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A lo largo de los últimos años, se ha dedicado un gran esfuerzo en dirigir la terapia 

contra el cáncer hacia el desarrollo de compuestos quimioterapéuticos enfocados en atacar 

las enzimas encargadas de reparar el DNA. Con este fin, la aproximación terapéutica actual 

consiste en aprovecharse de una debilidad específica de las células tumorales para 

eliminarlas de forma selectiva, este concepto se conoce como letalidad sintética y es el 

modelo clave para el tratamiento del cáncer. En esta Tesis Doctoral aportamos evidencias 

del potencial terapéutico de bloquear la quinasa ATR en tumores con altos niveles de estrés 

replicativo (RS, por sus siglas en inglés), un tipo de daño específico del DNA inducido por 

oncogenes y suprimido por las enzimas ATR y CHK1. Basándonos en estudios previos de 

nuestro laboratorio, hemos establecido la hipótesis de que los tumores con altos niveles de 

RS pueden identificarse en base a altos niveles de expresión de CHK1. Siguiendo esta 

lógica, hemos identificado un subtipo de leucemia mieloide aguda (AML) y el tumor sólido 

Sarcoma de Ewing, los cuales responden favorablemente al tratamiento con inhibidores de 

ATR.  

Nos hemos centrado en el subtipo de AML iniciado a partir de reorganizaciones 

cromosómicas del oncogén MLL (AML-MLL). Las células tumorales de AML-MLL son 

resistentes a las terapias genotóxicas actuales debido a que presentan una respuesta 

atenuada del supresor tumoral p53, lo que implica un pronóstico desfavorable para esta 

enfermedad. En esta tesis, demostramos que la inhibición in vitro de ATR provoca la 

eliminación de células de AMLMLL de ratón, independientemente de la respuesta de p53 que 

presenten. Además, la inhibición de ATR genera una actividad anti-tumoral in vivo en un 

modelo de AMLMLL en ratones inmuno-suprimidos y en xenotransplantes de una línea celular 

humana de AML-MLL. Cuando el RS es persistente conlleva la rotura de la horquilla de 

replicación y la generación de roturas de doble cadena en el DNA. En relación a esto, 

describimos que la inhibición de ATM, una quinasa relacionada con ATR que responde al 

daño por roturas de doble cadena en el DNA, también mejora la supervivencia de los ratones 

con AMLMLL.  

El Sarcoma de Ewing es un tumor pediátrico originado por una translocación 

cromosómica, mayoritariamente EWS/FLI. Este tumor puede remitir mediante cirugía y 

radiación en un estadio temprano; sin embargo, cuando se disemina por metástasis no tiene 

cura. Varios estudios han demostrado que el Sarcoma de Ewing es altamente sensible al 

daño en el DNA por lo que el tratamiento actual implica agentes genotóxicos. Sin embargo, 

se desconoce la razón por la cual estos tumores responden a dicha terapia. En este trabajo 

demostramos que el Sarcoma de Ewing presenta altos niveles endógenos de RS, lo cual le 

hace particularmente dependiente de la actividad de ATR. Asimismo, dos inhibidores 

independientes de ATR evaluados como agentes terapéuticos únicos demuestran eficacia 

in vitro en líneas celulares de Sarcoma de Ewing y eficacia in vivo en xenotransplantes de 

este tumor. La expresión de las translocaciones cromosómicas EWS/FLI o EWS/ERG es 

suficiente para sensibilizar a otras líneas celulares de distinta naturaleza al Sarcoma de 

Ewing a los inhibidores de ATR. En resumen, esta Tesis Doctoral confirma la utilidad de los 

niveles de expresión de CHK1 como un biomarcador de tumores con altos niveles de RS y 

aporta dos ejemplos preclínicos de la eficacia de los inhibidores de ATR en dichos tumores.  
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Over the past years, among the general chemotherapeutic approaches for cancer 

treatment, multiple efforts have focused on targeting DNA repair enzymes. In this regard 

some approaches aim to exploit cancer-specific defects to selective kill tumour cells; a 

concept known as synthetic lethality that has arisen as a key model for the treatment of 

cancer. In this Doctoral Thesis, we provide evidence of the therapeutic potential of targeting 

the ATR kinase for the treatment of cancers bearing high levels of replication stress (RS), a 

specific type of DNA damage which is induced by oncogenes and suppressed by ATR and 

CHK1. Based on previous work from our laboratory, we hypothesised that tumours with high 

levels of RS could be identified on the basis of expressing high levels of CHK1. Following 

this rationale, we here identified a liquid tumour (subtype of acute myeloid leukaemia (AML)) 

and a solid tumour (Ewing Sarcoma), as two cancer types that respond well to a treatment 

with ATR inhibitors.  

In what regards to AML, we focused on the subtype that is initiated by chromosomal 

rearrangements of the MLL oncogene (AML-MLL). AML-MLL tumour cells are resistant to 

current genotoxic therapies because of an attenuated response by p53, which confers a bad 

prognosis to this disease. Here, we show that in vitro ATR inhibition induces the death of 

mouse AMLMLL cells independently of p53. More importantly, ATR inhibition presents anti-

tumour activity in vivo in an immunocompetent allograft mouse model of AMLMLL and in 

xenografts of a human AML-MLL cell line. When RS is persistent it leads to the breakage of 

replication forks and the generation of DNA double strand breaks. Along these lines, we also 

found that inhibition of ATM, an ATR-related kinase that responds to DNA double strand 

breaks, also promoted the survival of the AMLMLL mice.  

Regarding Ewing Sarcoma, these are paediatric bone tumours that arise from a driver 

translocation, most frequently EWS/FLI1. While the tumour can be cured by surgery and 

radiation in its earliest stages, metastatic disease has no cure. Several studies have shown 

a high sensitivity of Ewing Sarcoma to DNA damage, and current treatment involves 

genotoxic agents. However, the basis for the sensitivity to these therapies remains unknown. 

We here show that Ewing Sarcomas suffer from high endogenous levels of RS, rendering 

them particularly dependent to the ATR kinase. Accordingly, two independent ATR inhibitors 

show in vitro toxicity in Ewing Sarcoma cell lines as well as in vivo efficacy in Ewing Sarcoma 

xenografts as single agents. Expression of EWS/FLI1 or EWS/ERG oncogenic translocations 

suffices to confer sensitivity to ATR inhibitors in non-Ewing Sarcoma cell lines. Collectively, 

this Doctoral Thesis confirms the usefulness of CHK1 levels as a biomarker of tumours with 

high levels of RS, and provides two preclinical examples of the efficacy of ATR inhibitors in 

cancer therapy. 
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ETAA1 Ewing Tumour-Associated Antigen 1 

ETO Eight Twenty One 

ETS E26 Transformation-Specific 
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ETV4 ETS Translocation Variant 4 
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HEAT Huntingtin, Elongation factor 3, a subunit of protein phosphatase 2A and 

Target of rapamycin kinase 1 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HFF Human Foreskin Fibroblast 

HOXA Homeobox protein Hox-A 

HR Homologous Recombination 

H-RAS Harvey sarcoma virus- RAS oncogene 

HRP Horseradish peroxidase 

Hrs hours  

HSCs Hematopoietic Stem Cells 

HU Hydroxyurea 

HUS1 Hydroxyurea sensitive 1 

IdU Iododeoxyuridine 

IGFR-1 Insulin-like Growth Factor 1 Receptor 

IHC Immunohistochemistry 

IRES Internal Ribosome Entry Site 

IVIS In Vivo Imaging System  

JQ1 In honour of chemist Jun Qi, PhD,  who synthesized the original 

compound 

KMT2A Histone-lysine N-methyltransferase 2A; also known as MLL  

KAP1 KRAB-associated protein 1 (KRAB; Krüppel associated box) 

LD50 Lethal Dose, median  

LDS Lithium Dodecyl Sulfate 

LSCs Leukaemic Stem Cells 

MDM2 Mouse Double Minute 2 homolog 

MEF Mouse Embryonic Fibroblasts 

MEIS1 Myeloid Ecotropic viral Integration Site 1 Homolog  

mIL-3 mouse interleukin-3 

mIL-6 murine interleukin-6 

MKI67 

 

Marker of proliferation Ki-67 (The name is derived from the city of origin 
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The Edwin Smith Papyrus is a part of Egyptian book on medicine that dates back to 

around 3000 BC and that contains the first reference in history about cancer. Remarkably, 

the writing says about the disease, “There is no treatment” (Breasted, 1930). Since then, and 

in particular over the last decades, due to the high incidence of cancer, multiple studies have 

been conducted with the purpose of elucidating the aetiology of cancer, which have 

contributed to the understanding that cancer is a highly heterogeneous disease and that 

genomic instability is one of its hallmarks (Hanahan and Weinberg, 2000; Halazonetis, 2008). 

Indeed, the pathways that preserve genomic stability are commonly mutated in cancer cells 

(Hanahan and Weinberg, 2011), and for this reason, the study of genomic instability has 

emerged as key to decipher the tumourigenesis process and to identify efficient therapeutic 

targets and strategies, thereby contributing to the notion that there can be effective 

treatments for cancer. 

1. GENOMIC INSTABILITY AND CANCER 

The maintenance of the stability of the genetic material is essential for the proper 

function and survival of all organisms. This is nonetheless a complicated task, since multiple 

endogenous and exogenous agents threaten DNA stability, and thus, DNA damage 

accumulation is very frequent and consequently a fundamental problem for life, as it can 

accelerate ageing (Garinis et al., 2008) and contribute to cancer onset and progression 

(Hanahan and Weinberg, 2000). Therefore, and even though DNA lesions can have 

substantial evolutionary implications, being fundamental to provide variations in genetic 

material that enable the adaption required for evolution (Stamatoyannopoulos et al., 2009), 

they also pose a severe threat to cell viability as they can interfere with essential cellular 

processes (e.g. transcription and DNA replication), thereby potentially leading to genomic 

instability (Hanahan and Weinberg, 2000). DNA replication is arguably one of the processes 

most dramatically affected by the presence of lesions in DNA. It is an essential process for 

life because the genetic information contained in the DNA needs to be faithfully copied and 

transmitted to the daughter cells every cell cycle. However, the DNA replication machinery 

can be severely blocked when encountering these challenges and this hampers the faithful 

copy of the DNA and cell viability. For all these reasons, multiple mechanisms have emerged 

through evolution to detect, signal and repair DNA damage, and they are collectively termed 

as the DNA damage response (DDR) (Kastan and Bartek, 2004; Harper and Elledge, 2007; 

Ciccia and Elledge, 2010). 
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1.1. DNA Damage Response 

The DDR is a complex network that detects, signals and repairs DNA lesions to protect 

the integrity of the genetic material (Figure 1). The DDR functions through a signalling-based 

transduction cascade involving post-translation modifications (such as phosphorylation, 

acetylation, ubiquitination and sumoylation) that activates specific checkpoints in different 

phases of the cell cycle and promotes DNA repair while delaying cell cycle progression until 

chromosomes are repaired (Harper and Elledge, 2007). In addition to checkpoint activation, 

the DDR leads to the induction of transcriptional programs and DNA repair pathways. If the 

DNA damage becomes intolerable because full repair cannot be ensured or because DNA 

damage persists, the DDR is able to promote apoptosis or to induce cell cycle-cell arrest 

leading damaged cells to an irreversible quiescent state known as senescence (Figure 1) 

(Harper and Elledge, 2007).   

Apoptosis and senescence are two strong anti-tumour barriers that are activated in the 

earliest steps of malignant transformation (Bartkova et al., 2005; Gorgoulis et al., 2005). The 

DDR can trigger these processes manly through the activation of the tumour suppressor 

protein 53 (p53), encoded by TP53, which induces the expression of genes implicated in 

apoptosis, like Puma (p53 upregulated modulator of apoptosis), Noxa (latin for damage) and 

Bax (Bcl-2-associated X protein) (Miyashita and Reed, 1995; Oda, 2000; Nakano and 

Figure 1. The DNA Damage 
Response (DDR). The DDR 
has a hierarchical organization 
whereby different types of 
damage are initially recognized 
by sensor proteins that recruit 
transducers to trigger and 
amplify the signal. Mediators 
guide the signal until it reaches 
effectors that are in charge of 
executing the appropriate 
response. The DDR activation 
results in multiple effects: 
activation of DNA repair 
mechanisms, regulation of 
transcription, cellular 
differentiation, and cell cycle 
arrest either in a transitory way 
(through checkpoints) or in an 
irreversible manner by the onset 
of senescence. Depending on 
the type and amount of damage, 
the DDR can also lead to 
apoptosis (Adapted from Zhou 
and Elledge, 2000).  
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Vousden, 2001); and that can also mediate senescence together with the p16INK4a/pRB 

(protein 16 inhibiting cycling dependent kinase 4 / Retinoblastoma protein) axis (Kuilman et 

al., 2010). Tumour cells progressively accumulate mutations that activate oncogenes and 

inactivate of tumour suppressors leading to unrestrained DNA replication and replication 

stress as a consequence (Bartkova et al., 2005). Moreover, further mutations that partially 

alter other processes concerning the DDR such as damage signalling or DNA repair leading, 

also contribute to malignant transformation. For all these reasons, the DDR is unambiguously 

considered to play an essential role in preventing tumourigenesis, rendering the 

understanding of the processes that involve the DDR as essential in order to address the 

aetiology of cancer. The initial signalling events that trigger the DDR are arguably the most 

essential to preserve genomic stability, and the members of the family of 

phosphatidylinositol-3-kinase related kinases (PIKK) are central players to this process. 

1.2. The family of phosphatidylinositol-3-kinase related kinases 

The DDR is organised in a hierarchical fashion whereby specific lesions in the DNA 

are recognised by distinct protein sensors, which lead to the activation of the effector kinases 

that ultimately coordinate the repair process by modulating a wide range of effectors (Figure 

1). The DDR starts through the activation of one of the members of the PIKK family of protein 

that includes: ataxia telangiectasia mutated (ATM), ataxia telangiectasia and Rad3 related 

(ATR), DNA protein kinase catalytic subunit (DNA-PKcs), serine/threonine-protein kinase 

(SMG-1) and mechanistic target of rapamycin (mTOR) (Lovejoy and Cortez, 2009).  

ATM, ATR and DNA-PKcs are the main effectors for signalling DNA damage and 

promoting its repair (Berti and Vindigni, 2016) (Figure 1). ATM and DNA-PKcs are mainly 

activated by DNA double-strand breaks (DSBs) throughout the cell cycle (Gottlieb and 

Jackson, 1993; Pandita et al., 2000) (Figure 1). DSBs are highly cytotoxic lesions that are 

repaired by several conserved pathways including non-homologous end-joining (NHEJ), 

alternative NHEJ (alt-NHEJ), homologous recombination (HR) and single-strand annealing 

(SSA) (the latter considered by some as a subpathway of HR) (Ciccia and Elledge, 2010). 

NHEJ and HR are the major pathways to repair DSBs and they diverge in their requirement 

for limited or extensive resection of the ends respectively (Hoeijmakers, 2001). NHEJ is 

generally considered as an error-prone pathway since it implies direct binding and ligation of 

the two broken ends of the DSB, requiring little or no processing of the ends, at the expense 

of causing possible local microdeletions, but is essential during G1 phase of the cell cycle. 

Conversely, HR is generally error-free but it can only take place during S and G2 phases as 

it relies on the use of an homologous chromatid for recombination.  The role of DNA-PKcs 

seems to be limited to the repair of DSBs through NHEJ (Weterings and Van Gent, 2004), 
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and although DNA-PKcs is arguably the main kinase promoting DSBs repair, ATM also 

contributes to this process, especially when the break lies in heterochromatin. The repair of 

heterochromatic DSBs is slower and more difficult and ATM has been reported to be able to 

phosphorylate certain substrates in order to increase chromatin accessibility and thus 

facilitate DNA repair in these regions (Goodarzi et al., 2008). 

In contrast to DNA-PKcs and ATM, ATR responds to the accumulation of long stretches 

of single-stranded DNA (ssDNA) (Figure 1), and, consequently, its kinase activity remains 

restricted to the S and G2 phases of the cell cycle (Zou and Elledge, 2003). ATR and its 

major target, the kinase checkpoint kinase 1 (CHK1), mainly prevent a specific DNA damage 

known as replication stress (RS), which is indeed characterised by long stretches of ssDNA. 

Remarkably, in clear contrast to DNA-PKcs, whose activity is limited to lesion site, (Collis et 

al., 2005), ATR and also ATM have major roles in global –rather than local- signalling of DNA 

damage through the phosphorylation of thousands of substrates including their specific 

targets CHK2 and CHK1 respectively (Matsuoka et al., 2007). Although DNA-PKcs- and 

ATM-mediated damage signalling is essential to genomic stability, in this doctoral thesis we 

have mainly focused our studies in the ATR-mediated signalling of RS due to its outstanding 

potential as a therapeutic target for cancer (Lecona and Fernández-Capetillo, 2014). 

1.3. ATR and CHK1 as main effectors of the Replication Stress Response 

RS is characterized by the presence of high amounts of ssDNA at the replication fork, 

caused mainly by DNA replication stalling which, if persistent, can give rise to DSBs. Multiple 

problems, such as low dNTP (deoxynucleotide triphosphate) levels, polymerase inhibition or 

DNA alterations, can block replication forks and thus perturb DNA replication, being those 

the main sources of RS. Remarkably, RS unavoidably arises every time a cell replicates its 

genetic material when replication forks stall in response to DNA alterations and, in 

mammalian cells, ATR suppresses RS and limits the presence of ssDNA through the 

phosphorylation and activation of a wide set of targets including CHK1, thereby initiating the 

RS response (Cimprich and Cortez, 2008; López-Contreras and Fernandez-Capetillo, 2010). 

While the main role ATR is facilitating replication under stress conditions (Hurley and Bunz, 

2007) it is also key to maintain and repair replication forks every S phase, being essential for 

cell division and survival. A fundamental aspect of ATR biology is its recruitment and 

activation, which requires not only the generation of ssDNA but also the interaction with 

additional proteins.  



  Introductio n 

41 

1.3.1. ATR recruitment and activation 

The understanding of ATR structural organisation has been relevant to elucidate its 

interaction with other proteins (Figure 2A). Likewise most of PIKK members, ATR harbours 

an N-terminal region formed by HEAT (Huntingtin, Elongation factor 3, a subunit of protein 

phosphatase 2A and Target of rapamycin kinase 1) repeats variable in length followed by a 

FAT (FRAP, ATM and TRRAP) domain and a C-terminal region formed by the catalytic core 

and the FATC (FAT C-terminal) domain (Baretić and Williams, 2014) (Figure 2A). The N-

terminal region is essential for ATR activity since it constitutes the interaction domain for its 

partner ATRIP (ATR interacting protein) and the FATC domain mediates the binding to 

TOPBP1 (topoisomerase II binding protein), which allosterically activates ATR (Figure 2A) 

(Mordes et al., 2008).  

