a DNN: the number of hidden layers and the amount of training
material used. On the one hand, we want to exploit the ability
showed by DNNs to improve the recognition performance while
increasing the training, avoiding overfitting. On the other hand,
we aim to get the lightest architecture possible without losing
accuracy.

We started by fixing the available training material to its
maximum in LRE’09 (200 h per language) and then reducing
the number of hidden layers from 8 (DNN_8layers_200h) to 4
(DNN_4layers_200h) and 2 (DNN_2layers_200h). Table 4 summa-
rizes those results. The net with 4 hidden layers seems to be
more discriminative than the 2 hidden layers, and more interest-
ingly, than the one with 8 hidden layers. In particular, on average,
the DNN_4layers_200h outperforms by ∼8% in terms of EER the
DNN_8layers_200h system, using half as many parameters.

As a further step, we swept the number of hours used per lan-
guage from 1 to 200 h for the three nets. Fig. 4 shows the % accu-
racy as a function of the training hours per language. As expected,
the bigger the amount of training data, the better the performance.
However, the slope of this gain degrades when reaching 100 h per
language. Indeed, from the 2 layer system, increasing the training
material incurs in a minor degradation mostly due to underfitting.
Again, it is clear from the results the need for a convenient tradeoff
between the training data and number of parameters to optimize.
In particular, our best configuration contains∼21Mparameters for
∼648M training samples.

5.3. Real-time identification

Taking now as reference the net with best performance so far
(DNN_4_200h) we explored the performance degradation when
limiting the test duration. The goal is to gain some insight about
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Table 4
Effect of using different numbers of hidden layers. System performance (EER %) per language on LRE09_VOA_test_3s.

Equal Error Rate (EER in %) Avg.
en es fa fr ps ru ur zh

DNN_2layers_200h 12.66 5.04 19.67 8.60 17.84 8.75 14.78 5.54 11.61
DNN_4layers_200h 8.53 3.58 16.19 5.82 15.42 6.38 11.24 3.16 8.79
DNN_8layers_200h 8.65 3.74 17.22 7.53 16.01 5.59 13.10 4.82 9.58

Table 5
Effect of using different left/right input contexts for the DNN_4layers_200h system. System performance (EER %) on the LRE09_VOA_realtime_test (3 s).

Equal Error Rate (EER in %) Avg.
en es fa fr ps ru ur zh

No context 19.07 9.65 24.82 13.17 21.64 14.28 19.39 12.38 16.80
±10 8.42 3.62 15.89 5.46 14.54 6.31 10.05 3.47 8.47
±20 7.71 3.88 15.49 6.11 12.90 6.09 10.50 4.00 8.33
±30 9.44 4.53 16.24 7.95 14.40 7.96 12.07 5.23 9.72
±40 12.05 5.08 17.41 9.71 15.47 9.14 13.10 6.27 11.03
±50 9.85 5.71 19.26 8.80 14.54 7.76 13.37 6.51 10.72

Fig. 4. DNN system performance (% accuracy) in function of the training time per
language and the number of hidden layers. Results on LRE09_VOA_3s_test.

how long a test utterance must be to consider the identification
accurate, a main concern in real-time applications.

Fig. 5 shows the average accuracy as a function of the test
durations, for both test corpus LRE09_VOA_realtime_test and
Google 5M LID. We highlight here two main points. Notice first
that up to 0.5 s of speech (according to our voice activity detection)
the identification accuracy is very poor (rates under 50% accuracy).
Very quick decisions can lead systems to a bad user experience
in real-time applications. Second, as expected, the larger the test
duration, the better the performance. However, this practically
saturates after 2 s. This suggests that a decision can be taken at this
point without significant loss of accuracy even when we increase
the number of target languages from 9 to 34.

A more detailed analysis per language can be seen in Ta-
ble 7 for all the 34 languages involved in the Google 5M LID
corpus, where we show that the previous conclusion holds true
also for each individual language. Confusion matrices on the
LRE09_VOA_realtime_test are also collected in Figs. A.8–A.11.

5.4. Temporal context

So far we have been using a fixed right/left context of ±10
frames respectively. That is, the input of our network, asmentioned
in Section 3, is formed by stacking the features of every framewith
its corresponding 10 to the left and 10 to the right neighbours.
We explore in this section the effect of including a shorter/wider
context for language identification.

Themotivation behind using temporal information from a large
number of frames lies in the idea of incorporating additional
high-level information (i.e. phonetic, phonotactic and prosodic

Fig. 5. DNN_4layers_200h system performance (% accuracy) in function of the test
utterance duration. Results on LRE09_VOA_realtime_3s.

information). This idea has been largely and successfully ex-
ploited in language identification by using long-term phonotactic/
prosodic tokenizations (Ferrer et al., 2010; Reynolds et al., 2003)
or, in acoustic approaches, by using shifted-delta-cepstral features
(Torres-Carrasquillo, Singer, Kohler, & Deller, 2002).

We modify the input of the network by stacking each frame
with a symmetric context that ranges from 0 to 50 left and right
neighbour frames; that is, we sweep from a context-free scheme
to a maximum context that spans 0.5 s to the left and 0.5 s to the
right (a total of 1 s context).

Table 5 summarizes the obtained results on the LRE09_VOA_
realtime_test (3 s subcorpus) using the DNN_4_200h network. The
importance of the context is apparent from first two rows. We
observe a relative improvement of ∼49% from the ±10 context
scheme with respect to the context-free one. We find the lowest
EER when using ±20 frames of context. After this value the EER
increases. This behaviour can be explained by understanding that
as we demand our net to learn more ‘high-level’ rich features, we
are also increasing the size of the input, therefore forcing the net
to learn more complex features from the same amount of data.
Fig. 6 collectsthe top 10 filters for a given minibatch (those which
produce highest activations in the minibatch) extracted from the
first hidden layer for the DNN_4_200h network. The distribution
of those weights evidences how the DNN is using the context
information.

Although thenumber of parameters of the input layer is affected
by the size of the contextual window, the input layer represents
less than the 25% of the model size. Thus, it seems that DNNs
can lead to better modelling of the contextual information than
competing approaches, such as GMM-based systems, which are
traditionallymore affected by the curse of dimensionality. Note that
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Table 6
Comparison of different frame combination schemes for the DNN_4layers_200h. System performance (EER %) per language. Results on LRE09_VOA_3s_test.

Equal Error Rate (EER in %) Avg.
en es fa fr ps ru ur zh

Product 8.53 3.58 16.19 5.82 15.42 6.38 11.24 3.16 8.79
Voting 12.66 5.04 19.67 8.60 17.84 8.75 14.78 5.54 11.61
Entropy 8.65 3.74 17.22 7.53 16.01 5.59 13.10 4.82 9.58

Fig. 6. Visualization of top 10 filters (those which produce highest activations in the given minibatch) of the first hidden layer using a ±10 context. Each filter is composed
of 21 rows (number of frames stacked as input) and 39 columns (feature dimension).

Fig. 7. Confusion matrix obtained by evaluating the DNN_8_200h system on the Google 5M LID corpus.
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Table 7
System performance (accuracy %) by language and test utterance duration on Google 5M Database.

% Accuracy Test utterance duration (s)
Locale Language 0.1 0.2 0.5 1.0 1.5 2.0 2.5 3.0

ar-EG Arabic (Egypt) 12 14 38 41 52 56 58 57
ar-GULF Arabic (Persian) 19 22 46 53 61 64 69 68
ar-LEVANT Arabic (Levant) 43 51 54 48 65 64 61 62
bg-BG Bulgarian 7 11 38 51 65 64 68 72
cs-CZ Czech 2 6 45 69 71 75 79 81
de-DE German 18 27 62 72 84 88 87 89
en-GB English (United) 4 12 31 39 49 54 54 54
en-IN English (India) 27 30 56 63 73 74 76 78
en-US English (USA) 22 29 62 70 85 87 89 91
en-ZA English (South) 4 7 34 45 46 51 56 57
es-419 Spanish (Latin) 6 8 25 41 47 50 52 55
es-AR Spanish (Argentina) 6 8 35 50 53 56 58 61
es-ES Spanish (Spain) 5 9 48 54 67 70 72 73
fi-FI Finish 14 23 55 75 76 80 82 82
fr-FR French 14 25 69 83 90 93 94 95
he-IL Hebrew (Israel) 4 10 46 60 60 67 68 70
hu-HU Hungarian 8 16 48 71 72 80 82 82
id-ID Indonesian 13 21 45 62 69 72 75 76
it-IT Italian 8 13 42 58 75 78 80 81
ja-JP Japanese 18 25 68 87 89 91 94 95
ko-KR Korean (South) 16 25 68 91 89 91 92 92
ms-MY Malay 17 25 44 59 63 70 72 72
nl-NL Dutch 6 12 56 68 76 80 80 81
pt-BR Portuguese (Brazilian) 11 18 47 74 74 78 80 81
pt-PT Portuguese (Portugal) 6 8 28 53 42 43 48 49
ro-RO Romanian 7 12 34 43 56 61 64 66
ru-RU Russian 5 11 52 70 83 85 85 85
sk-SK Slovak 10 13 30 40 48 51 55 58
sr-RS Serbian 6 9 35 54 55 59 60 62
sv-SE Sweden 10 16 42 62 65 70 73 71
tr-TR Turkish 5 10 55 78 79 82 83 85
zh-cmn-Hans-CN Chinese (Mandarin) 12 16 54 76 75 76 80 82
zh-cmn-Hant-TW Chinese (Taiwan) 12 22 63 78 80 83 83 85
zh-yue-hant-HK Chinese (Cantonese) 15 25 68 81 88 91 90 91

the relative gains reported in this analysis (∼50%) surpass previous
attempts reported in the literature in including contextual
information using the GMM paradigm (Torres-Carrasquillo et al.,
2002). We refer also to Li and Narayanan (2014) for a extensive
comparison of different features in language identification over an
i-vector-based framework.

5.5. Frame-by-frame posteriors combination

One of the features that make DNNs particularly suitable for
real-time applications is their ability to generate frame-by-frame
posteriors. Indeed we can derive decisions about the language
identification at each frame. Here we aim to study how we can
combine frame posteriors into a single utterance-level score.

Probably the most standard way to perform this combination
is assuming frame independence and using the product rule (see
Section 3). That is, simply compute the product of the posteriors
frame-by-frame as the new single score vector. Another common
and simple approach used in the literature is plurality voting,
where, at each frame, the language associated with the highest
posterior receives a single vote while the rest receive none. The
voting scheme aims to control the negative effect of outlier scores.
The score for a given language l, sl, is then computed by counting
the received votes over all the frames as

sl =

N
t=1

δ(p(Ll|xt , θ)), (11)

with δ function defined as

δ(p(Ll|xt , θ))


1, if l = argmax

l
(p(Ll|xt , θ))

0, otherwise.
(12)

A more interesting approach, among blind techniques (no need
for training), is to weight the posteriors of every frame as a
function of the entropy of its posterior distribution. The idea here
is to penalize those frames whose distribution of posteriors across
the set of languages tends to be uniform (high entropy). This
approach was successfully applied in Misra, Bourlard, and Tyagi
(2003), resulting in a performance improvement when working
withmismatched training and test datasets. The resulting score for
language l, sl, is computed as

sl =

N
t=1

log


1
ht

p(Ll|xt , θ)


(13)

where the weight for frame t is the inverse of its entropy

ht = −

N
l=1

p(Ll|xt , θ) log2 p(Ll|xt , θ). (14)

Table 6 compares these three different combination schemes:
product, voting and entropy on the LRE09_VOA_3s_test corpus.
Results show a better performance of the simple product rule
compared to the other approaches, with voting the worst choice.
This result suggests that making binary decisions at a frame level
leads to a performance degradation. Although the entropy scheme
does not help in this scenario, it should be considered when
working with more noisy environments.

6. Conclusion

In this work, we present a detailed analysis of the use of deep
neural networks (DNNs) for automatic language identification
(LID) of short utterances. Guided by the success of DNNs for
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acoustic modelling in speech recognition, we explore the capacity
of DNNs to learn language information embedded in speech
signals.

Through this study, we also explore the limits of the proposed
scheme for real-time applications, evaluating the accuracy of the
system when using very short test utterances (≤3 s). We find,
for our proposed DNN scheme, that while more than 0.5 s is
needed to obtain over 50% accuracy rates, 2 s are enough to
reach accuracy rates of over 90%. Further, we experiment with the
amount of training material, the number of hidden layers and the
combination of frame posteriors. We also analyse the relevance of
including the temporal context, which is critical to achieving high
performance in LID.

Results using NIST LRE 2009 (8 languages selected) and Google
5M LID datasets (25 languages + 9 dialects) demonstrate that
DNNs outperform current state-of-art i-vector-based approaches
when dealing with short test durations. Finally, we demonstrated
that using a frame-by-frame approach, DNNs can be successful
applied for real-time applications.

7. Future work

We identified several areas where further investigation is
needed. Among them, establishing a more appropriate combina-
tion of frame posteriors obtained in DNNs; exploring different fu-
sions among DNNs and i-vector systems (Saon, Soltau, Nahamoo,
& Picheny, 2013); and dealing with unbalanced training data. Note
that even though we proposed different ways of combining poste-
riors, all of them are blind techniques (no need for training). This
fact is due to we focused on real-time applications and simple ap-
proaches. However, other data-driven methods could be more ap-
propriate for combining posteriors.

Further other neural network architectures should also be
explored. For instance, recurrent neural networks might be an
elegant solution to incorporate contextual information. Also,
convolutional neural networks might help to reduce the number
of parameters of our model.

Another promising approach is the use of the activations of
the last hidden layer as bottleneck features. Then, i-vector-based
systems or another classification architecture could be trained over
those bottleneck features, rather than over classical features, such
as PLP or MFCC.

Appendix. Extended results

Fig. A.8. DNN_4layers_200h confusion matrix on LRE’09 (0.5 s test).

Fig. A.9. DNN_4layers_200h confusion matrix on LRE’09 (1 s test).

Fig. A.10. DNN_4layers_200h confusion matrix on LRE’09 (2 s test).

Fig. A.11. DNN_4layers_200h confusion matrix on LRE’09 (3 s test).
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Abstract
In this paper we present a data-driven, integrated approach to
speaker verification, which maps a test utterance and a few ref-
erence utterances directly to a single score for verification and
jointly optimizes the system’s components using the same eval-
uation protocol and metric as at test time. Such an approach will
result in simple and efficient systems, requiring little domain-
specific knowledge and making few model assumptions. We
implement the idea by formulating the problem as a single neu-
ral network architecture, including the estimation of a speaker
model on only a few utterances, and evaluate it on our inter-
nal ”Ok Google” benchmark for text-dependent speaker veri-
fication. The proposed approach appears to be very effective
for big data applications like ours that require highly accurate,
easy-to-maintain systems with a small footprint.
Index Terms: speaker verification, end-to-end training, deep
learning.

1. Introduction
Speaker verification is the process of verifying, based on a
speaker’s known utterances, whether an utterance belongs to
the speaker. When the lexicon of the spoken utterances is con-
strained to a single word or phrase across all users, the process is
referred to as global password text-dependent speaker verifica-
tion. By constraining the lexicon, text-dependent speaker verifi-
cation aims to compensate for phonetic variability, which poses
a significant challenge in speaker verification [1]. At Google,
we are interested in text-dependent speaker verification with the
global password ”Ok Google.” The choice of this particularly
short, approximately 0.6 seconds long global password relates
to the Google Keyword Spotting system [2] and Google Voice-
Search [3] and facilitates the combination of the systems.

In this paper, we propose to directly map a test utterance
together with a few utterances to build the speaker model, to
a single score for verification. All the components are jointly
optimized using a verification-based loss following the standard
speaker verification protocol. Compared to existing approaches,
such an end-to-end approach may have several advantages, in-
cluding the direct modeling from utterances, which allows for
capturing long-range context and reduces the complexity (one
vs. number of frames evaluations per utterance), and the direct
and joint estimation, which can lead to better and more compact
models. Moreover, this approach often results in considerably
simplified systems requiring fewer concepts and heuristics.

More specifically, the contributions of this paper include:
• formulation of end-to-end speaker verification architec-

ture, including the estimation of a speaker model on a
few utterances (Section 4);

∗ Work done while the author was at Google.

• empirical evaluation of end-to-end speaker verification,
including comparison of frame (i-vectors, d-vectors) and
utterance-level representations (Section 5.2) and analysis
of the end-to-end loss (Section 5.3);

• empirical comparison of feedforward and recurrent neu-
ral networks (Section 5.4).

This paper focuses on text-dependent speaker verification for
small footprint systems, as discussed in [4]. But the approach is
more general and could be used similarly for text-independent
speaker verification.

In previous studies, the verification problem is broken down
into more tractable, but loosely connected subproblems. For
example, the combination of i-vector and probabilistic linear
discriminant analysis (PLDA) [5, 6] has become the dominant
approach, both for text-independent speaker verification [7, 8,
5, 6] and text-dependent speaker verification [9, 10, 11]. Hy-
brid approaches that include deep learning based components
have also proved to be beneficial for text-independent speaker
recognition [12, 13, 14]. For small footprint systems, how-
ever, a more direct deep learning modeling may be an attrac-
tive alternative [15, 4]. To the best of our knowledge, recurrent
neural networks have been applied to related problems such as
speaker identification [16] and language identification [17], but
not to the speaker verification task. The proposed neural net-
work architecture can be thought of as joint optimization of
a generative-discriminative hybrid and is in the same spirit as
deep unfolding [18] for adaptation.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a brief overview of speaker verification in gen-
eral. Section 3 describes the d-vector approach. Section 4 intro-
duces the proposed end-to-end approach to speaker verification.
An experimental evaluation and analysis can be found in Sec-
tion 5. The paper is concluded in Section 6.

