
Dpto. de Física de la Materia Condensada. Universidad Autónoma de Madrid 

Tesis doctoral 

Pablo Ares García 

Abril de 2017 

Dirigida por: Prof. Julio Gómez-Herrero & Dra. Adriana Gil 

MICROSCOPÍA DE FUERZAS ATÓMICAS 

AVANZADA APLICADA A SISTEMAS DE 

BAJA DIMENSIONALIDAD 

ADVANCED ATOMIC FORCE MICROSCOPY FOR 

LOW-DIMENSIONAL SYSTEMS 

M
IC

R
O

S
C

O
P

ÍA
 D

E
 F

U
E

R
Z

A
S

 A
T

Ó
M

IC
A

S
 A

V
A

N
Z

A
D

A
 A

P
L

IC
A

D
A

 A
 S

IS
T

E
M

A
S

 D
E

 B
A

J
A

 D
IM

E
N

S
IO

N
A

L
ID

A
D

 

A
D

V
A

N
C

E
D

 A
T

O
M

IC
 F

O
R

C
E

 M
IC

R
O

S
C

O
P

Y
 F

O
R

 L
O

W
-D

IM
E

N
S

IO
N

A
L

 S
Y

S
T

E
M

S
 

P
A

B
L

O
 A

R
E

S
 G

A
R

C
ÍA

 



  



UNIVERSIDAD AUTÓNOMA DE MADRID 

Departamento de Física de la Materia Condensada 

 

 

 

MICROSCOPÍA DE FUERZAS ATÓMICAS AVANZADA 

APLICADA A SISTEMAS DE BAJA 

DIMENSIONALIDAD 

 

Tesis presentada por 

Pablo Ares García 

Para optar al grado de Doctor en Ciencias Físicas 

 

Directores de tesis 

Dra. Adriana Gil Gil 

Prof. Julio Gómez Herrero 

 

Madrid, abril de 2017 



  



 

 

 

 

 

A mis padres, Santiago y Ángela, que me dieron la vida. 

 

A mi mujer, Cristina, que comparte la suya conmigo. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Tenga cuidado con las cosas pequeñas. Su ausencia o presencia puede cambiarlo todo” 

Han Shan, filósofo chino (finales del siglo VIII d.C. aproximadamente) 



 



Index. 

Index. 

 

Motivación y resumen………………………………………………….. 11 

Referencias…………………………………………………………………………... 18 

Abstract…………………………………………………………………. 19 

  

Chapter 1. Introduction to Atomic Force Microscopy……………….. 21 

1.1 Introduction……………………………………………………………………… 22 

1.2 Basic concepts of Atomic Force Microscopy…………………………………... 28 

1.2.1 AFM components……………………………………………………….. 28 

1.2.2 Standard operation modes………………………………………………. 42 

1.3 Advanced AFM measurements…………………………………………………. 54 

1.3.1 Dynamic modes………………………………………………………… 54 

1.3.2 Spectroscopy imaging (3D Modes)…………………………………….. 57 

1.3.3 Measurements in liquid environments………………………………….. 58 

1.3.4 Magnetic Force Microscopy (MFM)…………………………………… 61 

1.3.5 Conductive AFM (C-AFM)…………………………………………….. 63 

1.3.6 Kelvin Probe Microscopy (KPM)………………………………………. 65 

1.3.7 Lithography/nanomanipulation…………………………………………. 69 

1.4 References………………………………………………………………………... 70 

  



Index. 

 

Chapter 2. Instrumental developments……………………………….. 79 

2.1 Introduction……………………………………………………………………… 80 

2.2 AFM setup for simultaneous inverted optical microscopy techniques………. 84 

2.2.1 Design…………………………………………………………………... 84 

2.2.2 Operation and Results…………………………………………………... 93 

2.3 Variable-temperature ambient-controlled motorized Probe Station………… 99 

2.3.1 Design…………………………………………………………………... 99 

2.3.2 Operation and Results…………………………………………………... 104 

2.4 Conclusions………………………………………………………………………. 109 

2.5 References………………………………………………………………………... 111 

2.6 Appendix…………………………………………………………………………. 113 

  

Chapter 3. Methodological developments…………………………….. 117 

3.1 Introduction……………………………………………………………………… 119 

3.2 AFM improvements in liquids………………………………………………….. 120 

3.2.1 High resolution Atomic Force Microscopy of double-stranded RNA 

         in liquid by different high-sensitive force-detection methods………….. 

 

120 

3.2.1.1 Introduction…………………………………………………… 120 

3.2.1.2 Results and discussion………………………………………... 122 

3.2.2 Magnetic Force Microscopy in liquids…………………………………. 135 

3.2.2.1 Introduction…………………………………………………… 135 

3.2.2.2 Results and discussion………………………………………... 136 



Index. 

3.3 New approaches to nano-object electrical contacts……………………………. 149 

3.3.1 Exfoliated graphite flakes as soft-electrodes……………………………. 150 

3.3.1.1 Introduction…………………………………………………… 150 

3.3.1.2 Results and discussion……………………………………….... 152 

3.3.2 Probe-Assisted Nanowire (PAN) lithography: a new paradigm 

         for nanoelectrode fabrication…………………………………………… 

 

163 

3.3.2.1 Introduction…………………………………………………… 163 

3.3.2.2 Results and discussion………………………………………... 165 

3.4 Conclusions………………………………………………………………………. 176 

3.5 References………………………………………………………………………... 178 

  

Chapter 4. New low-dimensional materials…………………………... 185 

4.1 Introduction……………………………………………………………………… 186 

4.2 High electrical conductivity of single metal-organic chains…………………... 188 

4.2.1 Introduction……………………………………………………………... 188 

4.2.2 Results and discussion………………………………………………….. 190 

4.3 Local tuning of graphene properties upon ultrahigh pressures……………… 205 

4.3.1 Introduction……………………………………………………………... 205 

4.3.2 Results and discussion………………………………………………….. 206 

4.4 Isolation of highly stable antimonene…………………………………………... 223 

4.4.1 Introduction……………………………………………………………... 223 

4.4.2 Results and discussion………………………………………………….. 225 



Index. 

 

4.5 Conclusions………………………………………………………………………. 249 

4.6 Appendix…………………………………………………………………………. 250 

4.7 References………………………………………………………………………... 257 

  

Chapter 5. Summary…………………………………………………… 263 

5.1 Conclusions and prospects……………………………………………………… 264 

5.2 References………………………………………………………………………... 272 

Conclusiones…………………………………………………………….. 273 

  

Agradecimientos………………………………………………………... 277 

  

List of Publications……………………………………………………... 281 

 



Motivación y resumen. Abstract. 
 

11 

 

Motivación y resumen. 

 

Esta tesis trata principalmente sobre el empleo y desarrollo de la microscopía de fuerzas 

atómicas -conocida habitualmente por sus siglas en inglés AFM (Atomic Force 

Microscopy)- y técnicas afines para el estudio de diversos sistemas de baja 

dimensionalidad, que son aquellos que tienen al menos una de sus dimensiones en la escala 

nanométrica. 

Para entender el origen y motivación de este trabajo, conviene hacer un poco de historia. En 

1981, Gerd Karl Binnig y Heinrich Rohrer inventaron el microscopio de efecto túnel, STM 

en sus siglas en inglés (Scanning Tunneling Microscope) en el IBM Research Center de 

Zúrich [1, 2], dando así origen a una nueva familia de microscopía conocida como de 

campo cercano o también de sonda local, SPM en sus siglas en inglés (Scanning Probe 

Microscopy). Esta nomenclatura viene del hecho de que estos microscopios funcionan 

acercando una punta muy afilada, la sonda local, a la superficie de la muestra que se quiere 

estudiar. El microscopio STM detecta la corriente túnel que aparece entre una punta 

metálica y la muestra, que puede ser semiconductora o metálica. La corriente túnel es una 

pequeña corriente que aparece por un efecto cuántico conocido como efecto túnel, y que 

cambia de forma muy abrupta con la distancia entre punta y muestra. Cuando se aplican 

unas pocas décimas de voltio y se acerca la punta a distancias de 2-3 radios atómicos esta 

corriente es del orden del nA. Si en estas condiciones se desplaza la punta sobre la muestra  

se pueden obtener imágenes de la superficie que se está estudiando, de manera similar a la 

que una persona ciega lee, detectando las diferentes rugosidades al desplazar sus dedos por 

un texto escrito en braille.  

A principio de la década de los 80, el profesor Nicolás García comenzó una colaboración 

con los doctores Binnig y Rohrer para establecer los principios de funcionamiento del  

STM desde un punto de vista teórico. En 1983-84, el profesor Arturo Baró estuvo 

trabajando en el laboratorio dirigido por Binnig y Rohrer en Suiza, donde aprendió de 

primera mano todo sobre la construcción y funcionamiento de los STMs. Como resultado 

de esta colaboración, en 1984 Christoph Gerber y Heinrich Rohrer trajeron a España el 

primer STM que salía fuera de IBM y fue instalado por Gerber en la Universidad 

Autónoma de Madrid (UAM). Poco después, en 1986, Binnig y Rohrer ganaron el premio 

Nobel en Física por el invento del STM. 

A partir de ese momento, el grupo del profesor Arturo Baró en Madrid comenzó a trabajar 

en el desarrollo del STM y rápidamente adquirió reputación en este nuevo campo. Como 

consecuencia, otros grupos del departamento de Física Fundamental (actual departamento 

de Física de la Materia Condensada) desarrollaron una actividad muy intensa en este 

campo, realizando sus propios desarrollos teóricos y experimentales. En 1986, Binnig, 
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Calvin F. Quate y Gerber inventaron el microscopio de fuerzas atómicas, AFM [3], cuyo 

principio de funcionamiento es similar al del STM, y el grupo del profesor Baró de 

inmediato se vio también interesado por esta invención. El laboratorio del profesor Baró 

decidió entonces continuar sus esfuerzos en ambas líneas desarrollando electrónica, 

software y mecánica para ambos tipos de microscopios. La llegada del Dr. Jaime Colchero 

al laboratorio dirigido por el profesor Baró, a principio de la década de los 90, contribuyó 

de manera decisiva al desarrollo de esta técnica, primero en el departamento y luego en 

España. 

En 1998 los microscopios construidos en el laboratorio del profesor Baró eran muy 

avanzados. Debido al creciente interés de la comunidad científica en el campo de los SPMs 

surgieron varias compañías que fabricaban y comercializaban este tipo de microscopios. 

Por aquel entonces, el grupo del profesor Baró proporcionaba SPMs fabricados en su 

laboratorio a otros grupos de investigación en todo el mundo, a través de acuerdos de 

colaboración sin ánimo de lucro. Los precios de los SPMs comerciales eran muy elevados, 

por lo que la comunidad científica en España no lo tenía fácil para adquirir estos 

microscopios. En ese momento el profesor Baró junto con tres investigadores de la UAM, 

Jaime Colchero, José María Gómez Rodríguez y Julio Gómez Herrero, fundaron la empresa 

Nanotec Electrónica S.L. (de ahora en adelante Nanotec) para la fabricación, desarrollo y 

venta de SPMs. Debido a la larga experiencia en el campo acumulada por estos 

investigadores, desde el principio Nanotec fabricó AFMs y electrónicas de control para 

STMs muy competitivos. La alta calidad de esta instrumentación así como el esfuerzo para 

poner en el mercado los resultados de la investigación del grupo, se vieron reconocidos con 

el premio de investigación e innovación de la Comunidad de Madrid concedido al profesor 

Baró en 1998. 

A partir de 1998, Nanotec comenzó proyectos ambiciosos con el objetivo de posicionarse 

en el mercado de los SPMs, combinando inversión en I+D con productos de alta calidad y 

con colaboraciones con muchos grupos investigadores por todo el mundo. 

De esta forma llegamos a la primavera de 2003. Por aquel entonces Nanotec estaba en 

pleno crecimiento y buscaba ampliar su plantilla con, entre otros puestos, un licenciado en 

Física. Ese año me encontraba terminando la licenciatura de Física en la Universidad 

Complutense de Madrid y la opción de incorporarme a Nanotec me pareció muy atractiva. 

Me daba la oportunidad de trabajar en una empresa única en España, puntera en el 

desarrollo de instrumentación científica, manteniendo el contacto con la comunidad 

científica y estando al día de los avances del hoy ya establecido campo de la 

Nanotecnología. Tuve la enorme suerte de que la dirección de Nanotec apostase por mí y, 

de esta forma, entré a formar parte de la compañía. 

Nada más entrar en Nanotec lo primero que tuve que hacer fue “empaparme” de la técnica, 

principalmente del AFM, ya que mis cometidos incluían el desarrollo de los microscopios, 
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enseñar a nuevos usuarios, escribir manuales de funcionamiento, instalar nuevos equipos, 

dar soporte técnico, realizar medidas de muestras de potenciales clientes y un sinfín de 

pequeñas tareas que son siempre necesarias en una empresa de base tecnológica. En todos 

estos aspectos el papel de la doctora Adriana Gil, primero como directora científica y más 

tarde como directora general de Nanotec, fue fundamental, no sólo por la formación que 

recibí de su parte, sino también por su ayuda y supervisión en la elaboración de informes, 

manuscritos y comunicaciones. A su vez, en mi primer año en Nanotec pasé largas 

temporadas en el Laboratorio de Nuevas Microscopías de la UAM, profundizando en los 

distintos aspectos de la técnica. Al cabo de un año, tras la marcha de un compañero 

ingeniero mecánico, se decidió que me encargase también de la parte más técnica del 

desarrollo mecánico, aprendiendo para ello el uso básico de programas CAD (siglas en 

inglés de Computer-Aided Design, diseño asistido por ordenador) para el diseño de sólidos 

y elaboración de planos y, bajo la supervisión de Adriana Gil, tuve la oportunidad de dirigir 

desarrollos instrumentales con el objetivo de mejorar y dar nuevas capacidades a los AFMs. 

Cabe mencionar aquí que Adriana Gil se había doctorado unos años antes bajo la dirección 

del Dr. Jaime Colchero, de quien aprendió sus amplios conocimientos sobre la microscopía 

de campo cercano. 

A medida que fueron pasando los años, una activa política de colaboraciones de Nanotec 

con grupos investigadores me permitió, no sólo profundizar más en las distintas variantes 

de la técnica, sino también participar activamente en trabajos de investigación con grupos 

de todo el mundo. De nuevo cabe resaltar el papel de Adriana Gil en esta faceta, facilitando 

estas colaboraciones y siendo claves sus aportaciones a los avances que se iban 

consiguiendo. Los frutos de algunas de estas colaboraciones fueron varias publicaciones 

científicas. 

Algunas de ellas, como “Cutting down the forest of peaks in acoustic dynamic atomic force 

microscopy in liquid” [4], “Variable-field magnetic force microscopy” [5], “Minimizing 

tip-sample forces in jumping mode atomic force microscopy in liquid” [6], y “Flatten plus: 

a recent implementation in WSxM for biological research” [7], se dieron con investigadores 

que habían formado parte del grupo del profesor Baró en la UAM (principalmente Julio 

Gómez Herrero de la UAM y Agustina Asenjo del Instituto de Ciencia de Materiales de 

Madrid ICMM-CSIC), grupos muy próximos a Nanotec. En estos trabajos, entre otras 

cosas, participé en el desarrollo de la técnica en campos a priori tan alejados como las 

medidas en medio líquido y las medidas de magnetismo (digo a priori porque, como 

veremos más adelante, uno de los trabajos realizados en esta tesis ha sido la combinación 

de ambos tipos de medida para permitir el estudio de sistemas “bio-nano magnéticos”). 

Otras publicaciones, como “Strain energy and lateral friction force distributions of carbon 

nanotubes manipulated into shapes by atomic force microscopy” [8], y “Neck-size 

distributions of through-pores in polymer membranes” [9], son el fruto de colaboraciones 

con investigadores de lugares tan dispares como son la Universidad de Purdue (los grupos 
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de los profesores Ron Reifenberger y Arvind Raman) en los Estados Unidos de América y 

el Bhabha Atomic Research Centre en la India. La experiencia obtenida en la colaboración 

con los investigadores de la Universidad de Purdue, participando en la nanomanipulación 

de nanotubos de carbono, fue fundamental para el trabajo correspondiente a la formación de 

contactos eléctricos mediante nanohilos de oro realizado en esta tesis. 

Otra colaboración (por mediación de Adriana Gil y del profesor Julio Gómez Herrero), en 

este caso con el grupo de la profesora Rosa Menéndez del Instituto Nacional del Carbón 

INCAR-CSIC, dio como resultado dos publicaciones, “The effect of the parent graphite on 

the structure of graphene oxide” [10], y “Tailored graphene materials by chemical 

reduction of graphene oxides of different atomic structure” [11], que me permitieron una 

primera toma de contacto con el estudio de materiales bidimensionales, tema con un peso 

sustancial en esta tesis. Un resultado relevante de estos estudios es la prueba de la 

influencia de la estructura cristalina del grafito de partida, importante para la producción de 

láminas de óxido de grafeno y de grafeno reducido mediante métodos químicos. 

Finalmente, de nuevo con investigadores de la UAM como Julio Gómez Herrero y Pedro J. 

de Pablo, así como con investigadores del grupo de Mark J. van Raaij del Centro Nacional 

de Biotecnología CNB-CSIC, otra publicación vio la luz, “Interplay between the mechanics 

of bacteriophage fibers and the strength of virus-host links” [12], que permitió, a la vez que 

la puesta a punto de un diseño nuevo de portapuntas para medidas en medio líquido 

(fundamental para trabajos posteriores desarrollados en esta tesis, como son las medidas de 

magnetismo en medio líquido y la alta resolución de la doble cadena de ARN), dar una 

explicación “mecánica” al hecho de que algunos virus necesiten enlazar al menos tres de 

sus seis “patas” para comenzar el proceso de infección. 

Es importante mencionar que estos trabajos son previos a los presentados en esta memoria 

y no se darán más detalles de los mismos a lo largo de ella. Un listado completo de las 

publicaciones asociadas al trabajo aquí presentado se puede encontrar al final de esta 

memoria, en el apartado “List of Publications” (“Listado de Publicaciones”). 

En el transcurso de estas colaboraciones, el profesor Julio Gómez Herrero me ofreció la 

posibilidad de colaborar más con él de forma que, poco a poco a lo largo de varios años, 

pudiese dar lugar a la obtención de un doctorado. Tras acordar la codirección del profesor 

Julio Gómez Herrero y de la doctora Adriana Gil, en aquel momento directora científica de 

Nanotec, realicé el Máster en Física de la Materia Condensada y Nanotecnología de la 

UAM y di comienzo a una serie de experimentos en los laboratorios de la UAM. En 

octubre de 2014 desafortunadamente Nanotec Electrónica se vio obligada a cesar su 

actividad, acuciada por la baja demanda de instrumentación científica, hecho propiciado 

por las políticas de recortes en I+D tras el comienzo de la crisis económica mundial en 

2008. Tras el cese de Nanotec, la dedicación a tiempo completo a las investigaciones y 

desarrollos ya iniciados surgió como una continuación lógica al trabajo de años anteriores. 
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Cabe destacar aquí el papel de mi director de tesis, facilitándome la posibilidad de 

incorporarme a su laboratorio y proporcionándome todo lo necesario para la realización, 

tanto de los estudios que teníamos en mente, como de otros nuevos que fueron surgiendo. 

El resultado de dichos estudios se ve reflejado en esta memoria y comprende distintos 

aspectos de las ya bien establecidas Nanociencia y Nanotecnología. El origen de este 

campo de investigación se establece históricamente en diciembre de 1959 con la famosa 

conferencia de Richard Feynman titulada "There is plenty of room at the bottom" ("Hay 

mucho espacio al fondo"), donde Feynman trató sobre cómo manipular, controlar y fabricar 

objetos de muy pequeñas dimensiones, abordando la cuestión desde una perspectiva 

absolutamente distinta a como se había hecho hasta entonces, abriendo así un nuevo mundo 

de posibilidades a lo que más tarde se conocería como Nanotecnología. 

Podemos definir la Nanotecnología como el diseño y manipulación de la materia en la 

escala nanométrica. El prefijo “nano” del Sistema Internacional de Unidades viene del 

griego νάνος que significa enano, y corresponde a un factor 10
-9

. Aplicado a las unidades 

de longitud, corresponde a una mil millonésima parte de un metro (10
-9

 m). La 

Nanotecnología estudia la materia entre 0.1 y 100 nm aproximadamente (Figura 0.1). En 

esta escala, la materia ya no está gobernada por las leyes a las que estamos acostumbrados, 

si no que la mecánica cuántica juega un papel muy importante, lo que  permite acceder a 

nuevas propiedades que sólo se manifiestan a esta escala. Al estar la Nanotecnología 

definida por el tamaño de los objetos a estudiar, es un área multidisciplinar que da cabida a 

muchos campos tan diversos como la ciencia de superficies, microfabricación, electrónica, 

química orgánica e inorgánica, biología molecular, física de semiconductores, ciencia de 

materiales, etc.  

 

Figura 0.1 Esquema de escala de tamaños. 
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Tuvieron que pasar más de 30 años desde que Feynman expuso sus ideas hasta que éstas 

pudieron empezar a llevarse a cabo. Y el motivo no fue otro que la falta de herramientas 

para trabajar en la nanoescala. En ese sentido, la invención del microscopio de efecto túnel, 

STM, por Binnig y Rohrer en 1981 [1, 2] supuso toda una revolución. Si bien las técnicas 

de emisión de campo ya habían permitido visualizar átomos [13] aunque en unas 

condiciones muy restringidas, el STM permitió por primera vez visualizar y manipular 

átomos y moléculas de forma individual en condiciones mucho más generales. Como ya se 

ha mencionado antes, pocos años después, en 1986, Binnig, Quate y Gerber inventaron el 

microscopio de fuerzas atómicas, AFM, con un esquema de funcionamiento similar al 

STM, pero detectando fuerzas entre punta y muestra en lugar de corrientes [3]. Mientras 

que el STM necesita una muestra metálica o semiconductora para poder establecer una 

corriente túnel, el AFM puede aplicarse a cualquier tipo de muestra. Además, mientras que 

para sacarle el máximo partido al STM es conveniente trabajar en condiciones de ultra alto 

vacío, para mantener limpias las superficies a estudiar, el AFM permite un extraordinario 

rendimiento en diferentes ambientes (líquidos, aire y vacío). Esta versatilidad ha hecho del 

AFM una de las herramientas más utilizadas en el campo de la Nanotecnología. 

La multidisciplinariedad de la Nanotecnología junto con la experiencia previa con el AFM, 

adquirida durante mi etapa en Nanotec, despertaron mi curiosidad y me proporcionaron un 

gran interés por la aplicación de esta técnica en diversos campos, así como por el desarrollo 

de la técnica en sí misma. Esto queda reflejado en la heterogeneidad de temas tocados en el 

transcurso de esta tesis, aunque con un marcado interés en el estudio de las propiedades 

electrónicas de sistemas uni- y bi- dimensionales. La adecuada combinación de estos 

sistemas, junto con la posibilidad de controlar y modificar en la nanoescala las propiedades 

de los mismos, serán la base de los dispositivos electrónicos del futuro. En ese sentido, en 

esta tesis por una parte se ha estudiado el comportamiento de distintos sistemas 

unidimensionales para su utilización como futuros cables en nanodispositivos, a la vez que 

se han estudiado materiales bidimensionales con posibles aplicaciones en la fabricación de 

dichos nanodispositivos.  

El capítulo 1 de esta memoria es una introducción al microscopio de fuerzas atómicas, 

herramienta principal utilizada. 

El capítulo 2 muestra una serie de desarrollos instrumentales realizados: por una parte el 

diseño, fabricación y puesta a punto de una mecánica nueva de AFM que permite su 

combinación con técnicas ópticas, como la fluorescencia por reflexión total interna. Y por 

otra parte el diseño, construcción y puesta en funcionamiento de una estación de puntas 

(probe station en inglés) con posibilidad de trabajar en alto vacío y con un rango de 

temperaturas comprendido entre 80 K y 400 K, para la caracterización eléctrica de 

materiales desde la micro- a la nanoescala. Si bien por limitaciones de tiempo no se han 

podido realizar experimentos extensos con estos sistemas, estoy seguro que serán muy 

utilizados en lo sucesivo. 
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El capítulo 3 presenta una serie de desarrollos metodológicos de la técnica del AFM, que 

incluyen, por una parte, la optimización de diferentes modos de medida en medio líquido 

para la obtención de alta resolución en muestras biológicas tipo ADN y ARN; y por otra 

parte, la implementación de medidas de fuerzas magnéticas en dichos medios, llevando el 

AFM a un punto que permite su aplicación al estudio de sistemas magnéticos nanométricos 

con aplicaciones biológicas. En segundo lugar, el desarrollo de dos métodos distintos y 

complementarios para la creación de nano- y micro- contactos, con especial utilidad a la 

hora de estudiar las propiedades eléctricas de nanobjetos, no sólo con el AFM, sino también 

como métodos alternativos a los tradicionales. Los resultados recogidos en los capítulos 2 y 

3 reflejan la constante evolución de los instrumentos de medida, tanto para la mejora de las 

capacidades de los mismos, como para la implementación de nuevas funcionalidades, lo 

cual presenta en sí mismo un marcado interés para la comunidad científica, ya que 

posibilita el avance en muchos y muy variados campos. 

El capítulo 4 versa sobre el estudio de nuevos sistemas de baja dimensionalidad: una 

primera parte dedicada a fibras unidimensionales de polímeros de coordinación, que 

presentan propiedades de conducción eléctrica extraordinarias, y una segunda parte 

dedicada a materiales bidimensionales, en particular al uso del AFM para modificar 

localmente las propiedades del grafeno a través de la aplicación de presiones ultra altas (> 

10 GPa). El capítulo termina con la presentación de un nuevo material, hasta ahora 

solamente predicho teóricamente, aislado por primera vez en el transcurso de esta tesis, el 

antimoneno (una lámina de átomos de antimonio de espesor atómico) y la caracterización 

de varias de sus propiedades. El estudio de las propiedades y el comportamiento de 

materiales uni- y bidimensionales es esencial para el avance de la nanotecnología y de sus 

numerosas potenciales aplicaciones. 

Finalmente, el capítulo 5 es un resumen de todo lo expuesto a lo largo de la memoria, así 

como nuevas perspectivas que se abren como resultado de este trabajo.  



Motivación y resumen. Abstract. 

18 

 

Referencias 

[1] Binnig, G.; Rohrer, H. Scanning Tunneling Microscopy. Helv. Phys. Acta 1982, 55, 726-735. 
[2] Binning, G.; Rohrer, H.; Gerber, C.; Weibel, E. Surface Studies by Scanning Tunneling 
Microscopy. Phys. Rev. Lett. 1982, 49, 57-61. 
[3] Binnig, G.; Quate, C. F.; Gerber, C. Atomic Force Microscope. Phys. Rev. Lett. 1986, 56, 
930-933. 
[4] Carrasco, C.; Ares, P.; de Pablo, P. J.; Gomez-Herrero, J. Cutting down the forest of peaks in 
acoustic dynamic atomic force microscopy in liquid. Rev. Sci. Instrum. 2008, 79, 126106. 
[5] Jaafar, M.; Gomez-Herrero, J.; Gil, A.; Ares, P.; Vazquez, M.; Asenjo, A. Variable-field 
magnetic force microscopy. Ultramicroscopy 2009, 109, 693-699. 
[6] Ortega-Esteban, A.; Horcas, I.; Hernando-Perez, M.; Ares, P.; Perez-Berna, A. J.; San 
Martin, C.; Carrascosa, J. L.; de Pablo, P. J.; Gomez-Herrero, J. Minimizing tip-sample forces in 
jumping mode atomic force microscopy in liquid. Ultramicroscopy 2012, 114, 56-61. 
[7] Gimeno, A.; Ares, P.; Horcas, I.; Gil, A.; Gomez-Rodriguez, J. M.; Colchero, J.; Gomez-
Herrero, J. 'Flatten plus': a recent implementation in WSxM for biological research. Bioinformatics 
2015, 31, 2918-2920. 
[8] Strus, M. C.; Lahiji, R. R.; Ares, P.; Lopez, V.; Raman, A.; Reifenberger, R. Strain energy and 
lateral friction force distributions of carbon nanotubes manipulated into shapes by atomic force 
microscopy. Nanotechnology 2009, 20, 385709. 
[9] Agarwal, C.; Pandey, A. K.; Das, S.; Sharma, M. K.; Pattyn, D.; Ares, P.; Goswami, A. Neck-
size distributions of through-pores in polymer membranes. J. Membr. Sci. 2012, 415, 608-615. 
[10] Botas, C.; Alvarez, P.; Blanco, C.; Santamaria, R.; Granda, M.; Ares, P.; Rodriguez-Reinoso, 
F.; Menendez, R. The effect of the parent graphite on the structure of graphene oxide. Carbon 
2012, 50, 275-282. 
[11] Botas, C.; Alvarez, P.; Blanco, C.; Dolores Gutierrez, M.; Ares, P.; Zamani, R.; Arbiol, J.; 
Morante, J. R.; Menendez, R. Tailored graphene materials by chemical reduction of graphene 
oxides of different atomic structure. RSC Adv. 2012, 2, 9643-9650. 
[12] Ares, P.; Garcia-Doval, C.; Llauro, A.; Gomez-Herrero, J.; van Raaij, M. J.; de Pablo, P. J. 
Interplay between the mechanics of bacteriophage fibers and the strength of virus-host links. 
Phys. Rev. E 2014, 89, 052710. 
[13] Muller, E. W. *Das Feldionenmikroskop. Zeitschrift Fur Physik 1951, 131, 136-142. 

 

  



Motivación y resumen. Abstract. 
 

19 

 

Abstract. 

 

This PhD presents the use and development of Atomic Force Microscopy (AFM) and 

related techniques applied to the study of low-dimensional systems, which are those with at 

least one of its dimensions in the nanoscale. 

 

Chapter 1 is an introduction to the atomic force microscope, the main tool employed along 

this PhD. 

 

Chapter 2 presents two different instrumental developments performed during this PhD. 

First, the design, assembly and testing of an experimental setup to allow simultaneous AFM 

and Total Internal Reflection Fluorescence Microscopy (TIRFM). Second, the design, 

assembly and testing of a probe station setup, for the electrical characterization of micro- 

and nano- materials and devices at temperatures ranging from 80 to 400 K, in controlled 

atmospheres. 

 

Chapter 3 deals with different methodological developments of the AFM technique. First, 

improvements of the AFM technique in liquids are presented. It includes the optimization 

of different high-sensitive force-detection methods for high resolution imaging of nucleic 

acids in liquids. High resolution of double-stranded RNA (dsRNA) under near-

physiological conditions is obtained for the first time with AFM. Magnetic Force 

Microscopy (MFM) in liquid environments is also presented. A fine tuning of the 

experimental conditions allows imaging magnetic nanostructures in liquids with a 

resolution close to ambient conditions, opening the possibility of studying “bio-nano-

magnetic” samples. 

Second, two novel approaches for the fabrication of simple, clean and reliable electrodes 

for the electrical contact of nano-objects are presented. One is based on the use of 

exfoliated graphite flakes (EGF) as soft-electrodes. The other is named Probe-Assisted 

Nanowire (PAN) lithography. It is based on the adsorption of Au NWs on the sample of 

interest and subsequent manipulation with an AFM probe to create nanoelectrodes. 

 

Chapter 4 presents studies on novel low-dimensional systems. There is a first part dealing 

with on surface isolation and characterization of highly conductive 1-dimensional chains of 
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coordination polymers, obtained from a wet chemistry approach, going down to the 

individual chain level. 

The second part deals with the use of AFM to study 2-dimensional systems. It is first 

applied to locally tune the electronic properties of graphene upon ultrahigh pressure  

(> 10 GPa) modifications. 

Finally, a new 2-dimensional material, antimonene, a single layer of antimony atoms, is 

introduced, isolated along this PhD for the very first time. Demonstration of its stability 

under ambient conditions, and characterization of its optical and electrical properties are 

shown. 

 

Finally, chapter 5 is a summary of all the work presented in this manuscript, along with 

prospects derived from the results obtained here. 
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1.1 Introduction 

Microscopy is one of the major developments in the history of Science and Technology, 

being responsible of the advance of many different fields. According to the English Oxford 

Dictionary, a microscope is defined as “an optical instrument used for viewing very small 

objects, such as mineral samples or animal or plant cells, typically magnified several 

hundred times” [1]. The Cambridge Dictionary defines a microscope as “a device that uses 

lenses to make very small objects look larger, so that they can be scientifically examined 

and studied” [2]. These two definitions are clearly focused on optical microscopes 

(although the second one can include electron microscopes as well, since they also use 

lenses, electromagnetic lenses). The invention of the scanning tunneling and the atomic 

force microscopes represented a breakthrough in the concept of a microscope. 

Although it is widely attributed to Galileo in the 1600’s, the history of the microscope 

begins with Zacharias Jansen's invention of the first light microscope in the 1590's. 

Zacharias Jansen and his father Hans put several lenses in a tube and made a very important 

discovery. The object near the end of the tube appeared to be greatly enlarged, much larger 

than any simple magnifying glass could achieve by itself [3]. Figure 1.1 shows pictures of 

the first optical microscopes from Jansen and Galileo. Since these first compound 

microscopes, there has been a constant and outstanding evolution of microscopy. However, 

most optical microscopes resolution is dictated by the diffraction limit of the visible light 

photons, this is, by half the value of their wavelength, /2 ~ 200 nm. 

 

 

Figure 1.1 First optical microscopes. a) Optical microscope from Hans and Zacharias Jansen 
(1590’s). b) Optical microscope from Galileo (1600’s). Source: http://www.history-of-the-
microscope.org 

 

Ernst Ruska and Max Knoll developed the Transmission Electron Microscope (TEM) in 

1931 and later Manfred von Ardenne in 1937 applied a scanning principle to develop the 

a b

http://www.history-of-the-microscope.org/
http://www.history-of-the-microscope.org/
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Scanning Electron Microscope (SEM). These microscopes use a beam of accelerated 

electrons as a source of illumination. Electron microscopes use electromagnetic lenses to 

control and focus the electron beam. These electron lenses can be considered as analogous 

to the glass lenses of an optical light microscope. As the wavelength of an electron can be 

orders of magnitude shorter than that of visible light photons, resolution for electron 

microscopes is much better than for optical microscopes and in most cases is limited by 

spherical aberration of the electron lenses. In recent years, electron microscopies have 

benefited from subtle instrumentation advances, including improvements in the detectors 

combined with summing multiple subsequent frames (which dramatically improves the 

signal-to-noise ratio), reaching resolution values of ~ 0.05 nm, enabling the detection of 

even individual low-atomic-number atoms [4]. Figure 1.2 shows one of the first 

transmission electron microscopes built by Ernst Ruska. 

 

Figure 1.2 Electron microscope built by Ernst Ruska in 1933. Source: 

https://commons.wikimedia.org 

 

In the early 80’s Gerd Binnig and Heinrich Rohrer developed the Scanning Tunneling 

Microscope (STM) [5, 6]. These microscopes, whose working principle is based on 

scanning a sharp tip very close to the surface of the sample under study, probing the 

tunneling current between tip and sample, meant a complete revolution to surface science. 

One of the main advantages of STMs compared to other microscopy techniques is the 

ability to measure heights. They allow not only the visualization of single atoms [5], but the 

manipulation of the matter at an atomic level [7]. Figure 1.3a shows one of the first STMs 

ever built and figure 1.3b the first atomic resolution image obtained with an STM. 

https://commons.wikimedia.org/
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Figure 1.3 a) One of the first STMs ever made. The picture corresponds to the first STM that came 

to Spain, to Universidad Autónoma de Madrid. b) First atomic resolution image obtained with a 

STM, corresponding to the 7x7 reconstruction on Si (111) [5]. c) First AFM from Binnig, Quate and 

Gerber. Source: http://www.sciencemuseum.org.uk/ 

 

The later development of the Atomic Force Microscope (AFM, also known as Scanning 

Force Microscope, SFM) by Gerd Binnig again, together with Calvin Quate and Christoph 

Gerber [8] (figure 1.3c) and the Scanning Near-field Optical Microscope (SNOM) [9-11] 

gave rise to a whole new family of microscopes known as Scanning Probe Microscopes 

(SPM). The working principle of all them is the same, a sharp tip scanning very close to the 

sample under study probing a magnitude which depends strongly on the tip-sample 

distance. This dependency with the distance is the responsible of their very high sensitivity 

to topography changes and the origin of their high resolution. Figure 1.4 shows the working 

principle of SPMs, which can be easily compared with the way blind people use their white 

canes to walk. 

a b

c

http://www.sciencemuseum.org.uk/
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Figure. 1.4 a) Principle of operation of SPMs. b) Analogy with the way a blind person follows the 

floor topography. c) Line by line scanning to obtain an SPM image. 

 

The different probed interactions define the kind of SPM. Figure 1.5 summarizes the 

different microscopes in the SPM family.  

 

 

Figure 1.5 Family of SPMs. 
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It is interesting to think about optical and electron microscopes as instruments that deal 

with propagating waves controlled by lenses (far-field approach). On the contrary, scanning 

probe microscopes use the concept of non-propagating waves whose intensity decays 

exponentially with the distance (near-field approach). In this respect, both techniques can 

be considered as complementaries. 

STM measures the tunneling current between tip and sample, hence conducting or 

semiconducting samples are required. AFM measures forces between the tip at the end of a 

cantilever and the sample, allowing the study of any kind of material: conductors, 

semiconductors, insulators, biological, etc. SNOM probes the evanescent waves of light by 

placing the tip very close (at a distance much smaller than the light wavelength), thus 

breaking the far field resolution limit. Probably because of its complex set up and the lack 

of reliable commercial tips, SNOM has experimented a moderate success when compared 

to their elder brothers AFM and STM. The ability of the AFM to study any kind of sample 

together with its versatility to work under different environmental conditions: liquids, air, 

controlled atmospheres, UltraHigh Vacuum (UHV), etc. has undoubtedly raised AFM as 

the most popular and widespread microscope among the SPM family.  

The AFM was celebrating in 2016 its 30
th

 anniversary. Albeit it is a well stablished 

technique, used routinely in hundreds of laboratories throughout the world, it stays under 

continuous development. In the last years major advances have been addressed to improve 

its performance. A review of all the developments carried out on the AFM technique is 

completely out of the scope of this introduction, thus only some of the most relevant ones 

are presented. Apart from the standard static Contact and dynamic Amplitude Modulation 

(AM-AFM) [12] measuring modes, the use of other different modes allows relevant 

advances in many different fields. For instance, high sensitive force detection schemes such 

as Frequency Modulation (FM-AFM) [13],  Force-distance based modes (Pulsed Force 

mode [14, 15], Jumping [16, 17], PeakForce [18], etc.) or Drive Amplitude  Modulation 

(DAM-AFM) [19, 20] are allowing the study of many systems. In particular, they prove to 

be very powerful for measurements in liquid environments to study biological systems such 

as DNA [21], viral capsids [22] or antibodies [23] with unprecedented resolution, or to 

achieve true atomic resolution on surfaces [24]. High Speed AFM, pioneered in the early 

2000’s by T. Ando initially in liquid environments [25], and now commercially available 

from most of the manufacturers to work in different environments, has meant a 

breakthrough in AFM to study time-varying processes. Simultaneous excitation and 

detection of several eigenmodes of the cantilever [26, 27] has triggered a whole new branch 

of the AFM technique called Multifrequency AFM. It combines well stablished dynamic 

acquisition modes with simultaneous mapping of other properties [28, 29]. In the field of 

the so-called Non-Contact AFM (mostly related to AFM working in UHV conditions under 

the FM-AFM scheme), after the true atomic resolution achievement by F. Giessibl in 1995 

[30], it is worth to mention the works of Y. Sugimoto and coworkers, where they 
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chemically identified surface atoms [31], and L. Gross and coworkers, who were able to 

resolve the chemical structure of molecules by using carbon monoxide terminated tips [32]. 

Another field in expansion is the combination of AFM with other techniques to 

simultaneously gain different information of the sample under study. Some examples of 

these combinations are SPMs + Electron Microscopy/Focused Ion Beam (FIB) [33], AFM 

+ light optics (such as Raman spectroscopy, Fluorescence Microscopy) [34], Tip Enhanced 

Raman Spectroscopy (TERS) [35, 36] or AFM + Total Internal Reflection Fluorescence 

Microscopy (TIRFM) [37]. This last example, AFM + TIRFM is shown more in detail in 

Chapter 2.  

This chapter is divided in two parts. The first one describes the basic components and 

operation modes of AFM, whereas the second part deals with some advanced modes that 

have been used in the experiments performed along this PhD. 
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1.2 Basic concepts of Atomic Force Microscopy 

In general terms, as it has been mentioned in the introduction, the working principle of an 

AFM relies on the detection of the interaction between a sharp tip acting as a probe and the 

sample of interest. This interaction can be originated by different sources and it also 

depends on the system under study, as it is shown later. First, the different common 

elements to any AFM setup are described and then the standard measuring modes are 

presented. 

 

1.2.1 AFM components 

Any AFM setup can be divided into three main parts, as shown in figure 1.6: mechanics, 

software and electronics. 

 

 

Figure 1.6 Main parts in an AFM setup. 
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Mechanics 

It comprises all the opto-mechanical components responsible for the tip and sample 

movements as well as for the force detection. 

 Force sensor 

It is one of the critical parts of an AFM since its characteristics define the sensitivity of the 

measurements. The standard probes consist of a very sharp tip at the end of a 

microfabricated cantilever. Different probes can measure different properties of the sample 

so it is important to choose the right probe for each measurement. The probe also 

determines the force applied to the sample and the ultimate resolution of the system. 

Most AFM probes are fabricated from silicon or silicon nitride using photolithographic 

techniques integrating tip and cantilever assemblies. The use of silicon fabrication 

techniques, commonly applied in microelectronics, is probable one of the most critical 

points for the success of atomic force microscopy. In this way, hundreds of tip and 

cantilever assemblies are produced on a single wafer, lowering their fabrication costs and 

allowing reliable and reproducible tips. AFM probes are consumables that need to be 

replaced when the tip wears out. 

The fundamental reason to microfabricate cantilevers can be easily understood as follows: 

in order to avoid sample damage during scan, cantilevers with low stiffness are required. 

On the other hand, in order to achieve reasonable scan speeds, the cantilevers should also 

exhibit a high resonance frequency. The resonance frequency, , is given by equation: 

     ω =  √
k

m
            (1.1) 

where k is the stiffness and m the mass of the cantilever. Low k and high  imply low m, 

that in turn implies low size and thus microfabrication. 

For any cantilever, independently of its geometry, the working principle is the same, and 

for small deflections the force applied by the cantilever (FN and FL for normal and lateral 

(torsion) forces respectively) can be approximated by the Hooke’s law. It can be 

summarized in equations (1.2) and (1.3). 

FN = kNz (1.2)    FL = kLx (1.3) 

where the stiffness kN and kL are the normal and lateral spring constants of the cantilever 

(kN << kL). Normal forces act perpendicular to the cantilever plane producing a vertical 

deflection z. In a similar way, lateral forces act on the cantilever plane producing a x 

torsion. A precise determination of the spring constants values is necessary for quantitative 

force measurements as explained below.  
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Figure 1.7 shows some of the basic configurations of AFM probes. To facilitate its 

handling they come at the end of a millimeter sized chip (figure 1.7a). Apart from a sharp 

tip, AFM requires cantilevers with optimized spring constants. The spring constant of the 

cantilever depends on its shape, its dimensions and the material from which it is fabricated. 

In particular, the perpendicular stiffness of a rectangular cantilever can be readily estimated 

as: 

     kN =
E

4
W (

T

L
)

3

           (1.4) 

being E the elastic modulus, and W, T and L the Width, Thickness and Length of the 

cantilever. Most common shapes are rectangular (figure 1.7b) and triangular (figure 1.7c). 

There are as well more exotic geometries for advanced measurements. Cantilevers typically 

range from 40 to 200 μm in length, 15 to 40 μm in width, and 0.2 to 5 μm in thickness. 

New cantilevers to allow high speed imaging have appeared in the last years. They are 

characterized by their small dimensions (length and width typically an order of magnitude 

smaller than conventional cantilevers). AFM manufacturers offer microfabricated tips in 

different geometries where pyramidal (figure 1.7d) and conical are the most common ones. 

 

Figure 1.7 a) Typical cantilever chip. b) Rectangular cantilever. c) Triangular cantilevers. d) 

Pyramidal tip. Source: a) and b) www.nanoandmore.com c) and d) www.brukerafmprobes.com 

 

The spring constants of the commonly used cantilevers range over several orders of 

magnitude, from  10
-2

 to 10
2
 N/m. Their resonant frequency, an important parameter to 

consider when operating in dynamic modes, typically ranges from a few to hundreds of 

kHz. High resonant frequencies allow for non-contact AFM operation and faster responses. 

High speed cantilevers operate at MHz resonance frequencies, thus enabling very fast 

imaging. 

100 m
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A precise determination/calibration of the spring constants values is necessary for 

quantitative force measurements. Cantilevers manufacturers provide nominal values of kN 

based on the geometry and the material of the cantilever, as explained above, but these 

values are typically very inaccurate. It is thus necessary to calibrate the spring constant 

value. There are different calibration techniques [38], though two of them are the most 

popular. The “thermal method” is based on the acquisition of the cantilever’s thermal 

distribution spectrum (square of the fluctuations in amplitude as a function of frequency) 

and the use of the equipartition theorem [38-40]. In this way, the mean-square amplitude of 

the cantilever’s thermal fluctuation in the vertical direction, <z
2
> follows equation (1.5):  

〈z2〉 =
kBT

kN
            (1.5) 

where kB is Boltzmann’s constant and T is the temperature of the cantilever. The other 

popular method, named “Sader method” after his inventor, John E. Sader, can be applied to 

rectangular cantilevers [41, 42]. It incorporates the viscosity and density of the medium in 

which the cantilever is immersed, along with experimentally determined values of the 

resonant frequency and quality factor, together with the cantilever length and width values. 