As aforementioned, the signal that triggers the ATR pathway relies is, in all cases, 

ssDNA. The presence of ssDNA is highly dangerous in a cell and, for this reason, ssDNA is 

quickly protected by the ssDNA binding protein complex RPA (replication protein A) that 

directly interacts with and recruits the ATR partner, ATRIP (Walter and Newport, 2000) 

(Figure 2B). The interaction between ATR and ATRIP is critical for ATR function as, in fact, 

ATR is always present as an ATR-ATRIP heterodimer complex (Zou and Elledge, 2003). The 

formation of ssDNA-RPA 

patches also promotes the 

loading on the ssDNA and 

double-stranded DNA 

(dsDNA) junction of the 

two key mediators of ATR 

activation, RAD17-RCF 

(checkpoint protein 

Radiation sensitive protein 

17 and replication factor C) 

complex and 9-1-1 (RAD9, 

9, HUS1 and RAD1) 

clamp, which in turn recruit 

of TOPBP1 (Figure 2B). 

The activation of ATR-

ATRIP is stronger in the 

presence of DNA 

structures that combine 

Figure 2. ATR domain 
structure and activation. (A) 
Schematic representation of the 
domain structure of ATR. On the 
bottom part of diagram the 
regions that mediate ATR 
interaction with ATRIP and 
TOPBP1 are indicated. (B) The 
ssDNA moiety of the ssDNA-
dsDNA junction at a stalled fork 
is coated with RPA, and this 
leads to the recruitment of 9-1-1, 
RAD17-RCF and ATR-ATRIP. 
Activation of ATR leads to 
phosphorylation of downstream 
CHK1, which in turn activates 
cell cycle arrest, regulates slow 
origin firing and promotes 
stabilization of the stalled fork 
(Adapted from (Cimprich and 
Cortez, 2008). 
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ssDNA stretches and dsDNA, resembling stalled replication forks (Kumagai et al., 2004). 

Ultimately, the activity of ATR is unleashed by its interaction with TOPBP1, which acts as the 

key allosteric activator factor of ATR-ATRIP complex (Figure 2B) (Kumagai et al., 2006). 

More recently, the RPA binding-protein ETAA1 (Ewing tumour-associated antigen 1) has 

been identified as an additional activator of ATR activity that operates independently of 

TOPBP1, although its relevance for ATR activation remains unclear (Haahr et al., 2016).  

The MRE11-RAD50-NBS1 (MRN) complex also takes part in the regulation ATR-

ATRIP activation as it cooperates with 9-1-1 clamp to recruit TOPB1 to stalled replication 

forks. The MRN complex also plays a relevant role in DSB repair where it initiates the ATM 

mediated response to these lesions (Petrini and Stracker, 2003; Lee and Paull, 2005). Of 

note, the response to DSBs also can lead to the generation of ssDNA stretches through the 

resection of the broken end, thereby leading to ATR activation. Thus, while the main role of 

ATR is in responding to RS, it has also a less prominent function in the DSB-response.   

1.3.2. ATR- and CHK1-mediated signalling 

CHK1 is one of the key transducers of the ATR checkpoint response (Figure 2B). Like 

ATR, CHK1 is also essential for coordinating DNA replication and the cell cycle in the 

presence of RS. In contrast to many other substrates that can be phosphorylated by ATR 

directly, CHK1 phosphorylation demands the presence of CLASPIN, which serves as a 

scaffold adaptor between ATR-ATRIP and CHK1 (Liu et al., 2006). 

The main functions of ATR/CHK1 signalling are arresting the cell cycle to prevent 

progression into mitosis with unreplicated DNA and limiting the number of active origins of 

replication to prevent RPA exhaustion (Smits and Gillespie, 2015). These functions are in 

part achieved thanks to CHK1-mediated phosphorylation of CDC25A (cell division cycle 25) 

and of the mitotic CDK (CDK1; Cyclin Dependent Kinase 1), which prevents their activation 

thereby inhibiting the entry into mitosis (Peng et al., 1997; Mailand, 2000; Lee et al., 2001; 

Chen et al., 2003), and also thanks to the capacity of ATR/CHK1 to block origin firing (Figure 

2B). It is well established that during DNA replication initiation only a subset of origins that 

have been licensed are actually fired, while a number of origins remain “dormant” (Blow et 

al., 2011), and are only fired to help complete the replication of their region when a replication 

fork encounters a problem that stops its progression (Ge et al., 2007; Ibarra et al., 2008). In 

the presence of RS or DNA damage, the strong activation of CHK1 leads to inhibition of the 

S-phase CDK (CDK2; Cyclin Dependent Kinase 2) (Petermann et al., 2010), thereby blocking 

the loading of CDC45 (cell division cycle protein 45) on chromatin and in turn blocking origin 

firing, given that CDC45 loading is required for the formation of an active helicase at origins 
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(Boos et al., 2011; Guo et al., 2015). Moreover, CHK1 signalling reduces the activity of the 

DDK (DBF4-dependent kinase), which is also necessary for CDC45 loading (Heffernan et 

al., 2007; Hills and Diffley, 2014). 

ATR activity is especially critical in early S phase, since the high number of active 

origins can lead to an accumulation of excessive levels of RS, thereby exhausting the pool 

of RPA and lead to the presence of naked molecules of ssDNA, which seems to be the signal 

for the nucleolytic degradation of stalled replication forks (Toledo et al., 2013). ATR-ATRIP 

also stabilises the fork structure by recruiting factors that protect it from degradation and 

promote its restart when the problems are fixed (Dungrawala et al., 2015; Berti and Vindigni, 

2016). 

In summary, ATR and CHK1 are necessary to sustain DNA replication through 

controlling the amount of origins that are fired, by stabilizing stalled forks, and ultimately by 

preventing the entry into mitosis with a non-replicated genome. 

1.4. Replication Stress in cancer 

Oncogene activation leads to unrestrained proliferation (López-Contreras and 

Fernandez-Capetillo, 2010), which is an incessant source of RS that contributes to 

transformation and tumour progression in a decisive way. Oncogenic events frequently 

promote a promiscuous S-phase entry, leading cells to initiate DNA replication before they 

are ready and have all the proper metabolites to undergo this reaction, leading to RS and 

DNA damage. The persistent accumulation of RS ultimately generates DNA breaks and 

activates the ATM/p53 DDR, which constitutes the basis of the “oncogene-induced DNA 

damage” model of cancer progression (Halazonetis, 2008). As mentioned previously, the 

DDR acts as a barrier during the initial steps of tumour transformation, by activating apoptosis 

and senescence pathways in response to oncogene-induced DNA damage (Bartkova et al., 

2005; Gorgoulis et al., 2005; Nuciforo et al., 2007). While oncogene activation can generate 

RS through multiple mechanisms, all of them are signalled through the ATR pathway, 

therefore placing ATR as a key guardian of genome stability during carcinogenesis. 

The important role of ATR in suppressing RS leads to tumours becoming “addicted” to 

a proficient ATR response, in order to be able to cope with high levels of RS. Accordingly, 

targeting the RS response can be exploited for selectively eliminating tumours harbouring 

elevated levels of oncogene-induced RS (Figure 3). The first example of this idea came from 

the use of a mouse model of the Seckel Syndrome (Murga et al., 2011). One of the variants 

of this disease is characterized by a mutation in the ATR gene that alters the splicing of its 
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mRNA thereby reducing the levels of mRNA and functional ATR protein to only 5% 

(O’Driscoll et al., 2003). While patients can survive with 5% of normal levels of ATR, they 

display several developmental problems, including features of segmental progeria and 

severe dwarfism (Seckel, 1960). The human ATR-Seckel mutation was used to generate a 

viable humanized mouse model that recapitulates the human ATR-deficient-Seckel 

syndrome and that suffers from high levels of RS during embryonic development and from 

premature aging in adults (Murga et al., 2009). While ATR was classically considered a 

“tumour suppressor”, these studies showed that ATR-Seckel mice were in contrast tumour 

protected (Murga et al., 2009), raising the idea that low levels of ATR could prevent 

tumorigenesis. In fact, ATR-Seckel mice were found to be resistant to the development of 

tumours imitated by MYC (myelocytomatosis oncogene) or MLL-ENL [(Mixed Lineage 

Leukaemia) – (Eleven Nineteen 

Leukaemia)] oncogenes, or by the 

loss of p53  (Murga et al., 2009, 

2011; Schoppy et al., 2012). 

Collectively, these studies 

provided the first genetic 

evidences to support the idea that 

certain cancers become highly 

dependent on a proficient ATR 

pathway, and thus that targeting 

ATR could become a therapeutic 

strategy for the treatment of such 

tumours. 

 

1.5. ATR inhibitors  

Given that genomic instability is widespread in cancer cells (Boveri, 1914), it is now 

well established that targeting genomic instability offers an opportunity to develop treatments 

that preferentially kill cancer cells. This idea gained momentum with the development of 

therapies such as inhibitors of poly (adenosine diphosphate (ADP) -ribose) polymerases 

(PARPs), which are highly toxic for cells with mutations in BRCA1/2 (breast cancer 1 / breast 

cancer 2) that are thus defective in DNA repair by HR (Bryant et al., 2005; Farmer et al., 

2005). Remarkably, exploiting the presence of high endogenous levels of DNA damage in 

tumours arose an alternative therapeutic strategy to targeting a specific mutation of the 

Figure 3. Targeting the Replicative Stress Response for  
cancer therapy.  Elevated RS levels favour malignant 
transformation and tumorigenesis rendering tumour cells 
more dependent on a proficient RS response. Targeting RS 
response using ATR inhibitors (ATRi) results in excessive 
RS levels that leads cells to collapse and death (Murga et 
al., 2009; Schoppy et al., 2012). 
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tumour cells, and this can be achieved by inhibiting the DDR kinases involved in signalling 

for the repair of DNA damage (Figure 3). 

One recurrent finding in cancer is the presence of RS, which, if persistent, leads to 

DSBs that initiate genomic rearrangements in cancer cells (Bartkova et al., 2005; Gorgoulis 

et al., 2005; Hanahan and Weinberg, 2011). Thus, the presence of RS renders cancer cells 

particularly dependent on a proficient RS response for survival and in fact, the expression of 

ATR and CHK1 is frequently upregulated in cancer (Lecona and Fernández-Capetillo, 2014). 

Consequently, targeting RS response kinases ATR and CHK1 is preferentially toxic for cells 

with altered DNA replication that depend on their action to prevent entry into mitosis with 

unreplicated DNA, causing widespread DNA damage (Figure 3) (Ruiz et al., 2016). 

Accordingly, ATR or CHK1 inhibitors have exhibited efficacy in hematopoietic tumours, 

mostly in in vitro settings (Murga et al., 2011; Schoppy et al., 2012; Cottini et al., 2015; 

Derenzini et al., 2015; Sarmento et al., 2015; Kwok et al., 2016).  

Independent strategies have been used to develop selective ATR inhibitors (Charrier 

et al., 2011; Reaper et al., 2011; Toledo et al., 2011; Foote et al., 2013). Given that ATR and 

CHK1 activity is restricted to the S and G2 phases of the cell cycle, one of these strategies 

conveyed the development of an in vitro cellular system in which ATR is specifically activated 

at will, in the absence of actual DNA damage (Toledo et al., 2008). The system relied on a 

fusion of the ATR activation domain (AAD) of TOPBP1, which is sufficient to trigger the 

activation of ATR-ATRIP (Kumagai et al., 2006) and a fragment of the estrogen receptor (ER) 

that, in response to an inert derivative of tamoxifen (4-hydroxy-tamoxifen; OHT), is 

translocated from the cytoplasm to the nucleus and promotes generalized ATR activation in 

the absence of real damage (Toledo et al., 2008). This system enabled the identification of 

specific inhibitors of the ATR pathway by a High-Content Imaging-based screening that 

started from a library of compounds that had previously shown activity to ATR-related PI3Ks 

(phosphatidylinositol-3-kinases) (Toledo et al., 2011). 

Although persistent RS or DNA damage activates the tumour suppressor p53 which 

triggers cell cycle arrest and apoptosis (Muller and Vousden, 2014), cell death caused by 

low ATR activity is not only p53-independent, but also enhanced by p53 deficiency (Murga 

et al., 2009; Ruzankina et al., 2009). Likewise, the toxicity of chemical inhibitors of ATR is 

higher in cells lacking p53 (Reaper et al., 2011; Toledo et al., 2011; Kwok et al., 2016). This 

p53-independent cell killing by ATR inhibitors is linked to their capacity to induce the 

accumulation of RS and premature mitotic entry, activities that are unrelated to p53 function 

(Buisson et al., 2015; Ruiz et al., 2016). Therefore, ATR inhibitors offer an alternative for the 
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elimination of p53-deficient tumours, which is relevant since a wide range of current 

chemotherapeutic agents induce tumour cell death through a p53-dependent pathway. 

Additionally, many of the agents used in genotoxic chemotherapy, including antifolates, 

nucleotide analogues, topoisomerase inhibitors, or platinum derivatives, are potent inducers 

of RS. DNA replication was one of the first targets in the development of modern 

chemotherapy. While ATR inhibitors are, in way, a modified version of this strategy, they 

provide a key advantage in that, in addition to inducing RS, they also promote mitotic entry, 

thereby leading to major segregation problems (Ruiz et al., 2016).  

Overall, these increasing evidence indicate that the inhibition of ATR, and also of 

CHK1, are potentially effective therapeutic strategies especially for tumours with high levels 

of RS, and consequently, the identification of cancers presenting high levels of RS is 

essential to guide the use of ATR and CHK1 inhibitors as therapy (Toledo et al., 2011).   

1.6. High levels of CHK1 expression as biomarker of ATR inhibitor sensitivity 

The presence of high levels of RS in cancer cells creates a pressure to acquire 

mutations that suppress RS and therefore facilitate their growth (Lecona and Fernández-

Capetillo, 2014; Zeman and Cimprich, 2014; Dobbelstein and Sørensen, 2015). Consistently, 

certain tumours overexpress CHK1 to reduces the toxic effects of RS (Bartek et al., 2012; 

Sarmento et al., 2015), and supporting this view, CHK1 overexpression increases the 

efficiency of transformation by oncogene RAS (rat sarcoma oncogene) and E1A (adenovirus 

early region 1A), by suppressing oncogene-induced RS (López-Contreras et al., 2012; 

Schulze et al., 2014).  

Because ATR inhibition is preferentially toxic for cells experiencing RS (Figure 3), 

tumours with high endogenous levels of this stress could be promising targets for treatment 

with ATR inhibitors. On this basis, high levels of CHK1 expression could be a signature of 

tumours with high levels of RS and, therefore, may provide a biomarker for ATR inhibitors 

sensitivity (López-Contreras et al., 2012). To gain further insight into this idea, we 

comparatively analysed the relative levels of CHK1 gene expression across different cancer 

types, using data extracted from the human Cancer Cell Line Encyclopaedia (Barretina et 

al., 2012) (Figure 4). As a proof of the usefulness of this approach, CHK1 mRNA was most 

abundant in Burkitt lymphomas (Figure 4), which we previously showed to be highly 

dependent on ATR and CHK1 for their survival (Murga et al., 2011). In addition to Burkitt 

lymphoma, CHK1 expression was also distinctively high in various lymphomas and 

leukaemias (Figure 4), which could be indicative that these types of tumours are particularly 
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prone to suffer from RS. Accordingly, a number of studies have shown a good efficacy of 

ATR or CHK1 inhibitors in hematopoietic tumours (Murga et al., 2011; Schoppy et al., 2012; 

Cottini et al., 2015; Derenzini et al., 2015; Sarmento et al., 2015; Kwok et al., 2016).  

For the purpose of this thesis, we decided to select one example of a liquid tumour 

and a solid tumour where ATR inhibitors could show efficacy. To this end, we selected Acute 

Myeloid Leukaemia (AML) and Ewing Sarcoma, two tumour types that display high levels of 

CHK1 expression, which currently lack a curative treatment and that often affect children or 

adolescents.  

 

2. ACUTE MYELOID LEUKAEMIA 

AML is a highly aggressive and heterogeneous tumour from the hematopoietic system; 

characterized by the abnormal proliferation of a clonal population of undifferentiated myeloid 

progenitor cells, which results in impaired haematopoiesis, bone marrow failure and 

eventually in lower levels of differentiated red blood cells, platelets and white blood cells 

(Figure 5A) (Döhner et al., 2015). AML tumours have high metastatic potential since these 

abnormally proliferating myeloid progenitor cells are endowed with high capacity of 

infiltration, mainly within the bone marrow and peripheral blood, but also in other tissues. 

Remarkably, AML often arises in patients with an underlying haematological disorder or as 

Figure 4. CHK1 mRNA levels in human cancer cell lines. The expression levels of CHK1 mRNA 
in a large variety of human cancer cell lines was extracted from the Cancer Cell Line Encyclopaedia 
(www.broadinstitute.org/ccle/home). Leukaemias, lymphomas and Ewing Sarcoma are marked in 
red, and with an asterisk on top of the panel. Expression is shown as RMA (Robust Multichip 
Average) on a log2 scale.  
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a consequence of prior cancer therapy (e.g., exposure to topoisomerases II poisons, 

alkylating agents or radiation) (Sill et al., 2011), although in most cases, AML arises as a de 

novo malignancy in healthy individuals.  

AML occurs at all ages, but predominantly in older people (>60 years of age). 

Nevertheless, acute leukaemias, including AML and Acute Lymphoblastic Leukaemia, are 

overall the most common paediatric cancer (Puumala et al., 2013). Remarkably, genomic 

rearrangements involving the 

Mixed Lineage Leukaemia 

(MLL or KMT2A) gene are 

particularly common in infants 

(ages < 12 months) with AML, 

and overall, cause very 

aggressive acute leukaemias 

that are associated with the 

poorest prognosis of any acute 

leukaemia subset. In fact, 

these MLL rearrangements 

predominately occur in 

paediatric patients, including 

69%-79% of infant leukaemias 

(Mohan et al., 2010; Meyer et 

al., 2013), corresponding AML 

the 30-50% of those cases 

(Köller et al., 1989; Pui et al., 

1994; Borkhardt et al., 2002; 

Jansen et al., 2007; Pieters et 

al., 2007; Chen et al., 2010). 

The MLL gene encodes for the 

histone-lysine N-

methyltransferase 2 (Rao and 

Dou, 2015) and MLL 

rearrangements can fuse 

these gene in frame to 

different partner genes (Hess, 

2004; Meyer et al., 2013), 

being the most common 

Figure 5. Altered haematopoiesis in AML and structure of 
MLL fusion proteins. (A) The general hierarchical structure of 
normal haematopoiesis and aberrant haematopoiesis observed 
in acute myeloid leukaemia (AML) are shown. HSCs, 
hematopoietic stem cells; LSCs, leukaemic stem cells; DC, 
dendritic cell; NK, natural killer (extracted from Khwaja et al., 
2016. (B) Graphic representation of structure of MLL fusion 
proteins generated by MLL translocations. A typical MLL fusion 
protein contains the N-terminus of MLL and the C-terminus of 
one of over 50 fusion partner genes, two of the most common 
chromosomal translocation found in AML are MLL-ENL 
((11;19)(q23;p13.3)) and MLL-AF9 ((9;11)(p22;q23). 
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translocations with the AF9 (ALL1-fused gene from chromosome 9) and ENL genes in the 

case of AML, thereby creating MLL fusion proteins that ablate the normal histone 

methyltransferase function of the MLL protein (Figure 5B).  

