Esta es la versión de autor del artículo publicado en:
This is an author produced version of a paper published in:

Infancia y Aprendizaje = Journal for the Study of Education and Development

DOI: http://dx.doi.org/10.1080/02103702.2015.1111605

Copyright: © 2015 Fundación Infancia y Aprendizaje

El acceso a la versión del editor puede requerir la suscripción del recurso
Access to the published version may require subscription
The present paper deals with how 11th grade high school students and university undergraduate students studying Environmental Science use evidence to write an argumentative text. They were presented a dilemma with 4 sets of data (2 pro and 2 anti-nuclear energy). Half the sample was given the data in graph format and the other half in table format. The four sets of data differed according to their complexity. We analyzed the structure of argument, the use of the evidence (either provided or their own) according to the participants' position on the dilemma, and the presence of confirmation bias. Our results show a good argumentative competence that does not seem to be affected either by the students' educational level or data format. We observed an effect of the complexity of the data in relation to the participants' position.

Keywords: Argumentative structure, type and format of evidence, confirmation bias

Abstract

The present paper deals with how 11th grade high school students and university undergraduate students studying Environmental Science use evidence to write an argumentative text. They were presented a dilemma with 4 sets of data (2 pro and 2 anti-nuclear energy). Half the sample was given the data in graph format and the other half in table format. The four sets of data differed according to their complexity. We analyzed the structure of argument, the use of the evidence (either provided or their own) according to the participants' position on the dilemma, and the presence of confirmation bias. Our results show a good argumentative competence that does not seem to be affected either by the students' educational level or data format. We observed an effect of the complexity of the data in relation to the participants' position.

Keywords

Argumentative structure, type and format of evidence, confirmation bias

Resumen

El artículo presenta un trabajo sobre cómo estudiantes de Bachillerato y de Ciencias Ambientales usan la información para argumentar en un texto escrito. Se les planteó un dilema con 4 grupos de datos (2 a favor y 2 contra el uso de energía nuclear). La mitad de la muestra recibió la información mediante representaciones gráficas y la otra mitad mediante tablas. Estas representaciones diferían entre sí en su complejidad. Se analizó la estructura de la argumentación, el uso de la información dada y de la aportada por los participantes, en función de su posición en el dilema, y los posibles sesgos confirmatorios. Los resultados muestran una buena competencia argumentativa de los estudiantes que no parece verse influida por el nivel educativo, ni por los formatos de representación pero a la que afecta la complejidad de las representaciones y su relación con las posturas pro o antinuclear de los participantes.

Palabras clave

Estructura argumentativa, tipo y formato de información, sesgo de confirmación

Translated from Spanish/ Traducción del español: Jennifer Martin

Author’s Address / Correspondencia con los autores: Merce García-Mila, Universidad de Barcelona, Paseo Valle de Hebrón, 171, 08005 Barcelona, España. E-mail: mgarciamila@ub.edu
It is quite common in political debates for candidates to use different graphs and tables as a way of justifying their arguments or refuting the opposition. This type of behavior demonstrates the social and cultural value attributed to these external representations for the epistemic analysis and use of evidence. This value is also demonstrated by the fact that the comprehension of "non-continuous texts" (including graphs and tables) and of their argumentative use form part of educational objectives from different teaching levels and from the competencies measured in PISA reports. An analysis of the latest PISA reports (MEC, 2010) shows that Spanish Secondary Education students scored ten points below the OECD average (MEC, 2010) in aspects that involve going beyond data (relating, utilizing data to make predictions, or ultimately, to argue), in the area of reading as well as science and mathematics.

Numerous studies have indicated that university students' argumentative skills (for example, see Correa, Ceballos, & Rodrigo, 2003; Mateos, 2009) and their knowledge of representation systems (Pérez-Echeverría, Postigo, & Pecharromán, 2009) presented problems. It seemed that their abilities did not measure up to the set of competencies called "critical graphicacy" by Roth, Pozzer-Ardenghi and Han (2005), or in other words, the use of graphs to confirm or rebut their own theories or those of others and to give meaning to the data.

Although we have related argumentative skills with the comprehension and epistemic use of tables and graphs, we have not found studies connecting these aspects, and even less that compare different educational levels. The aim of this study is to precisely analyze how graphs and tables are used for forming arguments in a written text at different educational levels (High School and University).

Argumentative Competence
The ability to argue is a human skill that manifests throughout childhood (Mercier & Sperber, 2011). Nevertheless, its complex mastery is difficult. Human beings are not natural critical thinkers; argumentation is like ballet, a highly demanding activity that people can perform after years of reflective practice and specific training. The aim of analyzing the use of graphs and tables (with data for and against) in written reasoning entailed that we focus on the function of arguments departing from the dialectic structure of the text. Based on Toulmin’s (1958) and Kuhn’s (1991) research, we defined argumentative competence as the ability to integrate arguments into a framework of alternative evidence by means of justification, objection, and counter-argumentation (objection to the objection) (Van Gelder, 2007). Within the analysis of the use of evidence opposed to the claim itself, we also analyzed whether this evidence was biased with the intent of fitting the argument.

Toulmin (1958) established that any argument is a justified assertion (claim) whose validity is measured by the coherence of the connection between the claim and the evidence that is used to justify it. Toulmin defined this connection as warrant. Kuhn (1991) held that argumentation is essentially a dialogic process. All arguments develop an assertion within the framework of justifications and counterarguments. The information, therefore, is related to each one of the assertions and must be weighed through an internal dialogue process in which all the evidence is evaluated, assessing the merit of the alternatives. In this argumentative competence, the need to distinguish between the assertions and their justification, the assertions of others, and the ways of coordinating and contrasting them in order to support or rebut the claim is essential.

Many studies have focused on analyzing the structure of students’ arguments, whether in written texts (Kelly, Regev, & Prothero, 2008) or in conversation (Garcia-Mila,
Most of these studies analyzed argumentation drawing from Toulmin (1958) or from Kuhn (1991) (see review of Rapanta, Garcia-Mila, & Gilabert, 2013). Among these, age, educational level, and specific knowledge were studied to determine how they influenced argumentative competence. Diverse results were reported depending on how these variables had been conceptualized. Developmental studies showed that the ability to produce and to recognize the function of arguments could be observed during adolescence (Golder & Coirier, 1992; Felton & Kuhn, 2001). Mercier and Sperber (2011) upheld that this ability was spontaneous in children and could be observed before adolescence. Other studies revealed that the ability to produce supporting arguments appeared around 8-9 years of age (for example, Pontecorvo & Girardet (1993) showed how 81% of 9-year-old students justified their claims through arguments).

On the other hand, Kuhn (1991) provided data about the effect of general education on argumentative competence, comparing adults with and without a university education. Adults with expertise and a higher level of education demonstrated more advanced skills than those adults without such education (Kuhn, 1991). More concretely, the ability to coordinate a double perspective in order to generate arguments, in other words, to defend the one’s claim and to weaken the opponent’ (Kuhn & Udell, 2007), as well as the ability to produce counterarguments (Felton & Kuhn, 2001), were the competences found to be likely to improve with age and educational level. It seemed that the difficulty lies in integrating arguments from a double perspective (for and against the position), developing the dialectical characteristic of any argumentative process (Kuhn & Udell, 2007). The youngest students tended to strengthen the claims themselves and ignore the arguments that weakened the opposing position. This specific
skill (Kuhn & Udell, 2007) distinguished primary students from secondary students and adults (with or without university education), although the authors noted a marginally significant difference regarding academic training.

The effect of specific knowledge on argumentative competence has also been studied, but with far from conclusive results (Sadler & Zeidler, 2004). Sadler and Zeidler (2004) showed how university students with scientific training presented higher argumentative competence in a socio-scientific debate than their peers from other academic majors. However, Sadler and Fowler (2006) did not find any significant differences in further research when working with Secondary students who had different levels of knowledge regarding genetics. According to these results, these authors claim that the relationship between amount of specific knowledge and argumentative competence is not linear. There is a "threshold of knowledge" from which argumentative competence would not improve.

In addition, many studies have looked at the use of confirming and disconfirming evidence, which was another one of our study's aims. This analysis refers to confirmation bias in reasoning processes, known since Bruner, Goodnow, and Austin’s (1956) research. Are we more critical of evidence that refutes our theories and do we more easily accept information that confirms our claim? (Klaczynski & Gordon, 1996). Being more critical would lead to a higher degree of counterargumentation, which would involve deeper awareness in the processing of data. The tendency to collect evidence, ignore it and even reinterpret it so that it confirms one's own beliefs and theories has been reported throughout the years. This phenomenon, known as confirmation bias, is characterized as being heterogeneous since it involves cognitive as well as affective aspects. Nickerson (1998) defined it as the predisposition toward
searching for evidence in line with the supported claim, while at the same time ignoring opposing evidence. Developmental studies that compared adolescents and adults suggested that confirmation bias is a common and cross-cutting phenomenon (Chinn & Brewer, 1993).

In this study, in addition to argumentative structure and use of evidence, we have considered the way in which the evidence is presented. Despite the construction of scientific explanations being based on the effective and appropriate use of external representations (Sandoval & Millwood, 2005), studies that address the use of these representations in argumentation are quite scarce. Sandoval and Millwood (2005) showed how students cited data without any difficulty in an argumentative text; however, they often did not include sufficient evidence indicating the relationship between the claim and the data.

Use of External Representations

Studies on the use of external representations, either tables or graphs, have also shown that their epistemic use depends on academic level, knowledge of the represented content and the representation systems themselves, and the task's context and objectives (see reviews of Friel, Curcio, & Bright, 2001; Pérez-Echeverría, Postigo, & Marín, 2010; Shah, Freedman, & Vekiri, 2005).