2. Speaker Verification Protocol
The standard verification protocol can be divided into the three
steps: training, enrollment, and evaluation, which we describe
in more detail next.

Training In the training stage, we find a suitable internal
speaker representation from the utterance, allowing for a sim-
ple scoring function. In general, this representation depends on
the type of the model (e.g., Gaussian subspace model or deep
neural network), the representation level (e.g., frame or utter-
ance), and the model training loss (e.g., maximum likelihood
or softmax). State-of-the art representations are a summary of
frame-level information, such as i-vectors [7, 8] and d-vectors
(Section 3).

Enrollment In the enrollment stage, a speaker provides a few
utterances (see Table 1), which are used to estimate a speaker
model. A common choice is to average the i-vectors [19] or
d-vectors [15, 4] of these utterances.
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Evaluation During the evaluation stage, the verification task
is performed and the system is evaluated. For verification, the
value of a scoring function of the utterance X and the test
speaker spk, S(X, spk), is compared against a pre-defined
threshold. We accept if the score exceeds the threshold, i.e.,
the utterance X comes from speaker spk, and reject otherwise.
In this setup, two types of error can occur: false reject and false
accept. Clearly, the false reject rate and the false accept rate
depend on the threshold. When the two rates are equal, the
common value is called equal error rate (EER).

A simple scoring function is the cosine similarity between
the speaker representation f(X) of an evaluation utterance X
(see paragraph ”Training”) and the speaker model mspk (see
paragraph ”Enrollment”):

S(X, spk) = [f(X)>mspk]/[‖f(X)‖ ‖mspk‖].
PLDA has been proposed as a more refined, data-driven scoring
approach.

3. D-Vector Baseline Approach
D-vectors are derived from a deep neural network (DNN), as
speaker representation of an utterance. A DNN consists of the
successive application of several non-linear functions in order to
transform the speaker utterance into a vector where a decision
can be easily made. Fig. 1 depicts the topology of our baseline
DNN. It includes a locally-connected layer [4] and several fully
connected layers. All layers use ReLU activation except the
last, which is linear. During the training stage, the parameters
of the DNN are optimized using the softmax loss, which, for
convenience, we define to comprise a linear transformation with
weight vectors wspk and biases bspk, followed by the softmax
function and the cross-entropy loss:

lsoftmax = − log
exp(w>spky + bspk)∑
˜spk exp(w

>
˜spk
y + b ˜spk)

where the activation vector of the last hidden layer is denoted
by y and spk denotes the correct speaker. The normalization is
over all competing training speakers ˜spk.

After the training stage is completed, the parameters of the
DNN are fixed. Utterance d-vectors are obtained by averaging
the activation vectors of the last hidden layer for all frames of
an utterance. Each utterance generates one d-vector. For en-
rollment, the speaker model is given by the average over the d-
vectors of the enrollment utterances. Finally, during the evalua-
tion stage, the scoring function is the cosine similarity between
the speaker model d-vector and the d-vector of a test utterance.

   DNN

frame or utterance

Locally connected, ReLU

...

Fully connected, ReLU

Fully connected, Linear

Speaker Representation

Figure 1: Deep neural network (DNN) with a locally-connected
layer followed by fully-connected layers.

DNN / LSTM

evaluation 
utterance

enrollment
utterance 1

average

cosine similarity

...

logistic regression

accept / reject

Speaker Model

Speaker
Representation

Score Function 

enrollment
utterance N...

Figure 2: End-to-end architecture: the input is an ”evalua-
tion” utterance and up to N ”enrollment” utterances, which the
network maps to a single output node (accept/reject). The ”en-
rollment” utterances are used to estimate the speaker model.

Criticism about this baseline approach includes the limited
context of the d-vectors derived from (a window of) frames and
the type of the loss. The softmax loss attempts to discrimi-
nate between the true speaker and all competing speakers but
does not follow the standard verification protocol in Section 2.
As a result, heuristics and scoring normalization techniques be-
comes necessary to compensate for inconsistencies. Moreover,
the softmax loss does not scale well with more data as the com-
putational complexity is linear in the number of training speak-
ers and requires a minimum amount of data per speaker to es-
timate the speaker-specific weights and biases. The complexity
issue (but not the estimation issue) can be alleviated by candi-
date sampling [20].

Similar concerns can be expressed over the alternative
speaker verification approaches, where some of the compo-
nent blocks are either loosely connected or not directly opti-
mized following the speaker verification protocol. For example,
GMM-UBM [7] or i-vector models does not directly optimize a
verification problem; the PLDA [5] model is not followed a re-
finement of the i-vector extraction; or long contextual features
may be ignored by frame-based GMM-UBM models [7].

4. End-To-End Speaker Verification
In this section, we integrate the steps of the speaker verification
protocol (Section 2) into a single network, see Fig. 2. The in-
put of this network consists of an ”evaluation” utterance and
a small set of ”enrollment” utterances. The output is a sin-
gle node indicating accept or reject. We jointly optimized this
end-to-end architecture using DistBelief [21], a predecessor of
TensorFlow [22]. In both tools, complex computational graphs
such as the one defined by our end-to-end topology can be de-
composed into a sequence of operations with simple gradients
such as sums, divisions, and cross products of vectors. After the
training step, all network weights are kept fixed, except for the
bias of the one-dimensional logistic regression (Fig. 2) which is
manually tuned on the enrollment data. Apart from this, nothing
is done in the enrollment step as the speaker model estimation
is part of the network. At test time, we feed an evaluation utter-
ance and the enrollment utterances of a speaker to be tested to
the network, which directly outputs the decision.

We use neural networks to obtain the speaker representation
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Figure 3: Long short-term memory recurrent neural network
(LSTM) with a single output.

of an utterance. The two types of networks we use in this work
are depicted in Figs. 1 and 3: a deep neural network (DNN)
with locally-connected and fully connected layers as our base-
line DNN in Section 3 and a long short-term memory recurrent
neural network (LSTM) [23, 24] with a single output. DNNs
assume a fixed-length input. To comply with this constraint, we
stack the frames of a sufficiently large window of fixed length
over the utterance and use them as the input. This trick is not
needed for LSTMs but we use the same window of frames for
better comparability. Unlike vanilla LSTMs which have multi-
ple outputs, we only connect the last output to the loss to obtain
a single, utterance-level speaker representation.

The speaker model is the average over a small number of
”enrollment” representations (Section 2). We use the same net-
work to compute the internal representations of the ”test” ut-
terance and of the utterances for the speaker model. The ac-
tual number of utterances per speaker available in training typi-
cally is much larger (a few hundred or more) than in enrollment
(fewer than ten), see Table 1. To avoid a mismatch, we sample
for each training utterance only a few utterances from the same
speaker to build the speaker model at training time. In general,
we cannot assume to have N utterances per speaker. To allow
for a variable number of utterances, we pass a weight along with
the utterance to indicate whether to use the utterance.

Finally, we compute the cosine similarity between the
speaker representation and the speaker model, S(X, spk), and
feed it to a logistic regression including a linear layer with a
bias. The architecture is optimized using the end-to-end loss

le2e = − log p(target) (1)

with the binary variable target ∈ {accept, reject}, p(accept) =
(1+exp(−wS(X, spk)−b))−1, and p(reject) = 1−p(accept).
The value −b/w corresponds with the verification threshold.

The input of the end-to-end architecture are 1 + N utter-
ances, i.e., an utterance to be tested and up to N different ut-
terances of the same speaker to estimate the speaker model. To
achieve a good tradeoff between data shuffling and memory, the
input layer maintains a pool of utterances to sample 1+N utter-
ances from for each training step and gets refreshed frequently
for better data shuffling. As a certain number of utterances of
the same speaker is needed for the speaker model, the data is
presented in small groups of utterances of the same speaker.

5. Experimental Evaluation
We evaluate the proposed end-to-end approach on our internal
”Ok Google” benchmark.

5.1. Data Sets & Basic Setup
We tested the proposed end-to-end approach on a set ”Ok
Google” utterances collected from anonymized voice search
logs. For improved noise robustness, we perform multistyle

training. The data were augmented by artificially adding in car
and cafeteria noise at various SNRs, and simulating different
distances between the speaker and the microphone, see [2] for
further details. Enrollment and evaluation data include only real
data. Table 1 shows some data set statistics.

Table 1: Data set statistics.
#utterances #speakers #utts / spk

(#augmented)
train 2M 2M (9M) 4k >500
train 22M 22M (73M) 80k >150
enrollment 18k 3k 1-9
evaluation 20k 3k 3-5

The utterances are forced aligned to obtain the ”Ok Google”
snippets. The average length of these snippets is around 80
frames, for a frame rate of 100 Hz. Based on this observa-
tion, we extracted the last 80 frames from each snippet, pos-
sibly padding or truncating frames at the beginning of the snip-
pet. The frames consist of 40 log-filterbanks (with some basic
spectral subtraction) each.

For DNNs, we concatenate the 80 input frames, resulting in
a 80x40-dimensional feature vector. Unless specified otherwise,
the DNN consists of 4 hidden layers. All hidden layers in the
DNN have 504 nodes and use ReLU activation except the last,
which is linear. The patch size for the locally-connected layer
of the DNN is 10×10. For LSTMs, we feed the 40-dimensional
feature vectors frame by frame. We use a single LSTM layer
with 504 nodes without a projection layer. The batch size is 32
for all experiments.

Results are reported in terms of equal error rate (EER),
without and with t-norm score normalization [25].

5.2. Frame-Level vs. Utterance-Level Representation
First, we compare frame-level and utterance-level speaker rep-
resentations, see Table 2. Here, we use a DNN as described in
Fig. 1 with a softmax layer and trained on train 2M (Table 1)
with 50% dropout [26] in the linear layer. The utterance-level
approach outperforms the frame-level approach by 30%. Score
normalization gives a substantial performance boost (up to 20%
relative) in either case. For comparison, two i-vector baselines

Table 2: Equal error rates for frame-level and utterance-level
speaker representations.

EER (%)
level system raw t-norm
frame i-vector [6] 5.77 5.11

i-vector+PLDA [27] 4.66 4.89
DNN, softmax [4] 3.86 3.32

utterance DNN, softmax 2.90 2.28

are shown. The first baseline is based on [6], and uses 13 PLPs
with first-order and second-order derivatives, 1024 Gaussians,
and 300-dimensional i-vectors. The second baseline is based
on [27] with 150 eigenvoices. The i-vector+PLDA baseline
should be taken with a grain of salt as the PLDA model was
only trained on a subset of the 2M train data set (4k speakers
and 50 utterances per speaker) due to limitations of our current
implementation.1 Also, this baseline does not include other re-
fining techniques such as ”uncertainty training” [10] that have
been reported to give substantial additional gains under certain

1However, training with only 30 utterances per speaker gives almost
the same results.
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conditions. Note that compared to [15], we have improved our
d-vectors significantly [4].

5.3. Softmax vs. End-to-End Loss
Next, we compare the softmax loss (Section 2) and end-to-end
loss (Section 4) for training utterance-level speaker representa-
tions. Table 3 shows the equal error rates for the DNN in Fig. 1.
If trained on the small training set (train 2M), the error rates on
the raw scores are comparable for the different loss functions.
While dropout gives a 1% absolute gain for softmax, we did not
observe a gain from dropout for the end-to-end loss. Similarly,
t-normalization helps by 20% for softmax, but not at all for the
end-to-end loss. This result is in agreement with the degree of
consistency between the training loss and the evaluation met-
ric. In particular, the end-to-end approach assuming a global
threshold in training (see Eq. (1)), can implicitly learn normal-
ized scores that are invariant under different noise conditions
etc. and makes score normalization redundant. When using the
softmax DNN for initialization of the end-to-end training, the
error rate is reduced from 2.86% to 2.25%, suggesting an esti-
mation problem.

If trained on the larger training set (train 22M), the end-to-
end loss clearly outperforms softmax, see Table 3. To reason-
ably scale the softmax layer to 80k speaker labels, we employed
candidate sampling, similar to [20]. Again, t-normalization
helps by 20% for softmax and softmax can catch up with the
other losses, which do not benefit from t-normalization. The
initialization for end-to-end training (random vs. ”pre-trained”
softmax DNN) does not make a difference in this case.

Although the step time for the end-to-end approach is larger
than for softmax with candidate sampling because the speaker
model is computed on the fly, the overall convergence times are
comparable.

Table 3: Equal error rates for different losses, ? is with candi-
date sampling.

EER (%), raw / t-norm
loss train 2M train 22M
softmax 2.90 / 2.28 2.69 / 2.08?

end-to-end 2.86 / 2.85 2.04 / 2.14

The optimal choice of the number of utterances used to es-
timate the speaker model in training, referred to as the speaker
model size, depends on the (average) number of enrollment
utterances. In practice, however, smaller speaker model sizes
may be more attractive to reduce the training time and make the
training harder. Fig. 4 shows the dependency of the test equal
error rate on the speaker model size, i.e., the number of utter-
ances used to estimate the speaker model. There is a relatively
broad optimum around a model size of 5 with 2.04% equal error
rate, compared to 2.25% for a model size of 1. This model size
is close to the true average model size, which is 6 for our en-
rollment set. Similar trends are observed for the other configu-
rations in this paper (not shown). This indicates the consistency
of the proposed training algorithm with the verification protocol
and suggests that task-specific training tends to be better.

5.4. Feedforward vs. Recurrent Neural Networks
So far we focused on the ”small footprint” DNN in Fig. 1 with
one locally-connected and three fully-connected hidden layers.
Next, we explore larger and different network architectures, re-
gardless of their size and computational complexity. The results
are summarized in Table 4. Compared to the small footprint
DNN, the ”best” DNN uses an additional hidden layer and gives
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Figure 4: Speaker model size vs. equal error rate (EER).

a 10% relative gain. The LSTM in Fig. 3 adds another 30% gain
over this best DNN. The number of parameters is comparable
to that of the DNN but the LSTM involves about ten times more
multiplications and additions. More hyperparameter tuning will
hopefully bring the computational complexity further down to
make it feasible. Slightly worse error rates are achieved with
the softmax loss (using t-normalization, candidate sampling,
dropout, and possibly early stopping, which were all not needed
for the end-to-end approach). On train 2M, we observed similar
relative gains in error rate over the respective DNN baselines.

Table 4: Equal error rates for different model architectures
using end-to-end training, † is with t-norm score normalization
and trained only on the smaller training set.

EER (%)
frame-level DNN baseline 3.32†

DNN, ”small footprint” 2.04
DNN, ”best” 1.87
LSTM 1.36

6. Summary & Conclusion

We proposed a novel end-to-end approach to speaker verifica-
tion, which directly maps the utterance to a score and jointly
optimizes the internal speaker representation and the speaker
model using the same loss for training and evaluation. Assum-
ing sufficient training data, the proposed approach improved our
best small footprint DNN baseline from over 3% to 2% equal
error rate on our internal ”Ok Google” benchmark. Most of
the gain came from the utterance-level vs. frame-level mod-
eling. Compared to other losses, the end-to-end loss achieved
the same or slightly better results but with fewer additional con-
cepts. In case of softmax, for example, we obtained compara-
ble error rates only when using score normalization at runtime,
candidate sampling to make training feasible, and dropout in
training. Furthermore, we showed that the equal error rate can
further be reduced to 1.4% using a recurrent neural network in-
stead of a simple deep neural network, although at higher com-
putational runtime cost. By comparison, a reasonable but not
fully state-of-the-art i-vector/PLDA system gave 4.7%. Clearly,
more comparative studies are needed. Nevertheless, we believe
that our approach demonstrates a promising new direction for
big data verification applications.
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Abstract
This work compares the performance of deep Locally-

Connected Networks (LCN) and Convolutional Neural Net-
works (CNN) for text-dependent speaker recognition. These
topologies model the local time-frequency correlations of the
speech signal better, using only a fraction of the number of
parameters of a fully connected Deep Neural Network (DNN)
used in previous works. We show that both a LCN and CNN
can reduce the total model footprint to 30% of the original size
compared to a baseline fully-connected DNN, with minimal im-
pact in performance or latency. In addition, when matching pa-
rameters, the LCN improves speaker verification performance,
as measured by equal error rate (EER), by 8% relative over the
baseline without increasing model size or computation. Simi-
larly, a CNN improves EER by 10% relative over the baseline
for the same model size but with increased computation.

1. Introduction
Speaker Verification (SV) is the process of verifying, based on
a speaker’s known utterances, whether an utterance belongs to
the speaker. When the lexicon of the spoken utterances is con-
strained to a single word or phrase across all users, the process
is referred to as global password Text-Dependent Speaker Ver-
ification (TD-SV). By constraining the lexicon, TD-SV com-
pensates for phonetic variability, which poses a significant chal-
lenge in SV [1]. At Google, we target a global password TD-
SV where the spoken password is given by: “Ok Google”. This
particularly short, approximately 0.6 seconds long global pass-
word was chosen as it relates to the Google Keyword Spotting
system [2] and Google VoiceSearch [3], facilitating the combi-
nation of all three systems.

Our goal is to create a small footprint TD-SV system that
can run in real-time in space-constrained mobile platforms. Our
constraints are a) total number of model parameters must be
small (e.g. 0.8M parameters), and b) total number of operations
must be small (e.g. 1.5M multiplications), in order to keep la-
tency below 40ms on most platforms. Previous work [4] intro-
duced our baseline system and compared it to the more standard
i-vector approach. This system used a fully-connected Deep
Neural Network (DNN) to extract a speaker-discriminative fea-
ture, “d-vector”, from each utterance. Utterance d-vectors were
incrementally computed frame by frame, and improved latency
by avoiding the computational costs associated with the latent
variables of a factor analysis model [5], which occurred after
utterance completion.