2.1. Prognosis and therapy  

Unfortunately, AML is typically associated with a rapid onset of symptoms attributable 

to bone marrow failure, such as anaemia and thrombocytopenia, and may be fatal within 

weeks or months if left untreated. In fact, in the case of patients diagnosed before 60 years 

of age, AML is curable in 35–40% of cases, whereas only 5–15% of those developing AML 

later involving MLL rearrangements are alive five years after diagnosis (Kosaka et al., 2004; 

Pui et al., 2004; Hilden et al., 2006; Tomizawa et al., 2007). 

Patients with AML show a heterogeneous response to therapy. Refractory disease is 

common and the development of resistance and the high relapse rates with established 

therapies represents are the major cause of treatment failure (Tomizawa et al., 2007; Döhner 

et al., 2015; Pigneux et al., 2015). The backbone of the current therapy remains a 

combination of cytarabine- and anthracycline- base regimens combined with allogeneic stem 

cell transplantation to consolidate remission in those patients who are deemed to be at high 

risk of relapse (Döhner et al., 2010). While reductions in leukaemic cells can be achieved 

initially with cytarabine and anthracycline chemotherapy in most patients, long-term 

outcomes have not improved significantly over the last three decades, suggesting the need 

to identify new and more effective therapeutic strategies. Consistently, a plethora of new 

agents, including those targeted at specific biochemical pathways and immunotherapeutic 

approaches, are now in trial based on improved understanding of disease pathophysiology 

(review in Khwaja et al., 2016). 

2.2. ATR inhibitor as a potential new therapeutic approach for AML-MLL? 

Previous studies have established that an intact p53 network is a critical determinant 

of the effectiveness of chemotherapy in AML (Zuber et al., 2009). In contrast to other 

oncogenic fusion proteins, cells from AML patients with MLL fusion proteins (AML-MLL) do 

not mount an effective p53 response and are therefore resistant to current genotoxic 

treatments (Zuber et al., 2009). Consistent with this, MLL rearrangements and mutations in 

TP53 gene rarely occur together in human AML (Megonigal et al., 1998; Haferlach et al., 

2008). Therefore, alternative therapies are needed to overcome chemotherapy resistance 

associated with p53 dysfunction in AML-MLL. In addition to the need of a therapy that works 

on p53-deficient tumours, several lines of evidence suggested that targeting ATR could be 

particularly beneficial in AML-MLL. First, reduced amounts of ATR in mouse models inhibited 
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growth of AML driven by the MLL-ENL oncogene, which encodes a fusion of KMT2A 

(Histone-lysine N-methyltransferase 2A; also known as MLL) and the transcription activator 

ENL (Schoppy et al., 2012). Second, inhibitors of ATR or its target CHK1 are toxic to human 

cells and mouse models of several lymphomas and leukaemias, including p53-deficient 

tumours (Murga et al., 2011; Schoppy et al., 2012; Cottini et al., 2015; Derenzini et al., 2015; 

Kwok et al., 2015; Sarmento et al., 2015). Moreover, the particular efficacy of RS response 

inhibitors in lymphoid tumours is consistent with a preferential role for the RS response in the 

untransformed lymphoid compartment, exemplified by the frequent presence of anaemia in 

mice suffering from RS (Murga et al., 2009; Austin et al., 2012; Farrés et al., 2014; Flach et 

al., 2014; Alvarez et al., 2015). Finally, inhibition of ATR or inhibition of the related DDR 

kinase ATM predisposed primary stem cells infected with retroviruses expressing MLL-AF9, 

a fusion between KMT2A and the transcription activator AF9, toward differentiation in vitro 

(Santos et al., 2014). On the basis of these data, in these Doctoral Thesis we have evaluated 

whether inhibition of ATR or ATM could have potential as a therapy for MLL-associated 

leukaemia.  

3. EWING SARCOMA 

Ewing Sarcoma, which was first identified by James Ewing in 1921 as a "diffuse 

endothelioma of bone" (Ewing, 1921), is an aggressive primary bone tumour that is the 

second most common cancer affecting preferentially children and adolescents. Ewing 

Sarcoma is characterised by a strong metastatic potential and consequently by an 

unfavourable prognosis (Ordonez et al., 2009). Ewing Sarcoma current 5-year survival rate, 

which describes the number of patients alive 5 year after diagnosis of the disease, is of 70% 

in the case of patients with localised diseased, but is less than 20% for patients with 

metastatic or recurrent tumours (Bacci et al., 2002; Burdach and Jürgens, 2002; Iwamoto, 

2007). The standard care for patients suffering from Ewing Sarcoma is based on a 

multimodal therapy consisting in surgical resection in combination with local radiotherapy 

and chemotherapy (Bacci et al., 1998; Burdach and Jürgens, 2002; Iwamoto, 2007; Subbiah 

et al., 2009).  Although this approach was demonstrated to clearly improve prognosis, several 

studies indicate that the efficacy of this conventional multimodal therapy has reached a 

plateau phase (Bacci et al., 1998; Craft et al., 1998), indicating the need for new therapeutic 

strategies. 

Ewing Sarcoma tumours arise from a primitive cell derived either from either neural 

crest or mesenchymal stem cells, which are cells capable of differentiating to various tissue 

types. Cellular transformation in Ewing Sarcoma is triggered by chromosomal translocation 
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between the EWSR1 (Ewing Sarcoma breakpoint region 1, also known as EWS) gene and 

one of the genes of the ETS (E26 transformation-specific) transcription factor family (FLI1, 

Friend Leukaemia Integration 1; ERG, ETS-Related Gene; ETV1, ETS Translocation Variant 

1; ETV4, ETS Translocation Variant 4 or FEV, Fifth Ewing Variant) (Figure 6A) (Wang et al., 

2007). The EWS/FLI1 fusion is the most common, being found in 85% of the cases, followed 

by EWS/ERG fusion that is found in 10% of cases (Figure 6A). Interestingly, irrespective of 

the ETS family member involved, all these translocations result in the generation of a 

chimeric aberrant transcription factor by rearrangement of the N-terminal transcriptional 

activation domain of the EWSR1 gene and the C-terminal DNA-binding domain of the ETS 

gene (Figure 6B) (Ordonez et al., 2009; Balamuth and Womer, 2010; Lessnick and Ladanyi, 

2012; Paronetto, 2013). The EWS/FLI1 translocation is the best characterized, and is thought 

to operate as an aberrant transcription activator (Ohno et al., 1993) that can alter the 

expression of genes relevant for malignant transformation. For instance, the EWS/FLI1 

protein product upregulates levels of AURKA (Aurora kinase A) (Wakahara et al., 2008), 

whose overexpression is linked to tumourigenesis (Humme et al., 2015). EWS/FLI1 was also 

demonstrated to transcriptionally repress FOXO1 (Forkhead box O), which regulates 

differentiation, proliferation, tumour suppression, autophagy, and cell death (Yang et al., 

2010; Niedan et al., 2014).  

Remarkably, to date, most of the research on Ewing Sarcoma aetiology is focused on 

the potential gain of functions of these translocation products such as EWS/FLI1. However, 

the possible contribution of the potential loss of function of the EWSR1 protein (coded by the 

EWSR1 gene) to Ewing Sarcoma development is not well defined and might has been 

Figure 6. EWS/ETS fusions in Ewing Sarcoma. (A) Frequency of translocation of EWSR1 with the 
members of the ETS family. EWS/FLI fusions comprise 85% and EWS/ERG comprise 10% of all 
translocations in Ewing Sarcoma. Translocations involving other ETS family members such as ETV4, 
ETV1 and FEV are less common. (B) Graphical representation of all EWS/ETS translocation. The 
transcriptional activating domain (TAD) in the N-terminus of EWSR1 is fused to the C-terminal DNA 
binding domain (DBD) of the ETS family member. The resultant chimeric fusion protein functions as 
a potent oncogenic transcription factor responsible for tumorigenesis in Ewing Sarcoma (gain of 
function). It is unknown whether the chimeric fusion protein implies the loss of function of EWSR1. 
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possibly overlooked (Figure 6B). This could be due to the fact that the role of the EWSR1 

protein itself is also not well characterised, and, although most studies suggest that it is 

related to transcription and splicing (Bertolotti et al., 1998; Knoop and Baker, 2000), other 

evidence indicate that EWSR1 could also be involved in the DDR. In fact, EWSR1 ablation 

in mice recapitulates some of the phenotypes observed in ATR-Seckel mice (Li et al., 2007). 

For all the above reasons, and in addition to the evaluation of ATR inhibitors as a potential 

new therapy for Ewing Sarcoma, in this work we have also investigated the role of EWSR1 

in the response to DNA damage. 

3.1. Structure and function of the EWSR1 protein 

EWSR1 is a member of the FET family of DNA- and RNA-binding proteins that 

comprises FUS (Fused in Sarcoma), EWSR1 and TAF15 (TATA-Box Binding Protein 

Associated Factor 15) (Andersson et al., 2008). Remarkably, all these genes are found 

rearranged with various transcription factor genes predominantly in sarcomas and in rare 

hematopoietic and epithelial cancers (Figure 7A) (Ladanyi and Gerald, 1994; Panagopoulos 

et al., 1996; Labelle et al., 1999; Thomsen et al., 2013). In fact, the EWSR1 gene was first 

identified as a fusion gene generated by the chromosomal translocation with FLI1 

((11;22)(q24;q12)) in Ewing Sarcoma (Figure 6B) (Aurias et al., 1983; Delattre et al., 1992). 

FET proteins are ubiquity expressed and mainly localise to the nucleus (Rossow and 

Janknecht, 2001; Andersson et al., 2008); although their localization is dynamically regulated 

because stress conditions trigger their accumulation in cytoplasmic stress granules involved 

in translational control (Andersson et al., 2008). All FET members display a similar structure 

with a serine-tyrosine-glycine-glutamine (SYGQ) domain in the N-terminal, which constitutes 

the transcription activation domain (TAD), and a C-terminal domain with an RNA-recognition 

motif (RRM), a zinc finger motif (ZF), and three RNA-binding Arginine-Glycine-Glycine- 

(RGG-) rich domains (Figure 7B) (Morohoshi et al., 1998). Several of these domains enable 

EWSR1 to bind different nucleic acid sequences and structures such as polyU and polyG 

sequences (Ohno et al., 1994) DNA and RNA forming G-quadruplexes (Takahama et al., 

2011; Oyoshi and Kurokawa, 2012), and ssDNA (Paronetto et al., 2011).  

Although the function of EWSR1 is not fully understood, EWSR1 is known to be 

involved in several cellular processes and has a well-established role in transcription and 

splicing, possibly coupling these two processes. EWSR1 role in transcriptional regulation 

was suggested by virtue of its capacity to interact with different subunits of the transcription 

factor II D (TFIID) (Bertolotti et al., 1998), its direct association with RNA polymerase II 

(Bertolotti et al., 1996, 1998) and its interaction with activators and repressor of transcription 

such as OCT4 (Octamer-binding transcription factor 4), Brn3 (Class IV (Pit1-Oct1-Unc86)-
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domain-containing transcription factor), and CBP/p300 (CREB-Binding Protein and p300) 

(Fujimura et al., 2001; Thomas and Latchman, 2002; Araya et al., 2003; Gascoyne et al., 

2004; Lee et al., 2005). On the other hand, EWSR1 potential role in splicing was suggested 

based on EWSR1 capability to interact with components of the spliceosome (Knoop and 

Baker, 2000) and different splicing factors, some of which play a role in mRNA stability and 

translation (Yang, 2000; Chansky et al., 2001; Dutertre et al., 2010). Additionally, EWSR1 

has been linked to microRNA processing (Sohn et al., 2012) because of its identification as 

part of a complex associated with the ribonuclease DROSHA (Gregory et al., 2004), which 

is required for microRNA biogenesis (Lee et al., 2002).   

Figure 7. The FET family of genes (FUS, EWSR1 and TAF15) and their associated with cancer. 
(A) The N-terminal parts of FET genes are fused to genes encoding various transcription factors 
(middle column) and the fusion oncogenes generated are associated to different tumour types (right 
column). It should be noted that the figure is not complete, as more FET gene fusions are 
continuously discovered. (Extracted from Thomsen et al., 2013). (B) Structural organisation of FET 
family proteins. From N-terminus to C-terminus: a transcriptional activation domain (TAD) containing 
multiple degenerate hexapeptide repeats (SYGQ rich; glycine, glutamine, serine, tyrosine) and a 
nucleic acid binding domain (NABD) containing three arginine/glycine rich domains (RGG regions; 
arginine/glycine/glycine), a RNA recognition motif (RRM), a Zinc finger (ZF) and a nuclear 
localization signal (NLS) (Adapted from Paronetto, 2013). 
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3.2. A possible role for EWSR1 in the DDR 

Although EWSR1 function is thought to be mainly associated with transcription and 

splicing, several lines of evidence indicate that EWSR1 may also play a role in the DDR 

either indirectly, related to these transcription and splicing functions, or also directly. Of note 

and importantly, EWSR1 role in the DDR is supported by the fact that it becomes 

phosphorylated upon DNA damage, although the functional implication of this modification 

remains unknown (Klevernic et al., 2009). Moreover, EWSR1 is involved in the DDR through 

the regulation of alternative mRNA splicing of genes involved in the activation of the DNA 

damage checkpoint and for DNA repair such as the p53 repressor MDM2 (mouse double 

minute 2 homolog), the tumour suppressor BRCA1, CHK2 (checkpoint kinase 2) and ABL1 

(Abelson murine leukaemia viral oncogene homolog 1) (Dutertre et al., 2010; Paronetto et 

al., 2011). Finally, recent evidences suggest that EWSR1 could be directly involved in DNA 

repair, although its exact role is still obscure. For instance, all three member of the FET family 

were demonstrated to be recruited to laser microirradiation stripes in a PARP-dependent 

manner (Mastrocola et al., 2013; Rulten et al., 2014; Altmeyer et al., 2015), and PARP1 (poly 

(ADP-ribose) polymerase 1) was shown to be a cofactor for EWS/FLI1 DNA binding (Brenner 

et al., 2012). EWSR1 was also suggested to be involved in DNA repair reactions during HR 

based on its ability to interact with BARD1 (BRCA1-associated RING domain protein 1), a 

putative tumour suppressor component of the BRCA1/BARD1 complex (Spahn et al., 2002). 

EWSR1 has been identified as a gene mediating resistance to DSBs inducing agents such 

ionizing radiation (Hurov et al., 2010) and camptothecin, a topoisomerase I poison capable 

of trapping topoisomerase I-cleavage complexes in the DNA (O’Connell et al., 2010). In any 

case, while all of the above suggest a role for EWSR1 in the DDR, the mechanism by which 

it participates remains unclear.  

3.3. ATR inhibitor as a potential new therapeutic approach for Ewing Sarcoma? 

Current Ewing Sarcoma treatment relies on a multidisciplinary approach consisting of 

intensive neoadjuvant and adjuvant chemotherapies with surgery and/or radiotherapy to limit 

possible metastatic processes. Interestingly, chemotherapy treatment is based in the 

administration of various combinations of drugs that include RS-inducing agents. These 

include vincristine (which interferes with correct chromosome segregation), actinomycin D (a 

transcription inhibitor) and agents that perturb DNA replication such as doxorubicin (capable 

of interfering with topoisomerase II), etoposide (a topoisomerase II poison), 

cyclophosphamide (an inducer of interstrand and intrastrand DNA crosslinks), and ifosfamide 

(an alkylating agent) (reviewed Gaspar et al., 2015). More recently, PARP1 inhibitors has 

been described as a possible additional treatment for Ewing Sarcoma (Garnett et al., 2012; 
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Vormoor and Curtin, 2014), and this is in agreement with the fact that Ewing Sarcoma models 

are highly sensitive to the PARP1 inhibitor Olaparib either alone or in combination with 

temozolomide (an alkylating agent) (Brenner et al., 2012). However, single agent clinical 

trials have not been successful and combined chemotherapy of PARP inhibitors with DNA 

damaging drugs is still under investigation (Choy et al., 2014; Vormoor and Curtin, 2014; 

Smith et al., 2015). There are also ongoing trials aiming to use irinotecan (a topoisomerase 

I inhibitor) and temozolomide for patients with advanced Ewing Sarcoma (Wagner et al., 

2007; Casey et al., 2009). Regardless of genotoxic chemotherapy, insulin-like growth factor 

1 receptor (IGFR-1) antibodies are also being used to target Ewing Sarcoma with the purpose 

of rendering treatments much more specific and to reduce side effects (Olmos et al., 2010; 

Toretsky and Gorlick, 2010). In spite of these multiple approaches, it is very important to 

remark that treatment efficacy for patients with metastatic and recurrent Ewing Sarcoma still 

remains dramatically poor. Therefore, a better understanding of Ewing Sarcoma biology is 

critical to understand identify novel therapies and also to unveil mechanisms of resistance. 

Remarkably, several lines of evidence led us to hypothesise that Ewing Sarcoma tumours 

might be suffering from RS, and that consequently, ATR inhibitors could be used as single 

chemotherapy agent for the treatment of these tumours. First, as mentioned earlier, several 

pieces of evidence indicate that EWSR1 may be involved either directly or indirectly in the 

DDR, which could render these tumours more dependent on ATR signalling for survival. This 

could be in line with the aforementioned fact that Ewing Sarcoma display increased levels of 

CHK1 mRNA expression, as shown by the data from the human Cancer Cell Line 

Encyclopaedia (Figure 4) (Barretina et al., 2012). Second, EWSR1-deficient mice present 

increased DNA damage, anaemia and skeletal abnormalities (Li et al., 2007; Cho et al., 

2011); paralleling the phenotype of mice with reduced ATR levels that accumulate substantial 

amounts of RS (Murga et al., 2009). Finally, the EWS/FLI1 translocation product is a bona 

fide oncogene due to its capacity to transform mouse fibroblasts (May et al., 1993) and, as 

mentioned earlier, oncogenes are a known source of RS (Halazonetis, 2008). Altogether, for 

all these reasons, we speculate that Ewing Sarcoma could be harbour distinctively high levels 

of RS and that, consequently, ATR inhibitors could use as single chemotherapy agents for 

the treatment of Ewing Sarcoma.
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During the course of this Doctoral Thesis we set the following objectives 

 

1. To evaluate the toxicity of ATR inhibitors for MLL-translocation driven AML cells in vitro. 

2. To investigate whether ATR-induced cell death in AML cells depends on p53 status. 

3. To test the efficacy of ATR and ATM inhibitors in a preclinical allograft mouse model of 

MLL-translocation driven AML. 

4. To determine the toxicity of ATR inhibitors for Ewing Sarcoma cells in vitro. 

5. To test the efficacy of ATR inhibitors as single agents in a xenografts model of Ewing 

Sarcoma. 

6. To investigate whether the loss of EWSR1-function and/or the expression of EWSR1-

involving translocation lead to RS and confer sensitivity to ATR inhibitors.  