These reviews revealed that most of the studies focused on how the characteristics of the representation systems themselves influenced the way in which readers perceived, processed, and were able to draw conclusions from the evidence. Kosslyn (2006) showed that tables were better than graphs to recall specific quantities, bar graphs were of more help in complex comparisons, and line graphs enabled better perception of
trends, extrapolation of data, and predictions (also see Gabucio, Martí, Enfedaque, Gilabert, & Konstantinidou, 2010; Postigo & Pozo, 2000; Wainer, 1992). Recalling specific quantities required a lower processing effort, and favored the presence of biases associated with memory, which seemed to imply that tables favored greater confirmation bias.

Effort was also related to the number of variables (in such a way that the greater the number, the more interpretation difficulties there were) and to the type of relationship between variables (for example, interaction relationships were more difficult to perceive and interpret) (Shah, et al. 2005). We also expected that the conceptual and theoretical complexity of the information being transmitted constituted another of the elements influencing the task's difficulty, although this was barely taken into account in the research (Pérez-Echeverría, Postigo, & Marín, 2013). All these variables appeared to be measured by the degree of knowledge regarding the content, even though literature on academic training was not conclusive.

In this study we analyzed how students at different educational levels (High school students/University Undergraduate Students) used different external representations (tables and graphs) of diverse complexity to argue for or against installing a nuclear power plant. The information shown in these representations was not conclusive: two were pro nuclear energy and the other two were against it. In addition, we took into consideration the number and the type of variables used in the representations, so that two of these representations were more complex than the other two, both in the number of variables and relationship among the provided evidence. The specific aims of the study are:
1. To analyze evidence use (the evidence included in the ER1 as well as evidence provided by the participants) when developing an argumentative text and its relationship to educational level, format (tables vs. graphs), ER complexity (number and variable type), and the participants' position on nuclear energy.

2. To analyze the function of the arguments in the text and their relationship to educational level, format (tables vs. graphs), ER complexity (number and variable type), and the participants' position on nuclear energy.

3. To analyze the presence of confirmation bias in argumentative texts according to educational level, format (tables and graphs), and the representations' complexity.

Method

Participants

The sample consisted of two groups of students with different educational levels: 36 11th grade science students and 57 Environmental Science undergraduate students. Each group was divided into two groups according to the task condition: 18 high school students (11th grade) and 29 Environmental Science undergraduate students solved the task with evidence presented in table format, whereas the other 18 high school students (11th grade) and 28 Environmental Science undergraduates solved the task with evidence presented in graph format.

Task and Procedure

The participants voluntarily worked on the argumentation task for an hour during their regular class (see Appendix I). The participants read a short text on the energy problems

1 We used the acronym ER throughout the text to interchangeably refer to a table or graph.
of a Catalan region. They were asked to write a text advising the mayors of the area, in which they analyzed the possibility of installing a nuclear power plant. To do this, they had evidence for and against this type of energy, which was organized either through tables (tables condition), or through graphs (graphs condition) (see Appendix I). The external representations (ER) presented different levels of complexity. ER 2 and 3 were more complex, since they included time series with different level variables. ER 2 was theoretically more complex, containing the nuclear waste management problems. RE 1 and 4 showed discrete information with just one variable.

The participants were tested through the use of a multiple choice test with 15 true or false items, in order to control for the students’ knowledge to interpret the ER. The number of correct answers was recorded.

Design

The design was quasi-experimental with a dependent variable (argumentative competence) and three independent variables: educational level (11th grade science students and Environmental Science undergraduates), evidence format (graph or table), and position on nuclear energy (pro and against). Argumentative competence was assessed by three parameters: evidence use, function of the arguments used, and the presence of confirmation bias.

Analysis Criteria

- The independent variable "position" was categorized from the participants’ responses in three categories; pro, against, or neutral (inconclusive text).
- The texts were segmented in such a way that each segment corresponded to an argument. Four of the authors agreed upon this segmentation.
• The segments were coded according to three complementary criteria, (see the
definition illustrated with an example below):

Evidence use (in relation to ER content):

Given argument (evidence provided by ER): “over time, the radioactive
wastes produced by nuclear energy that have increased the most are spills,
and not really the reused wastes.”

Semi-new argument (evidence related to ER, but with some new data or
evidence added): “radioactive waste management technologies are already
being developed for their reuse.”

New argument (relevant evidence added by the participant): “the research
on nuclear energy can be used as military weaponry.”

Argumentative function of the text:

Justification (segments that confirm the position about nuclear energy):

“waste management is very expensive.”

Objection (segments that disconfirm the position): “it is also true that its
production costs are very low.”

Counterargument (segments that disconfirm the objection itself and
therefore, support the claim of the initial argument): “but the medical
treatment of all the people affected by cancer offsets any benefit, be they
economic or social.”

Confirmation Bias:
With regard to evidence contrary to the thesis, it was dismissed, it was read incorrectly: “reused wastes have increased more than stored wastes in the last 10 years”, it was partially read: “reused radioactive wastes are growing or it was read subjectively: “nuclear energy generates little CO₂, but even so, it is a lot”.

Thirty percent of the texts were coded by four of the authors, whereas the remaining texts were coded by three of them, obtaining 84% in agreement on the type of segment (given, semi-new, or new) and 91% on the argumentative function. Disagreements were resolved by discussion.

Results

We begin with a description of some general aspects of the argumentative text, considering the whole sample and both representational formats. We will then move on to the results related to each of the study's aims.

Out of the total participants, 57 (62%) took positioned against nuclear energy (34 from Environmental Science and 23 from 11th grade); 31 (33.6%) were in favor (20 from Environmental Science and 11 from 11th grade); and 4 (4.3%) were neutral (3 from Environmental Science and 1 11th grader). Given that part of our analysis took into account the position defended in the text (pro- or anti-nuclear), we excluded the neutral texts. Thus, the final sample consisted of 88 participants, 54 from Environmental Science and 34 from 11th grade.

The means and standard deviations for the ER performance test were out of a maximum score of 15: 11th grade, 11.5 (1.6) in Tables and 12.0 (1.8) in Graphs; Environmental Science was 12.5 (1.2) in Tables and 12.7 (2.2) in Graphs. Therefore,
performance was good and there were no differences according to educational level or format.

The participants used an average of 7.72 arguments, of which almost half were based on the evidence offered in the ER (3.3), 1.88 were semi-new, and 2.55 were new. There were no differences in these means according to their position on the nuclear plants. More than half of the arguments were used to justify the thesis (4.3), a third showed the objections to the defended position (2.5), and a lesser amount was used to counterargue (0.84).

Evidence Use

Neither the educational level nor the format seemed to affect the participants' use of the representations. As observed in Tables 1 and 2, the average number of arguments generated by the students was similar across the two educational levels and the two types of ER.

Insert Table 1 and Table 2 approx. here

Therefore, the type of evidence used (given, semi-new, and new) did not seem to depend on educational level or the ER format. However, it did seem to depend on the complexity and the content of each representation as the following analysis showed:

ER1 was the most used (mean= 1.9 and SD= 0.31), followed by ER3 (mean= 1.86 and SD= 0.3), then ER2 (mean= 1.74 and SD= 0.3), and finally, the least used was ER4 (mean=1.70 and SD=0.4) in the total sample of students. The Friedman test for paired means comparison yielded significant results ($\chi^2(3), N = 88) = 20.1, p = .001$). These differences were maintained in both graphs and tables, as well as in educational levels, although they increased in the Environmental Science group.
It may be recalled that two of the ER presented pro-nuclear energy data (ER1 and ER3) and two were against (ER2 and ER4). Therefore, it seemed that pro ER were used more often. Furthermore, taking a look at the semi-new arguments related to each ER, significant differences existed among representations ($\chi^2(3)=18.7, p=.001$), with ER2 generating more semi-new arguments as the following means show: $ER2= 0.78 (0.9)$; $ER3=0.47 (0.7)$, $ER4 = 0.29 (0.4)$ and $ER1= 0.28 (0.5)$. It is interesting to recall that this representation, ER2, was also one of the most ignored.

In addition, argumentation differed according to the position taken regarding nuclear energy. Pro-nuclear participants generated more objections and more counterarguments (limitations: U-Mann-Whitney = 697.0, $p= .066$ [quasi-significant], counterarguments: U-Mann-Whitney = 625.0, $p=.001$) through new arguments than the anti-nuclear participants, whereas the number of justifications was similar. The pro-nuclear students also used less semi-new arguments for justifying (U Mann-Whitney = 674, $p =.053$) and less given arguments for objecting (U Mann-Whitney = 368.5; $p =.001$). These differences point out that arguing changed depending on whether the departure point was pro or against the nuclear claim.

Argumentative Function

The comparison of the means for argumentative function (justify, object, and counterargue) did not generate any significant difference between educational levels for any type of argument (Table 3).

| Insert Table 3 approx. here |

The differences according to ER format, were not significant either, except in the case of counterargument through new arguments, which were higher for students who in
the graph condition (Table 4) \((U \text{ Mann-Whitney} = 807, p = .058)\). It seems that the graphs inspired counterargumentation more than the tables.

Insert Table 4 approx. here

Therefore, there was a tendency to use evidence favorable to nuclear energy (ER1 or ER3). Evidence against it was not used as much (ER2 or ER4). This led us to question whether there was something specific in each ER that inspired its use. In the following analysis, we compared whether the argumentative function specifically varied for each ER depending on the position taken (Table 5).