In this paper, we explore alternative architectures to the
fully-connected feed-forward DNN architecture used to com-

pute d-vectors, with the goal of improving the equal error
rate (EER) of the SV system while limiting and even reduc-
ing the number of parameters and latency. We explore locally-
connected (LCN) and convolutional neural network (CNN) [6]
architectures; these architectures focus on exploiting the local
correlations of the speech signal. Both LCNs and CNNs are
based on local receptive fields (i.e. patches), whose charac-
teristic shape is sparse but locally dense. LCNs and CNNs
have been widely used in image processing [7] and more re-
cently in speech processing too [8, 9, 10]. Unlike in previous
works, this paper uses LCNs and CNNs to directly compute
speaker discriminative features while simultaneously constrain-
ing the size and latency of the model. In this paper we show
that LCNs and CNNs can reduce the number of parameters in
the first hidden layer by an order of magnitude with minimal
performance degradation. We also show that for the same num-
ber of parameters, LCNs and CNNs can achieve better perfor-
mance than fully-connected layers. Finally, we propose apply-
ing LCNs over CNNs in our global password TD-SV system
because LCNs have lower latency.

This paper is organized as follows: Section 2 describes the
baseline fully-connected d-vector system. Section 3 describes
the LCNs and CNNs that are explored in this paper. Section
4 presents the results of two experiments: the first experiment
compares models that differ only in the first hidden layer, while
the second experiment compares models of the same size. Sec-
tion 5 concludes the paper.

2. d-vector Baseline Model
Figure 1 contains the complete topology of the baseline fully-
connected DNN and its position in the SV pipeline. Let xt be
the input features of the input layer at time t. xt is formed by
stacking q-dimensional mel-filterbank vectors by l contextual
vectors to the left and r contextual vectors to the right; the total
number of stacked frames is l + r + 1. Therefore, there are
v = q(l + r + 1) visible units per input xt. The hidden layers
contain units with a rectified linear unit (ReLU) activation. Each
hidden layer contains k units.

The output of the DNN is a softmax layer which corre-
sponds to the number of speakers in the development set, N .
Each input has a target label, which is an integer correspond-
ing to speaker identity. See [4] for details. The DNN is trained
using the cross-entropy criterion.

For enrollment, the parameters of the DNN are fixed. We
derive the d-vector speaker feature from output activations of
the last hidden layer (before the softmax layer). To compute the
d-vector, for every input xt of a given utterance, we compute

Copyright © 2015 ISCA September 6-10, 2015, Dresden, Germany
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Figure 1: Pipeline process from the waveform to the final score (left). DNN topology (middle). DNN description (right).

the output activations ht
j of the last hidden layer j, using stan-

dard feed-forward propagation. Then we take the element-wise
maximum of activations to form the compact representation of
that utterance, the d-vector ~d. Thus, the ith component of the
k-dimensional d-vector ~d is given by:

~di = max
t

(ht
ji) (1)

Note that in the computation of ~d we do not use any of the
parameters in the output layer, which can be discarded. Thus,
for M hidden layers, the number of total weights w in real-time
system is given by:

w = vk + (M − 1)k2 (2)

Each utterance generates exactly one d-vector. For enroll-
ment, a speaker provides a few utterances of the global pass-
word; the d-vector from each of these utterances is averaged
together to form a speaker model that is used for speaker verifi-
cation, similar to the original i-vector model [11].

During evaluation, the scoring function is the cosine dis-
tance between the speaker model d-vector and the d-vector of
an evaluation utterance.

3. Optimizing Local Connections
In order for our SV system to run in real-time on space-
constrained platforms, the size of the DNN feature extractor
must be small. However, in a fully-connected model with large
number of visible units v, the term vk dominates over the rest of
terms in Eq. 2; the first hidden layer accounts for most of the pa-
rameters. For example, our baseline model is a fully-connected
DNN model with v = 48×48 input elements and k = 256 hid-
den nodes in each of M = 4 hidden layers, such that the input
layer accounts for the 75% of the model parameters. Similarly,
in the previous work [4], the input layer accounted for 70% of
the network parameters. Direct methods to reduce DNN size
include reducing the number of hidden layers, reducing the in-
put size by using fewer stacked context frames, and reducing
the number of hidden nodes per layer; however, Table 1 shows
that reducing the number of layers, context size, or hidden units
strongly hurts performance. Therefore, in order to limit model
size, this paper focuses on reducing the size of the first hidden
layer using alternative architectures.

Although the first hidden layer contains most of our base-
line fully-connected DNN model’s weights, the weight matri-

Layers Patch Depth Weights Multiplies EER
4

48× 48 256 787k 787k 3.88
3 721k 721k 4.16

4
48× 48

256
787k 787k 3.88

20× 48 442k 442k 4.05
5× 48 258k 258k 5.04

4 48× 48
256 787k 787k 3.88
128 344k 344k 5.53

Table 1: Baseline results for various configurations of fully-
connected networks: with variable number of layers (top),
with variable context sizes (middle) and with variable number
of nodes (bottom.) The “Weights” column is the number of
weights in each model, and represents the model footprint. The
“Multiplies” column corresponds to the number of multiplica-
tions required for computing the feed-forward neural net, and
represents the latency impact.

Figure 2: Weight matrices of first fully-connected layer in
DNN. The weight matrices are sparse with well-localized non-
zero weights.

ces of the first fully-connected hidden layer are very sparse and
low-rank; Fig. 2 shows visualizations of the weight matrices
from the first hidden layer. Previous works have taken note
of DNN sparsity and attempted to train networks that are less
sparse [12], or iteratively prune low-value weights [13]. We
observe that the sparse non-zero weights are clumped close to-
gether, not scattered throughout the matrix, such that a small
patch could span over the well-localized non-zero weights. This
is important because we rely heavily on parallel SIMD opera-
tions (as in [14]) to efficiently compute neural nets using small
dense matrices rather than large and sparse matrices. In this
work, we seek to use LCN and CNN layers to take advantage of
the sparse and local nature of the DNN to constrain the model
size while improving performance.
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Locally-Connected Layer

Convolutional Layer

Zero weights Non-zero weights

Fully-Connected Layer

Figure 3: In a fully-connected input layer, each filter contains
non-zero weights for each input element. In a LCN input layer,
each filter is only non-zero for a subset of the input elements,
and different filters may cover different subsets of the input.
While each filter in a LCN layer covers only one patch of the
input, each filter in a CNN layer covers all the patches in the
input through convolution. Each patterned square corresponds
to a filter matrix.

3.1. Locally Connected DNNs

To reduce the model size, we experiment with explicitly enforc-
ing sparsity in the first hidden layer by using a LCN layer [6].
When using local connections, each of the hidden activations is
the result of processing a locally-connected “patch” of v, rather
than all of v as done in fully-connected DNNs. Fig. 3 com-
pares the weight matrices of a fully-connected layer and a LCN
layer, emphasizing how a LCN layer is equivalent to a sparse
fully-connected layer.

Previous works suggested that any reasonable tiling of the
input space, including random patches, could be sufficient to
obtain high performance [15, 16]. Thus, as more sophisticated
approaches may not be necessary, we use LCN with square
patches of size p × p that perfectly tile the input elements in
a grid with no gaps. Let v be the number of input features, p the
width and length of the square patch, n = v/p2 the number of
patches over the input and flcn is the number of filters over each
patch. Then, the total number of filters used by the LCN layer
is given by nflcn, while the number of weights in the network
is:

w = vflcn + nflcnk + (M − 2)k2 (3)

Here k denotes the number of nodes of the rest of the hid-
den layers in the network. Note by comparing (2) and (3)
that the variables flcn and n offer finer control over the num-
ber of parameters in the network. The first two hidden layers
are influenced by flcn, while remaining hidden layers have k2

weights. One interpretation of local connections is that they
enforce patch-based sparse matrices when training; given the
sparse filters in the first fully-connected hidden layer (Figure
3), local connections are a natural fit. By using a LCN layer, we
are implementing a sparse-coding with hand-crafted bases.

Figure 4: Filters from LCN layer with 12x12 patches.

Figure 5: Filters from CNN layer with 12x12 patches.

3.2. Convolutional Neural Networks

As Figure 4 shows, several LCN filters appear similar, suggest-
ing further compression is possible. This motivates us to look
at CNNs to reduce model size further. Like LCN, CNN also de-
fine a topology where local receptive fields, or patches, are used
to model the local correlations in the input [7]. However, unlike
LCN layers—where each filter is applied to a single patch in the
input—in CNN layers, filters are convolved, such that all filters
are applied to every input patch. (Figure 3). This approach
may be interpreted as using a unique set of fcnn filters repeated
over all patches, versus using n sets of localized filters, each
of size flcn, as in LCN. As several LCN filters appeared similar
in Figure 4, this strategy of sharing filters suggests that further
compression is possible. Furthermore, previous work suggested
that CNNs are particularly good in handling noisy or reverber-
ant conditions [17, 18].

CNN layers take orders of magnitude more multiplications
to compute than similarly sized fully-connected or LCN layers.
In order to keep latency under 40ms on our target platforms, we
limit our experiments to CNN configurations with 1.5M mul-
tiplications; under this constraint, the only configurations we
consider are filters that shift with very large strides of size p
when convolving. We do not using pooling layers, as they re-
duce speaker variance [19]. Given a 48 × 48 input, we present
experiment results for CNN layers with 4 24 × 24 patches, 16
12× 12 patches, or 64 6× 6 patches.

We compute the number of weights in a model with CNN
first hidden layer as follows. Let v be the number of input fea-
tures, p the width and length of square patch filter, n = v/p2

the number of patches, fcnn be the number filters from first hid-
den layer, and k be the number of nodes in the rest of the hidden
layers; then the number of weights for a CNN model is

w = fcnnp
2 + nfcnnk + (M − 2)k2

Unlike fully-connected and LCN models, the number of
multiplications necessary to compute the CNN model is not
equal to the number of model weights. The number of multi-
plications required to compute a CNN model is

vfcnn + nfcnnk + (M − 2)k2

Some of the filters learned by CNN layer can be seen in
Figure 5. The CNN filters appear to be smoother and sparser
than the LCN filters in Figure 4.
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4. Experiment results
The experiments are performed on a small footprint global pass-
word TD-SV task. The spoken password in all our datasets
is given by “Ok Google” and samples are collected from
anonymized real traffic from the Google KWS system [2]. The
training set for our neural networks contains 3,200 anonymized
speakers speaking, with an average of ∼745 repetitions per
speaker. Repetitions are recorded in multiple sessions in a wide
variety of environments, including multiple devices and lan-
guages. A non-overlapped set of 3,000 speakers are present for
enrollment and evaluation. Each speaker in the evaluation set
enrolls with 3 to 9 utterances and it is evaluated with 7 positive
utterances. In our results, all possible trials were considered,
leading to ∼21k target trials and ∼6.3M non-target trials. Re-
sults are reported in Equal Error Rate (EER). We found that
relative differences with other operating points are preserved.

The hidden layers generally contain 256 nodes, except in
Section 4.3, when our experiment calls for matching the num-
ber of parameters between different model architectures. The
focus of this paper is on experimenting with variations of the
first hidden layer, which processes the input frames.

4.1. Baseline system

Our baseline system is a fully-connected neural network with 4
fully-connected hidden layers of 256 nodes each, described in
Figure 1 and Section 2. Our baseline system is similar to our
DNN in previous work [4], but more recent experiments sug-
gested the following optimizations: a) maxout layers have been
replaced by fully-connected layers with rectified linear units, b)
in Eq. 1, the dimension-wise max function replaces the aver-
age function used before c) visible input elements are given by
matrices of 48 × 48 elements instead of 41 × 40, which gives
us more flexibility in the configuration of patches. Note that
48× 48 facilitates the definition of square patches as it is divis-
ible by 24, 12, 8, 6, 4, 3 and 2.

4.2. Compressing first hidden layer

We experiment with only modifying the first hidden layer, fixing
the last three hidden layers as fully-connected layers with 256
nodes, 66k weight parameters each. For LCN layers and CNN
layers, we experiment with three patch sizes: 24 × 24, 12 ×
12, 6 × 6. In order to achieve 256 output nodes from the first
hidden layer, the depth of each layer is varied with the type of
layer and patch size. For example, a fully-connected layer with
depth of 256 would have 256 output nodes. A LCN layer with
24 × 24 patch size with depth of 64 would generate 4 patches
with depth 64, for a total of 256 output nodes as well.

Table 2 shows the configuration and equal error rate (EER)
for each experimental model, as well model footprint and la-
tency information. This experiment shows that the baseline
fully-connected first hidden layer can be reduced from 590k pa-
rameters to 37k (6% of baseline layer) parameters with about
4% increase in EER by using a LCN layer with 12×12 patches
or a CNN layer with 24× 24 patches. For 4% increase in EER,
we have LCN and CNN models that are 30% the size of the
baseline model; in this experiment, the best LCN model and
the best CNN model have the same number of parameters and
similar EER.

4.3. Improve performance given size constraint

Section 4.2 focuses on reducing model size, allowing the EER
to increase above that of the baseline model. In this section, we

Patch Depth Weights Multiplies EER
Fully 48× 48 256 787k 787k 3.88

LCN
24× 24 64 345k 345k 4.11
12× 12 16 234k 234k 4.02
6× 6 4 206k 206k 4.54

CNN
24× 24 64 234k 345k 4.04
12× 12 16 199k 234k 4.24
6× 6 4 197k 206k 4.45

Table 2: Compare fully-connected, LCN, and CNN first hidden
layer. First hidden layer has 256 outputs, while the remaining
hidden layers have 256 inputs and 256 outputs. “Weights” cor-
responds to model size. “Multiplies” corresponds to latency.

focus on closely matching the model size across different ex-
perimental models and decreasing EER. The model size is im-
portant for resource-constrained platforms. To match the model
size, the first hidden layer is no longer constrained to have 256
hidden units, allowing us to increase the depth of the LCN and
CNN layers. The last two hidden layers are fully-connected,
have 256 inputs and outputs, and contain 66k weights.

Table 3 shows the EER, number of weights (model size),
and number of multiplications (latency) for each experimental
model. When parameters are matched, every LCN and CNN
experimental model has smaller EER than that of the baseline
fully-connected model. With approximately the same num-
ber of weights and multiplications, LCN model with 12 × 12
patches has EER that is 8% lower than baseline model. With
approximately the same number of weights and 90% more mul-
tiplications, CNN model with 24 × 24 patches has EER that is
10% lower than the baseline model. When the number of model
parameters is held constant, CNN models have better perfor-
mance than LCN models.

Patch Depth Weights Multiplies EER
Fully 48× 48 256 787k 787k 3.88

LCN
24× 24 197 787k 787k 3.71
12× 12 102 784k 784k 3.60
6× 6 35 786k 786k 3.75

CNN
24× 24 411 789k 1499k 3.52
24× 24 154 785k 1117k 3.75
24× 24 40 788k 879k 3.87

Table 3: Match total number of parameters, holding last 2
hidden layers constant while varying the first 2 hidden layers.
“Weights” corresponds to model size. “Multiplies” corresponds
to latency.

5. Conclusions
In this paper, we compare two alternative neural network layer
architectures to a fully-connected baseline for small footprint
text-dependent speaker verification. Both LCN and CNN lay-
ers can be used to shrink model size to 30% of baseline with
a 4% relative increase in EER (Table 2). When model size is
held constant, CNN model is preferred because it reduces base-
line EER by 10% relatively, versus 8% for LCN model of the
same size (Table 3). If latency, which corresponds to number
of model multiplications, is constrained, then the LCN model is
preferred because it uses 52% fewer multiplications than CNN
model, though LCN model has slightly higher EER.
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Abstract
This work explores the use of Long Short-Term Memory

(LSTM) recurrent neural networks (RNNs) for automatic lan-
guage identification (LID). The use of RNNs is motivated by
their better ability in modeling sequences with respect to feed
forward networks used in previous works. We show that LSTM
RNNs can effectively exploit temporal dependencies in acoustic
data, learning relevant features for language discrimination pur-
poses. The proposed approach is compared to baseline i-vector
and feed forward Deep Neural Network (DNN) systems in the
NIST Language Recognition Evaluation 2009 dataset. We show
LSTM RNNs achieve better performance than our best DNN
system with an order of magnitude fewer parameters. Further,
the combination of the different systems leads to significant per-
formance improvements (up to 28%).

1. Introduction
The problem of automatic language identification (LID) can be
defined as the process of automatically identifying the language
of a given spoken utterance [1]. LID is daily used in several
applications such as multilingual translation systems or emer-
gency call routing, where the response time of a fluent native
operator might be critical [1] [2].

Even though several high level approaches based on phono-
tactic and prosody are used as meaningful complementary
sources of information [3][4][5], nowadays, many state-of-the-
art LID systems still include or rely on acoustic modelling
[6][7]. In particular, guided by the advances on speaker veri-
fication, the use of i-vector extractors as a front-end followed
by diverse classification mechanisms has become the state-of-
the-art in acoustic LID systems [8][9].

In [10] we found Deep feeed forward Neural Networks
(DNNs) to surpass i-vector based approaches when dealing with
very short test utterances (≤3s) and large amount of training
material is available (≥20h per language). Unlike previous
works on using neural networks for LID [11] [12] [13], this
was, to the best of our knowledge, the first time that a DNN
scheme was applied at large scale for LID, and benchmarked
against alternative state-of-the-art approaches.

