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In this paper, we extend a method recently reported [F. Revuelta ez al., Phys. Rev. E 87, 042921 (2013)]
for the calculation of the eigenstates of classically highly chaotic systems to cases of mixed dynamics,
i.e., those presenting regular and irregular motions at the same energy. The efficiency of the method,
which is based on the use of a semiclassical basis set of localized wave functions, is demonstrated by
applying it to the determination of the vibrational states of a realistic molecular system, namely, the

LiCN molecule. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4973376]

I. INTRODUCTION

The quantum description of physical and chemical pro-
cesses customarily pivots around the determination of the
eigenenergies and eigenfunctions of the system. Except in the
particular case of separable Hamiltonians, one has to resort
to numerical computation for this important task, and numer-
ous procedures have been designed for this end.'~> Moreover,
this problem is particularly demanding in the classical limit,
i.e., i — 0, where the density of states is high, and also in
realistic systems, which usually exhibit a classically chaotic
dynamical behavior even for the modest values of the excita-
tion energy. When this happens in time-reversal systems, most
eigenfunctions present a very complex nodal pattern that can
be adequately described only by using large basis sets, usually
making computations extremely time consuming.

In this respect, semiclassical methods* can be very help-
ful, both at the computational level and also providing valuable
help in the understanding of the correspondence between clas-
sical and quantum mechanics. These methods are based on the
classical underlying properties of the system and constitute a
cornerstone in the study of classically chaotic systems. In the
presence of chaos, the traditional Wentzel-Kramers—Brillouin
(WKB) or Einstein—Brillouin—Keller (EBK) approximations
cannot be applied due to the absence of the invariant tori*>
that provide the support for the corresponding wave functions.
Nevertheless, classical periodic orbits (POs) have a profound
impact on the (quantum) density of states of the system, as
shown by Gutzwiller in 1971 with his celebrated (semiclas-
sical) trace formula.> Unfortunately, the application of this
expression to the calculation of highly excited states is very
limited due to the exponential proliferation in the number of
POs as energy increases.
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The importance of unstable POs for some individual
eigenfunctions of classically chaotic systems is clear after the
seminal work of Heller on scarring.® In that paper, the author
coined the term scar to refer to an enhanced localization (over
the statistically expected value’) of the quantum probability
in some eigenfunctions along periodic trajectories. Actually,
scars are associated with Bohr—Sommerfeld (BS) quantized
short POs. However, this is a necessary but not a sufficient con-
dition for their appearance which, as a consequence, cannot be
predicted. Scars have been studied theoretically in quantum
billiards,® anharmonic molecular potentials,g‘20 or quantum
maps.”! Also, they have been observed in the laboratory in dif-
ferent microwave,?>>* optical fibers,?* microcavities,> solid
state devices,’® graphene,”’ or ultracold atom experiments.?®

Several important results on scarring have been reported
in the literature. For example, Bogomolny demonstrated how
scars are in general “distributed” among groups of individ-
ual eigenfunctions, and scarred functions can also be pro-
duced in the semiclassical limit by averaging of a number
of neighbor eigenfunctions around the BS quantized ener-
gies? (see also Ref. 30). Later, Berry®' demonstrated by
using Wigner functions that this localization does not only
take place in the configuration space but also in the phase
space. Prado and Keating> showed that the scarring localiza-
tion is enhanced in the presence of bifurcations in systems with
mixed dynamics, giving rise to the so-called superscars. Going
beyond the influence of POs in the quantum mechanics of
chaotic systems, the effect of the recurrences over homoclinic
and heteroclinic quantized circuits has also been reported in
the literature.>® Finally, scarring in open systems has been
studied.>*

Several methods have been proposed to construct local-
ized wave functions over unstable POs, usually known as
“scar functions.” For example, de Polavieja et al. averaged
groups of eigenfunctions by performing a short-time quan-
tum evolution,* and Vergini and co-workers* combined PO
resonances by minimizing energy dispersion, then including
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the semiclassical dynamics around the scarring PO up to the
Ehrenfest time.’® More recently, Sibert e al.>’ and Revuelta
et al.'®® applied these ideas to systems with smooth poten-
tials, and Vagov et al® extended the asymptotic bound-
ary layer method to calculate stable microresonator localized
modes over unstable POs.

Scar functions have a very interesting and useful prop-
erty, aside from their spatial localization: they also present
a very low dispersion in energy. We have recently used this
fact to construct an extremely efficient basis set for the diag-
onalization of the Hamiltonian matrix in a coupled quartic
oscillator with a high degree of chaoticity. As demonstrated
in Ref. 40, the system eigenfunctions can be obtained from
a very small number of scar functions, i.e., POs, thus get-
ting around somehow the exponential growth fate of the
Gutzwiller theory. This is based on the replacement of the
longer POs by the interaction of the shorter ones. This
reduces dramatically the basis size, which in our method only
increases linearly with the number of accurately calculated
eigenfunctions.

The aim of this paper is to demonstrate the feasibility of
extending the method reported in Ref. 40 to systems of chem-
ical interest with a mixed phase space, where trajectories with
regular and irregular motions coexist at the same energy. For
this purpose, we show how to construct an efficient semiclas-
sical basis set formed by localized wave functions, using the
method originally reported in Refs. 19 and 38 which is used to
compute the vibrational eigenstates of the LINC/LiCN isomer-
izing system. The method is performed in two steps: (1) con-
struction of localized wave functions on POs (“tube” functions
for the stable and ““scar” functions for the unstable POs), and
(2) application of a modified version of Gram-Schmidt orthog-
onalization to construct an efficient basis set, where the Hamil-
tonian matrix is computed and diagonalized. The method relies
on some concepts of the chaos theory, such us stability analy-
sis or bifurcation diagrams, that can be found, for example, in
Ref. 41.

The paper is organized as follows. In Sec. II, we introduce
the system under study. In Sec. III we describe the method that
we have developed for the computation of the eigenenergies
and eigenfunctions of a system presenting coexisting regions
of regular and irregular motion, using a basis set of scar wave
functions localized along stable (the so called “tube” func-
tions) and unstable POs (“scar” functions). Then, in Sec. IV
we present the results that have been obtained and the corre-
sponding discussion. Finally, in Sec. V we summarize the main
conclusions of this work and the outlook for further research.

Il. SYSTEM

In this section we briefly describe the characteristics of
the dynamical system that we have chosen to study, i.e.,
the LiINC/LiCN isomerizing molecule, which are relevant for
this work. We first discuss the effective vibrational Hamil-
tonian and the potential energy surface of the system in
Subsection II A. Then, Subsection II B is devoted to the
discussion of the dynamical characteristics of the vibrations
of this molecule. In particular, we examine the chaoticity
of the system as a function of the energy using Poincaré
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surfaces of section (SOS). Finally, we conclude the section
by presenting in Subsection II C the bifurcation-continuation
diagram of the most relevant POs of the system taking the exci-
tation energy as parameter. These POs will be used later in the
construction of a semiclassical basis set for the computation of
the vibrational eigenstates of the molecule (see discussion in
Sec. IV).

A. Hamiltonian

The system under study is the LiNC/LiCN isomerizing
molecule which has been extensively studied in the past, espe-
cially in connection with quantum chaos.?!0:12-17:1942-45 Thjg
system exhibits a very floppy motion in the angular coordinate
and, as a consequence, chaos sets in at very moderate values
of the excitation energy.