Insert Table 5 approx. here

Even though there was almost twice as much participants against nuclear energy (57) than in favor (31), ER1 and ER3 were most used, both with pro-nuclear evidence. However, these representations were mostly used for objecting. It seems that ER1 and ER3 were easier to object to than ER2 and ER4.

Presence of Confirmation Bias

Table 6 presents data corresponding to the frequencies of confirmation bias on the use of each ER, specific for each confirmation bias category according to whether there was confirming or disconfirming evidence for the participants' position.

Insert Table 6 approx. here

The "ignore" bias had the greatest presence. The remaining indicators appeared much less frequently. Interestingly, this indicator appeared in both the disconfirming (Table 6) and the confirming evidence. The percentages for participants in favor of nuclear energy who ignored the pronuclear ER were: 9.7% for ER1 and 16.7% for ER3. Furthermore,
the percentages for participants against nuclear energy who ignored anti-nuclear ER were: 17.9% for ER2 and 21.4% for ER4. In contrast, the remaining confirmation bias indicators (incorrect reading, partial reading, or subjective reading) only applied to confirming evidence, with the exception of one student for ER1 and three students for ER2.

Regarding the frequencies corresponding to confirmation bias, we did not observe differences according to educational level (35.3% from 11th grade and 51.8% from University) or according to format (40% in Tables and 66% in Graphs). We want to point out that in the case of ER2 and ER4, there were more participants who used the evidence in a biased manner than in an unbiased manner (64% [9/14] in Table and 54% [10/17] in Graphs).

Discussion

Overall, our results show good argumentative competence. The data seems to indicate that the participants are able to integrate aspects in favor of and against nuclear energy in their texts (justifying and objecting). In addition, although it is to a lesser extent, they can also rebut aspects by means of counterarguments. According to the literature, the ability to produce arguments to justify a claim appears early. However, it also suggests that the ability to go beyond justification, using objections to the opposing claim and counterarguments for strengthening the claim itself, is more likely in adults than in adolescents and in adults with education than without it (Felton & Kuhn, 2001; Kuhn, 1991). We worked with high school Science students (11th grade) and Environmental Science undergraduate students. Our results show that the students not only mostly use the evidence provided for justifying their claims, but they also do so by providing new information more or less directly related. This ability does not seem to depend on
educational level (clearly related to age) or the data format. Unlike Kuhn (1991), we do not observe significant effects according to age. It is very probable that this difference is explained by the fact that the average age of our adolescent sample (16;8 years) is older than the adolescent sample from Felton and Kuhn's study (2001), which was 13 years.

Furthermore, our research allows us to analyze the ability to coordinate the arguments that strengthen one’s claim itself and to generate arguments that weaken the opposing position. Presenting a dilemma with two opposing claims (pro and anti-nuclear energy) with four external representations (ER), two in favor and two against, seems to activate the presence of an argumentative context (Mercier & Sperber, 2011) and allows coordination to be observed in the use of all the ERs, for justification as well as for objection and counterargument. Our results indicate no effect of educational level regarding this competence. In this respect, our results are discordant with those from Kuhn (1991), although in the study from Kuhn and Udell (2007), the effect from educational level in this competence was only marginally significant.

We could ask ourselves whether this absence of differences would remain with more conceptually complex tasks. According to Sadler and Fowler (2006) a threshold of specific knowledge is necessary to be able to argue. Beyond this threshold, differences in the quality of the arguments would not be observed. Our participants may have surpassed this threshold. In a further study, we are analyzing these same tasks with High School Humanities students and Psychology undergraduate students, where we will be able to test the alternative hypothesis on the effect of specific knowledge and/or educational level.
Surprisingly, we do not find differences regarding the effect of evidence format (tables or graphs) either. According to Kosslyn (2006), the presentation of information in graph format should stimulate deeper knowledge of the data and therefore, we infer that, in agreement with Klaczynski and Gordon (1996), it may generate a greater frequency of rebuttals (objections and counterarguments) in the graphs. However, our results do not confirm this hypothesis.

According to the literature (Wainer, 1992), ER with just one variable or with discrete variables should be easier to use than those that present a higher number of variables or continuous variables. Neither of these two things occurs. Nevertheless, there do appear to be differences in the use of the different ER, which in our opinion indicates their distinct complexity, measured not so much by the number of variables or by the format as by the content and its relation to the participants' position on nuclear energy. These differences may indicate that it is not only the number of variables and the format, but the complexity of the information that they represent that is the influencing factor. Thus, a graph with multiple variables with confirming evidence is different from a graph in which the trends change or the variables point to opposite claims. In any case, the data that we obtained is far from being conclusive.

The most used ER are ER1 and ER3, which show data pro-nuclear energy and are used by the anti-nuclear students for defining their position and, therefore, seem to generate greater refutative reasoning. The two ER vary in number and type of variables, although in ER3 the evidence from all the variables is congruent between them. This fact, along with the content relating to the economy and climate change, appears to make them easier to use. ER2 is without a doubt the most complex representation inasmuch as its interpretation requires reading and coordinating the intravariab
as well as intervariable relationships. This could mean greater ambiguity in its interpretation. It is, along with ER4, the least used representation, but it is also the representation that gives rise to more semi-new arguments and, as we will see later, to greater confirmation bias. By way of the hypothesis, we could say that the content complexity itself forces further reflection and a search for arguments that explain the different relationships identified within it. This idea leads us to bring up criticism repeated within the studies on representations, especially in the case of graphics. The syntactic studies on the structure of graphs are not sufficient for explaining the levels of comprehension and use of the graphs themselves. It is necessary to consider the context and content of these graphs, as well as the objectives of the person who interprets the representations. A note in this regard is that in this study we do not find the biases in the interpretation of ER that were found in other studies. These biases dealt with the comprehension and use of ER (Pérez-Echeverría et al, 2009). Perhaps the absence of biases is because the interpretation of ER in this study has a clear mission and leads to ignoring some of the characteristics (or to making them transparent).

In relation to confirmation bias, we emphasize that its presence is less than what we expected, and we also do not find differences regarding educational level or format. We expected to see a format effect explained by a more superficial processing in the tables and, therefore, greater bias. Nevertheless, the way of presenting the task, in which the presence of two reasonable position is explicitly manifested, both with disadvantages, as well as the requirement established in the task's instructions that stated that "the mayors should reach an agreement", may have influenced the lower number of confirmation bias.
As the results show, this bias is expressed mainly by the fact that evidence stemming from some of the ER is not included. It is very interesting that the two most overlooked ER are ER2 and ER4, which could clearly be used by the anti-nuclear participants (the majority) in defending their theses. The possible explanations for this fact would once again lead us to a content analysis of the representations and perhaps to their relation to the participants' specific knowledge of this phenomenon. This would involve a different analysis than what we have performed in this study, inquiring in advance over what explicative factors are important for the participants and the reason for their importance.

In conclusion, we emphasize that the students from our sample are capable of understanding the evidence and using it in argumentation, for justifying as well as objecting and counterarguing, although to a lesser extent for this last function. It might be that the context of a dilemma has favored this use that seem to be measured more by the characteristics of the external representation than by educational/age level or format. A content analysis of the arguments, not just the structure, could have led us to other conclusions.
Table 1

Distribution of Means (SD) regarding Reference to Evidence Use (Given, Semi-new, or New) according to Educational Level (11th Grade and University)

<table>
<thead>
<tr>
<th>Educ. Level</th>
<th>Total Mean (SD)</th>
<th>Given Mean (SD)</th>
<th>Semi-new Mean (SD)</th>
<th>New Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11th Grade</td>
<td>7.76 (2.2)</td>
<td>3.29 (1.4)</td>
<td>2.3 (1.7)</td>
<td>3.29 (1.4)</td>
</tr>
<tr>
<td>University</td>
<td>7.69 (2.6)</td>
<td>3.34 (2.0)</td>
<td>1.7 (1.3)</td>
<td>3.3 (1.0)</td>
</tr>
</tbody>
</table>
Table 2

Distribution of Means (SD) regarding Reference to Evidence Use (Given, Semi-new, or New) according to Format (Tables and Graphs)

<table>
<thead>
<tr>
<th>Format</th>
<th>Total</th>
<th>Given</th>
<th>Semi-new</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tables</td>
<td>7.54 (2.6)</td>
<td>3.26 (1.2)</td>
<td>1.97 (1.6)</td>
<td>2.41 (2.0)</td>
</tr>
<tr>
<td>Graphs</td>
<td>7.90 (2.4)</td>
<td>3.33 (1.3)</td>
<td>2.04 (1.4)</td>
<td>2.50 (2.1)</td>
</tr>
</tbody>
</table>
Table 3

Distribution of the Means (SD) of each Argumentative Function (Justification, Objection and Counterargumentation) for Given, Semi-new, and New according to Educational Level (11th Grade and University)

<table>
<thead>
<tr>
<th></th>
<th>Justification</th>
<th>Objection</th>
<th>Counterargument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given arg.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High school</td>
<td>1.67 (0.8)</td>
<td>1.44 (0.8)</td>
<td>0.12 (0.3)</td>
</tr>
<tr>
<td>University</td>
<td>1.75 (0.6)</td>
<td>1.44 (0.7)</td>
<td>0.07 (0.3)</td>
</tr>
<tr>
<td>Semi-new arg.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High school</td>
<td>1.1 (1.2)</td>
<td>0</td>
<td>0.70 (1.0)</td>
</tr>
<tr>
<td>University</td>
<td>0.94 (1.0)</td>
<td>0</td>
<td>0.39 (0.65)</td>
</tr>
<tr>
<td>New arg.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High school</td>
<td>1.29 (1.0)</td>
<td>0.65 (0.9)</td>
<td>0.21 (0.4)</td>
</tr>
<tr>
<td>University</td>
<td>1.76 (1.7)</td>
<td>0.63 (0.9)</td>
<td>0.6 (0.5)</td>
</tr>
</tbody>
</table>
Table 4