7. To perform a proteomic analysis of EWSR1 interactors aiming to identify the biological 

pathways in which EWSR1 participates. 
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1. MOUSE WORK 

1.1. Generation of an inducible EWS/FLI1-CreER mouse model  

Lox/STOP/lox-EWS/FLI1 transgenic mice (Lin et al., 2008) were crossed with inducible 

CreER recombinase mice (EWS/FLI1ind). Expression of Cre recombinase is induced by 

tamoxifen administration resulting in deletion of the STOP cassette and expression of the 

EWS/FLI1 translocation. 

1.2. Mouse genotyping 

DNA from tail preparations was used to determine the genotype of EWS/FLI1ind mice 

as previously described in (Lin et al., 2008). Primers for EWS/FLI1 spanning the junction site 

amplify a product of 567bp, and sequences are: EF2 forward 

5´GACCGCCTATGCAACTTCTTATGG and EF2 reverse 5´ 

TGGGGCCGTTGCTCTGTATTCTTA. Primers for CreER spanning the junction site amplify 

a product of 350bp, and sequences are: CRE1 forward 

5´CGATGCAACGAGTGATGAGGTTC y CRE2 reverse 5´GCACGTTCACCGGCATCAAC. 

This produced a product of 350 bases. 

1.3. Transplantation and in vivo treatment studies 

For tumour induction and treatment studies, 105 AMLMLL cells were transplanted by tail 

vein injection into 8- to 12-weeks-old immunocompetent albino recipient mice 

(C57BL/6/BrdCrHsd-Tyrc). For xenografts experiments, 1.4 × 105 MV4:11 cells or 106 A4573 

cells were injected subcutaneously into the flanks of 8- to 10-weeks-old severe combined 

immuno-deficient (SCID) mice (CB17/lcr-Prkdc scid/Crl), and tumour growth was measured 

with a Vernier calliper. Tumour volumes (mm3) in xenografts were calculated according to 

the following formula: (width x (length)2)/2.  

Mice were treated daily with ATRi [60 mg/kg; dissolved in 10% Nmethyl-2-pyrrolidone 

(NMP; 443778, Sigma- Aldrich), 90% polyethylene glycol 300 (PEG-300; 202371, Sigma-

Aldrich)], ATMi [20 mg/kg; dissolved in 10% dimethyl sulfoxide (DMSO; Sigma), 90% 

Captisol (30%) (CYDEX)] or MSC253 [50 mg/kg; (kind gift from Merck KGaA, Darmstadt, 

Germany) dissolved in 10% NMP, 50% PEG-300 and 40% H2O sterile], and the 

corresponding vehicles by oral gavage.  

Health status of mice was monitored daily. Mice were maintained at the CNIO under 

standard housing conditions with free access to chow diet and water, in recommendation of 

the Federation of European Laboratory Animal Science Association. All mouse work was 
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performed in accordance with the Guidelines for Humane Endpoints for Animals Used in 

Biomedical Research and under the supervision of the Ethics Committee for Animal 

Research of the Instituto de Salud Carlos III. 

1.4. Monitoring of leukaemias 

To monitor tumour formation, AMLMLL transplanted mice were monitored every 3 to 4 

days, starting 5 days after the injection of tumour cells, by bioluminescent imaging with an in 

vivo imaging system (IVIS) spectrum. Mice were intraperitoneally injected with 150 mg/kg of 

D-luciferin (Perkin-Elmer), anesthetized with isoflurane, and imaged for 30 seconds after 5 

min after luciferin injection. For bioluminescence analysis of organs, mice were injected with 

D-luciferin and euthanized by CO2, and organs were collected and imaged for 5 seconds. 

Blood samples were obtained from heart and collected in ethylenediaminetetraacetic acid 

(EDTA) -treated microtubes (Aquisel) and run on an Abacus Junior Vet haematology 

analyser (Diatron), which provides complete blood analyses, including counts of leukocytes 

and platelets. To measure the persistence of AMLMLL cells, we isolated bone marrow from 

vehicle, ATRi- or ATMi-treated animals by flushing femurs and tibias [Roswell Park Memorial 

Institute (RPMI)-1640 (EuroClone) medium supplemented with 10% (v/v) foetal bovine serum 

(FBS; Sigma-Aldrich) and 1% (v/v) penicillin/streptomycin (Pen/Strep; Life Technologies)]. 

Erythrocyte lysis was performed by treating bone marrow cells with a commercial ACK 

(ammonium-chloride-potassium) red lysis buffer (Lonza) for 5 minutes at room temperature. 

Cells were stained with c-KITAPC-H7 antibody (BD Biosciences) and analysed by 

fluorescence activated cell sorting (FACS) in FACSCanto II (BD Biosciences; FACSDiva 

software). Data were analysed with FlowJo (Tree Star) software. 

1.5. Immunohistochemistry (IHCs) 

Tissues were collected, fixed in formalin and embedded in paraffin/formalin blocks for 

subsequent processing. Consecutive 2.5 μM sections were treated with citrate for antigenic 

recovery and processed for immunohistochemistry with an antibody against p-Ser139 H2AX 

(05-636, Millipore) following standard procedures. IHCs were scanned and digitalized with a 

MIRAX system (Zeiss) for further analysis. p-Ser139 H2AX positive cells were automatically 

quantified from digitalized slides with AxioVision 4.6.3 software (Zeiss). 

1.6. Statistical analyses 

Prism 5.0 (GraphPad Software) was used to perform statistical analyses and 

representation of data. One on one comparisons of normal distributions were performed 

using unpaired t-tests. Two-way ANOVA test was used for comparison of growth kinetics of 
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treated tumours in xenografts experiments. Unless otherwise stated, all data points per 

condition are shown. Bar graphs represent the mean ± s.d. 

2. CELLULAR BIOLOGY  

2.1. Generation of primary Mouse Embryonic Fibroblasts (MEF) cell culture 

For the generation of primary EWS/FLI1ind MEFs, pregnant female mice were 

euthanized in a CO2 chamber at 13.5 dpc. Each embryo was isolated inside a laminar airflow 

hood with a pair of forceps and tweezers, and extraembryonic layers and foetal liver were 

discarded. The embryo head was cut below the eye for genotyping. The remaining embryo 

tissue was transferred to a 35mm dish, chopped with a sterile blade and incubated for 10 

minutes in 1 ml 0.25% trypsin-EDTA (Life Technologies). The resulting mixture was 

disaggregated by pipetting up and down and trypsin was neutralized with 9 ml cell culture 

media in Dulbecco´s Minimum Essential Media (DMEM; Lonza) supplemented with 15% (v/v) 

FBS (Sigma-Aldrich) and 1% (v/v) Pen/Strep (Life Technologies). Cell suspension was 

transferred to a 10cm dish and incubated under hypoxia conditions (3% O2 and 5% CO2) at 

37ºC and medium was changed on the following day. 

2.2. Generation of human 293T-Rex Flp-InTM Tet-ON stable cell lines 

Human stable cell lines 293T-REx Flp-InTM Tet-ON cells (Life Technologies) (were Flp-

InTM is a Flippase recombinase-mediated integration and Tet-ON a tetracycline-controlled 

transcriptional activation) expressing EWSR1STAG, EWS/FLI1STAG or EmptySTAG (where STAG 

is a C-terminal streptavidin tag) were generated following the manufacturer´s instructions. 

Cells that integrated the gene of interest were selected with 400 µg/ml Hygromycin B 

(Calbiochem) for 7 days. Recombinant protein expression was induced by adding 200 ng/ml 

doxycycline to culture medium for 48 hours.  

2.3. Cells and reagents 

Mouse AML cells carrying the MLL-ENL translocation (plus IRES-GFP) and oncogenic 

N-RAS (luciferase-IRES-N-RASG12D), referred to in the text as AMLMLL, were developed as 

previously described (Zuber et al., 2009). MV4:11, K562, HUVEC, U2OS, SAOS-2, 293T 

cells and Human Foreskin Fibroblast (HFF) were obtained from the American Type Culture 

Collection (ATCC) and 293T-REx Flp-InTM Tet-ON were obtained from Life Technologies. 

Immortalized MEFs (EWSR1-/- and WT) were provided by Dr. Sean Bong Lee (National 

Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), USA), AMLETO cells were 

kindly provided by Scott A. Armstrong (Dana-Farber Cancer Institute, USA) and all Ewing 
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Sarcoma cell lines were kindly provided by Dr. Enrique de Alava (Instituto de Biomedicina 

de Sevilla (IBiS), Spain).  

AMLMLL, MV4:11, K562, SAOS-2 and Ewing Sarcoma cell lines used in this study were 

cultured in RPMI-1640 (EuroClone) supplemented with 10% (v/v) FBS (Sigma-Aldrich) and 

1% (v/v) Pen/Strep (Life Technologies). AMLETO were culture in DMEM (Lonza) 

supplemented with 15% (v/v) FBS (Sigma-Aldrich), 20 ng/ml mouse Stem Cell Factor 

(mSCF; BioLegend), 10 ng/ml recombinant murine interleukin-6 (mIL-6; 216-16, PeproTech), 

6 ng/ml recombinant mouse interleukin-3 (mIL-3; 403-ML-010, R&D systems) and 1% (v/v) 

Pen/Strep (Life Technologies). U2OS, 293T and 293T-REx Flp-InTM Tet-ON cells were 

cultured in DMEM (Lonza) supplemented with 10% (v/v) FBS (Sigma-Aldrich) and 1% (v/v) 

Pen/Strep (Life Technologies). HUVEC cells were cultured in a commercial kit of Endothelial 

Cell Growth Medium containing 2% (v/v) FBS and vascular endothelial growth factor (VEGF) 

for rapid proliferation (EMG-2 BulletKit; CC-3162, Lonza). Primary and immortalized MEFs 

and HFF were grown in DMEM (Lonza) supplemented with 15% (v/v) FBS (Sigma-Aldrich) 

and 1% (v/v) Pen/Strep (Life Technologies). For all experiments, primary MEF and HFF were 

used at a low passage (<3). All MEFs and HFF were grown in hypoxia (3% O2 and 5% CO2) 

to minimize exposure to reactive oxygen species while the rest of cells lines were cultured 

under standard conditions (20% O2 and 5% CO2).  

Doxycycline (Pancreac Applichem), (Z)-4-Hydroxytamoxifen (OHT; Sigma-Aldrich), 

ATR inhibitor (AZ20; synthesized by GVK BIO), ATR inhibitor2 (Toledo et al., 2011), ATM 

inhibitor (AZD0156; AstraZeneca), PARP1 inhibitor (Olaparib; AstraZeneca), 

Neocarzinostatin (Sigma-Aldrich) and Hydroxyurea (HU; Sigma-Aldrich) were used as 

indicated. 

2.4. Transfection and retroviral infection 

The retroviral plasmid expressing a p53-targeting short hairpin RNA (pRetroSuper 

p53shRNA) was kindly provided by M. Barbacid (CNIO) and the retroviral pMYs-EWS/ERG 

expression plasmid was kindly provided by Takuro Nakamura (The Cancer Institute of 

JFCR). Transfections of plasmids and esiRNAs were performed with Lipofectamine® 2000 

(Invitrogen) or Lipofectamine® RNAiMAX (Invitrogen) using OPTIMEM medium (Life 

Technologies) and following manufacturer´s instruction. Retrovirus for transduction were 

produced in 293T cells using the corresponding plasmid and the retrovirus packaging vector 

pCL-Eco (kindly provided by Manuel Serrano, CNIO) using standard methods. 
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2.5. Colonies survival assays 

For clonogenic assays, 500 cells were seeded per well on six-well plates and drugs 

were added 24 hours later. After 10 days for human cells or 5 days for MEFs, cells were fixed 

and stained with methylene blue at 0.33% (w/v) in methanol, subsequently washed in water 

and air-dried. Images were taken with a Canon scanner. 

2.6. Flow cytometry 

To measure viability, cells were collected [with 0.05% Tripsyn-EDTA (Life Techologies) 

in the case of adherent cells], washed once with phosphate buffer saline (PBS) (pH 7.4), 

stained in a 4´,6´-diamidino-2-phenylindole (DAPI)  solution [DAPI (0.2 mg/ml) in PBS], and 

analysed by flow cytometry in a FACSCanto II (Becton- Dickinson) machine. For cell cycle 

profiles, cells were collected, washed with PBS, and fixed in suspension in ice-cold 70% (v/v) 

ethanol in water. After washing in PBS, cells were stained in PBS containing propidium iodide 

(10 mg/ml) and ribonuclease A (0.5 mg/ml) and analysed in a Becton-Dickinson FACSCalibur 

machine. For DNA content and γH2AX analysis, p-Ser139 H2AX (Millipore) antibody was 

used as previously described (Ruiz et al., 2016). Data was analysed with FACSDiva (BD 

Biosciences) and FlowJo (Tree Star) softwares.  

2.7. DNA fibre analyses  

Cells were pulse-labelled with 50 µM chlorodeoxyuridine (CldU) (20 min) followed by 

250 mM iododeoxyuridine (IdU) (20 min). Labelled cells were collected, and DNA fibres were 

spread in buffer containing 0.5% (v/v) sodium dodecyl sulfate (SDS), 200 mM Tris-HCl (pH 

7.4), and 50 mM EDTA. For immunodetection of labelled tracks, fibres were incubated with 

primary antibodies [for CldU, rat anti-BrdU (bromodeoxyuridine); for IdU, mouse anti-BrdU] 

for 1 hour at room temperature and developed with the corresponding secondary antibodies 

for 30 min at room temperature. Mouse anti–single-stranded DNA antibody was used to 

assess fibre integrity. Slides were examined with a Leica DM6000 B microscope, as 

described previously (Jacome et al., 2015). The conversion factor used was 1 mm = 2.59 kb 

(Jackson and Pombo, 1998). 

2.8. Endonuclease-prepared Small Interfering RNAs (esiRNAs) screen 

Stable 293T-REx Flp-InTM Tet-ON cells expressing EWS/FLI1STAG (293EWS/FLI1) were 

transfected with a custom-made esiRNA library (Table 1, Sigma-Aldrich). EWS/FLI1STAG 

expression was induced 24 hours after transfection. 3 days after doxycycline induction (4 

days after transfection), cells were processed and analysed through High-Throughput 
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microscopy. 

2.9. Immunofluorescence and High-Throughput microscopy 

Cells were seeded on Clear® bottom 96-well plates (Greiner Bio-One) pre-treated 

with 0.1% gelatine. For cell viability screening using the esiRNA library, cells were fixed with 

4% paraformaldehyde (PFA) and DAPI was used to counterstain cells. For analysis of DNA 

replication by 5-Ethynyl 2´-deoxyuridin (EdU) incorporation, cells were treated with EdU for 

30 min and fixed with 4% PFA in PBS at room temperature for 10 min. Then, cells were 

permeabilized with 0.1% Triton-X100 in PBS at room temperature for 15 min. The EdU 

staining was done using Click-It EdU Cell proliferation Assay Kit (Life Technologies) following 

manufacturer’s instructions to stain the incorporated nucleoside. In all cases, images were 

automatically acquired from each well using an Opera High-Content Screening System (HCS 

OPERA, Perkin Elmer). A 20x water magnification lens was used and images were taken at 

non-saturating conditions. Images were segmented using the DAPI signal to generate masks 

matching cell nuclei from which the mean signals for the rest of the staining (EdU) were 

calculated. Data were represented with the use of the Prism software (GraphPad Software). 

2.10. Cell viability assays  

Cell Proliferation Kit II (XTT) (Roche) and CellTiter-Glo® Luminescent Cell Viability 

Assay (Promega) kits were used to calculate the median lethal dose (LD50) values or to 

asses cytotoxicity of Ewing Sarcoma lines, respectively. 

3. MOLECULAR BIOLOGY AND BIOCHEMISTRY 

3.1. DNA extraction 

For genotyping, tails from pre-weaned mice or head fragment from embryos were lysed 

in 50 mM Tris-HCl (pH 8), 100 mM NaCl, 5 mM EDTA and 1% SDS (10%) containing 0.5% 

(v/v) proteinase K (Roche) at 55°C. Then, proteins were precipitated with 6 M NaCl and 

separated by centrifugation. DNA was precipitated by adding isopropanol to the supernatant 

and isolated through centrifugation. Finally, DNA was washed with 70% (v/v) ethanol and re-

suspended in water. 

3.2. Plasmid construction 

For the construction of pcDNA5/FRT/TO-EWSR1STAG, –EWS/FLI1STAG or EmptySTAG 

inducible expression vectors (where FRT is a Flippase recombination target), the coding 

sequence of human variant 2 of EWS or EWS/FLI1 fusion type 1 (h–EWS or –EWS/FLI1) 
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was amplified by PCR (Polymerase Chain Reaction) from human cDNA and cloned into the 

pEXPR-IBA103 (Novagen) STAG expression vector at SacII/XhoI sites. From there, the 

EWSR1STAG, EWS/FLI1STAG or EmptySTAG sequence were PCR amplified adding AfII/NotI 

restriction sites for subsequent cloning into the pcDNA5/FRT/TO vector (Life Technologies).  

3.3. Protein extraction and Western blotting 

For total protein extract preparation, cells were collected, washed once with PBS, and 

lysed in urea buffer [8 M urea, 1% 3-[(3-cholamidopropyl)-dimethylammonio]-1-

propanesulfonate (CHAPS), and 50 mM Tris-HCl (pH 8.0)] for 30 minutes at 4°C with 

agitation or lysed in buffer 50 mM Tris-HCl (pH 7.4), 0.2% (v/v) Nonidet-P40, 200 mM NaCl, 

50 MM Glicerophosphate and 1% (v/v) Tween-20, containing protease and phosphatase 

inhibitors (Sigma). After lysis, soluble protein extracts were separated by centrifugation. 

Bradford method was used to determine protein concentration. NuPAGE LDS (Life 

Technologies) loading buffer was added to protein extract and samples were incubated for 

10 minutes at 70 ºC. Samples were resolved by SDS-polyacrylamide gel electrophoresis and 

analysed by standard western blotting techniques.  

The following primary antibodies were used: p-Ser345 CHK1 (2348S, Cell Signaling), 

CHK1 (NCL, Novacastra), p-Ser4/Ser8 RPA32 (A300-245A, Bethyl), RPA32 (2208, Cell 

Signaling), p-Ser139 H2AX (05-636, Millipore), PRMT1 (A300-723A, Bethyl) p-SMC1 

[Monoclonal Antibody Unit, Spanish National Cancer Centre (CNIO)], p-Ser824 KAP-1 

(Bethyl), PARP1 (9542S, Cell Signaling), p53 (2524, Cell Signaling), CDK2 (sc-163, Santa 

Cruz), EWSR1 (sc-6533 and sc-28327, Santa Cruz), FLI1 (sc-356, Santa Cruz), TUBULIN 

(T9026, Sigma) and -ACTIN (A5316, Sigma). Alexa Fluor 680– or Alexa Fluor 800–

conjugated secondary antibodies (Life Technologies) were used for detection with a LI-COR 

Odyssey infrared imaging system (LI-COR Biosciences) or Horseradish peroxidase (HRP)-

conjugated secondary antibodies were used for detection with SuperSignalTM West Pico 

Chemiluminescent Substrate HRP (34080, Fisher Scientific). 