The corresponding vibrational motion can be adequately
modeled with the following rotationless (J = 0) Hamiltonian

P2 p2 1( 1 1
H=—R4 ’+—(—+—)P

2
=5 +V(R,r,®) (1)
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in Jacobi coordinates, where R and ¢ describe the Li—-CN
stretching and Li—-C-N bending motions, respectively, as
sketched in the bottom—left corner of Fig. 1, while r accounts
for the C-N motion. The associated reduced masses are
M1 =mrimen/miicn and pp =mcemy/men, with myicn =my;
+ mc + my and mcN = mc + my. For all practical purposes, the
motion in the r coordinate plays no role due to the strength of
the C—N triple bound, as reported by some of us elsewhere.**
Thus, one can keep frozen the r coordinate at its equilibrium
value, r, = 2.186 a.u., since the associated frequency is very
high, and then decouples very effectively from the rest of
the modes in the molecule.** Consequently, we can use the
following equivalent two—degrees-of-freedom Hamiltonian

00 02 04 06 08 1.0

¢ (7 rad)

FIG. 1. Potential energy surface for the LINC/LiCN molecular system repre-
sented as black contour lines separated 1000 cm™! in the Jacobi coordinates,
defined in the inset at the bottom-left corner. It presents two wells associated
with the two existing stable linear isomers, LINC and LiCN. Their positions
are indicated with black squares, and their geometries are sketched in the
insets at the top. The minimum energy path connecting these two wells pass-
ing through the saddle point, represented as a black triangle, has been plotted
superimposed in a dashed red line.



014107-3 Revuelta et al.
P21 1 1
R 2
=—+= + Py + V(R, D), )
2ur 2 (,ulR2 uzrf) ?

which still is able to retain all the complexity of the molecule
under study, thus yielding at the same time results that are not
only qualitative but also quantitative similar.**

The two-dimensional potential energy surface, V(R,?),
has been taken from the literature,*® and it is shown in Fig. 1
as a contours plot. Here, we have plotted for simplicity only
the fundamental domain ¢ € (0, 7) rad which results from the
rotational symmetry. As can be seen, the potential presents
two wells at ¢ = 0 and 7 rad, respectively. They correspond to
the two stable linear isomers, LICN and LiNC, existing for the
molecule; their geometries are sketched at the top of the figure.
These two isomers are separated by a modest energy barrier of
only Esp ~ 3454.0 cm™! at the saddle point of the potential
energy surface, where (R, ?)sp =(4.22 a.u.,0.918 rad). The
equilibrium point at the top of this barrier generates at higher
energies an unstable PO that obviously plays a central role for
the reactivity of the system.!” Finally, the minimum energy
path (MEP) connecting the two potential minima has been
plotted superimposed in the figure as a dashed red line.

B. Chaos in the LiNC/LiCN system

The dynamics of our model for the vibrations of the
LiNC/LiCN molecule can be efficiently monitored by using
Poincaré SOS, taking the MEP, R,(¢#), as the sectioning sur-
face.!” This choice maximizes the dynamical information
obtained for the motion in the angular coordinate. However,
this does not define an area preserving map satisfying the Liou-
ville theorem.*” This inconvenience can be easily overcome by
making the following canonical transformation:

p =R - R,(¥),
P, = Pg,

Y =17,
3)
Py = Py + PrldR.(9)/d?].

Some representative results, computed by numerically
solving the equations of motion derived from Hamiltonian
(2), using the Shampine and Gordon algorithm,*® for differ-
ent values of the excitation energy, E, are shown in Fig. 2.
As can be seen, the chaoticity of the system increases with
the energy. At low energies, for example, E = 1000 cm™! as
chosen in Fig. 2(a), the vibrational motion takes place in the
LiNC well and it is regular, being then confined in invari-
ant tori. As higher energies are considered, e.g., panels (b)
and (c), the invariant tori progressively start to break down,
this paving the road for widespread chaotic motion, as dic-
tated by the celebrated Kolmogorov—Arnold—Moser (KAM)
theorem.*” Comparison of results in panels (b) and (c) clearly
indicates that the dynamics in the LiNC well gets increas-
ingly more chaotic as the excitation energy grows. In panel
(c), which corresponds to an energy above the level of the
less stable LiCN minimum well, motion also takes place in
that region of the phase space. Also, a conspicuous accumula-
tion of points next to the LiNC regular regions is observed.
This is due to the existence of a cantorus, as thoroughly
discussed in Ref. 50. At even higher energies, we end up being
above the PES saddle energy, i.e., panel (d), the two isomer

J. Chem. Phys. 146, 014107 (2017)

@ o

40¢

()
20
5
ER
= o,
Y,
—40L ‘ ‘ ‘
0.250.50 0.75
¥ (7 rad)

FIG. 2. Composite Poincaré surface of sections for the LINC/LiCN vibra-
tional dynamics computed along the minimum energy path shown in
Fig. 1, i.e., p=0 [see Eq. (3)] at different values of the excitation energy:
(a) 1000 cm™ !, (b) 2000 cm™!, (c) 3000 cm™!, and (d) 4000 cm ™!

wells are then connected, this allowing classical isomerization
dynamics.

C. Periodic orbits for LiNC/LiCN
and the bifurcation—continuation diagram

Figure 3 shows the bifurcation—continuation diagram with
the most relevant POs in the LiNC [panel (a)] and LiCN [panel
(b)] wells, the transition state (TS) at the PES saddle, and also
those “born” in the saddle-node or tangent bifurcation dis-
cussed in Ref. 50 [panel (c)]. The POs are characterized in
this plots by the initial values of their stretch coordinate R as a
function of the energy. Thin blue and thick red lines indicate,
respectively, the stability and instability of the corresponding
orbits. As can be seen, the number of POs increases with energy
due to the different bifurcations taking place. In panels (a)—(c)
only the POs that are symmetric with respect to the # = m and
0 rad lines, i.e., isomers LiINC and LiCN, are considered. We
have also highlighted in the figure with empty green circles the
position of the quantized trajectories, i.e., the POs that fulfill
the BS rule discussed below in Sec. III A 1. Moreover, those
that will be used in our construction of a basis set for the system
have been indicated with filled green circles (see Subsection
III B). Notice also how the density of the states of the system
increases with the excitation energy, as emphasized in the bot-
tom panel (d), where the quantum energies of the system are
represented.