Distribution of the Means (SD) of each Argumentative Function (Justification, Objection and Counterargumentation) for Given, Semi-new, and New according to Format (Table and Graph)

<table>
<thead>
<tr>
<th></th>
<th>Justification</th>
<th>Objection</th>
<th>Counterargument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table</td>
<td>1.77 (0.7)</td>
<td>1.43 (0.7)</td>
<td>0.08 (0.3)</td>
</tr>
<tr>
<td>Graph</td>
<td>1.69 (0.7)</td>
<td>1.45 (0.7)</td>
<td>0.09 (0.3)</td>
</tr>
<tr>
<td>Semi-new</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table</td>
<td>1.11 (0.2)</td>
<td>0</td>
<td>0.45 (0.8)</td>
</tr>
<tr>
<td>Graph</td>
<td>0.93 (0.9)</td>
<td>0</td>
<td>0.57 (0.8)</td>
</tr>
<tr>
<td>New</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table</td>
<td>1.76 (1.6)</td>
<td>0.54 (0.8)</td>
<td>0.13 (0.3)</td>
</tr>
<tr>
<td>Graph</td>
<td>1.38 (1.2)</td>
<td>0.74 (1.1)</td>
<td>0.36 (0.6)</td>
</tr>
</tbody>
</table>
Table 5

Distribution of Frequencies of Argumentative Function (Justify, Object, and Counterargue) for each ER according to Position (pro-nuclear and anti-nuclear)

<table>
<thead>
<tr>
<th>ER</th>
<th>n</th>
<th>Justify</th>
<th>Object</th>
<th>Counterargue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td>ER1</td>
<td>pro-nuclear</td>
<td>31</td>
<td>27 (87%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td></td>
<td>anti-nuclear</td>
<td>57</td>
<td>0 (0%)</td>
<td>52 (91%)</td>
</tr>
<tr>
<td>ER2</td>
<td>pro-nuclear</td>
<td>31</td>
<td>3 (10%)</td>
<td>16 (52%)</td>
</tr>
<tr>
<td></td>
<td>anti-nuclear</td>
<td>57</td>
<td>47 (82%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>ER3</td>
<td>pro-nuclear</td>
<td>31</td>
<td>26 (84%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td></td>
<td>anti-nuclear</td>
<td>57</td>
<td>3 (5.2%)</td>
<td>48 (84%)</td>
</tr>
<tr>
<td>ER4</td>
<td>pro-nuclear</td>
<td>31</td>
<td>2 (6%)</td>
<td>12 (39%)</td>
</tr>
<tr>
<td></td>
<td>anti-nuclear</td>
<td>57</td>
<td>46 (81%)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>
Table 6

Distribution of Frequencies (and Percentages) for each Confirmation Bias Indicator (Ignore, Incorrect Reading, Partial Reading, Subjective Reading) in Participants whose Position was not consistent with the ER Message

<table>
<thead>
<tr>
<th>Reading</th>
<th>Ignore</th>
<th>Incorrect</th>
<th>Partial</th>
<th>Subjective</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER1 (against, n=57)</td>
<td>6 (10.5%)</td>
<td>0</td>
<td>0</td>
<td>1 (1.8%)</td>
</tr>
<tr>
<td>ER2 (in favor, n=31)</td>
<td>13 (41.9%)</td>
<td>2 (6.5%)</td>
<td>0</td>
<td>2 (6.5%)</td>
</tr>
<tr>
<td>ER3 (against, n=57)</td>
<td>8 (14.0%)</td>
<td>2 (3.6%)</td>
<td>1 (1.8%)</td>
<td>0</td>
</tr>
<tr>
<td>ER4 (in favor, n=31)</td>
<td>14 (45.2%)</td>
<td>0</td>
<td>0</td>
<td>3 (9.7%)</td>
</tr>
<tr>
<td>Totals (n=88)</td>
<td>41</td>
<td>4</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>
Emisiones Totales de CO2 por Tipo de Combustible

<table>
<thead>
<tr>
<th>Tipo de Combustible</th>
<th>Toneladas de CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>carbón</td>
<td>2200</td>
</tr>
<tr>
<td>gas natural</td>
<td>1700</td>
</tr>
<tr>
<td>petróleo</td>
<td>1500</td>
</tr>
<tr>
<td>nuclear</td>
<td>100</td>
</tr>
</tbody>
</table>

Historical Evolution of the Total Amount of Radioactive Waste (m³)

<table>
<thead>
<tr>
<th>Year</th>
<th>Spills</th>
<th>Reused</th>
<th>Stored</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>110</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>1995</td>
<td>200</td>
<td>40</td>
<td>110</td>
</tr>
<tr>
<td>2000</td>
<td>300</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>2005</td>
<td>325</td>
<td>90</td>
<td>195</td>
</tr>
<tr>
<td>2010</td>
<td>350</td>
<td>125</td>
<td>245</td>
</tr>
</tbody>
</table>

Energy Production Costs of Different Fuel (Euros / KWH)

<table>
<thead>
<tr>
<th>Year</th>
<th>Nuclear</th>
<th>Gas</th>
<th>Petroleum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>2.25</td>
<td>6.25</td>
<td>10.50</td>
</tr>
<tr>
<td>1985</td>
<td>2.80</td>
<td>6.80</td>
<td>9.25</td>
</tr>
<tr>
<td>1990</td>
<td>2.75</td>
<td>4.30</td>
<td>5.50</td>
</tr>
<tr>
<td>1995</td>
<td>2.50</td>
<td>3.50</td>
<td>4.15</td>
</tr>
<tr>
<td>2000</td>
<td>2.00</td>
<td>6.00</td>
<td>5.50</td>
</tr>
<tr>
<td>2005</td>
<td>1.90</td>
<td>6.25</td>
<td>6.00</td>
</tr>
<tr>
<td>2010</td>
<td>1.75</td>
<td>6.30</td>
<td>6.70</td>
</tr>
</tbody>
</table>

Cancer Deaths Rate according to the Concentration of Radioactive Particles in the Air (Number of Deaths per 100,000 population)

<table>
<thead>
<tr>
<th>Concentration Level</th>
<th>Death Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>very low</td>
<td>0.25</td>
</tr>
<tr>
<td>low</td>
<td>2.00</td>
</tr>
<tr>
<td>medium</td>
<td>3.25</td>
</tr>
<tr>
<td>high</td>
<td>5.00</td>
</tr>
<tr>
<td>very high</td>
<td>10.00</td>
</tr>
</tbody>
</table>
¿Centrales nucleares?, ¿si o no? ¡gracias! El uso argumentativo de tablas y gráficas

Es muy usual que, en los debates políticos, los candidatos a las elecciones muestren diferentes gráficas y tablas para justificar sus argumentos o rebatir los del contrario. Esta conducta muestra el valor social y cultural atribuido a estas representaciones externas para el análisis y uso epistémico de la información. Este valor se manifiesta también en que la comprensión de “textos discontinuos” (entre los que se incluyen las gráficas y las tablas) y de su uso argumentativo forma parte de los objetivos educativos de diferentes niveles de enseñanza y de las competencias medidas en los informes PISA. Un análisis de los últimos informes PISA (MEC, 2010) muestra que los estudiantes españoles de Educación Secundaria están casi diez puntos por debajo de la media de la OCDE (MEC, 2010) en aquellos aspectos relativos a ir más allá de los datos (relacionar, utilizarlos para predecir, o, en definitiva, para argumentar), tanto en el campo de la lectura como de las ciencias o matemáticas.

Numerosos trabajos indican que las habilidades argumentativas de los estudiantes universitarios (véase, por ejemplo; Correa, Ceballos, & Rodrigo, 2003; Mateos, 2009) y su conocimiento de los sistemas de representación (Pérez-Echeverría, Postigo, & Pecharromán, 2009) también presentan problemas. En otras palabras, parece que sus capacidades no alcanzan el conjunto de competencias denominada “critical graphicacy” por Roth, Pozzer-Ardenghi y Han (2005) o, lo que es lo mismo, el uso de las gráficas para confirmar o refutar las teorías propias y las ajenas y para dar sentido a los datos.

Aunque hemos relacionado las capacidades argumentativas con la comprensión y uso epistémico de tablas y gráficas, no hemos encontrado trabajos que relacionen estos aspectos, y menos aún que comparen diferentes niveles educativos. El objetivo de este
trabajo es precisamente realizar un análisis de cómo se utilizan las gráficas y las tablas para argumentar en un texto escrito en diferentes niveles educativos (Bachillerato y Universidad).

Competencia Argumentativa

La habilidad para argumentar es una habilidad humana que se manifiesta a lo largo de la infancia (Mercier & Sperber, 2011). No obstante, su dominio complejo es costoso. Los humanos no somos pensadores críticos naturales; la argumentación es como la danza clásica, una actividad altamente exigente que la gente puede realizar después de años de práctica reflexiva y entrenamiento específico. El objetivo de analizar el uso de las gráficas y las tablas (con datos a favor y datos en contra) en la argumentación escrita implica que nos centremos en la función de los argumentos a partir de la estructura dialéctica del texto. Basándonos en los trabajos de Toulmin (1958) y de Kuhn (1991), definimos competencia argumentativa como la habilidad para integrar argumentos en una marco de informaciones alternativas mediante la justificación, la objeción y la refutación (objeción a la objeción) (Van Gelder, 2007). En el marco del análisis del uso de información contraria a la propia tesis, también analizaremos si ésta se utiliza de forma sesgada para hacerla encajar en el argumento.