Thus it can be considered a “geometric” approach, although it does not need the cantilever 

thickness, which is the dimension more affected by uncertainty. The fundamental 

restrictions on the Sader method are that the amplitude of vibration must be small, the fluid 

must be incompressible, and the length of the beam must greatly exceed its nominal width 

[41]. Sader method leads to equation (1.6): 

kN = 0.1906LQ(W2πνk)
2
fi(νk)           (1.6) 

where L and W are the cantilever length and width respectively, Q its quality factor, νk its 

resonant frequency, ρf the density of the fluid in which the cantilever is immersed and 

i(νk) the imaginary part of the hydrodynamic function. kN value can be easily calculated 

online in the University of Melbourne webpage [43] or directly on some AFM softwares 

such as WSxM [44], just by entering the length and width (given by the manufacturer), the 

fundamental resonant frequency and the corresponding quality factor of the cantilever 

(determined by acquiring an amplitude vs. frequency curve for the cantilever). The Sader 

method has been used along this PhD to calibrate cantilever normal spring constants. 

The lateral resolution of an AFM image is determined by several factors: the number of 

pixels during the acquisition of an image, piezo scanner specifications, quality of applied 

voltages, tip radius, etc. Tip radius of standard commercial probes ranges from ~ 2 to 15 

nm. When imaging features smaller or with sizes similar to that of the tip radius, the most 

common artifact in AFM images arises from a phenomenon known as tip-sample dilation. 

As long as the tip is much sharper than the feature, the tip can follow its true edge profile. 

However, when the tip is wider than the feature, the image will be dominated by the shape 

of the tip. Figure 1.8 illustrates the tip-sample dilation artifact. Whereas in all the cases the 
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height of the feature will be properly measured, its apparent width will strongly depend on 

the tip radius. 

 

Figure 1.8 Tip-sample dilation. a) Representation of a nanoparticle visualized with a very sharp tip 

(left) and with a blunt tip (right). b) Comparison of the measured full width at half maximum. 

 

Depending on the application, tips can present special coatings that enlarge their final tip 

radius, presenting nominal values of ~ 30 - 40 nm. For example, tips for magnetic force 

microscopy present a magnetic coating (typically from a hard magnetic alloy material) or 

tips for electrical applications present a metallized coating (typically gold or platinum). 

Apart from the usual cantilever probes, there are other probes based on different 

geometries. Two relevant examples are tuning fork based probes and symmetrical length 

extension resonator based probes. Both of them are mainly used in ultrahigh vacuum AFM 

measurements.  

Probes are consumables that represent an important market themselves. There is a lot of 

technical development behind probe fabrication, not only for improving their current 

performance but to open the AFM technique to new applications.  
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 Deflection detection system: AFM head 

Once described the force detector, a way to detect the deflection of the cantilever is needed. 

Different techniques have been proposed: a scanning tunneling microscope tip placed on 

top of the cantilever [8], fiber‐optic interferometers [45, 46], optical beam deflection [47], 

capacitive [48], piezoresistive [49] or piezoelectric [50] detection. Among all the different 

possibilities, the optical beam deflection (OBD) method is predominant, due to its 

simplicity, low noise, its reliability and its ability to be applied to a variety of cantilever 

sensors [51]. OBD readout uses a focused laser beam to measure the deflection of the 

cantilever tip. The laser beam is reflected from the cantilever towards a photodiode 

detector. When the cantilever is deflected due to tip-sample interactions, there is a change 

of the reflected laser beam angle, producing a shift in the laser spot position measured on 

the photodiode. The ratio of the path length between the cantilever and the detector to the 

length of the cantilever itself produces a mechanical amplification. As a result, the system 

can detect sub-Å vertical movement of the cantilever [51]. The AFM setup used in this PhD 

employs OBD. The assembly comprising the laser source, the cantilever and the photodiode 

detector, together with the positioning systems to align the laser beam on the cantilever and 

the reflected beam on the photodiode, is named the AFM head along this PhD. Figure 1.9 

shows diagrams and pictures of the head mainly used in this PhD. In particular, figure 1.9c 

shows the laser beam path and the main components in the head. I carried out the design 

and assembly of this head, named Lanza head, during my period at Nanotec Electronica in 

collaboration with Julio Gomez-Herrero’s lab. David Martinez-Martin performed tests and 

measurements optimizing its performance along his PhD thesis [52]. It was commercialized 

by Nanotec and several units were sold in such different places as Spain, Germany or the 

USA. 
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Figure 1.9 Force detection: AFM head. a) Computer-Aided Design (CAD) model of the Lanza AFM 

head mainly used in this PhD. b) Photograph of a real Lanza AFM head. c) Sectional view of the 

head showing its main parts and the laser beam path. 

 

OBD allows for a simultaneous measurement of the vertical deflection (Normal force) and 

the torsion, i.e. lateral deflection (Lateral force) of the cantilever. The photodiode detector 

is divided into four quadrants; each of the quadrants generates a voltage proportional to the 

light intensity reaching it. By simple arithmetic both the Normal and Lateral forces can be 

measured as shown in figure 1.10. 

a b

Laser

Photodiode Cantilever
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Figure 1.10 4-quadrant photodiode operation. a) Normal force detection. b) Lateral force 

detection. 

 

OBD method main limitations include frequent laser and photodiode alignment and 

cantilevers with widths down to a few micrometers at least, to avoid the optical diffraction 

limit. The noise sources in OBD readout can be classified into three main groups: 

fundamental noise coming from the actual motion of the cantilever (Brownian thermal 

motion causes spontaneous oscillations in microcantilevers), noise coming from the 

measurement principle (laser and photodiode noise), and noise coming from the readout 

electronics (mainly voltage and current noise of the amplifier) [51]. The most relevant noise 

sources in the OBD method are the laser and the photodiode. Laser noise in OBD comes 

from both fluctuations in the laser beam intensity and its spatial distribution, and from laser 

mode hopping [53]. In our setup this has been minimized by using a low noise, low 

coherence and reduced speckle laser source coupled to a single-mode fiber cable. 

Photodiode shot noise comes from statistical fluctuations in the number of photons emitted 

by the laser. This is usually the dominant noise and it sets the lower limit for the deflection 

noise [53]. 

 

 Positioning and scanning: piezoelectric scanners 

One of the key points that allowed the success of scanning probe microscopies was the use 

and development of piezoelectric scanners. Piezoelectricity was discovered by Jacques and 

Pierre Curie in 1880 and it is the standard way to transduce an electrical signal into a 

mechanical one. It is the electric charge that accumulates in certain solid materials in 

response to an applied mechanical stress. The direct piezoelectric effect can be seen as the 

internal generation of electrical charge resulting from an applied mechanical force [54]. It is 

Normal force = (A+B)-(C+D) Lateral force = (A+C)-(B+D)
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a reversible process; materials exhibiting the direct piezoelectric effect also exhibit the 

reverse piezoelectric effect, the internal generation of a mechanical strain resulting from an 

applied electrical field. This is the base of the scanners used in SPM. The core of a SPM 

scanner is a ceramic piezoelectric material that expands and contracts when voltages are 

applied. Controlled voltages lead to very precise movements, in the order of pm for a few 

mV and up to microns for voltages of the order of a hundred V. This behavior turns 

piezoelectric scanners into extremely fine positioning stages to move the probe over the 

sample (or the sample under the probe). Piezoelectric scanners are commonly known as 

piezos. Piezoelectric material used in piezos is usually of the Pb(ZrxTi1-x)O3 type, also 

known as PZT. One of the most important contributions of SPM was the introduction of a 

technology based on piezoelectrics to induce motion over millimeter range with sub-

nanometer accuracy. 

There are different geometries of piezos. Some of the most popular are:  tripods, consisting 

in three orthogonal piezo bars, as in the first STM setup [5]; tubes, where the scanner is a 

hollow tube with different electrodes [55]; or flexure stages, which use separate piezos for 

each axis, and couples them through a flexure mechanism. This configuration has proven to 

be very suitable for high speed imaging [25]. Many SPMs use variations of the simple tube 

design. The basic configuration consists of electrodes attached to the outside of the tube, 

segmenting it electrically into vertical quarters, for +X, +Y, -X, and -Y travel. An electrode 

is also attached to the inner side of the tube to provide motion in the Z direction. When 

alternating voltages are applied to opposite electrodes, for example +X and –X, the induced 

strain of the tube causes it to bend back and forth in the X direction (in reality the end of the 

tube describes a circumference arc). Voltages applied to the Z electrode cause the scanner 

to extend or contract vertically. Figure 1.11 illustrates the basic piezo tube scanner 

movements. 

 

Figure 1.11 Piezoelectric scanners. a) XY motion for scanning and positioning. b) Z motion. 

 

+Z

-Z
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As a first approximation, the strain in a piezoelectric scanner varies linearly with the 

applied voltage. This allows for a direct conversion of the applied V into nm of 

displacement, after a calibration process using gratings with well-known distances. But in 

practice, the behavior of piezoelectric scanners is not so simple; the relationship between 

strain and electric field diverges from ideal linear behavior. There are different 

nonlinearities that need to be accounted for to have a reliable and precise calibration of the 

scanner. The most common ones are: intrinsic nonlinearity of the piezoelectric material, 

hysteresis (history memory that results in lagging in a line displacement when going back 

and forth that line), creep (two different timescales of the dimensional changes in a 

piezoelectrical material when an abrupt change in voltage is applied), aging (variation of 

the strain coefficient of a piezoelectric material with time and use) or cross coupling 

(tendency of X-axis or Y-axis scanner movement to have a spurious Z-axis component). 

There are two ways of compensating the nonlinearity effects: one is by performing a pre-

calibration of the nonlinearities and using smart software signals managing. In this case, 

scanners work in the so called open-loop configuration. The other is by adding external 

position sensors to each of the scanner axes. The signal readout from the sensor of each 

axis is compared to a signal that represents the intended scanner position along that axis. A 

feedback system applies voltages to the scanner in real time to drive it to the desired 

position. This is the so-called closed-loop configuration. It can achieve very precise 

displacements, but it can introduce additional noise to the displacements due to the 

feedback actuation.  

The piezoelectric systems used in most of the experiments here presented scan the sample 

under the probe. They are based on the combination of two piezo tubes: an inner tube 

acting as explained above plus an outer tube for extra Z displacements [56]. This design 

provides a high internal stiffness, thus minimizing the influence of external perturbations 

on the tip-sample stability, and low thermal drift. Two different scanners are used, one for 

large displacements (up to a maximum XY scanning range of ~ 70 x 70 m
2
 and 10 m in 

the Z direction) and another for short displacements (10 x 10 m
2
 in XY and 4 m in Z) 

enabling high resolution imaging. Although a system for the real-time correction of the 

piezo displacement could be integrated into the scanner design, both scanners were 

operated in an open loop configuration, with calibrations and software operation accounting 

for nonlinearities. Both scanners are designed as well as inertial positioners, allowing 

coarse tip-sample positioning by a slip-stick motion of the sample [57].  

Piezoelectric scanners and AFM head are usually placed on a stage that includes a coarse 

tip-sample approach. In our case, the head is placed onto three micrometer screws, with the 

scanner below in the center of them. One of the micrometers is coupled to a motor for an 

automatic coarse approach. 
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Electronics 

Electronics together with the control software running in a computer are the responsible for 

controlling and processing all the signals to drive a SPM. A low noise design for precise 

voltage and current measurement is required together with versatility to utilize various SPM 

techniques. There are multiple different architectures for SPM electronics. Among them, 

digital signal processor (DSP) control systems are widely used [58]. Here, the DSP-based 

electronics used in our setup is described. In this case, the term electronics refers to the 

control unit and the DSP. In our setup, the DSP is located inside the computer. Recent 

designs are based on Field Programmable Gate Array (FPGA) technology which either 

substitutes the DSP or combines with it. 

 High voltage unit 

The high voltage unit is the responsible for the high voltages (± 150 V in our setup) needed 

for the piezo movements. It houses power supplies and it also comprises lock-in amplifiers 

for the dynamic modes measurements. One of the main characteristics needed in a SPM 

high voltage unit is a low noise design, to enable the use of input/output very low voltage 

signals from/to the AFM head. 

 Digital Signal Processor (DSP) 

The DSP can be seen as the “brain” of a SPM. It is in charge of processing all the signals 

coming from the AFM hardware and to provide the low voltages (± 10 V in our setup) to be 

amplified by the high voltage unit. It comprises several Analog-to-Digital Converters 

(ADCs) as well as Digital-to-Analog Converters (DACs). Some of the main characteristics 

of a DSP for scanning probe microscopy are: 

- Low noise design. 

- Enough number of ADCs and DACs to provide flexibility enabling many configurations. 

ADCs are used for cantilever normal and lateral deflections, photodiode total intensity and 

outputs of the lock-in amplifiers (amplitude and phase of the cantilever oscillation in 

dynamic modes). There are usually as well some user-accessible (such as for a current input 

channel in conductivity measurements). DACs are employed for X, Y and Z low voltage 

signals (in this context low voltage means  10 V) and tip-sample Bias voltage. There are 

also user-configurable ones (such as for example to use as extra output voltage channels). 

- Selectable gains and offsets. 

- High sampling rate and optimized communication protocols to provide a fast response. 

- Large onboard memory to allow complex operations and the storage of data when 

acquiring at high acquisition rates. 
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The DSP is also in charge of the feedback loop during scanning. The piezoelectric scanner 

provides sub-nanometric precision to allow the tip to be close enough to the sample to 

detect the tip-sample interactions. Then, in a standard scanning mode, the electronics drive 

the scanner in a type of raster pattern. In initial SPMs, the scanner moved across the first 

line of the scan, and back. It then stepped in the perpendicular direction to the second scan 

line, moved across it and back, then to the third line, and so forth. The direction of the lines 

is commonly called the fast-scan direction and the perpendicular direction, in which the 

scanner steps from line to line, is called the slow-scan direction. Nowadays more 

sophisticated scan patters based on this initial one are used, to improve the general scanner 

performance. While the scanner is moving across a scan line, the image data are sampled 

digitally at equally spaced intervals. The feedback loop is the responsible of keeping the 

tip-sample interaction constant during scanning by adjusting the piezo Z position, thus 

avoiding tip-sample crashes. The feedback loop uses the probed magnitude (that depends 

on the operation mode, typically cantilever deflection for contact modes and cantilever 

amplitude for dynamic modes) as an input; the output controls the distance along the Z axis 

between tip and sample. When the sample is scanned across the XY plane, sample 

topography variations change the magnitude used for feedback. The feedback loop then 

adjusts the Z height so that the probed magnitude is restored to a user-defined value (called 

Setpoint). The difference between the actual value of the probed magnitude and the 

Setpoint, called the error signal, is applied as feedback to the input of the system, thus 

adjusting the tip-sample distance continuously during scanning such that the probed 

magnitude remains approximately constant at the Setpoint value. 

Many SPM systems use a Proportional-Integral (PI) feedback control [58] (a simplified 

version of the commonly used Proportional-Integral-Derivative (PID) control loop 

mechanism [59]). PI refers to the two terms operating on the error signal. If u(t) is the 

control signal sent to the system, y(t) is the measured output, SP is the desired output 

(Setpoint) and e(t) is the error signal e(t) = SP - y(t), then a PI controller has the form of 

equation (1.7) 

u(t) = P e(t) +  I ∫ e(t)dt           (1.7) 

The desired control loop dynamic is obtained by adjusting the two parameters P and I, 

commonly named feedback gains or feedback parameters.  

In this PhD, a controller comprising a Dulcinea Control Unit with a M6701 Texas 

instruments DSP, from Nanotec Electronica, has been used. Figure 1.12 shows pictures of 

these two elements. 
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Figure 1.12 Electronics. a) Dulcinea control unit. b) Digital Signal Processor M6701. 

 

Software 

Control software is a key element in a SPM system. The combination of well-developed 

software with flexible electronics allows for multiple measuring modes and acquisition 

options. Each SPM manufacturer provides its own program. 

SPM software can be typically divided into three different parts: Acquisition, Data process 

and Lithography. 

 Acquisition 

This is the most important part of the software. It is the responsible for the microscope 

control and new data acquisition, covering a wide range of measuring modes and different 

spectroscopy options. 

 Data process 

Once data are taken, within this part of the software extensive analysis can be performed. 

Typical SPM data are curves, images and movies. Apart from manufacturer’s programs, 

there are multiple other programs (some of them freeware and other commercially 

available) devoted to SPM data visualization and analysis. Some of the most well-known 

are WSxM [44, 60, 61], Gwyddion [62] or SPIP
TM

 [63]. Any SPM program provides a 

number of data processing functions, including all the standard statistical characterization 

(surface roughness, peak-to-peak (valley-to-valley) distance, mean height…), levelling, 

data correction, line profiling, filtering of various kinds, 3D rendering or grain analysis 

functions. Some of them can contain as well a number of specific, uncommon or 

experimental data processing methods. 
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 Lithography 

It allows performing modifications to the surface, using the tip as a pen. In a wider point of 

view, lithography allows designing an experiment by commanding the path for the tip and 

what actions to take at any moment along this path. Lithography methods can be designed 

and tested at any moment but at some point this part of the software interacts with the 

acquisition part. Lithography commands are generally written in a script language that is 

executed within the DSP in real time to perform the experiment. 

 

In this PhD WSxM software has been used [44, 60, 61]. WSxM is a free software devoted 

to the control of SPM systems and processing of images and data acquired with such 

microscopes. It was initially created at the New Microscopies Lab, in the Universidad 

Autónoma de Madrid (UAM). Then it continued growing at Nanotec Electronica S.L. Now 

it is maintained and developed by WSxM solutions [61]. Figure 1.13 shows the cover of the 

WSxM software and a screen capture of the acquisition part. 

 

 

Figure 1.13 WSxM software. a) Cover. b) Main acquisition window. 
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1.2.2 Standard operation modes 

As mentioned early, an atomic force microscope probes the interaction force between a tip 

and a sample. Several forces typically contribute to the deflection of an AFM cantilever 

[64]: long-range forces such as magnetic and electrostatic, interatomic and intermolecular 

van der Waals force and chemical, friction, deformations, meniscus… forces. Figure 1.14 

shows the most relevant forces acting in an AFM according to the tip-sample distance. 

 

Figure 1.14 Diagram of the different tip-sample interactions. 

 

By definition, a topography image in SPM is a z = f(x,y) where a given magnitude/s is/are 

kept constant by some kind of feedback/s. But as seen in figure 1.14, for the case of AFM 

there is a mix of interactions that affect the deflection of the cantilever. In many cases, there 

is one interaction that is much more relevant than the others, hence the topography can be 

then approximately considered as the result of a raster image where this interaction is kept 

constant. However, this is just and approximation and in general SPM topographies are  

ill-defined for most of the cases in the sense that several interactions contribute to the 

formation of the image. Consequently, different acquisition modes can yield different 

topography images and in some pathological cases the differences can be highly noticeable. 

In general, apart from the topography of the sample, an AFM allows measuring a variety of 

different properties such as friction [65], adhesion [66-68], electrostatic [69, 70], surface 

contact potential difference [71], conductivity [72], magnetic [73], dissipation [74, 75], 
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nanoindentations [66, 68, 76], etc. The dependence of the tip-sample interaction as a 

function of the distance can be seen in Figure 1.15.  

 

Figure 1.15 Diagram of the tip-sample interaction potential as a function of the distance. 

 

For example, the type of curves as the one in figure 1.15 shows two different regimes: 

attractive and repulsive. These two regimes are defined by the sign of the force. The 

attractive regime corresponds to negative forces while the repulsive regime to positive 

forces. Since F = - dU/dZ, attractive and repulsive regimes correspond to the positions 

marked with arrows in figure 1.15. The force dominating the attractive regime is the most 

commonly associated with atomic force microscopy, the van der Waals force. Considering 

the tip-sample geometry, van der Waals force can be approximated by equation (1.8) 

FvdW = −
AR

6Z2
           (1.8) 

where R is the radius of the sphere that conforms the tip end, Z is the tip-sample distance 

and A is the Hamaker constant, with a value of the order of 10
-19

 J. The repulsive regime is 

dominated by Pauli repulsion due to overlapping of the electron orbitals of tip and sample. 

Repulsive and attractive regimes basically define the most common AFM measuring 

modes: contact modes (including Jumping mode) and dynamic modes (non-contact and 

intermittent contact) respectively. Thus, the thumb rule is that and AFM topography 

represent a z = f(x,y) surface obtained by keeping constant the Pauli repulsion or the van 

der Waals forces. 
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 Contact mode 

In Contact mode, as it name suggests, the tip is in mechanical contact with the sample 

surface. As the scanner traces the sample under the tip, the repulsive contact force causes 

the cantilever to bend. The AFM measures the cantilever deflection, which is proportional 

to the Normal force, thus following changes in topography. Friction maps can be obtained 

by measuring the Lateral force (see figure 1.10b). Figure 1.16 shows a schematic diagram 

of a line scan in Contact mode. 

 

Figure 1.16 Schematic illustrating Contact mode. 

 

Other forces are generally present during Contact mode operation: a capillary force exerted 

by the thin water layer often present in ambient conditions, adhesion forces which are a 

consequence of the attractive van der Waals interactions and the loading force exerted by 

the cantilever itself. The capillary force arises when water surrounds the tip, applying a 

strong attractive force (~ 10
-8

 N) that holds the tip in contact with the surface. The total 

force that the tip exerts on the sample is the sum of the capillary plus cantilever and tip 

interactions, and must be balanced by the repulsive force for Contact mode. To minimize 

the force exerted on the sample, low spring constant cantilevers are preferred. Depending 

on the cantilever, total forces on the sample can vary from hundreds of pN up to several 

N. 

There are two characteristics of Contact AFM in ambient conditions that have made it the 

option of choice for some particular measurements along this PhD. One is that Contact 

mode allows to avoid possible artifacts in height measurements compared to dynamic 

modes [77]. The other one is that Contact mode can achieve the “pseudo-atomic resolution” 

or “lattice resolution” topographic images, but it can as well achieve what it is called “true 

atomic resolution”. Although the mechanisms governing this high resolution are not 

completely understood, it is characterized by the possibility of distinguishing atomic 

Fast scan direction
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defects on the surface [78-80]. As an example, figure 1.17 shows atomic resolution on few-

layer Boron Nitride. These two aspects have made Contact mode the best option to 

characterize layer height and structure of 2D materials. 

 

Figure 1.17 Contact mode atomic resolution on few-layer Boron Nitride (BN). a) 44x44 Å2 

topographic image showing a point defect. b) Zoom-in image of the point defect. The 

superimposed BN lattice reveals the defect as a 3B+N vacancy [81]. 

 

 Dynamic modes 

Dynamic AFM methods are based on the changes observed in the dynamic properties of a 

vibrating tip that interacts with a surface. There exist two main branches for dynamic 

modes: off resonance and in resonance modes. While the former is used by a moderate 

number of researchers [82, 83] the second branch is the one commonly applied for the 

majority of AFM studies. In the forthcoming lines in resonance AFM modes are discussed 

in some detail. 

Amplitude, Phase, Frequency and Dissipation of the oscillating cantilever are the main 

parameters used to probe tip-sample interactions. Dynamic modes offer the possibility of 

tuning the tip-sample interaction from hard intermittent contact, governed by repulsive 

forces, to soft non-contact in the attractive regime. Historically, they were developed to 

minimize tip-sample damage originated by friction forces present in Contact mode. 

Dynamic modes present different sensitive parameters and allow the possibility of 

measuring in different media (air, liquids or UHV), high resolution, etc. However, the 

interpretation of the images obtained in Dynamic modes often requires deep understanding 

of the dynamics of the cantilever introducing an additional level of complexity. 

There are two major Dynamic AFM modes, Amplitude Modulation AFM (AM-AFM), 

typically also known as “tapping” mode [12] (although AM-AFM can be operated in a non-

NB
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contact regime, with no tapping the surface) and Frequency Modulation AFM (FM-AFM) 

[13]. In this PhD Drive Amplitude Modulation AFM (DAM-AFM) [19], a variation of FM-

AFM, is also considered in some detail. 

The most common dynamic operation mode in ambient conditions is AM-AFM. In  

AM-AFM the cantilever is excited at or near its resonance frequency. The oscillation 

amplitude is used as the feedback parameter to measure the topography of the sample 

surface. Additionally, material properties variations are mapped by recording the phase 

shift between the driving force and the tip oscillation, which is related to the effects of 

conservative (virial) and non-conservative (dissipation) forces within the tip-sample 

system. This section is focused on the main concepts of AM-AFM. Later in this chapter 

FM-AFM and DAM-AFM are also addressed. Dynamic modes operation has been 

profoundly studied; a precise and quantitative interpretation has been already performed 

elsewhere and is out of the scope of this chapter. Excellent reviews of dynamic modes were 

performed by Ricardo García and Rubén Pérez [84] and Franz Giessibl [85]. Figure 1.18 

shows a schematic diagram of a line scan in a dynamic mode. 

 

Figure 1.18 Schematic illustrating Dynamic modes (in particular a non-contact mode). 

 

- Amplitude and Phase equations. 

In a first approximation a cantilever-tip ensemble can be considered as a point-mass spring, 

then the tip motion can be approximately described by equation (1.9) 

         mz̈ +  
mω0

Q
ż + kz =  F0 cos(ωt) +  Fts          (1.9) 

Fast scan direction
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where F0 and  are the amplitude and angular frequency of the driving force, Q, 0 and k 

are the quality factor, angular resonance frequency and spring constant of the free 

cantilever. Fts accounts for the tip-sample interaction.  

The most relevant interaction forces in absence of external fields are the van der Waals 

force, short-range repulsive forces, adhesion and capillarity. Several approximations have 

to be done to take them into account in equation (1.9) (see [84] and references therein). In 

the absence of tip-sample interaction forces (Fts = 0), the system can be described as a 

forced harmonic oscillator with damping. Its solution can be written as 

   z(t) = Be−αt cos(ωrt + β) + A(ω)cos (ωt − ϕ)                  (1.10) 

This solution has a transient and a steady term. After a time 2Q/0 the transient term will 

be reduced by a factor 1/e; from then on the motion of the cantilever will be dominated by 

the steady term. This steady term is a sinusoidal function with a phase lag with respect to 

the driving force. Thus, the Amplitude as a function of the frequency can be written as 

A(ω) =  
𝐹0

𝑚⁄

√(ω0
2−ω2)2+(

ωω0
Q

)
2
                    (1.11) 

and the Phase shift as 

     ϕ = arctan (

ωω0
Q

ω0
2−ω2 )         (1.12) 

 

If there is no damping, the Amplitude takes the form: 

A0 =  
QF0

k
          (1.13) 

The damping modifies the resonance frequency of the cantilever. Natural and free 

resonance frequencies follow the relation 

ωr =  ω0√1 −
1

2Q2         (1.14) 

From this it can be seen that if damping modifies the resonance frequency then it modifies 

the phase shift. Phase imaging is a common tool to map changes in material properties such 

as adhesion, viscoelasticity, Young’s modulus, etc. [86, 87]. 

Assuming a parabolic tip-sample interaction potential, for small displacements with respect 

to the equilibrium position z0 the tip-sample interaction can be treated as perturbation. An 

effective spring constant kef can be defined, which includes the tip-sample interaction. 
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kef = (k −
dFts

dz
)

z0

         (1.15) 

The motion of the cantilever can then be expressed as a harmonic oscillator with an 

effective spring constant given by (1.15). In this way, equation (1.9) can be expressed in 

terms of a new frequency that, in a first approximation has the form 

ω =  ω0 (1 −
1

2k

dFts

dz
)         (1.16) 

Equation (1.16) shows that the resonance frequency of a vibrating system is modified by 

the force gradient. The amplitude change in the oscillation can be as well referred to the 

force gradient through the expression 

𝛥𝐴 ∝  
𝑄

2𝑘

𝑑𝐹𝑡𝑠

𝑑𝑧
         (1.17) 

Equation (1.17) shows that the amplitude change is proportional to the Q factor and it is 

very sensitive to tip-sample distance changes. This is why it is used to track the surface 

topography. Figure 1.19 shows the typical cantilever dynamic response. 

 

Figure 1.19 Cantilever dynamic response around the resonance without dissipation. a) Amplitude 

curve. b) Phase curve. In both a) and b) solid lines correspond to the free resonance curves while 

dotted lines correspond to the shift of the curves produced by an attractive force. Shifts in the 

relevant parameters are also indicated. 

 

 Jumping mode 

Jumping mode operation is based on measuring the cantilever deflection as in Contact 

mode, but in this case at each image point the feedback loop is first closed, to measure the 

topography of the sample, and then open, to evaluate the tip sample interaction by moving 

the tip away and towards the sample [16]. The sample is moved to the next image point 

being far from the tip. Since the tip literally jumps from one image point to another, this 
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mode is called Jumping mode (JM). In general, this acquisition scheme is known as Force-

distance curve-based mode [88]. In JM the lateral displacement of tip and sample is done 

when they are not in contact, hence avoiding shear forces and the corresponding damage to 

tip and sample. From the data corresponding to the measured interaction, either a 

characteristic point is chosen, or some parameter is calculated by means of an appropriate 

algorithm. In this way, Adhesion and Stiffness maps can be acquired simultaneously to 

topography.  

Initial JM was further improved by Ortega-Esteban et al. [17] by minimizing the maximum 

forces applied during scanning and conveniently identifying the tip-sample contact at each 

image point. While in the original version of JM the tip excursion for the forward and 

backward cycles was equal, in the improved version the cantilever deflection is monitored 

as the tip approaches the surface, stopping it if the deflection is greater than the Setpoint. 

Additionally, when working in liquids it uses a smart algorithm that removes the dragging 

force. After these improvements the mode was termed as Jumping mode plus (JM+). Figure 

1.20 shows a schematic diagram on a line scan in Jumping mode plus. 

 

Figure 1.20 Schematic illustrating Jumping mode plus. 1: forward cycle, 2: backward cycle, 3: 

lateral displacement to the next point. 

 

When comparing Jumping to Dynamic modes, JM offers low friction forces, a direct 

applied force control and a quite straightforward image interpretation. On the negative side, 

Jumping is slower than Dynamic modes. JM can also be combined with Dynamic modes, 

allowing measuring magnitudes such as phase or amplitude variation as a function of the 

tip-sample distance or to further reduce shear forces when imaging very weakly attached 

entities [89]. 
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As a summary of the three basic modes already seen and to go deeper into the feedback 

schemes under each of them, figure 1.21 shows a cartoon with their operational 

configurations. 

 

Figure 1.21 Operation diagrams of the three basic measuring modes. a) Contact mode: the tip is 

brought into mechanical contact with the surface and the cantilever deflection (Normal force) is 

directly used as the controlled input for the topography feedback. Friction maps are produced 

from the lateral force. b) AM-AFM: the cantilever is oscillated at its free resonance frequency (f0) 

and the amplitude is used as the controlled input for the topography feedback. The phase 

produces a map of conservative (Vts) + dissipative (ets) forces. (c) JM+: the cantilever is usually not 

oscillated, the system performs a quick Force vs. Distance curve (FZ) at each point of the scanned 

area, moving the tip laterally at the furthest tip sample distance minimizing lateral forces. The FZ is 

performed using a sinusoidal voltage wave (Vjump, with amplitude Aj and frequency fj) that is 

applied to the piezoelectric scanner. Adhesion and Stiffness maps are produced from the FZ. The 

Normal force is directly used as the controlled input for the topography feedback. 
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 Basic AFM spectroscopy: Force versus Distance curves 

A Force versus Distance (FZ) curve is a plot of the deflection of the cantilever as a function 

of the extension of the piezoelectric scanner [90]. When doing a FZ curve, the sample 

mounted on the piezoelectric scanner is moved up and down by applying voltages to the 

scanner, while the deflection of the cantilever is measured at the photodiode. These curves 

allow studying surface forces, but also provide valuable information on local material 

properties such us adhesion, stiffness, elasticity, Hamaker constant, charge densities, 

degrees of hydrophobicity… [91]. FZs can be employed as well with functionalized tips, 

i.e., tips covered with particular molecules that selectively adhere to other, in order to study 

specific forces [92]. FZs also allow performing single molecule force-clamp spectroscopy, 

a way to probe the dynamics of proteins by measuring their length and mechanical stability 

during each stage of folding [93]. 

FZs operation and applications have been profoundly studied. An excellent review of FZ 

curves by AFM was performed by H. J. Butt, B. Cappella and M. Kappl [94]. Figure 1.22 

shows schematics on a FZ experiment and explains the behavior of the force along the 

approach and retract cycle. 
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Figure 1.22 Experimental Force vs. distance (FZ) curves. a) Experimental FZ curve where the most 

relevant points are highlighted. b) Schematics illustrating a FZ approach/retract cycle: 0- Initially, 

the tip is assumed to be far enough from the sample so as not to be influenced by it. There is no 

change in the cantilever’s deflection (Normal force). 1- When the tip is only a few nanometers 

from the sample, the gradient of the interaction becomes higher than the cantilever stiffness, an 

instability arises and the tip jumps into contact with the substrate (snap in point). 2, 3- After 

contact is made, a controlled loading and unloading of the tip against the sample is done. Since 

the maximum applied load can be controlled in a straightforward way, a quantitative 

determination of the importance of elastic and plastic processes can be performed. 4- When 

unloading, there is an extra force needed to separate tip and sample. This force is a consequence 

of the adhesive properties between the tip and the sample. Due to the adhesion forces, the tip 

does not detach the sample at the same Z position nor at the same force value at which it jumped 

into contact. The detaching point is called snap off point. The adhesion force can be calculated as 

the force difference between points 0 and 4 and the dissipated energy as the area of the FZ loop. 

5- After the tip detaches the sample, there are no interactions, and the deflection keeps constant 

while retracting. 

 

A simple extension of the applicability of FZ curves comes from the fact that different 

signals can be acquired simultaneously while moving the sample in the Z direction, to 

approach/retract it to/from the sample. In this way, when the cantilever is oscillating in a 

Dynamic mode, different spectroscopic curves can be acquired: along with the Normal 

force vs. distance curve Amplitude vs. distance or Phase vs. distance curves can be of 

interest. Figure 1.23 shows Normal force, Amplitude and Phase vs. Z curves. 
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Figure 1.23 Simultaneous signals vs. distance of an oscillating cantilever. a) Force. b) Amplitude. c) 

Phase. Three different regimes can be observed: 1- Non interactive regime (slightly before the Z = 

0). Normal force, Amplitude and Phase curves reflect a constant oscillation amplitude at resonance 

(Phase = 90°). 2- Tip-sample interaction starts and a linear decrease in the oscillation amplitude 

can be observed. This is known as the control regime: a Setpoint value can be placed on the 

Amplitude signal for Amplitude Modulation dynamic operation. 3- Tip jumps into contact and 

Normal force increases linearly with the distance. There is no Amplitude and the Phase keeps at a 

constant value. 
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1.3 Advanced AFM measurements 

In this section, descriptions of the advanced modes used along this PhD are presented. 

 

1.3.1 Dynamic modes 

In the previous section Amplitude Modulation AFM mode is described. The common point 

among the different Dynamic modes is the oscillation excitation of the cantilever. The use 

of different signals as feedback channel to track the topography of a surface leads to the 

different Dynamic modes: AM-AFM uses the Amplitude. There is also a modified version 

of the AM-AFM mode in which, apart from the topography feedback on the Amplitude 

signal, there is an extra feedback loop on the Phase signal, by means of a Phase Lock Loop 

(PLL) [95]. A PLL varies the driving frequency of the cantilever so that it is always 

oscillating at resonance. The output of the PLL is the driving frequency shift. In this PhD 

this mode will be called Amplitude modulation + PLL mode (AM+PLL AFM). The 

advantage of using AM+PLL AFM compared to standard AM-AFM is that, whereas the 

Phase signal contains a mixture of information coming from conservative and non-

conservative interactions, the driving frequency (output of the PLL) only contains 

conservative interactions [96]. In addition, since the cantilever is oscillating always at 

resonance, the system is very sensitive to amplitude changes from topography variations. 

Frequency Modulation AFM (FM-AFM) uses the Frequency shift (directly related to the 

Force gradient) for the topography feedback and Drive Amplitude Modulation AFM 

(DAM-AFM) uses the amplitude of the oscillating driving force (related to the Dissipation). 

Both FM-AFM and DAM-AFM use three feedback loops; two nested loops for the 

topography and one additional loop working in parallel to obtain an extra channel of 

information. In the case of FM-AFM, tip-sample distance is adjusted to keep the Frequency 

shift constant generating a topography image. This topography image can be interpreted as 

a map of constant Force gradient. The amplitude of the driving force, which is controlled in 

the parallel feedback loop, represents the Dissipation. In the case of DAM-AFM, the first of 

the two nested feedback loops adjusts the driving force in order to maintain the oscillation 

amplitude constant. Now tip-sample distance is adjusted to keep the amplitude of the 

driving force constant. A PLL tracking the resonance frequency operates as parallel 

feedback loop. Topography images in DAM-AFM represent maps of constant Dissipation 

and the frequency shift controlled by the PLL provides a map of conservative interactions 

[19]. 

While AM-AFM is the most extended dynamic mode, it has limitations. For example, its 

application to the vacuum environment is difficult because of the long scanning times 

imposed by the high quality factor Q of the cantilevers in vacuum. FM-AFM and DAM-

AFM overcome this drawback. FM-AFM is the most widespread mode for vacuum 
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environments and it has recently been extended to operate in liquids (where the Q factor is 

4-5 orders of magnitude lower than in vacuum), with remarkable success [24, 97]. The 

main drawback of FM-AFM comes from the fact that the transition from noncontact to 

contact causes an instability in the feedback control [98]. This is particularly important for 

inhomogeneous surfaces in which, for example, the adhesion changes abruptly, or 

biological samples in liquid environments, which tend to contaminate the tip and introduce 

attractive interactions causing FM to become unstable [19]. Since the Dissipation generally 

grows monotonically as the tip approaches the sample surface [99], DAM-AFM overcomes 

in part the instability issue. Figure 1.24 shows Frequency shift and Dissipation vs. distance 

curves for a biological sample in liquid where the monotonic behavior of the Dissipation is 

observed independently of the tip state. 

 

 

Figure 1.24 Frequency shift and Dissipation vs. distance with a biological sample in liquid for a) a 

fresh tip and b) a contaminated tip. Figure taken from reference [19]. 

 

The main disadvantage of both FM-AFM and DAM-AFM is the need of three different 

feedback loops (two nested loops for the topography and one additional loop working in 

parallel). This is why AM-AFM keeps being the preferential mode for the majority of the 

applications. To illustrate this, figure 1.25 shows a cartoon with the feedback schemes of 

the different Dynamic modes. Along this PhD, AM-AFM has been mainly used when 

working in air conditions, but when working in liquid environments both AM-AFM and 

DAM-AFM modes were employed (Chapter 3). 
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Figure 1.25 Dynamic modes operation diagrams (adapted from reference [19]). 
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1.3.2 Spectroscopy imaging (3D Modes) 

Classical SPM images represent a magnitude G as a function of the geometrical position   

x, y: G(x, y). 3D Modes images (also known as 2D plots) represent a magnitude G as a 

function of generalized variables λ1, λ2:  G(λ1, λ2), giving an “image” of the interaction 

[100, 101]. 3D Modes images are displayed in real time as any conventional image. 3D 

Modes can be acquired along one line of the surface, G = G(x, λ1) or at one point on the 

surface, G = G(λ1, λ2). As in the case of usual geometric scan modes, several magnitudes 

can be simultaneously measured and displayed. Figure 1.26 depicts the 3D Modes 

operation principle and an example. 

 

Figure 1.26 3D Modes operation. a) Some typical AFM images axes magnitudes. b) Left: generic 3D 

Modes images axes magnitudes. Right: generic representation of a 3D Modes acquisition along a 

line (top) and at a point (bottom). c) Scheme of a 3D Modes measurement of the magnetic 

interaction (through the frequency shift, ) along a line as a function of the tip-sample distance. 

 

3D Modes have been employed in this PhD to study the magnetic interaction as a function 

of the tip-sample distance in different media (vacuum, air and liquid) while optimizing the 

acquisition of MFM data in liquids (Chapter 3). 
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1.3.3 Measurements in liquid environments 

AFM is nowadays a powerful technique in biology [102], since it allows imaging and 

manipulating nanostructures in physiological conditions from cellular and membrane to 

single molecule level. This is an important feature, since biological specimens are normally 

fully functional only in liquid environments. Some of the most extended AFM applications 

in liquids are: 2-dimensional protein crystals and lipid membranes [103], molecular and cell 

biology [104-107], single proteins such as DNA [108], virus and protein nanocages [109], 

the study of molecular machines [110] or the mechanical properties of proteins by studying 

their folding and unfolding [93]. Depending on the application, different AFM measuring 

modes are typically used. Whereas for protein crystals and lipid membranes, that withstand 

lateral forces, Contact mode at the lowest force is usually applied, to study other biological 

systems which are prone to be detached from the substrate, Dynamic or Force-distance-

based modes, such as Jumping, are preferred, since they minimize lateral forces and it is 

possible a better control on the applied load. A comparative study on the performance of 

the most common modes can be found in reference [111]. 

The main components of an AFM to be used in liquid environments comprise specific 

sample holder and cantilever holder. Sample holder has to ensure that no liquid will go to 

the piezoelectric scanner. This can be easily addressed by using sample holders in a pool 

fashion, although depending on the sample substrate this can even be skipped. The 

cantilever holder has to be adapted to allow a suitable operation in liquids under the 

different imaging modes. In particular, operation in Dynamic modes present some 

difficulties since the conventional setups used in air for oscillating the cantilever cannot be 

implemented in liquids. The most typical ways to oscillate the cantilever in liquid are the 

acoustic, the magnetic and the thermal methods [112]. The acoustic excitation consists of 

oscillating the cantilever by using a piezoelectric actuator attached to the cantilever holder. 

Although this method is very simple, the main drawback is the production of multiple 

peaks in the resonance curve, which unfortunately can hide the natural resonance frequency 

of the cantilever [113]. Still working at Nanotec, I participated in the development of a 

cantilever holder that removed the so-called forest of peaks by inserting a soft clay as 

damping material for the residual vibrations [114]. Later, we improved this design by 

introducing “acoustic barriers,” i.e., boundaries between two materials having significantly 

different acoustic impedances while cantilever vibration is excited [115]. This acoustic 

barriers combined with the soft clay damping allows to a good extend the suppression of 

spurious peaks. Figure 1.27 shows the main parts of the cantilever holder used along this 

PhD for measurements in liquid. This holder was named Dolphin. It was commercialized 

by Nanotec and several units were sold in such different places as Spain, Germany or the 

USA. 
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Figure 1.27 Measurements in liquid environments. a) Schematic diagram of the cantilever holder 

for liquids. b) Detail of the dither piezo “sandwich”. Left: side view. Right: 3D view. As it can be 

seen in a), the top part of the “sandwich” is attached to the rest of the holder through the clay and 

the rubber bands, thus reducing residual vibrations. c) Photograph of a cantilever holder. d) 

Experimental cantilever resonance frequency curves in air (green) and liquid (blue). 

 

As it can be seen in figure 1.27a, one of the main differences regarding a conventional 

cantilever holder for air measurements is the use of a window. This window avoids the 

instabilities characteristic of the surface of fluids and ensures a flat interface for the 

reflected laser beam, providing a stable spot on the photodiode. In figure 1.27b the different 

components of the oscillation generation in the holder can be seen, what is called 

“sandwich”. Together with the damping clay, rubber bands are now placed in the interface 

with the holder body, creating in this way acoustic barriers that further suppress spurious 

peaks. Figure 1.27c shows a photograph of a Dolphin holder, were an elastic sealing 

silicone is placed over the whole “sandwich” to avoid liquid going into the dither piezo. 

Figure 1.27d shows resonance curves of an Olympus rectangular cantilever OMCL-

RC800PSA (nominal parameters: length 100 m, width 20 m, spring constant 0.39 N/m 

and 69 kHz air resonance frequency). Both air and liquid environment curves present single 

resonances with no spurious peaks.  

In this PhD different systems in liquid environments have been investigated in order to 

study their properties and to improve the performance of AFM in liquids. In this sense, 
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different high-sensitive force-detection methods have been employed to visualize the 

double helix of dsRNA under near-physiological conditions at high resolution (Chapter 3) 

and Magnetic Force Microscopy has been developed to allow magnetic measurements in 

liquid environments (Chapter 3).  
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1.3.4 Magnetic Force Microscopy (MFM) 

Magnetic Force Microscopy (MFM) is a type of dynamic non-contact atomic force 

microscopy mode, where the magnetic interaction is probed using a magnetic tip [73]. If 

magnetic forces are the main contribution to the total interaction in an AFM setup, one 

generally speaks of Magnetic Force Microscopy. 

Calling Mtip the tip magnetization and Hsample the magnetic field from the sample, the 

interaction energy between tip and sample, E(r), can be written as:  

E(r) =  −μ0 ∫ [Mtip(r′)Hsample(r + r′)]d3r′
tip

       (1.18) 

where 0 is the permeability constant. The force between tip and sample due to the 

magnetic interaction is given by 

       F(r) =  −grad[E(r)]         (1.19) 

which can be measured directly through the changes in the cantilever deflection. These 

forces are very low (~ pN), therefore in order to increase measurement sensitivity, force 

gradient instead of force is measured by using Dynamic modes. From equation (1.16) it can 

be shown that the frequency shift on an oscillating cantilever due to an external force can 

be written as follows: 

              ∆ω =  −
ω0

2k

dFts

dz
         (1.20) 

where  is the frequency shift, 0 is the free resonance frequency, k is the cantilever 

spring constant, Fts is the tip-sample interaction force and z is the direction of the 

interaction. Working in a Dynamic mode, this frequency shift can be directly measured 

using the PLL option, or indirectly, through the Phase channel. As it was shown in figure 

1.14, where the different tip-sample interactions as a function of the distance where 

represented, in order to acquire only the magnetic interaction it is important to measure at 

an optimum tip-sample distance, one at which the other force contributions are negligible 

compared to the magnetic one. Although this distance will depend on the sample, the usual 

estimation is ~ 20 nm above the surface, where the magnetic contribution will be much 

stronger than the short range forces. The way to obtain magnetic images is to perform a 

first scan using a standard Dynamic mode obtaining the topography of the surface, and then 

a second scan, lifting the tip typically 30-60 nm above the surface to avoid the short range 

forces. Figure 1.28 shows the MFM operation principle. A much more detailed explanation 

of MFM can be found for example in Miriam Jaafar thesis [116]. 
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Figure 1.28 Magnetic Force Microscopy operation principle. 