The POs in Figs. 3(a) and 3(b) have been labeled as
“N Xyz,” N being an integer identifying the bifurcation at
which they first appear (in all orbits considered N = 1, 2, 3).
Letter X identifies the branch in the bifurcation diagram, being
for librations or time-reversal POs X = A associated with the
upper branch and X = B with the lower one; the rotations,
i.e., POs that have no time-reversal symmetry and then cor-
respond to both (upper and lower) branches, are labeled as
X = AB/BA. The Y subindex indicates the well where the PO
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FIG. 3. Bifurcation—continuation diagram of periodic orbits (POs) for the
LiNC/LiCN isomerizing system. Panels (a)—(c): Bifurcation—continuation
diagrams for (a) POs in the LiNC isomer well, (b) same for LiCN, and
(c) POs “born” both in the saddle-node bifurcation discussed in Ref. 50
(lower double red-blue line), and in the potential energy surface saddle (upper
single red line). From top to bottom at the highest represented energy of
E = 4300 cm™!, and in the notation used in Fig. 3 and throughout the text,
(a) 1Az_0, 2AB 0, 3A—0, 4AB,_0, SAz_0, 1AB,_1, 1BA,_|, 6A,_0,
TAB,_o, 8AB,_g, 070, 8ABr_o, 1A;_3, 2AB,_3, 1Br_3, 2AB,_3,
2AB,_2, 2AB,_2 7TAB,_o, 9AB,_¢, 6Br_0, 9AB,_¢, 6B,_0, 9AB_0,
IBAn_l N IAB,T_| s SB,,_(), 4AB,T_0, 3B,r_0, ZABﬂ-_o, and IB,T_(), (b) le,O,
2ABO_0, 00_0, ZABO_O, and lBo_o, and (C) TS”, SN", and SN®. Thin blue lines
indicate stable POs, while unstable POs are referenced by thick red lines. The
saddle point has been marked as black triangle, the two potential minima
as black squares, and the lowest-lying bifurcation point of other important
families of POs as yellow squares. The empty green circles represent the
Bohr-Sommerfeld quantized energies determined by Eq. (6). The energies of
the localized states selected for the construction of the basis set have been
highlighted in filled circles (see discussion in Sec. IV). Panel (d): Quantum
eigenenergies for the LINC/LIiCN system.

is located: Y = 0 for POs associated with the LiCN isomer, and
Y = n for POs of the LiNC isomer. Subindex Z =0,1,2, ...
is an integer indicating the bifurcation where the first PO
appears. The stable/unstable character of the PO is indicated by
W =s/u (for stable or unstable, respectively). The POs of panel
(c) have been labelled as “TS” in the case of the trajectory
located in the neighborhood of the TS or activated complex at
the PES saddle point, and as “SN*” (“SN*”) for the case of the
stable (unstable) POs “born” in the tangent bifurcation.”’

All trajectories introduced in Fig. 3 are presented in Fig. 4
at a particular value of the energy, actually E = 3500 cm™!. In
this figure, we have also included the POs corresponding to
the stretch modes associated with purely vibrational motion
of R in both wells, which are always stable. We have labeled
them as “Sy,” where the subindex Y indicates again the well
where the PO is localized (Y = 0 for LiCN and 7 for LiNC).

J. Chem. Phys. 146, 014107 (2017)
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FIG. 4. Periodic orbits (black thick lines) of LiNC/LiCN molecular system
included in the bifurcation—continuation diagram of Fig. 3. The minimum
energy path and the equipotential lines at 3500 cm™! have been superimposed
in dashed red and continuous blue lines, respectively.

lll. METHOD

In this section we describe the method that we have devel-
oped for the construction of an efficient semiclassical basis set.
The section is divided in two parts. First, we describe in Sub-
section III A how to compute localized wave functions along
POs. Second, in Subsection III B we discuss how the previous
localized wave functions are selected for the construction of
our basis set.
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A. Computation of localized wave functions

In this subsection, we briefly describe the method to con-
struct localized wave functions along POs. For this purpose,
we distinguish between two different kinds of states depend-
ing on whether the PO is stable or unstable: for stable POs, we
will use the so-called “tube” wave functions described in Sub-
section III A 1, while for unstable POs we will construct the
“scar” wave functions that are presented in Subsection III A 2.
More details can be found in Refs. 19, 38, and 40.

1. The “tube” wave functions

Our “tube” wave functions are defined as
T
YR, 9) = / dre Bt y(R, 9, 1), 4)
0

where T is the period of the PO and E, the corresponding BS
quantized energy (see discussion below). As can be seen, it
consists of a time average of a suitably defined wave packet
?(R, 1, t), whose dynamics is forced to stay in the neighbor-
hood of the PO. This dynamics, given at time ¢ by the phase
space point (R, ¥+, Pry, Pp 1), is assumed to be that of a frozen
Gaussian®'? centered on the trajectory as

G(R,9,1) = exp{—ar(R — R)* — ay (¥ — 9,)*
+%U%AR—R0+wa—ﬂJ%HWL($

Here, we take ag = 16.114 a.u.”2 and oy = 14.123 rad~2 that
approximately coincide with the “width” in configuration
space of the LiNC quantum ground state. The time function
Y: = S¢/h — pm/2 is the phase accumulated during the propa-
gation, which is actually the sum of two terms: the first one of
dynamical origin given by S,/h = fot dt (Pr.R; + P,g,,ﬁ,)/h,
and the second contribution proportional to y,, which equals
the number of half turns that the neighbouring trajectories
describe around the guiding PO. This second term, which is
always more complicated to compute, can be evaluated by
using a set of local coordinates along the PO and studying
the time evolution of the corresponding transversal stability
matrix.>? It should be noticed that y; is not a canonical invari-
ant, and as a result its magnitude depends on the definition
chosen for the angle swept by the manifolds. Very often, only
the value of this magnitude after a full period of the PO, ur,
usually known as the winding number is needed. In this case,
the function is canonically invariant and is equal, for unstable
POs, to the Maslov index>* appearing in Gutzwiller’s trace
formula.>>- More importantly, the required phase becomes
much easier to calculate, since it is simply equal to /2 times
the number of turning points plus self-conjugated points in the
PO.

In order to maximize the localization along the PO, the
tube functions are defined at the energies, E,,, fulfilling the BS
quantization rule

_SE) 7w,
= h — /,[5 = Z7tn,
where n is an integer number giving the number of nodes in
the wave function along the PO, and v, S, and u being defined
over one period of the PO, i.e.,y = yr,S = St, and u = ur.
Notice that many orbits of Fig. 4 are symmetric with
respect to ¥ = 0 or ¥ = x rad, while the considered wave

n=0,1,2,..., ©6)
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functions are symmetric with respect to these values. This
means that the tube functions associated with symmetric POs
have an even number of excitations, i.e., n is even. Thus, in
order to simplify notation, the » number used to identify these
tube functions equals half the number of excitations.

2. The “scar” wave functions

The tube functions introduced in Eq. (4) can be con-
structed both over stable or unstable POs. However, in the latter
case it is convenient to introduce an improvement by defining
what we call “scar” functions which incorporate short time
dynamical information on the homoclinic structure of the PO
invariant manifolds.®

These scar functions are computed by first propagating
the corresponding tube wave functions and then performing a
finite-time Fourier transformation at the BS quantized energies
in the following way:

U R, ) =

+TE A
/ dt cos (%) ¢ ICH=Er/n YR, D),  (7)

Tg E

1 A
TE_len(h) ®)
is the so-called Ehrenfest time, which can be only defined
for unstable POs and depends on two parameters: the stabil-
ity exponent of the PO,*” )\, and the area of a characteristic
SOS, A. This time can be (semiclassically) understood as the
lapse of time that a Gaussian wave packet needs to spread over
this characteristic Poincaré SOS area of the system. Also, a
cosine window is used in the definition (7) in order to mini-
mize the dispersion in energy of the scar functions.’” Among
other methods, wavelets provide an efficient method to per-
form the time evolution appearing in Eq. (7), with a precision
of at least six decimal places.”®

Figure 5 shows some examples of very highly excited
scar functions along the quantized unstable POs 3A* of Fig. 4,
corresponding to the quantum numbers n = 14—19 and BS ener-
gies between 3091.48 cm™! and 3982.40 cm™!. In all examples

where

0.2 0.8 .