Toulmin (1958) establece que cualquier argumento es una afirmación justificada (tesis) cuya validez se mide por la coherencia de la conexión entre la tesis y la información (evidencia) que se utiliza para justificarla, conexión que Toulmin define como “warrant” (justificación). Kuhn (1991) defiende que la argumentación es esencialmente un proceso dialógico. En todo argumento se desarrolla una afirmación en

2Hemos traducido el término *evidence* como *información* aunque no corresponda de manera rigurosa al término en Inglés (conjunto de informaciones empíricas que apoyan una tesis)
un marco de justificaciones, y contrargumentos. La información, por tanto, está relacionada con cada una de las afirmaciones y debe ser sopesada mediante un proceso de diálogo interno donde se evalúan todas las pruebas, valorando el mérito de las afirmaciones opuestas. En dicha competencia argumentativa resulta esencial la necesidad de distinguir entre las afirmaciones y su justificación, las afirmaciones propias de las ajenas, y las formas de coordinarlas y contrastarlas para apoyar o refutar la tesis.

Numerosas investigaciones se han centrado en este análisis de la estructura de los argumentos de los estudiantes, ya sea en sus textos escritos (Kelly, Regev, & Prothero, 2008) como en conversación (Garcia-Mila, Gilabert, Erduran, & Felton, 2013; Kuhn & Udell, 2007). La mayoría de estos trabajos analizan la argumentación a partir de Toulmin (1958) o a partir de Kuhn (1991) (ver revisión de Rapanta, Garcia-Mila, & Gilabert, 2013). Dentro de ellos, se ha estudiado cómo la edad, el nivel educativo y el conocimiento específico inciden en dicha competencia argumentativa con resultados diversos en función de cómo se hayan conceptualizado estas variables. Aunque los estudios evolutivos muestran que empieza a observarse durante la adolescencia (Golder & Coirier, 1992; Felton & Kuhn, 2001), Mercier y Sperber (2011) defienden que la capacidad de producir y de reconocer la función de los argumentos en los niños es espontánea y se muestra antes. Otros estudios muestran que la capacidad de producir argumentos justificativos aparecería hacia los 8-9 años (por ejemplo, Pontecorvo y Girardet, 1993 muestran como el 81% de los alumnos de 9 años justificaban sus tesis mediante argumentos).

Por otro lado, Kuhn (1991) proporciona datos sobre el efecto del nivel educativo académico general en la competencia argumentativa, comparando adultos con o sin
formación universitaria. Los adultos con experiencia y mayor nivel de educación muestran habilidades más avanzadas que los adultos sin tal formación (Kuhn, 1991). Más concretamente, se defiende que el aspecto susceptible de mejorar con la edad y con el nivel educativo es la capacidad de coordinar la doble perspectiva al generar argumentos, es decir, defender la propia tesis y debilitar la contraria (Kuhn & Udell, 2007), así como la capacidad de producir contrargumentos (Felton & Kuhn, 2001). Parece que la dificultad estaría en integrar argumentos desde una doble perspectiva (pro y contra la propia posición), desarrollando así la dialéctica característica de todo proceso argumentativo (Kuhn & Udell, 2007). Los más jóvenes tenderían a reforzar las propias tesis y obviar los argumentos que debilitan la posición contraria. Este aspecto específico (Kuhn & Udell, 2007) diferenciaría a los alumnos de primaria de los de secundaria y adultos (con o sin formación universitaria) aunque las autoras apuntan a una diferencia sólo marginalmente significativa respecto a la variable formación académica.

También el efecto del conocimiento específico en la competencia argumentativa ha sido estudiado con resultados poco concluyentes (Sadler & Zeidler, 2004). Sadler y Zeidler (2004) muestran cómo estudiantes universitarios con formación científica presentaron una mejor competencia argumentativa en un debate sociocientífico que sus compañeros de otras especialidades. Sin embargo, posteriormente, Sadler y Fowler (2006) no encontraron diferencias significativas al trabajar con alumnos de Secundaria con diferentes niveles de conocimiento sobre genética. Según estos autores, se puede conjeturar que la relación entre cantidad de conocimiento específico y competencia argumentativa no es lineal. Existiría un “umbral mínimo de conocimiento” a partir del cual la competencia argumentativa no mejoraría.
Por otro lado, muchos trabajos han estudiado cómo se utiliza la información concordante o discordante con la propia tesis, lo cual ha sido otro de los objetivos de nuestro trabajo. Este análisis remite al sesgo de confirmación en los procesos de razonamiento, conocido desde los trabajos de Bruner, Goodnow, y Austin (1956). ¿Somos más críticos con las informaciones contrarias a nuestras teorías y aceptamos más fácilmente las que confirman nuestra tesis? (Klaczynski & Gordon, 1996). Ser más crítico llevaría a un mayor grado de refutación lo que implicaría una mayor profundización en el procesamiento de los datos. A lo largo de los años, se ha documentado la existencia de la tendencia a recoger información, ignorarla e incluso re-interpretarla de manera concordante con las propias creencias y teorías. Este fenómeno, conocido como sesgo confirmatorio, se caracteriza por su naturaleza heterogénea pues implica aspectos de naturaleza tanto cognitiva como afectiva. Nickerson (1998) lo define como la predisposición hacia la búsqueda de información acorde con la tesis defendida, a la vez que se ignoran las informaciones contrarias. Los estudios evolutivos que comparan adolescentes y adultos sugieren que el sesgo confirmatorio es un fenómeno transversal y frecuente (Chinn & Brewer, 1993).

En este trabajo, además de la estructura argumentativa y la utilización de la información, hemos tenido en cuenta la manera en que se presenta dicha información. A pesar de que la construcción de explicaciones científicas se fundamenta en el uso eficaz y apropiado de las representaciones externas (Sandoval & Millwood, 2005), los estudios que abordan su uso en la argumentación son muy escasos. Sandoval y Millwood (2005) muestran como los estudiantes citaban los datos sin problema en un texto argumentativo, sin embargo, a menudo no incluían pruebas suficientes que mostrasen la relación entre la tesis y los datos.
Uso de Representaciones Externas

Los trabajos sobre uso de representaciones externas, ya sean tablas o gráficas muestran también que su uso epistémico depende del nivel académico, el conocimiento del contenido representado y de los propios sistemas de representación y el contexto y objetivos de la tarea (véanse las revisiones de Friel, Curcio, & Bright, 2001; Pérez-Echeverría, Postigo, & Marín, 2010; Shah, Freedman, & Vekiri, 2005).

Dichas revisiones muestran que la mayoría de los estudios se centra en cómo las características de los propios sistemas de representación influyen en la manera en que los lectores perciben, procesan y pueden extraer conclusiones a partir de la información. Kosslyn (2006) señala que las tablas son mejores que las gráficas para el recuerdo de cantidades específicas, las gráficas de barras ayudan más en las comparaciones complejas y las gráficas de línea permiten percibir mejor las tendencias, extrapolar datos y predecir (véase también Gabucio, Martí, Enfedaque, Gilabert, & Konstantinidou, 2010; Postigo & Poso, 2000; Wainer, 1992). Recordar cantidades específicas requiere un menor esfuerzo de procesamiento, y favorece la presencia de sesgos asociados a la memoria, lo cual podría implicar que las tablas favorecieran un mayor sesgo confirmatorio.

El esfuerzo está también relacionado con el número de variables (de tal manera que a mayor número de ellas, más dificultades de interpretación) y con el tipo de relación entre variables (por ejemplo, son más difíciles de percibir e interpretar las relaciones de interacción) (Shah, et al. 2005). Podríamos esperar que también la propia complejidad conceptual y teórica de la información que se está transmitiendo constituya otro de los elementos que influye en la dificultad de la tarea, aunque no haya sido apenas tenida en cuenta en la investigación (Pérez-Echeverría, Postigo, & Marín, 2013). Todas estas
variables parecen estar mediadas por el grado de conocimiento en el contenido, aunque la literatura sobre la formación académica no sea concluyente.

En este trabajo analizamos cómo estudiantes con diferente nivel educativo (Bachillerato/Universidad) utilizan diferentes representaciones externas (tablas y gráficas) de distinta complejidad para argumentar ante el dilema de instalar o no una central nuclear. La información mostrada en estas representaciones no era concluyente: dos eran favorables a la energía nuclear y las otras dos desfavorables. Hemos tenido en cuenta además el número y el tipo de variables utilizadas en las representaciones de tal manera que dos de estas representaciones eran mucho más complejas que las otras dos, tanto por este número de variables como por las relaciones internas de la información aportada. De manera más específica nos planteamos los siguientes objetivos:

1. Analizar el uso de la información (tanto la incluida en las RE\(^3\) como la que aportan los participantes) cuando se elabora un texto argumentativo y su relación con el nivel educativo, el formato (tablas vs gráficas), la complejidad de las RE (número y tipo de variables) y la postura de los participantes sobre la energía nuclear.

2. Analizar la función que tienen los argumentos presentes en el texto y su relación con el nivel educativo, el formato (tablas vs gráficas) y la complejidad de las RE (número y tipo de variables) y la postura de los participantes sobre la energía nuclear.