3.4. Subcellular fractionation 

Cells were collected, washed with PBS and lysed in 10 mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES) (pH 7.9), 10 mM potassium chloride (KCl) and 0.1 

mM EDTA containing protease and phosphatase inhibitors for 10 min on ice. For complete 

disruption of the cytoplasmic membrane, 10% (v/v) of 1% Nonident-P40 (NP-40) was added 

and cells were incubated for 3 minutes at room temperature. Then, samples were vortexed 

for at least 10 seconds and cytoplasm was separated by centrifugation (2500g for 2 minutes 
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at 4ºC). The pellet containing the nuclei was washed once with lysis buffer in the absence of 

detergent. Extraction of nuclear proteins was performed by addition of 20 mM HEPES (pH 

7.9), 600 mM NaCl, 1mM EDTA containing protease and phosphatase inhibitors to pelleted 

nuclei and vortexing for 10 min at 4ºC. The nuclei were sonicated briefly (until clear) and 

incubated at 4ºC for an additional 30 minutes followed by centrifugation at 16000g for 5 min 

at 4ºC. The cleared nuclear extract diluted to 1 mg/ml and the NaCl concentration was 

adjusted to 200 mM.  

3.5. Protein purification by affinity chromatography 

2 mg of total protein from nuclear extracts were loaded on a Bio-Spin disposable 

chromatography column (Bio-Rad) and incubated with Streptavidin-Tactin® MacroPrep® 

Resins (Iba) at 4°C for 1h with rotation. The column was washed twice with buffer W-

astringent (100 mM Tris-HCl (pH 8), 1 mM EDTA, 350 mM NaCl) containing 0.1% NP-40 and 

once with buffer W (100 mM Tris-HCl (pH 8), 1 mM EDTA, 200 mM NaCl) without NP-40. 

EWSR1STAG and associated proteins were eluted with 2 mM biotin in buffer W. Fractions 

containing EWSR1STAG were analysed in a 4-12% SDS- polyacrylamide gel and protein 

staining with ImperialTM Protein-Stain (Thermo Scientific). Selected fractions were analysed 

using liquid chromatography and mass spectometry by the CNIO Proteomics Unit. 

3.6. Liquid Chromatography and mass spectometry (LC-MS/MS) 

Samples were digested (Wisniewski et al., 2009) and the resulting peptides were 

separated by reverse-phase chromatography using a nanoLC Ultra system (Eksigent), 

directly coupled with a LTQ-Orbitrap Velos instrument (Thermo Fisher Scientific) via 

nanoelectrospray source (ProxeonBiosystem). The peptides were directly electrosprayed 

into the mass spectrometer and mass spectra were acquired in a data-dependent manner, 

with an automatic switch between MS and MS/MS scans using a top 10 method with a 

threshold signal of 800 counts. Samples were analysed in duplicates. Raw files were 

analysed either by Proteome Discoverer (version 1.4.1.2) or by MaxQuant (Cox and Mann, 

2008) (v1.4.1.2) against a forward-reverse concatenated database. The database contained 

human proteins (UniProtKB/Swiss-Prot 39,748 sequences, downloaded on January 2014) 

and a list of common contaminants. Minimal peptide length was set 6 amino acids and a 

maximum of two missed-cleavages were allowed. Only proteins with a fold-change above 1 

(log2) were considered as regulated. Protein classification enrichment analysis (molecular 

function, biological process and protein class) was performed by STRING software. 
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Table of Endonuclease-prepared Small Interfering RNAs (esiRNAs) library 

Catalogue-# ID ID (Ensembl) ID (RefSeq) Gene name Organism 

EHU115631-1UG HU-11563-1 ENSG00000182944 
NM_005243 
NM_013986 

EWSR1 Homo sapiens 

EHU115751-1UG HU-11575-1 ENSG00000126457 
NM_198318 
NM_198319 

PRMT1 Homo sapiens 

EHU029581-1UG HU-02958-1 ENSG00000011243   AKAP8L Homo sapiens 

EHU133931-1UG HU-13393-1 ENSG00000092199 

NM_001077442 
NM_001077443 
NM_004500 
NM_031314 

HNRNPC Homo sapiens 

EHU084371-1UG HU-08437-1 ENSG00000159140 
NM_032195 
NM_138927 

SON Homo sapiens 

EHU111261-1UG HU-11126-1 ENSG00000183684 NM_005782 THOC4 Homo sapiens 

EHU129271-1UG HU-12927-1 ENSG00000108654 NM_004396 DDX5 Homo sapiens 

EHU067811-1UG HU-06781-1 ENSG00000109606 NM_001358 DHX15 Homo sapiens 

EHU137681-1UG HU-13768-1 ENSG00000164548 NM_013293 TRA2A Homo sapiens 

EHU010631-1UG HU-01063-1 ENSG00000172660 NM_139215 TAF15 Homo sapiens 

EHU135921-1UG HU-13592-1 ENSG00000130254 NM_014649 SAFB2 Homo sapiens 

EHU109681-1UG HU-10968-1 ENSG00000135829 NM_001357 DHX9 Homo sapiens 

EHU110901-1UG HU-11090-1 ENSG00000108468 NM_006807 CBX1 Homo sapiens 

EHU082261-1UG HU-08226-1 ENSG00000171490 NM_015659 RSL1D1 Homo sapiens 

EHU131531-1UG HU-13153-1 ENSG00000115524 
NM_001005526 
NM_012433 

SF3B1 Homo sapiens 

EHU067331-1UG HU-06733-1 ENSG00000130726 NM_005762 TRIM28 Homo sapiens 

EHU114521-1UG HU-11452-1 ENSG00000188529 
NM_054016 
NM_006625 

FUSIP1 Homo sapiens 

EHU091931-1UG HU-09193-1 ENSG00000136527 NM_004593 SFRS10 Homo sapiens 

EHU098771-1UG HU-09877-1 ENSG00000099783 
NM_005968 
NM_031203 

HNRNPM Homo sapiens 

EHU105811-1UG HU-10581-1 ENSG00000162521 NM_005610 RBBP4 Homo sapiens 

EHU116951-1UG HU-11695-1 ENSG00000198563 
NM_080598 
NM_004640 

BAT1 Homo sapiens 

EHU116341-1UG HU-11634-1 ENSG00000196313 NM_172020 POM121 Homo sapiens 

EHU000631-1UG HU-00063-1 ENSG00000196510 NM_016238 ANAPC7 Homo sapiens 

EHU094111-1UG HU-09411-1 ENSG00000153207 NM_015446 AHCTF1 Homo sapiens 

EHU065631-1UG HU-06563-1 ENSG00000131778 NM_004284 CHD1L Homo sapiens 

EHU074601-1UG HU-07460-1 ENSG00000124160 NM_020967 NCOA5 Homo sapiens 

EHU093901-1UG HU-09390-1 ENSG00000083520 NM_014953 DIS3 Homo sapiens 

EHU155011-1UG HU-15501-1 ENSG00000153827 NM_004238 TRIP12 Homo sapiens 

EHU134411-1UG HU-13441-1 ENSG00000168872 NM_018332 DDX19A Homo sapiens 

EHU009861-1UG HU-00986-1 ENSG00000112159 NM_014611 MDN1 Homo sapiens 

EHU052241-1UG HU-05224-1 ENSG00000069248 NM_018230 NUP133 Homo sapiens 

EHU109431-1UG HU-10943-1 ENSG00000164346 NM_014886 TINP1 Homo sapiens 

EHU131601-1UG HU-13160-1 ENSG00000155561 NM_015135 NUP205 Homo sapiens 

EHU041941-1UG HU-04194-1 ENSG00000067596 NM_004941 DHX8 Homo sapiens 

EHU022481-1UG HU-02248-1 ENSG00000113569 
NM_153485 
NM_004298 

NUP155 Homo sapiens 

EHU041051-1UG HU-04105-1 ENSG00000108651 NM_018428 UTP6 Homo sapiens 

EHU124301-1UG HU-12430-1 ENSG00000132128 NM_006369 LRRC41 Homo sapiens 

EHU154691-1UG HU-15469-1 ENSG00000120800 NM_014503 UTP20 Homo sapiens 

EHU033461-1UG HU-03346-1 ENSG00000115816 NM_005760 CEBPZ Homo sapiens 

EHU063801-1UG HU-06380-1 ENSG00000130810 NM_020230 PPAN Homo sapiens 

EHU145651-1UG HU-14565-1 ENSG00000100650 
NM_001039465 
NM_006925 

SFRS5 Homo sapiens 

EHU113551-1UG HU-11355-1 ENSG00000124193 NM_006275 SFRS6 Homo sapiens 
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EHU049301-1UG HU-04930-1 ENSG00000116754 NM_004768 SFRS11 Homo sapiens 

EHU054131-1UG HU-05413-1 ENSG00000154548   RP11-63L7.3 Homo sapiens 

EHU014921-1UG HU-01492-1 ENSG00000116350 NM_005626 SFRS4 Homo sapiens 

EHU132201-1UG HU-13220-1 ENSG00000136450 
NM_001078166 
NM_006924 

SFRS1 Homo sapiens 

EHU217661-1UG HU-21766-1 ENSG00000180771 NM_032102 SRSF8 Homo sapiens 

EHU074471-1UG HU-07447-1 ENSG00000161547 NM_003016 SFRS2 Homo sapiens 

EHU075361-1UG HU-07536-1 ENSG00000115875 NM_001031684 SFRS7 Homo sapiens 

EHU125071-1UG HU-12507-1 ENSG00000112081 NM_003017 SFRS3 Homo sapiens 

EHU062901-1UG HU-06290-1 ENSG00000111642 NM_001273 CHD4 Homo sapiens 

EHU107381-1UG HU-10738-1 ENSG00000110367   DDX6 Homo sapiens 

EHU143951-1UG HU-14395-1 ENSG00000108406 NM_024612 DHX40 Homo sapiens 

EHU083701-1UG HU-08370-1 ENSG00000174953 NM_020865 DHX36 Homo sapiens 

EHU008131-1UG HU-00813-1 ENSG00000100201 NM_006386 DDX17 Homo sapiens 

EHU131251-1UG HU-13125-1 ENSG00000079785 NM_004939 DDX1 Homo sapiens 

EHU091391-1UG HU-09139-1 ENSG00000165732 NM_004728 DDX21 Homo sapiens 

EHU053101-1UG HU-05310-1 ENSG00000141141 
NM_007010 
NM_152300 

DDX52 Homo sapiens 

EHU157301-1UG HU-15730-1 ENSG00000080603 NM_006662 SRCAP Homo sapiens 

EHU065401-1UG HU-06540-1 ENSG00000144028 NM_014014 ASCC3L1 Homo sapiens 

EHU012231-1UG HU-01223-1 ENSG00000166226 NM_006431 CCT2 Homo sapiens 

EHU036751-1UG HU-03675-1 ENSG00000135624 NM_001009570 CCT7 Homo sapiens 

EHU092111-1UG HU-09211-1 ENSG00000089280 NM_004960 FUS Homo sapiens 

EHU074871-1UG HU-07487-1 ENSG00000137776 NM_024755 SLTM Homo sapiens 

EHU065891-1UG HU-06589-1 ENSG00000148773 NM_002417 MKI67 Homo sapiens 

EHU130481-1UG HU-13048-1 ENSG00000056097 NM_016107 ZFR Homo sapiens 

EHU064491-1UG HU-06449-1 ENSG00000095319 NM_015354 NUP188 Homo sapiens 

EHU049771-1UG HU-04977-1 ENSG00000111581 NM_020401 NUP107 Homo sapiens 

EHU087381-1UG HU-08738-1 ENSG00000110713 

NM_005387 
NM_139132 
NM_139131 
NM_016320 

NUP98 Homo sapiens 

EHU108481-1UG HU-10848-1 ENSG00000147274 NM_002139 RBMX Homo sapiens 

EHU144511-1UG HU-14451-1 ENSG00000131795 NM_005105 RBM8A Homo sapiens 

EHU013541-1UG HU-01354-1 ENSG00000106344 NM_018077 RBM28 Homo sapiens 

EHU006231-1UG HU-00623-1 ENSG00000188739 NM_015014 RBM34 Homo sapiens 

EHU014721-1UG HU-01472-1 ENSG00000105202 NM_001436 FBL Homo sapiens 

EHU024481-1UG HU-02448-1 ENSG00000184967 NM_024078 NOC4L Homo sapiens 

EHU027691-1UG HU-02769-1 ENSG00000155438 NM_032390 MKI67IP Homo sapiens 

EHU019931-1UG HU-01993-1 ENSG00000138160 NM_004523 KIF11 Homo sapiens 

EHURLUC-1UG RLUC     RLUC   

 

  

 

 

Table 1. Table of Endonuclease-prepared Small Interfering RNAs (esiRNAs) library. esiRNA 
library (Sigma-Aldrich) use for screening in human stable 293T-REx Flp-InTM Tet-ON cells expressing 
EWS/FLI1STAG (293EWS/FLI1) 
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CHAPTER 1 

 

Targeting the kinase activities of ATR and ATM 

exhibits anti-tumoural activity in mouse models of 

MLL-rearranged AML 
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As mentioned in the introduction section, blood tumours present distinctively high 

endogenous levels of RS (Figure 4) (Cancer Cell Line Encyclopaedia dataset; Barretina et 

al., 2012). Why hypothesised that this feature could render these tumours particularly 

sensitive to the inhibition of ATR, the major kinase that copes with and alleviates RS in cells 

in mammalian cells. From the different kinds of hematopoietic malignancies, we decided to 

focus on AML carrying MLL translocations for the following reasons. First, mouse genetic 

studies have shown that ATR abundance is particularly important for the viability of AML cells 

(Schoppy et al., 2012). Second, ATR-dependent phosphorylation of MLL is involved in the 

response to RS (Liu et al., 2010). Third, in vitro experiments showed that ATR inhibitors 

promote the differentiation of primary stem cells infected with MLL-AF9 (Santos et al., 2014). 

Finally, based on the p53-independent cell death triggered by ATR inhibitors (Ruiz et al., 

2016), they could potentially overcome the limitation impinged by p53-deficient responses in 

MLL-driven AML to the current chemotherapy. 

1. AMLMLL cells in culture are highly sensitive to ATR inhibitors 

To test the efficacy of ATR 

inhibition in the treatment of 

AML in vitro, we used a 

previously described mouse cell 

line generated by transforming 

bone marrow cells with viruses 

expressing MLL-ENL and N-

RASG12D (AMLMLL). These cells 

have an activating mutation in 

N-RAS (Neuroblastoma- RAS 

oncogene), which is also 

common in human AML-MLL 

patients (Zuber et al., 2009), and 

they recapitulate the deficient 

p53 signalling and poor 

responses to conventional 

chemotherapy that are 

observed in the clinic with AML-

MLL patients (Zuber et al., 

2009).  

Figure 8. Toxicity of ATRi in AMLMLL cells in culture. (A) 

Fluorescence activated cell sorting (FACS) analysis showing the 
percentage of viable AMLMLL cells (identified by size and DAPI 
exclusion) either untreated or exposed to ATRi (10 µM, 24 hrs); FSC-
A, forward scattered light. Data are representative of two independent 
experiments. (B) Quantification of alive cells shown in A. (C) FACS 
analysis of DNA content (propidium iodide (PI)) from the cultures 
used in (A) illustrating the depletion of G2 cells observed in response 
to ATRi. Data are representative of two independent experiments. (D) 
Western blot of SMC1, KAP1, and H2AX phosphorylation and 
poly(ADP-ribose) polymerase 1 (PARP1) cleavage products in 
AMLMLL cells exposed to ATRi (5 µM, 6 hrs). Data are representative 
of two independent experiments 
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We observed a reduction of the 75% of viable cells in culture after treatment of AMLMLL 

cells with the ATR inhibitor AZ20 (Foote et al., 2013) (hereafter referred to as ATRi) for 24 

hours (Figure 8A, B). ATR inhibitors result in cytotoxicity by forcing premature mitotic entry 

of cells from G2, the phase during which DSBs are generated (Ruiz et al., 2016). 

Consistently, exposure to ATRi led to the disappearance of most AMLMLL cells from the G2 

phase of the cell cycle (Figure 8C). ATRi treatment also resulted in the accumulation of 

DSBs, as indicated by the phosphorylation of the DDR targets KRAB-associated protein 1 

(KAP1), structural maintenance of chromosomes 1 (SMC1), and histone H2AX (Figure 8D). 

Additionally, we also detected the apoptotic cleavage of PARP1 in AMLMLL cells exposed to 

ATRi, indicative of cytotoxicity (Figure 8D).  

2. ATR inhibitors induce accumulation of replicative DNA damage 

To determine the mechanism for the sensitivity of AMLMLL cells to ATRi, we analysed 

the RS response in these cells. We first ruled out a deficiency in activation and signalling 

through the RS pathway in AMLMLL cells by exposing them to the ribonucleotide reductase 

inhibitor hydroxyurea (HU), a well-known agent to induce RS (dNTP-depleting agent). HU 

administration stimulated the phosphorylation of the ATR targets CHK1 and RPA, as 

expected in cells with an intact RS response (Figure 9A).  

Figure 9. Toxicity, RS, and DNA breakage induced by two distinct ATR inhibitors in AML
MLL

 cells. (A) 

Western blot of CHK1, RPA, and H2AX phosphorylation in AML
MLL

 cells exposed to HU (2 mM, 2 hrs). Data are 

representative of two independent experiments. (B) FACS analysis showing the percentage of viable AML
MLL

 cells 
(identified by size and DAPI exclusion) either untreated or exposed to ATRi (10 µM) or to ETP-46464 (1 µM), an 
independent ATR inhibitor (Toledo et al., 2011) for the indicated times. (C) Western blots showing markers of DNA 

breakage and cellular toxicity. The left Western blot shows KAP1 and H2AX phosphorylation in AML
MLL

 cells 
exposed to ATRi or ETP-46464 at the indicated conditions. The right blot shows the accumulation of PARP1 
cleavage (lower band) products in cells with DNA damage indicated by H2AX phosphorylation. (D) FACS analysis 

of DNA content (PI) and H2AX phosphorylation in AML
MLL

 cells exposed to ATRi (10 µM, 6 hrs) or ETP-46464 (1 
µM, 6 hrs), illustrating that the γH2AX signal detectable by Western blot is restricted to replicating cells.  
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A structurally different ATR inhibitor previously described by our group, ETP-46464 

(Toledo et al., 2011), induced similar toxicity in the viability of AMLMLL cells (Figure 9B) and 

accumulation of DNA damage markers like phosphorylated KAP1 and phosphorylated H2AX 

(γH2AX) (Figure 9C). ATRi and ETP-46464 induced a greater γH2AX signal in replicating 

cells, as measured by monitoring γH2AX phosphorylation of cells labelled with propidium 

iodide by flow cytometry (Figure 9D). Furthermore, both ATR inhibitors induced cleavage of 

PARP1, an indicator of apoptosis (Tallis et al., 2014), which confirms the toxicity of these 

inhibitors under conditions that induced DNA damage (Figure 9C).  