d(rrad) 107 10° 10°
FIG. 5. Some examples of scar functions (5) for LINC/LiCN. The unstable
periodic orbit 3A" (think black line), the minimum energy path (dashed red
line), and the contour plots of the potential energy surface have been plot-
ted superimposed. The number in the center of each panel gives the integer
appearing in Bohr—Sommerfeld quantization rule (6).
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shown in the figure the characteristic area, A, appearing in
Eq. (8) has been estimated as the integral [ dR Pg computed
along the line ¢ = = rad at the quantized excitation energy,
since the PO lives in the vicinity of that region. All these func-
tions, as well as any other throughout the paper, have been
computed by setting 7 =1 a.u. As can be seen, the probability
density is not well localized over the PO because of the com-
plex topology of the trajectory, this somehow reducing the
scarring phenomenon due to the quantum dynamics implied
by finite 7. Also, notice that these functions are both excited in
the R and ¥ directions, and seem to have a rather simple pat-
tern.!” Consequently, one can easily assign quantum numbers
accounting for the number of excitations (or nodes) in each
direction. For example, the scar functions shown at the top
row of Fig. 5, labeled as 14 and 15, correspond to states with
3 excitations in each direction, and then (ng, ng) = (3, 3). The
two scar functions presented in the middle row have different
quantum numbers: while the one on the left (labeled as (16))
has (ng, ng) = (4,3), the one on the right (17) corresponds to
(ng,ny) = (2,4). Finally, the scar functions ((18) and (19))
shown in the bottom row are associated with (ng,ng) = (2,4)
and (ng, ny) = (3, 4), respectively. Nevertheless, it is simpler to
label these functions as we have done by counting the number
of nodes that they have along the (desymmetrized) PO. This
number n = 14-19, which has also been shown in each panel,
equals the integer fulfilling the BS rule (6), for u = 16.

B. Selective Gram-Schmidt method (GSM)
for the construction of the basis set

As energy increases, the exponential proliferation of clas-
sical POs in floppy molecules leads to a dramatic increment in
the number of quantized POs over which our localized wave
functions can be defined. Thus, a selective procedure for the
best suited localized states must be developed in order to con-
struct an efficient basis set for the computation of vibrational
states of this kind of systems that keeps the eigenvalue problem
at moderate sizes. Afterwards, the Hamiltonian matrix asso-
ciated with Eq. (2) can be computed, and then diagonalized
using standard procedures.

This subsection is divided in two parts. First, Subsection
III B 1 describes the algorithm developed for the construc-
tion of our basis set, which is called selective Gram-Schmidt
method (SGSM). Second, we discuss in Subsection III B 2 the
procedure that we have developed for presenting our results in
a way that provides a clear physical insight into them.

1. Definition of the basis set

To define our basis set, we have generalized the usual
Gram-Schmidt method (GSM),” and developed a new selec-
tive Gram-Schmidt method (SGSM). This SGSM is the second
pillar of our method, and it is able to choose a basis set of lin-
early independent functions in a vectorial space from a larger
(overcomplete) set of functions that can be used to efficiently
compute the chaotic eigenfunctions of our system.*’

The SGSM starts from an initial set of N localized (tube
and scar) functions, |l//](.0)), from which the procedure selects
the minimum number of them, N, < N, necessary to adequately
describe the Hilbert space defined by the eigenfunctions whose
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energies are contained in a given energy window, that is, the
SGSM defines a basis set in that window. The elements of this
basis set |1//§_0)), where subindex i orders the elements accord-
ing to their semiclassical relevance (see discussion below), are
automatically selected with the aid of the conventional GSM.
Thus, associated with the basis |lﬁ;i())>, we construct an auxil-

iary basis |¢;), formed by the orthogonalization of |1//;9)>. For
example, if we set

o) = 1),
then a second auxiliary function |¢;) is given by
1
i)
lp2) = — 5
)

where j, # ji and
My — 1, Oy _ 0y, (0)
sz >— WD ) <<P1|lﬂj2 )Wn >,
and so on.
In our SGSM method, the selection procedure of the basis

functions with a given symmetry for the calculation of the
eigenenergies, E, up to a given energy

E < Erefs (9)

is done automatically by using a definite set of rules, which
are based on a selection parameter, n. For a given localized
function 7 is defined as

n = pilo? + GE". (10)

This parameter depends on three terms. First, it depends on the
density of states, p;, at the quantization BS energy E;, which
is only relevant when the energy window is large. Second, it
also depends on the tube/scar function’s dispersion, given by

o) = \/<w;°>|7%2|w;°>> -@OAw"2 A

where H is the quantum version of the classical Hamiltonian
(2). Third, 7 depends on a new parameter, 0E;, defined as

ifE; < Eper

07
6Ej - {EJ — Eret, iij > Epet (12)

The function ¢E; is included in Eq. (10) in order to improve
the numerical accuracy by reducing boundary effects. When
large energy windows are considered, E; has a small influ-
ence on the results, and then it can even be neglected. It is thus
clear that the parameter 7 introduced in Eq. (10) can be also
defined using other criteria that account, for example, for the
stability or the period of the POs.%0 In this work, however, all
these coefficients have been dropped out for simplicity. On the
other hand, this has been done because we want to use a single
selection parameter for all orbits, no matter if they are stable
or unstable. Recall that the stability exponent is complex for
stable POs, and then 7 would no longer be real. On the other
hand, the inclusion of the period in Eq. (10), as done in Ref. 40,
renders less accurate results. This last result is a consequence
of the barriers existing in the LINC/LiCN system, which con-
fine the POs in certain regions of the phase space. At low
energies, this confinement is caused by the invariant tori. At
higher energies, the dynamical barrier close to 9 =0.611 rad
[see accumulation of points next to the LiNC regular region



014107-7 Revuelta et al.

in Fig. 2(b)] acts as an effective quantum separatrix in the
phase space.!® Furthermore, we also have the PES barrier sep-
arating the two isomers. On the contrary, in generic highly
chaotic systems the unstable POs densely cover the system
phase space.

The SGSM is then defined, in an algorithmic way, as
follows:

e (). With the method described in Subsection III A, we
compute all the localized states, |1//©>, whose BS quan-
tized energies, E;, fulfill Eq. (6) for the POs shown in
Fig. 3(c), and Eq. (6) for the POs in Figs. 3(a) and 3(b)
(cf. also Fig. 4), and are contained at the same time in
the enlarged energy window defined by

Ej < Eper + 20—j9 (13)

where the term 207 is introduced to reduce border
effects, being o7 given by Eq. (11). For the stable POs,
normalized tube functions are computed, whereas for
the unstable ones the scar functions are constructed.
This is the most time demanding step of our proce-
dure. It should be remarked here that for the system
under study, similar results would be obtained using
solely the tube wave functions. Moreover, they are also
adequate for systems with a higher degree of chaotic-
ity.* However, we have decided to use the scar wave
functions over the unstable POs as they have alower dis-
persion in energy, rendering thus slightly better results.
Let us finally remark that it can be a priori expected that
the overlap of the tube and scar functions outside the
enlarged window (13) with the desired system eigen-
functions is negligible, due to the fact that they were
constructed minimizing their energy dispersion.

e 1. From the initial set of localized functions, |zp;0) ), we
select a smaller number of them, N, < N, forming a
basis set that is optimal for our purposes, as the number
of accurately computed eigenfunctions scales linearly
with Nj. Notice that the number of tube and scar func-
tions calculated for this purpose, N, should always be
greater than or equal to

Np = Nye(Eref +20¢) + CpOsc s (14)

where N(EF) and o are, respectively, semiclassical
approximations to the number of states with an energy
smaller than E and to the scar function dispersion,>’
and the term c,0s.p, cp being an adjustable parame-
ter ensuring that the number of localized states is large
enough to construct the basis; this parameter will be set
equal to ¢, = 6 in Subsection IV A. If N <N, more
(longer) POs, and consequently more localized func-
tions, need to be included in the basis at this step, as
described in step O.