3. Analizar la presencia del sesgo de confirmación en los textos argumentativos en función del nivel educativo, del formato (tablas vs gráficas) y de la complejidad de las representaciones

Método

\(^3\) A lo largo del texto, utilizaremos el acrónimo RE para referirnos indistintamente a tabla o gráfica.
Participantes

La muestra estaba formada por dos grupos de estudiantes de diferente nivel educativo: un grupo de 36 alumnos de 1º de Bachillerato de la rama Tecnológico-Científico y un grupo de 57 alumnos de 2º curso de Grado de Ciencias Ambientales. Cada uno de los grupos se dividió en dos subgrupos en función de la condición de la tarea. Diez y ocho estudiantes de Bachillerato y 29 de Ciencias Ambientales resolvieron la tarea con la información presentada mediante tablas, mientras que otros 18 de Bachillerato y 28 de Ciencias Ambientales resolvieron la tarea con la información presentada mediante gráficas.

Tarea y Procedimiento

Los participantes resolvieron voluntariamente durante una hora en su clase habitual la tarea de argumentación (véase Anexo I). Los participantes leían un breve texto sobre los problemas energéticos de una comarca catalana. Se les pedía que escribieran un texto asesorando a los alcaldes de la zona y analizaran la posibilidad de instalar una central nuclear. Para ello contaban con información favorable y desfavorable a este tipo de energía, organizada bien mediante tablas (condición tablas), bien mediante gráficas (condición gráficas) (véase Anexo I). Las representaciones (RE) presentaban diferente tipo de complejidad. Las RE 2 y 3 eran las más complejas, pues incluyen series temporales con variables con diferentes niveles. La RE 2 sobre los problemas de gestión de los residuos nucleares era la representación teóricamente más compleja Las RE 1 y 4 mostraban información discreta con una sola variable.

Se controló si los participantes tenían el suficiente nivel de conocimiento para interpretar las RE por medio de un cuestionario sobre estas RE compuesto por 15
preguntas con dos alternativas de respuesta (verdadero o falso) que se corrigió contabilizando el número de respuestas correctas.

Diseño

El diseño es cuasiexperimental con una variable dependiente (competencia argumentativa) y tres variables independientes: nivel educativo (1º de Bachillerato y 2º curso de grado de Ciencias Ambientales), formato de la información (gráfica o tabla) y posición ante la energía nuclear (favorable o desfavorable). La competencia argumentativa se diferenció en tres aspectos: el uso de la información, la función de los argumentos utilizados y la presencia del sesgo de confirmación.

Criterios de Análisis

- La variable independiente “posición” se categorizó a partir de las respuestas de los participantes en tres categorías: a favor, en contra o neutro (texto no concluyente)
- Se segmentaron los textos de tal forma que cada segmento se correspondía con un argumento. Esta segmentación fue consensuada por cuatro de los autores.
- Se codificaron los segmentos de acuerdo con tres criterios complementarios:

Uso de la información (en relación al contenido de la RE):

Argumento dado (información aportada por las RE): “con el tiempo, los residuos radiactivos producidos por la energía nuclear que más han aumentado son los vertidos, y no tanto los reutilizados”

Argumento seminuevo (información relacionada con las RE, pero en la que se añadía algún dato o consideración): “ya se están desarrollado tecnologías para gestionar residuos radiactivos para su reutilización.”
Argumento nuevo (información pertinente añadida por el participante): “la investigación en energía nuclear puede aprovecharse como armamento militar.”

Función argumentativa del texto:

Justificación (segmentos coincidentes con la posición propia manifestada sobre la energía nuclear: ”la gestión de los residuos es muy cara.”

Objeción (segmentos que limitan la propia posición): ”también es cierto que sus costes de producción son muy bajos.”

Contraargumentación (segmentos que limitan la propia objeción y por tanto apoyan la tesis del argumento inicial): ”pero el tratamiento médico de todas las personas afectadas de cáncer compensa cualquier beneficio, ya sea económico como social.”

Sesgo confirmatorio:

En relación con la información gráfica contraria a la tesis, se ignora, se lee incorrectamente (los residuos reutilizados han aumentado más que los almacenados en los últimos 10 años), se lee parcialmente (“los residuos radiactivos reutilizados están creciendo”) o se lee subjetivamente (“la energía nuclear genera poco CO₂, pero aún así, es muchísimo).

Un 30% de los textos fue codificado por cuatro de los autores, mientras que el resto fue codificado por tres de ellos, obteniendo un 84% de acuerdos en el tipo de segmento (dado, seminuevo o nuevo) y un 91% en la función argumentativa. Los desacuerdos se resolvieron por consenso.
Resultados

Empezaremos describiendo algunos aspectos fundamentales del texto argumentativo considerando todos los participantes y formatos de representación para pasar a continuación a los resultados relativos a cada objetivo.

Del total de participantes, 57 (62%) se posicionaron en contra de la energía nuclear (34 de Ciencias Ambientales y 23 de Bachillerato); 31 a favor (33.6%) (20 de Ciencias Ambientales y 11 de Bachillerato; y 4 neutrales (4.3%) (3 de Ciencias Ambientales y 1 de Bachillerato). Dado que una parte de nuestro análisis tiene en cuenta el posicionamiento defendido en el texto (pro o anti-nuclear), hemos excluido los textos neutrales. Así pues la muestra sobre la que se presentan los resultados consiste en 88 participantes, 54 de Ciencias Ambientales y 34 de Bachillerato.

Las medias y desviaciones típicas correspondientes al nivel de comprensión de las RE son sobre un total posible de 15: Bachillerato, 11.5 (1.6) en Tablas y 12.0 (1.8) en Gráficas; Ciencia Ambientales son, 12.5 (1.2) en tablas y 12.7 (2.2) en Gráficas. Por tanto la comprensión de las RE es buena y no hay diferencias según nivel educativo o formato.

Los participantes utilizaron una media de 7.72 argumentos, de los cuáles casi la mitad se basan en la evidencia ofrecida en las RE (3.3), 1.88 son seminuevos y 2.55 nuevos. No hay diferencias en estas medias en función de su posición ante las nucleares. Más de la mitad de los argumentos se utilizan para justificar la propia tesis (4.3), una tercera parte muestra las objeciones de la posición defendida (2.5) y un número menor se usa para contraargumentar (0.84).

Uso de la Información
Ni el nivel educativo ni el formato parecen afectar el uso que los participantes hacen de las representaciones. Como puede observarse en las tablas 1 y 2, el número medio de argumentos generados por los estudiantes fue similar en los dos niveles educativos y con los dos tipos de RE.

Insertar Tabla 1 y Tabla 2 aprox. aquí

Por tanto, el tipo de información usada (dada, seminueva y nueva) no parece depender ni del nivel educativo, ni del formato de las RE. Sin embargo, sí parece depender de la complejidad y del contenido de cada representación como muestra el siguiente análisis.

La RE más usada es la RE1 (media= 1.9 y sd=0.31), seguida de la RE3 (media 1.86 y sd=0.3), seguida de la RE2 (media= 1.74 y sd= 0.3), y finalmente, la menos usada la RE4 (media= 1.70 y sd= 0.4) en la muestra total de alumnos. La prueba de Friedman de comparación de medias de datos apareados generó resultados significativos ($\chi^2(3), N = 88) = 20.1, p = .001$). Estas diferencias se mantienen tanto en gráficas como en tablas, y en niveles educativos, aunque se incrementan en el grupo de Ciencias Ambientales.

Como se recordará, dos de las RE presentaban datos favorables al uso de la energía nuclear (RE1 y RE3) y dos desfavorables (RE2 y RE4). Por tanto, parece que se utilizan más las RE favorables al uso de la energía nuclear. Por otro lado, si nos interesamos en los argumentos seminuevos relacionados con cada RE, hay diferencias significativas entre representaciones ($chi^2(3)=18.7, p=.001$), siendo la RE2 la representación que genera más argumentos seminuevos como lo indican las siguientes medias: RE2= 0.78 (0.9); RE3=0.47 (0.7), RE4 = 0.29 (0.4) y RE1= 0.28 (0.5). Es interesante recordar que esta representación, la RE2, es además una de las más ignoradas.
Además, la argumentación difiere según la posición frente a la energía nuclear. Los participantes pronucleares generaron más objeciones y más contrargumentos (limitaciones: \(U\text{-Mann-Whitney} = 697.0, p = .066 \) (cuasignificativo), contrargumentos: \(U\text{-Mann-Whitney} = 625.0, p = .001 \)) por medio de argumentos nuevos que los antinucleares, mientras que el número de justificaciones fue similar. También los estudiantes pronucleares usaron menos los argumentos seminuevos, para justificar (\(U\text{-Mann-Whitney} = 674, p = .053 \)) y los argumentos dados, para objetar (\(U\text{-Mann-Whitney} = 368.5, p = .001 \)). Estas diferencias apuntan a que la manera de argumentar cambia según que el punto de partida sea favorable o contrario a la tesis nuclear.

Función Argumentativa

La comparación de medias de la función argumentativa (justificar, objetar y contraargumentar) no generó ninguna diferencia significativa entre niveles educativos para ningún tipo de argumento (Tabla 3).

Insertar Tabla 3 aprox. aquí

Tampoco hay diferencias significativas según el formato de las RE excepto en el caso de la contraargumentación por medio argumentos nuevos, más utilizada por los estudiantes que usaron gráficas (Tabla 4) (\(U\text{-Mann-Whitney} = 807, p = .058 \)). Sería como si los gráficos inspirasen más el proceso refutativo que las tablas.

Insertar Tabla 4 aprox. aquí

Por tanto hay una tendencia hacia el uso de información favorable a la energía nuclear (RE1 o RE3) y no tanto la información desfavorable (RE2 o RE4). Esto nos lleva a preguntarnos si hay algo específico en cada RE que inspiraría su uso. En el
siguiente análisis comparamos si la función argumentativa varía según la posición defendida de manera específica para cada RE (Tabla 5).