Long Short-Term Memory (LSTM) recurrent neural net-
works (RNNs) [14, 15, 16] have recently been shown to out-
perform the state of the art DNN systems for acoustic model-
ing in large vocabulary speech recognition [17, 18]. Recurrent
connections and special network units called memory blocks in
the recurrent hidden layer in LSTM RNNs make them a more
powerful tool to model sequence data than feed forward neural
networks and conventional RNNs. The memory blocks contain

memory cells with self-connections storing the temporal state
of the network which changes with the input to the network at
each time step. In addition, they have multiplicative units called
gates to control the flow of information into the memory cell and
out of the cell to the rest of the network. This allows the net-
work to model temporal sequences such as speech signals and
their complex long-range correlations.

In this paper, we propose LSTM RNNs for automatic lan-
guage identification. Our motivation is that LSTM RNNs’ ef-
fectiveness in modeling temporal dependencies in the acoustic
signal can help learning long-range discriminative features over
the input sequence for language identification. To assess the
proposed method’s performance we experiment on the NIST
Language Recognition Evaluation 2009 (LRE’09). We focus
on short test utterances (up to 3s). We show that LSTM RNNs
perform better than feed forward neural networks with an order
of magnitude fewer parameters. Besides, they learn comple-
mentary features to DNNs and we get significant improvements
by combining the scores from DNN and LSTM RNN systems.

The rest of this paper is organized as follows. Section 2
presents the i-vector based baseline system and the feed forward
DNN architecture. Section 3 is devoted to present the LSTM
RNN architecture. The fusion and calibration procedure is pre-
sented in Section 4. The experimental protocol and datasets
used are then described in section 5. Results are discussed in
section 6. Finally, conclusions are presented in Section 7.

2. Baseline Systems
To establish a baseline framework, we built a classical i-vector
based acoustic system and three different DNNs based LID sys-
tems by varying the number of hidden layers. Baseline systems
are summarized below and we refer to [10] for a more detailed
description.

2.1. i-vector Based LID Systems

The i-vector system follows the standard procedure described
in [8]. It is based on an Universal Background Model consist-
ing of 1024 Gaussian components, trained on 39 dimensional
PLP coefficients (13 + ∆ + ∆∆). From Baum-Welch statistics
computed over this UBM, we derived a Total Variability (TV)
space of 400 dimensions. Our TV model is trained using a PCA
followed by 10 EM iterations.

We adopted a classical classification scheme based on
Linear Discriminant Analysis followed by Cosine Distance
(LDA CS). Thus, the similarity measure (score) for a given test
utterance i-vector w, and the mean i-vector wL of the language

Copyright © 2014 ISCA 14-18 September 2014, Singapore
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Figure 1: DNN network topology

L is given by

Sw,wL =
(Atw)(AtwL)√

(Atw)(Atw)
√

(AtwL)(AtwL)
(1)

being A is the LDA matrix.
In [10] we provided a more detailed comparison between

state-of-the-art i-vector and DNN -based LID system over the
Google 5M dataset. In this work we opted for a LDA CS base-
line as it is a widely used technique and offers comparable re-
sults with the DNN model on the public LRE’09 dataset [10].

The total number of parameters of the i-vector system ac-
counts for the TV and LDA matrices. It is given by NFD +
D(NL − 1), being N , F , D and NL the number of Gaussians
components (1024), the feature dimension (39) the i-vector di-
mensions (400) and the number of languages (8). In our model,
this makes a total of ∼16M of parameters.

2.2. DNN-based LID System

The DNN architecture used in this work is a fully connected
feed-forward neural network [19]. The hidden layers contain
units with rectified linear activation functions. The output is
configured as a softmax layer with a cross-entropy cost func-
tion. Each hidden layer contains h (2560) units while the out-
put layer dimension (s) corresponds to the number of target lan-
guages (NL) plus one extra output for the out-of-set (oos) lan-
guages.

The DNN works at frame level, using the same features
as the baseline systems described above (39 PLP). The input
layer is fed with 21 frames formed by stacking the current pro-
cessed frame and its±10 left-right context. Therefore, there are
819 (21 × 39) visible units, v. The number of total weights w,
considering Nhl hidden layers can be then easily computed as
w = vh+ (Nhl−1)hh+ sh. Figure 1 represents the complete
topology of the network.

Regarding the training parameters, we used asynchronous
stochastic gradient descent within the DistBelief framework
[20]. We also fixed the learning rate and minibatch size to 1e-03
and 200 samples.
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Figure 2: Long Short-Term Memory recurrent neural network
architecture. A single memory block is shown for clarity.

Finally, we computed the output scores at utterance level
by respectively averaging the log of the softmax output of all its
frames (i.e. log of the predicted posterior probabilities).

3. Long Short-Term Memory RNNs
The modern LSTM RNN architecture [14, 15, 16] is shown
in Figure 2. The LSTM contains special units called memory
blocks in the recurrent hidden layer. The memory blocks con-
tain memory cells with self-connections storing the temporal
state of the network in addition to special multiplicative units
called gates to control the flow of information. The input gate
controls the flow of input activations into the memory cell. The
output gate controls the output flow of cell activations into the
rest of the network. The forget gate scales the internal state
of the cell before adding it as input to the cell through self-
recurrent connection of the cell, therefore adaptively forgetting
or resetting the cell’s memory. In addition, the LSTM RNN ar-
chitecture contains peephole connections from its internal cells
to the gates in the same cell to learn precise timing of the out-
puts [16].

With this architecture, LSTM RNNs compute a mapping
from an input sequence x = (x1, ..., xT ) to an output sequence
y = (y1, ..., yT ). They calculate the activations for network
units using the following equations iteratively from the time
step t = 1 to T :

it = σ(Wixxt +Wirrt−1 +Wicct−1 + bi) (2)
ft = σ(Wfxxt +Wfrrt−1 +Wfcct−1 + bf ) (3)

ct = ft � ct−1 + it � tanh(Wcxxt +Wcrrt−1 + bc) (4)
ot = σ(Woxxt +Worrt−1 +Wocct + bo) (5)

rt = ot � tanh(ct) (6)
yt = φ(Wyrrt + by) (7)

where the W terms denote weight matrices (e.g. Wix

is the matrix of weights from the input gate to the input),
Wic,Wfc,Woc are diagonal weight matrices for peephole con-
nections, the b terms denote bias vectors (bi is the input gate
bias vector), σ is the logistic sigmoid function, and i, f , o and
c are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the cell
output activation vector r, � is the element-wise product of the
vectors, tanh is the hyperbolic tangent activation function for
cell inputs and cell outputs, and φ is the softmax output activa-
tion function for the LSTM RNN models used in this paper.
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The LSTM RNN architecture that we used in this paper
contains 512 memory cells. Different than DNNs, the input to
the network is just 39-dimensional PLP features calculated at a
given time step with no stacking of acoustic frames. The total
number of parameters N ignoring the biases can be calculated
asN = ni×nc×4+nc×nc×4+nc×no+nc×3, where nc

is the number of memory cells, ni is the number of input units,
and no is the number of output units.

We trained the LSTM RNN model using asynchronous
stochastic gradient descent (ASGD) and the truncated back-
propagation through time (BPTT) learning algorithm [21]
within a distributed training framework [18, 22]. Activations
are forward propagated for a fixed step time of 20 over a sub-
sequence of an input utterance, the cross entropy gradients are
computed for this subsequence and backpropagated to its start.
For better randomization of gradients in ASGD and stability of
training, we split the training utterances into random chunks of
length between 2.5 and 3 seconds. We also set the same target
language id sparsely for a chunk, 1 in every 5 frames for the
experiments in this paper. The errors are only calculated for
the frames that we set a target language id. We used 100 ma-
chines for distributed training and in each machine 4 concurrent
threads each processing a batch of 4 subsequences. We used an
exponentially decaying learning rate of 1e-04. For scoring, we
computed an utterance level score for each target language by
averaging the log of the softmax outputs for that target language
of all the frames in an utterance.

4. Fusion and Calibration
We used multiclass logistic regression in order to combine and
calibrate the output of individual LID systems [23]. Let skL(xt)
be the log-likelihood score for the recognizer k and language L
for utterance xt. We derive combined scores as

ŝL(xt) =

K∑

k=1

αkskL(xt) + βL (8)

Note that this is just a generic version of the product rule combi-
nation, parametrized by α and β. Defining a multiclass logistic
regression model for the class posterior as

P (L|ŝL(xt)) =
exp(ŝL(xt))∑
l exp(ŝl(xt))

(9)

we found α and β to maximize the global log-posterior in a
held-out dataset

Q(α1, ..., αK , β1, ...βN ) =

T∑

t=1

NL∑

l=1

δtlP (L|ŝl(xt)) (10)

being

δtL

{
wL, if xt ∈ L
0, otherwise.

(11)

where wl (l = 1, ..., NL) is a weight vector which normalizes
the number of samples for every language in the development
set (typically, wL = 1 if an equal number of samples per lan-
guage is used). This fusion and calibration procedure was con-
ducted through the FoCal toolkit [24].

5. Datasets and Evaluation Metrics
5.1. The NIST Language Recognition Evaluation dataset

The LRE evaluation in 2009 included data coming from two dif-
ferent audio sources. Besides Conversational Telephone Speech
(CTS), used in the previous evaluations, telephone speech from
broadcast news was used for both training and test purposes.
Broadcast data were obtained via an automatic acquisition sys-
tem from “Voice of America” news (VOA) where telephone and
non-telephone speech is mixed. Up to 2TB of 8KHz raw data
containing radio broadcast speech, with the corresponding lan-
guage and audio source labels were distributed to participants;
and a total of 40 languages (23 target and 17 out of set) were
included.

Due to the large disparity on training material for every lan-
guage (from ∼10 to ∼950 hours) and also, for the sake of clar-
ity, we selected 8 representative languages for which up to 200
hours of audio are available: US English (en), Spanish (es), Dari
(fa), French (fr), Pashto (ps), Russian (ru), Urdu (ur), Chinese
Mandarin (zh). Further, to avoid misleading result interpreta-
tion due to the unbalanced mix of CTS and VOA, all the data
considered in this dataset belongs to VOA.

For evaluation, we used a subset of the official NIST LRE
2009 3s condition evaluation set (as for training, we also dis-
carded CTS test segments), yielding a total of 2916 test seg-
ments of the 8 selected languages. That makes a total of 23328
trials.

5.2. Evaluation metrics

In order to assess the performance, two different metrics were
used. As the main error measure to evaluate the capabilities
of one-vs.-all language detection, we use Cavg (average cost)
as defined in the LRE 2009 [25][26] evaluation plan. Cavg is
a measure of the cost of taking bad decisions, and therefore it
considers not only discrimination, but also the ability of setting
optimal thresholds (i. e. calibration). Further, the well-known
metric Equal Error Rate (EER) is used to show the performance,
when considering only scores of each individual language. De-
tailed information can be found in the LRE’09 evaluation plan
[25].

6. Experimental Results
6.1. Standalone systems performance

In [10] we found DNNs to outperform several different i-vector
based systems when dealing with short test durations and large
amount of training data (>20h per language). We followed up
those experiments by first exploring the use of LSTM RNNs as
a natural approach to exploit useful temporal information for
LID; and second exploring the effect of varying the number of
hidden layers in the DNN architecture.

Table 1 summarizes the results obtained in terms of EER
(per language and on average) and Cavg . At a first glance,
we highlight two major results. First, the proposed LSTM
RNN architecture better performance than our best DNN sys-
tem with 4 hidden layers. This fact is particularly interesting
taking into account that the proposed LSTM RNN contains 20
times fewer parameters (see Size column in Table 1). Addition-
ally, note from the Cavg values that the scores produced by the
LSTM RNN model are better calibrated than those produced
by DNN or i-vector systems. Second, both neural networks ap-
proaches (DNNs and LSTM RNN) surpass the i-vector system
performance by ∼47% and ∼52% in EER and Cavg respec-
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Equal Error Rate (EER in %)

Size en es fa fr ps ru ur zh EERavg Cavg

i-vector LDA CS ∼16M 17.22 10.92 20.03 15.30 19.98 14.87 18.74 10.09 15.89 0.1968
DNN 2 layers ∼8M 12.66 5.04 19.67 8.60 17.84 8.75 14.78 5.54 11.61 0.1727
DNN 4 layers ∼21M 8.53 3.58 16.19 5.82 15.42 6.38 11.24 3.16 8.79 0.1292
DNN 8 layers ∼48M 8.65 3.74 17.22 7.53 16.01 5.59 13.10 4.82 9.58 0.1376
LSTM RNN ∼1M 5.81 3.23 17.46 6.42 12.52 6.16 9.91 5.30 8.35 0.0944

Fusion1 ∼22M 5.19 2.16 13.67 4.12 10.82 3.98 8.20 3.91 6.51 0.0693
Fusion2 ∼38M 5.34 2.09 12.80 4.24 9.83 4.39 7.62 3.76 6.26 0.0654
Fusion3 ∼94M 5.42 2.95 12.01 4.40 10.98 4.01 8.20 3.76 6.47 0.0649

Table 1: Systems performance per language and average metrics on LRE’09 subset (3s test segments)

tively. This result confirms the ability of the proposed neural
networks architectures to exploit discriminative information in
large datasets.

A further analysis regarding the optimal depth of the DNN
system shows that the 4-hidden layer topology outperforms the
2-hidden layers one and more interestingly, the 8-hidden layers
topology. In particular, the DNN 4 layers achieved, in average,
∼8% better EER than the DNN 8 layers despite of using just
half of the parameters.

6.2. Systems combination performance

In this section we aim to analyze the score correlation among
LSTM, DNN and i-vector systems and in particular, how that
can lead to a good combination strategy. For this purpose de-
fined three different groups of systems and combined them us-
ing the multiclass logistic regression framework presented in
Section 4. The three groups defined bellow represent various
tradeoffs between performance and number of parameters.

• Fusion1: this group is composed by the DNN 4 layers
and LSTM RNN systems. This combination strategy al-
low us to evaluate the fusion capabilities of the proposed
DNN and LSTM RNN architectures.

• Fusion2: this group incorporates the i-vector system to
the compound Fusion1 system. It analyzes the com-
plementarity between neural networks and a classical i-
vector approach.

• Fusion3: this group includes DNN 2 layers and
DNN 8 layers to the systems in Fusion2 to explore a
global fusion for all the developed systems.

Fusion results are collected in Table 1. As observed, the com-
bination of the best DNN system and LSTM (Fusion1) gets a
>25% gain of performance in terms ofCavg with respect to our
best individual LSTM RNN system. This fact shows that de-
spite of the presumable similarity of the approaches (both neural
nets trained via ASGD), they produce uncorrelated scores that
can be successfully combined. Further improvements achieved
by Fusion2 highlights the degree of complementary between i-
vectors, DNN and LSTM RNN systems. This result is partic-
ularly interesting taking into account the gap of performance
between Fusion1 and i-vector LDA CS. Finally, we present the
fusion of all the developed systems in Fusion3. As expected,
different DNN topologies exploit correlated information, which
turns into a not significant improvement over Fusion2.

7. Conclusions
In this work, we proposed a new approach to Automatic Lan-
guage Identification (LID) based on Long Short Term Memory
(LSTM) Recurrent Neural Networks (RNNs). Motivated by the
recent success of Deep Neural Networks (DNNs) for LID, we
explored LSTM RNNs as a natural architecture to include tem-
poral contextual information within a neural network system.

We compared the proposed system with an i-vector based
system and different configurations of feed forward DNNs. Re-
sults on NIST LRE 2009 (8 languages selected and 3s condi-
tion) show that LSTM RNN architecture achieves better perfor-
mance than our best 4 layers DNN system using 20 times fewer
parameters (∼1M vs ∼21M ). In addition, we found LSTM
RNN scores to be better calibrated than those produced by the
i-vector or the DNN systems.

This work also shows that both LSTM RNN and DNN sys-
tems remarkably surpass the performance of the individual i-
vector system. Furthermore, both neural network approaches
can be combined leading to a improvement of >25% in terms
ofCavg with respect to our best individual LSTM RNN system.
Our best combined system also incorporates the scores from the
i-vector system leading to a total improvement of 28%.
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ABSTRACT

We propose providing additional utterance-level features as inputs
to a deep neural network (DNN) to facilitate speaker, channel and
background normalization. Modifications of the basic algorithm are
developed which result in significant reductions in word error rates
(WERs). The algorithms are shown to combine well with speaker
adaptation by backpropagation, resulting in a 9% relative WER re-
duction. We address implementation of the algorithm for a streaming
task.

Index Terms— Deep neural networks, large vocabulary speech
recognition, Voice Search, i-vectors, speaker adaptation.

1. INTRODUCTION

Deep neural networks have come to prominence as acoustic models
in recent years, surpassing the performance of the previous domi-
nant paradigm, Gaussian Mixture Models (GMMs). One of the most
powerful techniques for improving the accuracy of GMM speech
models has been speaker adaptation wherein a speaker independent
model is adapted on a small amount of data from a single speaker,
with the resulting speaker-specific model performing better on test
data from that speaker. Several studies [1, 2, 3] have shown that
speaker adaptation is less effective with DNNs than with GMM
acoustic models, partly because of the greater invariance of DNNs
to speaker variations and their higher baseline accuracy.

Nevertheless, these studies do show that deep networks can be
made more invariant to speaker variability. One of the problems with
speaker adaptation is that it is hard to adapt a large number of param-
eters with only a small amount of data. Care must be taken to change
the parameters sufficiently to have an effect without overfitting on
the new data. Further, speaker adaptation results in a new model, or
part-model, for each speaker which, in a cloud-based speech recog-
nizer adds significant complexity and storage.
1.1. Deep networks

Recent results by many groups [4] have shown significant accuracy
improvements over GMMs by using DNNs either to generate the
GMM features or to directly estimate the acoustic model scores.
Neural networks consist of many simple units which each compute
a weighted sum of the activations of other units, and output an ac-
tivation which is a nonlinear function of that sum. Typically these
units are arranged in layers which receive input from the units in the
previous layer, with the first layer computing a weighted sum of ex-
ternally provided features, such as the filterbank energies of frames
of speech. These networks can be trained to approximate a desired
output function by the backpropagation of the error in the output
compared to a target value provided for each training input example.
We have previously applied hybrid DNNs for acoustic modelling in
Google’s VoiceSearch [5, 6] and YouTube [7] applications.