 

The most common tool to obtain the MFM images is called “Retrace mode”, also known as 

“Lift mode” in the particular case of raising the tip a given distance. This mode consists of 

making the tip scan twice above the same line. In this way, the magnetic images can be 

acquired “simultaneously” to the topography images. The first scan is made as usual, and 

the computer records the topography. Depending on the Retrace settings, there are different 

ways in which the tip will scan the sample in the retrace line. For MFM, the topography 

feedback is turned off and the second scan is done at constant height, using the topography 

recorded data. This way, the tip already knows how to scan the sample, it does not have to 

feel any strong interaction force from the topography and hence it can feel some other long-

range forces, such as magnetic forces. However, in reality the piezo non- linearities prevent 

a perfect repetition of the topography resulting in small errors in the retrace image. 

MFM has been widely used to study the magnetic properties at the nanoscale both in 

vacuum and ambient conditions [117], but not in liquid environments. In this PhD the 

acquisition of MFM data in liquids has been developed and optimized (Chapter 3). This 

technique will enable the study in liquid environments of magnetic properties of biological 

specimens that can dramatically change when studied far away from physiological 

conditions. 
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1.3.5 Conductive AFM (C-AFM) 

The most basic way to perform electrical transport measurements is to place two electrodes 

on the material under study and apply a voltage ramp while measuring the current through 

the electrodes, obtaining a Current versus Voltage curve (IV curve). This is easy to carry 

out in the macroscale, but it becomes more difficult when the material under study is in the 

nanoscale, mainly due to the small dimensions of the objects under study and the difficulty 

in performing good electrical connections from nanometer-scale materials to the measuring 

devices from the macroworld. Conductive Atomic Force Microscopy (C-AFM) is used to 

probe the electrical properties of nano-objects at the nanoscale. It uses an AFM conductive 

tip as a second mobile electrode to locally measure the current when a Bias voltage is 

applied between tip and sample. Figure 1.29 shows a schematic view of the setup used for 

C-AFM applied to the study of the electrical properties of nano-objects located on an 

insulating substrate. 

 

Figure 1.29 C-AFM setup. a) Sketch of a configuration where a metal electrode is placed on top of 

the nano-objects under study. Some of the nano-objects appear partially covered with the 

electrode. A Bias voltage is applied to a metallized AFM tip in order to study their electrical 

properties by measuring with an ammeter (A in the figure) the current flowing through the nano-

objects. b) Experimental 3D rendered topographic image of a similar setup as explained in a). 

Three nano-objects can be seen coming out the metal electrode. 

 

Depending on the nano-objects under study, different approaches are used to measure their 

electronic properties: the tip can be brought into Contact mode and, by applying a fixed 

Bias voltage between probe and sample, it maps the electronic properties of a surface [118]. 

Under this same imaging mode, a more sophisticated approach can be followed, performing 
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and IV curve on each pixel of the image [119], in a similar fashion as the STM does on 

Current Imaging Tunneling Spectroscopy (CITS) [120]. Although this approach in Contact 

mode can be also applied to study isolated molecules adsorbed on surfaces, as it was done 

by Dai et al. on multi-wall carbon nanotubes [72], in the cases of delicate samples that 

could not withstand continuous contact mode scanning, an approach in which samples are 

imaged in a Dynamic mode and IV measurements are performed in stable contact at 

selected points is preferred [121, 122]. In addition, scanning in contact with a metalized tip 

is very demanding, since the tip can be easily contaminated or peeled off, resulting in a 

high tip-sample contact resistance. 

Along this PhD, the dynamic approach has been the common option of choice. C-AFM has 

been used to characterize the conducting properties of different systems: MMX chains 

obtained by drop casting, few-layer antimonene flakes obtained by micromechanical 

exfoliation and graphene areas modified by ultrahigh pressure (Chapter 4). Two new 

procedures to perform electrical contacts on nano-objects have been as well developed 

(Chapter 3). The first one is based on the deterministic transfer of exfoliated graphite flakes 

and the second one on the deposition and manipulation of gold nanowires. Both procedures 

are very useful combined with C-AFM. In addition, they are particularly relevant in the 

case of molecules with limited stability under standard lithographic conditions. 
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1.3.6 Kelvin Probe Microscopy (KPM) 

Electrostatic Force Microscopy (EFM) is a type of dynamic non-contact atomic force 

microscopy where the electrostatic interaction is probed using a conductive tip [70, 123]. 

Some of the applications were EFM has been used comprise imaging charges [123], dopant 

properties of semiconductors [124], the adsorption of molecularly thin films of water on 

solid substrates [125], conducting properties of  carbon  nanotubes [126] or organic 

polymer solar cells [127]. In ultrahigh vacuum, extremely high resolution of the local 

charge distribution and surface potential has been obtained [128]. 

Kelvin Probe Force Microscopy (KPFM, or just Kelvin Probe Microscopy, KPM) measures 

the Contact Potential Difference (CPD) between the sample surface and the tip locally, 

from the force produced at the tip by an electrostatic interaction [71, 129]. KPM works by 

applying an adjustable bias voltage between a conducting tip and the sample. As in the case 

of EFM, KPM has been applied to the study of many different systems: electronic/electrical 

properties of metal/semiconductor surfaces [130] and semiconductor devices [131], 

electrical properties of organic materials/devices [127, 132, 133] or biological materials 

[134]. KPM has recently even been able to image the charge distribution within a single 

molecule by using carbon monoxide terminated tips in ultrahigh vacuum conditions [135]. 

Since the electrostatic interaction is quadratic in the voltage, the measured interaction has a 

static component and two other components varying with frequencies  and 2. Using 

appropriate lock-in techniques and a feedback loop to adjust the tip-sample voltage, the 

local CPD can be determined with nanometer resolution. 

In an AFM configuration, the force produced at the tip by an electrostatic potential U 

between tip and sample can be written as follows: 

F =  
1

2

∂C

∂z
U2          (1.21) 

where U is the potential difference between the tip and the sample surface and C is the 

capacitance of the probe-sample system. The derivative of the capacitance respect to 

distance, ∂C/∂z, includes the geometrical and dielectric properties of the probe-sample 

system. This is important when interpreting the electrostatic images, since a local variation 

in the dielectric properties produces a change in the force. The force signal can also change 

due to a variation in the voltage difference U between tip and sample. This voltage is a DC 

voltage, but in the KPM method an AC voltage is added externally to be able to detect low 

force changes by using lock-in techniques. Considering this AC voltage, the potential 

between tip and sample can be written as U=Udc+Uac sin(ωt). Then, the electrostatic force 

takes the form: 

F =  
1

2

∂C

∂z
(Udc + Uac sin (ωt))2        (1.22) 
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Developing the squared term, the force can be separated into three different terms: 

F =  Fdc +  Fω sin(ωt) +  F2ωsin (2ωt)       (1.23) 

where 

Fdc =  
1

2

∂C

∂z
(Udc

2 +
1

2
Uac

2 );     Fω =  
∂C

∂z
UacUdc;     F2ω =  −

1

4

∂C

∂z
Uac

2                   (1.24) 

The third term, F2ω, is proportional to the square of Uac (which is fixed during the 

experiment) and to ∂C/∂z, but does not depend on the constant potential Udc. ∂C/∂z changes 

due to variations in the tip-sample distance owing to the sample topography and varies 

locally with the dielectric properties of the sample. Thus, the term F2ω gives information on 

these dielectric properties. As in the case of F2ω, the term Fω is proportional to ∂C/∂z and 

Uac, but in this case it is also proportional to Udc. As mentioned before, Uac is fixed 

externally and it remains constant during the experiment. On the contrary, Udc may vary 

locally due to different chemical potential values at the sample surface, making this voltage 

an interesting magnitude to be measured. Fω and F2ω can be measured separately by using 

lock-in techniques and different sample properties can be extracted.  

To understand the KPM method, it can be assumed that the potential difference between tip 

and sample (Udc) is composed by two terms, Udc = Uextdc - VCPD, where Uextdc is a constant 

potential applied externally, and VCPD is the CPD between the sample surface and the tip. 

Then Fω takes the form: 

Fω =  
∂C

∂z
UacUdc =  

∂C

∂z
Uac(Uextdc − VCPD)       (1.25) 

The KPM method is based on an extra feedback loop that nullifies the term Fω. To this end, 

it applies an adequate external potential, Uextdc = VCDP, so Fω = 0. In this way, the output of 

the KPM feedback loop is a measurement of the CPD and, since it does not depend on 

∂C/∂z, it is independent of the dielectric properties of the sample and even of the tip-sample 

distance (however, if the tip is very far away, the gradient of the capacitance will be so 

small that Fω will be almost zero independently of the value of the term in parenthesis). 

VCDP is defined as [136]: 

VCPD =  
ϕtip− ϕsample

−e
         (1.26) 

where tip and sample are the work functions of the tip and the sample, and e is the 

elementary charge. Once the tip work function is calibrated (using a reference sample with 

a well-known work function value), by using KPM the sample work function can be 

mapped with nanometer resolution. 

The conventional KPM method measures simultaneously the topography and the 

electrostatic signal. There are two main approaches to separate the electrostatic forces from 
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the van der Waals forces. Following Glatzel et al. nomenclature [137], whereas some 

authors use an Amplitude modulation (AM) scheme [131], others use a Frequency 

modulation (FM) one [128]. The main difference between the two methods is the sensitivity 

to the electrostatic force. In AM mode the electrostatic force is detected and in FM mode it 

is the force gradient. In the AM mode, topography and electrostatic signals are separated by 

using the first and second cantilever resonance frequencies. While the first resonance tracks 

the mechanical vibration, the second is used for the electric bias voltage, thus enhancing the 

sensitivity due to the amplification from the Q factor of this cantilever resonance. In the FM 

mode, crosstalk with topography is minimized by oscillating the bias voltage at low 

frequencies, in the range of 1-10 kHz. In this way, the resonance for the bias voltage is far 

away from the mechanical vibration of the cantilever. 

The presence of the cantilever and the tip cone implies not only a loss of resolution but it 

may induce to incorrect values of the measured surface potential [138]. This can be 

minimized by using the FM mode [100], since by using the force gradient instead of the 

force, the effect of the tip cone is “differentiated away” for a certain range of tip-sample 

distances, where its dependence with the distance is not as strong as for the tip apex [100, 

138], thus enhancing the resolution of the KPM data.  

In this PhD, KPM has been used to study the work function variations of graphene 

modified under different ultrahigh pressures (Chapter 4), correlated with Raman 

spectroscopy data. An approach using AM+PLL AFM (see section 1.3.1) for the 

topography and FM mode with a bias voltage frequency of 7 kHz for the CPD has been 

employed. Figure 1.30 shows the operational configuration used for the KPM 

measurements in this PhD. 
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Figure 1.30 KPM operation diagram.  

KPM

Am m

Asp,m
/2

Z

DetectorPiezo Z

Vts

Vexc,m

(fm)

Topo

Vexc,e

(fe)

Ae e

Asp,e

( = 0)   

Lock-inm

FN

Lock-ine

AM configuration (not

used in this thesis)Adder

Bias

CDP

CPD Contact Potential Difference

Vts
Conservative interactions image

Topo Topography

Subindex

m Mechanical

e Electrical

FN
Normal force

A Amplitude

 Phase

Asp
Amplitude set point

Vexc
Driving amplitude

Lock-in Lock-in amplifier

f Frequency



Chapter 1. Introduction to Atomic Force Microscopy. 

 

69 

 

1.3.7 Lithography/nanomanipulation 

Scanning Probe Microscopies allow not only the visualization of surfaces and the study of 

the different tip-sample interactions, but the manipulation of the matter at the nanoscale, 

even at the atomic level. After the first manipulations performed with the STM, such as 

atomic modifications [139], molecular manipulation [140], or the positioning of single 

atoms [7], many different SPM nanomanipulation applications emerged. In SPM 

lithography the tip can be seen as a pen and the sample as a paper. In this way, the tip can 

be used to “draw” over the sample, where drawing usually consists on moving the tip over 

the sample performing specific actions different from the scanning ones. In a wider point of 

view, lithography allows designing experiments à la carte. 

In the context of AFM there are many different nanolithography techniques: local oxidation 

[141, 142], nanoindentation and nanoscratching [143], magnetic field tip-induced 

nanolithography [144, 145], nanoparticle and nanotube manipulation [146, 147], local 

resistive switching [148], “Dip-pen” nanolithography [149], nanografting [150], atom 

manipulation in UHV conditions [151]… The possibility to control and modify surfaces at 

this level is driving us closer to the ultimate limit of two-dimensional nanoengineering. 

In this PhD AFM nanolithography has been used to precisely move and assemble gold 

nanowires (Chapter 3). The cold welding ability of gold nanowires [152] has been exploited 

to create gold paths to precisely contact nanoobjects. Figure 1.31 shows an example of 

these gold nanowire manipulations. 

 

 

Figure 1.31 Gold nanowires manipulation. Series of nanomanipulations to create a gold path. 

Dashed lines represent the initial position of the manipulated nanowires in each of the panels. 
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2.1 Introduction 

In this chapter the two different instrumental developments performed during the PhD are 

presented. 

First, a new AFM setup designed to allow simultaneous AFM and inverted optical 

microscopy techniques measurements, in particular, AFM and Total Internal Reflection 

Fluorescence (TIRF) microscopy [1, 2] is introduced. TIRF microscopy (TIRFM) uses an 

evanescent wave to selectively illuminate and excite fluorophores, in a region of the 

specimen immediately adjacent to the glass substrate-liquid interface. The AFM/TIRFM 

combination presented here is an original design performed in collaboration with Dr. Pedro 

J. de Pablo’s group. The AFM setup includes fully motorized laser and photodiode 

alignments as well as tip-sample approach. The whole combination is based on the one 

assembled by Dr. Iwan Schaap at the University of Göttingen in Germany, that has already 

achieved initial results showing the potential of the technique [3]. In the frame of this 

collaboration, the AFM/TIRFM will enable the visualization of protein cages attached to a 

glass substrate, to study their genome release during mechanical unpacking. One of the 

main advantages of the design presented here, compared to other AFM configurations 

compatible with inverted optical microscopy, is an enhanced resolution thanks to 

improvements on the stiffness of the setup. This has been achieved by minimizing the 

mechanical loop [4] (the distance between the structural elements that are required to hold 

the probe at a fixed distance from the sample), which reduces the mechanical noise. As it is 

shown later, the achieved resolution has allowed distinguishing different adsorption 

geometries of protein cages on substrates and structural features. An extra advantage of this 

design is that it can be controlled with the WSxM software [5]. WSxM allows a variety of 

measuring modes and user configurable options that will enable studies which are now 

inaccessible or very difficult to other systems. For example, in the frame of the 

collaboration that gave rise to this development, Jumping Mode plus (JM+) [6] will enable 

to study the force-controlled disassembly of viral capsids induced by mechanical fatigue 

while TIRFM data are acquired.  

Second, a probe station setup for the electrical characterization of micro- and nano- 

materials and devices at different temperatures, ranging from 80 to 400 K, in a controlled 

atmosphere is presented. In the laboratory there was already a two-terminal probe station 

installed by Dr. Cristina Gómez-Navarro. It used manual actuators to position the probes 

and was operated in ambient conditions. The new probe station substitutes the existing one 

in the laboratory. It allows performing conductivity measurements in a wide range of 

temperatures, opening the possibility of studying the variation of the electrical properties of 

micro- and nano-objects as a function of the temperature. For this purpose, the probe station 

system designed here is placed inside a high vacuum chamber, to avoid liquid condensation 

on the sample when decreasing the temperature. Thus, a perfect control of the X, Y and Z 

movements of the probes with submicron resolution compatible with the vacuum system is 
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needed. To this end, two sets of piezoelectric motors assembled in a XYZ configuration 

combined with an optical microscope have been employed. Nowadays there is not a 

commercially available probe station system with a similar setup, and hence we are 

considering the commercialization of our design. Minimization of the thermal expansion of 

the sample holder as the temperature changes is also required, to prevent the tips from 

moving out of the selected contact points as well as from damaging the sample. Most 

commercially available cryogenic probe stations (https://www.cascademicrotech.com/, 

http://www.arscryo.com or http://microxact.com, for example) use probe arms to manually 

control the positioning of the probes. Probe arms make the vacuum chamber designs 

complex, they are not user-friendly, their minimum step size is typically ~ 5 m and also 

introduce stability issues due to their low natural resonance frequency. These probe stations 

are more focused on the characterization of 2” to 4” wafer size samples and require a high 

budget to be purchased (typically ~ 150 – 200 k€). More cost-effective commercial 

academic and laboratory research cryogenic probe stations (~ 45 k€ 

http://www.lakeshore.com, ~ 50 k€ http://www.janis.com/) use manually controlled probe 

arms as well. The original design presented in this PhD is a research-grade cryogenic probe 

station, with piezo actuated X, Y and Z movements with a minimum step size of ~ 2 nm, 

and a maximum travel range of 25 mm along the in-plane and 20 mm for the out-of-plane 

directions, whose final total production cost (including vacuum pumping system and all the 

necessary electronics for electrical characterization) is ~ 28 k€. There are as well 

commercial compact robots based on piezoelectric elements that could be used to motorize 

the probes positioning (http://imina.ch/). They provide a much lower step size than the 

probe arms (~ 50 nm), but the cost of these robots is very high (~ 52 k€ in comparison to  

~ 5 k€ for the similar elements in the design presented here). In addition, in these robots the 

Z movement is not completely vertical; motion in the out-of-plane direction is performed 

by changing the tilt of the probe, which produces an undesired motion in the in-plane 

direction, which can lead to failure contacts when the probe is needed to touch micrometer 

sized elements.  

These two instrumental developments could seem very far apart. Nevertheless, they are 

linked by the common feature of a fully motorized control of the X, Y and Z movements at 

submicron resolution. This achievement has been addressed by the use of piezoelectric 

actuators. Nowadays piezoelectric motors are an attractive alternative to conventional 

electromagnetic motors [7]. This is possible thanks to new acting materials, in combination 

with fast electronic control and an increased knowledge in the design of mechanical 

multimode-resonators. Piezoelectric motors are a cost-effective solution that can easily 

fulfill the requirements of both developments presented here. They can move tens of mm 

very fast (travelling speeds up to several mm/s) to coarse position the different moving 

elements within seconds. This fast motion is combined with resolutions down to a few nm 

for fine positioning. They can hold loads of several hundreds of grams, needed to precisely 

move and hold in position (power-off locking ability) the moving elements in the systems. 

https://www.cascademicrotech.com/
http://www.arscryo.com/
http://microxact.com/
http://www.lakeshore.com/
http://www.janis.com/
http://imina.ch/
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And they can be easily made to satisfy high vacuum and low temperature requirements (no 

need for several assembled parts such as rotor, stator, ball-bearings, etc.). In the 

developments presented here, Piezo LEGS® from PiezoMotor
®
 [8] have been employed 

combined with miniature linear guides. Piezo LEGS® motors use piezo actuators  

co-sintered to a single body with four movable legs made out of ceramic “muscles”. Figure 

2.1 shows a diagram with the operation principle of the piezoelectric motors used in this 

PhD. 

 

 

Figure 2.1 Principle of operation of the piezoelectric motors used in this PhD, Piezo LEGS® from 

PiezoMotor®. Source: http://www.piezomotor.com/ 

 

By applying controlled voltages to the piezoceramic “muscles”, their movement is 

synchronized to move back and forth in a precise linear motion taking steps. By controlling 

these steps, piezomotors move in the nanometer range and reach travelling speeds of 

several millimeters per second. If needed, the company also offers small motion sensors 

compatible with the piezoelectric motors for a precise determination of the step length. 

For the laser and photodiode alignment in the AFM head development, as well as for the X, 

Y and Z positioning of the tips in the probe station development, the Piezo LEGS® Linear 

6N LL10 model has been used because of its compact design and power-off locking ability. 

For the tip-sample approach in the AFM head, the Piezo LEGS® Linear Twin-C 20N 

LTC20 version was selected because it can deliver up to 20 N force (the AFM head of   

~ 1 kg (~ 10 N) is supported on three motors, that allow a total of 60 N of force, more than 

enough to operate the AFM head) with sub-micron/nanometer positioning and power-off 

locking. In addition, this motor model is compatible with previous head designs. Detailed 

specifications of these motors can be found in the Appendix, where the critical parameters 

have been highlighted. Figure 2.2 shows pictures of both piezoelectric motors.  

 

http://www.piezomotor.com/
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Figure 2.2 a) Piezo LEGS® Linear 6N LL10 motor. b) Piezo LEGS® Linear Twin-C 20N LTC20 motors. 

Source: http://www.piezomotor.com/ 

 

The design of all the mechanical parts and assemblies of the developments presented in this 

PhD has been performed with the Solid Edge software [9]. Solid Edge is a 3D CAD 

(computer-aided design) software. It provides solid and assembly modeling together with 

2D orthographic view functionality. While these developments are original works, they are 

possible thanks to many different contributions. The coupling of the AFM stage with the 

TIRFM has counted with the collaboration of Dr. Iwan Schaap. The probe station system 

has been designed following the requirements of Dr. Cristina Gómez-Navarro. The 

machining of the mechanical parts has been carried out both by the “Servicios generales de 

apoyo a la investigación experimental” (SEGAINVEX) and by Santiago Márquez and José 

María Pérez from the technical staff of the Física de la Materia Condensada department 

(FMC). The electronics developed to control the piezoelectric motors have been designed 

and built also in SEGAINVEX. The software to control the motors, in the case of the 

AFM/TIRFM combination was already integrated on WSxM [5] by Nanotec software 

department, in a first motorized evolution from the Lanza head. In the probe station case, a 

first version of the control software was made by us and later revised and improved by 

Ignacio Horcas from the technical staff of FMC. Finally, in the probe station development, 

the temperature control electronics and software were provided by SEGAINVEX, and some 

extra electronics to automatize the IV acquisition were designed and built by Ignacio 

Horcas. 

 

It is first presented the design of the systems followed by their operation and some results 

showing their capabilities.  

a b

20 mm
20 mm

http://www.piezomotor.com/
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2.2 AFM setup for simultaneous inverted optical microscopy techniques 

 

2.2.1 Design 

A ray of light passing from one medium to another of lower refractive index with a given 

incident angle will undergo reflection and refraction at the interface. When the incident 

angle is increased sufficiently, reaching the so-called critical angle, the ray is entirely 

reflected towards the first medium. This phenomenon is known as total internal reflection. 

In a TIRF microscope, the incident light coming from a high numerical aperture (NA) 

immersion objective is totally reflected at the glass surface-liquid interface and only an 

evanescent wave illuminates the sample. The evanescent electromagnetic field decays 

exponentially from the interface, penetrating to a depth typically in the range of 30 to 300 

nm into the sample medium. This fact allows fluorescence studies of samples lying within 

this range, avoiding the background noise of the bulk solution. Figure 2.3a shows the 

operation principle of TIRFM. Figure 2.3b shows schematics of the assembly to combine it 

with AFM.  

 

Figure 2.3 a) TIRFM operation principle. b) Schematics of the AFM/TIRFM combination. 

 

A combined AFM/TIRFM system has to fulfill a few basic requirements. Fluorescence 

requires a high NA oil immersed objective. This kind of objectives allow total internal 

reflection (oil refractive index, n1, similar to that of the glass coverslip, higher than water 

refractive index, n2), and to capture as much light as possible. Thus, the objective is very 

close to the glass substrate (the distance from the lens to the glass substrate is ~ 0.12 mm) 

and a high resolution micrometer or a piezo actuator is needed for positioning. AFM 

requires an open optical axis for fitting the objective and the AFM tip has to be able to be 

aligned with this axis. For this purpose, there are two basic approaches: a tip-scanned or a 

sample-scanned configuration. A sample-scanned approach was chosen since it allows a 
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better alignment of the AFM tip with the optical axis. This configuration was achieved by 

using a scanner with a clear aperture for inverted optical microscopy access. As it is shown 

in Chapter 1, AFM piezoelectric scanners can have different geometries, but most of them 

are not compatible with inverted optical microscopy access. Nowadays, it is possible to find 

commercial piezo scanners with clear apertures that overcome this issue. However, these 

scanners typically have slower time response and lower stability and resolution than more 

conventional piezo scanner geometries. The challenge of this development was the design 

of a new AFM setup compatible with a piezo scanner of this family, while keeping as much 

as possible the high standards in stability, resolution and functionalities such as those by 

AFMs from the Nanotec kind. And at the same time, to ease the operation of the 

instrument. 

The new AFM setup presented here is based on the Lanza head, which we designed during 

my period at Nanotec Electronica. Still there, I designed and took part in the assembly of an 

evolution of Lanza, motorizing laser and photodiode alignments and tip-sample approach to 

operate in the standard piezotubes Nanotec AFMs configuration. This design, namely 

Lanza-MT, also included an integrated variable-gain IV preamplifier for C-AFM 

measurements and the same type of piezomotors described above. For the AFM/TIRFM 

combination I took advantage of the Lanza-MT head design, making it compatible with a 

piezo scanner presenting a clear aperture in order to allow optical microscopy access from 

the bottom. Figure 2.4 presents 3D CAD views of Lanza and Lanza-MT heads. Lanza head 

presents an open architecture to allow manual adjustment of laser and photodiode (figure 

2.4a). As Lanza-MT does not require manual operation for optical tuning/alignment, we 

designed an enclosure to isolate the head from external noises (figure 2.4b). The use of this 

enclosure is possible thanks to the motorization of the laser and photodiode adjustment 

elements. This can be seen in figures 2.4c and d, where schematics of the head interiors are 

presented. Laser and photodiode adjustment elements are highlighted in blue. Whereas 

Lanza head uses manual stages, Lanza-MT head uses Piezo LEGS® Linear 6N LL10 

motors (figure 2.2a) instead. The motion of these motors is controlled either by a software 

interface or a remote control, preventing the need of manual access, which is indeed an 

extra when working with controlled environments. Another advantage of the motorization 

is that the use of an enclosure, hiding the inside of the head, enabled the simplification of 

its different mechanical parts, easing their machining. 
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Figure 2.4 3D CAD models of Lanza head and its motorized evolution. a) and b) Rendered views.  

c) and d) Schematic views showing in blue the laser and photodiode moving elements. 

 

Figure 2.5 shows CAD renders and photographs of both heads on their respective stages. 

Figures 2.5a and b show the conventional Lanza head, which is supported on three 

micrometer screws. The two screws at the front are moved by hand, while the third one is 

motorized through a DC motor. Figures 2.5c and d show Lanza-MT stage, where the head 

is supported on three Piezo LEGS® Linear Twin-C 20N LTC20 motors allowing a 

complete motorized tip-sample approach.  

 

 

a b

c d
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Figure 2.5 Lanza and Lanza-MT AFM setups. a) and b) Lanza rendered view and photograph 

respectively. c) and d) Lanza-MT rendered view and photograph respectively. 

 

As already mentioned, for the AFM/TIRFM combination a piezo scanner presenting a clear 

aperture was used to gain inverted optical microscopy access. A P-733.3DD scanner from 

Physik Instrumente (PI) [10] was employed. This scanner (figure 2.6) provided an  

open-loop travel range of 33 m in X and Y and 14 m in Z with a typical resolution of  

0.1 nm (a detailed list of specifications can be found on the Appendix, where the most 

critical ones are highlighted). 

 

a b

c d
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Figure 2.6 P-733.3DD piezo scanner. Source: https://www.physikinstrumente.com/ 

 

P-733.3DD scanner integrates capacitive sensors to compensate its nonlinearity effects (see 

section “Positioning and scanning: piezoelectric scanners” in Chapter 1). However, we did 

not use the signal readout from the sensors for an active feedback in order to minimize 

noises. It can be simultaneously recorded together with the X, Y, Z voltages applied to the 

scanner. This feature allows for a post-processing recalibration of the distances in the 

acquired data if needed. 

This kind of scanner and the need to leave room under the sample stage for the optical 

elements of TIRFM impaired the usual configuration for the tip-sample approach system, 

placed below the head (as in figure 2.5). To overcome this issue, a new AFM head  

(figure 2.7), based on Lanza-MT, was designed, incorporating the three Piezo LEGS® 

Linear Twin-C 20N LTC20 motors for the approach in an inverted configuration.  

 

Figure 2.7 Head for the AFM/TIRFM combination, where the approach motors were incorporated 

on the head itself. a) 3D rendered view. b) Photograph of the assembled head. 

  

a b
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The influence of external perturbations on the tip-sample stability can be reduced by 

damping mechanisms and/or enough stiffness of the SPM structure. Large-amplitude  

low-frequency noise, which is relatively unaffected by conventional damping systems, can 

threaten proper SPM operation unless the SPM internal structure has enough stiffness. This 

can be nicely seen in Figure 2.8 by D. Pohl [4]. It can be inferred that for effective isolation 

of external perturbations, frequency characteristics of damping and stiffness of the system 

have to be as far apart as possible.  

 

Figure 2.8 Frequency characteristics of damping (t1, typical for damping systems with metallic 

springs and eddy-current attenuation, and t2, typical for commercial antivibration pads made from 

rubber) and stiffness (Sa, typical for SPMs consisting of several-cm-size structures made of 

piezoelectric ceramics and steel, and Sb, which represents about the best stiffness one can expect 

for SPMs with piezoelectric ceramic scanners). Ga, Gb correspond to the combination of t1 with Sa, 

Sb respectively. Figure adapted from reference [4].  
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Thus, the stiffness frequency characteristic of the structure has to be maximized. This was 

achieved by maximizing the stiffness of the SPM, which implied minimizing the 

mechanical loop. In order to minimize the mechanical loop of the system, a specific 

platform was designed to be placed onto the P-733.3DD piezo scanner frame. In this way, 

the AFM head rested on this platform instead of on the stage (see figure 2.9), implying a 

decrease of the mechanical loop worth of consideration. The sample holder was designed as 

well to minimize the total mass on the piezo to provide a higher resonance frequency of the 

scanner. It consists on an aluminum part attached to the piezo where the glass coverslips for 

the samples are fixed. Figure 2.9 presents schematics showing the mechanical loop 

reduction and a 3D render view of the piezo scanner assembly. 

 

Figure 2.9 a) Minimization of the mechanical loop. Dashed lines: design if the head was to be 

placed on the stage. Solid: design to minimize the mechanical loop. b) 3D render of the piezo 

scanner assembly showing its different parts. 

 

The AFM head and scanner assembly had to be accommodated on a stage allowing enough 

space for the optical elements of TIRFM. Figure 2.10 shows the AFM assembly of the 

AFM/TIRFM combination. The stage provided access for the TIRFM assembly and 

allowed coupling all the needed optical elements. 
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Figure 2.10 AFM assembly. a) 3D rendered view. b) Photograph. 

 

The optical assembly was carried out by Francisco Moreno-Madrid, under the supervision 

of Dr. Pedro J. de Pablo and Dr. Iwaan Schaap. The whole setup was placed into an 

acoustic-isolated temperature-controlled enclosure with a passive antivibration system (air 

damping), built by the technical staff of the FMC department. Since the AFM head 

developed here is fully motorized, once tip and sample are in place there is no need for 

opening the enclosure. Figure 2.11 shows photographs of the final AFM/TIRFM setup. 
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Figure 2.11 a) Final AFM/TIRFM combination setup, including the isolation enclosure. b) Detail of 

the final assembly. 
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2.2.2 Operation and Results 

First AFM measurements were carried out using reference samples such as highly oriented 

pyrolytic graphite (HOPG) and DNA molecules adsorbed on a mica substrate (sample 

courtesy of Alejandro Martín from Dr. Fernando Moreno-Herrero’s group). Both were 

demanding samples in the sense that high sensitivity and stability of the system were 

required for their proper visualization. Figure 2.12 shows images of HOPG and DNA 

molecules acquired in ambient conditions using Nanosensor PointProbePlus probes [11] 

(spring constant k ~ 30 N m
-1

 and resonance frequency f0 = 325 kHz)  under the AM-AFM 

mode. 

 

Figure 2.12 Reference samples images acquired with the AFM/TIRFM setup in ambient conditions 

using AM-AFM. a) HOPG. Oscillation amplitude A = 25 nm. b) DNA molecules adsorbed on mica.  

A = 10 nm. 

 

Figure 2.12a reveals monoatomic steps on the HOPG surface, whereas figure 2.12b 

presents several DNA molecules. As expected, DNA molecules measured height is less 

than their theoretical diameter, due to the salt layer used to adsorb them on the mica and to 

some sample deformation (produced by either elastic deformation induced by the tip or the 

interaction with the substrate) [12]. Much more measurements in air conditions with 

different samples were performed (with the help of Dr. Eloy Pérez Enciso) ensuring proper 

functioning and stability of the system.  

Measurements in buffer conditions were then performed on the kind of samples of interest 

that triggered this development, virus-like particles (VLPs). VLPS are protein cages 

resembling viruses that are not infectious. They can be used as nanoscale platforms for the 

self-assembly of internally and/or externally functionalized particles [13]. In particular, 
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VLPs derived from the bacteriophage P22 were used because they are promising candidates 

for the design of nanomaterial systems with biotechnological applications [13]. VLPs in 

their expanded form with a polymer cargo were produced by Prof. Trevor Douglas’ group 

and prepared for AFM scanning by Francisco Moreno-Madrid. Figure 2.13 shows P22 

VLPs in buffer conditions (PBS 100 mM phospathe, 50 mM NaCl, pH = 7). A 20 μL drop 

of diluted stock solution was incubated on a freshly cleaved HOPG surface. After 20 min, 

sample was washed with buffer solution until a volume of 90 μL was reached. Olympus 

Biolever-mini probes [14] (BL-AC40TS-C2, spring constant k ~ 0.07 N m
−1

 and resonance 

frequency in liquid ∼ 25 kHz) in the AM-AFM mode were employed. 

 

Figure 2.13 a) P22 VLPs adsorbed on HOPG. b) Height profile along the blue line in a).  

c) and d) High resolution images of two different P22 VLPs showing different adsorption 

geometries, 2-fold (S2) in c) and 5-fold (S5) symmetry in d). Insets show schematic views of the 

corresponding symmetries. Oscillation amplitude A = 4 nm in all the cases. 

 

P22 VLPs in figure 2.13 present heights in good agreement with reported values [13]. High 

resolution images allow to discriminate adsorption geometries and even to visualize 
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different subunits within the nanocages. These images are comparable to the state-of-the-art 

high resolution images of VLPs found in the literature [13].  

Figure 2.14 shows an individual nanoindentation assay, consisting of deforming a capsid 

with the AFM tip until mechanical failure is observed. The ability to perform this kind of 

experiments together with the high resolution imaging in figure 2.13 shows the potential of 

the developed system for the study of cargo diffusion from fractured single VLPs. The 

higher resolution imaging ability of the AFM/TIRFM setup designed here compared with 

previous setups [3] will allow performing studies on smaller VLPs. Moreover, the variety 

of measuring modes and user configurable options in WSxM software will enable to 

perform very precise force-controlled experiments. 

 

Figure 2.14 Individual AFM nanoindentation assay. a) P22 VLP in a 3-fold symmetry (S3) 

orientation before the indentation. The inset shows a schematic view of this symmetry. b) FZ curve 

performed on the VLP in a). c) P22 VLP after the nanoindentation. The breakage of the capsid can 

be clearly seen. 

 

From the FZ curve in figure 2.14b both the rigidity (k, elastic constant) and the strength of 

the particle (Fbreak, breaking force) can be obtained, resulting in k ~ 0.25 N m
-1

 and  

Fbreak ~ 1.2 nN respectively. These values are compatible with the previous work by Llauró 

et al. [13] assessing the operational capabilities of the system. 

Finally, simultaneous AFM and TIRFM measurements were performed to ensure the 

proper functioning of the combined system. To this end, 100 nm diameter commercial 

fluorescent beads from TetraSpeck
TM

, in a PBS 100 mM phosphate, 50 mM NaCl buffer 

solution, were drop-casted on a silanized glass coverslip [15] and left to adsorb for  

5 minutes. Then buffer was replaced with clean buffer to remove as much as possible beads 

that were not adsorbed. Sample preparation and optical adjustments were carried out by 

Francisco Moreno-Madrid. Figure 2.15 shows a TIRFM image of the glass coverslip with 

adsorbed beads. 
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Figure 2.15 TIRFM image of 100 nm diameter commercial fluorescent beads adsorbed on a 

silanized glass coverslip. 

 

To demonstrate the simultaneous AFM/TIRFM capabilities, imaging and nanomanipulation 

of beads with the AFM tip was performed (figure 2.16). 

 

10 m
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Figure 2.16 Simultaneous AFM/TIRFM. a) Top panel: TIRFM image of 100 nm diameter fluorescent 

beads. Bottom panel: Simultaneous AFM topographic image of the region enclosed by the green 

square. b) Same as a) after performing a nanomanipulation with the AFM tip. The bead marked 

with the red arrow was deliberately picked up with the AFM tip. 

 

Beads in figure 2.16 were scanned in AM-AFM mode with an Olympus Biolever-mini 

probe (BL-AC40TS-C2). Some remaining beads in the buffer attached to the tip, thus 

producing a final asymmetric tip apex (this can be noticed in the AFM image of  

figure 2.16a, where the beads present a different shape from the expected spherical). After 

acquiring the AFM image in figure 2.16a, the scan was stopped and the tip was moved in 

Contact mode, along a horizontal line passing through the bead marked with a red arrow in 

figure 2.16. In this way, the bead was picked up by the AFM tip. A video acquired with the 

TIRFM showing the AFM nanomanipulation is available in the following link (link to a 

powerpoint file, to see the video please download it an open it with powerpoint): 

https://www.dropbox.com/s/22o6b5ej9eosfne/AFM-TIRFM_nanomanipulation.pptx?dl=0 
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Figure 2.16b shows the TIRFM and AFM images after the nanomanipulation. The bead 

marked with the red arrow was picked up by the AFM tip, thus disappearing from the 

images. Please notice the change in the shape of the beads in the AFM image in figure 

2.16b due to a change in the tip apex when picking up the bead. These measurements 

demonstrate the simultaneous AFM/TIRFM capabilities and give an idea of the kind of 

experiments that will be accessible with the developed system. 

 

  



Chapter 2. Instrumental developments. 

 

99 

 

2.3 Variable-temperature ambient-controlled motorized Probe Station 

 

2.3.1 Design  

As mentioned in the introduction, this original developed probe station system allows 

measuring the electrical properties of micro- and nano-objects as a function of the 

temperature, from 80 to 400 K, and in different environments and/or conditions (high 

vacuum, low temperature, air ambient or controlled gas atmospheres). The main novelty of 

the probe station presented here consists in the design and construction of X, Y, Z 

motorized compact stages, compatible with these temperature and atmosphere conditions, 

to position the probes with nanometer resolution. Piezo LEGS® Linear 6N LL10 motors 

combined with linear translation guides (figure 2.2a) were used. Figure 2.17 shows the 

design of the stage. 

 

Figure 2.17 3D rendered view of the XYZ motorized stage designed showing its different parts.  

 

Coupling parts to assembly the stage were made on aluminum. The size of the whole X, Y, 

Z assembly is ~ 110 x 100 x 70 (mm), although it could be easily reduced to ~ 70 x 70 x 70 

(mm) if necessary by using shorter linear guides. The probe holder was made directly on 

printed circuit boards, providing the necessary electrical connections for the probe. 

Commercial probe holders could be used by simply replacing the corresponding coupling 

part to the piezomotor into a suitable one. The total motion range in X, Y and Z directions 

is 25 x 25 x 20 (mm) respectively with a minimum step size of ~ 2 nm. 
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An existing vacuum chamber in the laboratory was chosen for the probe station; therefore 

all the necessary parts were designed to fit the whole system into this chamber. Figure 2.18 

shows a schematic view of the different components in the system.  

 

 

Figure 2.18 Schematic representation of the different elements in the system. 

 

The design presented here was assembled in a two-terminal probe plus a gate electrode 

configuration, but it considers as well a four-terminal probe [16] arrangement for a future 

upgrade. 

The system comprises a vacuum chamber where the vacuum pumping system was placed at 

the bottom (it could be placed on one side of the chamber to allow optical access from the 

bottom if necessary). A splinter shield was added to avoid damaging the pumping system. 

A turbo pumping station (HiCube Eco 80 from Pfeiffer Vacuum [17]) composed of a 

diaphragm pump and a turbopump was selected, reaching a pressure of ~ 10
-4

 hPa in  

15 minutes and a base pressure of 1.10
-6

 hPa. 

A special cover was designed for the top part of the chamber, allowing optical access 

through a quartz window. Quartz was selected because of its wide transparency range, 
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which extends from the UV to the near IR, allowing the use of different illuminations, in 

case of photoinduced electrical transport measurements or the study of luminescent 

materials. The cover includes a spiral cryogenic cold trap, consisting of a copper tube 

circuit with spiral geometry which is filled with liquid nitrogen (LN2). This trap is cooled 

down before cooling the sample when at least a pressure of ~ 10
-4

 hPa is reached, to 

condense the remaining water vapor on the chamber. In this way, water condensation on the 

sample is prevented and at the same time the vacuum is improved. 

The stage where the probe station is placed is composed of two different bases with 

separating silicon dampers for better vibration isolation: a first copper base, initially 

intended as well to work as a cryogenic cold trap (but this function was later discarded due 

to its low cool efficiency) and a stainless steel base, where the motorized stages and the 

sample holder are fixed. 

The sample holder initially consisted on a copper element directly attached to a LN2 cold 

finger, but preliminary tests showed some thermal drift when changing the temperature. 

Thermal drift represents a major inconvenience because the thermal expansion/contraction 

of the sample holder as the temperature changes results in tips-substrate displacements that 

can damage the tips and/or the sample [18]. The normal procedure to overcome thermal 

drift is to lift the probe tips as the temperature changes, but this is tedious and  

time-consuming. To minimize thermal drift, the sample holder was modified to be an invar 

plate attached to the stainless steel base through invar supports. Invar, also known 

generically as FeNi36, is a nickel-iron alloy notable for its uniquely low coefficient of 

thermal expansion, thus minimizing thermal drift when changing the temperature. In 

addition, the sample holder was not directly attached to the cold finger, but coupled to it 

through a flexible copper braid, thus minimizing the mechanical strain induced by thermal 

expansion. Moreover, each probe holder consists of two specific printed circuit boards that 

hold the tip in between by magnetic actuation. This fixing mechanism allows the tips to 

slightly accommodate their position to partly counteract thermal drift displacements. More 

sophisticated flexible probe tips [18] could be adapted to this design. 

A halogen lamp placed on the sample holder bottom acts as a heater. Cold finger and heater 

actuations allow sample temperatures from 80 to 400 K. Pt100 platinum resistance 

thermometer elements were used in both the cold trap and the sample holder to measure 

their temperatures. 

Maximum sample size is 30 x 26 x 15 (mm), thus allowing 1” diameter wafers. Figure 2.19 

shows photographs of the probe station system assembly and its different parts. 
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Figure 2.19 Probe station system. a) Total assembly. The different parts of the system are 

highlighted. b) Detail of the vacuum chamber without the cover and with the optical microscope at 

its measuring position. Inset in the top right corner corresponds to the inside part of the cover, 

showing the spiral cryogenic cold trap. c) Initial design of the probe station with a copper sample 

holder directly attached to the cold finger. d) Final design with an invar sample holder coupled to 

the cold finger through a copper braid. 
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The final setup replaced the previous probe station in the laboratory (operated in ambient 

conditions through manual actuators), taking advantage of all its electronic equipment for 

electrical measurements (Keithley 2400 sourcemeter, Keithley 2000 multimeter and 

variable-gain low noise current amplifier DLPCA-200). The high vacuum chamber was 

grounded to provide electromagnetic shielding to the probe station, preventing noise  

pick-up. The sample holder of the new probe station was electrically isolated from the rest 

of the chamber through Torlon® spacers (Torlon® is an easy-to-machine polyamide-imide 

which presents strength comparable with metal in a wide temperature range and high 

vacuum compatibility). These spacers isolate the sample holder both from the stainless steel 

base and the cold finger, thus enabling to apply a gate voltage to the sample holder for 

field-effect transistor (FET) configuration measurements. When using a gate voltage, it 

imposes an electric field into the device, which in turn attracts or repels charge carriers to 

or from the region between a source terminal and a drain terminal. The density of charge 

carriers in turn influences the conductivity between the source and drain. Figure 2.20 shows 

a schematic representation of the electrical circuit on the designed two-terminal probe 

station. 

 

 

Figure 2.20 Schematic representation of the electrical circuit. A represents a variable gain low 

noise current amplifier. VS and VG are the voltages applied to source and gate respectively. 
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2.3.2 Operation and Results 

First measurements were carried out in ambient conditions at room temperature with test 

resistors to check the proper functioning of the whole system. Resistors with nominal 

resistances of 0.1, 1, 10 and 100 M were contacted with standard probe station tips. 

Figure 2.21 shows the IV curves acquired for each resistor, where the most suitable current 

amplifier gain was selected for each of the cases. 

 

Figure 2.21 Initial probe station tests with different commercial resistors. IV curves for resistors of 

nominal resistances (Rnom) a) 0.1, b) 1, c) 10 and d) 100 M respectively. 

 

As it can be seen, the IV curves exhibit very low noise without traces of 50 Hz noise  

pick-up components, not even for the lowest currents measured, in the order of nA, in 

figure 2.21d. From the slopes of the IV curves the resistance values for each resistor can be 

calculated. Table 2.1 summarizes the obtained results. 
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Table 2.1 Resistance values of the commercial resistors used to test the probe station. Rnom refers 

to the nominal resistance values. Rmult and Rps refer to the values measured with a multimeter and 

with the probe station respectively. 

R
nom

 (M) R
mult

 (M) R
ps

 (M) 

0.1 0.099 0.100 

1 1.100 1.108 

10 10.100 10.090 

100 100.351 100.300 

The number of decimals of the resistance values corresponds to the precision given by the multimeter (the 

electronic equipment of the probe station, mentioned above, allows for better data precision). 

 

Resistance values obtained with the probe station show a very good agreement with the 

values measured using a multimeter, confirming the proper functioning of the probe station. 

After the resistors measurements, a “real” well-known sample was loaded into the probe 

station to further check the proper system operation. Single-wall carbon nanotubes grown 

by Chemical Vapor Deposition (CVD) on a 300 nm SiO2/Si substrate were employed 

(sample courtesy of Dr. Cristina Gómez-Navarro). Figure 2.22 shows an optical 

microscopy image of the sample, were Au/Pd microelectrodes terminated in square pads for 

the probes positioning were fabricated by e-beam lithography. Some of these 

microelectrodes were connected through a carbon nanotube (not visible in the optical 

image). 

 

Figure 2.22 Optical micrograph of the single-wall carbon nanotubes sample with gold 

microelectrodes. The probes were positioned in contact with the square pads to perform electrical 

characterization. 
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Measurements on a FET-like configuration were performed. Voltage ramps from -1.4 to 

+1.4 V were applied to the source terminal (VS) while the gate voltage (VG) was varied 

from -5 to +5 V in 1 V steps. Current was then measured at the drain terminal (ID).  