Aunque hay casi el doble de participantes en contra de la energía nuclear (57) que a favor (31), se utilizan más las RE1 y RE3, las cuales presentan información favorable a esta energía, aunque se puede observar que se usan mayoritariamente para objetar. Sería como si las RE1 y RE3 fueran más fáciles de objetar que las RE2 y RE4.

Presencia de Sesgo de Confirmación

En la Tabla 6 se presentan los datos correspondientes a las frecuencias de cada categoría a partir de la cual se ha inferido el sesgo de confirmación en el uso de cada RE según la información sea concordante o no con la posición de los participantes

Se observa que el sesgo referido a la categoría “ignora” es el de mayor presencia. Los demás indicadores aparecen en frecuencias muy bajas. Curiosamente, este indicador aparece tanto aplicado a la información discrepante (Tabla 6) como aplicado a la información concordante. Los porcentajes para los participantes a favor que ignoran las RE pronucleares son: 9.7% para la RE1 y 16.7 para la RE3. Asimismo, los porcentajes para los participantes en contra que ignoran las RE antinucleares son: el 17.9% para la R2 y 21.4% para la RE4. En cambio, el resto de los indicadores del sesgo de confirmación (lectura incorrecta, lectura parcial o lectura subjetiva), solo se aplican a la información discordante, a excepción de un alumno en la RE1 y tres alumnos en la RE2.
Respecto a las frecuencias correspondientes al sesgo de confirmación no observamos diferencias en función del nivel educativo (35.3% de Bachillerato y 51.8% de universitarios), ni en función del formato (40% en Tablas y 66% en Gráficas). Queremos destacar que en el caso de la RE2 y RE4 hay más participantes que utilizan la información de manera sesgada que de manera no sesgada [un 64% (9/14) en Tabla y 54% (10/17) en Gráficas].

Discusión

Nuestros resultados muestran de manera general una buena competencia argumentativa. Los datos, parecen indicar que los participantes fueron capaces de integrar aspectos a favor y en contra en sus textos (justificando y objetando) y, aunque en menor medida, también de rebatir estos aspectos mediante contrargumentos. Según la literatura, la capacidad de producir argumentos para justificar una tesis aparece de manera temprana. Pero también se apunta que la capacidad de ir más allá de la justificación, utilizando objeciones a la tesis contraria, y contrargumentos para reforzar la propia tesis es más probable en adultos que en adolescentes y en adultos con formación que sin ella (Felton & Kuhn, 2001; Kuhn, 1991). En el presente estudio hemos trabajado con alumnos de 2º de Bachillerato de la especialidad de Ciencias y de 2º curso de grado de Ciencias Ambientales. Nuestros resultados muestran que los alumnos no sólo utilizan de manera mayoritaria las informaciones proporcionadas para justificar sus tesis, sino que también lo hacen aportando informaciones nuevas relacionados de manera más o menos directa con éstos. Esta capacidad, no parece depender del nivel educativo (claramente relacionado con la edad), ni del formato de presentación de los datos. A diferencia de Kuhn (1991), no hemos observado efectos en función de la edad. Es muy probable que esta diferencia se explique por el hecho de que la media de edad de nuestra muestra de
adolescentes (16,8 años) era mayor que la de la muestra de los adolescentes del estudio de Felton y Kuhn (2001) (13 años).

Por otro lado, nuestra tarea nos ha permitido analizar la capacidad de coordinar la formulación de argumentos que refuerzan la propia tesis y generar argumentos que debiliten la posición contraria. El hecho de presentar un dilema con dos tesis opuestas (pro/contra energía nuclear) con cuatro representaciones externas (RE), dos a favor y dos en contra, parece activar la presencia de un contexto argumentativo (Mercier y Sperber, 2011) y permite observar la coordinación en el uso de todas las RE, tanto para justificar como para objetar y contraargumentar. Nuestros resultados apuntan a una ausencia de efecto del nivel educativo en dicha competencia. En este sentido, nuestros resultados serían discordantes con los de Kuhn (1991), aunque en el estudio de Kuhn y Udell (2007) el efecto del nivel educativo en dicha competencia era sólo marginalmente significativo.

Nos podemos preguntar si esta ausencia de diferencias se mantendría con tareas conceptualmente más complejas. Según Sadler y Fowler (2006) es necesario un umbral mínimo de conocimiento específico para poder argumentar. A partir de dicho umbral, ya no se observarían diferencias en la calidad de los argumentos. Nuestros participantes (Bachillerato de Ciencias y de Ciencias Ambientales) podrían haber sobrepasado dicho umbral. En un estudio posterior estamos analizando estas mismas tareas con alumnos de Bachillerato de Humanidades y estudiantes de 2º curso de Psicología, lo cual nos servirá para poner a prueba la hipótesis alternativa del efecto del conocimiento específico y/o la del nivel educativo.

Sorprendentemente tampoco hemos encontrado diferencias respecto al efecto del formato de presentación de las informaciones (Tablas o Gráficas). Según Kosslyn
(2006), la presentación de las informaciones en forma de gráficas suscitaría una mayor profundización en el procesamiento de los datos y por tanto, inferimos que, de acuerdo con Klaczynski y Gordon (1996), podría generar una mayor frecuencia de argumentos refutativos (objeciones y contrargumentos) en las gráficas. Nuestros resultados no confirman dicha hipótesis.

De acuerdo con la literatura (Wainer, 1992), las RE con una sola variable o con variables discretas deberían haber sido más fáciles de utilizar que las que presentan un número superior de variables o variables continuas. Ninguna de las dos cosas ha ocurrido. No obstante, sí parece haber diferencias en el uso de las distintas RE que apuntan, en nuestra opinión, a su diferente complejidad, medida no tanto por el número de variables o por el formato como por su contenido y su relación con las posturas de los participantes frente a la energía nuclear. Estas diferencias podrían indicar que no es solo el número de variables y el formato sino la complejidad de la información que representan la que está influyendo. Así, es diferente una gráfica con múltiples variables en las que la información de todas ellas es congruente que una gráfica en la que las tendencias cambian o las variables apuntan a posiciones opuestas. En cualquier caso, los datos que hemos obtenido están lejos de ser concluyentes.

Los RE más utilizadas son la RE1 y la RE3 que muestran datos favorables a la energía nuclear y que son utilizadas por los estudiantes antinucleares para limitar sus posturas y, por tanto, parecen generar una mayor dialéctica refutativa. Las dos RE varían en el número y tipo de variables aunque en la RE3 la información de todas las variables es congruente entre sí. Este hecho junto con su contenido, relacionado con la economía y el cambio climático, parece que las hacen más fáciles de utilizar. La RE2 es sin duda la representación más compleja en la medida en que su lectura exigía leer y
coordinar tanto las tendencias intravariables como las relaciones intervariables. Esto podría suponer una mayor ambigüedad en su interpretación. Es, junto con la RE4, la representación menos utilizada, pero también es la representación que da origen a más argumentos seminuevos y, como veremos luego, a un mayor sesgo confirmatorio. A modo de hipótesis podríamos decir que la propia complejidad de su contenido obliga a una mayor reflexión y a buscar argumentos que expliquen las diferentes relaciones que se aprecian dentro de ella. Esta idea nos llevaría a plantear una crítica repetida dentro de los estudios sobre representaciones, especialmente en el caso de las gráficas. Los estudios sintácticos sobre la estructura de las gráficas no son suficientes para explicar los niveles de comprensión y uso de las mismas. Es necesario plantearse el contexto y el contenido de estas gráficas, así como los objetivos del lector de las representaciones.

Un apunte en este sentido es que no hemos encontrado en este trabajo los sesgos en la lectura de RE encontrados en otros trabajos, sobre comprensión y uso de las RE (Pérez-Echeverría, et al, 2009), quizá debido a que su lectura en este trabajo tenía una misión clara y llevaba a obviar (o a hacer transparentes) algunas de sus características.

En relación al sesgo confirmatorio destacamos que su presencia es menor de la que esperábamos, y que tampoco hemos encontrado diferencias respecto al nivel educativo o al formato. Esperábamos un efecto del formato explicado por un procesamiento más superficial en las tablas y, por tanto, un mayor sesgo. No obstante, la propia forma de presentar la tarea en la que desde el principio se manifiesta explícitamente la presencia de dos posturas razonables, pero ambas con inconvenientes, así como la necesidad establecida en la consigna de la tarea de que “los alcaldes lleguen a un consenso”, ha podido influir en la menor cantidad de este sesgo.
Como muestran los resultados, la presencia de este sesgo se manifiesta sobre todo en que no incluyen en la discusión la información proveniente de alguna de las RE. Resulta muy curioso que las dos RE más ignoradas sean la RE2 y la RE4 que podrían ser claramente utilizadas por los participantes antinucleares (la mayoría) para defender sus tesis. De nuevo las explicaciones posibles de este hecho nos llevarían al análisis del contenido de las representaciones y quizá a su relación con el conocimiento específico de los participantes sobre este fenómeno. Esto implicaría un análisis diferente del que hemos realizado en este trabajo, indagando previamente sobre qué factores explicativos son importantes para los participantes y las razones de esta importancia.