1.2. Speaker adaptation (of DNNs)

The classic techniques for speaker adaptation of Gaussian Mixture
Models are (Constrained) Maximum Likelihood Linear Regression
(CMLLR) [8, 9]) and Maximum A Posteriori modelling [10]. In the
former, a linear transformation, computed to maximize the likeli-
hood of the adaptation data, is applied to the features. This technique
has been applied to the features input to a neural network, but has the
limitation of requiring the transform to be computed with a GMM
which also limits the dimensionality and types of features which can
be used. We have found that the gains from using high dimensional,
stacked mel scale log filterbank energies over using conventional
low-dimensional speech features outweigh the gains from being able
to do CMLLR adaptation. Bacchiani [11] has shown that GMMs can
be speaker-adaptated using utterance i-vectors (Section 2).

Abrash et al. [2] showed that neural networks can be adapted
by training an input transform or adapting the whole network with
backpropagation, and Liao [3] has recently shown that these tech-
niques can be applied to DNNs with millions of parameters, although
the gains are smaller on larger networks which are inherently more
speaker-independent than smaller networks.

Ström [12] showed that a neural network system trained with
speaker identities could be used at inference time without knowing
the speaker’s identity, inferring a speaker space vector and reduc-
ing the WER by 2.5% relative. Abdel-Hamid and Jiang [13, 14] re-
cently proposed providing speaker adaptation in a DNN by learning
a similar speaker code which is used to compute speaker-normalized
features. In experiments on the TIMIT dataset, they used backprop-
agation to learn a separate code for each speaker. This speaker code
was then used as an input to the network for utterances by the same
speaker. These experiments showed 5% relative phone error rate re-
ductions with DNNs.

Seltzer et al. [15] have shown that augmenting the inputs of a
neural network with an estimate of background noise level can im-
prove the robustness of such a network to background noise. This
“noise-aware” training gave a 4% relative improvement compared to
a DNN baseline using the dropout technique.

While this paper was under review, Saon et al. published a
study [16] in which they augment DNN inputs with speaker i-vector
features, whereas we use utterance i-vectors in a similar manner.
They demonstrate a 10% relative reduction in WER on the 300 hour
Switchboard task.

2. I-VECTORS

In the speaker recognition community utterances are typically rep-
resented by a supervector, whose components are the Maximum A
Posteriori (MAP) adaptation coefficients of a large Gaussian Mixture
Model (GMM) known as the Universal Background Model (UBM).
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A number of factors such as the speaker identity and so-called
session factors can contribute to the variability in the parameters N
and F . Session factors include undesired variation associated with
the utterance length, phonetic dependency and environmental con-
ditions. In the last few years Factor Analysis (FA) has proved to
be successful in modelling these components of variability as low
dimensional latent variables (i.e. manifolds).

Several alternative FA methods have been used for speaker
recognition, namely Joint Factor Analysis (JFA) [17], Total Variabil-
ity (TV) [18] and more recently, Probabilistic Linear Discriminant
Analysis (PLDA) [19]. Unlike JFA, where the undesired session
variability and the useful speaker variability are explicitly modelled
as two non-overlapping manifolds, the TV model has shown superior
performance by modelling all sources of variability in the supervec-
tor as a single manifold. A point in this space of latent variables is
referred as an “identity vector”, or i-vector. The PLDA model can
be seen as a combination of the previous two techniques, focused on
extracting the speaker variability from the utterance i-vector.

Since they provide a compact representation of speaker and ses-
sion factors that we wish a speech recognition system to be invariant
to, i-vectors and other FA-based factors have been used in the past
for rapid speaker adaptation of speech recognition systems. How-
ever, most of these contributions were based on classical HMM-
based acoustic models. The Eigenvoices model [20] uses short-term
HMM-derived speaker factors (i.e. eigenvoices) to bring a general
speech recognition model closer to a particular speaker, and Bacchi-
ani [11] used i-vectors for a better modelling of session variability,
demonstrating an 11% WER reduction..

2.1. Computing i-vectors

Utterance supervectors are typically represented by the accumulated
and centered zero- and first-order Baum-Welch statistics, N and F
respectively. N and F statistics are computed from a UBM, denoted
by λ. For UBM mixture m ∈ 1, . . . , C, with mean, µm, the corre-
sponding zero- and centered first-order statistics are aggregated over
all frames in the database:

Nm =
∑

t

P (m|ot, λ), (1)

Fm =
∑

t

P (m|ot, λ)(ot − µm), (2)

where P (m|ot, λ) is the Gaussian occupation probability for the
mixture m given the spectral feature observation ot ∈ <D at time
t. The TV model can be seen as a classical FA generative model
[21], with observed variables given by the vector of stacked statis-
tics F = {F1, F2, . . . , Fm}. The TV model defines a set of hidden
variables x ∈ <L : P (x) = N (0, I) and a Gaussian distribution
P (x|F ) that represents the utterance. In order to formulate P (x|F ),
the model imposes a Gaussian distribution over P (F |x), which re-
lates observed and hidden variables in terms of a the rectangular low
rank matrix T ∈ <CD×L:

P (F | x) = N (NTx,Σ), (3)

being Σ ∈ <CD×CD a diagonal covariance matrix in the space of
F . Here, N denotes a diagonal matrix of size CD×CD formed by
C diagonal blocks of size D ×D where the m-th component block
is given the matrix NmI(D×D).

The utterance i-vector is defined as the value of x that maxi-
mizes P (x|F ) -the mean value-. For the imposed values of P (x)
and P (F |x) the i-vector is formulated as:

x = (I + T tΣ−1NT )−1T tΣ−1F, (4)

Size Context Layers Units per Output ParamsL R layer states
Small 10 5 4 480 1000 1.5M
Medium 10 5 6 512 2000 2.7M
Large 16 5 6 2176 14247 70M

Table 1: Parameters for the fully-connected sigmoid neural net-
works with softmax outputs.

The TV model is thus a data driven model with parameters
{λ, T,Σ}. In [18] the authors provide a more detailed explanation
of deriving these parameters, using the EM algorithm.

3. ADAPTING DNNS WITH I-VECTORS

Here we propose the idea that i-vectors can be used as input features
for neural networks, resulting in improved recognition. i-vectors
encode precisely those effects to which we want our ASR system
to be invariant: speaker, channel and background noise. While the
targets to which we normally train are independent of these factors,
providing the network with a characterisation of them at the input
should enable it to normalise the signal with respect to them and
thus better able to make its outputs invariant to them.

Consequently, we propose augmenting the traditional acoustic
input features with the utterance i-vector. A network which takes
a context window of c frames of d dimensional acoustic features is
augmented with v i-vector dimensions resulting in a cd + v dimen-
sional input, as shown in Figure 1.
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Fig. 1: Diagram of a 2-hidden layer neural network with inputs aug-
mented with i-vectors.

As with traditional cross-entropy training, frames from the train-
ing data are randomly selected and stacked with the appropriate con-
text window but all frames from a given utterance are augmented
with the same v dimensional utterance i-vector.

3.1. Baseline Experiments

In our first experiments we trained three different sizes of network,
with and without utterance i-vectors. The network configurations
were chosen to suit both “cloud” speech recognition on a conven-
tional server as well as two sizes of “embedded” speech recog-
nizers designed to run on mobile phones of different processing
power. Each network is fully connected with logistic sigmoid hid-
den layers and softmax outputs, receiving stacked 25ms frames of
40-dimensional Mel filterbank energy features as input. The number
of parameters in the baseline networks are shown in Table 1, with
the augmented networks having slightly more parameters in the ini-
tial layer because of the increased input dimension. All the networks
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are trained from random initialization with exponentially decaying
learning rates.

The networks are trained on a corpus of 3 million utterances
(about 1,750 hours) of US English Google voice search and dictation
traffic, anonymized and hand-transcribed. This data is endpointed
and aligned using a high accuracy server-sized neural network with
14247 context dependent (CD) states. For the smaller networks these
state symbols are mapped through equivalence classes down to the
smaller state inventories. During training, CD state frame accuracies
are evaluated on the training data and on a held out development set
of 200,000 frames. Word Error Rates (WERs) are measured on a test
set of 23,000 hand-transcribed utterances sampled from live traffic.
Training is by stochastic gradient descent with a minibatch size of
200 frames on a Graphics Processing Unit.

The parameters of the TV model, including the UBM, were also
trained on this corpus. The UBM was trained with 1024 mixtures
computed from 13 perceptual linear prediction coefficients with
delta and delta-delta features appended. The matrix Σ was built by
stacking the diagonal covariance matrices and never updated, while
the matrix T was initialized using PCA and updated with 10 EM
iterations for 300 latent variables.
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Fig. 2: Frame accuracies against billions of training samples on
training and held-out dev sets during training for the larger network,
with and without i-vector inputs.

Model size Baseline i-vector
WER Frame acc. WER Frame acc.

Small 17.8 55.4 18.2 58.5
Medium 15.0 55.0 15.5 59.1
Large 11.0 57.1 12.3 59.1

Table 2: WERs and development set frame accuracy for baseline
and with inputs augmented by 300 i-vector dimensions.

Figure 2 shows the progress of development set and training set
frame accuracies during training of the small networks, and Table
2 shows the corresponding WERs. Early in training the i-vectors
give a significant (3%) increase in development set frame accuracy
and a larger (6%) increase in training set frame accuracy. As train-
ing progresses, the margin between training and dev-set accuracy
diminishes, but the margin for the i-vector-augmented network re-
mains much larger than for the baseline (2% vs 0.8%). From these

graphs we infer that the network is able to use the i-vector to pre-
dict the frame classes, but is overfitting to the i-vector and is unable
to use this information during decoding, resulting in higher WERs.
Alternatively, it is possible that many voice search utterances are
very short -only a few hundreds of voiced frames- and the 300-
dimensional i-vectors estimate is not reliable. Both conjectures will
explored in the next section.

4. REGULARIZATION

To avoid the overfitting we investigated two solutions:

1. Reduce the information content of the i-vectors.

2. Regularize the network parameters.

The first solution attempts to reduce the overfitting by limiting
the amount of information presented to the network. To this end
we truncate the i-vectors to a smaller dimension before augment-
ing the input vector. Arbitrarily the first k elements of the vec-
tor are preserved. Table 3 shows that reducing the dimensionality
of the i-vector results in a lower WER, with the greatest gains be-
ing made with the smaller networks. Having validated the use of

Model size i-vector dimensions (k)
0 20 50 100 200 300

Small 17.8 17.0 17.2 17.4 17.9 18.2
Medium 15.0 14.5 14.5 14.5 15.2 15.5
Large 11.0 10.9 10.9 11.2 11.8 12.3

Table 3: WERs when augmenting the network inputs with truncated
i-vector inputs.

lower dimensional i-vectors, we trained low dimensional TV matri-
cess with 20 and 50 dimensions and repeated the above experiment
with these i-vectors. We found that training a medium network with
a 20-dimensional i-vector led to a WER of 14.4%, outperforming
the 300-dimensional i-vector truncated to 20 dimensions, but a 50-
dimensional i-vector performing worse, at 14.9% WER.

The second solution begins with a network trained without any
i-vector information. This network’s input layer’s weight matrix is
augmented with weights, initially set to zero, from 300 additional
inputs. The network is then trained further with i-vector-augmented
inputs, but with `2 regularization (weight decay) back to the original
weights, i.e. adding a term to the loss function proportional to the
sum-squared difference between the network’s weights and those of
the network before i-vector augmentation. Experimentation found
good results with a weight decay parameter of 10−7 to 10−6. The
small, medium and large networks were augmented, before full con-
vergence, at 12, 10 and 4 billion frames respectively. Table 4 shows

Training Original Regularization
10−7 10−6

Small 17.8 17.2 17.3
Medium 15.0 14.5 14.6
Large 11.0 10.6 10.8

Table 4: WERs when training an i-vector-augmented network while
regularizing back to the original weights.

the results of this regularization. We see that the regularized net-
works have a lower WER than the original, unaugmented features,
and that the large regularized network outperforms the correspond-
ing network trained with truncated i-vectors.
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5. COMBINING WITH ADAPTATION

In this section we explore the interaction between using utterance
i-vectors for invariance and the use of adaptation to provide speaker
invariance. Liao [3] describes how training on an adaptation set for a
particular speaker using backpropagation with `2 regularization back
to the original, speaker-independent, model can reduce WERs on test
data from the same speaker.

Here we compare our technique with this approach and show
that the two can be used in combination to achieve even lower er-
ror rates. These experiments are conducted with the best “Medium”
models only. We use the same personalization training and test sets
used by Liao. These have 10 minutes of adaptation data for each of
80 speakers, and a total of 10,000 utterances (72,000 words) from the
same 80 speakers in the test set. We report average word error rates
across the entire test set. We use the “enrollment” protocol, i.e. the
training data is manually transcribed and force-aligned with a large
DNN model. The baseline model is adapted to each speaker’s data
with multiple passes. We continue to use the same, exponentially
decaying learning rate, and an `2 regularization weight of 0.01. We
find the best performance after 1 million frames of adaptation.

The results are shown in Table 5. As can be seen, the adapted
baseline model achieves a lower word error rate than with the un-
adapted i-vector-augmented models, but when the latter are also
adapted, their WER is also reduced, bringing a total of 9% rela-
tive WER reduction from the combined technique for the truncated
i-vectors.

Model Unadapted Adapted
Baseline model 15.3 14.4
300 dim Regularized (10−7) model 14.9 14.3
20-dim i-vector model 14.7 14.0

Table 5: WERs for medium DNNs on the personalization test set
representing 80 speakers, using speaker independent models and
models adapted on 10 minutes of data per speaker (with 1 million
frames of adaptation).

6. STREAMING IMPLEMENTATION

One limitation of this approach is that the i-vector representation we
are using is computed on an entire utterance, and thus can only be
computed when all the data for an utterance is available. Our prin-
cipal application is real-time transcription of utterances from mo-
bile devices with minimum latency, which involves processing ut-
terances as they are being spoken and streaming results back to the
user even before the utterance is complete. This approach produces
a very responsive speech interaction on the device, but means that
whole-utterance approaches cannot be used in practice, although fast
rescoring with the augmented models could be applied without in-
troducing too much overall latency.

To address this incompatibility with our application we inves-
tigated using speaker-averaged i-vectors in place of utterance i-
vectors. Here we compute an averaged speaker i-vector on the 10-
minute adaptation set and used this for decoding the speaker’s per-
sonalization data using the models trained above on per-utterance
i-vectors. As can be seen in Table 6, the mismatched average i-
vectors are not useful in decoding on a model trained with utterance
i-vectors. In addition to matched training with speaker i-vectors,
there are a number of alternative ways of training with ivectors for a
streaming application which we will investigate in the future.

Model Utterance Speaker
Baseline model 15.3
300 dim Regularized (10−7) model 14.9 15.3
20-dim i-vector model 14.7 15.5

Table 6: WERs for medium DNNs on the 80 speaker personalization
test set using speaker and utterance i-vectors in decoding.

• On-line computation of the i-vectors: We can compute the
i-vectors based on the data so far, or use the d-Vector pro-
posed by Variani et al. [22] computed, like our posteriors,
based on a sliding window of frames.

• Use of the i-vector from the speaker’s previous utterance
Within a session, we expect variations in background noise,
channel and speaker to be small, so the i-vector of the previ-
ous utterance may still be sufficient to provide invariance to
these factors.

7. COMPARISON TO SIMILAR WORK

As noted earlier, Saon et al. published a similar work [16] while
this paper was under review. They also augment the DNN input,
but use the speaker i-vector for all utterances by the speaker, both
in training and testing. Their DNNs are trained on LDA-projected
PLP features from a narrow window which allow the use of con-
ventional speaker adaptation. They show better performance with
higher dimensional speaker i-vectors and obtain 10% relative WER
reduction over speaker-independent features — their greater gains
perhaps being due to the poorer baseline features used. They also
demonstrated that i-vector augmentation combined well with a con-
ventional speaker adaptation technique (CMLLR). They found that
the i-vector dimension had to be at least 100, and in addition found
that this technique was was beneficial in combination with sequence-
discriminative training.

8. CONCLUSIONS

We have shown that using the utterance i-vectors as input features
provides the neural networks with valuable information that, with
the regularization we propose, bring about roughly a 4% relative re-
duction in word error rate for all model sizes. These techniques can
be applied on any utterance, without requiring any speaker informa-
tion or speaker adaptation or model storage. The technique has been
shown to combine well with model adaptation, delivering an overall
9% WER reduction for models that are small enough to be run in
real-time in a smart-phone, which are ideal candidates for speaker-
adapted models.

These improvements are directly applicable to non-realtime ap-
plications, but are not well suited to a streaming scenario. We have
proposed a variety of methods to address this in future work, but us-
ing the speaker i-vector in place of the utterance i-vector at test time
did not help. It will be instructive to further investigate the relative
benefit of using speaker i-vectors compared to utterance i-vectors
which are far more noisy (particularly on short utterances) but offer
independence to variations other than speaker identity.
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ABSTRACT
In this paper we investigate the use of deep neural networks (DNNs)
for a small footprint text-dependent speaker verification task. At de-
velopment stage, a DNN is trained to classify speakers at the frame-
level. During speaker enrollment, the trained DNN is used to extract
speaker specific features from the last hidden layer. The average of
these speaker features, or d-vector, is taken as the speaker model.
At evaluation stage, a d-vector is extracted for each utterance and
compared to the enrolled speaker model to make a verification deci-
sion. Experimental results show the DNN based speaker verification
system achieves good performance compared to a popular i-vector
system on a small footprint text-dependent speaker verification task.
In addition, the DNN based system is more robust to additive noise
and outperforms the i-vector system at low False Rejection operat-
ing points. Finally the combined system outperforms the i-vector
system by 14% and 25% relative in equal error rate (EER) for clean
and noisy conditions respectively.