Figure 2.23 shows the results of these measurements. 

 

Figure 2.23 Electrical characterization of a single-wall carbon nanotube in ambient conditions in a 

FET-like configuration. a) ID–VS curves for various values of VG. b) ID–VG for various values of VS. 

 

The electric field of the gate electrode couples to the nanotubes. As it can be seen in  

figure 2.23, for negative VG this leads to an accumulation of holes and an increasing 

conductance, whereas for a positive VG the holes are depleted, yielding a lower 

conductance, in good agreement with the literature [19, 20]. 
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The probe station is currently a central element for the electrical characterization of 

[Cu2.6I2.6(TAA)]n (TAA = Thioacetamide) nano-films, a new 2D coordination polymer 

synthesized by Dr. Félix Zamora’s group. Measurements performed at variable temperature 

(85 - 373 K) are being carried out by Miriam Moreno-Moreno and Dr. Cristina  

Gómez-Navarro. These nano-films are a very promising new 2D material because of their 

cheap production in high quantities, easy preparation, high transparency (transmittance 

higher than 80% in the visible spectrum) and high conductivity. Figure 2.24 presents 

electrical characterization at different temperatures of a ~ 10 nm thick [Cu2.6I2.6(TAA)]n 

film deposited on a 300 nm SiO2/Si substrate.  

 

Figure 2.24 Electrical characterization of a [Cu2.6I2.6(TAA)]n nano-film at different temperatures.  

a) Optical microscopy image. Blueish areas correspond to the nano-film, where the different colors 

reflect different film thicknesses. The thinner part of the film, corresponding to the central part of 

the image, is ~ 10 nm thick. Gold electrodes for probe station measurements are also visible.  

b) Current at a fixed voltage of 0.1 V as a function of the temperature for the nano-film. Inset 

shows IV characteristics at selected temperatures. 
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Figure 2.24a shows an optical microscopy image of the nano-film under study. The 

different colors reflect different film thicknesses: purple color corresponds to the SiO2 

substrate, faint blue areas correspond to the thinner film areas (thickness ~ 10 nm) whereas 

brighter blue/green/yellow colors reflect areas of the film with higher thicknesses. The 

nano-film was in contact with ~ 100 nm thick gold electrodes evaporated on it using stencil 

masks. The gap between electrodes is ~ 2 - 3 m. Figure 2.24b presents the electrical 

characterization of the nano-film at different temperatures, ranging from 93 K to room 

temperature. For this purpose, once the sample was loaded into the developed probe station, 

it was first cooled down to 93 K and then slowly heated up, taking IV characteristics at 

different temperatures up to room temperature. The inset in figure 2.24b presents some of 

these IV characteristics. 

These films present an electrical conductivity up to 30 S cm
-1

. They show linear IVs and a 

decreasing conductivity with decreasing temperature. This observation can be ascribed to a 

highly p-doped conductor with weak disorder. Nevertheless, the complexity of this kind of 

materials does not allow for a straightforward interpretation of the underlying mechanisms 

responsible for the observed behaviour. Further experiments on these nano-films are being 

carried out during the writing of this manuscript to better understand their properties. 

It is important to remark that the developed probe station proved crucial for the study of the 

electrical properties of such kind of nano-films, otherwise inaccessible with a room 

temperature probe station. The electrical characterization performed on these nano-films at 

different temperatures demonstrates that the probe station is ready and give an idea of the 

kind of experiments that will be accessible with it. 

Electrical transport in coordination polymers is studied within the framework of several 

consecutive National projects and it is a long standing tradition in our group. The study on 

the [Cu2.6I2.6(TAA)]n nano-film can be considered as a natural extension of the work that 

will be later described in Chapters 3 and 4, on the electrical conductance of 1D MMX 

coordination polymers, that revealed the necessity of this new experimental setup in the 

laboratory.  
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2.4 Conclusions 

The original design, construction and first measurements of two different instrumental 

developments have been presented: a new AFM setup designed to allow measurements 

simultaneously with TIRFM and a probe station setup for the electrical characterization of 

micro- and nano- materials and devices at temperatures ranging from 80 K to 400 K in a 

controlled atmosphere. 

Both developments are linked by the need of fully motorized control of the X, Y and Z 

movements of the different elements with submicron resolution. This has been successfully 

addressed by using piezoelectric actuators, allowing travelling speeds of several 

centimeters per second, precise sub-micron/nanometer positioning and no need for gears or 

mechanical transmission with power-off locking. Acquired experience from my previous 

position at Nanotec Electrónica S.L. with this type of linear actuators has been fundamental 

for the efficient developments of both setups.  

On the course of this PhD, several ideas about new experiments in 2D materials and 

biophysics came up originated by investigations related to the results reported here. These 

ideas required the implementation of the instrumental developments described in this 

chapter. As frequently happens, this instrumentation is inherited by new members of the 

research group that carry out these experiments. This is certainly the case along this PhD. 

The goal of this chapter has been to describe the proper functioning and capabilities of the 

developed systems. In addition, the two instruments presented here not only will allow 

experiments that were inaccessible in the group, but they will open new lines of research 

and collaborations with other groups, enabling the advance of different research fields. 

In the case of the AFM/TIRFM combination, a collaboration with Prof. Trevor Douglas 

(Indiana University) will study the disassembly of P22 VLPs internally functionalized with 

green fluorescence protein (GFP). The plan consists on monitoring GFP diffusion upon 

mechanical unpacking of single nano-cages with different GFP functionalization. While in 

immature P22 particles, GFP is bound to the inner wall, it detaches during maturation and 

GFP becomes free within mature P22 particles [21]. The different structure of both particles 

would result in different diffusion rates after the particle is broken. Simultaneous 

AFM/TIRFM measurement of this system will shed light on the mechanisms governing the 

behavior of VLPs loaded with a foreign cargo. This knowledge will help to improve the 

design of nano-containers for their use in biotechnological applications. 

In the case of the probe station setup, collaboration with Dr. Félix Zamora group 

(Universidad Autónoma de Madrid) is ongoing to study the electrical properties of 

coordination polymers, based on Cu(I)-X (X are halides: Cl
-
, Br

-
, I

-
) with general formula 

[CuX(L)]n, where L is an organic ligand, as pyrazine, pyridines or other ligands with 

molecular recognition capabilities. These compounds are clear examples of the so-called 

smart materials (designed materials with one or more properties that can be significantly 

modified in a controlled way by external changes in their environment). Their 
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characterization at low temperatures is relevant to gain insight on their intrinsic 

conductivity character, possible phase transitions or luminescent behaviors, among others 

[22]. Their study in different atmospheres is also interesting due to their possible 

application as gas sensors [23].  
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2.6 Appendix 

 

Piezo LEGS® Linear 6N LL10 motor specifications 

Type Stainless 

SteelLL1011A 

Unit Note 

Maximum Stroke 80 

(L-20.8) 

mm 100.8 mm rod, no mechanical 

adapter 

Speed Range (a) 0-15 mm/s recommended, no load 

Step Length (b) 4 

0.0005 (c) 

µm 

µm 

one wfm-step 

one microstep (c) 

Resolution < 1 nm driver dependent 

Recommended 

Operating Range 

0-3 N for best microstepping 

performance and life time 

Stall Force 6.5 N  

Holding Force 7 N  

Vaccum – torr  

Maximum Voltage 48 V  

Power Consumption (d) 5 mW/Hz =0.5 W at 100 Hz wfm-step 

frequency 

Connector JST 

BM05B-SRSS-TB 

  

Mechanical Size 22 x 19 x 10.8 mm see drawing for details 

Material in 

Motor Housing 

Stainless Steel   

Weight 23 gram approximate 

Operating Temp. -20 to +70 ºC  

(a) Max value is typical for waveform Rhomb at 2 kHz, no load, temperature 20ºC.
 

(b) Typical values for waveform Delta, 3 N load, temperature 20ºC.
 

(c) Driver dependent; 8192 microsteps per wfm-step for driver in the PMD200-series.
 

(d) At temperature 20ºC, intermittent runs.
 

Note: All specifications are subject to change without notice.
 

Critical parameters appear highlighted. 
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Piezo LEGS® Linear Twin-C 20N LTC20 motors specifications 

Type LTC2014-013 Nut 

Mount 
Unit Note 

Maximum Stroke 12.8 mm  

Speed Range (a) 0-10 mm/s recommended, no load 

Step Length (b) 2.5 

0.0003 (c) 

µm one wfm-step 

one microstep (c) 

Resolution < 1 nm driver dependent 

Recommended 

Operating Range 

0-10 N for best microstepping 

performance and life time 

Stall Force 20 N  

Holding Force 22 N  

Maximum Voltage 48 V  

Power Consumption (d) 10 mW/Hz =1 W at 100 Hz wfm-step 

frequency 

Connector USB mini-B   

Mechanical Size 51.2 x 27 x 21 mm see drawing for details 

Material in 

Motor Housing 

Stainless Steel, 

Aluminium 

  

Weight 95 gram approximate 

Operating Temp. 0 to +50 ºC  

(a) Max value is typical for waveform Rhomb at 2 kHz, no load, temperature 20ºC.
 

(b) Typical values for waveform Delta, 10 N load, temperature 20ºC.
 

(c) Driver dependent; 8192 microsteps per wfm-step for driver in the PMD200-series.
 

(d) At temperature 20ºC, intermittent runs.
 

Note: All specifications are subject to change without notice
 

Critical parameters appear highlighted. 
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P-733.3DD piezo scanner specifications 

  

P-733.3DD 

 

Unit 

 

Tolerance 

Active axes X, Y, Z   

Motion and positioning    

Integrated sensor * Capacitive   

Open-loop travel, -20 to 120 V 33 µm × 33 µm × 14 µm  min. (20 %       

/ -0 %) 

Closed-loop travel 30 µm × 30 µm × 10 µm   

Open-loop resolution 0.1 nm typ. 

Closed-loop resolution 0.1 nm typ. 

Linearity error (X, Y) 0.03* % typ. 

Linearity error (Z) 0.03* % typ. 

Repeatability (X, Y) <2 nm typ. 

Repeatability (Z) <1 nm typ. 

Pitch (X,Y) <±5 µrad typ. 

Yaw (X, Y) <±10 µrad typ. 

Runout θZ (motion in Z) <±5 µrad typ. 

Mechanical properties    

Stiffness 4 (10 in Z) N/µm ±20 % 

Unloaded resonant frequency 1200 (1100 in Z) Hz ±20 % 

Resonant frequency @ 120 g – Hz ±20 % 

Resonant frequency @ 200 g 530 (635 in Z) Hz ±20 % 

Push / pull force capacity in 

motion direction 

50 / 20 N max. 

Drive properties    

Piezo ceramic PICMA® P-885   

Electrical capacitance 6.2 (3.3 in Z) µF ±20 % 

Dynamic operating current 

coefficient 

25 (41 in Z) µA / 

(Hz × µm) 

±20 % 

Miscellaneous    

Operating temperature range -20 to 80 °C  

Material Aluminum   

Mass 0.675 kg ±5 % 

Cable length 1.5 m ±10 mm 

Sensor / voltage connection Sub-D Special   

Critical parameters appear highlighted. 

* A commercial PI E-509 Signal Conditioner/Piezo Servo Module unit is used to transduce the 

readout of the position sensors into voltages which are then simultaneously acquired with the X, Y, 

Z applied voltages. 
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3.1 Introduction 

In this chapter four different methodological developments carried out during this PhD are 

presented. They can be classified in two different groups: the first two developments are 

related to the improvement of the AFM technique in liquid environments. The other two 

developments deal with the fabrication of simple, clean and reliable electrodes for the 

electrical contact of nano-objects. 

In the group related to AFM measurements in liquids, the first development consists on the 

optimization of the high resolution acquisition conditions to image nucleic acids in liquids, 

using different high-sensitive force-detection methods. It is commonly accepted that  

FM-AFM in liquids can provide higher resolution than other imaging modes. Images of 

double-stranded RNA with similar spatial resolution are obtained independently of the 

mode, pointing towards that the limiting factors for high resolution AFM imaging of soft 

material in liquid media are, rather than the imaging mode, the force between tip and 

sample and the sharpness of the tip apex. 

The second development presents Magnetic Force Microscopy (MFM) to acquire images of 

magnetic nanostructures in liquid environments. There is an increasing role of magnetic 

nanostructures in fields such as medicine, biotechnology or catalysis. Nevertheless, a 

suitable technique to study their individual magnetic properties in physiological conditions 

(where soft biological samples are not subjected to changes in their structure), with the 

resolution and sensitivity needed was still lacking. The ability for detecting magnetic 

nanostructures, along with the well-known capabilities of AFM in liquids to study 

biological material, suggests it as a potential technique to perform these studies. 

Optimization of the MFM signal acquisition in liquid media is performed and it is applied 

to characterize the magnetic signal of magnetite nanoparticles.  

In the group related to the fabrication of electrical contacts again we follow a long standing 

tradition in the laboratory. The first development is based on the deterministic transfer of 

exfoliated graphite flakes by all-dry viscoelastic stamping to create soft-electrodes. The 

second development consists on the creation of gold nanoelectrodes by drop-casting 

deposition and subsequent AFM manipulation of gold nanowires. Conventional methods to 

fabricate micro- and nanoelectrodes require much more time, resources and/or conditions 

that some samples cannot withstand. The two approaches presented here provide easy, 

clean, good quality and cost-effective solutions as alternatives to standard techniques. 

These methods are particularly useful in the case of molecules with limited stability under 

standard lithographic conditions. Both procedures are particularly relevant for conductive 

atomic force microscopy (C-AFM) studies. Moreover, they are much more general 

techniques and, in the gold nanowires case, due to its ability to easily create nanoelectrodes 

that could even contact nano-objects with dimensions down to tens of nm, we think it could 

replace standard lithographic techniques used in nanotechnology such as e-beam 

lithography. 
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3.2 AFM improvements in liquids 

 

3.2.1 High resolution Atomic Force Microscopy of double-stranded RNA 

in liquid by different high-sensitive force-detection methods 

 

3.2.1.1 Introduction 

Since the determination of the double helix structure of dexoyribonucleic acid (DNA) in 

1953 by James Watson and Francis Crick [1], nucleic acids attract a lot of attention and 

resources. These molecules, which include both DNA and RNA (ribonucleic acid) and 

other synthetic derivatives recently discovered (see for instance peptide nucleic acid, PNA 

[2]) are the cornerstone of biology, since they code the genetic information of living beings 

including animals, plants, microorganisms, viruses, etc... Many techniques, such as 

scanning probe microscopies are employed to study their properties. For many years, RNA 

was considered only as the molecule involved in the readout of information stored in DNA. 

Nowadays, it is known that RNA plays also critical roles not only in transmission but also 

in gene regulation, and that it can even be catalytic, carrying out biochemical reactions like 

proteins do. RNA in its double-stranded form (dsRNA) has been discovered to play as well 

important roles, as for instance gene silencing, activating the immune response against viral 

attacks or storing the genetic material of a variety of viruses, adding an additional 

dimension to a molecule that was primarily considered to be single-stranded, opening the 

door to potential biotechnological applications. Hence, the recent interest for the 

characterization of its mechanical properties, including single-molecule techniques such as 

atomic force microscopy, magnetic tweezers, and optical tweezers [3-5].  

While extensive work has been already performed with dsDNA, a high resolution atomic 

force microscopy imaging study of dsRNA was still lacking. This was very likely because 

of the higher complexity of imaging the dsRNA structure, where both major and minor 

grooves have similar dimensions and because methods to equilibrate dsRNA molecules on 

flat surfaces have only been recently reported [4]. DNA helical regularity was first 

observed in Contact mode AFM in a seminal work by Mou et al. [6]. However, contact 

imaging proved not to be the best option for imaging biological materials, and Dynamic 

modes, which minimize shear forces, are usually preferred [7]. Amplitude Modulation  

AM-AFM is the one commonly used for both air [8, 9] and liquid environments [10, 11], 

and has proven to achieve high resolution on different biological samples [12-15], 

including dsDNA [16-19]. Other Dynamic modes such as Frequency Modulation  

(FM-AFM) [20-23] or Drive Amplitude Modulation (DAM-AFM) [24], have been also 

used to obtain high resolution in liquid medium. This degree of resolution is possible 
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because oscillation amplitudes are adjusted to a value in the same order as the decay length 

of the interaction force between tip and sample [25, 26]. Indeed, the minor and major 

grooves of dsDNA have been resolved in FM-AFM [27] at an unprecedented resolution. 

Other intermittent contact imaging modes such as PeakForce Tapping [28] or Jumping 

Mode plus (JM+) [29] allow detecting tip-sample interactions at angstrom precision with 

piconewton sensitivity and high spatial resolution. In the case of nucleic acids, Pyne and 

coworkers reported high resolution images of dsDNA using PeakForce AFM [19]. 

It is commonly accepted that the force sensitivity in FM-AFM is enhanced compared with 

that of other conventional AFM methods. But as mention in Chapter 1, tip contamination, 

which is very common when measuring biological samples under physiological conditions, 

results in instabilities in the FM-AFM feedback, making it difficult to operate in these 

conditions. In the work presented here, dsRNA has been imaged for the first time with a 

lateral resolution enough to resolve a  1.5 nm periodicity (half a full helical turn) 

compatible with the A-form of dsRNA. High resolution images of dsRNA have been 

obtained using AM-AFM, DAM-AFM, and JM+. Simulations of AFM images of dsDNA 

and dsRNA with different tip radius and comparison with experimental images have been 

performed, to get insights of the tip radius required for high resolution imaging of these 

structures. As discussed below, provided a sharp tip and the best possible working 

conditions for each mode, high resolution on soft biological samples can be achieved in 

liquid environment nearly independently of the imaging mode [7, 26]. 

This work has been performed in collaboration with Dr. Fernando Moreno-Herrero and 

Prof. José M. Valpuesta groups from the Centro Nacional de Biotecnología (CNB) of the 

Consejo Superior de Investigaciones Científicas (CSIC). Dr. Elías Herrero-Galán has 

fabricated the dsRNA samples and Dr. María Eugenia Fuentes-Pérez has been in charge of 

sample preparations for AFM imaging. The content of this section is based on reference 

Ares, P.; Fuentes-Perez, M. E.; Herrero-Galan, E.; Valpuesta, J. M.; Gil, A.; Gomez-

Herrero, J.; Moreno-Herrero, F. High resolution atomic force microscopy of double-

stranded RNA. Nanoscale 2016, 8, 11818-11826 (see also List of Publications). 
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3.2.1.2 Results and discussion  

As a starting point, dsDNA was first used as a molecular standard for high resolution in 

AFM. dsDNA is a good benchmark to adjust the experimental and operational conditions to 

image nucleic acids in liquid, reproducing recently published results [18, 19, 27]. 

Experimental conditions compatible with different imaging modes for high resolution AFM 

imaging of dsDNA were set up so these could be later applied to dsRNA. Standard methods 

to adsorb dsDNA on mica use Mg
2+

 as divalent cation, but this methodology failed to 

equilibrate dsRNA on mica [3]. Therefore, Ni
2+

 was employed as a divalent cation to 

equilibrate both dsDNA and dsRNA molecules on mica, following published protocols [4]. 

As dsDNA sample, plasmid pGEM3Z (2743 bp, promega) linearized with BamHI and 

purified with a QIAquick PCR purification kit (Qiagen, Hilden, Germany) was used. 

dsRNA molecules were fabricated as described in [4]. Freshly-cleaved mica sheets were 

first treated with 10 l of buffer A (10 mM NiCl2 and 10 mM Tris-HCl pH 8.0). Then, 1 l 

(0.6 ng) of dsRNA or dsDNA was added to the droplet and incubated for 15 minutes at 

room temperature. After incubation, 40 l of buffer A was added to the sample and then 

completed with 50 l of buffer B (10 mM Tris-HCl pH 8.0) to reach a final volume of  

100 l. 

In order to compare the high resolution capability of Dynamic and Force-distance imaging 

modes, a cantilever suitable for both kinds of working modes was chosen. Commercial 

Biolever mini BL-AC40TS-C2 cantilevers from Olympus [30] were used for all the 

measurements. Nominal parameters of these cantilevers are: resonance frequency in air  

110 kHz, resonance frequency in liquid 25 kHz, spring constant 0.09 N m
-1

 and tip radius  

8 nm. Each of the cantilever spring constants were calibrated following Sader’s method 

[31] yielding values of 0.07 ± 0.01 N m
-1

. The combination of a relatively high resonance 

frequency in liquids (appropriate for Dynamic modes) and their low spring constant 

(required to minimize the applied load in Force-distance based imaging modes) make them 

ideal to compare different acquisition modes. The deflection sensitivity of the optical 

detection system was calibrated from force curves, resulting in  9 nm/V. This very low 

value proved to be crucial to control the low amplitudes and forces required for high 

resolution imaging. Figure 3.1 shows images of dsDNA molecules adsorbed on a mica 

surface in liquid environment, using AM-AFM with a cantilever oscillation amplitude of 

0.7 nm. 
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Figure 3.1 High resolution imaging of dsDNA using AM-AFM. a) Low magnification image where a 

periodic corrugation and a helical structure along the molecules can be seen. b) Detail at higher 

magnification of a) highlighting the double-band corrugation that corresponds to the major (green 

arrows) and minor (gray arrows) grooves. c) Model of dsDNA showing relevant dimensions. Each 

color represents different chemical species, red: oxygen, green: carbon, blue: nitrogen and orange: 

phosphorus. d) Height profile along the line in b). Color scale (from dark to bright) in a) and b) was 

adjusted to enhance the corrugation observed along the dsDNA (2.9 nm total range in a) and 1.7 

nm in b)). 

 

Scan rates and feedback parameters were adjusted for optimum contrast and stability. A 

periodic corrugation can be clearly observed within the molecules despite an obvious  

tip-sample dilation effect, which made dsDNA strands look wider than the expected 2 nm 

crystallographic width. Figure 3.1b shows this corrugation in detail. A very good agreement 

between the B-form model for dsDNA structure (figure 3.1c) and the profile dimensions 

(figure 3.1d) can be observed. The periodicity is ascribed to the major and minor grooves of 

the dsDNA structure with a helical pitch of 3.4 ± 0.3 nm. The resolution achieved is 

comparable to that reported in previous AFM studies [17-19, 27, 32], proving that the used 

setup provided the required stability and resolution to image nucleic acids at the nanometer 

scale. 
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Next, a similar procedure was applied to image dsRNA molecules adsorbed on mica. The 

sample was prepared and imaged in liquid using AM-AFM with identical imaging 

conditions as previously used for dsDNA. Figure 3.2 shows images of dsRNA molecules 

on these conditions. 

 

Figure 3.2. High resolution imaging of dsRNA using AM-AFM. a) Low magnification image where a 

narrower periodic corrugation compared to dsDNA is observed. b) Detail at higher magnification of 

a). Occasionally, a monotonic periodicity compatible with the presence of the major and minor 

grooves (marked in the figure with green and grey arrows) was observed, but this was not always 

achievable. c) Model of dsRNA showing relevant dimensions. Each color represents different 

chemical species, red: oxygen, green: carbon, blue: nitrogen and orange: phosphorus. d) Height 

profile along the line in b). Color scale (from dark to bright) in a) and b) was adjusted to enhance 

the corrugation observed along the dsRNA (1.4 nm total range in a) and 1.2 nm total range in b)). 

 

Figure 3.2b shows in detail the corrugation observed. A distance between valleys of  

1.5 - 1.7 nm is measured in the profile taken along the axis of the molecule. This distance 

can be ascribed, within error, to the corresponding dimensions of both the major and minor 

grooves of the A-form structure of dsRNA (see figures 3.2c and d). However, in most of 

the cases, a single periodicity of 3.2 ± 0.3 nm that coincides with the helical pitch of 

dsRNA could only be identified. This implies that, counter-intuitively, the minor groove of 

dsRNA ( 1.5 nm) was in general more difficult to observe than the minor groove of 

dsDNA ( 1.3 nm), even though the former is wider and identical working conditions were 

employed for imaging both samples (compare figures 3.1d and 3.2d). It could be explained 

by the particular orientation and distance of the phosphate groups (orange and red spheres 
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in models, figures 3.1c and 3.2c) of each strand of dsRNA. Whereas phosphate groups in 

dsDNA appear in the outer edges of the double helix pointing outwards, in dsRNA they are 

facing each other and leave a narrower minor groove. This particular orientation of 

phosphate groups in dsRNA is suggested as a possible reason for the inability to adsorb 

dsRNA on mica using Mg
2+

 [3], and may also explain why the AFM tip can hardly resolve 

the minor groove in RNA samples preventing its frequent visualization. Alternatively, if the 

mechanism for dsRNA adsorption to the mica surface involves base complexation with 

Ni
2+

 and dislocation [4], it may affect the overall secondary structure of dsRNA, hampering 

the visualization of the minor groove. 

In order to get further insight into the mechanisms for the high resolution imaging of soft 

biological samples in liquids, dsRNA molecules were imaged using other AFM imaging 

modes: AM-AFM, DAM-AFM and JM+. Regardless of the imaging mode employed, the 

tip-sample coarse approach was always performed in AM-AFM mode and, once in range, 

the proper feedback scheme for each measuring mode was adopted (see Chapter 1 for 

feedback scheme diagrams for each mode), adjusting the Setpoint and the feedback 

parameters to values that optimize image acquisition with no sample damage, judged from 

repetitive imaging of the same area. Following this procedure, forces during coarse 

approach were minimized. The cantilever free amplitude for the approach was set to a 

relatively high value of  7 nm, with a Setpoint of about 75% of this value. With these 

settings, using the Full Auto Approach option in the WSxM software no false engagements 

were detected. Once engaged, in Dynamic modes the drive amplitude was changed to 

reduce the cantilever amplitude to imaging values. Accordingly, the amplitude Setpoint was 

also reduced (0.6 - 0.7 nm), to remain just below the threshold value at which the cantilever 

was lifted off the sample. For JM+, Setpoints in the range of 0.05 - 0.07 V, corresponding 

to forces of the order of 35-50 pN, and Z excursions in the range of 15 - 35 nm were used. 

Table 3.1 presents a detailed summary of imaging conditions (P,I feedback values may vary 

among different microscopes. The values shown here could be seen as a reference for 

Nanotec Electronica Cervantes AFM users).  
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Table 3.1 Measuring and imaging parameters employed in this study 

AM-AFM  

Scan rate (lines s-1) 3-5 

Main feedback channel Amplitude 

Setpoint main feedback 0.5-0.8 nm 

P,I values main feedback* 20,10 

DAM-AFM  

Scan rate (lines s-1) 4-8 

Main feedback channel Dissipation 

Setpoint main feedback 0.2-0.5 fW 

P,I values main feedback* 50,25 

Setpoint Amplitude (nm) 0.6 

P,I values Amplitude* 8000,80 

P,I values Phase* 6,12 

JM+  

Scan rate (lines s-1) 3-4 

Main feedback channel Force 

Setpoint main feedback 30-40 pN 

P,I values main feedback 40,20 

Amplitude of Z excursion (nm) 15-35 

Frequency of Z excursion (kHz) 0.5-1 

Common parameters  

Image size (nm) 50-150 

Number of points per line 512 

Pixel resolution (nm pix-1) 0.1-0.3 

Cantilevers Biolever mini BL-AC40TS-C2 
k = 0.09 N/m, f

0
 (liquids) = 25 kHz, nominal tip 

radius = 8 nm 

Cantilever free amplitude for approach (nm) ~ 7 

Approach Setpoint (nm) ~ 5 (75% of free amplitude) 

Optical sensitivity (nm/V) 9 
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Areas of 1 x 1 m
2
 were first scanned at low resolution to locate molecules with straight 

segments over several tens of nm. Higher resolution images were recorded at scan sizes of 

50 x 50 – 150 x 150 nm
2
, 512 x 512 pixels (pixel resolution between 0.1 and 0.3 nm pix

-1
) 

and scanning frequencies of 3-8 lines s
-1

. The fast scan direction was preferably set to be 

parallel to these segments to minimize low frequency noise and to facilitate the helical pitch 

visualization. Indeed, helical pitch visualization was easier along the fast scan axis but it 

was also possible to observe the periodicity of dsRNA and dsDNA along molecules not 

aligned to the fast scan axis. Initially, each scan line in the image was scanned from left to 

right (trace direction) and from right to left (retrace direction) to check for consistency of 

the observed topographic features. Then, images were only acquired in trace direction to 

increase the scan rate. Raw images were treated with the following standard processing 

functions implemented in WSxM software: flatten plus background subtraction [33], 

artifact lines removal produced by tip attachments, Gaussian filtering and both  

cross-sectional and longitudinal profiles along the molecules to measure distances along 

these profiles. The color scales of the images were adjusted to enhance the visualization of 

the corrugation at the upper region of the molecules. This is why all data below a certain 

threshold appear black. This last filtering procedure is commonly applied in high resolution 

dsDNA data [18, 19]. 

Figure 3.3 shows dsRNA molecules imaged in AM-AFM, DAM-AFM and JM+ under 

conditions of low invasiveness (small oscillating amplitudes, low dissipation power and 

small contact force, respectively). High resolution was obtained in all cases, allowing the 

observation of at least a single periodicity along the dsRNA molecules. Since AFM heights 

critically depend on the force that the tip applies to the nucleic acid [19, 27, 34], the level of 

invasiveness and damage of the different imaging modes was assessed by measuring the 

dsRNA height and its comparison with consecutive images. The height of several dsRNA 

molecules obtained with the three imaging modes employed (figure 3.3d) was almost the 

same and of about 2.5 ± 0.3 nm, in good agreement with the crystallographic dimensions of 

2.6 nm for the dsRNA. 
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Figure 3.3 High resolution AFM images of dsRNA acquired in different imaging modes. a) AM-AFM. 

b) DAM-AFM. c) JM+. Top row: large field of view including several dsRNA molecules. Middle row: 

higher magnification details of the squared region shown in the top row. Bottom row: height 

profiles along the lines in the zoom-in images. Color scale was adjusted to enhance the corrugation 

observed along the dsRNA. d) Cross-sectional profiles of dsRNA molecules imaged with AM-AFM, 

DAM-AFM, and JM+. e) Histograms of the helical pitch for each of the three measuring modes 

employed in this work. Data were taken along different segments of the same molecule and on 

different molecules. Gaussian fits (dashed lines) provide mean ± standard deviation (SD) values of 

3.2 ± 0.3, 3.1 ± 0.4, and 3.2 ± 0.3 nm, for AM-AFM, DAM, and JM+ imaging modes, respectively. 

 

Figure 3.3 shows that the helical pitch is clearly resolved independently of the measuring 

mode. The helical pitch along different segments over the same molecule and also on 

different molecules was measured (figure 3.3e), overall along 8, 13, and 14 molecules that 

resulted in 64, 116 and 114 data values for AM-AFM, DAM-AFM, and JM+, respectively. 
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The distribution for each mode was fitted with a Gaussian function with similar mean 

values and standard deviations, independently of the imaging mode. The mean periodicity 

was 3.1 ± 0.3 nm (mean ± standard deviation (SD)), a value consistent with the A-form 

structure of dsRNA. In fact, a rise per base pair of 0.29 nm was directly measured with 

AFM for dsRNA [4], giving a distance of 3.19 nm for the 11 bases contained in a single 

turn of the A-form structure of dsRNA. The wide distributions described here (figure 3.3e) 

are consistent with the structural irregularities previously reported [19, 27]. This variability 

may be induced by the strong electrostatic interaction with the mica caused by Ni
2+

 cations. 

Together, these data show that a similar high resolution can be obtained, regardless of the 

imaging mode employed, when working at optimal operating conditions. Similar 

conclusions when working with different feedback architectures and/or applied to other 

biological samples are reported elsewhere [7, 26]. 

As mentioned before, commercial cantilevers specially chosen to image soft samples in 

liquid environments were employed for the measurements. These probes have a relatively 

high resonance frequency and low spring constant. They also have a nominal tip radius of  

8 nm, which in principle is too large to expect sub-helical pitch resolution with them. It is 

interesting then to explore the role played by the dimensions of the tip in the achievement 

of the observed high resolution using a hard sphere model. For this purpose, AFM images 

of both dsDNA and dsRNA were simulated and dilated with tips of different radii and 

compared with experimental data. AFM images of dsDNA and dsRNA structures were 

simulated using a fragment of 48-mer poly A-T sequence for both structures, but 

represented as B-form, for dsDNA, or A-form, for dsRNA. The molecular structure in 

Protein Data Bank (PDB) format was produced using 3D-Dart software [35]. Graphical 

representations of the dsDNA and dsRNA crystal structures were generated using the 

UCSF Chimera package [36]. These graphics were represented in a grayscale chosen to 

represent the height of the structures. Top views were selected and then TIFF files 

generated, which were imported in WSxM, obtaining in this way AFM-like images of the 

crystal structures. Images were dilated using the tip-sample dilation option in WSxM. The 

dilation algorithm uses a parabolic tip of radius r, with z =
x2+y2

2r
, where xyz are the lateral 

and vertical coordinates of the image [37]. Dilation simulations treated both tip and 

molecule as hard undeformable bodies. Similar simulation procedures are also applied to 

dsDNA [23, 27] and, although it is just a qualitative model, it is enough to illustrate the 

importance of the tip apex size to image nucleic acid molecules. A model comprising 

realistic physical interactions between tip and sample is beyond the scope of this work. 

Figure 3.4 compares the dsRNA full width at half-maximum (fwhm) of the cross-sectional 

profile of a simulated image, using a tip of nominal radius (8 nm), with the experimental 

data for an image acquired with a tip radius close to this nominal value. As it can be 

observed, the radius of the tip used for the acquisition was slightly lower than the nominal 

value and yet not enough to provide high resolution. 
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Figure 3.4 dsRNA molecules measured using a tip with radius close to the nominal value. a) AFM 

topographic image where no helical resolution can be seen along the molecules. Color scale (from 

dark to bright) was adjusted to enhance the corrugation (2.5 nm total range). b) Comparison of 

cross-sectional profiles corresponding to the line in a) and an 8 nm radius tip-dilated simulation. 

The radius of the tip used for the acquisition was close to the nominal 8 nm value and not enough 

to provide high resolution. 

 

Figure 3.5 shows a further comparison of the fwhm of simulated images at different tip 

radii with the experimental data. As it can be seen, tips of radii 0.7 - 1.2 nm allowed enough 

resolution to make both major and minor grooves visible. Tips with larger radii  

(2.7 - 5.5 nm) led to images where only a single periodicity was detected.  
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Figure 3.5 dsDNA and dsRNA high resolution imaging dependence with the tip radius. a) Data 

relative to dsDNA. Simulated AFM images with a tip radius of 1.2 nm provide a similar 

experimental cross-sectional profile in images where both major and minor grooves are visible. An 

estimated tip radius of 3.0 nm provide images where only the major groove is resolved. b) Data 

relative to dsRNA. Simulations with a tip radius of 0.7 nm provide images where both the major 

and minor grooves are visible. Images where single periodicity is observed provide an estimation 

for the tip radius of 2.7 and 5.5 nm. Lines across the molecules correspond to the experimental 

profiles. Full width at half-maximum is also shown. 

 

Importantly, these simulation data indicate that the tips used to acquire the experimental 

images were much sharper than specified by the manufacturer. A higher resolution than 

expected from a commercial tip has been reported before with other biological samples. 

Some examples include the observation of single monomers at the surface of viral particles 

[38], the visualization of single antibody subunits [39] or the detection of conformational 

changes in two-dimensional crystals of membrane proteins [40]. A likely explanation could 

be that the high resolution arises from a single protrusion or an impurity attached to the 

AFM tip, as already suggested by other authors [18, 27]. In any case, simulation data 

presented here highlights the relevance of the tip apex size to image nucleic acids. 

Finally, we intend to estimate the maximum tip radius that still allows high resolution 

imaging and to determine which of the two grooves is observed in the images. The 

longitudinal profile in simulated AFM images for different tip radius was calculated and 

from these profiles, the depth of the tip penetration in the groove was compared with the 

vertical noise of the instrument. In order to determine the instrumental noise level in the 

vertical direction (z), the tip was approached to a freshly-cleaved mica surface under  

AM-AFM experimental conditions for high resolution imaging. Once in range, with the 

ba

3.4 nm

3.4 nm

5 nm

5 nm

5 nm

5 nm

R = 1.2 nm

151050

Profile (nm)

2 

nm

R = 3.0 nm

Experimental Simulation

4 nm

5.7 nm

2.6 

nm

252015105

Profile (nm)
0

R = 2.7 nm

R = 5.5 nm

R = 5.5 nm

R = 0.7 nm

Experimental Simulation

3.8 nm

5.7 nm

8.7 nm

8.8 nm



Chapter 3. Methodological developments. 

132 

 

scan size set to zero, the height channel was recorded for two minutes at a data acquisition 

bandwidth of 4.5 Hz. Figure 3.6 shows the height values represented as a histogram.  

 

Figure 3.6 Noise in AFM height measurement. 

 

The height distribution was fitted by a Gaussian function giving a RMS noise value of 

0.3 Å. The Rose criterion was then used to estimate the minimum experimental depth that 

was able to be resolved. Signal-to-noise ratio (SNR) compares the level of a desired signal 

to the level of background noise. It can be defined as SNR = signal amplitude/RMS noise. 

According to the Rose criterion, for a signal to be distinguished from the noise, the ratio 

between the power of the signal and the noise should be larger than 5 [41, 42]. Since 

amplitudes follow a square root relationship with power, applying the Rose criterion to our 

data SNR ≳ √5. It can be concluded that the minimum depth to be resolved with the 

experimental height noise is  0.7 Å. The implication is that only corrugations deeper than 

0.7 Å would be visible. Figure 3.7 shows simulated AFM images of dsDNA and dsRNA 

structures dilated with tips of different radii. 
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Figure 3.7 Simulations of AFM images of a) dsDNA and b) dsRNA. Top row: simulated AFM 

topographic images for different tip radius. Bottom row:  height profiles taken in the central part 

of the molecule along the longitudinal axis of the simulated images. The height interval was 

adjusted for dsDNA and dsRNA to improve visualization of the penetration depths of profiles for 

the different tip radii. Dashed line represents the minimum depth experimentally observable 

according to the Rose criterion (see main text). 
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According to the 0.7 Å threshold rule from the Rose criterion (dashed lines in figure 3.7), 

both major and minor grooves could only be visible when the tip radius is ≲ 2.5 nm, in 

agreement with the previous comparison of experimental and simulated data. As expected, 

with increasing tip radius the simulations show a decrease of the apparent depth of both 

major and minor grooves (in a naive view, when the tip radius is large it cannot enter the 

grooves). In dsDNA simulations the major groove always looked deeper than the minor 

groove independently of the tip radius used. Hence, as the tip radius increases, the ability to 

resolve the minor groove gradually reduces, pointing to the fact that when a single 

periodicity is observed it corresponds to the major groove. However, in the case of dsRNA, 

this observation is not that obvious because as the tip radius increases both grooves present 

similar apparent depths (see for instance profiles for R = 4 nm and R = 8 nm). So, a clear 

answer regarding which of the two grooves was observed in the dsRNA images that show 

the single 3.1 nm periodicity (figure 3.3) cannot be given. Still, for very sharp tips the 

major groove was slightly favored with respect to the minor, as it occurred with dsDNA, 

suggesting that the single periodicity corresponds as well to the major groove. 

In summary, the measurements and simulations that have been carried out in this section 

have shown that high resolution of nucleic acids in liquid is nearly independent of the 

imaging mode and that there are two aspects which are critical: minimization of the 

interacting force with the proper tuning of each measuring mode parameters; and the 

sharpness of the tip, which likely arises from a small feature or a protrusion located at the 

tip apex of the relatively blunt commercial cantilevers. 
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3.2.2 Magnetic Force Microscopy in liquids 

 

3.2.2.1 Introduction 

As explained in Chapter 1, Magnetic Force Microscopy (MFM) is an AFM-based technique 

where a nanometric magnetic probe is raster-scanned in close proximity to a surface 

detecting the local magnetic fields near the surface [43]. MFM has been applied to the 

study of a variety of magnetic systems [44], including magnetic nanoparticles (MNPs)  

[45-48], but always in vacuum or atmospheric conditions. AFM is a powerful technique in 

biophysiscs [49, 50], nanomedicine [51] or nanobiotechnology [52], since it allows imaging 

and manipulating nanostructures in physiological conditions on a single molecule level  

[53, 54]. Since biological specimens can dramatically change their properties when studied 

far away of physiological conditions, Schreiber et al. [48] commented on the importance of 

being able to develop MFM imaging in liquid media. But up to now there was not an MFM 

technique suitable to study “bio-nano-magnetic” samples in liquids. 

Nowadays magnetic nanostructures play important roles in different fields such as 

medicine, biology or catalysis. For example, the use of MNPs is growing a lot of attention 

for its potential applications [55] that include therapeutic drug, gene and radionuclide 

delivery, contrast enhancement agents for magnetic resonance imaging, magnetic 

separation of labelled cells and other biological entities or methods for the catabolism of 

tumors via hyperthermia. Several pathologies such as Hepatitis B [56], Alzheimer‘s, 

Huntington‘s and Parkinson‘s diseases [57, 58] or atherosclerosis [59] are characterized for 

the presence of magnetic deposits in diseased tissue. There are animals, such as the rainbow 

trout, where a magnetic sense is related to the presence of magnetic nanocrystals for 

magnetoreception [60]. Many studies as well are focused on the encapsulation of magnetic 

particles in different biological entities: magnetic bacteria [61] to be used as magnetic 

markers for biosensing [62], or virus like particles, as seen in Chapter 2, which are 

promising templates for building up nanometric-sized magnetic clusters by taking 

advantage of their inner cavity as a nanoreactor [63, 64]. Nano-magnetic catalysts are also 

attracting a lot of attention because they generally avoid loss of catalyst increasing their 

reusability [65]. 

Despite the importance of measuring “bio-nano-magnetic” objects in physiological 

conditions, the applicability of MFM to biological systems was limited up to now because 

of the difficulty in developing MFM for detecting magnetic interactions in liquids [48]. 

This is as a consequence of the high damping forces on the cantilever, which are several 

times greater than in air. These damping forces are the origin of the low quality factor (Q) 

of the cantilever resonance characteristic of liquid measurements, which results in a 

significant loss of sensitivity in the MFM signal. More than 20 years ago, Giles et al. [66] 
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used MFM to record bits on a computer hard disk in air and in liquid. But in their study 

topography was acquired with the tip in Contact mode, which is unacceptable for the 

majority of biological applications, where the biological specimens under consideration are 

weakly immobilized to a flat surface [62] because the tip will destroy the sample [7]. 

Moreover, they used different pH values of the liquid, in order to change the adhesion and 

the attractive forces to measure as close as possible to the surface, to improve the magnetic 

contrast. This is as well unacceptable for many biological applications, where the biological 

specimens need to be under specific buffer conditions. More recently, Dietz et al. [67] 

reported the detection of superparamagnetic nanoparticles in liquid using bimodal AFM. 

But in this case the contrast obtained was a cross-talk of nanomechanical and magnetic 

interactions, preventing deeper studies on their magnetic properties. The work presented 

here introduces the development of MFM imaging in liquid media and discusses its 

potential for detecting and imaging nanoscale magnetic domains in biological samples. 

The results presented in this section are published in reference Ares, P.; Jaafar, M.; Gil, A.; 

Gomez-Herrero, J.; Asenjo, A. Magnetic Force Microscopy in Liquids. Small 2015, 11, 

4731-4736 (see also List of  Publications), and have been achieved in collaboration with 

Dr. Miriam Jaafar and Dr. Agustina Asenjo from the Instituto de Ciencia de Materiales de 

Madrid (ICMM) of the CSIC. The tip-sample magnetic interaction in different media (high 

vacuum, air and liquids) has been studied using magnetic hard disk drives as a benchmark 

and the acquisition conditions in liquid environment have been highly optimized. The final 

sensitivity of MFM in liquids has been explored by imaging Fe3O4 MNPs coated with 

dimercaptosuccinnic acid (DMSA), prepared by Dr. Maria del Puerto Morales from the 

ICMM, which are promising nanostructures for different nanomedicine applications due to 

their biocompatibility and low toxicity [68].  

 

3.2.2.2 Results and discussion 

First step consisted in imaging the magnetic domains of a piece of a high density disk drive 

(magnetic motives of ~ 60 nm). Commercial MFM probes were used in both air and liquid 

(distilled water) environments. PPP-MFMR from Nanosensors
TM

 [69] were employed. 

PPP-MFMR probes have a resonant frequency of 75 kHz in air and a typical force constant 

of 2.8 N m
-1

. The tip has a hardmagnetic coating and a radius of curvature < 30 nm. The 

coating is characterized by a coercivity of ~ 300 Oe. Probes were magnetized by means of a 

strong permanent magnet prior to the measurements for signal strength enhancement. 

Figure 3.8 shows the topography and magnetic contrast obtained from the frequency shift 

(using a Phase Lock Loop, PLL) in both media, measuring in a double-pass configuration 

as explained in Chapter 1 for MFM studies. 
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Figure 3.8 a) High density hard disk surface topography. Cantilever amplitude = 5 nm. b) MFM 

image of the hard disk magnetic bits taken in ambient air conditions. Z lift = 15 nm. c) MFM image 

taken in liquid. Z lift = 6 nm (the scanned area is not the same as in b)). 

 

As expected, the MFM image acquired in air (figure 3.8b) presents a more marked contrast 

than the one in liquid (figure 3.8c), but still the sensitivity and lateral resolution of the 

image in liquid allow to easily resolve the ~ 60 nm domains. Notice that both magnetic 

images share the color scale for a readily comparison. Figure 3.9 shows topography and 

frequency shift images in 1
st
 and 2

nd
 passes in both air and liquid media, showing the 

absence of topography cross-talk along the MFM images. 
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Figure 3.9 Topography (a, d) and frequency shifts in 1st (b, e) and 2nd (c, f) passes in both air (a, b, c) 

and liquid media (d, e, f). Frequency Shift in 1st pass highly reflects the topography of the surface, 

whereas the 2nd pass images mainly reflect magnetic interaction and no topography is present. 
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The lower magnetic signal in liquid media is a direct consequence of the low Q factor of 

the cantilever resonance characteristic of liquid measurements. This can be clearly seen in 

figure 3.10, where resonance curves of the same cantilever in different media are shown. 