Como conclusión destacamos que los estudiantes de nuestra muestra son capaces de entender la información y de usarla en la argumentación, tanto para justificar como para objetar y contraargumentar, aunque esta última función en menor medida. Es posible que el contexto del dilema haya favorecido estos usos que parecen estar más mediados por las características de las representaciones externas que por el nivel educativo /edad, o el formato, aunque un análisis del contenido de las argumentaciones y no sólo de su estructura podría habernos llevado a otras conclusiones.
Tabla 1. Distribución de Medias (SD) sobre la Referencia a la Información (Dada, Seminueva, o Nueva) según Nivel Educativo (Bachillerato y Universidad)

<table>
<thead>
<tr>
<th>N. Educativo</th>
<th>Total</th>
<th>Dado</th>
<th>Seminuevo</th>
<th>Nuevo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachillerato</td>
<td>7.76 (2.2)</td>
<td>3.29 (1.4)</td>
<td>2.3 (1.7)</td>
<td>3.29 (1.4)</td>
</tr>
<tr>
<td>Universidad</td>
<td>7.69 (2.6)</td>
<td>3.34 (2.0)</td>
<td>1.7 (1.3)</td>
<td>3.3 (1.0)</td>
</tr>
</tbody>
</table>
Tabla 2. Distribución de Medias (SD) sobre la Referencia a la Información (Dada, Seminueva, o Nueva) según Formato (Tablas y Gráficas)

<table>
<thead>
<tr>
<th>Formato</th>
<th>Total</th>
<th>Dado</th>
<th>Seminuevo</th>
<th>Nuevo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tablas</td>
<td>7.54 (2.6)</td>
<td>3.26 (1.2)</td>
<td>1.97 (1.6)</td>
<td>2.41 (2.0)</td>
</tr>
<tr>
<td>Gráficas</td>
<td>7.90 (2.4)</td>
<td>3.33 (1.3)</td>
<td>2.04 (1.4)</td>
<td>2.50 (2.1)</td>
</tr>
<tr>
<td></td>
<td>Justificación</td>
<td>Objetión</td>
<td>Contraargumento</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>----------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>Arg. dados</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachillerato</td>
<td>1.67 (0.8)</td>
<td>1.44 (0.8)</td>
<td>0.12 (0.3)</td>
<td></td>
</tr>
<tr>
<td>Universidad</td>
<td>1.75 (0.6)</td>
<td>1.44 (0.7)</td>
<td>0.07 (0.3)</td>
<td></td>
</tr>
<tr>
<td>Arg. Seminuevos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachillerato</td>
<td>1.1 (1.2)</td>
<td>0</td>
<td>0.70 (1.0)</td>
<td></td>
</tr>
<tr>
<td>Universidad</td>
<td>0.94 (1.0)</td>
<td>0</td>
<td>0.39 (0.65)</td>
<td></td>
</tr>
<tr>
<td>Arg. Nuevos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachillerato</td>
<td>1.29 (1.0)</td>
<td>0.65 (0.9)</td>
<td>0.21 (0.4)</td>
<td></td>
</tr>
<tr>
<td>Universidad</td>
<td>1.76 (1.7)</td>
<td>0.63 (0.9)</td>
<td>0.6 (0.5)</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 4. Distribución de Medias (SD) correspondiente a la Función Argumentativa de los Argumentos (Dados, Seminuevos, y Nuevos) según Formato de Presentación (Tabla y Gráfica)

<table>
<thead>
<tr>
<th></th>
<th>Justificación</th>
<th>Objección</th>
<th>Contraargumento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dados</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tabla</td>
<td>1.77 (0.7)</td>
<td>1.43 (0.7)</td>
<td>0.08 (0.3)</td>
</tr>
<tr>
<td>Gráfica</td>
<td>1.69 (0.7)</td>
<td>1.45 (0.7)</td>
<td>0.09 (0.3)</td>
</tr>
<tr>
<td>Seminuevos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tabla</td>
<td>1.11 (0.2)</td>
<td>0</td>
<td>0.45 (0.8)</td>
</tr>
<tr>
<td>Gráfica</td>
<td>0.93 (0.9)</td>
<td>0</td>
<td>0.57 (0.8)</td>
</tr>
<tr>
<td>Nuevos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tabla</td>
<td>1.76 (1.6)</td>
<td>0.54 (0.8)</td>
<td>0.13 (0.3)</td>
</tr>
<tr>
<td>Gráfica</td>
<td>1.38 (1.2)</td>
<td>0.74 (1.1)</td>
<td>0.36 (0.6)</td>
</tr>
<tr>
<td>RE</td>
<td>n</td>
<td>Justificar</td>
<td>Objetar</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>RE1</td>
<td>pronuclear</td>
<td>31</td>
<td>27 (87%)</td>
</tr>
<tr>
<td></td>
<td>antinuclear</td>
<td>57</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>RE2</td>
<td>pronuclear</td>
<td>31</td>
<td>3 (10%)</td>
</tr>
<tr>
<td></td>
<td>antinuclear</td>
<td>57</td>
<td>47 (82%)</td>
</tr>
<tr>
<td>RE3</td>
<td>pronuclear</td>
<td>31</td>
<td>26 (84%)</td>
</tr>
<tr>
<td></td>
<td>antinuclear</td>
<td>57</td>
<td>3 (5,2%)</td>
</tr>
<tr>
<td>RE4</td>
<td>pronuclear</td>
<td>31</td>
<td>2 (6%)</td>
</tr>
<tr>
<td></td>
<td>antinuclear</td>
<td>57</td>
<td>46 (81%)</td>
</tr>
</tbody>
</table>
Tabla 6. Distribución de Frecuencias (y Porcentajes) para cada Indicador de Sesgo de Confirmación (Ignora, Lectura Incorrecta, Lectura Parcial, Lectura Subjetiva) en los Participantes cuya Postura no era Congruente con el Mensaje de la RE

<table>
<thead>
<tr>
<th>Lectura</th>
<th>Ignora</th>
<th>Incorrecta</th>
<th>Parcial</th>
<th>Subjetiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE1 (en contra, n=57)</td>
<td>6 (10.5%)</td>
<td>0</td>
<td>0</td>
<td>1 (1.8%)</td>
</tr>
<tr>
<td>RE2 (a favor, n=31)</td>
<td>13 (41.9%)</td>
<td>2 (6.5%)</td>
<td>0</td>
<td>2 (6.5%)</td>
</tr>
<tr>
<td>RE3 (en contra, n=57)</td>
<td>8 (14.0%)</td>
<td>2 (3.6%)</td>
<td>1 (1.8%)</td>
<td>0</td>
</tr>
<tr>
<td>RE4 (a favor, n=31)</td>
<td>14 (45.2%)</td>
<td>0</td>
<td>0</td>
<td>3 (9.7%)</td>
</tr>
<tr>
<td>Totales (n=88)</td>
<td>41</td>
<td>4</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>
Emisiones Totales de CO2 por Tipo de Combustible (Toneladas)

<table>
<thead>
<tr>
<th>Tipo de Combustible</th>
<th>2200</th>
<th>1700</th>
<th>1500</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>carbón</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gas natural</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>petróleo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nuclear</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evolución Histórica de la Cantidad Total de Residuos Nucleares Radiactivos (m³)

<table>
<thead>
<tr>
<th>Año</th>
<th>Vertidos</th>
<th>Reutilizados</th>
<th>Almacenados</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>110</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>1995</td>
<td>200</td>
<td>40</td>
<td>110</td>
</tr>
<tr>
<td>2000</td>
<td>300</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>2005</td>
<td>325</td>
<td>90</td>
<td>195</td>
</tr>
<tr>
<td>2010</td>
<td>350</td>
<td>125</td>
<td>245</td>
</tr>
</tbody>
</table>

Costes de Producción Energética de Diferentes Combustibles (Euros /KWH)

<table>
<thead>
<tr>
<th>Año</th>
<th>Nuclear</th>
<th>Gas</th>
<th>Petróleo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>2,25</td>
<td>6,25</td>
<td>10,50</td>
</tr>
<tr>
<td>1985</td>
<td>2,80</td>
<td>6,80</td>
<td>9,25</td>
</tr>
<tr>
<td>1990</td>
<td>2,75</td>
<td>4,30</td>
<td>5,50</td>
</tr>
<tr>
<td>1995</td>
<td>2,50</td>
<td>3,50</td>
<td>4,15</td>
</tr>
<tr>
<td>2000</td>
<td>2,00</td>
<td>6,00</td>
<td>5,50</td>
</tr>
<tr>
<td>2005</td>
<td>1,90</td>
<td>6,25</td>
<td>6,00</td>
</tr>
<tr>
<td>2010</td>
<td>1,75</td>
<td>6,30</td>
<td>6,70</td>
</tr>
</tbody>
</table>

Índice de Muertes por Cáncer según la Concentración de Partículas Radiactivas en el Aire (Número de Muertes por 100.000 Habitantes)

<table>
<thead>
<tr>
<th>Nivel de Concentración</th>
<th>Índice de Muertes</th>
</tr>
</thead>
<tbody>
<tr>
<td>muy bajo</td>
<td>0,25</td>
</tr>
<tr>
<td>bajo</td>
<td>2,00</td>
</tr>
<tr>
<td>medio</td>
<td>3,25</td>
</tr>
<tr>
<td>alto</td>
<td>5,00</td>
</tr>
<tr>
<td>muy alto</td>
<td>10,00</td>
</tr>
</tbody>
</table>
Acknowledgements / Agradecimientos

This study was made possible through projects funded by the Ministerio Español de Economía y Competitividad EDU2010-21995-C01, EDU2013-47593-C2-1-P, EDU2010-21995-C02 y EDU2013-47593-C2-2-P. / Esta investigación ha sido posible gracias a los proyectos financiados por el Ministerio Español de Economía y Competitividad EDU2010-21995-C01, EDU2013-47593-C2-1-P, EDU2010-21995-C02 y EDU2013-47593-C2-2-P.

References / Referencias