3. The toxicity of ATR inhibitors in AMLMLL cells in culture is p53-independent 

As previously mentioned, a functional p53 pathway is necessary in AML for 

chemotherapy to be effective. However, AMLMLL cells are not able to efficiently activate p53 

in response to chemotherapeutic agents (Zuber et al., 2009). This suggests that ATR 

inhibition could be particularly beneficial to treat AML since its toxicity is even higher in cells 

lacking p53 (Murga et al., 2009; Ruzankina et al., 2009). In agreement with this fact, depletion 

of p53 with a retrovirus expressing a p53-targeting short hairpin RNA (shRNA) did not rescue 

AMLMLL cells from the toxic effects of ATRi (Figure 10, A to C). Furthermore, we confirmed in 

these cells that ATRi leads cells to premature mitotic entry from G2 (Figure 10C). 

We also compared the response to ATRi in AMLMLL cells in an equivalent cell line that 

was generated by transforming bone marrow cells with viruses expressing the translocation 

between AML1 (Acute Myeloid Leukaemia 1) and ETO (Eight Twenty One) genes (AMLETO). 

This translocation models a p53-proficient type of AML with better prognosis than AML 

patients bearing the MLL-ENL translocation (Zuber et al., 2009). ATRi was more toxic for 

AMLMLL than for AMLETO cells as observed in both cell viability analyses by flow cytometry 

(Figure 10D) and luminescent assay (CellTiter-Glo®) (Figure 10F). The enhanced sensitivity 

of AMLMLL cells correlated with higher levels of DNA damage in replicating cells, as measured 

by monitoring γH2AX phosphorylation of cells labelled with propidium iodide by flow 

cytometry (Figure 10G). ATRi induced a greater γH2AX signal, indicating higher levels of 

damage in AMLMLL cells. Consistent with the flow cytometry data, AMLMLL and AMLETO cells 

exhibited differences in the rate of DNA replication fork progression when analysed by 

stretched DNA fibre analyses. Whereas replication fork progression in AMLMLL cells was 

slower under basal conditions than that in AMLETO cells (Figure 10H), exposure to ATRi had 

a bigger effect in reducing replication fork rates in AMLMLL cells, leading to an almost 

complete impairment of replication fork progression in these cells (Figure 10H). 
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 In summary, MLL-driven AML cells exhibited an intrinsically higher sensitivity to ATR 

inhibitors than AMLETO cells do, with ATRi inducing the accumulation of replicative DNA 

damage, activation of the DDR, and p53-independent death in these cells.  

Figure 10. p53-independent toxicity of ATRi in AML
MLL

 cells in culture. (A) Western blot confirming the 

depletion of p53 in AML
MLL

 cells after infection with retroviruses expressing a p53-targeting shRNA. β-Actin was 

used as loading control. (B) FACS analysis showing the percentage of viable AML
MLL

 cells (identified by size and 

DAPI exclusion) from control or p53 shRNA–infected AML
MLL

 cells either untreated or exposed to ATRi (10 µM, 24 
hrs). (C) FACS analysis of DNA content (PI) from the cultures used in (B) illustrating the depletion of G2 cells 

observed in response to ATRi. (D) FACS analysis showing the percentage of viable AML
MLL

 and AML
ETO

 cells 
either untreated or exposed to ATRi (3 µM, 16 hrs). (E) FACS analysis of DNA content (PI) from the cultures used 
in (D) illustrating the depletion of G2 cells observed in response to ATRi. (F) Luminescent cell viability assay (GLO) 

of AMLL
MLL

 cells and AML
ETO

 cells exposed (or not) to ATRi (1 µm, 24 hrs). (G) FACS analysis of DNA content (PI) 

and H2AX phosphorylation in AML
MLL

 and AML
ETO

 cells exposed to ATRi (10 µM, 5 hrs). (H) Fork rates were 

measured in stretched DNA fibres prepared from AML
MLL

 and AML
ETO

 cells exposed (or not) to ATRi (10 µM, 5 
hrs). At least 200 tracks were measured per condition. ***P < 0.001 by two-tailed t test. (A), (B), (C), (D), (E), (F), 
(G) and (H) Data are representative of two independent experiments.  
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4. ATR inhibitors show efficacy as single agents in a mouse model of MLL-driven AML 

 To examine the in vivo efficacy of ATRi, we injected AMLMLL tumour cells, which also 

expressed both green fluorescent protein (GFP) and luciferase for tracking, into 

immunocompetent mice. Even in immunocompetent recipients, intravenous injection of 

AMLMLL cells results in a very aggressive form of AML that infiltrates multiple organs and kills 

mice in a few weeks (Zuber et al., 2009). In contrast to previous studies (Zuber et al., 2009; 

Zuber et al., 2011), we did not irradiate recipient animals before transplant. Irradiation 

depletes the bone marrow of the recipient mice, facilitating the expansion of the transplanted 

tumour. Because the injection of AMLMLL tumour cells was able to induce tumourigenesis 

even in the absence of irradiation, we preferred to avoid this radiation treatment to further 

mimic the normal context of AML. Transplanted mice were then treated daily by oral gavage 

with ATRi and tumour development was followed through monitoring luciferase activity with 

an in vivo imaging system (IVIS). Finally, to test the efficacy of ATR inhibitors, we used two 

protocols as follows: a prevention protocol in which mice started receiving treatment on the 

day of the injection of AMLMLL cells (ATRiPr); and a therapy protocol in which mice started 

receiving treatment after tumours were detectable by IVIS (ATRiTh), at day 13 after injection 

of AMLMLL cells.  

AMLMLL cells rapidly expand in the absence of drug treatment, leading to a lethal 

disease in control animals with a median survival of 23 days (Figure 11A). Both therapy and 

prevention groups showed a marked response as measured by IVIS at day 18, being tumours 

not detectable at this time point in the ATRiPr group (Figure 11B). IVIS on isolated organs 

confirmed that ATRi treatment dramatically limits tumour infiltration to organs, including liver, 

spleen, and lung (Figure 11C). The decreased tumour burden was also evident from visual 

analysis of spleen sizes (Figure 11D). We also observed increased levels of the white blood 

cells count in vehicle treated mice compared to ATRi treated and control healthy mice (Figure 

11E). Moreover and in agreement with the observations made in vitro by exposure of cells 

to ATR inhibitors (Figure 10G), treatment with ATRi led to a widespread accumulation of 

γH2AX-positive cells in spleens from the treated mice (Figure 11F), indicating an 

accumulation of DNA damage in tumour cells after the treatment. The presence of tumour 

cells was measured in bone marrow cells isolated from all groups of mice by GFP 

fluorescence at day 23. GFP-positive cells were undetectable in the prevention group, and 

the therapy group exhibited a 17-fold decrease in the percentage of GFP-positive AMLMLL 

cells in bone marrow (Figure 11G). Consistent with this, videos of animals recorded at day 

25 showed a clear improvement in the overall health of both ATRi-treated groups (movies 1 

to 3). 
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Although all animals eventually succumbed to leukaemia, both prevention and therapy 

groups showed a significant increase in the median life span (vehicle, 23 days; ATRiTh, 33 

days; ATRiPr, 45 days) (Figure 11A). Strikingly, at 40 days, all animals from the prevention 

group were alive, a time at which we decided to stop the treatment to explore potential 

curative effects of the therapy. Forty percent of these mice survived for more than 50 days, 

and one was alive for 117 days before succumbing to the disease.  

Figure 11. In vivo responses of AML
MLL

 to ATRi. (A) Kaplan-Meier curves of AML
MLL

 transplanted mice that were 

either treated with vehicle (n = 9), ATRi from day 1 (ATRi
Pr

; n = 7), or ATRi from day 13 (ATRi
Th

; n = 7). Treatment 
on the prevention group stopped at day 40. P value was calculated with the Mantel-Cox log-rank test. ***P<0.001. 
(B) Representative IVIS of the luciferase signals observed on mice from the groups indicated on (A) on day 18. (C) 
Representative examples of the luciferase signal observed by IVIS on isolated organs from the indicated groups at 
day 23. (D) Picture of the spleen sizes observed at day 23 of the in vivo treatment experiment. Scale bar, 1 cm. (E) 
Blood analysis of mice from the groups indicated on (A), White Blood Cells (WBC), Red Blood Cells (RBC) and 

Platelets (PLT). (F) Representative images of γH2AX immunohistochemistry on spleens of AML
MLL

 transplanted 
mice treated with vehicle or ATRi (60 mg/kg, 11 days). Scale bar (black), 50 mm. Numbers indicate the percentage 
of γH2AX positive cells in each case (means ± SD). (G) FACS analysis from the bone marrow collected from mice 

at day 23 of the treatment experiment indicated in (A). GFP (x axis) is used to monitor the presence of AML
MLL

 
cells. y axis indicates FSC-A. The percentage of live GFP positive cells detected in each case is indicated. Data 
are representative of two independent groups. 
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In summary, our data showed that ATR inhibition elicits anti-tumour responses when 

used as a single agent in allografts of mouse AMLMLL cells and provide an example of anti-

tumour activity of this class of drugs in an immunocompetent model of cancer.  

5. MLL-translocation driven human leukaemia cells are sensitive to ATR inhibitors in a 

xenograft mouse model  

In order to test the inhibition of ATR as chemotherapy for AML, we used the human 

AML cell line MV4:11, which is driven by a translocation between MLL and AF4 (ALL1-fused 

gene from chromosome 4) genes (Andersson et al., 2005). MV4:11 cell line was originally 

isolated from a 10-years-old patient with biphenotypic B myelomonocytic leukaemia, a 

subtype of AMLMLL. First, we analysed in vitro the cell viability of this cell line and we 

Figure 12. Toxicity of 

ATRi in AML
MLL

 cells 
from a patient (MV4:11). 

(A) FACS analysis showing 
the percentage of viable 
human MV4:11 cells 
compare to human K562 
cells (identified by size and 
DAPI exclusion) either 
untreated or exposed to 
ATRi (10 µM, 16 hrs). (B) 
Quantification of alive cells 
shown in A. (C)  DNA 
content (PI) analyses by 
flow cytometry illustrating, 
first, the toxicity of ATRi (10 
µM, 24 hrs) on MV4:11 
cells compared to K562 
cells and, second, the 
depletion of G2 cells 
observed in response to 
ATRi. SubG1 population 
percentages are indicated. 
(D) Luminescent cell 
viability assay (GLO) of 
MV4:11 cells and K562 
cells exposed (or not) to 
ATRi (10 µM) at indicated 
times. (E) Effect of ATRi as 
monotherapy on the growth 
of xenografts from the 
human MV4:11 cell line of 
MLL-driven AML. 
Treatment started when 
tumours became palpable, 
and eight animals were 
used per group. ***P < 
0.001 by two-way analysis 
of variance. (F) Examples 
of the tumour sizes 
observed at endpoint from 
E.  
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confirmed that MV4.11 cells are more sensitive to ATRi treatment than K562 cells (derived 

from a chronic myelogenous leukaemia patient) (Figure 12A, B). Then, we monitored the cell 

cycle profile of non-treated and ATRi-treated MV4:11 and K562 cells and we observed the 

same toxic effect with MV4:11 cells presenting an increase in the percentage of cellular death 

(defined by the subG1 phase) (Figure 12C). Reduced cell viability measured by a 

luminescent assay (CellTiter-Glo®) confirmed our previous observations (Figure 12D). 

Concomitantly, we observed the disappearance of most MV4:11 cells from the G2 phase of 

the cell cycle after ATRi treatment (Figure 12C).  

Finally, we tested in vivo the efficacy of ATRi in a xenograft model of the MV4:11 cell 

line. MV4:11 cells were implanted subcutaneously into the flanks of SCID mice. Treatment 

with ATRi started when tumours became palpable and was administered daily through oral 

gavage. We monitored the tumour growth and observed that ATRi therapy significantly limits 

MV4:11 xenograft growth (Figure 12E, F). Collectively, our data demonstrate that ATR 

inhibition elicits anti-tumour responses when used as a single agent in xenografts of a human 

AML cell line.   

6. ATM inhibitors show efficacy as single agents in a mouse model of MLL-driven AML 

Persistent RS leads to the breakage of replication forks and thus to DSBs that triggers 

an ATM-dependent DDR, suggesting an active role of ATM in limiting the toxicity of RS. 

Consistently, ATM deficiency is lethal in ATR-Seckel mice (ATR deficiency mouse model) 

which accumulate high levels of RS (Murga et al., 2009). Moreover, previous data in vitro 

reveal that treatment of primary MLL-AF9 transformed cells with an ATM inhibitor led to an 

increased differentiation of these leukaemic cells, and the transformation of ATM knockout 

cells with MLL-AF9 results in poor growth (Santos et al., 2014). 

In order to determine if ATM inhibition is also effective for treatment of AML, we used 

the newly developed ATM inhibitor AZD0156 (referred to as ATMi hereafter) (Degorce et al., 

2016) (Figure 13A). First, a cell viability assay was performed in which we confirmed that 

AMLMLL cells are sensitive to a treatment with either ATRi or ATMi (Figure 13B). Once again, 

and consistent with the mechanism of action of ATR inhibitors, we observed the 

disappearance of most AMLMLL cells from the G2 phase of the cell cycle in response to this 

agent (Figure 13C).  

As a first trial of the efficacy of a treatment with AMTi in vivo, we used the above 

allograft mouse model generated from intravenous injection of AMLMLL cells. Treatment 

started on the day of the injection of AMLMLL cells (prevention protocol). IVIS of mice at day 
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16 showed halted tumour progression in both ATRi and ATMi treated mice when compared 

to the vehicle treated group (Figure 13D). Importantly, the survival of AMLMLL-bearing mice 

was improved after either ATRi or ATMi treatment (Figure 13E).   

To further determine whether ATM is required for MLL leukaemia in vivo, wild-type and 

ATM−/− AMLMLL tumours were generated by transforming bone marrow hematopoietic 

progenitor cells of both genotypes with retroviruses expressing MLL-AF9-IRES-neo (were 

neo is neomycin-resistance) and N-RASG12D-IRES-GFP. When injected into immunodeficient 

NRG (Rag1 null; IL2rg null) recipient mice, both ATM wild-type and ATM−/− AMLMLL cells 

caused lethal leukaemia with no difference in median survival (Figure 14A). Thus, even 

though loss of ATM activity inhibits growth in vitro (Santos et al., 2014), we found that it did 

not have a detectable impact on the development of MLL-AF9 leukaemia in vivo in primary 

transplants (This part of the work was performed by the group of André Nussenzweig on the 

National Institutes of Health, USA).  

A plausible explanation for the lack of effect on tumour progression when ATM is 

genetically depleted is that complete abrogation of ATM expression (ATM-/-) might not 

resemble the phenotype triggered by attenuation of the kinase activity of ATM with chemical 

Figure 13. Toxicity of ATRi and ATMi in AML
MLL

 cells in culture. (A) Chemical structure of the ATM inhibitor 

AZD0156 (ATMi). (B) FACS analysis showing the percentage of viable AML
MLL

 cells (identified by size and DAPI 
exclusion) either untreated or exposed to ATRi (10 µM, 24 hrs) or to ATMi (10 µM, 24 hrs). (C) FACS analysis of 
DNA content (PI) from the cultures used in (B) illustrating the depletion of G2 cells observed in response to ATRi. 

(D) Representative IVIS of the luciferase signals observed on AML
MLL

 transplanted mice that were either treated 
with vehicle, ATRi (60 mg/Kg) or ATMi (20 mg/Kg) from day 1. IVIS imaging was conducted on day 16 of the 

experiment. (E) Kaplan-Meier curves of AML
MLL

 transplanted mice that were either treated with vehicle (n = 10), 
ATRi (n = 10), or ATMi (n = 10). Treatment on both groups stopped at day 54. P value was calculated with the 
Mantel-Cox log-rank test. ***P < 0.001. 
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inhibitors. For example, ATM kinase–inactivating mutations lead to embryonic lethality in 

mice, whereas ATM knockout mice are viable and show less genome instability than kinase-

dead mutants (Daniel et al., 2012; Yamamoto et al., 2012). To determine the effects of ATM 

inhibition on MLL leukaemia, we used the ATM inhibitor and the allografts model of AMLMLL.  

Figure 14. In vivo responses of AML
MLL

 to ATMi. (A) Kaplan-Meier curves of mice that were transplanted 

with ATM WT (n = 6) and ATM
−/−

 (n = 8) bone marrow hematopoietic progenitors that had been infected with 
retroviruses expressing MLL-AF9-IRES-neo and N-RASG12D-IRES-GFP. P value was calculated with the 

Mantel-Cox log-rank test. (B) Representative IVIS of the luciferase signals observed on AML
MLL

 transplanted 

mice that were either treated with vehicle, ATMi from day 1 (ATMi
Pr

), or ATMi from day 8 (ATMi
Th

). IVIS imaging 
was conducted on day 22 of the experiment. (C) Image of the spleen sizes observed at day 22 of the in vivo 
treatment experiment explained in (B). Scale bar, 1 cm. (D) Representative examples of the luciferase signal 
observed by IVIS on isolated organs from the indicated groups at day 22. (E) Blood analysis of mice from the 
groups indicated on (B), White Blood Cells (WBC), Red Blood Cells (RBC) and Platelets (PLT). (F) FACS 
analysis from the spleen collected from mice at day 23 of the treatment experiment indicated in (B). GFP (x 

axis) is used to monitor the presence of AML
MLL

 cells. y axis indicates FSC-A. (G) Kaplan-Meier curves of 

AML
MLL

 transplanted mice that were either treated with vehicle (n = 9), ATMi from day 1 (ATMi
Pr

; n = 9), or 

ATMi from day 8 (ATMi
Th

; n = 9). Treatment on both groups stopped at day 40. P value was calculated with 
the Mantel-Cox log-rank test. ***P < 0.001. 
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In order to determine the efficacy of the ATMi, we followed the same prevention and 

therapy protocols that we used before to evaluate ATR inhibitors. We injected AMLMLL cells 

through the tail vein into the immunocompetent mice and treated them daily with the ATMi or 

with the vehicle. The untreated cohort behaved similarly to the previously shown 

experiments, with a median survival of 26 days. As with ATRi, the therapy with ATMi had a 

notable effect with either protocol, leading to reduced overall luciferase signal measured by 

IVIS (Figure 14B), smaller spleen size (Figure 14C), reduced organ infiltration (Figure 14D), 

normal levels of white blood cells count (Figure 14E), decrease in the percentage of GFP 

positive AMLMLL cells in the spleens (Figure 14F) and prolonged survival of AMLMLL-injected 

mice (vehicle, 23 days; ATMiTh, 50 days; ATMiPr, 66 days) (Figure 14G). Videos of mice 

recorded on day 23 confirmed the improvement in the overall health of ATMi-treated mice 

(movies 4 to 6). 