For the high vacuum measurements, the microscope was placed in a homemade vacuum 

chamber with a base pressure of 10
-6

 hPa. 

 

Figure 3.10 Cantilever Nanosensors PPP-MFMR resonance curves in different media: liquid (blue), 

ambient air (green) and High Vacuum, HV (red). 

 

The origin of the magnetic contrast can be better understood by acquiring MFM data in a 

3D Mode configuration [70, 71] (see 3D Modes in Chapter 1), monitoring the variation of 

the interaction with the tip-sample distance. To this end, the tip was moved along a given 

line in the fast scan direction (parallel to the domains transition direction, in a similar way 

as a magnetic reader head does), so MFM contrast from the resonance frequency shift could 

be readily studied at different lift heights in a fast and drift-free way. Figure 3.11 presents 

the results of 3D Mode experiments on a low density hard disk sample (magnetic motives 

of ~ 800 nm). 
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Figure 3.11 a) Scheme of 3D Mode measurements of the magnetic interaction as a function of the 

tip-sample distance. b) Magnetic contrast in ambient air conditions along a given scanning line as a 

function of the Z lift in a low density hard disk sample obtained by 3D Mode mapping  (x, z). 

c) Magnetic signal from attractive and repulsive regions of the hard disk in the different media 

taken from 3D Mode maps similar to that shown in b). The regions chosen for each media 

correspond to the positions with higher attractive and repulsive contrasts, as marked by the 

horizontal dashed green lines in b). d) Plot of the frequency shift vs. X distance along the scanning 

line for different Z lifts according to the vertical lines in b). All lines were arbitrarily shifted for 

visibility and for this same reason the yellow line was divided by a factor of 15. 

 

The frequency shift induced by the magnetic interaction at different Z lifts was recorded, 

showing attractive and repulsive contrast (bright and dark areas, figure 3.11b). By carrying 

out this same process in air and vacuum, the magnetic interaction in the different media as a 

function of the distance for both the attractive and repulsive areas is plotted (figure 3.11c). 

Figure 3.11d shows different frequency shift profiles as a function of Z lift. As the Z lift 

increases, it can be seen how the topographic information fades away. From this kind of 

plots, the optimal Z lift distance for MFM imaging with no topography cross-talk can be 

easily chosen.  
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From figure 3.11c it can be seen that the high vacuum signals are the cleanest ones, 

whereas the liquid signals are the noisiest, as expected from the Q factor values. But 

interestingly, in both vacuum and liquid, capillarity forces are not present, resulting in 

much lower attractive forces than in air [72], and hence it can be observed that the magnetic 

signal can be detected with the tip very close to the sample (tip-sample distances < 10 nm). 

In contrast to air conditions, where due to the presence of capillary forces the minimum 

distance to detect magnetic interaction with no topography cross-talk is much higher. 

Figure 3.12 shows a representative example to illustrate this tendency. 

 

Figure 3.12 Force vs. Distance plot in liquid (dark green and red) and in air (light green and pink). 

The conditions for the above FZ plots were similar to the ones used for MFM acquisition. 

Attractive forces are almost negligible in liquid compared to air conditions (the adhesion force in 

air is ~ 30 times greater than in liquid). 

 

To optimize the magnetic contrast in liquids, 3D Modes analysis was done for different 

oscillation amplitudes and different Dynamic modes, AM-AFM and DAM-AFM in both air 

and liquid. In terms of the acquisition of magnetic interactions, DAM-AFM is the same as 

FM-AFM, but since in DAM-AFM there are no frequency shift contributions to the 

topography, it has the advantage of no magnetic cross-talk in the first pass topography 

acquisition (as already mentioned in the supporting information of [24]). The MFM signal 

was maximized by studying the influence of the relevant measuring conditions in both  

AM-AFM and DAM-AFM modes. For a given operating parameter (for example the 

cantilever oscillation amplitude), the other relevant operating conditions (such as Setpoint, 

Z lift distance or Phase Lock Loop parameters) were varied to maximize the MFM signal. 

Figure 3.13 shows the optimization of the MFM contrast for AM-AFM and DAM-AFM 

modes. 

-30 -25 -20 -15 -10 -5 0 5 10
-50

-40

-30

-20

-10

0

10

F
o

rc
e

 (
n

N
)

Z (nm)



Chapter 3. Methodological developments. 

142 

 

 

Figure 3.13 Magnetic contrast optimization for AM-AFM and DAM-AFM. a) and b) Magnetic signal 

as a function of the tip sample distance from attractive and repulsive regions of a hard disk in 

liquid, for cantilever oscillation amplitudes of 5 and 10 nm respectively. c) Minimum tip sample 

distance at which MFM signal could be detected in liquid with no topography cross-talk.  

d) Maximum magnetic signal in liquid. e) Comparison of the optimized magnetic signals detected 

in air and liquid. 

 

As it can be inferred from figure 3.13, by working in DAM-AFM, the tip is able to detect 

the magnetic interaction closer to the sample, which translates into a higher magnetic 

signal. Thus, using the most appropriated oscillation amplitudes and tip-sample distances 

for every mode and medium, similar contrasts can be achieved in air and liquid (as shown 

in figure 3.8), despite a loss in sensitivity in liquid compared to air. 
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After the optimization of the acquisition conditions for MFM in liquids, DMSA-coated 

Fe3O4 ferrimagnetic nanoparticles, a sample of nanobiotechnology interest, were studied. 

These MNPs were obtained by precipitation of a FeSO4 solution in a basic solution in the 

presence of potassium nitrate (acting as mild oxidant) under stirring and nitrogen flow. The 

precipitate was then placed in an oil bath at 90 ºC with mechanical stirring for 15 min and 

left tightly closed for 24 h without agitation [73]. Finally, the particles were coated with 

DMSA at pH 3 and the excess removed after two days dialysis. Magnetite particles 

obtained by this route present an inverse spinel structure and ferrimagnetic behavior at 

room temperature with very high saturation magnetization values [73]. For AFM imaging, a 

solution of 2.4 mg Fe/ml of MNPs was diluted in the range 1:5 in a 5 mM nickel chloride 

solution just before use, to ensure proper MNPs immobilization, and immediately aliquoted 

onto freshly cleaved mica. After 20 minutes, the mica substrates were dried in a N2 gas 

flow and imaged in air conditions. For MNPs studies in liquids, distilled water was added 

to the mica substrates with MNPs previously imaged. Figure 3.14 shows the topography 

and magnetic contrast in air conditions of a typical distribution of MNPs on the substrate. 

 

 

Figure 3.14 a) Topography and b) MFM images of DMSA-coated Fe3O4 nanoparticles acquired in 

ambient air conditions. Z lift = 15nm. 

 

Figure 3.14 presents single particles and clusters comprising several particles. These 

nanoparticles have a cubic shape. Nevertheless, the AFM images present rounded features 

due to the tip-sample dilation. MNPs were magnetized in the in-plane direction by means of 

a permanent magnet prior to the measurements and, due the magnetocrystalline anisotropy, 

f = 10.5 Hz34 nm

a b
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the magnetization lies along one of the easy axis of the particle [74]. This was the 

responsible of the bright-dark contrast observed, which comes from the magnetic dipole 

response [47, 48]. It is important to remark that magnetic signals in the hard disks  

(figure 3.8) were about an order of magnitude higher than in MNPs (figure 3.14).  

Figure 3.15 shows topography and magnetic images of different single MNPs and clusters 

measured in both air and liquid. The magnetic contrast in air matches the state-of-the-art 

images for this kind of systems [46-48, 75]. 

 

Figure 3.15 DMSA-coated Fe3O4 nanoparticles. a), c), e), g) and i) Topography. b), d), f), h) and j) 2nd 

pass frequency shift images. (a-d) Images acquired in ambient air conditions. Z lift = 15 nm. (e-j) 

Images acquired in liquid. Z lift = 6 nm. (a-h) were acquired using a MFM tip, whereas i) and j) were 

acquired using a probe with similar characteristics but without magnetic coating. 

 

Since the dependence with tip-sample distance of both magnetic and electrostatic 

interactions is similar (as shown in Chapter 1), it is fundamental to demonstrate the 

magnetic origin of the signal measured in the nanoparticles [76, 77]. To this end, 

measurements in liquids using cantilevers with similar characteristics as the MFM ones, but 

with a metallic non-magnetic coating, were carried out in exactly the same conditions. In 

these cases, there is found only a bright contrast but not the dark-bright contrast associated 

to magnetic interactions (Figure 3.15j). It is interesting to remark that the magnetic contrast 

in the case of particles as low as ~ 30 nm, which is in the limit of the technique, could still 

be measured with negligible topography cross-talk, as shown in figure 3.16, despite of the 

low magnetic signal-to-noise ratio characteristic of liquids.  
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Figure 3.16 Topography (a, d) and frequency shifts in 1st (b, e) and 2nd (c, f) passes corresponding 

to magnetic nanoparticles in liquid media using magnetic (a-c) and non-magnetic (d-f) probes. 

Frequency Shift in 1st pass highly reflects the topography of the surface, whereas in the 2nd pass 

images no topography is present. 
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The magnetic signal for each of the particles and clusters observed can be compared by 

measuring the difference between the dark and the bright contrast. Figure 3.17 shows the 

comparison of the measured magnetic signal of the MNPs as a function of the volume of 

the MNP, this is, as a function of the magnetic material present, in both air and liquid. 

 

Figure 3.17 Magnetic signal as a function of the amount of magnetic material in the DMSA-coated 

Fe3O4 nanoparticles for both air and liquid measurements. 

 

Remarkably, similar magnetic contrasts in liquid and in air could be obtained, despite the 

increase of the noise in the liquid measurements due to the low Q factor of the cantilever 

resonance. 

A simple study of fundamental MFM noise shows that further improvement on the 

performance could be gained, through the use of specially designed cantilevers for liquid 

media. The frequency shift of a vibrating cantilever in the presence of a force gradient is 

proportional to the factor 0/k (equation (1.20) in the MFM section in Chapter 1). For the 

commercial cantilevers used in the MFM measurements in liquids, 0 = 2·26000 rad s
-1

 

and k = 2.8 N m
-1

, resulting in a factor in liquid (0/k)MFM ~ 5.8 x 10
4
 rad s

-1
 N

-1 
m. There is 

still room for further improvement: if it would be possible to use cantilevers specifically 

designed for measurements in liquids, such as the ones used for the dsRNA measurements 

in the previous section, BL-AC40TS-C2 from Olympus [30], but customized with a 

magnetic coating as commercial MFM probes, then 0 ~ 2·25000 rad s
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k ~ 0.09 N m
-1

, resulting in a factor in liquid (0/k)AC40 ~ 1.7 x 10
6
 rad s

-1
 N

-1 
m. The ratio 

between these two factors leads to a ~ 29-fold improvement in the frequency shift 

sensitivity. 

But the use of lower force constant cantilevers will result in an increase in the fundamental 

noise level of the measurement, worsening the frequency shift sensitivity. This noise 

increase is proportional to √1 kQ⁄  [78], with k the cantilever stiffness and Q the quality 

factor of the resonance. For the commercial cantilevers used in the MFM measurements in 

liquids, k = 2.8 N m
-1

 and Q ~ 3, resulting in (√1 kQ⁄ )
MFM

~ 0.35 (N
-1 

m)
1/2

. For the  

BL-AC40TS-C2, k ~ 0.09 N m
-1

 and Q ~ 2, resulting in (√1 kQ⁄ )
AC40

 ~ 2.35 (N
-1 

m)
1/2

. 

The ratio between these two factors leads to a ~ 7-fold worsening in the frequency shift 

sensitivity. By using these cantilevers in liquids, on one side the frequency shift sensitivity 

would improve a factor of ~ 29 and in the other side it would worsen a factor of ~ 7, 

resulting in a final improvement of a factor of 29/7, roughly ~ 4. 

This prediction made at the end of reference Ares, P.; Jaafar, M.; Gil, A.; Gomez-Herrero, 

J.; Asenjo, A. Magnetic Force Microscopy in Liquids. Small 2015, 11, 4731-4736, core of 

this section, was now confirmed by some preliminary results with homemade magnetic  

BL-AC40TS-C2 cantilevers prepared by sputtering [79] by Eider Berganza (from  

Dr. Agustina Asenjo and Dr. Miriam Jaafar group). Figure 3.18 shows a comparison of the 

magnetic signal from high density hard disc domains acquired with commercial  

PPP-MFMR and homemade magnetic BL-AC40TS-C2 probes.  

 

Figure 3.18 MFM images of a high density hard disk with different kind of probes. a) Commercial 

PPP-MFMR. b) Homemade magnetic BL-AC40TS-C2. Left panels: data acquired in air. Right panels: 

data acquired in liquid. The scanned areas are not the same. Acquisition parameters optimized to 

maximize MFM contrast for each case. 
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Figure 3.18 shows a remarkable increase in the magnetic signal for the homemade 

cantilevers (note the different values for the color tables, with an increase of a factor of 10 

for the homemade probes). A comparison of data taken in liquid yields an improvement of 

the signal to noise ratio for the homemade probes of a factor of ~ 3, in good agreement with 

the estimation from studying fundamental MFM noise.  

 

In summary, the feasibility of using the MFM technique in liquid environments has been 

demonstrated. MFM studies in liquids have been carried out using commercial MFM 

probes, being able to detect magnetic signals even from a single 30-nm Fe3O4 nanoparticle. 

This has been possible by fine tuning of the experimental setup and by imaging the surface 

using DAM-AFM mode. DAM-AFM has enabled optimization of the magnetic signal by 

allowing the AFM tip to detect it very close to the sample. Additionally, a simple study of 

noise in MFM acquisition in liquids has shown that, by using special magnetic cantilevers, 

signal to noise ratio could be further improved, as it has been confirmed experimentally by 

fabricating customized magnetic probes, approaching the quality of images taken in air 

ambient condition. 

 

  



Chapter 3. Methodological developments. 

 

149 

 

3.3 New approaches to nano-object electrical contacts 

 

Since the continuous miniaturization of the electronic devices, nano and molecular 

electronics are important goals for modern science [80, 81]. Electrodes are an essential 

requirement for any electrical circuit and they usually provide the link between the nano- 

and the macro-scale [82-84]. Conventional fabrication procedures of electrodes for 

molecular electronics typically require a high number of steps such as metal evaporation in 

vacuum, lithography and sample cleaning (which involves chemical agents), thus making 

them complex tasks, requiring considerable time and resources that usually are not even 

available in many laboratories. Moreover, many candidates for conducting molecules, such 

as organic biomolecules [85-87] and metal-organic wires [88], are badly affected by these 

procedures: they are damaged when placed in vacuum, they do not withstand metal 

evaporation high temperatures or they are not compatible with the chemical agents used to 

clean the rests of lithographic masks. A paradigmatic case is that of DNA molecules, where 

the influence of metal evaporation on their integrity generated great debate [85, 89, 90]. 

The influence of the evaporated electrodes is thoroughly discussed in a recent paper on 

DNA conductivity [91]. 

In this section two different complementary approaches have been presented. First, a 

method to transfer exfoliated graphite flakes as soft-electrodes. These microelectrodes 

exhibit extremely well-defined and thin edges and can be placed on any sample location 

with sub-micrometer precision. Second, a method where commercial gold nanowires have 

been used to create nanoelectrodes taking advantage of their cold welding ability [92]. Gold 

nanowires can be cold welded together within seconds by mechanical contact alone and 

under relatively low applied pressures. Both procedures are easy, clean, inexpensive and do 

not require vacuum, high temperatures or chemical agents. 
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3.3.1 Exfoliated graphite flakes as soft-electrodes 

 

3.3.1.1 Introduction 

A technique for the transference of microelectrodes [93], in particular 2D materials [94, 

95], is presented. Microelectrodes from exfoliated graphite flakes (EGFs) are fabricated in 

an easy, inexpensive and reliable way by taking advantage of previously described 

procedures [94, 96]. The microelectrodes so produced can be placed with sub-micrometer 

precision on any sample location. The technique presented here is already described in 

Ares, P.; Lopez-Polin, G.; Hermosa, C.; Zamora, F.; Gomez-Herrero, J.; Gomez-Navarro, 

C. Exfoliated graphite flakes as soft-electrodes for precisely contacting nanoobjects. 2D 

Materials 2015, 2, 035008 (see also List of Publications). It does not require vacuum or 

chemical agents; the whole process is based on soft-lithography procedures and it is carried 

out in ambient conditions. These electrodes exhibit extremely well-defined and steep edges, 

which facilitates measurements of very short channel lengths. As it is shown, the electrical 

resistances of these EGF electrodes with different conducting nanomaterials are similar to 

the values reported for conventional metal electrodes. The covalent-bond structure of 

graphite provides stable electrodes at room temperature and for long periods of time [97]. 

The whole EGF soft-electrode fabrication process clearly depends on the experience of the 

operator but after a few attempts, it should not take longer than ~ 1 - 2 hours, a much lower 

time compared to the days or even weeks needed with conventional lithographic 

techniques. 

In this section first a description of the technique is provided and then four relevant 

examples illustrating the potential of the procedure are presented. The first two examples 

correspond to 1D structures (carbon nanotubes and metal-organic nanoribbons), where one 

of the electrodes is based on EGF and the second electrode is a conducting AFM tip  

(C-AFM). The last two examples deal with 2D materials. In particular, the third one is the 

electrical characterization of a known 2D material, reduced graphene oxide (RGO), through 

the use of two EGF electrodes. In the last example a broken circuit comprising graphene 

has been repaired by performing a controlled positioning of EGF electrodes. 

The work presented here has been done in collaboration with Dr. Félix Zamora and  

Dr. Cristina Gómez-Navarro groups. In particular, the setup needed for the deterministic 

transfer of 2D materials by all-dry viscoelastic stamping [94] used in this work has been 

assembled by Dr. Guillermo López-Polín during his PhD, after a short stay at the Delft 

University of Technology (The Netherlands), where Dr. Andrés Castellanos-Gómez 

developed the all-dry transfer method for the assembly of 2D atomic layer heterostructures, 

during his postdoctoral research. In the procedure presented in this section, a contact on a 

selected transferred EGF is created using conductive paint to convert it into a 
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microelectrode. Metal-organic nanoribbons for the second example have been prepared by  

Dr. Cristina Hermosa (sublimation) and Dr. Pilar Amo-Ochoa (drop-casting). The third and 

fourth examples (RGO characterization and graphene circuit repair) have been entirely 

carried out by Dr. Guillermo López-Polín. They are presented in this manuscript to show 

the potential of the technique.  
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3.3.1.2 Results and discussion 

The deterministic transfer of bidimensional crystals is widely used for the fabrication of 

heterostructures based on the artificial stacking of 2D materials [94, 95]. Figure 3.19 

summarizes the key elements of the experimental setup for soft-electrode transfer and 

shows a photograph of it. It comprises a zoom optical microscope, a XY stage with a 

goniometer (which allows rotating the sample if necessary once placed on the XY stage) 

and a XYZ micro-manipulator. The price for the whole experimental setup is below  

3000 € (in this work images taken with a high resolution optical microscope are also 

presented but this equipment is not essential for soft-electrode transfer). This price, 

compared to the cost of conventional electrode fabrication techniques such as metal 

evaporation or e-beam lithography, is substantially lower, making this technique affordable 

to many laboratories. 

 

Figure 3.19 Experimental setup used for soft-electrode transfer. a) A sample with nano-objects on 

its surface is placed on a XY stage with a goniometer. A viscoelastic polymer is fixed underneath a 

glass slide held by a XYZ micro-manipulator. The viscoelastic polymer carries EGFs that are 

transferred to the substrate by pressing against it. b) Silver paint is used to create a contact on the 

selected electrode. c) Final result where an EGF microelectrode and the macroscopic silver paint 

contact can be readily seen. The red circle encloses an area where carbon nanotubes were 

previously observed by AFM. d) Photograph of the experimental setup. Numbers correspond to 

the different elements as indicated in a). 
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The procedure starts by obtaining EGFs from a graphite sample by microexfoliation 

through the scotch tape method. The tape containing the flakes is then pressed against a 

piece of transparent viscoelastic polymer (Gel-Film® from Gel-Pak® [98]) which was 

previously fixed to a microscope glass slide. Importantly for the procedure, the viscoelastic 

polymers adhesion increases with speed. The glass slide is held by the XYZ  

micro-manipulator. Using the optical microscope, a convenient EGF is selected. Depending 

on the application itself, the EGF size requirements can be different. For applications where 

a subsequent macroscopic contact is performed using a conductive paint, as shown in figure 

3.19, at least one of the lateral dimensions of the flake has to be large enough for this 

handmade contact. This typically implies one of the lateral dimensions to be larger than  

~ 100 µm. However, in case of small flakes, this could be accomplished by grouping 

several EGFs with increasing sizes if necessary. The smallest lateral dimension thus should 

be within optical microscopy resolution. Related to the thickness of the EGFs, they have to 

be thick enough to act as a continuous reservoir of electrons without discrete level structure 

and no gate dependence [97]. Flakes of ~ 3 to 40 nm thicknesses are typically selected to 

fulfil these conditions. 

Then a sample with the nano-objects to be contacted is placed in the XY stage. The sample 

is observed from the top with the optical microscope through the glass slide with the 

transparent viscoelastic polymer attached to it (figure 3.19a). By displacing the sample with 

the XY stage it is possible to locate the desired region on the sample and then the XYZ 

micro-manipulator is moved to precisely align the selected EGF on top of the sample region 

of interest. At this point, the polymer is lowered pressing hard onto the sample and then is 

slowly brought back up. This is the key point of the transfer procedure: since viscoelastic 

polymers show a moderate adhesion at low speed, when pressing the polymer onto the 

sample the EGF adheres to the sample surface, but when bringing it back slowly the 

selected EGF detaches the polymer and remaines on the sample. Finally, with the help of 

the optical microscope, using a thin brush and silver paint a contact on the selected EGF is 

created (figures 3.19b and c). This is a distinct and important feature of the method 

presented here. A rather similar procedure can be carried out with a thin film of evaporated 

metal, as for example gold [99], but as it is shown, the flakes so fabricated cannot be so thin 

as the EGF ones and present much more irregular edges, that in some cases could introduce 

complications. Moreover, since this technique needs previous metal evaporations, it 

requires additional expensive evaporation equipment and is more time-consuming. 

In the first two examples, AFM was used both for imaging and for electrical measurements. 

ElectriMulti75-G probes from BudgetSensors [100] were employed for the conductivity 

experiments. They have a resonant frequency of 75 kHz in air and a typical force constant 

of 3 N m
-1

. The tip has a conductive Cr/Pt coating on both sides and a radius of curvature  

< 25 nm. The coating is characterized by a contact resistance of 300  on platinum thin 

film surface. Samples were first imaged in AM-AFM mode, and then at a selected spot of 
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the nano-object a Force vs. Distance curve was obtained, and at the maximum tip 

indentation a Current vs. Voltage curve was acquired (see Chapter 1, conductive AFM 

section).  

In the last two examples, probe station measurements were carried out using a home-made 

two-contact set up operated in ambient conditions, where the electrical probes were 

mounted on two independent XYZ micro-manipulators (the probe station available at that 

time in the laboratory, assembled by Dr. Cristina Gómez-Navarro. After the completion of 

this work, we assembled the variable-temperature ambient-controlled motorized probe 

station shown in Chapter 2). It included a Keithley 2400 sourcemeter, a Keithley 2000 

multimeter and a home-made current to voltage preamplifier with selectable gains (ranging 

from 1 A V
-1

 to 1 nA V
-1

). 

Next the electrical characterization of different examples is presented. 

 

 Carbon nanotubes 

The first example of this work shows the electrical contact of carbon nanotubes. To this 

end, a mica substrate with nanotubes on top was prepared by drop-casting of a nanotube 

suspension [101]. AFM was used to visualize the nanotubes on the surface so their 

concentration was adjusted to be ~ 1 - 2 nanotubes every 25 m
2
. By using again AFM, 

regions with a good density of carbon nanotubes were first located and then, with the  

soft-electrode transfer method, an EGF electrode was placed in one of these regions. Figure 

3.20 summarizes the procedure followed with the carbon nanotubes. 
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Figure 3.20 Carbon nanotubes contacts. a) AFM topographic image at zero bias voltage in the area 

enclosed inside the red circle in figure 3.19c. On the right, an EGF can be seen, exhibiting their 

characteristic sharp edge. The inset is a profile along the blue line showing the height of the EGF. 

The red arrows mark the position of the nanotube. b) Same as a) but with a 4 V tip-sample Bias 

applied in order to enhance the nanotube contrast. c) Zoom-in corresponding to the green square 

in a). It shows the contact positions at which the electrical characterization was carried out (gray 

and black crosses). Schematics of the electrical circuits at the nanotube and EGF electrode 

positions are also shown. d) Current vs. Voltage characteristics of the EGF electrode (black) and 

nanotube (gray). 

 

Figure 3.20a corresponds to an AFM topographic image taken within the red circle shown 

in figure 3.19c. The inset shows a profile on the image, where a height of ~ 15 nm for the 

lower terrace of the EGF is measured. In both the image and the profile it is evident that the 

flake edge is extremely steep, much steeper than any contact fabricated by thermal 

evaporation [85]. In addition, there are no traces of contamination or degradation along it. 

Figure 3.20b is the same region as in figure 3.20a, but in this case a tip-sample Bias voltage 

of 4 V was applied to enhance the contrast of the nanotube due to the electrostatic 

interaction [102, 103]. Figure 3.20c corresponds to a higher magnification detail of the 
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green square in figure 3.20a. Figure 3.20c also shows the corresponding schemes for the 

associated electrical circuits of the measurements carried out. Figure 3.20d displays linear 

Current vs. Voltage characteristics measured for the EGF electrode and the nanotube (black 

and gray crosses in figure 3.20c respectively). Resistances of 1.7 and 47 k were obtained 

for the flake and the nanotube respectively from the slopes of the Current vs. Voltage 

curves. Since the resistance of the EGF and the silver paint was found to be below 100 , 

the resistance measured for the flake was a consequence of an external resistor of 1 k 

added to the circuit (to prevent high currents on the preamplifier) and the small contact area 

between the AFM tip and the flake. The resistance measured for the carbon nantotube has 

contributions from both the contact resistance and the intrinsic resistance of the nanotube, 

but the obtained value allows to set an upper bound of contact resistance of ~ 46 k, very 

similar to that measured with conventional metal electrodes [104, 105]. Previous attempts 

to contact carbon nanotubes with graphite flakes yielded much higher resistances [96]. 

 

 Metal-organic MMX nanoribbons 

The next example describes the use of the procedure presented here to create electrical 

contacts on platinum-based MMX nanoribbons [106, 107]. Platinum-based MMX polymers 

are dimetallic subunits with two platinum centres connected by four bridging dithioacetate 

ligands and an iodine atom bridging the dimetallic units. By direct sublimation of 

monocrystals of [Pt2(dta)4I]n (dta = dithioacetate) on a SiO2/Si substrate, nanoribbons are 

formed. Each nanoribbon is composed of thousands of parallel MMX chains of ~ 0.8 nm 

diameter interacting by weak van der Waals forces. These MMX polymers are perfect 

examples of molecule self-assembled nano-objects where it is very difficult to add contacts 

by conventional techniques. First, MMX nanoribbons obtained by sublimation of crystals 

were studied. Second, electrical properties of similar nanoribbons, but obtained by  

drop-casting, were able to be measured for the first time thanks to the technique presented 

here. In most of the cases, these drop-casted nanoribbons cannot withstand the conditions 

needed to evaporate conventional metal electrodes: the sudden evaporation of the solvent 

molecules adsorbed within the ribbons results in a large number of defects along the chains 

and turns them into electrical insulators [88]. Our measurements demonstrate that this 

technique is particularly useful in the case of molecules with limited stability under 

standard lithographic conditions.  

As in the case of the carbon nanotubes, EGFs were transferred onto SiO2 substrates to 

create electrical contacts on MMX nanoribbons previously deposited. Figure 3.21 

summarizes the procedure applied to these MMX nanoribbons and the measurements for 

the sublimated ones. 
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Figure 3.21 Contacts on sublimated MMX nanoribbons. a) Optical microscope image showing a 

transferred EGF on a silicon oxide substrate with MMX nanoribbons adsorbed on it. The inset 

shows the structure of an individual polymer chain. The orange circle enclosures an area with a 

MMX nanoribbon to be studied by AFM. b) AFM topographic image of the region within the 

orange circle in a) where a nanoribbon protruding from the EGF is clearly observed. c) AFM 

topographic image of a nanoribbon contacted with a gold flake (obtained from a piece of gold thin 

film transferred in a similar way to the EGF) that shows typical irregular edges at the nanometer 

scale. d) Current vs. Voltage characteristics for the nanoribbon with EGF (black) and gold (orange) 

contacts. 

 

Figure 3.21a shows an optical microscope image of sublimated MMX nanoribbons where 

an EGF was transferred. As usual, the colors observed in the flakes reflect different 

thicknesses. The optical image allows seeing nanoribbons covered by the flake: the thin 

lines observed below the flakes are ripples caused by the nanoribbons. Figure 3.21b 

corresponds to an AFM topographic image showing a nanoribbon partially covered by an 

EGF with a very well-defined steep edge. According to the profile of the inset, the height of 

the lower EGF terrace is ~ 5 nm. MMX nanoribbons with these contacts were tested, as in 

the carbon nanotubes case, by using a conductive AFM tip as a second mobile electrode. 
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Figure 3.21d displays representative IV curves obtained for these nanoribbons. The 

conductivity obtained for them is similar to that measured previously for nanoribbons of the 

same kind using evaporated metal electrode contacts [107]. In the case of these MMX 

nanoribbons, their intrinsic resistance is much higher than that of the contacts, unlike to the 

case of carbon nanotubes, where it is similar to that of the electrode-nanotube contacts. As 

quasi-one-dimensional conductors, the electrical resistance and the shape of the IV curves 

of these MMX nanoribbons are mainly dictated by the density of defects in their atomic 

structure originated during the assembly process [106, 107] as is shown more in detail in 

Chapter 4. 

 

In order to compare the electrical contact resistance from EGFs with that from soft-metal 

electrodes, contacts on these MMX nanoribbons using gold flakes were also created. To 

this end, a 30 nm thick film of gold was first evaporated on a glass substrate using a TEM 

grid as a stencil mask. In this way, 60 x 60 μm
2
 gold squared pads separated by 25 m were 

obtained. A viscoelastic polymer was pressed against the gold so evaporated, resulting in 

thin gold flakes adhered to the polymer. Some of them were then transferred to a substrate 

containing MMX nanoribbons, following the same procedure sketched in figure 3.19. 

Figure 3.21c depicts an AFM topographic image of a MMX nanoribbon protruding from a 

transferred gold flake, which shows irregular and not steep edges. C-AFM was again used 

to perform the electrical characterization of the MMX nanoribbons (prepared in the same 

conditions as the ones described above) with these gold flakes contacts, obtaining IV curves 

at the same tip-gold electrode distance as in the previous EFG contact, yielding a similar 

resistance (figure 3.21d). These measurements highlight the ability of the technique 

presented here to create contacts on samples with very different chemistries. 

As mentioned before, up to now the electrical characterization of drop-casted MMX 

nanoribbons was hampered by their limited stability under standard lithographic conditions 

[88]. While sublimation is a suitable technique to grow different nanostructures on surfaces, 

is tedious and requires costly equipment and considerable time. Drop-casting is the option 

of choice for a more simple and powerful procedure based on wet chemistry, since it is an 

easy, well-known and commonly used technique to adsorb molecules on surfaces.  

Figure 3.22 shows characterization of drop-casted MMX nanoribbons and its comparison 

with previous sublimation results [107]. 
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Figure 3.22 Contacts on drop-casted MMX nanoribbons. a) AFM topographic image of a region 

where several nanoribbons are protruding from an EGF electrode. The inset is a profile along the 

blue-green line showing the heights of the ribbon and the flake. b) Current vs. Voltage 

characteristics for three different drop-casted nanoribbons (solid lines) and for a typical 

sublimated one with similar characteristics and measured under the same conditions (dashed line, 

data taken from reference [107]). 

 

Figure 3.22a corresponds to an AFM topographic image showing nanoribbons on the 

substrate, some of them partially covered by an EGF electrode. Figure 3.21b displays IV 

curves obtained for these nanoribbons using C-AFM. A direct comparison with sublimated 

nanoribbons of the same dimensions contacted using evaporated metal electrodes [107] is 

shown, remarkably resulting in very similar resistances. These measurements prove the 

ability of the technique presented here to create contacts on samples that can hardly stand 

the fabrication procedures of conventional techniques. 
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 Reduced graphene electrical characterization through a double soft-electrode 

transfer 

The next example consists in the electrical characterization of a single layer of reduced 

graphene oxide by transferring two independent EGF soft-electrodes. This example 

illustrates the precision achievable when placing the electrodes. Figure 3.23 presents this 

double soft-electrode transfer application.  

 

Figure 3.23 Double electrical contact in graphene oxide (GO). a) Optical microscope image showing 

two EGFs electrodes in contact with a single layer of graphene oxide. For the sake of clarity a 

schematic electrical circuit was also included. b) Magnification of the enclosed region. The contrast 

in the region of interest was increased to allow identification of the GO flake. c) Current vs. 

Voltage characteristics of the circuit shown in a) before and after thermal reduction. As deposited, 

GO is an insulator, but after reduction it behaves as a conductor. 

 

Figures 3.23a and b show a graphene oxide (GO) flake in contact with two EGF 

microelectrodes. The gap between the two electrodes is ~ 10 m. As reported in reference 

[108], initially the flake is an excellent insulator (figure 3.23c, IV curve “Before”). The 

sample was thermally reduced by annealing it overnight up to 250 ºC in a high vacuum 

chamber at 10
-6

 hPa [109]. Upon this thermal reduction, electrical characterization of the 
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sample was carried out (figure 3.23c, IV curve “After”), giving similar results to those 

found in the literature for reduced graphene oxide (RGO) [108, 109].  

 

 Damaged circuit repair 

The last example demonstrates how EGF microelectrodes can be used for repairing 

microcircuits. Figure 3.24 illustrates this possibility by showing the repair of two simple 

microcircuits. 

 

Figure 3.24 Circuit repair. a) Electrical circuit made by Au/Cr evaporation with a stencil mask. The 

Au/Cr electrodes are in contact with a pristine bilayer graphene flake. b) Open circuit after being 

scratched with a tungsten carbide tip. c) Circuit repaired using an EGF. d) Current vs. Voltage 

characteristics of the intact (blue), open (black) and repaired (red) circuit. e-h) Similar repair but 

this other circuit was cut using an infrared laser and repaired with a gold thin film flake. All the 

insets are magnifications of the central regions of the circuits where the graphene flakes are 

placed. Their contrasts were increased to allow better identification of the graphene flakes. Insets 

in panels c) and g) show the absence of short-circuits between the upper and lower Au/Cr 

electrodes after repairs. 
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Figures 3.24a-c show a pristine bilayer graphene flake in contact with two Au/Cr electrodes 

evaporated using a stencil mask. Figure 3.24d (blue line) shows the corresponding Current 

vs. Voltage characteristic where an electrical resistance of 245 Ω is measured. The upper 

electrode was scratched using a hard tungsten carbide tip, removing part of the metal 

(figure 3.24b) and opening the circuit, showing in this case an infinite resistance. An EGF 

was then transferred covering the damaged part and repairing the circuit. The electrical 

resistance of the repaired circuit is 410 Ω, (figure 3.24d). This increase in resistance is 

likely due to the contact resistance of the Au/Cr electrode and the EGF used to repair the 

circuit. Figure 3.24e presents a second circuit where another pristine bilayer graphene flake 

is in contact with other two Au/Cr electrodes, presenting an electrical resistance of  

310 Ω. The upper Au/Cr electrode was in this case cut using an infrared laser (figure 3.24f). 

Electrical resistance measurements confirm an open circuit with no current through the 

damaged Au/Cr electrode. This circuit was then repaired by transferring a 30 nm thick gold 

film flake. Figure 3.24g shows the repaired circuit. Electrical measurements on such 

repaired circuit show a final resistance of 425 Ω (figure 3.24h). An increase in resistance of 

a few Ohms is observed in both repaired circuits. Since this resistance can be significant for 

the two cases described here (where a highly conducting sample such as graphene flakes is 

probed), the vast majority of conducting nano-objects exhibit much higher intrinsic 

resistances, thus making this increase in resistance negligible for their electrical 

characterization. Therefore, the final low resistances obtained after repair validate this 

methodology. 

 

In summary, a procedure to fabricate microelectrodes based on the deterministic transfer of 

2D materials by all-dry viscoelastic stamping has been introduced. This method is simple, 

cost-effective and it allows contacting molecules with limited stability under conventional 

lithographic conditions. In order to validate and illustrate the uses of this methodology, four 

relevant examples of its many possibilities have been provided, showing that the quality of 

the electrical contacts so far obtained is as good as those obtained by conventional 

techniques. Additionally, it has been used to contact for the first time drop-casted MMX 

nanoribbons, which are very difficult to contact using other approaches. 
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3.3.2 Probe-Assisted Nanowire (PAN) lithography: a new paradigm for 

nanoelectrode fabrication 

 

3.3.2.1 Introduction 

Nanowires (NWs) are proposed as ideal candidates to be the connecting elements in 

nanometer-scale devices [110]. Gold nanowires (Au NWs) have long been a challenging 

wished structure to be reached in a controlled and reproducible way and in large quantities 

due to their high conductance and, unlike other nanowires such as silver or copper ones, 

their resistance to corrosion or oxidation. While making single crystalline nanowires of 

other FCC metals, including silver [111, 112] and copper [113], was achieved already back 

in the late 90’s, this was not the case with gold. Up to less than ten years ago, the synthesis 

of well-defined Au NWs was limited to those either very thick (> 100 nm [114]) or very 

thin and short (< 2 nm [115, 116] and < 10 nm [117]), thus hampering their use for 

technology applications. The chemical synthesis of Au NWs at room temperature in acidic 

solutions in 2008 by Kim et al. [118] allowed the fabrication of reproducible Au NWs with  

well-defined surfaces. Subsequent improvements in nanowire monodispersing and scaling 

allow nowadays finding commercially available Au NWs suitable for high technology 

electronics. Albeit NWs dispersed in solutions can be aligned onto substrates using 

different procedures (including dielectrophoretic, LangmuirBlodgett, microcontact 

stamping, molecular surface patterning and fluidic flow alignment techniques) [119] (and 

references therein), and are proposed as building blocks for self-assembling logic and 

memory circuits [120], a technique allowing the manipulation of single NWs is needed to 

fabricate nano-devices. In this sense, AFM has proven to be an ideal technique to 

characterize and manipulate individual nanotubes and nanowires [121-124]. 

In this section, a technique based on the adsorption and nanomanipulation of Au NWs to 

fabricate nanoelectrodes is presented. As for the case of exfoliated graphene flakes 

electrodes, it does not require resins or chemical agents; the process is based on the 

adsorption of Au NWs on the sample of interest by drop-casting them dispersed in a 

solution (there are commercially available NWs suspended in a number of liquids including 

water, ethanol…). Then, their cold welding ability (the welding of metals without heating) 

[92] allows creating and positioning the desired nanoelectrodes, by manipulating the 

adsorbed Au NWs with the aid of an AFM probe. Thus, the name chosen for this technique: 

Probe-Assisted Nanowire (PAN) lithography. As it is shown below, PAN lithography is a 

clean, cost-effective and reliable technique. Its most relevant advantages are the possibility 

of contacting nano-objects with dimensions down to ten nm [125] (impossible for any 

conventional methodology, including e-beam lithography), which will allow multiple 

currently intractable experiments, as for instance the connection of molecular-scale entities 

and nano-objects with limited stability under standard lithographic conditions (as in the 
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EGF soft-electrodes case). This new methodology also opens another possibility which 

relays on the movable character of the terminals so created, allowing the reconfiguration of 

their position to perform multiple electrical measurements on various entities on the same 

substrate and/or with different terminal geometries. 

PAN lithography can be applied to create contacts almost in any electrical configuration. 

Figure 3.25 shows different examples that can be fabricated with PAN lithography: a single 

Au NWs electrode combined with C-AFM measurements; a two-terminal Au NWs 

electrode design; a three-terminal scheme where one of the Au NWs electrode can be used 

to apply a lateral gate voltage; or in a general point of view, a n-terminal scheme (where  

n = 4 is the most usual configuration). Any of these configurations require microelectrodes 

to link the PAN electrodes with the macro-scale measuring devices. For this purpose, any 

conventional technique to fabricate microelectrodes can be employed; in particular,  

metal-evaporated pads using stencil masks or the above presented EGF soft-electrode 

transfer can be good options. Back-gate voltages can be applied in any configuration if 

using an appropriate substrate (as for instance standard SiO2/Si substrates). 

 

Figure 3.25 Some electrical characterization configurations that can be fabricated with PAN 

lithography. a) Single Au NWs electrode with a conductive AFM tip acting as a second mobile 

electrode. b) 2-terminal Au NWs electrodes setup. c) 3-terminal scheme where one of the Au NWs 

electrodes can be used to apply a lateral gate voltage. d) 4-terminal scheme. In any of the 

configurations, a back-gate voltage can be applied if the substrate allows it. 
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In this section first a description of the technique is provided and then a relevant example 

illustrating the procedure is presented. The potential of the technique is demonstrated by 

probing the electrical properties of a 150 m long electrode formed by assembling 

individual NWs and by the electrical characterization of a well-known highly conducting 

sample: graphene flakes. A two-terminal scheme has been used, where one of them has 

been fabricated using PAN lithography and the other has been a conducting AFM tip  

(C-AFM), as in figure 3.25a. In Chapter 4, after the introduction of the isolation for the first 

time of antimonene (a single layer of antimony atoms), electrical characterization of  

few-layer antimonene flakes through PAN lithography and C-AFM has also been 

performed. 

The work presented here is unpublished so far and it has been done in collaboration with 

Dr. Félix Zamora and Dr. Cristina Gómez-Navarro groups. Further work on 2- and 4-

terminal Au NWs electrode configurations is now being carried out by Miriam  

Moreno-Moreno to demonstrate the many possibilities of PAN lithography. 

 

3.3.2.2 Results and discussion 

Figure 3.26 summarizes the key steps of the PAN lithography technique. The whole 

experimental setup comprises any conventional microelectrode fabrication procedure, 

commercial Au NWs and an AFM with lithographic capabilities. Bare Au NWs with 

nominal dimensions 75 nm diameter and 10 m length, shipped in DI water in a 

concentration of 0.05 mg/ml with excess cetrimonium bromide (CTAB) capping agent  

(a surfactant to prevent the NWs from aggregating) were purchased from Nanopartz Inc. 

[126]. PPP-FM probes from Nanosensors
TM

 [69] were employed for the nanowire 

manipulation. They have a resonant frequency of 75 kHz in air and a nominal stiffness of 

2.8 N m
-1

. The tip has a radius of curvature < 10 nm. 
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Figure 3.26 PAN lithography procedure. a) Sample under study. b) Conventional microelectrode 

fabrication. c) Au NWs adsorption by drop-casting. d) Au NWs manipulation with an AFM tip.  

e) Sample under study connected to the microelectrode through manipulated Au NWs. f) Electrical 

characterization of the sample. 

 

Samples studied in this work (2D materials obtained by microexfoliation) are already 

located on the substrate (figure 3.26a) and the procedure starts by fabricating conventional 

microelectrodes. In the case of samples obtained by drop-casting, the procedure would start 

by first fabricating conventional microelectrodes on the bare substrate followed by 

deposition of the sample. In the case presented here, microelectrodes were fabricated by Au 

evaporation using stencil masks and connected externally using silver paint (figure 3.26b). 

Then, Au NWs were deposited on the substrate by drop-casting (figure 3.26c). To this end, 

the dispersion containing the Au NWs was first placed on vortex mixer for 1 minute and an 

aliquot was then sonicated in an ultrasound bath (37 kHz, 380 W) for 5 minutes at room 

temperature to resuspend aggregated particles. 40 l of this aliquot were drop-casted on the 

substrate and left ~ 45 minutes for nanowires adsorption. After this time, substrate was 

washed with DI water and dried in an N2 gas flow. A final concentration of ~ 1 NW on  

5 m
2
 was used, which required repeating 4 times this drop-casting step (from the same 

aliquot already sonicated). The substrate was inspected using an optical microscope in a 

dark-field configuration to check if the concentration of Au NWs was adequate (figure 

3.27). 
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Figure 3.27 Dark-field optical microscope of a SiO2/Si substrate with adsorbed Au NWs. The 

nanowires and the edge of the gold electrode shine with white light. 

 

Once the concentration of Au NWs on the substrate was high enough, they were 

manipulated with an AFM tip to form a path connecting the sample and the microelectrode 

(figure 3.26d). Figure 3.28 depicts the steps comprising the Au NWs manipulation with an 

AFM probe.  

 

Figure 3.28 Au NWs manipulation schematics. a) After imaging Au NWs in AM-AFM mode, the tip 

is brought into contact. b) The tip is moved along a predefined path to manipulate the Au NW.  

c) The selected Au NW is moved. d) The tip is brought back to AM-AFM mode and a new image is 

taken. 
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To this end, first the sample is imaged in AM-AFM mode, with the tip far from the NWs. 

Then the tip is brought into contact with the substrate (figure 3.28a) and it is moved along a 

predefined path (figure 3.28b), manipulating/moving the Au NW (figure 3.28c). Finally, the 

tip is lifted back to AM-AFM mode to image the results of the manipulation. Figure 3.29 

shows an example of these nanomanipulations and the corresponding script on the control 

software, where a remarkably simple procedure is employed. 

 

Figure 3.29 Example of Au NWs manipulation. a) WSxM Lithography frame. The design window 

shows some Au NWs before manipulation. Blue lines represent the tip trajectories in contact (the 

tip moves from the bottom to the top). b) WSxM Lithography frame after manipulation. 
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In order to minimize lateral forces, imaging is performed in AM-AFM mode with a 

cantilever oscillation of ~ 20 nm. In the WSxM Lithography frame some lines representing 

the tip trajectories during lithography actuation are drawn. When the lithography is selected 

to be performed, the tip moves to the beginning of the first line still in AM-AFM mode. 

Then the tip is lowered 140-190 nm (150 nm in figure 3.29), reaching the contact regime, 

applying forces in the range of ~ 200 - 300 nN. Then, with the topography feedback 

disabled, it is moved in contact along the drawn trajectory at 2 m/s. At the end of the line, 

the tip is lifted back 150 nm, and the feedback is enabled restoring the AM-AFM mode. 