The first element of our basis set is the tube or scar
function with the smallest n; value

1y N 1
lo1) = le ), with — = max {—} . (15)
M nj

According to Eq. (10), this choice gives priority to the
wave functions which are more localized in energy.
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e 2.a. The remaining localized functions are then orthog-
onalized to |1//;10)> as

W) = ) =@l ™le, i (16)

e 2.b. The second element of the basis set is |¢’;20)>, where
the index j, (jp # j1) satisfies
D2
w2 V|
2 = max{—Z , 17)
Mj, nj

J#h
where the norm in the numerator has been introduced
in order to make the basis set elements as different as
possible between them. Indeed, notice that after the
orthogonalization of Eq. (16) the more similar |zﬁ;0) Vi

is to |1 ), the smaller the norm of function |lﬁ;l)|j¢jl is.
Then the auxiliary function |¢;) is computed as

%)
g2y = ﬁ (18)
J2

The previous steps, 2.a and 2.b, are repeated for all the
remaining elements in the initial basis set of localized
(tube and scar) functions, in such a way that the nth step
in the procedure is defined as follows:

¢ n.a. New functions are obtained by orthogonalization
to the auxiliary function in the previous step, |¢,—1),

|w;”_1)> = |¢’/('n_2)> - <¢n—l |l!/;n_2)>|¢n—l>’
J#EJJ2s s jn-1-

19)

Let us remark that the functions |zp("_l)) are not only
orthogonal to |¢,—1) but also to all the already selected
functions |¢,—2), |€n-3), - .-, |®2), |¢1) because of the
n —2 previous orthogonalizations.

e n.b. The nth basis element is Iw;O)), where the j, index

satisfies
-1 -1
"D "V
——— =max{ —— ,  (20)
Mjn nj o
JEI 255 Jn-1
and the next auxiliary function is constructed according
to
i)
len) =~ @n
-1
el

Jn
e The procedure finishes when the number of selected
elements in the basis set equals N, given by Eq. (14).

Afterwards, the corresponding Hamiltonian matrix is
computed in the basis set of localized functions, or alter-
natively in the equivalent basis set of auxiliary functions.
Diagonalization using standard routines®® finally renders N,
eigenstates in the energy window defined in Eq. (9). Notice
that while the (original) localized wave functions define a
basis set that is nonorthogonal, and then a generalized eigen-
value problem should be solved, the basis set of the auxil-
iary functions is orthogonal, requiring then the solution of
the standard eigenvalue problem. Recall that the computa-
tion time in both cases remains moderate when basis sets
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of dozens or hundreds of elements are used, but the gener-
alized eigenvalue problem is, in general, much more demand-
ing than the standard one when much larger basis sets are
considered.

2. Local representation

To get a useful representation of the results obtained in
our localized basis set construction procedure, a local repre-
sentation should be used, in which each single eigenfunction
is reconstructed as

Np
INY =" Cule), (22)
j=1

being Cy; = (go}OCIN), and Z;V:”I |Cyj|* = 1. The procedure to
compute the functions ga/l."c is also based on the GSM, but
in this case we give priority to those localized (tube/scar)
wave functions with larger localization intensities, i.e., with
a larger overlap with the eigenfunction |N). For this purpose,
we proceed as follows:

e 1. The first element of the local representation is taken
as the localized state, |l,0;0) ), with the largest localization
intensity, which is defined as

= [N (23)

Then,
@) = i, (24)
X Ex](,lo) = max{x}o) } being the largest localization

intensity. This intensity provides valuable information
on the localization of the |N) eigenfunction over the
quantized orbit associated with Ic,b;]())).

e 2.a. For the identification of the second largest local-
ization intensity, xp, one must first orthogonalize the
remaining localized states Izp;O)) to Igoll"c) in the follow-
ing way:

;) = 1) =W, S # . 25)

e 2.b. The second element of the local representation is

defined as
(1)
")
1 J2
|locy = |zp(1)|’ (26)
J2
withx, = x;;) = max{x}]),j #Jj1}

Due to the orthogonalization in (26), the inten-
sity x, cannot be directly related to the localization of
the |N) eigenfunction over the PO, along which |x//;20))
is constructed. Nonetheless, the sum x; + x, is the
square of the modulus of the projection of |N) onto
the subspace defined by Iw;?)) and Iwg))).

The previous steps, 2.a and 2.b, are repeated until
all N;, auxiliary functions are computed, in such a way
that the nth step is defined as follows:

e n.a. The remaining functions, Ic,l/;”_z)), are orthogo-
nalized to the last element of the local representation
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1
computed, I(pn"_cl), as
-1 -2 -2
"y = ) = (e lu gk, o
J#J15J2s s jn-1-
e n.b. The nth element of the /ocal representation is given
by
| (n—-1)
locy _ Jn
I‘pn ) - |lﬁ(n_l)| s (28)
Jn
. -1 P .
with x, = xj(” = max{xj(»” VG #E s sinet)e

Recall here that the sum x; + x + ... + x, is related to the
projection of |N) onto the subspace defined by the localized
functions Iw;lo)% Wg))), e ij(.:)_)l).

IV. RESULTS AND DISCUSSION

In this section we present some results for the vibrational
eigenstates of the floppy LiNC/LiCN molecule obtained with
our basis set of (semiclassical) functions localized on POs
plus the corresponding discussion. The section is divided into
four parts. First, in Subsection IV A, we give full details of
our computational procedure, and demonstrate that each indi-
vidual eigenfunction can be essentially reconstructed using
a very small number of basis elements. Second, we present
in Subsection IV B the localization intensities of the system
eigenfunctions. Third, in Subsection IV C, we demon-
strate the efficiency of our basis set by comparison with
other standard approximations through the computation of
the participation ratios. Finally, we conclude by presenting
estimations of the error in the eigenenergies and the corre-
sponding eigenfunctions in Subsection IV D.

A. Spectrum of the LINC/LiCN eigenfunctions
in a basis set of functions localized along
periodic orbits

Using the method reported in Sec. I1I we have constructed
a basis set formed by solely 90 elements, which is able to
accurately describe the 66 low-lying eigenfunctions of the
LiNC/LiCN isomerizing system. The structure of all these
eigenfunctions in our localized basis set is discussed in detail
in the supplementary material.