Index Terms— Deep neural networks, speaker verification.

1. INTRODUCTION

Speaker verification (SV) is the task of accepting or rejecting the
identity claim of a speaker based on the information from his/her
speech signal. Based on the text to be spoken, the SV systems can be
classified into two categories, text-dependent and text-independent.
Text-dependent SV systems require the speech to be produced from
a fixed or prompted text phrase, while the text-independent SV sys-
tems operate on unconstrained speech. In this paper, we focus on a
small footprint text-dependent SV task using fixed-text, although the
proposed technique may be extended to text-independent tasks.

The SV process can be divided into three phases:

• Development: background models are trained from a large
collection of data to define the speaker manifold. Background
models vary from simple Gaussian mixture model (GMM)
based Universal Background Models (UBMs) [1] to more so-
phisticated Joint Factor Analysis (JFA) based models [2, 3, 4].

• Enrollment: new speakers are enrolled by deriving speaker
specific information to obtain speaker-dependent models.
Speakers in the enrollment and development sets are not over-
lapped.

• Evaluation: each test utterance is evaluated using the enrolled
speaker models and background models. A decision is made
on the identity claim.

∗Research conducted as an intern at Google.

A wide variety of SV systems have been studied using different
statistical tools for each of the three phases in verification. The state-
of-the-art SV systems are based on i-vectors [5] and Probabilistic
Linear Discriminant Analysis (PLDA). In these systems, JFA is used
as a feature extractor to extract a low-dimensional i-vector as the
compact representation of a speech utterance for SV.

Motivated by the powerful feature extraction capability and re-
cent success of deep neural networks (DNNs) applied to speech
recognition [6], we propose a SV technique based on DNN as the
speaker feature extractor. A new type of DNN-based background
model is used to directly model the speaker space. A DNN is trained
to map frame-level features in a given context to the correspond-
ing speaker identity target. During enrollment, the speaker model
is computed as the average of activations derived from the last DNN
hidden layer, which we refer to as a deep vector or “d-vector”. In the
evaluation phase, we make decisions using the distance between the
target d-vector and the test d-vector, similar to i-vector SV systems.
One significant advantage of using DNNs for SV is that it is easy to
integrate them into a state-of-the-art speech recognition system since
they can share the same DNN inference engine and simple filterbank
energies frontend.

The rest of this paper is organized as follows. In Section 2, pre-
vious related work on SV is described. In Section 3 we describe the
proposed DNN-based SV system. Section 4 shows the experimental
results for a small footprint text-dependent SV system. The DNN-
based SV system is compared with an i-vector system in both clean
and noisy conditions. We also evaluate the performance with dif-
ferent numbers of enrollment utterances and describe improvements
from combination of two systems. Finally, Section 5 concludes the
paper and discusses future work.

2. PREVIOUS WORK

The combination of i-vector and PLDA [5, 7] has become the dom-
inant approach for text-independent speaker recognition. The i-
vector represents an utterance in a low-dimensional space named
total variability space. Given an utterance, the speaker- and session-
dependent GMM supervector is defined as follows:

M = m + Tw (1)

where m is the speaker- and session-independent supervector, usu-
ally taken to be the UBM supervector, T is a rectangular matrix of
low rank, referred to as the total variability matrix (TVM), and w is
a random vector with a standard normal distribution N(0, I). The
vector w contains the total factors and is referred to as the i-vector.
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Fig. 1. The background DNN model for speaker verification.

Moreover, the PLDA on the i-vectors can decompose the total vari-
ability into speaker and session variability more effectively com-
pared to JFA. The i-vector-PLDA technique and its variants have
also been successfully used in text-dependent speaker recognition
tasks [8, 9, 10].

In past studies, neural networks have been investigated for
speaker recognition [11, 12]. Being nonlinear classifiers, neural net-
works can discriminate the characteristics of different speakers. The
neural network was typically used as a binary classifier of target and
non-target speakers, or multicategory classifiers for speaker identi-
fication purposes. Auto-associative neural networks (AANN) [13]
were proposed to use the reconstruction error difference computed
from the UBM-AANN and speaker specific AANN as the verifica-
tion score. Multi-layer perceptrons (MLPs) with a bottleneck layer
have been used to derive robust features for speaker recognition [14].
More recently, some preliminary studies have been conducted on us-
ing deep learning for speaker recognition, such as the use of convolu-
tional deep belief networks [15] and Boltzmann machine classifiers
[16].

3. DNN FOR SPEAKER VERIFICATION

The proposed background DNN model for SV is depicted in Fig-
ure 1. The idea is similar to [15] in the sense that neural networks
are used to learn speaker specific features. The main differences are
that here we perform supervised training, and use DNNs instead of
convolutional neural networks. In addition, in this paper we evaluate
on a SV task instead of the simpler speaker identification task.

3.1. DNN as a feature extractor

At the heart of the proposed approach in this work is the idea of using
a DNN architecture as a speaker feature extractor. As in the i-vector
approach, we look for a more abstract and compact representation of
the speaker acoustic frames but using a DNN rather than a generative
Factor Analysis model.

With this aim, we first built a supervised DNN, operating at the
frame level, to classify the speakers in the development set. The
input of this background network is formed by stacking each training
frame with its left and right context frames. The number of outputs

corresponds to the number of speakers in the development set, N .
The target labels are formed as a 1-hot N -dimensional vector where
the only non-zero component is the one corresponding to the speaker
identity. Figure 1 illustrates the DNN topology.

Once the DNN has been trained successfully, we use the accu-
mulated output activations of the last hidden layer as a new speaker
representation. That is, for every frame of a given utterance belong-
ing to a new speaker, we compute the output activations of the last
hidden layer using standard feedforward propagation in the trained
DNN, and then accumulate those activations to form a new compact
representation of that speaker, the d-vector. We choose to use the
output from the last hidden layer instead of the softmax output layer
due to a couple of reasons. First, we can reduce the DNN model size
for runtime by pruning away the output layer, and this also enables
us to use a large number of development speakers without increasing
DNN size at runtime. Second, we have observed better generaliza-
tion to unseen speakers from the last hidden layer output.

The underlying hypothesis here is that the trained DNN, having
learned compact representations of the development set speakers in
the output of the last hidden layer, may also be able to represent
unseen speakers.

3.2. Enrollment and evaluation

Given a set of utterances Xs = {Os1 , Os2 , . . . , Osn} from a
speaker s, with observations Osi = {o1, o2, . . . , om}, the process
of enrollment can be described as follows. First, we use every ob-
servation oj in utterance Osi , together with its context, to feed the
supervised trained DNN. The output of the last hidden layer is then
obtained, L2 normalized, and accumulated for all the observations
oj in Osi . We refer to the resulting accumulated vector as the d-
vector associated with the utterance Osi . The final representation of
the speaker s is derived by averaging all d-vectors corresponding for
utterances in Xs.

During the evaluation phase, we first extract the normalized d-
vector from the test utterance. Then we compute the cosine distance
between the test d-vector and the claimed speaker’s d-vector. A ver-
ification decision is made by comparing the distance to a threshold.

3.3. DNN training procedure

Given the low-resource conditions of the scenario explored in this
study (see Section 4), we trained the background DNN as a maxout
DNN using dropout [17][18].

Dropout is a useful strategy to prevent over-fitting in DNN fine-
tuning when using a small training set [18][19]. In essence, the
dropout training procedure consists of randomly omitting certain
hidden units for each training token. Maxout DNNs [17] were con-
ceived to properly exploit dropout properties. Maxout networks dif-
fer from the standard multi-layer perceptron (MLP) in that hidden
units at each layer are divided into non-overlapping groups. Each
group generates a single activation via the max pooling operation.
Training of maxout networks can optimize the activation function
for each unit.

Specifically, in this study, we trained a maxout DNN with four
hidden layers and 256 nodes per layer, within the DistBelief frame-
work [20]. A pool size of 2 is used per layer. The first two layers do
not use dropout while the last two layers drop 50 percent of activa-
tions after dropout, as shown in Figure 1.

Regarding other configuration parameters, we used rectified lin-
ear units [21] as the non-linear activation function on hidden units
and a learning rate of 0.001 with exponential decay (0.1 every
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5M steps). The input of the DNN is formed by stacking the 40-
dimensional log filterbank energy features extracted from a given
frame, together with its context, 30 frames to the left and 10 frames
to the right. The dimension of the training target vectors is 496,
which is the same as the number of speakers in the development set
(see Section 4). The final maxout DNN model contains about 600K
parameters, which is similar to the smallest baseline i-vector system.

4. EXPERIMENTAL RESULTS

The experiments are performed on a small footprint text-dependent
SV task. The data set contains 646 speakers speaking the same
phrase, “ok google”, many times in multiple sessions. The gen-
der distribution is balanced on the data set. 496 randomly selected
speakers are used for training the background model and the remain-
ing 150 speakers were used for enrollment and evaluation. The num-
ber of utterances per speaker for background model training varies
from 60 to 130. For the enrollment speakers, the first 20 utterances
are reserved for possible use in enrollment and the remaining utter-
ances are used for evaluation. By default, we only use the first 4
utterances of the enrollment set for extracting speaker models. We
used one out of 150 trials as a target trial and there are approximately
12750 trials in total.

4.1. Baseline system

In this small footprint text-dependent SV task, we aim to keep the
model size small while achieving good performance. The base-
line system is an i-vector based SV system similar to [5]. The
GMM UBM is trained on 13-dimensional perceptual linear predic-
tive (PLP) features with ∆ and ∆∆ features appended. We evaluate
the equal error rate (EER) performance of the i-vector system with
three different model sizes. The number of Gaussian components in
the UBM, the dimension of the i-vectors and the dimension of Linear
Discriminant Analysis (LDA) output are varied. The TVM is initial-
ized using PCA and further refined using 10 EM iterations, while
for UBM training we used 7 EM iterations. As shown in Table 1,
the i-vector system performance degrades with reduced model size
but not too significantly. The EER results with t-norm [22] for score
normalization are consistently much better than with the raw scores.
The smallest i-vector system contains about 540K parameters and
is used as our baseline system.

Table 1. Comparison of EER results of i-vector systems with differ-
ent number of UBM Gaussian components, i-vector and LDA output
dimensions.

#Gaussians i-vector LDA #Params EER EER
Dim Dim (raw) (t-norm)

1024 300 200 12.2M 2.92% 2.29%
256 200 100 2.1M 3.11% 2.92%
128 100 100 540K 3.50% 2.83%

4.2. DNN verification system

The left plot in Figure 2 shows the detection error tradeoff (DET)
curve comparison of the i-vector system and d-vector system. One
interesting finding is that in the d-vector system the raw scores are
slightly better than the t-norm scores, whereas in the i-vector system
the t-norm scores are significantly better. The histogram analysis
of the raw scores of the d-vector system indicates the distribution
is heavy-tailed instead of a normal distribution. This suggests more

sophisticated score normalization methods may be necessary for the
d-vector SV system. Moreover, since t-norm requires extra storage
and computation at runtime, we evaluate the d-vector systems using
raw scores for the following experiments unless specified.

The overall performance of the i-vector system is better than the
d-vector system: 2.83% EER using i-vector t-norm scores versus
4.54% with d-vector raw scores. However, in low False Rejection
regions, as shown in right bottom part of the plots in Figure 2, the
d-vector system outperforms the i-vector system.

We also experiment with different configurations for DNN train-
ing. Without maxout and dropout techniques, the EER of the trained
DNN is about 2% absolute worse. Increasing the number of nodes to
512 in the hidden layers does not help significantly, while reducing
the number of nodes to 128 gives much worse EER at 7.0%. Reduc-
ing the context window size to 10 frames on the left and 5 frames on
the right also degrades the EER performance to 5.67%.

4.3. Effect of enrollment data

In d-vector SV system, there are no speaker adaptation statistics in-
volved in the enrollment phase. Instead, the background DNN model
is used to extract speaker-specific features for each utterance in both
enrollment and evaluation phases. In this experiment we investigate
how much the verification performance changes in the d-vector sys-
tem with different numbers of enrollment utterances per speaker. We
compare the performance results using 4, 8, 12 and 20 utterances for
speaker enrollment.

Table 2. EER results of i-vector and d-vector verification systems
using different number of utterances for enrollment.

# utterances in enrollment
4 8 12 20

i-vector 2.83% 2.06% 1.64% 1.21%
d-vector 4.54% 3.21% 2.64% 2.00%

The EER results are listed in Table 2. It shows that both SV
systems perform better with increasing numbers of enrollment utter-
ances. The trend is similar for both systems.

4.4. Noise robustness

In practice there is usually a mismatch between development and
runtime conditions. In this experiment, we examine the robustness
of the d-vector SV system in noisy conditions and compare it with
the i-vector system. The background models are trained with clean
data. 10 dB cafeteria noise is added to the enrollment and evaluation
data. The comparison of DET curves are shown in the right plot in
Figure 2. As this figure illustrates, the performance of both systems
is degraded by noise, but the performance loss of the d-vector system
is smaller. Under 10 dB noisy environment, the overall performance
of the d-vector system is very close to the i-vector system. At oper-
ating points of 2% or lower False Rejection probability, the d-vector
system is in fact better than the i-vector system.

4.5. System combination

The results above show that the proposed d-vector system can be a
viable SV approach when compared to the i-vector system. The as-
sessment holds true mostly for noisy environments, or applications
that require small footprint model and low False Rejection rates. Al-
ternatively, here we aim to provide an analysis of a combined i/d-
vector system. Although more sophisticated combinations can be
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Fig. 2. Left: DET curve comparison between i-vector and d-vector speaker verification systems using raw and t-norm scores. Right: DET
curve comparison of the two systems in clean and noisy conditions.

Fig. 3. DET curve for the sum fusion of the i-vector and d-vector systems in clean (left) and noisy (right) conditions.

devised at the feature level, our preliminary results in Figure 3 are
obtained using a simple combination named as sum fusion, which
sums the scores provided by each individual system for each trial. A
prior t-norm stage was applied in both systems to facilitate the com-
bination of scores. Results show that the combined system outper-
forms either component system in essentially all possible operating
points and noise conditions. In terms of EER performance, the i/d-
vector system beats the i-vector system by 14% and 25% relative, in
clean and noisy conditions respectively.

5. CONCLUSIONS

In this paper we have proposed a new DNN based speaker verifica-
tion method for a small footprint text-dependent speaker verification
task. DNNs are trained to classify speakers with frame-level acous-
tic features. The trained DNN is used to extract speaker specific fea-
tures. The average of these speaker features, or d-vector, is then used
for speaker verification similarly to the popular i-vector. Experimen-
tal results show that the performance of the d-vector SV system is
reasonably good compared to an i-vector system, and system fusion

achieves much better results than the standalone i-vector system. A
simple sum fusion of these two systems can improve the i-vector sys-
tem performance in all operating points. The EER of the combined
system is 14% and 25% better than our classical i-vector system in
clean and noisy conditions respectively. Furthermore, the d-vector
system is more robust to additive noise in enrollment and evaluation
data. At low False Rejection operating points, the d-vector system
outperforms the i-vector system.

Future work includes improving the current cosine distance
scoring, as well as trying normalization schemes such as Gaussian-
ization for the raw scores. We will explore different combination
approaches, such as using a PLDA model over the the feature space
of the i-vectors and d-vectors stacked. Finally, we aim to investigate
the effect of increasing the number of development speakers and how
speaker clustering affects performance.
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ABSTRACT

Speaker identification is one of the main tasks in speech process-
ing. In addition to identification accuracy, large-scale applications
of speaker identification give rise to another challenge: fast search
in the database of speakers. In this paper, we propose a system based
on i-vectors, a current approach for speaker identification, and local-
ity sensitive hashing, an algorithm for fast nearest neighbor search
in high dimensions. The connection between the two techniques is
the cosine distance: on the one hand, we use the cosine distance to
compare i-vectors, on the other hand, locality sensitive hashing al-
lows us to quickly approximate the cosine distance in our retrieval
procedure. We evaluate our approach on a realistic data set from
YouTube with about 1,000 speakers. The results show that our al-
gorithm is approximately one to two orders of magnitude faster than
a linear search while maintaining the identification accuracy of an
i-vector-based system.

Index Terms— speaker identification, i-vectors, locality sensi-
tive hashing, kd-tree, indexing

1. INTRODUCTION

Speaker identification is one of the core problems in speech pro-
cessing and acoustic modeling. Applications of speaker identifica-
tion include authentication in security-critical systems, personalized
speech recognition and searching for speakers in large corpora [1].
Due to the increasing amount of data – especially in web-scale appli-
cations – fast processing of speech data is becoming increasingly im-
portant. While the audio corpus can usually be pre-processed offline
and in parallel, the retrieval procedure directly impacts user latency
and needs to be executed as quickly as possible. In this paper, we
study the problem of fast, text-independent speaker identification in
large corpora. Our focus is on maintaining good identification per-
formance while significantly increasing the speed of retrieval. In
order to achieve this goal, we combine an i-vector-based speaker
identification system with locality sensitive hashing (LSH) [2, 3], a
powerful tool for approximate nearest neighbor search in high di-
mensions.