Collectively, these data indicate that ATR or ATM inhibition represent potential 

therapeutic strategies for the treatment of AML, especially MLL-driven leukaemias. 
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1. Ewing Sarcoma presents high amount of replication stress 

As previously mentioned, increased CHK1 expression and/or gene copy number gains 

have been observed in tumours with a high degree of genomic instability, which correlates 

with an increased sensitivity to ATR or CHK1 inhibition (Krajewska et al., 2015; Sarmento et 

al., 2015). We therefore reasoned that the presence of high CHK1 levels could be used to 

identify tumour types with elevated amounts of RS. Besides AML and after mesothelioma, 

Ewing Sarcoma is the solid tumour showing the highest levels of CHK1 mRNA from the 

Cancer Cell Line Encyclopaedia dataset (Figure 4) (Barretina et al., 2012). In agreement with 

this, CHK1 protein levels were distinctively higher in a panel of Ewing Sarcoma lines 

compared to primary cells or other osteosarcomas (Figure 15A).  

The presence of high CHK1 levels correlates with increased phosphorylation of histone 

H2AX in Ewing Sarcoma cell lines (Figure 15A), consistent with the presence of RS in these 

cells. Immunohistochemistry (IHC) of human tumour samples revealed the abundant 

presence of cells positive for γH2AX in Ewing Sarcomas, which was more abundant than 

other related tumours such as neuroblastoma or rhabdomyosarcoma (Figure 15B). 

Moreover, γH2AX showed a pan-nuclear distribution, which is the pattern found in tumours 

with high levels of RS 

(Murga et al., 2011) 

and induced by ATR or 

CHK1 inhibitors 

(Syljuåsen et al., 2005; 

Toledo et al., 2011). 

Finally, and to directly 

evaluate DNA 

replication in Ewing 

Sarcoma cells, we 

analysed replication 

fork progression on 

isolated stretched DNA 

fibres. These 

experiments revealed 

that fork progression is 

significantly slower on 

any Ewing Sarcoma 

line tested (TC71, 

Figure 15. Increased RS levels in Ewing Sarcomas. (A) CHK1 and γH2AX 

levels evaluated by western blot on several Ewing Sarcoma lines, together with 
two osteosarcoma lines and two human primary cell types. (B) γH2AX IHC on 
mouse xenografts from three Ewing Sarcoma lines (A4573, A673 and TC71), 
and two independent xenografts from Ewing Sarcoma-related tumours 
(rhabdomyosarcoma (RMS); neuroblastoma (NB)). Scale bar (black) indicates 
20 µm. (C) Fork rates were measured in stretched DNA fibres prepared from 
non-Ewing Sarcoma (RPE, U2OS, SAOS) and Ewing Sarcoma (TC71, A673 and 
A4573) cell lines. At least 200 tracks were measured per condition. ***P<0.001 
by two-tailed t test. 
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A673 and A4573) than in human primary retinal pigmentum epithelial (RPE) cells or in U2OS 

and SAOS osteosarcoma cell lines (Figure 15C). All these data together reveal the presence 

of RS in Ewing Sarcoma suggesting that these tumours could be particularly responsive to 

ATR inhibitors. 

2. Cells lines from Ewing Sarcoma patients are sensitive to ATR inhibitors in vitro 

To determine the efficacy of ATR inhibitors on Ewing Sarcoma, we first calculated the 

median lethal dose (LD50) of these compounds in vitro (Figure 16A). Two independent ATR 

inhibitors (AZ20 [Foote et al., 2013)] and ETP-46464 [Toledo et al., 2011]) showed higher 

toxicity for Ewing Sarcoma cells than for human primary cells or non-Ewing Sarocma 

osteosarcomas, and significantly lower LD50 values than temozolamide, the 

chemotherapeutical drug currently used for treating Ewing Sarcoma, or the PARP inhibitor 

Olaparib. The use of PARP inhibitors has been described as a promising complementary 

treatment for Ewing Sarcoma (Garnett et al., 2012). Moreover, the toxicity of ATR inhibitors 

correlated with the levels of CHK1 and γH2AX present on Ewing Sarcoma lines (see Figure 

15A), consistent with the toxicity of these compounds being proportional to the levels of RS. 

Noteworthy, one of the cell lines from our panel was U2OS, a non-Ewing Sarcoma 

osteosarcoma cell line recently identified as being highly sensitive to ATR inhibitors due to 

its reliance on the alternative lengthening telomere (ALT) pathway for telomere maintenance 

(Flynn et al., 2015). The toxicity of ATR inhibitors on all Ewing Sarcoma lines tested was 

higher (up to 20-fold) than on U2OS, indicating that ATR inhibitors are more efficient against 

tumour cells bearing high levels of RS. Clonogenic assays confirmed a greater impact of 

ATR inhibition on Ewing Sarcoma cells than on U2OS, since A473 cells gave rise to a 

reduced number of colonies compared to control cells upon treatment with an ATR inhibitor. 

In a similar manner, these cells lines are sensitive either to treatment with an ATR inhibitor 

or with a PARP inhibitor (Figure 16B, C). Together, these results support that ATR inhibitors 

are especially toxic for Ewing Sarcoma cells. 

Next, we analysed the effects of ATR inhibition in Ewing Sarcoma cells. We confirmed 

by flow cytometry analyses of DNA content an increased toxicity of ATRi in Ewing Sarcoma 

lines, at doses at which no obvious impact of the inhibitor was observed on the cell cycle 

distribution of U2OS or SAOS-2 osteosarcoma cells (Figure 16D). The compound triggered 

apoptosis in Ewing Sarcoma cells, evidenced by the emergence of cells with a subG1 DNA 

content, as well as by the apoptotic cleavage of PARP1 (Figure 16E), indicative of 

cytotoxicity. In agreement with the main mechanism by which ATR inhibitors kill cells, which 

is forcing premature mitotic entry in cells suffering from RS (Ruiz et al., 2016), Ewing 

Sarcoma cell lines ATR inhibition led to the accumulation of cells in the S/G2 phases of the 
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cell cycle. Moreover, flow cytometry analyses of H2AX phosphorylation together with DNA 

content revealed that ATR inhibition led to increased γH2AX levels specifically in S phase, 

and which were exacerbated in Ewing Sarcoma (A4573) cells compared to U2OS (Figure 

16F). Thus, the sensitivity of Ewing Sarcoma to ATR inhibition correlates with an increased 

induction of RS by the compound in these cells.   

Figure 16. Sensitivity of Ewing Sarcoma to ATR inhibitors in vitro. (A) LD50 values of two independent 
inhibitors (ETP-46464 (Toledo et al., 2011) and AZ20 (Foote et al., 2013) and a PARP1 inhibitor (Olaparib, PARPi 
hereafter) on the same lines used in Figure 15A. The LD50 values for temozolomide, currently used in Ewing 
Sarcoma chemotherapy, were above 100 µM in all lines tested. (B) Clonogenic assays illustrating the differential 
effects of ATRi (100 nM; 16h) and PARPi (10 nM; 16 hrs) on U2OS and A4573 cells. (C) Quantification of the 
percentage of survivor colonies shown in A. (D) DNA content (PI) was assessed by flow cytometry on two non-
Ewing Sarcoma osteosarcoma lines and three Ewing Sarcoma lines exposed to ATRi for 72 hrs (1 µm). (E) Western 
blot illustrating the cleavage of PARP1 on Ewing Sarcoma lines and U2OS upon a short exposure to ATRi (1 μM, 
4 hrs). (F) FACS analysis of DNA content (PI) and H2AX phosphorylation in U2OS and A4573 cells exposed to 
ATRi (10 µM, 5 hrs), illustrating the increased levels of ATRi-induced RS (as measured by γH2AX in cells with an 
S-phase DNA content) in Ewing Sarcoma cells. 
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3. The presence of EWSR1 translocations sensitises cells to ATR inhibitors 

As previously mentioned, the most common translocations found in Ewing Sarcoma 

take place between EWSR1 protein and the transcription factor FLI1 (EWS/FLI1), counting 

for the 85% of cases. To determine whether the sensitivity towards ATR inhibitors observed 

in Ewing Sarcoma cells was not something particular of the chosen cell lines but rather a 

consequence of the initiating oncogenic translocation, we used a mouse transgenic line 

where EWS/FLI1 expression can be activated by induction of Cre recombinase upon 

Figure 17. Expression of EWSR1 translocations sensitises cells to ATRi. (A) Western blot illustrating the 

expression of EWS/FLI1 (measured with a FLI1 antibody) that can be obtained in EWS/FLI1
ind

 MEF upon OHT-

induced activation of a CreERT2 expressed from the ubiquitin promoter (UQ/Cre
ERT2

) (Ruzankina et al., 2007). OHT 
was added for 48 hrs at 1 µM. β-Actin was used as loading control. (B) DNA content (PI) analyses by flow 

cytometry illustrating the toxicity of ATRi (5 µM, 48 hrs) on WT and EWS/FLI1
ind

 MEFs harbouring UQ-

Cre
ERT2

 exposed to OHT (1 µM, 48 hrs). SubG1 populations are shaded in red and their percentages are 

indicated. (C) DNA replication rates of WT and EWS/FLI1
ind

 MEF harbouring UQ-Cre
ERT2 

exposed to OHT, as well 
as of WT MEF infected with a retrovirus expressing the MYC oncogene were evaluated by quantifying the 
incorporation of EdU per nucleus by High Throghput Microscopy. (D) Western blot illustrating the expression of 
EWS/FLI1 (measured with FLI1 antibody) that can be obtained in Flp-In 293T-REx cells carrying a EWS/FLI1-

STAG cDNA (EWS/FLI1
STAG

) upon induction with doxycycline (DOX) (200 ng/ml, 48 hrs). β-Actin was used as 
loading control. (E) DNA content (PI) analyses by flow cytometry illustrating the toxicity of ATRi (1 µM, 24 hrs) on 

EWS/FLI1
STAG 

cells exposed or not to DOX (48 hrs). SubG1 populations are shaded in red and their percentages 
are indicated. (F) Western blot illustrating the expression of EWS/ERG (measured with an EWSR1 antibody) that 
can be obtained in MEF upon infection with a EWS/ERG expressing retrovirus (or empty vector; pBabe). Ponceau 
was used as loading control. (G) DNA content (PI) analyses by flow cytometry illustrating the toxicity of ATRi (5 
µM, 48 hrs) on MEF infected with an EWS/ERG expressing retrovirus (or empty vector). SubG1 populations are 
shaded in red and their percentages are indicated. 
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tamoxifen administration (EWS/FLI1ind) (Lin et al., 2008) (Figure 17A). Supporting a 

causative role for the translocation, Cre induction was sufficient to sensitise EWS/FLI1ind 

primary mouse embryonic fibroblasts (MEFs) to ATR inhibition, as observed by an increase 

in the percentage of apoptotic cells (SubG1 phase) in EWS/FLI1ind MEFs compare to wild-

type (WT) MEFs after ATRi treatment (Figure 17B). Interestingly, and in contrast to other 

oncogenes that sensitise tumour cells to limited ATR activity such as MYC (Murga et al., 

2011), EWS/FLI expression did not increase DNA replication rates as measured by EdU 

incorporation (Figure 17C).  

To test the effect of EWS/FLI1 expression in human cells and independently of Cre 

activation, we generated a doxycycline inducible EWS/FLI1 expressing line in human Flp-In 

T-Rex 293 cells (293EWS/FLI1) (Figure 17D). Similar to the observations in EWS/FLI1ind MEFs, 

doxycycline exposure sensitised 293EWS/FLI1 cells to ATRi, as shown by an increased 

percentage of dead cells in subG1 phases of cell cycle when expressing the EWS/FLI1 

translocation (Figure 17D, E).  

 In addition to EWS/FLI1, expression 

of EWS/ERG, a different translocation 

found in Ewing Sarcoma patients, also 

sensitised cells to ATR inhibition in primary 

MEFs. Cells expressing the EWS/ERG 

translocation presented an increase in the 

cellular death as shown by the rising of the 

percentage of cells in subG1 phase (Figure 

17F, G). Moreover, one of the ATRi-

sensitive Ewing Sarcoma cell lines tested 

above (TTC466) carries an EWS/ERG 

translocation instead of EWS/FLI1. These 

data indicate that the presence of EWSR1-

involving translocations sensitises human 

and mouse cells to ATR inhibitors.  

4. ATR inhibitors show efficacy as single 

agents in a xenograft mouse model of 

Ewing Sarcoma 

Finally, to determine the efficacy of 

ATR inhibitors in vivo, we evaluated their 

Figure 18. Efficacy of ATR inhibitors in Ewing 
Sarcoma xenografts as single agents. (A) Efficacy of 

AZ20 and an independent ATR inhibitor (MSC253) as 
monotherapy on the growth of Ewing Sarcoma 
xenografts (A4573). Treatment started when tumours 
became palpable. (B) Examples of the tumour sizes 
observed at endpoint from A. (C) γH2AX IHC on 
xenografts from A 48 hrs after starting the treatment. 
Scale bar indicates 30 µm. Error bars indicate s.d. 
***P < 0.001. 
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antitumour effects using a xenograft model in SCID mice. For that, we subcutaneously 

implanted the human A4573 Ewing Sarcoma cell lines into the flanks of these mice, treated 

them with ATR inhibitors starting when tumours became palpable and monitored tumour 

growth. Remarkably, oral administration of two independent ATR inhibitors reduced the 

growth of xenografts from A4573 Ewing Sarcoma cells (Figure 18A, B). Moreover, xenografts 

from mice treated with ATR inhibitors presented a generalized accumulation of pan-nuclear 

γH2AX-positive cells, consistent with the mechanism of action of ATR and CHK1 inhibitors 

(Murga et al., 2011; Sarmento et al., 2015) (Figure 18C). Of note, and whereas all current 

clinical trials using ATR inhibitors rely on combination therapies with additional genotoxic 

agents (https://clinicaltrials.gov/), both ATR inhibitors were used as single agents in these 

experiments. Taken together, these data identify ATR inhibitors as a potential therapy for 

Ewing Sarcoma. 
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1. EWSR1 ablation results in accumulation of replication stress and sensitises cells to 

ATR inhibitors 

As mentioned in previous sections, although the role of EWSR1 is not fully understood, 

increasing evidence suggest that it may be involved in the DDR, either directly or indirectly. 

For instance, genetic ablation of EWSR1 generates an alternative splicing of several genes 

that are involved in DNA repair and p53-mediated signalling pathways (Dutertre et al., 2010; 

Paronetto et al., 2011). The potential role of EWSR1 in the DDR is also supported by the 

phenotype of EWSR1 Knock-Out 

(EWSR1-/-) mice, which in several 

aspects resembles that of ATR 

hypomorphic mice (Li et al., 2007). 

However, the precise role of EWSR1 

in the DDR is far from understood, 

and elucidating it could be particularly 

relevant because it remains unknown 

whether the EWS/FLI1 translocation 

could result in the loss of EWSR1 

function, and thus in turn contribute to 

the tumourigenesis process. 

For all these reasons, we here 

aimed to gain further insight into the 

implication of EWSR1 in the ATR 

pathway and in the RS response. For 

that purpose, we first analysed the 

levels of various RS markers upon 

treat of immortalized EWSR1-/- MEFs 

with the RS-inducing agent HU (Li et 

al., 2007). Remarkably, EWSR1 

deletion in MEFs caused a significant 

increase in levels of p-RPA and p-

CHK1 compared to WT MEFs upon 

treatment with HU, (Figure 19A), 

indicating increased or persistent 

ATR pathway activation due to RS 

and/or the accumulation of DNA 

Figure 19. EWSR1
-/- 

MEFs show highest levels of RS and 
are sensitive to RS inducing agents. (A) Western blot of 

analysis of the levels of RS in EWSR1
-/-

 immortalized MEFs 
exposed to HU (2 mM, 4 hrs) using antibodies against EWSR1, 
pCHK1, pRPA, RPA, γH2AX. β-Actin was used as loading 
control. (B) Western blot of analysis of the levels of RS in 

primary EWS/FLI1
ind

 MEFs exposed to HU (2 mM, 3 hrs), upon 
OHT-induced activation of a CreERT2, using antibodies against 
pRPA32 and pRPA. β-Actin was used as loading control. (C) 
Clonogenic assays illustrating the differential effects of ATRi 

(300 nM; 1 week) immortalized EWSR1
-/-

 MEFs. D) Survival 
curves of colonies shown in (C) exposed to ATRi at indicated 
doses for 1 week. 
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breaks (Figure 19A). Similarly, expression of EWS/FLI1 in MEFs (EWS/FLI1ind MEFs) also 

showed an increased pRPA levels upon HU treatment compared to control MEFs that do not 

express the EWS/FLI1 translocation (Figure 19B), suggesting that indeed the translocation 

could potentially lead to the loss of function of EWSR1. In addition to the biochemical 

analyses, colony survival assays showed that EWSR1-/- MEFs give rise to a reduced number 

of colonies compared to WT MEFs upon treatment with the ATRi (Figure 19C, D). Altogether, 

these results suggest that EWSR1 contributes to the response to RS in mammalian cells and 

that the loss of EWSR1 function can contribute to the sensitivity to ATR inhibitors observed 

in Ewing Sarcomas. 

2. Analysis of EWSR1 interactome 

To further explore why EWSR1 deficiency and EWS/FLI1 expression confers sensitivity 

to ATR inhibitors -and thus, why Ewing Sarcomas are sensitive to ATR inhibition- we 

interrogated the potential EWSR1 partners by means of proteomic analysis of EWSR1 

interactions. For this purpose, we generated a doxycycline inducible streptavidin-tagged 

(STAG) EWSR1 expressing line in human Flp-In T-Rex 293 cells (EWSR1STAG). We isolated 

nuclear extracts from these cells and performed STAG pull-down assays (Figure 20A) for 

subsequent mass spectrometry analyses. The three FET family member proteins are known 

co-interactors (Spahn et al., 2003; Pahlich et al., 2009), and as expected, our analysis 

identified all of them (FUL, EWSR1 and TAF15), together with SAFB2 (previously found to 

interact with FUS [Wang et al., 2011]), among the most enriched interactors of EWSR1 

(Figure 20B). Also, and in line with previous studies (Paronetto, 2013), factors involved in 

RNA metabolism and nucleolar proteins were also found amongst the top EWSR1 interactors 

(Figure 20B). 

Interestingly, we observed that EWSR1 strongly interacted with the protein arginine 

methyltransferase 1 (PRMT1) (Figure 20C, D). PRMT1 has been shown to di-methylate the 

guanidine nitrogen group of arginine residues that are present in proteins such as TAF15, 

FUS and EWSR1 (Araya et al., 2005; Jobert et al., 2009; Tradewell et al., 2012), and 

remarkably, the methylation state of EWSR1 RNA-binding domain was demonstrated to 

affect its subcellular localization (Belyanskaya et al., 2003) EWSR1 is endowed with two 

main domains, the N-terminal transcriptional activation domain and the C-terminal RNA 

binding domain (Figure 7B). Interestingly, the RNA binding domain is lost in the EWS/FLI1 

fusion protein (Figure 6B), which suggested that this might affect the interaction with PRMT1. 

Consistently, we found that the interaction of EWSR1 with PRMT1 is lost in the EWS/FLI1 

fusion protein (Figure 20D). We next decided to investigate whether di-methylation patterns 

of EWSR1 are affected in the presence of DNA damage. Interestingly, we observed 
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increased levels of EWSR1 di-methylation at Arg506 upon treatment with the DSB inducing 

agent Neocarzinostatin (NCS) and even more with ATRi (Figure 20E), suggesting a possible 

implication of this post-translational modification in the role of EWSR1 in the DDR. Altogether, 

these experiments suggest that the loss of EWSR1 RNA-binding domain in the EWS/FLI1 

fusion protein might lead to the loss of EWSR1 normal function due to the loss of relevant 

functional interactions such as the one with PRMT1.  