The construction of our localized basis set is performed
in the following three steps. First, we set in Eq. (14) the val-
ues of Ef=4100 cm™! and ¢;, = 6. Second, we calculate the
quantization energies of each PO, which are shown with empty
green circles in Fig. 3. Finally, we construct the tube functions
for all these POs in the case they are stable, and scar functions
for the unstable ones. This procedure renders a total number of
508 localized wave functions. From this whole set, our method
has defined our final basis set by selecting the 90 best suited,
19 of them being tube functions and the remaining 71 scar
functions. The BS energies of the selected states have been
highlighted with filled green circles in Fig. 3. As it can be
seen, the number of selected states increases with energy at a
similar rate as the density of eigenfunctions. This can be clearly
understood by comparing the number of states contained in a
given energy window for panels (a) and (d). For example, if
we take an energy window of 200 cm™! in Fig. 3(d), we can
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see that it only includes one state if the energy is smaller than
1000 cm™! (the level spacing for the three low—lying eigenener-
gies is ~230 a.u.), 2 if the energy is ~1200 cm™!, 3 in the range
~1500 cm™!, or 4 for energies ~2000 cm™! (see supplementary
material for further information). Thus, as energy increases,
the density of states increases accordingly. In Fig. 3(a) we can
see that the BS energies of the localized functions that form
our localized basis set follow a similar pattern: the number of
selected states (filled green points) is very low at small ener-
gies and are quite separated, while they get closer and closer
for higher energies. Likewise, a more detailed analysis of Fig.
3(a) shows that the number of selected BS energies included in
a window of 200 a.u. equals the number of eigenenergies just
discussed.

As already stated in Subsection III A, the tube/scar func-
tions have a very low dispersion in energy.!%-30-33:36:38 One can
then ask whether there is a similar relationship for the eigen-
functions computed in a basis set formed by these localized
wave functions. The answer to this question is affirmative,
as shown by the results in Fig. 6, where the spectra of some
representative eigenfunctions in the local representation given
by Eq. (22) are presented. In the picture, we have also indi-
cated the most contributing localized states, via their quantized
POs, to the reconstruction of the eigenfunctions [53) and |65)
(red spectra). This will be discussed in more detail below (cf.
Subsection IV C). Asit can be seen, the spectrum of each eigen-
function is mainly concentrated around the corresponding
eigenenergy, which is taken as the origin of the horizontal axis.
Notice that the spectrum has been represented as a function
of the difference between eigenenergy and BS quantized
energy measured in units of the mean level spacing, 1/ p, since

: 43| | 44| | 45
7‘ ‘1.‘“ " ‘l.‘” " .7 I L.
| 53] | 54| | 55
 aB : ‘ 11
8AB| m |
~ o 63 | 64| | 65|
;20:4’ | | ’ TZSABU’
| L BRI | 2481
L Ly L L L } L L L L A | L

—20-10 0 10 20
(EN—EBS,j)P

FIG. 6. Spectra of some representative LINC/LiCN eigenfunctions in our set
of localized basis functions. The vertical axis shows the squared of the coeffi-
cients of the eigenfunctions in the local representation given by Eq. (22). The
horizontal axis used consists of the energy difference between the computed
eigenenergy, Ey, and the Bohr—Sommerfeld quantized energy, Eps j, mea-
sured in units of the mean level spacing, 1/p. In the case of the eigenfunctions
|53) and |65) (red) discussed in Subsection IV C, we have indicated which
are the sticks associated with the tube/scar functions contributing the most,
(16B” _.21), ITABY _1,39), and IBAB! _,37) for |53); ITS"), I2ABY _,.38),

and |6AB 8—0 ,6) for |65)), to the reconstruction (further details, see also Figs. 10

and 11, and Sec. V).
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it provides a meaningful scaling. As already discussed in the
previous paragraph, the density of states increases with the
energy, and, as a consequence, the energy difference, i.e., the
level spacing, between the eigenfunctions decreases. Thus, a
comparison between two bare eigenenergies is not really very
meaningful: one must also take into account the density of
states in order to compare energy differences. For example, an
energy difference of 10 cm™! might be very small for the low-
lying states, which have a mean level spacing of ~230 a.u., but
being rather large for very excited states, where the number
of eigenergies included in an window of 10 cm™! is dramati-
cally large. However, when the energy difference is measured
in mean level spacing units by multiplying it by the density
of states, it is very simple to say whether this relative energy
difference is large or small: if it is larger than one, it must
always be considered large, while it can be considered small
if it is smaller than, at least, one half of the mean level spacing
(<0.5).

Figure 7 shows (with empty red circles) the relative spec-
tral dispersion of all computed LiNC/LiCN eigenfunctions,
o, defined as

T =0Np, (29)

where o is the dispersion of eigenfunction |[N) in our semi-
classical basis set. Then o measures the dispersion of eigen-
function |[N) in mean level spacing units. In order to better
identify the behaviour shown by this magnitude, we have also
plotted superimposed its average value (filled red triangles),
computed as a mobile mean of step 5, which for a set of M

points {y1, y2, . . ., i } defined at the energies {E1, Ey, . . ., Ep}
is given by
13
yjzgzllyj+i, j=12...,M-5, (30)
=
being the corresponding (averaged) energy
o1
15,»=32;15j+i, j=1,2,....M-5. (31)

As can be seen, the average value of the dispersion increases
with the energy, this being an indication of the necessity
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12F 4144 Tube/scar (average) o 9
10+ ooa DGB-DVR/15 “E::u u“w
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S o, 5 Sl
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FIG. 7. Relative spectral dispersion (29) for the LINC/LiCN eigenfunctions
obtained with our basis set of localized function vs. the energy (red empty
circles) and with a DGB-DVR basis set as defined in Ref. 9 (blue empty
squares). In both cases, the average values, computed as a mobile mean of step
5 given by Eq. (30) for y; = o5 and (31), has also been plotted superimposed
(red filled triangles and blue filled stars, respectively). The DGB-DVR results
have been divided by 15 in order that they are defined in the same range as
our semiclassical results.
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of more basis elements for the reconstruction of the more
excited eigenfunctions. Still, it should be remarked that the
obtained values for dispersion of our basis set remain small
compared to other standard methods. In order to demonstrate
this assessment, we have superimposed in Fig. 7 the rela-
tive dispersion for a basis set formed by 345 basis elements
defined by a combination of the Discrete Variable Representa-
tion (DVR) for the ¢ coordinate and a function representation
of distributed Gaussian basis (DGB) in the radial coordinate
R.° Recall that this kind of DGB-DVR basis sets have been
extensively applied to the study of triatomic molecules such
as HCP,®! HNC/HCN,®? H,0,% HZ,% KNC/KCN,? SO,,%
HO,," or the system under study, LINC/LiCN.?%> We have
used 345 DGB—DVR basis elements which render computed
eigenenergies with a precision of 0.1 cm~!. Notice that the
DGB-DVR results have been divided over 15 in order that
they are defined in the same range as our semiclassical cal-
culations. Recall that the larger the DGB-DVR basis set,
the larger the dispersion and the corresponding participa-
tion ratios (see discussion in Subsection IV C). As can be
seen, both the bare relative dispersion (empty blue squares)
and its average value (filled blue triangles) are between 15
and 30 times larger than the ones rendered by our localized
basis set. Furthermore, as will be see below in Subsection
IV D, this low dispersion of the eigenstates in our local-
ized basis set, which is always smaller than 12 level spac-
ing units, also reflects in a small value of the participation
ratio, this fact further demonstrating the efficiency of our
method.