In this work, we are particularly interested in searching YouTube
videos for a given speaker. YouTube is a prime example for the
challenges of fast retrieval from a large data set: per day, about 16
years of video are currently being uploaded to YouTube [4]. Even
if only a small fraction is human speech, the amount of data to be
processed for a single query is still tremendous.

We show that our LSH-based retrieval approach is around 30×
faster than a standard linear search on a realistic data set from
YouTube with around 1,000 speakers. At the same time, the identifi-
cation accuracy is still within 95% of the more expensive algorithm.
Since we use LSH to approximate the cosine distance of i-vectors,

∗Research conducted as an intern at Google.

our approach also has provable performance guarantees. Further-
more, there are implementations of LSH-based similarity search for
data sets with more than one billion items [5]. Hence our approach
promises excellent scalability for large-scale data.

2. BACKGROUND

2.1. Speaker identification with i-vectors

Robustly recognizing a speaker in spite of large inter-session vari-
ability, such as background noise or different communication chan-
nels, is one of the main limitations for speaker identification sys-
tems. In recent years, this challenge has been addressed with the
Factor Analysis (FA) paradigm, which aims to express the main “fac-
tors” contributing to the observed variability in a compact way. Ini-
tial studies in this direction led to the Join Factor Analysis (JFA)
formulation [6], where the acoustic space is divided into different
subspaces. These subspaces independently model factors associ-
ated with the session variability and factors contributing to the inter-
speaker variability, i.e., a speaker corresponds to a vector in a low-
dimensional subspace.

The JFA model evolved into the Total Variability Model (TVM)
[7], where all sources of variability (both speaker and session) are
modeled together in a single low-dimensional space. In the TVM
approach, the low-dimensional vector of latent factors for a given
utterance is called the i-vector, and i-vectors are considered suffi-
cient to represent the differences between various utterances. Now,
speaker information and undesirable session effects are separated en-
tirely in the i-vector domain. This separation step is typically carried
out via classical Linear Discriminant Analysis (LDA) and / or Within
Class Covariance Normalization (WCCN) [8]. The cosine distance
is typically used for the final comparison of a speaker reference i-
vector with an utterance i-vector [7]. Hereafter, we refer to the Total
Variability system followed by the classical LDA and WCCN simply
as Total Variability or TVM.

More recently, Probabilistic Linear Discriminant Analysis
(PLDA) [9] has been proposed to independently model the speaker
and session factors in the i-vector space with a probabilistic frame-
work. However, this method performs a more complicated hypothe-
sis test for i-vector matching, which impedes its use with LSH.

2.2. Locality sensitive hashing

The nearest neighbor problem is a core element in many search tasks:
given a set of a points {x1, . . . , xn} ⊆ X , a query point q ∈ X and
a distance function d : X × X → R+, find the point xi minimiz-
ing d(xi, q). While efficient data structures for the exact problem in
low-dimensional spaces are known, they have an exponential depen-
dence on the dimension ofX (“curse of dimensionality”). In order to
circumvent this issue, LSH offers a trade-off between accuracy and
running time. Instead of finding the exact nearest neighbor, the algo-
rithm can return an approximate nearest neighbor, with the retrieval
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time depending on the quality of the approximation. An approxima-
tion guarantee is still useful because the distance function d is often
only an approximation of the ground truth. A particular strength
of LSH is its provably sublinear running time, which also holds in
practice and has led to many applications of the algorithm [3].

In order to use LSH with a given distance function d, the al-
gorithm relies on a family of locality sensitive hash functions. In-
tuitively, a hash function is locality sensitive if two elements that
are close under d are more likely to collide. There is a large body
of research on locality sensitive hash functions for a wide range of
distance metrics, including the Euclidean distance [10], Jaccard in-
dex [11] and the cosine distance [12].

Given a family of locality sensitive hash functions, the LSH al-
gorithm builds a set of hash tables and hashes all points xi into each
hash table. For each hash table, we concatenate several locality sen-
sitive hash functions to avoid unnecessary collisions (boosting pre-
cision). We maintain several hash tables to increase the probability
of finding a close neighbor (boosting recall). Given a query point q,
we look through all hash tables to find the xi colliding with q and
then return the best match.

2.3. Related work

There is a large body of work on using LSH for audio data. A com-
mon use case is efficiently finding remixed songs or near-duplicates
in a large corpus [13, 14, 15, 16, 17, 18]. These systems are based
on low-level acoustic features such as MFCCs and then use a vari-
ety of LSH-related techniques, e.g. shingles and min-hashing. While
this approach works well for finding near-duplicate audio data, we
are interested in text-independent speaker identification and hence
require a more sophisticated acoustic model.

A recent paper [19] uses LSH for speaker identification with
privacy guarantees. The authors mention efficiency gains due to
LSH but use cryptographic hash functions and focus on the secu-
rity aspects of their work. The speaker identification step is based on
Gaussian mixture model (GMM) super-vectors without factor anal-
ysis while our work uses i-vectors. Moreover, the authors study the
performance of their system on the YOHO data set [20], which con-
sists of 138 speakers and is primarily intended for text-dependent
speaker authentication.

The most closely related work is [21]. While the authors also
employ factor analysis in their acoustic modeling step, their utter-
ance comparison model [22] is different from i-vectors. Importantly,
the authors use kernelized-LSH [23] in order to implement the dis-
tance function implied by their model. In contrast, we use the cosine
distance, which is known to give good performance for i-vectors [7]
and also provides provable guarantees in conjunction with LSH [12].
Furthermore, the authors of [21] explicitly state that the objective
of their paper is to investigate the performance of their method on
close-talk microphone recordings with matched conditions, leaving
a more robust variant that is resistant to noise for further study. In
our evaluation, we use a set of videos from YouTube that was not
recorded for speaker identification. In particular, the channel effects
in some videos are significantly different and noise is present in most
recordings.

3. LOCALITY SENSITIVE HASHING FOR SPEAKER
IDENTIFICATION

For clarity, we describe our proposed system as two separate com-
ponents: the generation of i-vectors and the fast retrieval of similar
i-vectors using LSH.

3.1. Generation of i-vectors

Given an utterance for which we want to generate an i-vector, we
first represent the utterance in terms of a large GMM, the so-called
Universal Background Model (UBM), which we parametrize with
λ. Formally, let Θ = (o1, . . . , oa) with oi ∈ RD be a sequence of
spectral observations extracted from the utterance. Then we compute
the accumulated and centered first-order Baum-Welch statistics

Nm =
∑

t

P (m|ot, λ)

Fm =
∑

t

P (m|ot, λ)(ot − µm) ,

where µm is the mean vector of mixture component m, m =
1, ..., C ranges over the mixture components of the UBM and
P (m|o, λ) is the Gaussian occupation probability for mixture m
and observation o. Hereafter, we refer to F ∈ RCD as the vector
containing the stacked statistics F = (FT

1 , . . . , F
T
C )T .

We now denote the i-vector associated with the sequence Θ as
x ∈ Rd. According to the TVM model, the vector F is related to
x via the rectangular low-rank matrix T ∈ RCD×d, known as the
TVM subspace:

N−1F = Tx ,

where N ∈ RCD×CD is a diagonal matrix with C blocks of size
D × D along the diagonal. Block m = 1, .., C is the matrix
NmI(D×D).

The constraints imposed on the distributions of P (x) and
P (F |x) lead to a closed-form solution for P (x|F ). The i-vector is
the maximum a posteriori (MAP) point estimate of this distribution
and is given by

x = (I + TT Σ−1NT )−1TT Σ−1F ,

where Σ ∈ RCD×CD is the covariance matrix of F .
Therefore, our i-vector extraction procedure depends on the ut-

terance data and the TVM model parameters λ, T and Σ. We refer
to [24] for a more detailed explanation of how to obtain these param-
eters using the EM algorithm.

If the true speaker labels for each training i-vector are known,
the final speaker i-vector is normally obtained by averaging all i-
vectors belonging to the same speaker. Since we are interested in an
unsupervised setting such as YouTube where speaker labels are not
available for most of the utterances, we do not perform this i-vector
averaging step in our system and instead keep the i-vectors of all
utterances.

3.2. Locality sensitive hashing with i-vectors

As noted in the introduction, the main goal of our work is enabling
fast retrieval of speakers. In the context of i-vector-based speaker
identification, this means the following: for a given query i-vector,
we efficiently want to find the best match in our previously com-
puted set of i-vectors. Since this task is an instance of the nearest
neighbor problem introduced above, we use LSH in order to enable
fast retrieval.

A crucial point when using LSH is the right choice of distance
function d. For i-vectors, it has been shown that the cosine distance
d(x, y) = x·y

‖x‖ ‖y‖ gives very competitive performance for speaker
identification [7]. Since the cosine distance can also be approxi-
mated well with locality sensitive hash functions [12], we use the
cosine distance in our LSH algorithm. In particular, we use hash
functions of the form

hr(x) =

{
1 if x · r ≥ 0

0 if x · r < 0
,
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where we choose r as a random Gaussian vector. Geometrically, this
hash function can be seen as hashing with a random hyperplane: r
is perpendicular to the hyperplane and the result of the hash function
indicates on which side of the hyperplane x lies. Since r has an
isotropic distribution, we have P [hr(x) = hr(y)] = 1− θ(x, y)/π,
where θ(x, y) is the angle between vectors x and y.

Our data structure has two main parameters: l, the number of
hash tables, and k, the number of hyperplanes per hash table. Let
H1, . . . , Hl be the hash tables in our data structure. We use the con-
struction from [25] in order to reduce the number of hash function
evaluations: we maintain m ≈

√
l hash functions of length k

2
and

use the
(
m
2

)
≈ l combinations as hash functions for the l hash tables.

Formally, let ui(x) = (hi
1(x), hi

2(x), . . . , hi
k/2) for i ∈ {1, . . . ,m}

and hi
j sampled as described above. Then the final hash functions for

the l hash tables are hi(x) = (ua(x), ub(x)) for all choices of a, b
such that 1 ≤ a < b ≤ m. Hence each hi hashes an i-vector x to a
string of k bits. Note that we do not need to store a full array with 2k

entries for each hash table but can instead resort to standard hashing
for large k.

For a given database of i-vectors {x1, . . . , xn} ⊂ Rd, we ini-
tialize our LSH data structure as follows: each i-vector xi is hashed
with each hash function hj and then inserted at position hj(xi) in
hash table Hj . The overall time complexity of the initialization step
is O(ndk

√
l + nl).

Algorithm 1 describes the fast retrieval procedure. The eval-
uation of the m hash functions ui in lines 2 and 3 can be effi-
ciently implemented with a vector-matrix multiplication as follows:
we stack the normal vectors of the hyperplanes as rows into a ma-
trix U ∈ Rmk/2×d. The bits used in the hash functions are then
given by sgn(Ux)+1

2
. The running time of the retrieval procedure is

O(dk
√
l+ l+M), where M is the total number of matches found.

M is typically small if the parameters k and l are properly chosen.

Algorithm 1 I-vector retrieval with LSH
1: function RETRIEVEIVECTOR(q)
2: for i← 1, . . . ,m do
3: Evaluate ui(q)

4: C ← {} . Set of candidates
5: for i← 1, . . . , l do
6: C ← C ∪Hi[hi(q)] . Add candidates
7: return arg minx∈C

x·q
‖x‖ ‖q‖ . Return best candidate

4. EXPERIMENTS

For our experiments, we focus on the main application outlined in
the introduction: searching for speakers on YouTube.

4.1. Data set

We built a data set from the Google Tech Talk channel on YouTube
[26], which contains about 1,803 videos of talks given at Google.
Many of the videos have speaker labels and contain one main
speaker. We decided on this data set because we wanted to use
YouTube data with good ground truth information while avoiding
manual labeling and speaker diarization issues.

After removing short videos and videos with more than one
speaker, our data set contains 1,111 videos with 998 distinct speak-
ers, with each video containing at least 30 minutes of the correspond-
ing talk. 74 speakers appear in at least two videos. The recording
quality of the videos varies with respect to audience noise, equip-
ment, room acoustics and the distance from the speaker to the micro-
phone. The list of videos with a unique ID for each speaker is avail-

able online at http://people.csail.mit.edu/ludwigs/
data/youtube_speakers_2013.txt.

4.2. Results

We conducted two types of experiments. For each type of exper-
iment, we studied the performance of our algorithm for utterances
of length 10, 20 and 60 seconds. The utterances were selected ran-
domly from the videos and correspond directly to segments of the
talk. Hence, the duration of speech per utterance can be less than its
nominal duration.
10tests In this setup, we divide each video into utterances of length
t and then select 10 random utterances from each video to form the
query set. The remaining utterances are used for i-vector training
and as the retrieval database.

holdout10 For each speaker with at least two videos, we select one
video randomly as the source of query i-vectors. All remaining
videos are used for i-vector training and as the retrieval database.
We then extract 10 random utterances of length t from the query
videos and use the corresponding i-vectors as query points.

The second experiment setup is significantly more challenging
as the speaker identification system has to ignore the channel mis-
match between different videos. We include results for the first type
of experiments to study the performance of our LSH data structure
under matched conditions.

Since the goal of our work is fast retrieval, we focus on the
trade-off between identification accuracy and computational effi-
ciency. We use a linear search as comparison baseline and measure
the following quantities:
Identification accuracy We count a query as identified correctly if

the speaker corresponding to the query i-vector is the same as the
speaker corresponding to the i-vector returned by the retrieval al-
gorithm. We only consider the single top-scored speaker returned
by the retrieval algorithm. The identification accuracy is then the
empirical probablity of correct identification.

Retrieval time We measure the time the retrieval algorithm takes
to return a candidate i-vector for a given query i-vector. Note that
we exclude the time for converting a query utterance to a query
i-vector. Since the time complexity of the conversion step is inde-
pendent of the size of the database, the i-vector retrieval step will
dominate the overall computational cost for large data sets.

Table 1 shows the key details of our experiments. In all experi-
ments, we used 200-dimensional i-vectors. Figures 1 and 2 illustrate
the trade-off between accuracy and performance we can achieve by
varying the parameters of our LSH data structure. All experiments
were conducted on a 3.2GHz CPU and each data point was averaged
over all query points, with 10 trials per query point.

The results show that we can achieve speedups by one to two
orders of magnitude while sacrificing only a small fraction of the
identification accuracy. For an utterance length of 20s, our retrieval
algorithm is roughly 150 times faster than the baseline on the 10tests
experiments and about 35 times faster on the holdout experiments. In
both cases, the relative accuracy is about 95% (we define relative ac-
curacy as the ratio (LSH accuracy)/(baseline accuracy)). Moreover,
we can achieve a wide range of trade-offs by varying the parameters
of our LSH data structure.

An interesting phenomenon in our results is the performance
gap between the matched and unmatched settings (10tests and hold-
out10, respectively). This discrepancy is probably due to the fact that
the i-vectors are better clustered under well-matched recording con-
ditions and consequently, the approximate guarantees of LSH have
less impact. Therefore, considering only a small number of can-
didates in the hash tables is sufficient to find a correct match. In
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Fig. 1. Speedup vs. accuracy trade-off for the 10tests experiments.
Each point corresponds to a choice of parameters for our LSH data
structure. We vary k (the number of hyperplanes) from 6 to 20 in
steps of 2 and l (the number of hash tables) from 80 to 300 in steps
of 20.

contrast, the search for matches across videos is more challenging
and hence requires iterating over a larger set of candidates.

We also compare our LSH-based retrieval algorithm with kd-
trees, another popular method for nearest neighbor search in high
dimensions [27]. In particular, we use the ANN library [28]. While
kd-trees show superior performance on the simple 10tests data set,
LSH is significantly faster on the more realistic holdout10 data set.
Again, we suppose that this difference is due to the more challenging
geometry of searching across videos.

Note that our results are not directly comparable with the
speedups reported in [21]. In addition to using LSH, the authors
also accelerate the computation of their utterance comparison model
with a kernel function and include the resulting performance im-
provement in their LSH speedup. In particular, the authors report
a speedup of 911× for a linear search using their kernel function,
compared to a full evaluation of their utterance comparison model
as baseline. Expressed in our metrics (i.e., after subtracting the time
spent on computing the vector representation), their LSH scheme
achieves a speedup of about 12× for matched conditions.

5. CONCLUSION

We have proposed a fast retrieval method for speaker identification
in large data sets. Our work is based on combining two powerful
approaches that interact via the cosine distance: locality sensitive
hashing, which enables fast nearest neighbor search, and i-vectors,
which provide good identification accuracy. Results on a realistic,
large data set from YouTube show that we can achieve speedups of
one to two orders of magnitude while sacrificing only a very small
fraction of the identification accuracy. Hence our approach is a very
promising candidate for large-scale speaker identification. More-
over, LSH could also be very useful for other large-scale applications
of i-vectors, such as clustering.
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Experiment
10tests holdout10

10s 20s 60s 10s 20s 60s
Database
size 44,348 44,394 22,213 51,736 51,803 31,104

Query
i-vectors 1,200 1,200 1,200 740 739 740

Baseline
accuracy 99.0% 99.5% 99.7% 53.4% 64.4% 74.2%

Baseline
time (ms) 6.65 6.66 3.38 7.70 7.76 4.67

LSH accu-
racy 91.0% 95.6% 98.1% 50.1% 60.6% 70.6%

LSH
time (ms) 0.071 0.045 0.023 0.495 0.220 0.132

Relative
accuracy 92.0% 96.1% 98.4% 93.8% 94.0% 95.1%

Relative
speedup 93× 149× 148× 16× 35× 35×
Hyper-
planes (k) 18 18 18 14 16 16

Hash
tables (l) 220 120 80 280 280 280

kd-tree rel.
accuracy 95.2% 96.4% 98.4% 92.9% 93.7% 95.4%

kd-tree rel.
speedup 568× 987× 773× 3.6× 2.7× 3.0×

Table 1. Summary of the data sets and results for the two
types of experiments (10tests, holdout10) and three utterance
lengths (10s, 20s, 60s). The relative accuracy is the ratio
(LSH accuracy)/(baseline accuracy) and the relative speedup is the
ratio (baseline time)/(LSH time). For each experiment, we present
a choice of parameters for our LSH data structure so that we achieve
a relative accuracy of at least 90%. The relative accuracy and
speedup for kd-trees is also reported relative to the baseline.
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ABSTRACT

This work studies the use of deep neural networks (DNNs)
to address automatic language identification (LID). Motivated
by their recent success in acoustic modelling, we adapt DNNs
to the problem of identifying the language of a given spoken
utterance from short-term acoustic features. The proposed ap-
proach is compared to state-of-the-art i-vector based acoustic
systems on two different datasets: Google 5M LID corpus and
NIST LRE 2009. Results show how LID can largely benefit
from using DNNs, especially when a large amount of training
data is available. We found relative improvements up to 70%,
in Cavg , over the baseline system.