Then it is moved to the beginning of the next line, repeating the same procedure for all the 

drawn lines. 

To obtain an optimum electrical assembly, a NW is pushed against other and they are found 

to cold weld just by mechanical contact [92]. Whereas for thinner Au NWs (diameters of  

3 - 10 nm) almost any joining procedure is reported to be successful (“head-to-head”,  

“side-to-side” and “head-to-side” configurations) [92], in the case of the Au NWs used here 

(nominal diameter or 75 nm) a “head-to-side” configuration is found to provide a better 

electrical joining. A one-day working time allows forming up to a ~ 40 m long path. To 

check the electrical connection between Au NWs, a metallized AFM tip is used, probing 

the conductivity of the path by performing IV curves on top of Au NWs at different path 

distances from the microelectrode. If a junction failed to be connected, this same tip can be 

used to further push the Au NWs until a linear current response is later obtained when 

doing an IV curve. In this way, the sample is finally electrically connected to the 

microelectrode (figure 3.26e) and ready to characterize its electrical properties, either by 

using a metallized AFM tip as for the junction checks (figure 3.26f) or by assembling any 

of the measuring configurations shown in figure 3.25. 

Some issues were found when performing the nanomanipulations. Some NWs broke during 

the manipulations, generally the longest ones, but the broken parts were also easily moved 

and welded, so this was not a relevant problem. Some other NWs were kind of “anchored” 

to the substrate, but this occurred in very few cases and, since the number of adsorbed NWs 

can be controlled, in the case of not having enough NWs on the substrate the deposition 

steps can be repeated as many times as necessary. The main issue found during the 

nanomanipulation process was the tendency of the tip to leave a debris particle from time to 

time, after having performed many manipulations. When this happened, the tip was 

replaced and the debris was moved away with the new tip following a similar procedure as 

to move the Au NWs. Then, new manipulations were performed. Metallized tips (the ones 

used for the conductive measurements) turned up to be more prone to leave debris, this is 

why they were used just for checking conductivity and, if necessary, for further pushing 

nanowires in a failing junction, but not for the whole nanomanipulation process. Regardless 

these issues, a long Au path comprising many junctions was assembled to show the 

potential of this technique and to better characterize the electrical properties of the 
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nanoelectrodes so produced. Figure 3.30 shows a ~ 150 m long path formed by joining 93 

Au NWs and statistics of their dimensions. 

 

Figure 3.30 150 m long path formed by assembling 93 Au NWs. a) Dark-field optical microscopy 

image. Multiple Au NWs can be observed. A continuous path of Au NWs, enclosed by a red frame, 

can be observed protruding from the top-right corner of the microscopic Au electrode. b) AFM 

topographic image corresponding to the rectangle in a). This image is a collage of AFM images of 

smaller areas following the Au path, hence the absence of any feature far from it. Total range of 

the color scale is 150 nm. c) and d) Histograms of the diameter and length respectively of the 

individual Au NWs forming the path, as measured from AFM. Gaussian fit in c) provides 49 ± 6 nm 

(mean ± SD) for the diameter of the Au NWs. 
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Average dimensions of the Au NWs forming the path differ from their nominal values. 

Whereas the manufacturer nominal diameter is 75 nm, their average value from AFM 

measurements is 49 ± 6 nm (mean ± SD), with almost the 80% of the NWs having a 

diameter lower than 60 nm. In the case of their length, it goes far from the manufacturer  

10 m nominal value, to an average length of 1.7 ± 1.3 m, with the 95% of the NWs being 

shorter than 4 m. Part of this length reduction could be due to the sonication performed to 

resuspend aggregated particles. Also the breakage of NWs during nanomanipulation 

contributed to the length reduction. 

To characterize the effects of the dimensions and the presence of junctions in the 

conductivity of the path, IV curves were performed with a metallized AFM tip at different 

locations along it, measuring the current flowing from these locations to the evaporated Au 

electrode. As a result, a Resistance vs. Length (R-L) graph could be plotted. Figure 3.31 

presents the experimental R-L plot. It also shows the ideal resistance values for the path, 

calculated considering the dimensions of each of the NWs and the Au bulk resistivity, 

which at room temperature is quoted to be 2.2 x 10
-8

 Ω m [127, 128]. 

 

Figure 3.31 Resistance vs. Length for the 150 m long Au path shown in figure 3.30. Circles 

correspond to the experimental data from IV measurements with a metallized AFM tip. Solid 

squares correspond to the ideal resistance as explained in the main text.  
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Au NWs of similar widths as the ones used for PAN lithography are reported to present the 

same or near bulk Au resistivity [119, 129]. From the data in figure 3.31, a resistivity of  

(3.3 ± 0.8) 10
-8

 Ω m can be calculated, only a factor ~ 1.5 above the bulk value. Studies on 

the conductivity of metallic thin films and wires conclude that grain boundary reflections 

rather than surface scattering are the dominant contributions to the resistivity of NWs  

[130-132]. Taking this into account, the difference between experimental and ideal 

resistances at the end of the path can be attributed to grain boundaries (which would not be 

surprising to appear when cold welding NWs of the diameters used here). A total increase 

of ~ 814  at the end of the path, divided into 93 junctions, yields an average resistance of 

~ 8.8  for each of the junctions, in very good agreement with reported values by Bietsch 

and Michel [130] of 4 - 10  for the resistance of single grain boundaries in Au NWs. In 

the case of real experiments, distances around 20 m will be much more realistic than the 

150 m of the path above studied. In such cases, an increase of only less than 100  is 

expected, suggesting PAN lithography as a technique to create near-bulk resistivity Au 

nanoelectrodes. 

 

To illustrate the power of PAN lithography in a simple case, it is applied for the electrical 

characterization of graphene flakes. For this purpose, few-layer graphene flakes were 

deposited by microexfoliation on a 300 nm SiO2/Si surface. Then a micron-sized gold 

electrode was fabricated by stencil mask-assisted gold evaporation, followed by adsorption 

of Au NWs using the procedure described above. Figure 3.32 shows images before and 

after lithography manipulations of the NWs with AFM and the electrical characterization of 

a small few-layer graphene flake (size ~ 1 x 0.4 m
2
). 
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Figure 3.32 a) AFM edge-enhanced topographic image of several few-layer graphene flakes on a 

SiO2/Si substrate. On the right, an evaporated Au electrode is visible. Adsorbed Au NWs, some of 

them protruding from the evaporated electrode, are also visible. Total color scale range is 80 nm. 

b) AFM topographic image of the same area after the manipulation of three NWs to create a 

nanoelectrode on one of the few-layer graphene flakes. c) Magnification inside the square in b). 

The size of the contacted flake is ~ 1 m x 0.4 m. d) Current vs. Voltage characteristics 

corresponding to the locations marked in c) performed with a metallized AFM tip. 
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few-layer graphene flake before and after NWs manipulation. Figure 3.32c is a detail of the 

contacted flake. A small flake, delimited by sharp geometrical edges, was contacted by the 

Au NW. On the left there was another flake, going out of the image frame. Below them 
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flakes of this size is very easy with PAN lithography, it requires a great effort using other 

techniques such as e-beam lithography (EBL). Consulting an expert on EBL, with that 

technique it would take at least one week at full working time, but for these tiny flakes a 

successful contact would not be even guaranteed. By using PAN lithography it took less 

than two days to create the contact: one day for the microelectrode evaporation, external 

connections and NWs deposition and half a day for the NWs manipulation. Figure 3.32d 

presents Current vs. Voltage measurements on two different spots of the flake. As expected, 

a small decrease in current is observed with increasing distance to the NW electrode. To 

study this more in detail and to show the potential of PAN lithography, the NW contact was 

“remanipulated”, to contact the upper flake in image 3.32 and perform its electrical 

characterization as a function of the distance to the electrode. As already mentioned, this 

possibility of reposition/reconformation of the nanoelectrodes is another of the main 

advantages of PAN lithography respect to conventional techniques. A video showing the 

manipulations performed in real time to reposition the NWs electrode can be found in the 

following link: 

https://www.dropbox.com/s/ihtnq9nube3t6um/Au_NWs_manipulation.mp4?dl=0 

 

This electrode “reallocation” was performed using a metallized AFM tip; this is why at the 

end of repositioning the nanolectrode a first IV characterization could be performed to 

ensure a proper contact. It is important to notice the total duration of the process: the whole 

video lasts for ~ 3.5 minutes. Figure 3.33 presents the electrical characterization of this 

upper flake as a function of the distance between electrodes.  

 

Figure 3.33 a) Few-layer graphene sheet with a nanoelectrode created through PAN lithography. 

White crosses indicate the positions where IV curves were acquired. b) Resistance as a function of 

the distance to the Au NWs electrode. 
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Figure 3.33a shows the flake with the Au NWs electrode after repositioning. Locations 

where IV curves were obtained using a metallized AFM tip are marked with white crosses. 

Figure 3.33b shows the resistance R of the flake as a function of the length L (distance 

between electrodes). The slope of the resistance or 1D resistivity, 1D = dR/dL is fairly 

constant (1D = 0.91 ± 0.03 k/m from the slope of the linear fit). From the intersection of 

the fitting line for L = 0 a contact resistance RC = 9.2 ± 0.1 k is obtained, comparable to 

that reported in graphene nanoribbons contacted through a gold evaporated electrode and a 

metallized AFM tip [133] (RC ~ 4 k) or through a four-terminal approach by e-beam 

lithography [134] (RC ~ 1 k). While four-terminal measurements eliminate the residual 

contact resistance, a high contact resistance value could be an issue in conventional 

fabricated two-terminal configurations (where the contact resistance is not easily known). 

The readily repositioning of any of the nanolectrodes fabricated by PAN lithography allows 

performing straightforward conductivity measurements as a function of the electrodes 

distance in two-terminal measurements, thus quantifying and taking into account the 

contact resistance present in the device. 

The observed linear behavior of the R-L is expected for a material with a constant sheet 

resistivity 2D. The sheet resistivity can be defined as: 

ρ2D =
ΔR

ΔL
W            (3.1) 

where R is the contribution to the resistance of a portion of the flake in a length L with a 

width W. Consequently, 2D = 1D W. Please notice that the unit of 2D is . It is usually 

employed /□ to express the 2D 2-dimensional character. From equation 3.1 and taking 

the corresponding width from the AFM topographic image, a value for the sheet resistivity 

2D = 670 ± 60 /□ is obtained. Since the flake under study cannot be considered a one 

dimensional object, a comparison of the obtained 2D with reported values is more 

appropriate rather than comparing 1D. The obtained 2D value is consistent with those 

observed measuring few-layer graphene in a 4-terminal configuration ~ 450 /□  [80], 

graphene nanoribbons ~ 590 /□ [134] and also with that obtained for nanoribbons 

measured using a similar configuration as in here (a metallized AFM tip as a second mobile 

electrode) ~ 500 /□ [133]. This result confirms PAN lithography as an alternative to 

conventional techniques to create nanoelectrodes. 
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3.4 Conclusions 

 

In the first part of this chapter, significant AFM improvements in liquids have been 

presented: 

First, sub-helical resolution AFM images of individual double-stranded RNA molecules 

have been shown. Both minor and major grooves have been resolved and the helical pitch 

has been quantified using three different high sensitive imaging modes: AM-AFM,  

DAM-AFM and JM+, resulting in 3.1 ± 0.3 nm, compatible with the A-form of dsRNA. 

Data obtained with the different imaging modes show similar resolution at optimized 

working conditions. Simulated AFM images have allowed estimating the tip radius 

employed for high resolution imaging, showing that radii as small as 2.5 nm are needed to 

discriminate both major and minor grooves. Use of slightly larger radii leads to the 

observation of a single periodicity in both dsDNA and dsRNA samples. It can be concluded 

that two aspects are critical to obtain high resolution of nucleic acids in liquid rather than 

the imaging mode: first, the interacting force, that can be minimized with the proper tuning 

of each imaging mode parameters, and second, the sharpness of the tip, which likely arises 

from a protrusion or a small feature located at the apex of tip of the relatively blunt 

commercial cantilevers. 

Second, the applicability of the MFM as a means of detecting magnetic nanostructures in 

liquid environments has been demonstrated. The measuring conditions have been optimized 

by using hard disk drives and then DMSA-coated Fe3O4 nanoparticles have been studied. 

Despite the limiting factor of the low magnetic interactions, clear evidence of its 

performance has been presented showing that even individual 30-nm MNPs can be detected 

in liquid using commercial probes. It has been shown as well that by using cantilevers 

designed for measurements in liquids, properly magnetized, the signal-to-noise ratio can be 

further improved. The results presented here suggest new strategies for the characterization 

of magnetic nanostructures in liquids using MFM. 

 

In the second part of this chapter, two new procedures to fabricate electrical contacts to 

nano-objects have been presented: 

First, a technique based on the deterministic transfer of graphite flakes by all-dry 

viscoelastic stamping has been introduced to fabricate microelectrodes. In order to validate 

and illustrate the uses of this methodology some relevant examples of its many possibilities 

have been provided: carbon-based materials and metal-organic nanoribbons. It has been 

used to contact for the first time drop-casted MMX nanoribbons, which are very difficult to 

contact using other approaches. 
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Second, Probe-Assisted Nanowire (PAN) lithography has been introduced. This technique 

is based on the adsorption and subsequent manipulation of gold nanowires with an AFM 

probe. It allows creating contacts almost in any electrical configuration, contacting tiny 

nano-objects very difficult or even impossible to contact using conventional techniques. 

Another of its advantages is the possibility of repositioning any of the nanolectrodes so 

fabricated, which enables to readily contact multiple nano-objects in the same sample 

and/or to perform straightforward conductivity measurements as a function of the distance 

in two-terminal configurations. 

Both methods are simple, clean, reliable, cost-effective and the quality of the electrical 

contacts obtained has been shown to be as good as those obtained by conventional 

techniques, making these procedures clearly powerful to create contacts with nano-objects. 

Although they are particularly useful in the case of molecules with limited stability and to 

create contacts for C-AFM, their applicability is much more general, going beyond these 

cases. In particular, we are convinced that PAN lithography will stablish a new paradigm 

for the fabrication of nanoelectrodes, that in the near future could even replace conventional 

techniques used in nanotechnology such as e-beam lithography. The application of PAN 

lithography to a number of systems is in progress. 
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4.1 Introduction 

In this chapter the study of three different low-dimensional materials is presented. The term 

low-dimensional is applied to those systems where one or more spatial dimensions are 

small enough to allow quantum effects to take place, which can dramatically affect 

materials properties compared to bulk. The interest in studying low-dimensional materials 

comes from these new properties, not only because of the new physics and phenomena 

behind them, but because of the multiple applications they can be suitable for. Quantum 

size effects start to be relevant when going down to the nanoscale, thus AFM reveals as a 

very appropriate tool to study low-dimensional materials.  

The first system studied in this chapter is a 1-dimensional (1D) material, metal-organic 

MMX chains, a long standing topic in the research line of our group, obtained here from a 

procedure based on wet chemistry. The structure of these MMX chains is similar as the 

ones studied in Chapter 3 when presenting exfoliated graphite flakes as soft-electrodes, but 

in this case isolation from drop-casting and electrical characterization of different polymer 

MMX wires have been performed, demonstrating the robustness of this technique to 

produce highly conductive nanofibers. Then, chains at the single-molecule level have been 

electrically characterized for the very first time, exhibiting significant electrical current 

over lengths well above 100 nm. In these chains the current is, at periodic locations, 

confined across an individual iodine atom, as derived from the molecule geometry. 

Theoretical modelling suggests that the conductance of the chains is limited by the presence 

of structural defects. The measured electrical transport exceeds that of molecular wires so 

far reported, which postulates coordination polymers as excellent candidates for 

forthcoming molecular electronics. 

Secondly, controlled tuning of graphene electronic properties, the first of the 2-dimensional 

(2D) materials ever isolated, is performed. AFM diamond tips have been employed to apply 

ultrahigh pressures (> 10 GPa) on selected areas of graphene flakes laying on flat 

substrates. The high breaking strengths of both diamond and graphene have allowed 

achieving this pressure regime confined to microscopic regions. With this configuration, 

selected regions in graphene flakes have been flattened towards the substrate, giving rise to 

a very controlled process to modify graphene properties. As a result of this work, it is 

shown that this method enables the creation of doped graphene areas in a very controlled 

way, allowing local modification of graphene electronic properties. These modifications 

include the possibility of selectively modify areas to improve the electrical contact of 

graphene with metal electrodes, which is a very relevant issue in the field of graphene 

electronics. High-quality junctions between graphene and metallic contacts are crucial in 

the creation of high-performance graphene devices. This process has also been applied to 

improve the performance of graphene as sealer, reducing by a factor of  3.5 gas leak rates 

from graphene-sealed microchambers. 
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The third section of this chapter is devoted to the introduction of a new 2D material, 

antimonene, a single layer of antimony atoms. The search for new 2D materials with 

relevant optoelectronics properties is a long-standing goal since the discovery of graphene. 

Theoretical calculations points out toward an electronic structure in antimonene with a band 

gap suitable for optoelectronics applications, but it had not been possible to isolate this 

material. In this section, micromechanical exfoliation of antimony down to the single-layer 

regime and experimental evidence of its stability are presented. Optimization of the optical 

identification of few-layer antimonene is also presented, as well as preliminary results on 

its electrical properties. 
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4.2 High electrical conductivity of single metal-organic chains 

 

4.2.1 Introduction 

Molecular wires will be essential components for nanoscale electronics, however the 

preparation of individual long conductive molecules or polymers is still a challenge. 

Molecular electronics is the event horizon for circuit miniaturization but even much more 

importantly, it can potentially produce circuits with very complex architectures [1]. The 

current state-of-the-art in silicon technology enables a resolution below 10 nm, but with 

relatively “simple” architectures. In contrast, many molecules, as for instance DNA [2, 3] 

and DNA derivatives, including origami [4], exhibit self-assembling capabilities that 

suggest an increase in the complexity of molecular circuits [5]. Therefore, the final goal for 

molecular electronics can be seen as the construction of complex circuit architectures in a 

test tube. Single-molecule electronics is still an incipient field and complete electronic 

circuits from exclusively molecular components are very far from being a reality [6]. In this 

context, design and synthesis of these molecular components with control on their 

electronic properties is a key point for the fabrication of nanoscale devices [7]. It will 

require the self-assemble of molecules with the capabilities of the different elements 

present in conventional electronic circuits such as transistors, switches, rectifiers, etc., as 

well as molecular wires for the interconnections. These molecular wires (molecules 

showing a reasonably low electrical resistivity) are an active target of research [8]. In 

particular, many organic molecules and polymers have already been studied [9-11]. 

However, with very few exceptions [12, 13], they show a localized mechanism of 

conduction with an exponential increase of the electrical resistance with the length of the 

molecules. At distances of only a few nanometers the resistance is already that of an 

insulator [10]. Figure 4.1, obtained from reference [10], illustrates this tendency. 
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Figure 4.1 Semilog plot of Resistance vs. Length for molecular junctions based on conjugated 

oligophenyleneimine (OPI) structures. Symbols are obtained from IV curves. a) Data from OPI 

monolayers on gold substrates. Lines are linear fits. b) Data from OPI wires. The blue squares are 

the resistances of conjugation-broken (CB)-OPI wires. Pink boxes indicate the position where 

conjugation is broken. Image adapted from reference [10]. 

 

Actually organic polymer conductors show very low conductivity that only increases using 

chemical dopants in a bulk scale [14], but not isolated. As mentioned above, there are some 

molecular systems that are exceptions to this trend, as for instance a recent work by Slinker 

et al. reporting transport in self-assembled DNA layers with a localization length in the 

range of 30 nm [15], a few more works on metal-organic molecules [16-19] and polymers, 

one by Tuccitto et al. [20], based on a layer by layer assembly of metal ions with 

terpyridine ligands, and works by Prof. Julio Gómez-Herrero and Dr. Félix Zamora groups 

on MMX nanoribbons [21, 22]. Thus, the combination of metal ions with organic 

molecules, despite little developed, has already reported interesting results [23, 24]. 

MMX chains are based on the assemble of two dimetallic entities, e.g. [Pt2(dta)4] and 

[Pt2(dta)4I2] (dta = ditiocarboxylate), some of them showing interesting electronic 

properties in bulk [25]. Unfortunately, the first attempts to synthesize nanometric forms of 

these polymers involved a non-conventional and tedious procedure based on sublimation 

from MMX crystals, which is not very appropriated for chemical synthesis [26], leading to 

nanoribbons formed by hundreds of individual MMX chains [21, 22]. In particular, in 

reference [21] it is reported that electrical transport over distances above  200 nm is highly 

affected by the presence of structural defects and hence it is dominated by interchain 

electron transfer, leading to a diffusive transport regime. Recently, it has been shown that 

crystals of [Pt2(dta)4I]n dissociate in solution giving rise to solutions containing [Pt2(dta)4] 

and [Pt2(dta)4I2], that under suitable conditions reverse to form the polymeric [Pt2(dta)4I]n 

chains [27, 28]. Based on these previous results, here it is presented first, the isolation on 

a b
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surfaces and electrical characterization of fibres of three different compounds, 

[Pt2(RCS2)4I]n, with R = alkyl group; Me = CH3; Et = CH2CH3; Pen = (CH2)4CH3, 

demonstrating the robustness of the assembly of highly conductive MMX chains by a 

simple drop-casting approach. And second, isolation and electrical characterization of the 

[Pt2(EtCS2)4I]n case down to the single chain level.  

This work, currently submitted for publication, has been done in collaboration with  

Dr. Félix Zamora’s group, Dr. Juanjo Palacios and Prof. José Soler. In particular, Dr. Pilar 

Amo-Ochoa synthesized the polymer chains onto flat substrates and Dr. Juanjo Palacios 

with Prof. José Soler carried out quantum transport calculations. 

 

4.2.2 Results and discussion 

Figure 4.2 presents crystal structure details of one of the polymers used in this work, the 

[Pt2(EtCS2)4I]n. 

 

Figure 4.2 Crystal structure details of [Pt2(EtCS2)4I]n (Et = CH2CH3). a) Schematic representation of a 

chain of this compound and selected distances. b) Schematic 3D representation of the crystal 

packing and interchain distance. 
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Synthesis of [Pt2(RCS2)4I]n  were carried out according to reference [25]. MMX chains and 

bundles on surfaces were prepared by dissolving crystals of [Pt2(RCS2)4I]n (0.2 mg) in 

CH2Cl2 (2 mL) and then centrifuged (4000 rpm, 5 minutes) at room temperature. 30 l 

were drop-casted on a 300 nm SiO2/Si substrate exposed to an oxygen plasma pre-treatment 

[21] and left 40 s for adsorption. After this time substrates were dried in an argon gas flow. 

Samples were first imaged by high resolution optical microscopy and Atomic Force 

Microscopy in the AM-AFM mode. Figure 4.3 shows representative images of the 

structures so obtained. 

 

 

Figure 4.3 Morphological characterization of [Pt2(EtCS2)4I]n fibres. a) Optical image of a drop-casted 

dichloromethane solution of [Pt2(EtCS2)4I]n chains on a SiO2 substrate. b) Topographic AFM image 

of the same substrate in a region with fibres of blue color in a) close to the border line given by 

large crystalline fibre-like aggregates. c) Topographic AFM image in a region far from the 

aggregates, where the blueish fibres in a) are almost not visible by optical microscopy. d) Height 

profile along the green solid line in c). 
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Figure 4.3a shows an optical microscope image revealing the formation of large crystalline 

fibre-like aggregates over micron lengths, along with a gradual decrease from this border 

line in both aggregation and size. Optical imaging shows a clear correspondence between 

color and thickness (brown from the largest to orange and yellow for medium values, and 

blueish colors for the thinnest). Figure 4.3b shows an AFM image taken on the region with 

medium density (fibres with blue color in the optical image). AFM image on this area 

shows that these nanostructures are over tens of microns length and present typical heights 

of ~ 20 - 100 nm, which are in the range of the already reported nanoribbons obtained by 

MMX crystal sublimation [21, 22]. Figures 4.3c and d show further AFM inspection in 

areas with fibres presenting blueish colors. The nanostructures located at the lower density 

regions exhibit lengths in the range of 100-800 nm and heights of ~ 1 - 15 nm. Since the 

distance between individual chains in MMX crystals is about 1 nm (figure 4.2), it is 

possible to identify these nanostructures as bundles of very few MMX chains. Images of 

representative fibres for each of the compositions [Pt2(RCS2)4I]n can be found in figure 

A4.1 in the Appendix. 

After optical and topographical AFM characterization of the bundles and chains obtained 

by this drop-casting method, electrical transport measurements on the fibres were carried 

out to assess the robustness of this methodology to isolate highly conducting polymer 

fibres. First, fibres with diameters ranging 10 to 20 nm diameter were studied using the 

EGF soft-electrode transfer method, as already shown in Chapter 3 (see figure 3.22 in the 

metal-organic MMX nanoribbons section). Comparison of the electrical characterization on 

the three different types of fibres under study, [Pt2(RCS2)4I]n, was carried out. Figure 4.4 

shows representative Resistance vs. Length curves for fibres of the three different 

compositions. 
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Figure 4.4 Representative Resistance vs. Length curves for fibres of [Pt2(RCS2)4I]n with R = Me 

(black), Et (red) and Pen (blue) with diameters ~ 12 nm. Symbols correspond to resistance values 

obtained from IV curves at 1 V. Lines are linear fits. The slope of the R-L increases with the length 

of the alkyl group. 

 

The conductivity , in S m
-1

, can be obtained from the inverse of the slopes, , of the linear 

fits in figure 4.4 and the section of the fibers, S 

      σ =
1

αS
            (4.1) 

yielding  = 3.0, 0.3 and 0.1 (± 0.1) S m
-1

 for the Me, Et and Pen cases respectively. The 

results for the Me case are in good agreement with those previously reported for MMX 

nanoribbons of similar dimensions obtained by sublimation [22] (where conductivities of  

2 - 10 S m
-1

 are reported). The decrease in conductivity observed as the length of the alkyl 

group increases in these fibres, composed of many chains, is compatible with the proposed 

conduction mechanism for sublimated nanoribbons [21]. In those cases, when the current 

comes to a point in the chain where it cannot go beyond, it “hops” to an adjacent chain. In 

the cases presented here, as the alkyl group is longer, this hopping is getting more difficult, 

resulting in lower conductivities. 

After these encouraging results, the main goal was to probe the electrical properties of 

individual chains. Previous works by Guijarro et al. [29] were able to isolate MMX fibres 

by drop casting, but attempts to probe their electrical properties failed. They used 

evaporated gold electrodes and they observed fractures in the fibres after the electrodes 

fabrication. These morphological changes can be mainly due to two reasons: vacuum 

exposition and/or heating during gold evaporation. To gain insight on the fractures origin, 
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independent vacuum and heating experiments were performed here. To this end, fibres 

obtained by drop casting were contacted with an EFG electrode and electrically 

characterized. After that, they were placed into vacuum (10
-5

 hPa) for 5 hours at room 

temperature. Both morphological and electrical characterizations after vacuum exposition 

showed no changes. A different sample of the same kind was heated in air conditions from 

room temperature up to 50 C. Clear morphological changes were observed, pointing 

heating as the source of fractures when depositing evaporated gold electrodes on  

drop-casted fibres. Details on these two experiments can be found in the Appendix at the 

end of this chapter. 

To corroborate these findings, electrodes consisting on ~ 30 nm gold films were evaporated 

using stencil masks on previously synthesized samples, keeping them at room temperature 

through a cold finger while the gold deposition was performed. In this way, gold 

evaporated electrodes were deposited without damaging the fibres. Subsequent electrical 

characterization of fibres contacted in this way presented a slightly better contact resistance 

than with EGF electrodes. Hence, since the electrical characterization of individual MMX 

chains was a challenge itself, evaporated gold electrodes were chosen when hunting for the 

single-molecule level, in order to optimize all the possible experimental conditions. Figure 

4.5 presents the geometrical characterization of a bundle of a few [Pt2(EtCS2)4I]n chains 

protruding from a gold electrode. 
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Figure 4.5 Single-molecule geometrical characterization. a) Optical microscopy image of the gold 

electrode edge. The black arrow points towards the region where the bundle shown in b) is 

located. b) Topographic AFM raw image of two single [Pt2(EtCS2)4I]n chains protruding from a gold 

electrode. c) Height profile along the green solid line in b). Full widths at half maxima are shown. 

d) Height profile along the black dashed line in b). 

 

Figure 4.5 portrays the main finding of this section. Figure 4.5a shows an optical image 

where a macroscopic gold electrode can be seen. The gold electrode was located on a 

region previously inspected by AFM showing very thin fibres. Figure 4.5b shows an AFM 

topographic image of a thin bundle composed of a few [Pt2(EtCS2)4I]n chains acquired with 

a metallized tip (ElectriMulti75-G probes from BudgetSensors [30]). In particular, figure 

4.5c presents the profile along the green solid line in figure 4.3b, which corresponds to a 

profile across the bundle, showing a height of ~ 1.2 nm, compatible with a single-molecule 

chain height. As explained in Chapter 1, one intrinsic artifact to the AFM technique is the 

well-known tip dilation. The apparent width w of a cylindrical fibre of height h when 

imaged with a tip of radius R can be estimated using the expression [31]: 

w2 = 8hR            (4.2) 
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Considering single molecules with height h ~ 1.2 nm and the tip radius given by the 

manufacturer of the cantilevers used in the experiments R = 25 nm, the apparent width of a 

single-molecule would be w ~ 15.5 nm, in very good agreement with the values in figure 

4.5c for two individual molecules, with apparent widths of 15 and 16 nm. Figure 4.5d is the 

height profile along the black dashed line in figure 4.5b. An increase of ~ 12 nm in the gold 

electrode height indicates that the height of the fiber underneath had to be on that range, 

meaning that the single chains were coming from a thicker bundle. This singularity allowed 

a good electrical contact with the single molecules. 

Figure 4.6 presents electrical transport measurements on the chains of [Pt2(EtCS2)4I]n 

presented in figure 4.5 by using conductive AFM (C-AFM). A metallized AFM tip was 

used as a second mobile electrode to measure the current through the bundles as a function 

of their length. Images were acquired in AM-AFM mode and at selected locations the tip 

was brought into contact to perform I-V characteristics (see Chapter 1, conductive AFM 

section). During IVs acquisition it was thoroughly checked that no current was measured 

(within experimental noise) on the silicon oxide substrate on the vicinity of the chains. 
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Figure 4.6 Single-molecule level electrical characterization of two [Pt2(EtCS2)4I]n chains. 

 a) Topographic AFM image of two single [Pt2(EtCS2)4I]n chains protruding from the gold electrode. 

Color scale (3.2 nm from dark to bright) was adjusted to enhance the visibility of the chains. For 

clarity, the electrical circuit used in the AFM conductance experiments was added. The different 

symbols along the chains point the spots where IV measurements were carried out. b) Resistance 

vs. Length for the chains in a). The different symbols represent resistance measurements 

calculated from the IVs shown in the inset at Bias = 0.5 V, at the different distances as shown in a). 

The black line is a fit to equation (4.3) considering two chains. c) Localization length for resistances 

obtained at 0.5, 1, 2 and 4 V Bias voltages as a function of the number of chains, N0. 
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Figure 4.6a is an AFM topographic image similar to figure 4.5b, but in this case the color 

scale was adjusted to enhance the visibility of the fibres. It also presents a schematic of the 

electrical circuit used for the C-AFM measurements. C-AFM enabled the control of the 

loading force applied by the mobile electrode to the bundles until an optimal contact 

resistance was reached, and then IV characteristics were measured. In this way, the 

maximal current was measured for an applied force of  70 nN. The same force was used 

for all the measurements in this section. Table 4.1 shows the numerical data extracted from 

the IV curves used for the plots in figure 4.6. 

 

Table 4.1 Length, current and electrical resistance for the [Pt2(EtCS2)4I]n chains. Current data were 

extracted from IV curves at a fixed Bias voltage of 0.5 V (these resistance data are plotted in figure 

4.6). 

L (nm) (± 5 nm) I (pA) R (G) 

80 2000 ± 100 0.25 ± 0.02 

140 750 ± 40 0.67 ± 0.04 

210 230 ± 10 2.2 ± 0.1 

280 14 ± 1 36 ± 3 

Note: the uncertainties shown in the table account for instrumental errors in our measurements. However, we think 

there are other not controlled error sources that may enlarge the magnitude of uncertainty. Because of this, plots in 

figures 4.6 and 4.8 do not show error bars. 

 

Figure 4.6b displays the electrical resistance R, as a function of the distance between 

electrodes L, obtained for the chains in figure 4.6a. A clear non-linear dependence is 

observed, suggesting electron-defect interactions as the main source of resistance in these 

chains. Previously reported electronic structure analysis performed by Density Functional 

Theory (DFT) calculations clearly show the metallic nature of the [Pt2(dta)4I] polymer [32]. 

In fact, its band structure is characterized by a non-degenerate half-filled band that crosses 

the Fermi level along the -A direction, which corresponds to the axis of the MMX chain. 

The metallicity of the chain can be tracked back to the odd number of electrons in the unit 

cell. Another intuitive way to justify the electrical conductivity of the MMX chains is 

because of the presence of a Pt
2+

 and Pt
3+

 mixed-valence state that translates in charge 

delocalization [25]. According to Landawer’s theory, the band that crosses the Fermi level 

should result in a conductance of G0= 2e
2
/h, which corresponds to a quantum of resistance 

R0 = 1/G0  13 k. This value does not take into account other effects such as the 

electrode-chain contact resistance, electron-phonon interaction, scattering with the substrate 

or the presence of structural defects along the chains. A similar R-L trend as observed here 
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for the MMX chains is found in carbon nanotubes [33], and attributed to Anderson 

localization due to the interaction between electrons and structural defects. Figure 4.7, from 

reference [34], illustrates this behavior in the case of carbon nanotubes. 

 

Figure 4.7 Experimental dependence of the low voltage Resistance vs. Length for CVD-grown 

single-walled carbon nanotubes (SWNTs) (triangles and stars) and HipCo SWNTs (squares). The 

central inset of the figure is a schematic of the procedure employed to measure the resistance as a 

function of the distance with a metallized AFM tip. The upper inset is an AFM image of a long 

nanotube partially covered with gold. The nanotubes directly grown on surface present low 

disorder and hence the conductance is quasiballistic; the low increment of the resistance with 

length is a consequence of the interaction with acoustic phonons and disorder. The HipCo SWNT 

presents a high density of defects resulting in an electronic transport regime governed by the 

Anderson localization phenomenon. Imagen taken from reference [34]. 

 

Following a similar scheme, the resistance data in our MMX chains can be fitted to an 

exponential expression:  

R = RC +
R0

N0
 e

L
L0

⁄
           (4.3) 

where it can be assumed that the chains were electrically isolated one from each other. In 

this expression RC accounts for the electrode-chain contact resistance, R0 is the above 

mentioned quantum resistance, N0 is the number of chains contacted by the AFM tip and L0 

is the localization length (that is related to the mean distance between defects). As it can be 

seen in figures 4.5b and c, in the case of the chains under study the AFM topography 
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suggested that N0 can be 1 or 2. Numerical fitting of the data shown in table 4.1 to equation 

(4.3) with N0 = 2 and Bias voltage equals 0.5 V leads to RC  800 MΩ and L0  18 nm. 

According to Kelley et al. [35] the nonlinearity observed in the IV traces (inset figure 4.6b) 

is not surprising since the precise IV relationship is a function of any charge injection 

barriers at the tip-MMX chain junctions and hence RC = RC (V). In order to check the 

robustness of the fitting, it was repeated for higher voltages, finding that L0 ranged between 

 17 and 23 nm (figure 4.6c). This variation is quite small taking into account the ranges 

taken for voltages and number of molecules and suggests that the determination of the 

localization length so performed is robust. 

A remarkable feature of these MMX chains is that the whole current flowed through just a 

single iodine atom, Pt2-I-Pt2, thus making these chains very sensitive to punctual atom 

defects. Considering that Pt2-I-Pt2 is formed by coordination bonds, which are weaker than 

covalent bonds, these atomic defects can be easily generated. They might be the responsible 

of the observed behavior of the current through the MMX chains. The measurements at 

closer electrode distances (~ 80 nm) show a current density across the iodine atom  

 10
6
 A cm

-2
 (estimated at 0.5 V, considering for the iodine atom a radius I

- 
= 2.2 Å). This 

number can be put in perspective by taking into account the current density flowing through 

a single MMX chain J  2 10
5
 A cm

-2
 (considering a diameter of ~ 1.2 nm, figures 4.5b and 

c). Figure 4.8 shows the variation of the current density for the chains in figure 4.5 as a 

function of the distance between electrodes. It is remarkable the persistence of the current 

even for lengths as long as 280 nm. 

 

Figure 4.8 Current density along a [Pt2(EtCS2)4I]n single chain as a function of the distance. 

 

For the sake of comparison, the current density measured here is  10
10

 times higher than 
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value presented here takes more relevance considering that in this case the conductance is 

evaluated for molecule lengths of 80 nm while in reference [20] the molecule length is 

below 15 nm. Going further with the comparisons,  decay can be evaluated in 

measurements here presented.  is related to the localization length through the expression 

 = 1/L0, thus lower  values correspond to higher electrical transport efficiency. It is 

usually expressed in Å
-1

.  is commonly used in molecular electronics as an indication of 

the efficiency of charge transport in a given molecule. Here it is found a value of  

  5 10
-3

 Å
-1

. Slinker et al. [15] report conductance over 34 nm in DNA layers using 

indirect evidence based in electron transfer rate in solution (i.e. they do not report IV 

measurements). However, DFT calculations in double stranded DNA show a band structure 

characteristic of an insulator and hence the electrical conductivity should be based on a 

different mechanism that the one accepted for MMX polymers [36]. References [20-22] 

also report slightly lower values for  than in here, but in configurations of large number of 

molecules where the probability for defects creation is usually lower. 

To verify if Anderson localization induced by structural defects can be the origin of the 

observed exponential dependence of resistance with length (Eq. (4.3)), quantum transport 

calculations were carried out by Dr. Juanjo Palacios and Prof. José Soler. Since a detailed 

description of the calculations is out of scope of this work, only the basic concepts to 

follow them are provided. First, the quantum transmission for a single defect in an 

otherwise perfect MMX wire was computed. ANT.1D code was used [37], with DFT 

matrix elements computed with SIESTA [38], and the Green's function formalism for 

quantum transport [39, 40].  

Figure 4.9 shows the three possible defects that were considered: 1) a kink; 2) an OH 

molecule substituting an I atom; and 3) an I vacancy. 
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Figure 4.9 a) Schematic relaxed structures of the three types of defects considered. From top to 

bottom: a kink, an OH group substituting an I atom, and an I vacancy. b) Transmission as a function 

of energy for a single defect from the types shown in a). 

 

Figure 4.9a shows the structures of the different defects under consideration. Figure 4.9b 

presents the calculated transmission for these cases. The kink, which accounts for the 

effects of substrate roughness, did not appreciably change the transmission at any energy 

within the conducting band up to EF ± 0.5 eV. OH substitution and I vacancy are a 

consequence of the MMX chemistry. Whereas OH substitution decreased the transmission 

to 0.9 near EF, I vacancy had the largest effect on the transmission at EF, reducing it to 0.7. 

Moreover, solution of MMX chains contains two dimetallic subunits, named [Pt2(EtCS2)4] 

and [Pt2(EtCS2)4I2] [27, 28]. The formation of the MMX chains under study involves the 
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alternate assembly of these building blocks. But importantly, the assembly of two 

[Pt2(EtCS2)4] building blocks, already proved in references [41, 42], leads to I vacancies. 

Therefore, following calculations were focused on this type of defect. The conductance for 

long MMX wires with many vacancy defects was also calculated with ANT.1D, but now 

using a single-orbital tight-binding model [43]. This is justified because the only 

conductance channel in the MMX wire is made of a single band. Figure 4.10 shows results 

for two concentrations of defects, placed at random positions, and for segments of 

increasing length along three different wires. The conductance over different positions of 

the defects was not averaged, to mimic the actual experimental measurements with the tip 

moving along the same wire. 

 

Figure 4.10 Conductance obtained for six different disorder realizations in a single-orbital  

tight-binding model mimicking the random presence of vacancies (green solid symbols: 5% 

concentration, red empty symbols: 10% concentration). Large fluctuations can be appreciated on 

top of an overall exponential behavior. The black line corresponds to the experimental result while 

the blue dashed line corresponds to an extrapolation of the measured conductance assuming 

absence of experimental contact resistance. 

 

As expected in phase-coherent calculations and ignoring the inherent fluctuations, the 

conductance follows an exponential decay with chain length. According to these 

calculations, a percentage of vacancies in the range 6 - 8 % would be responsible for the 

observed decay length. Considering previous results on MMX nanoribbons, the content of 
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defects here inferred is compatible with those observed by direct sublimation of MMX 

microcrystals [21]. 

 

In summary, robust on surface isolation from drop-casting and electrical characterization of 

different polymer MMX wires have been presented, going down to the single-molecule 

regime. C-AFM has been employed to probe the electrical properties of individual chains, 

where the whole current flows through just a single iodine atom. Experimental results have 

been complemented with theoretical calculations which suggest that structural defects (in 

particular a 6-8 % of iodine vacancies) are the responsible of the observed electrical 

behavior. The studied MMX chains present a record electrical conductivity for long 

distances, confirming these polymers as excellent molecular wires. 

 

 

 

 

 

 

 

 

 

  



Chapter 4. New low-dimensional materials. 

 

205 

 

4.3 Local tuning of graphene properties upon ultrahigh pressures 

 

4.3.1 Introduction 

Most of the knowledge acquired by the human being has been gained through studying the 

nature at or near one atmosphere, which is the pressure at the Earth’s surface. Nevertheless, 

much of the matter in the Universe exists under much more pressurized conditions, as for 

example deep inside planets and stars. For instance, in his book "2061 - Odyssey Three", 

the well-known science-fiction writer Arthur C. Clarke comments the fascinating idea that, 

as a consequence of the extreme pressure inside giant planets, the core of the planet Jupiter 

would be, in fact, a diamond the size of Earth. Figure 4.11 shows a chart with the orders of 

magnitude for pressure found in nature. 

 

Figure 4.11 Chart of the orders of magnitude in relation to pressure expressed in pascals (logscale). 

 

Reaching ultrahigh pressures always implies an immense experimental challenge. The most 

common device employed is the diamond anvil cell [44]. In brief, it consists of two 

opposing diamonds with a submillimeter-sized sample compressed between their polished 

tips. Typical tip sizes are 100 - 250 m. Since the pressure P is the applied force F divided 

by the contact area A (P = F/A), a very high pressure is achieved with moderate forces. 

Anvils are made out of diamond due to its hardness and virtual incompressibility. Diamond 

anvil cells typically allow reaching pressures of 100 - 200 GPa, although values up to  

750 GPa have been reported by using special cells [45]. Ultrahigh pressures in diamond 

anvil cells are typically used to synthesize materials and phases not observed under normal 

ambient conditions [46-48]. 

In this section, controlled local modifications of graphene, the strongest material ever 

measured [49, 50], have been performed by the achievement of ultrahigh pressures by using 

Atomic Force Microscopy with diamond tips. It can be considered as a nanotechnology 
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version of a diamond anvil cell. With this configuration, chemical bonding is expected to be 

induced between selected regions of a graphene flake and the underlying substrate where it 

is supported. The main goal of the work presented in this section is to locally tune the 

electronic properties of 2D materials, in particular graphene, in a very controlled way by 

applying ultrahigh pressures with the AFM. By doing so, selective doped areas are 

expected to be created in graphene on SiO2/Si substrates [51], as it is shown here by Raman 

spectroscopy and Kelvin Probe Force Microscopy (KPM) characterizations. A direct 

application of this local doping has been the creation of low contact resistance areas for the 

fabrication of improved metal electrodes for future graphene electronics. 

Another simple application of this method has been improving the performance of graphene 

as a sealer by applying local ultrahigh pressure. To this end graphene has been deposited on 

SiO2/Si substrates with predefined microcavities, creating in this way graphene-sealed 

microchambers. By measuring gas leak rates before and after sealing the microchambers 

inside regions modified by ultrahigh pressure, it has been observed that after sealing 

microchamber leak rates have reduced by a factor of ~ 3.5.  

These results suggest local application of ultrahigh pressures with AFM as a very powerful 

tool to tune 2D materials properties. Additionally, by trapping self-assembled monolayers 

of specific molecules between graphene layers and a substrate, AFM can provide a unique 

platform to carry out chemical reactions at ultrahigh pressures without the technical 

drawbacks characteristic of classical high-pressure procedures. 

The work presented in this section is not published so far and has been performed in 

collaboration with Dr. Félix Zamora, Dr. Cristina Gómez-Navarro, Prof. Enrique García-

Michel and Prof. Fernando Martín groups. In particular, Prof. Enrique García-Michel group 

is analysing X-ray Photoelectron Spectroscopy (XPS) data, comparing pristine and 

modified graphene regions, to gain insight on the chemical bonding between graphene and 

substrate induced by the AFM tip. Data have been taken at the Scanning PhotoElectron 

Microscope (SPEM) hosted at the ESCAmicroscopy beamline at Elettra, in Trieste (we 

would like to acknowledge the staff of Elettra for the professional handling of the 

experiments). Prof. Fernando Martín group is currently carrying out the theoretical 

interpretation of the experiments using state-of-the-art Density Functional Theory (DFT).  

 

4.3.2 Results and discussion 

It is very remarkable that achieving controlled local high pressures with AFM  is 

technically very simple [52]. Typical commercial diamond AFM tip radii are in the range 

of 10 - 100 nm, thus, as commented above, the tip-sample contact region can be seen as a 

nano-anvil cell were ultrahigh pressures can be readily achieved with relatively low forces. 
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Figure 4.12 shows a diagram of the AFM high pressure application for the kind of samples 

studied here.  

 

Figure 4.12 Diagram of a nano-anvil cell by using a diamond AFM tip. 