B. Localization intensities of the eigenfunctions

In Fig. 8 we present, with empty red circles and empty
blue squares, respectively, the two largest localization inten-
sities x; and x, of the LINC/LiCN eigenfunctions computed
with our semiclassical basis set, as defined in Eq. (23). As can
be seen, the fluctuation of both quantities is relatively large.
Accordingly, in order to better identify their behaviours, we
have also plotted superimposed in the figure the corresponding
average values (full red triangles and full blue stars, respec-
tively), computed as a mobile mean of step 5 (cf. Egs. (30)
and (31)). For the low-lying eigenfunctions, the intensity x

LOfF & ¢ . " = g
A a “‘uA ° °© . ®
o.sl R ;A;?A%‘OQ‘J‘D 4 o 009 oy 4
A o cA(}nQ‘ o ° ‘&Dg
£ 0.6f o o e u@‘ﬁ‘ _
- 0.4 ° X
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FIG. 8. Largest localization intensities x| (red empty circles) and x, (bottom
blue empty squares) for the eigenfunctions of the LINC/LiCN system in our
basis set of localized functions. The average, computed as a mobile mean of
step 5, given by Eqs. (30) y; = x1,j, x2,j and (31), is plotted superimposed with
red full triangles and blue full stars, respectively.
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has a value close to 1, thus indicating that those eigenfunc-
tions are strongly concentrated over one single PO. Notice
that the eigenfunctions that are highly localized over unstable
POs, i.e., scar basis functions, correspond to “scars” of the
system.® When this happens, x; is smaller than its mean value,
as Zjl.vz”lxj = 1. The average value of x;, computed again as a
mobile mean (cf. Egs. (30) and (31)), decreases more or less
monotonically with the energy. Meanwhile, the average value
of x, increases up to ~1400 cm~!, and then remains more or
less constant and equal to X, = 0.1. Let us remark, neverthe-
less, that x; is by definition always smaller than x;, and then
it must also decrease for larger values of the energy although
this is not noticeable in Fig. 8.9

C. Participation ratios and local representation
of the eigenfunctions

In order to have a more quantitative analysis of the quality
of our basis set, we have also considered participation ratios,
Ry, of the LiNC/LiCN eigenfunctions, |N), defined as [cf.
Eq. (22)] .

_ 55 Cy

T Gy
When examining this magnitude, one has to take into account
that the participation ratios defined in this way are bounded
by two limiting cases. On one hand, the optimal basis set is
always formed by the eigenfunctions system. In this case, all
coefficients C;j appearing in Eq. (32) except one would vanish
and, consequently, Ry, = 1. On the other hand, the most ill-
suited basis set would be one where all the coefficients Cy;
were equal; in this case Ryax = Np.

We present in Fig. 9 the participation ratios, Ry, for the
LiNC/LiCN eigenfunctions computed with the basis set con-
structed with our procedure (red empty circles). As can be
seen, most of the low-lying states have a value of the par-
ticipation ratio close to (the optimal) one. This result is a
consequence of the strong localization of these eigenfunc-
tions along the POs considered for the basis construction.
Thus, the overlap between our semiclassical basis elements
and the eigenfunctions of the system becomes very large. As
energy increases, more basis elements are necessary for the

Ry (32)
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FIG. 9. Participation ratios for the LINC/LiCN eigenfunctions obtained with
our basis set of localized function vs. the energy (red empty circles) and with a
DGB-DVR basis set as defined in Ref. 9 (blue empty squares). In both cases,
the average values, computed as a mobile mean of step 5, given by Egs. (30)
for y; = R; and (31), have also been plotted superimposed (red filled triangles
and blue filled stars, respectively). The DGB-DVR results have been divided
by 5 in order to be defined in the same range as our semiclassical results.
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computation of the system eigenfunctions, and then the par-
ticipation ratios increase accordingly. Although Ry is seen to
present large fluctuations with energy, especially for E > 3000
cm™!, the results in Fig. 9 show that its average value increases
quite smoothly. The dramatic increment of the participation
ratio for E 2 3800 cm™' demonstrates the necessity of more
basis elements, i.e., more POs are required. For a better obser-
vation of the tendency of the participation ratios, we have
also plotted superimposed in the figure with red triangles their
average values, computed again as a mobile mean of step 5.

Let us remark that the participation ratios in our local-
ized basis are much smaller than those obtained using other
standard methods, like the results shown in Fig. 9 in empty
blue squares, as well as than their average values presented in
blue filled stars, which corresponds to the computation of the
LiNC/LiCN eigenstates using a DGB-DVR basis set. Notice
that these DGB-DVR results have been divided by 5 in order
to be defined in the same range as the results rendered by the
computations of our localized basis set.

Let us finally conclude this section by presenting two
examples of the structure of the eigenfunctions obtained with
our basis set. For this purpose we have selected the eigen-
states |53) and |65) highlighted in red in Fig. 8. We present in
Fig. 10 the results corresponding to the first case. Eigenfunc-
tion |53) has a participation ratio Rs3 = 2.16, which implies that
it can be essentially reconstructed by using only 2 or at most
3 basis elements. Moreover, it has a very irregular nodal pat-
tern, something characteristic of classically chaotic systems,
as shown to be the case here in Fig. 10(a). The most important
contribution to this eigenfunction is given by the basis scar
function |6Bj‘r o 21), which is shown in panel (b) of Fig. 10.
Just by using this single basis function 65.9% of the (exact)
eigenfunction |53) can be reconstructed, as shown in panel (e).
When the scar function I7AB? _, 39) [see panel (c)] is added
as a second element to the basis, 82.5% of the eigenfunction is
reconstructed, see panel (f). Finally, augmenting the basis set
with the scar function IBAB] _,, 37) [see panel (d)] as the third
element, 88.5% of the exact eigenfunction is recovered. We
believe this result, i.e., by using only the 3 localized functions
depicted in panels (b)—(d), one can obtain the state shown in
panel (g), which cannot be ascribed to any of the POs shown

FIG. 10. Reconstruction of eigenfunction |53) of the LINC/LiCN system
[shown in panel (a)]. The local representation is performed using the basis
functions [6B7__,21) (b), [7TAB’ _,39) (c), and [8AB’ _,37) (d). Using
the wave function (b) one reconstructs the 65.9% of the exact eigenfunction
(e); combining (b) and (c), one reconstructs 82.5% of it (f), and using (b), (c),
and (d) 88.5% (g).
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in Fig. 4, and it is quite impressive, this giving a clear idea
of the quality and performance of our basis set construction
method.

One last point is worth emphasizing in this discussion on
the reconstruction of the eigenfunction |53) of LiNC/LiCN.
The quantized energies corresponding to the basis elements
which we have considered, i.e., those shown in panels (b)—
(d), lie quite close to the eigenenergy Es3 = 3507.24 cm™!,
as can also be seen in Fig. 6. Obviously, when increas-
ing the number of basis elements this eigenfunction is more
accurately reconstructed. For example, by including 6 basis
elements, 95.1% of the exact eigenfunction is obtained;
using 13 basis elements, 99.1%; with 28 basis elements,
99.9%, and using 39 basis elements, an impressive accu-
racy of 99.99% of the exact eigenfunction with an error of
0.66 cm™! in the corresponding eigenenergy is obtained. In
general, the accuracy of 99.9% in the reconstruction of the
eigenfunctions is achieved by combination of less than 5 basis
elements in the case of most of the low-lying states and around
25 of the 90 total basis elements for the most excited ones.
Recall that the localized states selected in the reconstruction
of these eigenfunctions are those with the BS quantized ener-
gies that lie closer to the considered eigenenergy. Let us recall
here that we consider the exact results obtained with the 345
elements basis set needed in the calculation of Baci¢ and
Light.’