Index Terms— Automatic Language Identification, i-
vectors, DNNs

1. INTRODUCTION

The problem of automatic language identification (LID) can
be defined as the process of automatically identifying the lan-
guage of a given spoken utterance [1]. LID is daily used in
several applications such as multilingual translation systems
or emergency call routing, where the response time of a fluent
native operator might be critical [1] [2].

Even though several high level approaches based on
phonotactic and prosody are used as meaningful comple-
mentary sources of information [3][4][5], nowadays, many
state-of-the-art LID systems still include or rely on acous-
tic modelling [6][7]. In particular, guided by the advances
on speaker verification, the use of i-vector extractors as a
front-end followed by diverse classification mechanisms has
become the state-of-the-art in acoustic LID systems [8][9].

While previous works on neural networks applied to LID
report results using shallow architectures [10][11] or convolu-
tional neural networks [12], in this study, we propose the use
of deep neural networks (DNNs) as a new method to perform
LID at the acoustic level. Deep neural networks have recently
proved to be successful in diverse and challenging machine

learning applications, such as acoustic modelling [13] [14],
visual object recognition [15] and many others [16]; espe-
cially when a large amount of training data is available.

Motivated by those results and also by the discriminative
nature of DNNs, which could complement the i-vector gener-
ative approach, we adapt DNNs to work at the acoustic frame
level to perform LID. Particularly, in this work, we build, ex-
plore and experiment with several DNNs configurations and
compare the obtained results with several state-of-the-art i-
vector based systems trained from exactly the same acoustic
features.

To assess the proposed method’s performance we exper-
iment on two different and challenging LID datasets: 1. A
dataset built from Google data, hereafter, Google 5M LID
corpus and 2. The NIST Language Recognition Evaluation
(LRE’09). Thus, first, we test the proposed approach in a real
application; and second, we check if the same behaviour is
observed in a familiar and standard evaluation framework for
the LID community. In both cases, we focus on short test
utterances (up to 3s).

The rest of this paper is organized as follows. Section
2 presents the i-vector based baseline systems, the proposed
DNN architecture as well as the score calibration proce-
dure. The experimental protocol and datasets used are then
described in section 3. Results are discussed in section 4. Fi-
nally, section 5 is devoted to present conclusions and evaluate
proposals for future work.

2. DEVELOPED SYSTEMS

2.1. i-vector Based LID Systems

To establish a baseline framework, we built different state-
of-the-art LID acoustic systems based on i-vectors [9]. All
those systems, while sharing i-vectors as the same starting
point, differ in the type of back-end used to perform the final
language classification.

From 39 PLP (13 + ∆ + ∆∆) feature vectors extracted
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with a 10ms frame rate over 25ms long windows, we followed
the standard recipe described in [17] to obtain i-vectors. We
trained a Universal Background Model (UBM) with 1024
components and a 400-dimensional total variability subspace
initialized by PCA and refined by 10 iterations of EM. Also,
we filtered-out silence frames by using energy-based voice
activity detector.

Once the i-vectors for every language were extracted, we
used different strategies to perform classification. On the one
hand, as a discriminative approach, we performed linear Lo-
gistic Regression (LR). On the other hand, two generative
approaches were tested, LDA followed by cosine distance
(LDA CD), and a Gaussian modelling to fit the i-vectors of
each language, with one (1G) or two components - with and
without tied covariances - (2G TC, 2G). We also explored the
effect of using a single shared covariance across the languages
(1G SC) vs. per-language covariances. For further details
about this approach, see [9].

2.2. DNN-based LID System

The DNN architecture used in this work is a fully connected
feed-forward neural network [18]. The hidden layers contain
units with rectified linear activation functions. The output is
configured as a softmax layer with a cross-entropy cost func-
tion. Each hidden layer contains h (2560) units while the out-
put layer dimension (s) corresponds to the number of target
languages (NL) plus one extra output for the out-of-set (oos)
languages.

The DNN works at frame level, using the same features as
the baseline systems described above (39 PLP). Specifically,
the input layer is fed with 21 frames formed by stacking the
current processed frame and its±10 left-right context. There-
fore, there are 819 (21 × 39) visible units, v. The number of
total weights w, considering Nhl hidden layers, can be then
easily computed asw = (v×h)+((Nhl−1)×h×h)+h×s.
Figure 1 represents the complete topology of the network.

We trained all the DNN architectures presented in this
work using asynchronous stochastic gradient descent within
the DistBelief framework [19]. We also fixed the learning
rate and minibatch size to 0.001 and 200 samples. Finally, we
computed the output scores at utterance level by respectively
averaging the log of the softmax output of all its frames (i.e.:
log of the predicted posterior probabilities).

2.3. Logistic Regression Calibration

Our scores were calibrated using discriminatively trained,
regularized multiclass logistic regression [20]. The calibra-
tion was trained in the ”cheating” way, that is, using the
evaluation scores themselves. The reason, why we performed
the cheating calibration, was to concentrate on the ability
of the underlying models to discriminate between the given
classes. We did not want to introduce other errors coming

Fig. 1. DNN network topology

from over-training the systems on the training data-set and
therefore producing miscalibrated scores for our evaluation
set.

The L2 regularization penalty weight was chosen prior to
training to be proportional to the mean magnitude of the con-
ditioned input vectors (scores) [21].

The calibration uses an affine transform to convert the
NL-dimensional vector of input scores, st, for trial t, into a
NL-dimensional calibrated score-vector, rt

rt = Cst + d, (1)

The logistic regression parameters are given by C, a full
NL-by-NL matrix, and d, a NL-dimensional vector and they
are trained by minimizing the multiclass cross-entropy with
equalizing the amount of data for individual classes

F = λ tr(CTC)−
NL∑

i=1

1

NLNi

∑

t∈Ri

log
exp(rit)∑N

j=1 L exp(rjt)
,

(2)

where rit is the ith component of rt and Ri is the set of Ni

training examples of language i.

3. EXPERIMENTAL PROTOCOL

3.1. Databases

Google 5M LID Corpus

We generated The Google 5M LID Corpus dataset by ran-
domly picking queries from several Google speech recogni-
tion services such as Voice Search or the Speech API.
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The Google ASR lattice posteriors were used to discard
non-speech queries. Selected queries range from 1s up to 8s
nominal duration, with average speech content of 2.1s.

Following the user’s phone Voice Search language set-
tings, we labelled a total of∼5 million utterances, 150k per 34
different locales (25 languages + 9 dialects) yielding ∼87,5h
of speech per language and a total of ∼2975h. A held-out
test set of 1.5k utterances per language was created while the
remainder was used for training and development.

Google queries are not linked to user identity information
due to privacy concerns, and therefore, determining the exact
number of speakers involved in this corpus is not possible.
However, given the selection procedure, it is a reasonable
assumption that the number of speakers is very large.

Language Recognition Evaluation 2009 Dataset.

The LRE evaluation in 2009 included, for the first time,
data coming from two different audio sources. Besides Con-
versational Telephone Speech (CTS), used in the previous
evaluations, telephone speech from broadcast news was used
for both training and test purposes. Broadcast data were ob-
tained via an automatic acquisition system from “Voice of
America” news (VOA) where telephone and non-telephone
speech is mixed. Up to 2TB of 8KHz raw data containing
radio broadcast speech, with the corresponding language and
audio source labels were distributed to participants; and a to-
tal of 40 languages (23 target and 17 out of set) were included.

Due to the large disparity on training material for every
language (from ∼10 to ∼950 hours) and also, for the sake of
clarity, we selected 8 representative languages for which at
least 200 hours of audio are available: en (US English), es
(Spanish), fa (Dari), fr (French), ps (Pashto), ru (Russian), ur
(Urdu), zh (Chinese Mandarin). Further, to avoid misleading
result interpretation due to the unbalanced mix of CTS and
VOA, all the data considered in this dataset belong to VOA.

For evaluation, we used a subset of the official NIST LRE
2009 3s condition evaluation set (as for training, we also dis-
carded CTS test segments), yielding a total of 2916 test seg-
ments of the 8 selected languages. That makes a total of
23328 trials.

3.2. Performance Metrics

In order to assess the performance, two different metrics were
used. As the main error measure to evaluate the capabilities
of one-vs.-all language detection, we use Cavg (average cost)
as defined in the LRE 2009 [22][23] evaluation plan. Cavg is
a measure of the cost of taking bad decisions, and therefore
it considers not only discrimination, but also the ability of
setting optimal thresholds (i. e., calibration). Further, well-
known metric Equal Error Rate (EER) is used to show the
performance, when considering only scores of each individual
language. Detailed information can be found in the LRE’09
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Fig. 2. Cavg results on Google 5M LID corpus. 8-hidden
layer DNN vs. reference systems based on i-vectors.

evaluation plan [22].

4. RESULTS

4.1. Results on Google 5M LID Corpus

As a starting point for this study we compare the performance
of the proposed DNN architecture and the reference systems
on the large Google 5M LID dataset. Figure 2 shows this
comparison. Considering i-vector systems, we found a simi-
lar performance for the discriminative back-end, Logistic Re-
gression (LR) and the generative ones, Linear Discriminant
Analysis (LDA CD) and the one based on a single Gaus-
sian with a shared covariance matrix across the languages
(1G SC). Interestingly, increasing to 2 Gaussians and allow-
ing individual covariances matrices (systems 1G, 2G TC, 2G)
a relative improvement of ∼19% is obtained. respect to LR,
LDA CD and 1G systems. This fact suggests that within-class
distribution can be different for the individual languages.

Nonetheless, the best performance is achieved by the
DNN systems, where the 8-hidden layer DNN proposed ar-
chitecture yields up to a ∼70% of relative improvement in
Cavg terms with respect to the best reference system (2G TC).
This result demonstrates the ability of the DNN to exploit dis-
criminative information in large datasets.

4.2. Results on LRE’09

Guided by the results presented above we moved to a more
extensive analysis on LRE’09 evaluation data. Per-language
results summarized in Table 1, show similar improvements on
the LRE’09 dataset. A relative improvement of∼43% in EER
is obtained with the 8-hidden layer DNN, trained with 200h,
with respect to the classical i-vector LDA CD system.

The effect of using different numbers of layers is also
highlighted in Table 1, where in addition to the 8-hidden
layer DNN and the i-vector LDA CD system, results with a
2-hidden layer DNN (DNN 2 200h) are also reported. Simi-
larly, although the improvements are more modest than those
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Equal Error Rate (EER in %)

en es fa fr ps ru ur zh Average
Iv 200h 17.22 10.92 20.03 15.30 19.98 14.87 18.74 10.09 15.89
DNN 2 200h 12.66 5.04 19.67 8.60 17.84 8.75 14.78 5.54 11.61
DNN 8 200h 8.65 3.74 17.22 7.53 16.01 5.59 13.10 4.82 9.58

Table 1. Systems performance (ERR %) per language on LRE’09 (3s test segments)
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Fig. 3. DNNs vs i-vector performance in function of the
per-language number of hours available. Results on LRE’09
dataset.

obtained with the 8-hidden layer network, the DNN 2 200h
still outperforms the i-vector based system.

We then explore the effect of having different amounts of
training data. Figure 3 shows the i-vector LDA CD, DNN 2
and DNN 8 systems performance (Cavg) as a function of the
number of hours per language used for training. With lim-
ited amount of data per language (<10h), the i-vector system
yields the best performance. However, the more hours for
training, the higher the improvement of DNN with respect to
the i-vector systems. With the greatest amount of data, 200h,
the relative improvement of the 8-hidden layer DNN with re-
spect to the i-vector systems is ∼15% in Cavg .

This behaviour may be for several reasons. With<10h per
language, the i-vector approach might be favoured by its sub-
space intrinsic nature. The UBM and the total variability ma-
trix drive modelling to a constrained low-dimensional space.
This fact facilitates i-vector approach to quickly retain most
important language variations. Also, the number of free pa-
rameters to train in each system could play an important role
(∼16M, ∼9M, ∼50M parameters for LDA CD, DNN 2 and
DNN 8 respectively). On the contrary, with abundant data
(>20h) the i-vector based approach seems to saturate, while
DNNs show a high ability to avoid local minima and overfit-
ting even when containing a large number of free parameters
(see performance differences between DNN 2 and DNN 8 in
Figure 3).

5. DISCUSSION

In this work, we experimented with the use of deep neural
networks (DNNs) to automatic language identification (LID).
Guided by the success of DNNs for acoustic modelling, we
explored their capability to learn discriminative language in-
formation from speech signals.

We compared the proposed DNNs architectures to several
state-of-the-art acoustic systems based on i-vectors. Results
on NIST LRE 2009 (8 languages selected) and Google 5M
LID datasets (25 languages + 9 dialects), demonstrate that
DNNs outperform, in most of the cases, current state-of-art
approaches. This is especially true when large amount of
data is available (> 20h), where unlike i-vectors approaches,
which seem to saturate, DNNs still learn from data.

On the other hand, DNNs have several drawbacks, includ-
ing the training time, or the number of parameters to store.
Also, adjusting the proper number of hidden layers and units
is an empirical exercise for every database. Fortunately, we
found that (for the datasets used) moving from 8 to 2 hidden
layers, did not have a dramatic impact on performance. More-
over, those adjustments could be done off-line, with testing
time still reasonable.

As future work, we will focus on different lines such as
establishing a more appropriate averaging of frame posteriors
obtained in DNNs, exploring different fusions among DNNs
and i-vector systems, or dealing with unbalanced training
data.
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Appendix C

Full Text of Patents

C.1 Identifying the Language of an Spoken Utterance

TITLE Identifying the Language of an Spoken Utterance.
INVENTORS Javier González Domínguez UAM

Hasim Sak Google Inc.
Ignacio López Moreno UAM / Google Inc.

DATE 2016/2/4
NUMBER US 20160035344 A1

APPLICATION 14/817302
ASSIGNEE Google Inc.

Summary: Methods, systems, and apparatus for identifying the language of a spoken
utterance. The method includes receiving a plurality of audio frames and processing them
using a long short term memory (LSTM) neural network to generate a respective language
likelihood for each of a plurality of languages.
Contributions: Collaborated in the design of the training and inference stages of the system;
collected approximately one year of labeled data (audio and parameters); collaborated in
providing the necessary tools to generate and optimize topologies for the LSTM models.
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C.2 Language Identification

TITLE Language Identification.
INVENTORS Javier González Domínguez UAM

Ignacio López Moreno UAM / Google Inc.
David Eustis Google Inc.

DATE 2015/12/17
NUMBER US 20150364129 A1

APPLICATION 14/313490
ASSIGNEE Google Inc.

Summary: Methods, systems, and apparatus for language identification. In some implemen-
tations, speech data for an utterance is received and provided to (i) a deep neural network
(DNN) -based language identification module, and (ii) multiple speech recognizers that are
each configured to recognize speech in a different language.
Contributions: Designed the training and inference stages of the system; collected about
one year of data (audio and parameters), which was used to generate neural networks models
for language recognition, and collaborated in the validation of the patent proposal with
experimental results.





































C.3 Cluster Specific Speech Model 149

C.3 Cluster Specific Speech Model

TITLE Cluster Specific Speech Model.
INVENTORS Andrew Senior Google Inc.

Ignacio López Moreno UAM / Google Inc.
DATE 2015/3/20

NUMBER US 20150269931 A1
APPLICATION 14/663,610

ASSIGNEE Google Inc.

Summary: Methods, systems, and apparatus for receiving data representing acoustic charac-
teristics of a user’s voice; selecting a cluster for the data from among a plurality of clusters,
where each cluster is associated with a speech model trained by a neural network using data
in the respective cluster.
Contributions: The candidate provided the necessary code to generate the i-vector systems
and to compute partitions of the i-vector space using agglomerative clustering; generated
i-vector models and clusters with optimized hyperparameters; and provided the augmented
frequency features with i-vector components used to train the speech recognition models
associated with each cluster.









































C.4 Speaker Identification 169

C.4 Speaker Identification

TITLE Speaker Identification.
INVENTORS Matthew Sharifi Google Inc.

Ignacio López Moreno UAM / Google Inc.
Ludwig Schmidt Google Inc.

DATE 2014/10/24
NUMBER US 20150127342 A1

APPLICATION 14/523,198
ASSIGNEE Google Inc.

Summary: Methods, systems, and apparatus for performing speaker identification based on
an fingerprint vector obtained from an spoken utterance. Hash values are determined for the
fingerprint vector according to multiple different hash functions, and allowing for fast and
accurate speaker detection.
Contributions: The candidate provided the necessary code to generate the i-vector systems;
supervised the data collection from over one thousand YouTube videos; and supervised the
generation and optimization of i-vector models.
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