 

A simple estimation of the pressure that can be achieved by using this configuration can be 

calculated following the Hertz’s model [53, 54]. The contact radius  between a sphere and 

a plane is then given by: 

ρ = (
3FR

4E∗
)

1/3
           (4.4) 

where F is the applied force, R the tip radius and E
* 

is
 
the effective elastic modulus        

1/E
*
 = 1/Etip + 1/Esample. Then, the mean contact pressure P exerted on the sample by the tip 

can be determined as: 

P =
1

π
(

4E∗

3
)

2/3
(

F

R2
)

1/3
          (4.5) 

Using cantilevers with stiffness k  40 N m
-1

, a conventional AFM set up can easily apply 

forces higher than 100 N. Assuming E
* 

of  1 TPa and a tip radius of ~ 50 nm, the 

resulting pressure is well above 100 GPa. By using sharper tips and stiffer cantilevers (as 

for instance commercially available R ~ 20 nm and k ~ 80 N m
-1

 [55]) this figure can reach 

values up to ~ 300 GPa. In the work presented here, a single crystal diamond tetrahedral 

pyramid SCD15/AIBS probe from MikroMasch [56] was used. The cantilever nominal 

length and width were 125 and 35 m respectively. It presented a resonance frequency of 

320 kHz in air and a force constant of 32 N m
-1

 (calibrated using the Sader method [57, 

Diamond 

AFM tip

Substrate

Sample

R



Chapter 4. New low-dimensional materials. 

208 

 

58]). The tip radius was calibrated by imaging carbon nanotubes and using equation (4.2). 

A value of R = 42 nm was obtained from nanotubes of different heights. 

Graphene flakes were deposited by microexfoliation on 300 nm SiO2/Si substrates.  

Single-layer areas where first located by optical microscopy and corroborated by Raman 

spectroscopy [59]. Raman spectroscopy is an optical technique based on inelastic scattering 

(or Raman scattering) of monochromatic light (usually from a laser in the visible part of the 

light spectrum). The laser light interacts with excitations in the system (typically molecular 

vibrations and/or phonons), resulting in a shift in the energy of the laser photons. This shift 

in energy gives information about the vibrational modes in the system. A detailed 

explanation of the principles of Raman spectroscopy can be found elsewhere [60]. Raman 

shifts are typically reported in wavenumbers, which have units of inverse length, as this 

value is directly related to energy. The unit commonly employed is cm
-1

  

(1 cm
-1

 = 1.2 10
-4

 eV). The Raman spectra of all carbon systems show only a few 

prominent features, just a couple of very intense bands in the 1000 - 2000 cm
-1

 region of the 

Raman spectrum and few other second-order modulations. However, their shape, intensity 

and positions allow distinguishing the different carbon structures [61]. In the case of 

graphene, Raman spectrum clearly evolves with the number of layers.  The so-called G  

(~ 1580 cm
-1

) and 2D (~ 2700 cm
-1

) Raman peaks change in shape, position and relative 

intensity with number of graphene layers. This allows unambiguous identification of 

graphene layers [59, 61]. Additionally, by monitoring the variation of both G and 2D 

Raman peaks in doped single-layer graphene, information about the doping level can be 

obtained [62]. The D Raman peak (~ 1350 cm
-1

) gives information about the presence of 

defects in graphene [63]. A further refinement of the Raman technique consists on focusing 

the laser spot using a high numerical aperture lens. By doing so, the information of the 

Raman spectra is restricted to the illumination area. This method is known as micro Raman 

spectroscopy. Raman spectra along this PhD have been acquired using a WITEC/ALPHA 

300AR Raman confocal microscope (Witec GmbH, Ulm, Germany) at ambient conditions. 

The laser wavelength and power were 532 nm and 1 mW respectively. It enabled micro 

Raman, with a laser spot diameter of ~ 300 nm, allowing the acquisition of spectra in very 

precise locations. 

Figure 4.13 shows optical, AFM and micro Raman characterization of a pristine graphene 

layer before ultrahigh pressure modifications. 
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Figure 4.13 Characterization of pristine graphene on SiO2 before modifications. a) Optical image.  

b) AFM topographic image of the area enclosed in the square in a). Single-layer areas are marked 

with 1L and bilayers with 2L. Dashed lines along the edges between 1L and 2L areas were added as 

a guide to the eye. c) Raman spectrum acquired in the spot marked with a cross in a). The inset 

corresponds to graphene characteristic peaks. 

 

Figures 4.13 a and b show optical microscopy and AFM topographic images (AM-AFM 

mode) respectively of a graphene flake with several monolayer terraces. Raman spectra 

acquired in the different regions of the flake corroborate the thickness of each of the 

terraces. Figure 4.13c shows a Raman spectrum acquired in a monolayer area. The sharp 

2D peak shape and the ratio intensity between G and 2D peaks clearly indicate that it 
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corresponds to a single-layer terrace. Additionally, the nonappearance of a D peak indicates 

the absence of a significant number of defects. 

The procedure to modify areas under ultrahigh pressures involved the following steps: first 

the flake was imaged in AM-AFM mode. Then, feedback parameters were adjusted to 

contact mode conditions and the tip was brought into a very gentle contact in the area of 

interest, scanning in the fast scan axis in both forward and backward directions (also known 

as trace and retrace). At this point, the scanning speed was set to 2 m/s. The precision of 

the pressed area can be tuned with the number of points per line, which depends of the size 

of the modified area: for areas below 1 m
2
, 256 points were used. Then the Setpoint was 

changed to the corresponding value according to the desired pressure, calculated using 

equation (4.5). The area was then scanned twice under these conditions: typically the area 

was scanned from top to bottom, and when reaching the bottom, from bottom to top. At that 

point, the tip was brought back to AM-AFM mode and a topography image was then 

acquired. Figure 4.14 shows part of the flake shown in figure 4.13, where 600 x 600 nm
2
 

areas were modified in monolayer terraces at different pressures, starting from 13 GPa and 

up to 40 GPa. The magnitude that is directly obtained from AFM is the loading force. As 

commented above, in order to determine the pressure, the tip radius was previously 

estimated by scanning a sample with carbon nanotubes. By applying equation (4.5), where 

the radius of the nanotube was assumed to be its height as obtained from the AFM 

topographic images, pressure values were obtained. 
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Figure 4.14 Ultrahigh pressure modifications on graphene. a) AFM topographic image showing  

600 x 600 nm2 areas modified under different pressures. b) Selected height profiles from the 

different modified regions. Horizontal dashed line marks the mean depth for pressures in the 

range 29 - 37 GPa. 

 

25GPa20GPa

16GPa

13GPa 

29GPa

32GPa
34GPa

37GPa

40GPa

a

b
13 GPa

16 GPa

20 GPa

25 GPa

29 GPa

32 GPa

34 GPa

37 GPa

40 GPa
1.21.00.80.60.40.2

Profile (µm)

-2.5

2.5

0.0

-5.0

H
e
ig

h
t 

(n
m

)



Chapter 4. New low-dimensional materials. 

212 

 

Figure 4.14 shows that for pressures below 13 GPa the substrate was not modified. From  

16 to 25 GPa the depth observed within the modified areas increased up to ~ 1 nm, but 

from 29 to 37 GPa the depth, ~ 1.3 nm, remained almost constant. Finally, for pressures of 

40 GPa the graphene sheet broke and the tip induced irreversible damage in the underlying 

SiO2, reaching a depth of ~ 5 nm. To better understand these observations, similar 

modifications were performed on the SiO2 substrate, without graphene. Figure 4.15 shows 

the results of these modifications. 

 

Figure 4.15 Ultrahigh pressure modifications on SiO2. a) AFM topographic images showing  

600 x 600 nm2 areas modified under different pressures. b) Selected height profiles from the 

different modified regions. Horizontal dashed line marks the mean depth for pressures 32 and 37 

GPa. 
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From figure 4.15 it can be observed that for higher pressures, up to 37 GPa, the SiO2 

substrate was modified, presenting a depth of ~ 2.5 nm. Comparing this value with the 

obtained in the graphene case, ~ 1.3 nm, since graphene was already in contact with the 

substrate for pressures above 25 GPa, it can be inferred that in these cases graphene was 

“protecting” the substrate from being modified. This result can be of great importance for 

applications of graphene as a protective coating. For a pressure of 40 GPa, the SiO2 

substrate sank to a depth of ~ 5 nm, similar as in the case of graphene, which for this 

pressure broke and exposed the AFM tip to the underlying substrate. Whereas 37 GPa were 

achieved by applying a 1.5 N force with the tip, for the 40 GPa case 2 N were necessary. 

This value might explain the breakage event observed in the 40 GPa case, since measured 

breaking forces of ~ 1.7 - 2.1 N are reported for free standing graphene [50]. 

The properties of the modified areas were studied using Raman spectroscopy and Kelvin 

Probe Force Microscopy (KPM). Raman spectroscopy in its mapping configuration was 

used. The Raman laser was scanned in a kind of raster pattern, acquiring spectra at equally 

spaced points. Since at each of the points a whole spectrum was acquired, plots showing 

information at different Raman shifts can be easily created. For the KPM measurements, 

ElectriMulti75-G probes from BudgetSensors [30] were employed. AM+PLL AFM for the 

topography and FM mode with an alternate bias voltage of amplitude 3.5 V and frequency 

7 kHz for the Contact Potential Difference (CPD) was employed (see Chapter 1 for details). 

To have a well-defined potential reference, the flake was contacted through the EGF  

soft-electrode procedure to provide a stable potential reference. KPM measurements were 

performed in an inert Ar atmosphere to avoid CPD shielding by the presence of an 

adsorbed water layer on the surface [65]. Figure 4.16 shows Raman and KPM analysis of 

the modified regions in figure 4.14. 
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Figure 4.16 a) G and 2D peaks of the Raman spectra from the different modified regions. Raman 

mapping was performed as explained in the main text and the spectra for each modified region 

was obtained averaging all the spectra inside. b) I(2D)/I(G) map for selected modified regions.  

c) KPM image of the modified regions. Notice the area modified at 32 GPa is partially covered by a 

silver paint micro-drop deposited accidentally when placing an EGF electrode for potential 

reference. d) Variation of the CPD in the different regions. Curves obtained from selected profiles 

in c). 

 

From the Raman mapping different images were obtained. Some examples can be found in 

the Appendix, where maps of the G and 2D peaks shifts and variation of their widths can be 

found (figure A4.4). Raman spectra centered at the D peak are also shown (figure A4.5). 

Interestingly, no D peak appeared, indicating that there was not a significantly creation of 

defects upon ultrahigh pressure modifications. In particular, following reference [66], the 
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40 GPa case the graphene layer was broken, no further analysis on the effects of this 

pressure is performed. Figure 4.16b presents a map of the 2D/G height ratio, which changes 

significantly with doping and it is proposed as a sensitive parameter to monitor the doping 

in graphene [62]. The I(2D)/I(G) ratio observed here is in very good agreement with 

reported hole doping graphene through gated transistor configurations [62, 67]. Raman 

results are further analyzed later in the manuscript considering as well the results obtained 

with other techniques. 

Figures 4.16 c and d present KPM characterization of the modified areas. A clear reduction 

of the CPD with increasing pressure can be observed, indicating that the Fermi level shifts 

down as the pressure increases, compatible with a pressure-dependent hole doping effect 

[68], in very good agreement with the Raman observations. Considering that the work 

function of the tip does not vary during KPM acquisition (which is quite a reasonable 

consideration, since the KPM data in figure 4.16c presents a stable CPD value for the 

unmodified graphene in the whole image), then the variation of the CPD can be converted 

to a variation in the Fermi level using the following expression (extracted from equation 

(1.26) in Chapter 1): 

     ∆EF = e∆VCPD           (4.6) 

where e is the elementary charge, 1.60210
-19

 C. And with the Fermi level shift, the variation 

of carrier concentration in the graphene modified areas can be estimated using the Fermi 

energy equation [69]: 

     ∆n =
1

π
(

∆EF

ℏvF
)

2
           (4.7) 

where ℏ is Planck constant, and vF  is the Fermi velocity |vF| = 10
6
 m/s. Figure 4.17 shows 

I(2D)/I(G), depth from topography data and Fermi level shift as a function of the applied 

pressure, and the I(2D)/I(G) variation as a function of the electron concentration. 
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Figure 4.17 a) 2D/G intensity ratio, depth and Fermi level shift as a function of the pressure.  

b) 2D/G intensity ratio as a function of the electron concentration. Insets show schematic sketches 

of the graphene band diagram representing the increase of hole doping with applied pressure. 

 

Figure 4.17a shows a direct correlation between the 2D/G intensity ratio and the Fermi 

level shift, which are both inversely proportional to the depth of the modified areas. Figure 

4.17b shows the 2D/G intensity ratio as a function of the variation of the electron 

concentration. The obtained results are in very good agreement with graphene doping found 

in the literature using different techniques such as interface engineering  [69], chemical 

0 5 10 15 20 25 30 35

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

I(
2

D
)/

I(
G

)

Pressure (GPa)

D
e

p
th

 (
n

m
)

 
E

F
 (

e
V

)

a

b

-2.0 -1.5 -1.0 -0.5 0.0
1.0

1.5

2.0

2.5

3.0

3.5

 Pressure (GPa)

 I
(2

D
)/

I(
G

)

[e
-
 concentration] (x10

13
 cm

-2
)

20 0
16 13

2532 293437



Chapter 4. New low-dimensional materials. 

 

217 

 

approaches [70], thermal annealing and gas flow experiments [71], electrostatic gating [62, 

67, 68], or combinations, as for instance combining electrostatic gating with a Cs/O surface 

coating [72]. This supports the hypothesis of achieving a very controlled graphene doping 

through ultrahigh pressure modifications. As reported by Ryu et al., the degree of graphene 

coupling to the substrate is an important factor controlling graphene doping [71]. In the 

results presented here, the pressure applied to graphene produced an increase of the 

coupling to the substrate and hence an increase in the doping. The effect of these pressure 

modifications is stable within time at ambient conditions (figure A4.6 in the Appendix 

shows AFM imaging of the same regions as modified and after 4 months in ambient 

conditions, presenting no visible changes). 

To gain further insight into the properties of graphene modified upon ultrahigh pressure, 

samples were taken to the Scanning PhotoElectron Microscope (SPEM) hosted at the 

ESCAmicroscopy beamline at Elettra, in Trieste. X-ray Photoelectron Spectroscopy (XPS) 

data comparing pristine and modified graphene regions are currently being analysed by 

Prof. Enrique García-Michel group. Figure 4.18 shows AFM and the C 1s peak image from 

the XPS data of a graphene flake with different modified areas. A clear contrast can be 

observed in the XPS image between pristine and modified areas. 

 

Figure 4.18 a) AFM topographic image showing 800 x 800 nm2 areas modified under different 

pressures. Total Z range = 14 nm. b) C 1s peak image of the same area as in a) from XPS data. 
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A preliminary analysis of the C 1s peak variation upon ultrahigh pressure is shown in  

figure 4.19. 

 

Figure 4.19 Representative C 1s peaks as a function of the applied pressure. 

 

The position and shape of the pristine graphene (0 GPa) peak confirm the good quality of 

the graphene under study [73-75]. Albeit further analysis has to be performed, these 

preliminary results show a rigid displacement of the C 1s peak to lower binding energies, 

ranging from ~ 50 to 350 meV. This effect points to the Fermi level shifting towards the 

valence band due to a p doping effect, in good agreement with previous Raman and KPM 

results. 

Graphene flakes with areas modified upon ultrahigh pressure were grounded to minimize 

beam charge effects. However, some charge effects and damage produced by the beam 

makes not straightforward the correlation between pressure and binding energy 

displacement. Nevertheless, it is observed a very robust rigid displacement of the C 1s peak 

always to lower binding energies in the different analyzed samples, confirming the  

p-doped effect. Within this preliminary analysis, no visible peak shape changes were 

observed, pointing to a very low amount of chemical bonds between the graphene modified 

areas and the substrate, in good agreement with the absence of D peak in the Raman 

spectra. 

To understand the mechanisms that keep graphene modified areas strongly coupled to the 

SiO2 substrate, Prof. Fernando Martín group is currently carrying out the theoretical 

interpretation of the experiments using state-of-the-art Density Functional Theory (DFT). 
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Albeit calculations are still running and no final results have been achieved, preliminary 

simulations mimicking the most probable SiO2 configurations point that a small amount of 

chemical bonds between graphene and SiO2, an amount much lower than 1%, is needed for 

the irreversible behavior observed in the modified areas. Simulations already performed 

suggest that if there is not any bond formation, graphene would not stay so close to the 

substrate. 

Some direct applications can be inferred from the studies carried out so far. First is the 

possibility of local tuning the doping of graphene. Second, as a direct consequence of this 

ultrahigh pressure doping, is the creation of low contact resistance areas for the later 

fabrication of metal electrodes with improved performance in graphene devices [76-79]. As 

it is known from electrostatically graphene gating in a transistor configuration, when 

graphene is doped the drain current increases with increasing doping [68]. In the case here 

presented, the improvement of the conductivity upon ultrahigh pressure doping was 

assessed by using C-AFM. Same tips as for KPM measurements were employed 

(ElectriMulti75-G probes). Current maps were obtained by scanning modified areas in 

Contact mode with a Normal force of 150 nN and a fixed Bias voltage of 0.6 V. Figure 4.20 

shows topography and the current map of a modified area under a 35 GPa pressure. 

 

Figure 4.20 C-AFM on a 35 GPa modified region. a) Topographic image. b) Current map at a fixed 

Bias voltage of 0.6 V. c) and d) Profiles along the lines in a) and b) respectively. 
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Figure 4.20 shows a clear increase of the current measured in the modified regions, which 

can be attributed to a decrease of the contact resistance within these areas. From the current 

variation in figure 4.20d, a ~ 35% improvement for the resistance is found. Since when 

measuring with C-AFM there was an extra contact resistance as a consequence of the small 

contact area between the AFM tip and the sample, the obtained improvement can be 

considered as a lower bound. 

Apart from the “electronic”, other “mechanical” applications of the ultrahigh pressure 

modifications were explored. First, the suitability of graphene as a protective coating, as it 

was shown when comparing modifications on graphene and on the SiO2/Si substrate. 

Second, the possibility of improving graphene for membrane applications. Graphene is 

proposed as an excellent starting point for developing size-selective membranes [80] (and 

references therein) by introducing pores that can allow molecules to pass through. 

Microchambers consisting on graphene drumheads are a very good option to study 

graphene membranes [50, 80-82]. Figure 4.21 shows schematics of these microchambers at 

different configurations in a pressure chamber. 

 

Figure 4.21 Schematics of graphene drumheads in a pressure chamber. a) Pin = Pout. The graphene 

layer is free standing. b) Pin > Pout. The graphene layer bulges upwards. c) Pin < Pout. The graphene 

layer deflects downwards. 

 

Samples were fabricated by transferring micromechanically exfoliated graphene sheets over 

predefined microcavities. At this stage, situation was as shown in figure 4.21a. Samples 

were then placed in a pressure chamber and pressure differences across the graphene 

membrane were created either by vacuum pumping the chamber (figure 4.21b) or by using 

a gas to create an overpressure (figure 4.21c). In both cases shown in figures 4.21b and c, it 

is reported that over time the internal and external pressures equilibrate due to gas leak 

from/to the microchambers [81, 83]. Two leak mechanisms are proposed, either through the 

SiO2 walls of the microchamber or through the graphene-SiO2 sealed interface [81]. 

Estimations of gas diffusion rates lead to think that leak takes place through the slow 

diffusion of gas through the SiO2 substrate [81]. To shed some light on this issue, in this 

work microchambers were sealed using ultrahigh pressure modifications. Leak rates before 
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and after sealing were measured. To this end, first vacuum up to a pressure of 10
-6

 hPa was 

performed (the drumhead presented an aspect as in figure 4.21b) and it was left until 

pressure inside was equilibrated at that value. Then, an overpressure of Pout = 3 atm of N2 

gas was set in the chamber; in this way a total pressure difference across the membrane of 

about 4 atm was obtained (at that point the drumhead presented an aspect as in figure 

4.21c) [84]. Then, AFM was used to monitor the change in the membrane depth as a 

function of time. Measurements inside the pressure chamber were carried out in 

collaboration with Dr. Guillermo López-Polín. Figure 4.22 shows a microchamber before 

and after sealing upon AFM ultrahigh pressure. 

 

Figure 4.22 a) 3D rendered AFM topographic images of a conventional microchamber. b) Same 

microchamber as in a) after sealing upon local ultrahigh pressure. Dashed lines were placed along 

the sealing edges to guide the eye. Total Z range in a) and b) is 6.5 nm. c) Microchamber under a 

pressure of 4 atm, the regions modified by the diamond tip can be readily seen. d) Height profile 

along the line in c). 

 

Comparison of the change in the membrane depth as a function of time was carried out for 

the same microchamber before and after sealing. Figure 4.23 shows the depth variation 

over time for both cases. 
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Figure 4.23 Graphene drumhead depth variation before (not sealed) and after AFM ultrahigh 

pressure (sealed). 

 

From figure 4.23 it can be seen that the total time needed to equilibrate pressures inside and 

outside the microchamber increased in a factor of ~ 3.5 once it was sealed upon AFM 

ultrahigh pressure. This result suggests that the leak was mainly through the graphene-SiO2 

interface, in contrast with reported results where leak through the porous of the glass walls 

is proposed [80-82], and demonstrates AFM ultrahigh pressure modifications as an 

excellent and easy procedure to improve the performance of graphene for membrane 

applications. 

 

In summary, the ability of the AFM to apply ultrahigh pressures has been employed to 

locally tune the electronic properties of graphene. Ultrahigh pressure with diamond tips 

have allowed a very precise coupling of graphene to the underlying substrate, resulting in a 

very controlled way of inducing p doping, as demonstrated by KPM, Raman spectroscopy 

and XPS. From this doping, C-AFM has demonstrated the suitability of this technique to 

locally improve the contact resistance when using metal electrodes, a paramount issue in 

the field of graphene electronics. Preliminary DFT calculations suggest that a small amount 

of bonds between graphene and substrate are taking place. In terms of mechanical 

properties, these experiments have shown the suitability of graphene as a protective coating 

and the possibility of improving its performance in membrane applications by providing a 

method to better seal graphene micro-cavities. 
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4.4 Isolation of highly stable antimonene 

 

4.4.1 Introduction 

The extraordinary success of graphene and its tremendous potential applications [85] paved 

the way for the rising of a cascade of other two dimensional materials [86, 87] presenting a 

variety of new properties. In the context of their electronic properties, graphene is a 

semimetal with zero-gap, which limits its use in the electronics technology. Transition 

metal dichalcogenides, which are compounds of the type MX2, with M a transition metal 

atom (Mo, W, etc.) and X a chalcogen atom (S, Se, or Te), as for example MoS2, MoSe2 or 

NbSe2, present in their 2D forms band gaps in the range of 1.5 - 2.5 eV [88] (depending on 

the thickness, strain level and chemical composition). These values make them 

inappropriate for some optoelectronics applications where band gaps in the 0.1 – 1.5 eV 

range are commonly preferred [89]. Black phosphorous (BP) [90] a layered allotrope of 

phosphorous, in its 2D form (also known as phosphorene) presents an energy gap in this 

range and hence it is now being intensely studied to better understand its electronic 

properties in the few-layer conformation. 

 

Figure 4.24 Atomic lattices of different 2D materials. Adapted from reference [91]. 

 

However, BP shows a relatively large reactivity in ambient conditions. Exfoliated flakes of 

BP are highly hygroscopic and tend to uptake moisture from air. The long term contact with 

water condensed on the surface degrades BP [92, 93], as it can be seen from measurements 

of flake topography over several hours, electrical performance of transistors or sheet 

resistance as a function of time. 

Phosphorus belongs to the nitrogen group (group 15 in the periodic table of elements). In 

this same group, it is also found antimony, a silvery lustrous, non-hygroscopic, gray 

semimetal with a layered structure similar to that of BP. Theoretical calculations predict 

different interesting properties for this material: an electronic structure with a band gap in 

the ultrafast optoelectronics applications range when reaching the single-layer regime  

[94-96], high carrier mobilities, [96-98], topological behavior [99, 100] and optical 

properties [101, 102]. In this section, antimony down to the single-layer regime, known as 
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antimonene (albeit the name antimonene is not completely correct as there are no double 

bonds in its structure, it is commonly accepted in the 2D community) is presented for the 

first time through mechanical exfoliation, and experimental evidence of its stability is 

given. The experiments carried out here demonstrate that single-/few-layer antimony flakes 

are highly stable in ambient conditions showing mechanical stability upon origami 

nanomanipulation and no degradation over month periods. Density Functional Theory 

(DFT) simulations mimicking ambient conditions confirm the geometrical experimental 

findings and predict a band gap of 1.2-1.3 eV, within the range of optoelectronics 

applications. Optical microscopy is used to study the optical properties of few-layer 

antimonene flakes and quantitatively estimate their thickness in a fast and nondestructive 

way. Optical identification of antimonene will be useful for future nanodevices fabrication. 

Preliminary results on the electrical properties of few-layer antimonene are also presented, 

pointing to a conductivity governed by the presence of surface states, in good agreement 

with theoretical calculations that are currently being carried out. 

The core of the work presented in this section is published in references Ares, P.; Aguilar-

Galindo, F.; Rodríguez-San-Miguel, D.; Aldave, D. A.; Díaz-Tendero, S.; Alcamí, M.; 

Martín, F.; Gómez-Herrero, J.; Zamora, F. Mechanical Isolation of Highly Stable 

Antimonene under Ambient Conditions. Adv. Mater. 2016, 28, 6332-6336 and Ares, P.; 

Zamora, F.; Gomez-Herrero, J. Optical identification of few-layer antimonene crystals. 

ACS Photonics. 2017. DOI: 10.1021/acsphotonics.6b00941 (see also List of Publications). 

The results presented here have been performed in collaboration with Dr. Félix Zamora, 

Prof. Manuel Alcamí, Prof. Fernando Martín and Dr. Juan José Palacios groups. In 

particular, Diego Aldave has exfoliated antimony for some samples. David Rodríguez-San-

Miguel has carried out part of the characterization (electron microscopy and Raman 

spectroscopy). Prof. Manuel Alcamí and Prof. Fernando Martín groups have carried out 

DFT calculations mimicking ambient conditions. Dr. Juan José Palacios group is currently 

carrying out theoretical calculations on the electrical properties of few-layer antimonene. 

Dr. Gabino Rubio-Bollinger, Dr. Jorge Quereda and Dr. Andrés Castellanos-Gomez are 

acknowledged for their technical assistance in the optical identification part. 
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4.4.2 Results and discussion 

Figure 4.25 shows relevant views and parameters of the antimony atomic lattices. 

 

 

Figure 4.25 Relevant views and parameters of antimony atomic lattice. 

 

Single- and few-layer flakes were obtained by mechanical exfoliation of a macroscopic 

freshly cleaved crystal of antimony. Bulk, commercially available antimony material 

(99.9999%, Smart Elements [103]) was used. First, submillimeter flakes were obtained by 

repetitive pealing using adhesive tape a freshly cleaved thin piece of bulk antimony. Albeit 

a initial strategy consisting of an all dry viscoelastic stamping transfer procedure [104] 

(using the setup showed in Chapter 3 for the EGF soft-electrode transfer) was employed, 

both this and the classic approaches (direct transfer from the adhesive tape) enabled to 

obtain thin antimony flakes with large areas. Figure 4.26 shows the mechanical exfoliation 

procedure together with optical and AFM characterization. 
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Figure 4.26 Antimonene flakes on SiO2 substrates. a) Left, millimeter size crystals of antimony. 

Middle, adhesive tape with submillimeter crystals of antimony. Right, schematic of a SiO2 

substrate with single- to few-layer antimonene flakes. b) Optical microscopy image where up to 3 

large flakes of antimony can be seen. Different colors reflect different thicknesses. c) AFM 

topographic image showing 2 flakes of antimonene located inside the green square in b). d) AFM 

topographic image of the ~ 0.2 m2 antimonene flake inside the blue square in c), showing 

terraces of different heights. The terrace with minimum thickness is marked with a green arrow. 

e) Height histogram of the image in d) where the different thicknesses of the terraces can be 

readily seen. For the sake of clarity, the substrate peak was cut to 4000 nm2. The inset is a profile 

along the green horizontal line in d). The minimum step height is ~ 1.8 nm compatible with 2-3 

layers of antimonene. 

 

As seen in figure 4.26b, optical microscopy allowed easily finding of large flakes 

presenting different thicknesses. AFM revealed smaller crystals with thicknesses in the 

nanometer range (figures 4.26c-e). Figure 4.26d is an AFM topographic image showing a  

~ 0.2 m
2
 flake with different terraces. According to the height histogram and profile 

(figure 4.26e) the minimum layer thickness is ~ 1.8 nm, compatible with a bilayer-trilayer 

of antimony. All the topographical AFM images in this section showing accurate height 

measurements were acquired in Contact mode to avoid possible artifacts in the flake 

thickness measurements [105]. OMCL-RC800PSA Olympus cantilevers [106] with a 

nominal spring constant of 0.39 N m
-1

 and tip radius of 15 nm were employed. Low forces 
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of the order of 1 nN were used for imaging to ensure that the flakes would not be deformed 

by the tip. 

Raman spectroscopy was employed with the aim of identifying the number of layers of the 

flakes [59], as it is done with graphene and other 2D materials and explained in the 

previous section of this chapter. Figure 4.27 shows Raman measurements performed on 

flakes of different thicknesses at ambient conditions. The laser wavelength and power were 

532 nm and 1 mW respectively. Importantly, the antimony flakes did not show any 

measurable Raman signal for thicknesses below ~ 100 nm. 

 

Figure 4.27 a, b) Optical microscopy images of antimony flakes with a wide range of heights.  

c) Raman spectra from the points indicated by crosses in a) and b). The red spectrum corresponds 

to the substrate; the remaining spectra correspond to antimony flakes of different thicknesses 

(measured by AFM). Black, h > 1000 nm (bulk antimony); dark blue, h = 150 nm; cyan, h = 100 nm; 

pink, h = 93 nm; green, h = 30 nm; orange, h = 11 nm; red: SiO2/Si substrate. 

 

Figure 4.27 depicts a Raman spectroscopy study of antimony flakes of different heights on 

a SiO2/Si substrate. Figures 4.27a and b show optical microscopy images where a variety of 

flakes of different heights (measured by AFM) and lateral dimensions can be observed. 
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Figure 4.27c shows Raman spectra taken on different spots marked with crosses in a, b. It 

can be observed that for bulk antimony (height > 1000 nm) the spectrum matches previous 

results for bulk antimony [107] with almost no signal coming from the substrate  

(~ 520 cm
-1

). As the thickness of the flakes decreases (h = 100 nm) the signal from the 

substrate is becoming dominant and for lower heights the antimony signal is lost. This 

behavior is related to the thickness of the flakes, not with their lateral dimensions: the         

h = 100 nm flake is clearly much smaller than the h = 11 and 30 nm ones, but whereas the  

h = 100 nm spectrum shows the characteristic peaks corresponding to antimony, the  

h = 11 and 30 nm spectra do not. The observed behavior is present as well in other layered 

materials such as mica [108], where the Raman signal is lost for thicknesses below  

~ 60 nm, and has no implications upon stability. A more detailed study of the Raman 

characterization of antimonene can be found in reference [109]. 

Figure 4.28 presents a detailed study of the structure of thin antimonene flakes. 

 

Figure 4.28 a) High resolution TEM image of a few-layer antimonene flake. The inset is a digital 

magnification of the area inside the blue rectangle. Bilayer antimonene structure was 

superimposed showing a good agreement with the hexagonal lattice. Lattice vector module is in 

good agreement with the crystallographic structure. b) High resolution AFM topographic image 

acquired on the bilayer terrace marked with a green arrow in figure 4.20d, showing atomic 

periodicity. The superimposed single-layer antimonene atomic lattice is compatible with the 

observed periodicity. Profile on the bottom was taken along the green line in the image. As in 

TEM, the measured distance for the lattice vector module is in good agreement with the 

crystallographic structure. 
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Figure 4.28a shows a high resolution Transmission Electron Microscopy (TEM) image of a 

few-layer antimonene flake. Images were obtained in a JEOL JEM 2100 FX TEM system 

with an accelerating voltage of 200 kV. The microscope had a multiscan charge-coupled 

device (CCD) camera ORIUS SC1000 and an OXFORD INCA X-Ray Energy Dispersive 

Spectroscopy (XEDS) microanalysis system. The image reveals very thin well-resolved 

terraces. The atomic structure from the different layers shows a clear hexagonal periodicity 

that corresponds to that expected for the  phase of few-layer antimonene. Figure 4.28b 

displays a high-resolution AFM topographic image taken in the lowest terrace of the 

isolated flake shown in figure 4.26d. The image shows an atomic periodicity again 

compatible with that expected for antimony. This image was acquired after exposing the 

flake to atmospheric conditions during more than two months. 

Figure 4.29 depicts XEDS microanalysis from the TEM system. 

 

Figure 4.29 XEDS microanalysis. 

 

XEDS microanalysis corroborates the composition of the isolated flakes. It can be observed 

that they are composed mainly of Sb. Copper peak on the right and its surrounding peaks 

correspond to the supporting grating that was made of copper. Interestingly, the oxygen 

peak is very low, confirming the low degree of oxidation and hence chemical stability. 

DFT calculations were performed by Prof. Manuel Alcamí and Prof. Fernando Martín 

groups, considering one and two monolayers (ML) of antimony. As in the case of the 

MMX chains, a detailed description of the calculations is out of scope of this work, only 

the basic concepts to follow them are provided. The size of the supercell used is shown in 
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figure 4.30a. In order to mimic the experimental conditions, simulations were carried out at 

room temperature and also by including different solvent effects (water and oxygen 

environments). Perdew-Burke-Ernzerhof functional (PBE) [110, 111] was used for the 

geometry optimization and for the molecular dynamics simulations, and the Heyd-Scuseria-

Ernzerhof (HSE06) functional [112] for computing the band gap. These PBE and HSE 

functionals were employed because they are proved to accurately predict geometries and 

electronic properties respectively. As a reference, simulations were first performed at 0 K 

in vacuum. Figure 4.30a shows the geometry obtained in the case of one and two 

monolayers of antimony. The simulations predicted a hexagonal order (top view) with 

different heights for the atoms (lateral views), in good agreement with TEM and AFM 

measurements (figure 4.28). 

 

Figure 4.30 DFT simulations a) Top: top view atomic lattice of antimonene. Bottom: side view of 

mono- and bilayer antimonene lattices including water molecules as used for DFT calculations.  

b) Calculated densities of states (DOS) for 1ML and 2ML antimonene in vacuum at T = 0 K (black 

curves) and in the presence of a water solvent at T = 298 K (red curves) as a function of electron 

energy (referred to the Fermi energy, EF). 
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Figure 4.30b depicts the densities of states (DOS) for the 1ML and 2ML cases in vacuum at 

0 K and in water at room temperature. In simulations performed at room temperature, a 

slight deformation of the crystal structure (~ 5 % in Sb-Sb distances) in comparison with 

the case in vacuum is observed. The distance predicted between the centers of the second 

closest upper and lower water molecules is ~ 0.9 and ~ 1.5 nm for the monolayer and 

bilayer cases, respectively. Concerning the electronic structure, the calculated gap in 

vacuum for 1ML is 1.6 eV, which is in good agreement with previous calculations [94]. It 

is also observed that the band gap closes when going from 1 to 2 ML [94-96]. 3 layers up 

the band gap is closed and antimonene shows metallic character. Table 4.2 presents a 

summary of the calculated band gap values under different configurations. 

Table 4.2. Band gap obtained within the HSE method using different geometries and situations. 

1ML Band gap (eV) 

Vacuum – 0 K 1.59 

Vacuum – 298 K 1.28 

Water – 298 K 1.22 

Oxygen – 298 K 1.29 

 

 

As it can be seen, the effect of increasing temperature from 0 to 298 K is to reduce the band 

gap by approximately 0.3 eV. The effect of adding liquid water at room temperature is to 

reduce it a bit more (approximately 0.07 eV). Addition of oxygen did not have any 

observable effect. Consequently, the most likely value of the band gap at ambient 

conditions lies within the interval 1.2-1.3 eV. 

At some points, the AFM allowed locating small flakes presenting terraces with heights 

compatible with single-layer antimonene. Figure 4.31 depicts a detailed characterization of 

a single antimonene layer. Figure 4.31a shows a few-layer antimonene flake with a  

well-defined monolayer terrace located at its bottom. As for graphene, rippling is caused by 

conformation of antimonene to the underlying SiO2, and is not intrinsic [113]. The 

measured height of this terrace is ~ 0.9 nm (figure 4.31a,b) compatible with the presence of 

water layers as shown in figure 4.30a. It is widely assumed that under ambient conditions 

there exists an ever-present layer of adsorbed water (with a thickness of ~ 0.6 nm) which 

remains captured between the flakes and SiO2 [64, 114]. 
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Figure 4.31 AFM topographic images of an antimonene flake with a monolayer terrace at the 

bottom. a) AFM topographic image showing a ~ 0.2 m2 antimonene flake with terraces of 

different heights. The profile was taken along the blue horizontal line in the image. b) Height 

histogram of the image in a) where the different thicknesses of the terraces can be readily seen. 

For the sake of clarity, the substrate peak was cut to 12000 nm2. The minimum step height is  

~ 0.9 nm compatible with a single layer of antimony adsorbed on the presence of water layers.  

c) Same flake as in a) but after a nanomanipulation process. The lower terrace of the flake was 

folded upwards with the AFM tip resulting in an origami structure with different folds. The inset 

corresponds to the area of the origami where the lowest step height is found. d) Profile along the 

green line in the inset in c). The lowest step height is ~ 4 Å corresponding to single-layer 

antimonene. 

 

Since Raman spectroscopy failed to provide information on ultrathin antimonene sheets, to 

determine if this terrace was a monolayer nanomanipulation with AFM was performed, 

folding the layer into an origami structure (figure 4.31c). According to Geim and 

Novoselov [64] the identification of single graphene sheets can be unambiguously carried 

out by measuring the step height of single folds. In this case, the lowest step height is ~ 4 Å 

(inset in figure 4.31c and profile in figure 4.31d) that corresponds to a single layer of 

antimonene. Moreover, this origami nanomanipulation was performed several days after 

flake deposition on the substrate. The facts that the sheet folded without breaking and the 
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angles observed in the origami structure (mainly multiples of 60º, expected from a 

hexagonal atomic structure) show the mechanical stability of single antimonene sheets. 

Electrical characterization on few-layer antimonene flakes using Conductive-AFM was also 

performed, confirming again ambient stability. This characterization is shown in some 

more detail at the end of this section. 

To further confirm the effects of water in the flakes, AFM topographic images of the same 

flakes were acquired under different conditions. Figure 4.32 presents these results. 

 

Figure 4.32 AFM topography images of antimonene flakes showing environmental stability of 

antimonene. a) Image taken immediately after exfoliation. b) Same as in a) but two months later. 

c) Image taken immediately after b) but with the sample immersed in water. The inset shows 

atomic periodicity compatible with antimonene atomic lattice. The selected region was the same 

as in figure 4.26b. d) Profiles taken along the lines in a-c. 
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Figure 4.32a was obtained immediately after sample preparation. Then the sample was 

stored under ambient conditions for two months and the image in figure 4.32b was 

acquired. Figure 4.32c was obtained immediately after figure 4.32b but with the sample 

immersed in water. The inset in figure 4.32c presents a high-resolution image in the same 

flake as figure 4.28b but in this case acquired while the sample was still in liquid. The 

atomic periodicity is again compatible with that of antimony, confirming also the low 

reactivity of the flakes with water. Figure 4.32d shows the profiles along the lines in a-c. 

The similarity of the corrugation on the antimonene flakes confirms again the absence of 

environmental degradation. 

Nevertheless, while imaging in water a tendency of the smallest flakes to exfoliate when 

the AFM tip was scanned in contact with the flakes was observed. This suggested that 

water exfoliation assisted by ultrasounds could be a feasible way to obtain thin layer flakes 

of antimony, as we demonstrated in the work presented in reference [109] entitled “Few-

Layer Antimonene by Liquid-Phase Exfoliation”. A fast and simple method to produce 

highly stable isopropanol/water (4:1) suspensions of few-layer antimonene by liquid-phase 

exfoliation of antimony crystals is presented. The process was assisted by sonication and 

did not require the addition of any surfactant. Few-layer antimony flakes were 

characterized in a similar way as in the case of micromechanical exfoliation. Figure 4.33 

presents an example of the AFM characterization. The overall lateral dimensions of the 

isolated flakes are greater than 1-3 m
2
, presenting well-defined structures with all heights 

being multiples of ~ 4 nm. This height can be compatible with the presence of one or two 

layer heights, since as it is well-known the apparent AFM heights of layers obtained by 

Liquid-Phase Exfoliation (LPE) can be overestimated because of residual solvent [115, 

116], as well as contributions from effects such as capillary and adhesion forces [105]. 
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Figure 4.33 AFM characterization of liquid-phase exfoliated (LPE) few-layer antimonene flakes. a) 

AFM topographic image of LPE few-layer antimonene drop-casted onto SiO2 showing flakes with 

micrometer lateral dimensions. b) Height histogram of the image in a) where the different 

thicknesses of the terraces can be readily seen. For the sake of clarity, the substrate peak was cut 

to 2.5 m2. A constant minimum thickness of about 4 nm can be easily observed. c) AFM 

topographic image of a different region. The inset shows atomic periodicity in good agreement 

with the crystallographic structure. d) Profile along the blue line in c) showing the heights of 

different terraces. 

 

In reference [109] we also showed that the Raman signals were strongly thickness- 

dependent, which was rationalized by means of DFT calculations, explaining the observed 

absence of Raman signal for low height flakes. 

Since Raman fails to help identification of few-layer antimonene flakes, the optical 

properties of the antimonene thin flakes were studied, to allow a simple and quite accurate 

identification of the different thicknesses based on the optical contrast. The optical contrast 

of micromechanically exfoliated few-layer  antimonene (FL-Sb) flakes was measured 

using different illumination wavelengths in the visible spectrum, and their thicknesses 

using AFM. From these measurements and using a simple model based on the Fresnel law, 
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their refractive index and absorption coefficient in the visible spectrum (wavelengths 

ranging from 450 to 650 nm) was obtained. Hence, the optical microscopy data can be 

quantitatively analyzed to determine the thickness of the flakes in a fast and nondestructive 

way that will be useful for future nanodevice fabrication. 

Figure 4.34 shows optical and AFM characterization of FL-Sb flakes of a variety of 

thicknesses deposited on 300 nm SiO2/Si substrates. 

 

Figure 4.34 Optical and AFM characterization of FL-Sb flakes. a) and b) Optical microscopy images 

under white illumination of different FL-Sb flakes on a 300 nm SiO2/Si surface. c) and d) AFM 

topographic images of the areas inside the dashed squares in a) and b) respectively. Inset profiles 

were taken along the dashed lines in the images. 

 

It is possible to obtain an initial rough estimation of the thickness of the flakes due to a 

light interference effect, usually called interference color [117]. AFM allows for a more 

accurate measurement of the thickness of the flakes but at the price of much longer time for 

characterization. Hence, the optical method can be used for a fast discrimination of 

thicknesses that can be later fine-tuned by AFM. Different flakes with heights from tens of 

nm down to 2-3 nm (corresponding to ~ 4-7 layers) can be optically identified. As already 

shown, AFM revealed smaller crystals down to the single- and bi- layer cases in the 

surroundings of the larger ones but they were not large enough to be optically identified. 
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To study the optical contrast of these FL-Sb flakes, an approach based on the Fresnel law 

similar to the one developed by Blake et al. [118] was used. This method has been widely 

employed to study the optical contrast of different 2D crystals such as graphene [118-120] 

transition metal dichalcogenides [121-123], mica [108] or hexagonal boron nitride [124]. 

The optical contrast (C) depends on the flake thickness (d) and the illumination wavelength 

():  

C(d, λ) =  
Iflake−Isubstrate

Iflake+Isubstrate
           (4.8) 

where Iflake and Isubstrate are the reflected light intensities from the flake and the SiO2 

substrate, respectively. The reflected intensities for normal incidence of monochromatic 

light can be written as [118]: 

Iflake(d, λ) = |
r01ei(Φ1+Φ2) + r12e−i(Φ1−Φ2) + r23e−i(Φ1+Φ2) + r01r12r23ei(Φ1−Φ2)

ei(Φ1+Φ2) + r01r12e−i(Φ1−Φ2) + r01r23e−i(Φ1+Φ2) + r12r23ei(Φ1−Φ2)
|

2

 

Isubstrate(d, λ) = |
r02+r23e−2iΦ2

1+r02r23e−2iΦ2
|

2

          (4.9) 

 

where the subindexes 0, 1, 2, and 3 refer to the media: air, FL-Sb flake, SiO2, and Si, 

respectively. ñj () = nj – ij is the complex refractive index of medium j, j = 2πñjdj/ is 

the phase shift introduced by medium j, dj is the thickness of medium j, and 

 rjk = (ñj – ñk)/(ñj + ñk) is the amplitude of the reflected path in the interface between media 

j and k. Isubstrate is obtained by considering that medium 1 is air instead of a flake. The SiO2 

layer of thickness d2 is optically characterized by a wavelength-dependent refractive index 

n2 (λ) with no imaginary part [125], ranging from 1.465 at 450 nm to 1.456 at 650 nm. As 

the thickness of the Si layer is several orders of magnitude larger than that of the SiO2 

layer, it can be considered as a semi-infinite film. It is optically characterized by a 

wavelength-dependent refractive index ñ3 (λ) [125], ranging from 4.682 – 0.1491i at  

450 nm to 3.847-0.016i at 650 nm. Figure 4.35 shows a schematic diagram of the 

experimental setup.  
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Figure 4.35 Schematic diagram of the experimental setup. 

 

The contrast C was obtained from the optical images, the thicknesses of the different  

few-layer antimonene terraces were measured from AFM topography images and the 

wavelength of the incident light was selected by using narrow band-pass filters. Hence, in 

equations (4.8) and (4.9), for a given wavelength there are two unknown variables n1 and 1 

and a number of equations equal to the number of measured thicknesses. The solution of 

this system is, therefore, overdetermined and least-squares fitting was used to find ñ1 (). 

Since least-squares fitting can sometimes lead to different solutions with similar 

convergence criteria (this is a well-known problem in fitting methods), in such cases the 

solutions that best match the contrast observed in the optical images were chosen. More in 

detail, the optical contrast of 10 antimony flakes with thicknesses ranging from d1 = 2 up to 

d1 = 100 nm (~ 4 to 270 layers) was analyzed under a well-defined illumination 

wavelength. For this purpose, a Nikon Eclipse LV100 optical microscope using 

nonpolarized illumination at normal incidence with a 50× objective (numerical aperture  

NA = 0.55) was used. The illumination wavelength was selected by means of eight narrow 

band-pass filters (10 nm full width at half maximum FWHM) with central wavelengths 

450, 500, 520, 546, 568, 600, 632 and 650 nm purchased from Edmund Optics. Figure 4.36 

shows optical microscopy images of several flakes using white light (Figure 4.36a) and at 

selected wavelengths (Figure 4.36b-e). 
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Figure 4.36 Different optical images acquired by using white light a) and by using narrow bandpass 

filters (b-e): 500, 546, 600 and 632 nm respectively. 