Let us remark that in Fig. 10, the squared wave func-
tions shown in panels (a)-(d) have been normalized such that
their maximum value equals one. Contrary, the partially recon-
structed eigenfunctions represented in panels (e)—(g) have been
normalized in such a way that the maximum value of the
computed squared eigenfunction using the whole basis set of
our localized wave functions equals one. As a consequence,
the maximum value of the partially reconstructed eigenfunc-
tions shown in panels (e)—(g) is always smaller than 1. We
have decided to present the results with these two different
normalization criteria because then it is in general easier to
visualize the contribution of each basis element to the eigen-
function reconstruction (cf. Fig. 11). Finally, notice that the
scar function presented in panel (b) equals the reconstructed
eigenfunction shown below in panel (e), the only difference
between them being the normalization used. In Fig. 11 we
show the results of a similar analysis performed for the struc-
ture of eigenfunction |65), which is the first isomerizing state
of the system, i.e., having a significant proportion of the quan-
tum density simultaneously localized in both isomer wells.
This eigenfunction is shown in panel (a). It has a participation
ratio equal to Rgs = 4.60, and the corresponding computed
eigenenergy of 3826.84 cm™! is 3.08 cm™! smaller than in the
DGB-DVR calculation taken as reference. Again, the eigen-
function is mostly reconstructed using a very small number of
basis elements. Indeed, by just considering the scar function
|TS*,0) (b), 50.7% of the reference eigenfunction is recov-
ered [see result in panel (e)]. Considering the scar functions
in panels (b) and (c), one reconstructs 70.6% of the reference
eigenfunction, as seen in panel (f). Finally, combining all basis
functions shown in panels (b)—(d) and (h)—(j), one gets the
wave function shown in the panel (m), which is very similar
to the exact eigenfunction of panel (a), despite the fact that



014107-12

Revuelta et al.

¢ (7 rad)

FIG. 11. Reconstruction of eigenfunction |65) of the LiNC/LiCN system
[shown in panel (a)]. The local representation is performed using |TS",0)

(b). [2ABY_,.38) (), and [2AB_.6) (d), [1AY (.3 (h). [2AB_,.8) (i),

|2AB?[_O, 39) (j). The reconstruction process is shown in the remaining pan-
els, where 50.7% (e), 70.6% (f), 78.9% (g), 82.2% (k), 84.7% (1) 87.0% (m)
of the exact result is obtained.

it has been calculated using functions that are localized over
nonisomerizing POs. Actually, the overlap between the exact
eigenfunction and the approximate one computed using this,
six elements, basis set equals an excellent 87.0%. By using
12 basis elements, 95.3% of the exact eigenfunction is recon-
structed, and by combination of 38 basis elements, 99.0%.
Recall that the localized (tube and scar) wave functions and
the partially reconstructed eigenfunctions shown in Fig. 11
have been normalized using different criteria (see discussion
on Fig. 10). For further information on the structure of all
the 66 accurately computed eigenfunctions obtained with our
localized basis set, see the supplementary material.

D. Errors in the eigenenergies and the eigenfunctions

Let us conclude this section by presenting the results ren-
dered by our localized basis set. For this purpose, we compare
the eigenenergies, E, and corresponding eigenfunctions, |N),
with those taken as reference, E’ and |N’), which are obtained
with the DGB-DVR method discussed at the end of Subsec-
tion IV A. Figure 12 shows the error in the eigenenergies
measured in mean level spacing units, AE, = |E — E’| p,
(top red circles), and in the corresponding eigenfunctions,
1 - (N’IN )2, (bottom blue asterisks), respectively, computed
using our localized basis set as a function of the relative disper-
sion, o, given by Eq. (29). As can be inferred from the figure
and a priori expected, both errors increase with the relative
dispersion.

The black lines in Fig. 12 correspond to the upper bound
for the errors in the energies and eigenfunctions of our
vibrational states calculation given by

4
AE, < st 1= (VINY < o (33)

which indicates that the error in the eigenenergies scales as

o-f/ * with the relative dispersion, while that in the eigenfunc-

tions does it linearly. Let us remark that Eq. (33) has been
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FIG. 12. Error in the eigenenergies (top red circles) and eigenfunctions (bot-
tom blue asterisks) of the eigenstates using our localized basis set, estimated
as described in Sec. IV D, as a function of the relative dispersion (29). The
solid lines indicate the upper error bounds given by Eq. (33).

obtained heuristically, so one could equally define well the
other (in general more complicated) functions to estimate
the upper bounds. However, we have decided to use these
expressions as they are extremely simple, and similar to those
previously used by some of us in the study of other classically
chaotic systems.*->7

Let us finally remark the usefulness of Eq. (33) as one can
use them to know a priori the errors expected in the calculation
of highly excited states**->” by simply measuring the relative
dispersion, which is very easy to calculate parameter.

V. CONCLUSIONS AND OUTLOOK

Summarizing, we have presented a method to efficiently
compute the vibrational eigenstates of floppy molecular sys-
tems, in which the classical phase space contains regions of
regular and irregular motion at the same energy. The method
uses the so-called tube and scar wave functions, respectively,
localized over stable and unstable POs, which then semiclas-
sically account for these underlying classical structures of the
system; this including short pieces of the invariant manifolds
originated in the fixed point in the latter case. This method
was originally introduced in Ref. 40, where it was applied to
a highly chaotic system consisting of a homogeneous quartic
coupled potential function. In this paper, we have extended that
work by applying it to the study of a floppy molecule described
by a realistic potential, namely, the LINC/LiCN isomerizing
system. Using a basis set formed by 90 localized elements,
we have accurately computed the 66 low-lying eigenenergies
and the corresponding eigenfunctions of the system. More
importantly, we have demonstrated that each eigenfunction is
essentially reconstructed by a small number of basis elements,
usually less than 5 in the energy range considered. Likewise, in
order to demonstrate the efficiency of the method, a detailed
discussion on the results has been performed, including an
analysis of the structure of the eigenfunctions in terms of our
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efficient basis set, localization intensities, participation ratios,
and also the errors of our computations, taking as reference the
corresponding values as rendered by the DGB-DVR method
of Baci¢ and Light.’

Finally, let us remark that the extension of our approach to
the full three—degrees-of-freedom calculations of LINC/LiCN
is straightforward, since it simply consists of making a direct
product basis of the current functions and functions describ-
ing the third degree of freedom, r. However, the results
reported by some of us in Ref. 44 indicate that significant
changes in the conclusions of the present work should not be
expected.

Regarding this point, it should be mentioned that the
computational burden involved in a calculation for systems
with more than two degrees of freedom will be only sig-
nificantly increased, especially in systems with no symme-
try, in the step of the identification of the required POs,
a task that would then imply a search in more than one
dimension. Also, the time propagation necessary for the con-
struction of scar functions would require some more com-
putational time. Still, and due to the small dispersion of
these localized states, the size of the localized basis set will
scale (approximately) linearly with the number of eigenfunc-
tions of the system, which just increases following the Weyl
law.*

SUPPLEMENTARY MATERIAL

See supplementary material for full details on the recon-
struction of the 66 eigenenergies and eigenfunctions of the
LiNC/LiCN isomerizing system.
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