 

The measured optical contrast vs. thickness for the four wavelengths in figure 4.36 is shown 

in figure 4.37. The optical contrast accurately follows equations (4.8) and (4.9). Solid lines 

correspond to fits to the Fresnel law choosing the FL-Sb complex refractive index values 

that best fit (within the above-mentioned criterion) the experimental data for each 

wavelength. 

 

Figure 4.37 Measured optical contrast (small dot symbols) of few-layer antimonene flakes on a  

300 nm SiO2 substrate versus their thickness from AFM measurements at different illumination 

wavelengths  (in nm): 500 a), 546 b), 600 c), and 632 d). Solid lines and shaded areas are the 

contrast and its uncertainty obtained from the fit to the Fresnel law. Note that b), c), and d) were 

vertically displaced by 1, 2, and 3 units, respectively, for the sake of clarity. 
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The complex refractive index for FL-Sb obtained from similar fits as in figure 4.37 at 

different illumination wavelengths is shown in figure 4.38.  

 

Figure 4.38 a) Determined refractive index (blue open circles, left axis) and extinction coefficient 

(red solid circles, right axis) of FL-Sb as functions of the incident wavelength. b) Determined 

absorption coefficient (black solid squares) of FL-Sb as a function of the incident wavelength. In 

both a) and b) the shaded areas represent the uncertainties in the data. 

 

Figure 4.38a shows the real (n, refractive index) and imaginary (, extinction coefficient) 

parts of the FL-Sb complex refractive index in the visible spectrum. Figure 4.38b shows the 

absorption coefficient, which is obtained from the extinction coefficient using the relation  

 = 4π/ [126] and is usually expressed in cm
-1

. The absorption coefficient describes the 

decay in the light intensity as the light traverses through the unit distance in a medium. 

The results obtained for the complex refractive index and absorption coefficient as 

functions of the wavelength are in good agreement with previous theoretical calculations of 

these magnitudes for single-layer antimonene, performed over broader spectral ranges [101, 

102]: the refractive index, n, in the visible range is around 1.5 and the extinction 

coefficient, , around 1.2. Both magnitudes calculated for single-layer antimonene [101, 

102] show similar dispersion relations despite lower values for the extinction coefficient. It 

is interesting to notice the behavior of the absorption coefficient, , which shows an 

increase from the IR to the UV zone, starting more markedly from a resonance at  

 ~ 580 nm. This tendency of the absorption process is predicted by the theoretical 

calculations, starting in the IR part of the spectrum and peaking in the UV part. To gain 

further insight into the physical origin of the observed behavior, a simple analytical model 

can be applied to describe qualitatively the dispersion relation of the obtained complex 

refractive index. The two-pole Sellmeier equation [127] was employed, which is commonly 

used to determine the dispersion of light in a medium. It takes the form: 
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n2(λ) = A +
B1λ2

λ2−C1
+

B2λ2

λ2−C2
         (4.10) 

where n is the refractive index and  the wavelength. The first and second terms represent, 

respectively, the contribution to refractive indexes due to higher energy and lower energy 

gaps of electronic absorption. The last term accounts for the decrease in refractive indexes 

due to lattice absorption [127]. Figure 4.39 shows the fits of the refractive index and 

extinction coefficient to the two-pole Sellmeier equation. 

 

Figure 4.39 Refractive index vs. wavelength fits to the two-pole Sellmeier equation. Vertical 

dashed lines point resonances in the fitted curves. 

 

Although fitting is not accurate, fits seem to show an absorption resonance around  

575 - 600 nm (in good agreement with that observed in the absorption coefficient, ), that 

could be related to the presence of an electronic gap around these values. 

In order to determine the optimal conditions for the optical identification of ultrathin 

antimonene layers, the calculated contrast as a function of incident light wavelength and 

SiO2 thickness is plotted (figure 4.40). The optimal conditions for the optical identification 

are defined as the combination of wavelength and thickness that maximizes the absolute 

values of the layer contrast. To this end, the obtained complex refractive index of FL-Sb 

was used to calculate the optical contrast of antimonene flakes, considering a thickness of 

3.73 Å for the monolayer (figure 4.25). Although quantum confinement and/or excitonic 

effects can affect the optical properties, the use of the obtained complex refractive index 

can help to find the optimal conditions to visualize single- and bilayer antimonene crystals, 
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as it is commonly done in the literature with other monolayer materials, where the 

refractive index of the bulk material is employed to study the optical properties of ultrathin 

crystals, including materials presenting a dependence of the band gap on the number of 

layers [118, 121, 128]. 

 

Figure 4.40 Optical contrast as a function of incident light wavelength and SiO2 layer thickness for 

antimonene. 

 

Figure 4.40 shows two characteristic negative-contrast bands centered at thicknesses of 80 

and 230 nm (at 450 nm wavelength) that shift towards higher thicknesses with increasing 

wavelength. In particular, the highest contrasts are found for thicknesses around 80 and  

220 - 250 nm at wavelengths below 550 nm. For the cases of the two most commonly used 

substrates, with SiO2 thicknesses of 90 and 300 nm, whereas the wavelengths for the 90 nm 

substrates are very similar to those for the optimal 80 nm case, for the 300 nm thickness 

(the thickness used in the present study) the optimal wavelength is ~ 580 nm. This 

wavelength is indeed close to the one which the human eye has maximum sensitivity        

(~ 562 nm) [129], which might help to detect the lower terraces when using substrates with 

this oxide thickness. In this case, the use of light illumination at this wavelength will ease 

the optical identification of ultrathin antimonene layers (see figure A4.7a in the Appendix). 

A similar contrast plot was obtained estimating theoretical (n, ) values for monolayer 

antimonene in the visible region from reference [101] (figures A4.7b and c in the 

Appendix). Despite a decrease in the contrast magnitude, the behavior is similar, presenting 

the same two characteristic negative-contrast bands as in figure 4.40, leading to similar 

optimal conditions for the optical identification of FL-Sb flakes. 

300250200150100500

650

600

550

500

450

SiO2 thickness (nm)

W
a

v
e

le
n

g
th

 (
n

m
)

0.01

-0.09



Chapter 4. New low-dimensional materials. 

 

243 

 

To end this section, preliminary results on the electrical characterization of few-layer 

antimonene are presented. Since the size of the antimonene flakes was very small, we 

developed Probe-Assisted Nanowire (PAN) lithography, described in Chapter 3, to create 

electrical contacts on different FL-Sb flakes. C-AFM was used to probe their electrical 

properties at room temperature. The ~ 150 m long Au nanowires path presented in 

Chapter 3 was indeed fabricated to contact three different FL-Sb flakes. Figure 4.41 shows 

AFM topographic images of the studied flakes, whose thicknesses varied from  

~ 3.5 to 21 nm.  

 

Figure 4.41 Setup for the electrical characterization of FL-Sb flakes. a) AFM topographic image of 

the whole area under study. This image is a collage of AFM images of smaller areas following the 

Au path, hence the absence of any feature far from it. A diagram of the electrical circuit for one of 

the flakes was included for the sake of clarity. On the bottom left corner a micrometer size gold 

electrode created by thermal evaporation assisted by stencil mask can be seen. b) Details of the 

studied FL-Sb flakes. Flakes are designated with the numbers shown in the bottom right corners: 1, 

2 and 3 from left to right. 
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ElectriMulti75-G probes from BudgetSensors [30] were employed. C-AFM measurements 

were performed by using a metallized AFM tip as a second mobile electrode to measure the 

current in the flakes as a function of their distance to the Au nanowire electrode. As in the 

case of the MMX chains presented at the beginning of this chapter, images were acquired in 

AM-AFM mode and at selected locations the tip was brought into contact to perform IV 

characteristics (see Chapter 1, conductive AFM section). Figure 4.42 presents electrical 

characterization of the FL-Sb flakes in figure 4.41.  

 

Figure 4.42 Electrical characterization of FL-Sb flakes. a) AFM topographic image of flake 1. Spots 

where IV curves at different tip-electrode distances were acquired are marked with different 

symbols. b) Representative IV curves at different tip-electrode distances for the middle terrace in 

flake 1. c) Resistance vs. Length plots obtained from IV curves in the different terraces in flake 1 as 

pointed by the symbols in a). Dashed lines are linear fits for data from each terrace. No significant 

differences in the slopes are found within error (contact resistance was subtracted in this plot for 

clarity). d) Resistance vs. Length plots from similar IV curves as in b) obtained in the different 

flakes using different AFM tips. Red: flake 1, blue: flake 2, gray: flake 3. Symbols are experimental 

values and lines are linear fits to these experimental data. Solid symbols with solid fit lines 

correspond to data acquired with one tip whereas empty symbols with dashed fit lines correspond 

to data acquired with another tip. 
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Figure 4.42a shows an AFM topographic image of flake 1. The locations where IV curves 

were acquired are marked with different symbols. Figure 4.42b shows representative IV 

curves acquired in flake 1 at different tip-Au electrode distances. The linear dependence of 

the IV curves is in good agreement with theoretical calculations for thicknesses above 3 

layers, where no band gap is expected, and is another proof of the high stability of 

antimonene to ambient conditions. The linear shape of the curves is also indicative of good 

electrical contacts between both tip-sample and sample-Au electrode. Figure 4.42c presents 

the dependence of the resistance with the distance between electrodes for the spots marked 

with symbols in figure 4.42a. Neither significant differences among terraces nor correlation 

with the terrace height can be found. Figure 4.42d presents Resistance vs. Length curves for 

the three studied flakes using two different AFM tips. As it was done in Chapter 3 when 

studying graphene contacted through PAN lithography, linear fits allow extracting the 1D 

resistivity, 1D = dR/dL, from the slopes and contact resistances, Rc, from the intersections 

for L = 0. As expected, it can be observed that, disregarding the contact resistance, the 

slope for each flake is independent of the tip. 

Since the dimensions of the flakes are very well characterized from the AFM images, the 

sheet resistivity, 2D can be calculated from the 1D, in a same manner as it was done in 

Chapter 3 for graphene, using equation (3.1). For conventional 2D materials, the sheet 

resistance depends on thickness. Interestingly, this tendency is not observed for the 

measured few-layer antimonene flakes. In this case, 2D yields an average value of  

1300 ± 400 /□. This result is in good agreement with theoretical calculations that are 

being currently carried out by the group of Dr. Juan José Palacios, which show that  

few-layer antimonene band structure presents surface states that make the conductance of 

the flakes independent of its thickness. Figure 4.43 presents the calculated band structure of 

a 7-layer flake in vacuum and also including water. 
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Figure 4.43 Band structure of 7-layer antimonene. Solid (dashed) lines correspond to spin up 

(down). Blue (red) corresponds to the layer in the top (bottom). a) Band structure from 

calculations in vacuum. Spin up and down are superimposed. b) Including water molecules. The 

inset shows a side view of the atomic configuration with the water molecules used for the 

calculations. 
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According to the calculated band structure for FL-Sb in vacuum and including water to 

somehow mimic ambient conditions, these surface states, which are given by the Dirac 

cones in the  point and the hole pockets nearby, are very robust and do not vanish in 

ambient conditions, pointing to topological protected surface states. Thus, an essential role 

of these surface states is expected in the electrical conduction of few-layer antimonene 

flakes. In particular, as commented above, these surface states originate the absence of 

thickness dependence on the electrical properties of FL-Sb flakes, as the experiments 

suggested. According to theoretical calculations, this behavior is expected at least up to 

approximately 100 layers (~ 40 nm) where bulk states start to be dominant [130]. 

A direct comparison of the 2D values obtained in similar conditions for graphene in 

Chapter 3, 2D-G = 670 /□, and for FL-Sb now, 2D-FLSb = 1300 /□, suggests a 

bidimensional electrical transport, in good agreement with the theoretical calculations that 

are being carried out. From the band structures in figure 4.43, it can be seen that, since the 

two Dirac cones in FL-Sb are almost superimposed, backscattering between them is likely 

to occur, and then, assuming similar carrier concentrations in both graphene and FL-Sb, the 

resistivity in this latter case is expected to be comparable but larger than in graphene, as 

observed experimentally.  

From the obtained 2D value for FL-Sb, the mobility can be roughly estimated using the 

expression: 

μ =
σ2D

e n2D
          (4.11) 

where  is the mobility in cm
2
 V

-1
 s

-1
, 2D the bidimensional conductivity in S, e the 

electron charge in C = V S s and n2D the bidimensional carrier concentration in cm
-2

.  

2D can be obtained from 2D, 2D = 1/2D and n2D can be calculated from the band 

structure, counting the number of carriers per unit area in the surface states, resulting in  

n2D ~ 6.10
12

 cm
-2

. This figure is in good agreement with a back-of-the-envelope calculation 

comparing this band structure with that of graphene. In the first Brillouin zone graphene 

presents 4 Dirac cones, whereas few-layer antimonene presents a central Dirac cone and 6 

pockets. Therefore, assuming a similar Fermi level, in this case n2D could be roughly 

estimated as 7/4 of the graphene carrier density, which coincides fairly well with the value 

from more sophisticated calculations. A mobility  ~ 800 cm
2
 V

-1
 s

-1
 is obtained, in good 

agreement with theoretical predictions [96-98]. This high mobility turns antimonene as a 

promising candidate for nanoelectronics and optoelectronics. 

As mentioned at the beginning of this section, these are preliminary results and calculations 

are still being carried out, but initial comparison between experimental results and theory 

seems to agree fairly well, pointing to exciting electrical properties of few layer 

antimonene. 
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In summary, it has been demonstrated that single layers of antimony, named antimonene, 

can be produced by mechanical exfoliation. These flakes are not significantly contaminated 

upon exposure to ambient conditions and they do not react with water. Different techniques 

have been used to characterize its properties, showing remarkable chemical, mechanical 

and electrical stabilities under ambient conditions. Few-layer antimonene flakes produced 

by liquid phase exfoliation have been also characterized along this work. DFT calculations 

confirm the experimental observations and predict a band gap of 1.2-1.3 eV in ambient 

conditions for single-layer antimonene, which is smaller than that calculated under vacuum 

conditions at 0 K, and within the range of optoelectronics applications. 

Since both experimentally and theoretically it has been observed that Raman spectroscopy 

fails to provide information on few-layer antimonene, we have demonstrated that optical 

microscopy can be used as a simple tool to identify ultrathin antimonene crystals and to 

distinguish them from thicker flakes. The dependence of the optical contrast on the flake 

thickness and the illumination wavelength of few-layer antimonene flakes on SiO2/Si 

substrates, produced by mechanical exfoliation of bulk antimony crystals, have been 

studied. From the contrast versus thickness measurements, applying a Fresnel-law based 

model, the refractive index and the absorption coefficient in the visible spectrum of these 

ultrathin antimonene flakes has been determined. The optimal combination of wavelength 

and SiO2 thickness to better identify mono or few-layer antimonene crystals has been 

studied. The results presented here will allow identifying and determining the thickness of 

the flakes in a fast and non-destructive way and will ease the integration of ultrathin 

antimonene crystals on future nanodevices. 

Preliminary results on the electrical properties of few-layer antimonene flakes have been 

presented. FL (> 5 layers) antimonene flakes show metallic characteristic in good 

agreement with theoretical predictions. The experimental electrical properties reported 

herein are in good agreement with theoretical calculations still ongoing, pointing to a 

conduction governed by surface states in few-layer antimonene.  

Altogether, this work confirms antimonene as a highly stable 2D material with appealing 

properties and promising relevant applications in optoelectronics. 
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4.5 Conclusions 

 

In this chapter three different studies on low dimensional materials have been presented. In 

all of them, AFM has proven to be an essential tool for their characterization as well as for 

their manipulation. 

In the first section, the reversibility of the MMX crystal-to-solution has allowed to isolate 

on surface few to single MMX chains by adjustment of simple experimental parameters 

(solvent and concentration). AFM imaging of individual bundles and chains has allowed 

carrying out electrical transport characterization along the MMX chains, demonstrating 

their high electrical conductivity and confirming these polymers as excellent molecular 

wires with a very low  decay factor. 

In the second section, the application of very controlled local ultrahigh pressures with AFM 

diamond tips to tune graphene properties has been presented. Evidences of the possibilities 

that this procedure offers in graphene, including local tuning of doping, enhancement of 

contact resistance, suitability as a protective coating and improvement in sealing actuation 

have been demonstrated. Preliminary DFT calculations point to the presence of a small 

degree of chemical bonding between graphene and SiO2 within the modified areas. These 

results confirm AFM ultrahigh pressure as an easy and powerful procedure to locally tune 

2D materials properties, opening new possibilities, such as locally modifying the 

optoelectronic behavior of other 2D materials or the study of chemical reactions at 

ultrahigh pressures by trapping molecules between graphene and substrate. 

In the third section, the isolation and characterization of a novel 2D material, antimonene, 

has been presented. Theoretical calculations predict a variety of very interesting properties, 

including the aperture of a gap for the monolayer case suitable for optoelectronics 

applications and bidimensional electrical conductivity. High stability under ambient 

conditions has been demonstrated, together with relevant optical and exciting electrical 

properties overcoming some of the drawbacks observed in black phosphorus. The results 

presented here are probably just the tip of an iceberg and we are sure there will be a 

blossoming of relevant studies on this topic in the near future. 
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4.6 Appendix 

 

MMX fibers of different structures 

 

Figure A4.1 AFM topographic images of [Pt2(RCS2)4I]n (R = Me (a), Et (b) and Pen (c)). Total Z range 

= 30 nm. 
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Vacuum effect on drop casted MMX fibres 

 

 

Figure A4.2 Effect of vacuum on drop-casted MMX fibres. a) Topographic AFM image of initial 

sample with and EGF electrode. b) Same as a) after 5 h at 10-5 hPa. Total Z range = 60 nm in both 

AFM images. c) Electrical characterization of representative fibres of similar dimensions before 

and after vacuum. Resistance values obtained at 2 V Bias voltage. No morphological or electrical 

changes can be appreciated. 
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Temperature effect on drop casted MMX fibres 

 

 

Figure A4.3 Effect of temperature on drop-casted MMX fibres. a) Edge-enhanced topographic AFM 

image at room temperature. b) Same as in a) at 50C. Loss of material and fractures on the fibre 

are clearly visible. 
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Raman mapping of graphene upon ultrahigh pressure modifications 

 

Figure A4.4 Raman mapping of different magnitudes of ultrahigh pressure modified areas.  

a) G peak. b) 2D peak. Left panels: peak position shift. Right panels: full width at half-maximum 

(fwhm) variations. 
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Absence of Raman D peak on graphene upon ultrahigh pressure modifications 

 

 

Figure A4.5 Raman spectra around 1350 cm-1. No D peak is observed at any pressure.  
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Ultrahigh pressure graphene modifications stability 

 

 

Figure A4.6 AFM topographic images of modified regions. a) After EGF soft electrode contact for 

KPM measurements. b) Four months after a). Total Z range = 9 nm. The modified regions did not 

change, presenting the same depths. 
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Optical contrast as a function of incident light wavelength and SiO2 layer thickness 

for monolayer antimonene 

 

Figure A4.7 a) Optical images at white light and different wavelengths of one of the thinnest flakes 

deposited on 300 nm thickness SiO2/Si substrates. The best identification can be performed at 568 

and 600 nm wavelengths, in good agreement with the optimal value obtained from the contrast 

plots (which corresponds to the wavelength inside the dotted green circle in b), ~ 580 nm).  

b) Optical contrast as a function of incident light wavelength and SiO2 layer thickness for 

monolayer antimonene from the obtained complex refractive index. c) Same as in b), but in this 

case complex refractive index was estimated from calculations of Singh, et al. [101]. The behavior 

of the contrast is similar in both cases, presenting the same two characteristic negative-contrast 

bands. Contrast ranges from -0.09 to 0.01 in both plots. 
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5.1 Conclusions and prospects 

The great potential of Atomic Force Microscopy (AFM) to study low-dimensional systems 

has been highlighted along this manuscript. The versatility of this instrument has allowed 

studying the behavior of a variety of relevant systems in different configurations. 

Experiments in this PhD started aiming at electrical characterization of individual chains of 

MMX polymers from a drop-casting approach and studying different properties of  

2D materials. The lack of adequate techniques to create electrical contacts on the MMX 

chains and/or nanometer-sized objects led us to develop new approaches to electrically 

contact them. While optimizing these procedures, our interest in the AFM technique itself 

drove us to its improvement when applied in liquid media, optimizing its performance in 

different acquisition modes for high resolution of nucleic acids and developing the MFM 

technique in liquids. In the last part of this PhD, we have focused on the study of the 

electronic and optical properties of 2D materials, in particular graphene and antimonene. 

This last one was indeed isolated along this PhD for the very first time. Characterizations of 

these systems with other complementary techniques, as for instance Raman spectroscopy, 

Electron Microscopies or X-ray Photoelectron Spectroscopy (XPS), as well as comparison 

with theoretical calculations, have allowed gaining insight of their multiple properties. The 

main achievements of this PhD are summarized here. Open questions and prospects arising 

from the research and instrumental development carried out are also presented. 

 

 Two major instrumental developments have been presented:  

An experimental setup to allow simultaneous AFM and Total Internal Reflection 

Fluorescence Microscopy (TIRFM) has been designed, assembled and tested. It enables a 

variety of measuring modes and user configurable options, through the use of WSxM as 

control software. It exhibits high stability, being able to image virus like particles with 

resolutions comparable to the state of the art high resolution images found in the literature. 

Albeit this system has shown a promising performance, it still needs more testing. Updates 

and improvements will show up while the system is being used. For example, a precise 

temperature control of the sample will be a very interesting option, as well as the possibility 

to change the sample buffer in operando. The combination of a fast Z piezo actuator 

located in the probe holder for operation in liquid environments will allow faster scanning, 

including a faster Jumping mode performance. Or the use of the 100 x 100 m
2
 version of 

the piezo scanner (which is already commercially available) will extend the system 

capabilities to higher entities, as for example cells.  

A probe station setup for the electrical characterization of micro- and nano- materials and 

devices at temperatures ranging from 80 to 400 K, in a controlled atmosphere, has been 

designed, assembled and tested. Preliminary results on a novel 2D coordination polymer 
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have been presented, demonstrating the probe station ready for the measurements it is 

intended for. 

A natural update of the probe station is the assembly of another two X, Y, Z motorized 

stages for a 4-terminal setup. Further development in the system is currently in progress to 

allow reaching lower temperatures, ideally down to liquid helium (LHe) temperature  

(~ 4 K). For this purpose, a continuous flux LHe cryostat has been designed and it is now 

under construction in SEGAINVEX. Figure 5.1 shows a schematic of this new cryostat. 

 

Figure 5.1 Schematic of the liquid helium cryostat designed for the probe station. The cryostat will 

be inserted in the same vacuum chamber used for the current probe station set up. 

 

The two developments presented here have been carried out on a cross-cutting basis, 

originated by investigations related to the results presented along this PhD, and thanks to 

the group long-standing tradition in developing instrumentation and my previous 

experience in instrumental development. These two instruments will allow experiments that 

were inaccessible in the group. They will open new lines of research and collaborations 

with other groups, enabling the advance of different research fields. For example, in the 

case of the AFM/TIRFM combination a collaboration with Prof. Trevor Douglas (Indiana 

University) will study the disassembly of P22 virus like particles internally functionalized 

with green fluorescence protein (GFP). An in the case of the probe station, the study of 

electrical properties of the so-called smart materials, in particular coordination polymers, is 

already ongoing. After assembling and initial testing, the two developments have been 

inherited by new members of the group that are carrying out these experiments. 
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 Double-stranded RNA (dsRNA) has been imaged under near-physiological 

conditions at high resolution, resolving its A-form sub-helical pitch periodicity. Different 

high-sensitive force-detection methods have been employed, obtaining images with similar 

spatial resolution. A combination of experimental results and tip dilation simulations have 

shown that the limiting factors for high-resolution AFM imaging of soft materials in liquids 

are the force between tip and sample and the sharpness of the tip apex, rather than the 

imaging mode. 

Further work on this topic can be focused on better understanding the mechanisms that 

govern high resolution conditions in liquid media. For example, it has been observed 

experimentally that some tips, unable to provide high resolution in topography images, 

show double helix features on any of the auxiliary channels, as presented in figure 5.2. To 

understand this behavior, experimental results combined with much more realistic 

simulations, at an atomic level, in a fashion as simulations typically carried out by  

Prof. Rubén Pérez’s group in other systems, could shed some light. As already commented, 

a proper understanding beyond the rough model used in Chapter 3 will require 

sophisticated simulations. 

 

Figure 5.2 AFM images of dsRNA molecules in buffer conditions acquired in AM-AFM mode.  

a) Topography. b) Phase. Color scales (from dark to bright) were adjusted to enhance the 

corrugation observed along the dsRNA (1.4 nm and 50 total ranges). c) and d) Profiles along the 

lines in a) and b) respectively. Whereas the topography image does not present high-resolution, 

the phase image clearly resolves the double helix pitch. 
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 Magnetic Force Microscopy (MFM) in liquid environments has been presented. A 

fine tuning of the experimental conditions together with the use of DAM-AFM have 

allowed imaging magnetic nanostructures in liquids with a resolution close to ambient 

conditions. It has been applied to the study of Fe3O4 nanoparticles, detecting magnetic 

signals even from a single 30-nm size particle. Preliminary results with customized MFM 

probes point to an enhanced magnetic signal that will allow studying “bio-nano-magnetic” 

samples in physiological conditions, opening new possibilities in fields such as 

nanomedicine, nanobiotechnology or catalysis. Further work on optimizing these 

customized probes is still needed and is currently being carried out. 

In the context of “bio-nano-magnetic” samples, two collaborations have already started. 

First one is focused on studying magnetic bacteria, which are interesting entities for 

applications involving magnetic markers for biosensing. The second collaboration intends 

to study virus-like particles filled with a magnetic cargo, which are promising candidates as 

nano-containers for applications such as magnetic hyperthermia treatments. 

 

 Exfoliated graphite flakes (EGF) as soft-electrodes for the electrical contact of 

nano-objects have been introduced. This procedure takes advantage of all-dry viscoelastic 

stamping transfer methods to create microelectrodes, avoiding the harsh conditions of 

standard lithographic techniques. Multiple possibilities of EGF soft-electrodes have been 

presented, including electrical characterization of carbon nanotubes, MMX fibers, and 

graphene-based materials, as well as circuit repairing. Among the advantages of EGF  

soft-electrodes, two of them can be highlighted. First, it is a very cost-effective solution for 

creating microelectrodes with very well-defined edges and sub-micrometer positioning 

resolution. And second, and more important, it allows contacting molecules with limited 

stability under standard lithographic conditions. 

Up to now we have connected the EGF soft-electrodes to the macro-world by using  

hand-deposited silver paint contacts. Improvements on the technique could go through the 

use of a more reproducible way of connection to external devices. On this sense, a simple 

example could be the use of conductive pens, which are pens loaded with conductive inks, 

as for instance silver [1] or nickel [2] based solutions. By coupling this kind of pens to the 

XYZ micromanipulator used for the EGF transfer, a much more controlled creation of the 

final macro-contact could be achieved. Figure 5.3 shows photographs of these conductive 

pens.  
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Figure 5.3 Conductive pens. a) Silver based. b) Nickel based. Images taken from 

http://www.mcmelectronics.com and https://www.chemtronics.com respectively. 

 

 Probe-Assisted Nanowire (PAN) lithography has been presented. This technique is 

based on the adsorption of Au nanowires on the sample of interest and subsequent 

manipulation with an AFM probe to create nanoelectrodes, thanks to their cold welding 

ability. Albeit in this thesis two-terminal configurations have been used, employing a 

metallized AFM probe as a second mobile electrode, any electrical configuration can be 

created (two-terminal plus a gate voltage, four-terminal, etc.). PAN lithography presents a 

series of advantages that make us think it can revolutionize the way nanoelectrodes are 

fabricated so far. As in the case of the EGF soft-electrodes, Au nanoelectrodes created with 

PAN lithography avoid the harsh conditions of standard lithographic techniques. Electrode 

locations can be easily reconfigured, hence allowing multiple measurements in different 

features and/or configurations on the same sample. It allows probing the electrical 

properties of very small nano-objects, otherwise impossible to contact using conventional 

procedures. In this context, combination with thinner Au nanowires or nanorods (also 

commercially available), as depicted in figure 5.3, could enable electrical characterizations 

with nanometer-sized gaps in a very controlled way.  

 

 

Figure 5.3 Schematics of PAN lithography applied to measurements with nanometer-sized gaps. Au 

nanorods could be cold welded at the end of the nanowires to achieve even smaller gaps. 
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Albeit the operation principle of PAN lithography has been successfully demonstrated, a lot 

of work needs still to be done. Measurements in different terminal configurations and with 

different samples are being carried out to demonstrate all the potential of the technique. 

Longer Au nanowires would be desirable in order to facilitate the creation of 

nanoelectrodes assemblies minimizing the number of manipulations. In this sense, other 

metal nanowires should be explored, such as for instance silver nanowires, which are 

commercially available in lengths much longer than for gold, for example 50 nm diameter 

and 50 m long (http://novarials.com). Their dimensions and also their active role in the 

conduction properties of some materials (as for instance in the [Cu2.6I2.6(TAA)]n  

nano-films, presented at the end of Chapter 2) make them good candidates to explore for 

application in PAN lithography. A full development of this method is a potential topic for 

an ambitious research project. 

 

 Electrical properties of MMX chains obtained from a wet chemistry approach have 

been presented, going down to the single molecule level. The robustness of the assembly of 

highly conductive MMX chains by a simple drop-casting approach has been assessed by 

initially studying fibers of three different compounds, [Pt2(RCS2)4I]n, with R = alkyl group: 

Me, Et and Pen. Additionally, electrical characterization of the [Pt2(EtCS2)4I]n case down to 

individual chains has been performed, presenting a record electrical conductivity for long 

distances on the single molecule level, confirming MMX chains from a wet chemistry 

approach as very good candidates for molecular wires. 

The measurements performed here demonstrate the potential of MMX chains obtained from 

drop-casting. However, further characterization will shed light on their transport 

mechanisms. For example, electrical characterization of MMX fibres at different 

temperatures and/or in a Field-Effect Transistor (FET) configuration would be interesting 

to gain insight of the effect of disorder and doping on these structures. 

For the use of these MMX chains in real applications further improvements are required. A 

more controlled geometry of the resulting fibers would be desirable. This could be 

enhanced by a fine tuning of the deposition conditions. Additionally, by adjusting the 

chemistry of the self-assembling process, individual chains with a lower amount of defects 

could be created, increasing their already high conductivity. 

 

 Controlled tuning of graphene electronic properties upon ultrahigh pressure AFM  

(> 10 GPa) has been presented. This process enables the creation of different hole-doped 

graphene areas, as corroborated by Kelvin Probe Force Microscopy (KPM), Raman 

spectroscopy and X-ray Photoelectron Spectroscopy (XPS), allowing a very controlled and 

stable tuning of graphene doping level. One direct application of this doping is the 

http://novarials.com/
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improvement of the contact resistance of selected areas when using metal electrodes, a very 

relevant issue in the field of graphene electronics. Ultrahigh pressure modifications in 

graphene have provided as well evidence of its suitability as a protective coating and an 

easy way to improve sealing actuation, important for membrane applications. 

It remains still as a challenge the identification of the mechanism that keeps graphene so 

well coupled to the substrate. Preliminary DFT calculations suggest that a small degree of 

chemical bonding between graphene and SiO2 is needed for the irreversible coupling 

observed in the modified areas. The low bending rigidity of graphene, ~ 0.6 eV [3], allows 

it to easily accommodate to the substrate surface roughness. Thus, a very small amount of 

bonds are expected to be necessary, below the sensitivity of the instruments. A possible 

option to detect these bonds experimentally could be the use of atomically flat substrates, 

such as mica or sapphire single crystals, where a higher number of bonds would be 

expected. 

Results here presented open a lot of new possibilities. The controlled doping achieved here 

could be combined with other doping techniques (such as electrostatic gating, interface 

engineering, chemical approaches, thermal annealing or gas flow experiments), possibly 

resulting in unprecedented levels of controlled graphene doping. 

The application of similar procedures on the different elements and compounds of the  

2D family could enable the local tuning of their electronic properties. This can be 

particularly relevant in those materials presenting band gaps, since it would allow 

controlled local modifications of the band gap values. As in the case of graphene, it could 

provide as well an easy way to create areas with improved resistance for the positioning of 

metal electrodes, which will enhance their performance when incorporated to electronic 

devices. 

Our results could be also applied to heterostructures of 2D materials, which are isolated 

atomic planes of different species assembled into layer-by-layer structures in a precisely 

chosen sequence. The properties of different heterostructures, such as for example 

graphene/boron nitride, graphene/molybdenum disulfide, etc. and combinations of them 

could be locally tuned upon ultrahigh pressure modifications. 

In the membranes context, it is reported that graphene is “ultrastrongly” adhered to SiO2 

substrates by van der Waals forces [4]. Our results suggest that graphene adhesion can be 

locally increased, resulting in a “giant ultrastrong” adhesion, with relevance in membrane 

applications. An interesting measurement would be to quantify the adhesion energy in 

graphene modified upon ultrahigh pressure, as done by Koenig and coworkers in reference 

[4]. 

Another novel and appealing application would be the local study of chemical reactions 

upon ultrahigh pressures. Molecules could be trapped between a supporting substrate and a 
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graphene layer. Then, ultrahigh pressure could be applied to the system to induce chemical 

reactions otherwise very difficult to produce.  

All these possibilities will be explored in a new project that has been recently approved to 

study the properties of 2D materials at ultrahigh local pressures. 

 

 A new 2D material has been presented, antimonene, isolated along this thesis for the 

very first time. Theoretical calculations predict different interesting properties for this 

material, including a band gap opening when reaching the single layer regime, interesting 

for optoelectronic applications. It can be somehow compared to Black Phosphorus (BP), 

but without the high hygroscopicity (tendency to absorb water) in ambient conditions 

exhibited by BP. We have isolated single to few-layer antimonene on SiO2/Si substrates 

and given evidence of its high mechanical, electrical and chemical stability under ambient 

conditions and even immersed in water. Optical identification of few-layer antimonene has 

been performed, providing the optimal combination of illumination conditions and SiO2 

substrate thickness to ease its visualization. Preliminary results on the electrical properties 

of few-layer antimonene have been also presented, pointing to an exciting conductive 

behavior governed by topologically protected surface states. 

The isolation for the first time of antimonene has triggered the study of the many 

interesting properties that are predicted by theory, opening an exciting field to explore. 

Among one of the most relevant questions which is still elusive, we can find the 

experimental measurement of the band gap of single to few-layer antimonene. Theoretical 

calculations predict a band gap opening, ranging from ~ 1.6 to 2.3 eV depending on the 

authors [5, 6]. PAN lithography on micromechanically exfoliated flakes could be an option, 

but the low yield of single-layer terraces has hampered this measurement. A recent work 

producing single layer antimonene films by molecular beam epitaxy (MBE) on PdTe2 

substrates [7] could possibly help on this achievement. 

Many research groups have started experimental studies on antimonene encouraged by our 

results. Further fabrication methods, characterization and applications derived of its 

exciting properties are expected in the near future. 
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Conclusiones. 

 

A lo largo de esta memoria se ha mostrado el gran potencial de la microscopía de fuerzas 

atómicas (AFM por sus siglas en inglés) para el estudio de sistemas de baja 

dimensionalidad. La versatilidad de este instrumento ha permitido estudiar el 

comportamiento de diversos sistemas de interés, en diferentes configuraciones. La 

investigación llevada a cabo en esta tesis inicialmente estaba enfocada en dos aspectos. En 

primer lugar, al estudio de las propiedades eléctricas de cadenas individuales de polímeros 

MMX obtenidos por autoensamblaje en fase líquida. En segundo lugar, al estudio de 

diferentes propiedades de materiales bidimensionales (2D). La falta de técnicas adecuadas 

para contactar eléctricamente estas cadenas o nanoobjetos de dimensiones muy reducidas, 

nos llevó a desarrollar nuevos métodos para la fabricación de micro- y nanocontactos. A la 

vez que optimizábamos estos procedimientos, nuestro interés en la técnica del AFM por sí 

misma nos condujo a su mejora aplicada a medidas en medio líquido. Por una parte, 

optimizamos el funcionamiento de distintos modos de medida aplicada a la alta resolución 

de ácidos nucleicos. Y por otra, desarrollamos la técnica de microscopía de fuerzas 

magnéticas (MFM por sus siglas en inglés) aplicada a líquidos. En la parte final de la tesis, 

nos hemos centrado en el estudio de las propiedades electrónicas y ópticas de materiales 

2D, en particular de grafeno y antimoneno. De hecho, este último, hasta ahora solamente 

predicho teóricamente, ha sido por primera vez aislado en el desarrollo de esta tesis. La 

caracterización de estos sistemas con técnicas complementarias, como pueden ser 

espectroscopía Raman, microscopías electrónicas o espectroscopía de fotoelectrones 

emitidos por rayos X (XPS por sus siglas en inglés), junto con cálculos teóricos, han 

permitido obtener información de sus múltiples propiedades. A continuación se resumen los 

principales logros de esta tesis. 

 

 Se han presentado dos desarrollos instrumentales:  

Se ha diseñado, construido y probado un nuevo sistema de AFM que permite medidas 

simultáneas de AFM y microscopía de fluorescencia por reflexión total interna (TIRFM por 

sus siglas en inglés). La elección de WSxM como programa de control le permite una gran 

variedad de modos de medida y opciones configurables por el usuario. Presenta una alta 

estabilidad, siendo capaz de tomar imágenes de partículas víricas, obteniendo resoluciones 

comparables a las imágenes punteras en el campo presentes en la literatura. 

Se ha diseñado, construido y probado una estación de puntas para la caracterización 

eléctrica de materiales en la micro- y nanoescala, en un rango de temperaturas entre 80 y 

400 K y con un ambiente controlado. Resultados preliminares en un novedoso polímero de 



Chapter 5. Summary. 
 

274 

 

coordinación bidimensional han demostrado que la estación está lista para el tipo de 

medidas para las que fue diseñada. 

Estos dos desarrollos han sido realizados de forma transversal en el trascurso de esta tesis, 

originados por investigaciones relacionadas con los resultados que se han presentado en 

esta memoria. Se han llevado a cabo gracias a la larga tradición del grupo en desarrollo 

instrumental y a mi experiencia previa en instrumentación. 

 

 Se han obtenido imágenes de alta resolución de ácido ribonucleico de cadena doble 

(dsRNA por sus siglas en inglés) en condiciones próximas a las fisiológicas, resolviendo su 

estructura tipo A con resolución por debajo del paso helicoidal. Para ello, se han empleado 

diferentes modos de medida de alta sensibilidad para la detección de fuerzas, obteniendo 

imágenes con una resolución espacial similar independiente del modo de medida. Se ha 

llevado a cabo una combinación de resultados experimentales y simulaciones de efectos de 

dilatación de la punta del AFM. Dicha combinación muestra que, para la obtención con 

AFM de alta resolución en materiales blandos en medio líquido, los factores limitantes son, 

no tanto la elección de uno u otro modo de medida, si no la fuerza entre punta y muestra y 

el afilado de la terminación de la punta. 

 

 Se ha presentado la microscopía de fuerzas magnéticas (MFM) en líquidos. Un 

ajuste fino de las condiciones experimentales y el uso del modo de adquisición por 

modulación de la amplitud de excitación (Drive Amplitude Modulation, DAM-AFM en 

inglés) ha permitido visualizar nanoestructuras magnéticas en medio líquido con una 

resolución cercana a la obtenida en condiciones ambiente. La técnica de MFM se ha 

aplicado al estudio de nanopartículas de Fe3O4, detectando señales magnéticas incluso de 

partículas individuales de tamaño 30 nm. Estudios preliminares usando puntas magnéticas 

personalizadas, apuntan a la obtención de aumentos significativos en la medida de señales 

magnéticas. Dichas puntas, todavía en desarrollo, permitirán el estudio de muestras  

“bio-nano-magnéticas” en condiciones fisiológicas, abriendo nuevas posibilidades en 

campos como la nanomedicina, la nanobiotecnología o la nanocatálisis.  

 

 Se han presentado láminas de grafito exfoliado (exfoliated graphite flakes, EGF en 

inglés) como electrodos suaves para el contacto eléctrico de nanoobjetos. Este 

procedimiento aprovecha los métodos secos de transferencia mediante un sello 

viscoelástico para fabricar microelectrodos, evitando así las condiciones agresivas de las 

técnicas litográficas habituales. Se han mostrado ejemplos de las múltiples posibilidades 

que ofrece esta técnica: caracterización de nanotubos de carbono, fibras MMX obtenidas 
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por autoensamblaje en fase líquida y materiales basados en carbono, como grafeno 

exfoliado y grafeno reducido a partir de óxido de grafeno. De igual manera se ha mostrado 

su potencial para reparar microcircuitos. De entre las ventajas que ofrece esta técnica, 

podemos resaltar dos. En primer lugar, ofrece una solución muy económica para la 

fabricación de microcontactos, los cuales tienen bordes muy bien definidos y se pueden 

posicionar con resolución submicrométrica. En segundo lugar, y más importante, permite 

contactar eléctricamente moléculas con estabilidad limitada a las condiciones de las 

litografías estándar. 

 

 Se ha presentado la litografía de nanohilos asistida por sonda local (Probe-Assisted 

Nanowire (PAN) lithography en inglés). Esta técnica se basa en la adsorción de nanohilos 

de oro en la muestra de interés, combinado con su manipulación utilizando la punta de un 

AFM, para la fabricación de nanoelectrodos, aprovechando su habilidad para soldar a 

temperatura ambiente. Si bien en esta memoria se ha utilizado una configuración de dos 

terminales de medida, donde uno de ellos es una punta metálica de AFM que se utiliza 

como segundo electrodo móvil, esta técnica permite la fabricación de nanoelectrodos en 

cualquier configuración (dos terminales con voltaje gate, cuatro terminales, etc.). La 

litografía PAN presenta una serie de ventajas que nos hacen pensar que en un futuro podría 

revolucionar la fabricación de nanolectrodos. Como en el caso de los electrodos de grafito 

exfoliado, los nanoelectrodos fabricados con litografía PAN evitan las duras condiciones de 

las técnicas litográficas estándar. Además, las posiciones de los electrodos pueden ser 

fácilmente reconfiguradas, permitiendo así múltiples medidas en distintos nanobjetos y/o en 

distintas configuraciones dentro de una misma muestra. También permite la caracterización 

eléctrica de nanoobjetos de dimensiones muy reducidas, imposibles de contactar con los 

procedimientos habituales, y medidas con distancias entre electrodos de unos pocos 

nanómetros. 

 

 Se han obtenido y caracterizado eléctricamente fibras y cadenas de polímeros MMX 

obtenidas a partir de autoensamblaje en fase líquida, llegando hasta la obtención y 

caracterización de cadenas a nivel de molécula individual. La robustez del autoensamblado 

de estas cadenas altamente conductoras se ha verificado estudiando fibras de tres 

compuestos diferentes, [Pt2(RCS2)4I]n (R = grupo alquilo: Me - metilo; Et - etilo;  

Pen - pentilo). Además, en el caso del etilo, se han llegado a visualizar y caracterizar 

eléctricamente cadenas individuales, las cuales presentan el record de conductividad a 

largas distancias a nivel de molécula individual. Estos resultados confirman las cadenas de 

polímeros MMX obtenidas desde fase líquida como muy buenas candidatas a cables 

moleculares con aplicaciones en nanoelectrónica. 



Chapter 5. Summary. 
 

276 

 

 

 Se ha presentado la modificación controlada de las propiedades electrónicas de 

grafeno mediante la aplicación de presiones ultra altas (> 10 GPa). Este procedimiento ha 

permitido la fabricación de diferentes áreas de grafeno dopadas con huecos, tal y como han 

confirmado medidas de microscopía local de sonda Kelvin (KPM por sus siglas en inglés), 

espectroscopía Raman y XPS. Esto ha dado lugar a una forma muy controlada y estable de 

modificar el nivel de dopaje del grafeno. Una aplicación directa de este dopaje es la mejora 

de la resistencia de contacto de áreas seleccionadas, para la posterior colocación en ellas de 

electrodos metálicos. Este hecho es muy relevante en el campo de la electrónica basada en 

grafeno. Las modificaciones en grafeno a través de la aplicación de presiones ultra altas, 

han permitido mostrar evidencias de su aplicabilidad como recubrimiento protector de 

superficies. De igual manera, se ha demostrado que es una forma sencilla de mejorar su 

comportamiento en el sellado de microcavidades, hecho relevante para aplicaciones de 

grafeno como membrana.  

 

 Se ha presentado un nuevo material 2D, el antimoneno, hasta ahora sólo predicho 

teóricamente y aislado por primera vez en el desarrollo de esta tesis. Cálculos teóricos 

predicen muchas y muy interesantes propiedades para este material, incluyendo la apertura 

de un gap electrónico al llegar a la monocapa, con un valor muy atractivo para aplicaciones 

optoelectrónicas. De alguna manera se puede comparar al fósforo negro en su forma 

bidimensional, pero sin la relativamente alta reactividad de éste en condiciones ambiente. 

En esta tesis se ha aislado antimonene desde una única monocapa a unas pocas capas en 

sustratos de SiO2/Si. Se han dado evidencias de su estabilidad mecánica, eléctrica y 

química en condiciones ambiente, e incluso sumergido en agua. Se ha estudiado el 

comportamiento óptico de antimoneno de pocas capas, proporcionando la combinación 

óptima de iluminación y espesor del SiO2 del sustrato para facilitar su identificación óptica. 

También se han presentado resultados preliminares de las propiedades electrónicas de 

antimoneno de pocas capas, los cuales apuntan a un fascinante comportamiento de 

conducción gobernado por estados superficiales protegidos topológicamente. 

Muchos grupos de investigación han comenzado estudios en antimoneno alentados por 

estos resultados. Estamos convencidos de que en un futuro próximo aparecerán nuevos 

métodos para su fabricación, así como aplicaciones basadas en sus fascinantes propiedades. 
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