Figure 20. EWSR1 protein interacts with nucleolar proteins and PRMT1 methyltransferase. (A) Western 

blot illustrating the STAG pull-down assays of nuclear extracts from 293-EWSR1
STAG

 cells (EWSR1
STAG

 signal 
is measured with a STAG antibody). (B) The table indicates the interactors of EWSR1STAG that were identified 
by MS, ordered by the level of enrichment when compared to proteins pulled down from cells expressing only 
the STAG. Most proteins identified are involved in RNA metabolism and/or nucleolar biology. (C) Graphic 

illustrating the PRMT1 interaction with EWSR1
STAG

 protein. (D) Western blot of PRMT1 illustrating the loss of 

interaction with EWS/FLI1
STAG

 fusion protein. (E) Levels of di-Methylation on EWSR1 arginine 506 (R506) after 
exposure to NCS (2.25 µM, 1 hr) or ATRi (30 nM, 4 hrs). 
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3. EWS/FLI1 expression results in a toxic effect in combination with silencing of nucleolar 

proteins 

Due to the critical role of EWSR1 translocations in driving Ewing Sarcoma, targeting 

EWSR1 interactors critical for its function might provide a novel therapeutically opportunity 

for the treatment of these tumours. For this reason, we next addressed whether knock down 

of EWSR1 interactors confers synthetic lethality in cells bearing the EWS/FLI1 fusion protein. 

We selected 85 candidates amongst the top EWSR1 interactors and performed a screening 

of synthetic lethality in human inducible EWS/FLI1 expressing cells (293EWS/FLI1) by using an 

endoribonuclease-prepared small interfering RNAs (esiRNA) library of the selected 

candidates. First, as a control, we analysed the effect of the knock down of each interactor 

in the viability of normal cells (non-expressing EWS/FLI1) using as a reference the condition 

of cells that had not been transfected (Figure 21A). In parallel, we evaluated the effect in 

Figure 21. EWS/FLI1 expression displays synthetics lethality with knock down of nucleolar proteins. (A) 

Graphic illustrating the effect in the viability of knock down of esiRNA indicated. (B) Graphic illustrating the 
synthetic lethality of knock down of esiRNA indicated together with EWS/FLI1 expression.  
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viability of the knock down of the interactors together with EWS/FLI1 expression upon 

doxycycline administration (Figure 21B). In order to identify the most relevant outcomes, we 

aimed to select those interactors whose knock down did not decrease viability more than 

50% in control conditions -not overexpressing EWS/FLI1- compared to the control without 

esiRNA (100% of viability) (Figure 21A), and from this set we selected those candidates 

whose knock down resulted in synergistic toxicity together with EWS/FLI1 expression (Figure 

21B) for further evaluation. 

Knock down of Nucleoporin 155 (NUP155), serine and arginine rich splicing factor 3 

(SFRS3), chaperonin containing T-complex polypeptide 1 subunit 2 (CCT2), nucleolar 

protein interacting with the forkhead-associated domain of MKI67 (MKI67IP) and TGF-

inducible nuclear protein 1 (TINP1) resulted in selective toxicity for cells expressing 

EWS/FLI1, but nor for healthy cells, identifying these proteins recognized as the synthetic 

lethality targets. Interestingly, all these EWS/FLI1 synthetic lethality targets are involved in 

the nucleolar biology. NUP155 and SFRS3 participate in mRNA export (Huang and Steitz, 

2001; Rayala et al., 2004), MKI67IP is required for ribosomal RNA maturation during cell 

cycle progression (Pan et al., 2015) and TINP1 encodes a nucleolar protein involved in cell 

cycle regulation and proliferation (Zhang et al., 2010). Interestingly, CCT2 is involved in the 

folding and activity of the oncoprotein AMLETO, which is expressed in AML (Roh et al., 2016). 

Based on the fact that nucleolar proteins are highly enriched in EWSR1STAG pull-downs 

and that nucleolar proteins are also the predominant EWS/FLI1 synthetic lethality hits, we 

hypothesised that EWSR1 deficiency and/or EWS/FLI1 expression in Ewing Sarcoma 

(potentially resulting in EWSR1 loss of function) could disturb the nucleolar machinery of the 

cell. Nucleoli are structures found inside the nucleus where the transcription of ribosomal 

RNA (rRNA) takes place and are thus essential for ribosome biogenesis. Consequently, 

altered nucleolar function might lead to deficient protein synthesis, which in turn could 

aggravate the nucleolar defects because of poor translation of nucleolar proteins. In this 

context, we hypothesised that Ewing Sarcomas could potentially be highly sensitive to 

inhibitors of the RNA polymerase I (CX-5461, BMH-21), which is specialised in rRNA 

transcription. However, we did not find a preferential sensitivity of these cells to the 

compounds (not shown). Regardless, in spite of the fact that further analyses are required to 

elucidate the role of EWSR1 in the DDR, our data clearly indicate that the function of EWSR1 

is intimately linked to nucleolar biology, and further studies could help to understand whether 

such a function might be exploited for the development of new therapies.
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The backbone treatment for cancer relies on a combination of surgery, chemotherapy 

and radiotherapy. Remarkably, a number of treatments with chemotherapy or radiotherapy 

are based on the same principle; that is, to inflict DNA damage into tumour cells. Since 

cancer cells replicate at very high rates, they are more sensitive to the DNA replication 

interferences caused by these therapies and are consequently prone to enter in apoptosis 

and/or senescence. Following the same rationale, over the last years an arguably improved 

version of this strategy arose, consisting in the combination of DNA damage agents with 

inhibitors of the DDR thereby enhancing the effect of the damaging agents by preventing 

DNA damage signalling repair. In addition, since tumour cells present intrinsically higher 

levels of DNA damage and RS, targeting the DDR and RS response pathways has the 

potential to preferentially target cancer cells thus diminishing the off-target effects that are 

often associated to genotoxic therapies. 

In fact, one of the major challenges of cancer therapy is to kill selectively tumour cells 

without harming healthy cells thereby avoiding hazardous and unpleasant side effects. In this 

regard, since genomic instability is widespread in cancer cells (Boveri, 1914), targeting 

genomic instability offers an opportunity to develop more selective treatments that 

preferentially kill cancer cells. This strategy relies on the concept of synthetic lethality, which 

arises when the combination of two situations causes cell death, whereas a single one does 

not. This concept that emerged from yeast studies, can be used to take advantage of the 

limitation of tumour cells for survival when fundamental processes are attacked together, as 

replication and DNA repair in cells harbouring cancer associated mutations (Hartwell, 1997). 

A recent and prominent example of the application of synthetic lethality in cancer is the 

toxicity of PARP inhibitors for cells deficient in HR. PARP inhibition leads to the accumulation 

of single-stranded breaks that become DSB during DNA replication which are effectively 

repair in cells proficient in HR (e.g. normal cells) but are toxic for HR deficient cells (e.g. HR 

deficient tumour cells). Accordingly, this synthetic lethal interaction renders PARP inhibitors 

as effective and selective treatments for HR deficient cancers and is currently being exploited 

as a therapeutic strategy for BRCA1/2 deficient tumours (Bryant et al., 2005; Farmer et al., 

2005). 

An alternative to targeting a specific mutation is to exploit the presence of high 

endogenous levels of DNA damage in tumours. A well-established source of genomic 

instability in cancer is oncogene-induced RS (Halazonetis, 2008), which, by activating the 

DDR, limits cancer development in its early stages (Bartkova et al., 2005; Gorgoulis et al., 

2005). To date, much of the work in this model has been dedicated to understand how 

oncogenes generate DNA damage, or to what extent the enzymes from the DDR protect us 
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from cancer development. However, increasing evidence show that targeting RS response 

kinases ATR and CHK1 is preferentially toxic for tumours experiencing high levels of 

endogenous RS such as MYC-induced lymphomas, MLL-translocation driven leukaemias or 

H-RAS (Harvey sarcoma virus- RAS) driven fibrosarcomas (Murga et al., 2011; Schoppy et 

al., 2012; Santos et al., 2014). While lowering the amounts of ATR or CHK1 by half could 

potentially lead to increased genomic instability and cancer, a severe inhibition of the RS 

response might be particularly deleterious for cells that replicate very fast (e.g. cancer cells), 

causing intolerable levels of DNA damage. Altogether, this indicates that ATR and CHK1 

inhibitors are particularly efficient for tumours with high replication rates and, as a 

consequence, constitutively high amounts of RS. 

Figure 22. Synthetic lethality. Adapted from (Toledo et al., 2011). 
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Inspired by these ideas, this Doctoral Thesis explored the idea of exploiting a synthetic 

lethal interaction of the RS response in cancer. If oncogenes generate RS, which is normally 

suppressed by the RS response, it could be possible that targeting ATR or CHK1 would be 

particularly toxic for cancer cells presenting considerable amounts of RS. This differs from 

the standard chemotherapy -which as aforementioned implies the combination of drug that 

generate DNA damage and DDR inhibitors- in that, in this particular case, the source of DNA 

damage would be intrinsic to the tumour, thereby increasing the chances to preferentially kill 

cancer cell. This work adds to our previous work on ATR-Seckel mice which showed that low 

levels of ATR are largely incompatible with tumour development and, what is more, that the 

loss of p53 was synthetic lethal with ATR hypomorphism (Murga et al., 2009) or with ATR 

elimination in adult mice (Ruzankina et al., 2009). This is explained by the less restrictive S-

phase entry linked to p53-deficiency lead to even higher amounts of RS and cell death in the 

presence of a limiter ATR response (Reaper et al., 2011; Toledo et al., 2011). 

Early work with CHK1 inhibitors showed that they failed as a general anti-cancer 

strategy in advanced tumours. One example of this is UCN-01, a CHK1 inhibitor that was 

originally discovered as an inhibitor of protein kinase C and that at some point was one of 

the most promising antineoplastic compounds available (Takahashi et al., 1987). However, 

the poor efficacy in clinical trials and the off-target effects of the drug dampened the interest 

on it and raised doubts of the potential of the usefulness of CHK1 inhibitors in cancer.  

Nevertheless, and as it is the case with most chemotherapies, it is tempting to speculate that 

this is likely due to the fact that their efficacy could be restricted to a subset of tumours, as 

for example those that present high amounts of RS.  Promising drugs such as Imatinib of 

Olaparib would have also been considered a failure if tested as generic “anti-cancer” drugs 

in all types of tumours. However, when these therapies are directed to tumours presenting 

ABL or BRCA1/2 mutations, respectively, they are very efficient, highlighting again the 

potential of the synthetic lethal strategy and clearly indicating the need to identify specifically 

which tumours types are going to benefit from these therapies. The work provided here 

supports this idea, as it indicated the relevance of identifying tumours with high levels of RS 

for the use of RS response inhibitors in cancer therapy. 

Specifically, our works evidences the potential use of ATR inhibitor as anti-cancer 

therapy in tumours with high endogenous levels of RS. We demonstrate that inhibiting ATR 

in these tumours leads to p53-independent cell death due to unbearable levels of DNA 

damage. Following this line of thought, and by the use of preclinical models, we provide the 

first evidences of the efficacy ATR inhibitors as single agents in cancer therapy.  
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1. ATR inhibitors as a potential new therapeutic approach for MLL-driven AML 

Current treatment of acute paediatric leukaemias involves the use of broad-spectrum 

genotoxic approaches. However, these lines of chemotherapy are largely ineffective for 

treatment of leukaemias that have MLL translocations. What is more, some of these 

therapies, such as the use of the topoisomerase II inhibitor etoposide, counterproductively 

promote MLL translocations and therapy-related leukaemia (Blanco, Edick and Relling, 2003; 

Libura et al., 2009). Thus, the treatment of this subset of leukaemias would benefit from a 

targeted therapy that exploits a specific vulnerability in the cancer cells. 

One such vulnerability is associated with the function of KMT2A, which is the protein 

encoded in a gene associated with MLL translocation events. KMT2A is a lysine 

methyltransferase that functions as an epigenetic regulator (Rao and Dou, 2015). 

Leukaemias carrying MLL fusion proteins require few, if any, additional mutations. Rather, 

fusion proteins induce leukaemia by deregulating transcription at MLL-fusion protein target 

genes, such as the HOXA (Homeobox protein Hox-A) gene cluster and MEIS1 (Myeloid 

Ecotropic viral Integration Site 1 Homolog) (Somervaille and Cleary, 2010; Bernt and 

Armstrong, 2011). Abnormal expression of these genes is associated with epigenetic 

changes, including alteration in DNA and histone methylation. For example, the H3K79 

(histone 3 Lysine 79) methylase DOT1L (Disruptor of telomeric silencing 1-like) is recruited 

to MLL fusion protein target genes, and this subtype of leukaemia is particularly dependent 

on DOT1L enzymatic activity (Chen and Armstrong, 2015). Further, MLL leukaemias depend 

on diverse hematopoietic transcription factors, such as the bromodomain and extraterminal 

(BET) protein BRD4 (Bromodomain-containing protein 4), to maintain their leukaemic stem 

cell properties (Zuber et al., 2011; Krajewska et al., 2015; Roe et al., 2015). Thus, one 

therapeutic approach for leukaemogenesis resulting from MLL translocation events is to 

disrupt the MLL target gene expression program with drugs that target epigenetic-modifying 

enzymes or the products of genes that depend on such modifications (Bernt and Armstrong, 

2011). In this context, drugs that inhibit BET, such as the Bromodomain inhibitor JQ1, or 

DOT1L inhibitors are currently under investigation. 

In addition to lineage-specific transcriptional circuits, our experiments suggested that 

a second point of vulnerability in MLL-driven AML is the presence of RS. Interestingly while 

the amount of RS markers (γH2AX) is not distinctively high in these tumours, we propose 

that this is because these cells have increased levels of RS response factors, such as CHK1, 

which help buffer the levels of RS. Accordingly, a very recent study revealed increased CHK1 

levels in cells from human AMLMLL patients (David et al., 2016). We propose that, whereas 

this increase in RS response factors limits the basal toxicity of RS and thus facilitates tumour 
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growth, it also represents a vulnerability because the tumour cells become particularly 

dependent on a proficient RS response. To what extent MLL translocations are responsible 

for the RS in AMLMLL cells, which have other defects such as N-RAS hyperactivity, remains 

to be established. 

Despite the hope for new targeted therapies, mechanisms for resistance to inhibitors 

of BET (Fong et al., 2015; Krajewska et al., 2015; Rathert et al., 2015) or ATR (Ruiz et al., 

2016) have been uncovered. Noteworthy, perturbing the chromatin-related functions of MLL 

fusion proteins leads to RS (Liu et al., 2010; Kantidakis et al., 2016). In this context, a 

combination of RS response inhibitors, leading to p53-independent toxicity, and epigenetic 

inhibitors, which may both interfere with the transcriptional properties of the MLL fusion 

protein and further increase the levels of RS, could help overcome the resistance of MLL-

driven AML to chemotherapy. 

2. Replication Stress in Ewing Sarcoma provide sensitivity to ATR inhibitors 

Metastatic Ewing Sarcoma is a paediatric tumour of very poor prognosis, due to the 

lack of efficient therapies. Current treatments involve genotoxic agents such as 

temozolomide or irinotecan, whose mechanism of action involves the generation of RS. In 

what regards to new alternatives, Ewing Sarcoma cells were also reportedly sensitive to 

PARP inhibitors (Barretina et al., 2012; Brenner et al., 2012). However, initial clinical trials 

failed to see a response to these compounds in Ewing Sarcoma patients (Choy et al., 2014), 

and thus new therapies are still needed. We here provide evidence of a distinctively high 

sensitivity of Ewing Sarcomas to ATR inhibitors, which correlates with high levels of 

endogenous RS in these tumours. Two independent ATR inhibitors were found to be 

significantly more toxic than the PARP inhibitor Olaparib in all Ewing Sarcoma lines tested. 

In addition, all Ewing Sarcoma cell lines were more sensitive to ATR inhibition than the ALT-

positive cell line U2OS, recently reported as highly sensitive to ATR inhibition (Flynn et al., 

2015). 

Our discovery of high endogenous levels of RS in Ewing Sarcoma cells also helps to 

explain the intrinsic sensitivity of Ewing Sarcomas to agents that perturb DNA replication. As 

observed in other tumours suffering from RS, such as recombination-deficient ovarian 

cancers (Krajewska et al., 2015) or MYCN-driven neuroblastomas (Cole et al., 2010), Ewing 

Sarcoma cells present high levels of CHK1 expression, which helps them deal with the 

presence of RS. As a consequence, these tumours become addicted to a proficient 

ATR/CHK1 pathway for their survival, explaining the high sensitivity of Ewing Sarcoma cells 

to ATR inhibition. At this point, we do not know why the expression of EWSR1 translocation 
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products drives RS in Ewing Sarcoma cells, yet since EWS/FLI1 is a transforming oncogene 

(May et al., 1993) it could simply be another case of oncogene-induced RS. However, and 

in contrast to other oncogenes such as MYC or RAS, EWS/FLI1 expression does not 

increase DNA replication, so that a novel mechanism must be in place to explain this 

synthetic lethal interaction. One interesting possibility is that the expression of EWSR1 

fusions could perturb the function of endogenous EWSR1, which could be the source of RS 

and genomic instability of these tumours. Consistently, a recent report revealed a critical role 

of EWSR1 in facilitating the recruitment of DNA repair factors to sites of DNA damage 

(Altmeyer et al., 2015). In addition, previous work revealed that depletion of EWSR1 reduced 

levels of several DNA damage response factors, due to alterations in alternative splicing 

(Paronetto et al., 2011). Finally, and as mentioned before, the phenotypes of EWSR1-

deficient mice are reminiscent of those found in ATR mutant mice (Li et al., 2007; Murga et 

al., 2009; Cho et al., 2011). Hence, it is possible that EWSR1 translocations could exert a 

dominant negative function over endogenous EWSR1, leading to RS and genomic instability 

in Ewing Sarcomas. Regardless of how EWSR1 fusions generate RS, our work provides a 

basis to understand the sensitivity of Ewing Sarcomas to RS-inducing agents, and identifies 

ATR inhibitors as a potential therapy for Ewing Sarcoma. 

3. Dissecting the role of EWSR1 in genome and nucleolar maintenance  

As mentioned in previous sections, it is well established that EWSR1 plays a relevant 

role in transcription and splicing; in fact, and quite remarkably, EWSR1 function has been 

linked with alternative splicing in genes involve in the DDR (Paronetto, 2013). Interestingly, 

in support of this relevant cellular role, EWSR1 deficiency in mice was shown to lead to high 

perinatal mortality, defects in HR impairing meiosis, disrupted pre-B cell formation, 

hypersensitivity to ionizing radiation, premature senescence of MEFs, and an altered 

dynamics in the hematopoietic stem cell population. Taken together, all these evidence 

indicate a role for EWSR1 in preserving genomic stability (Li et al., 2007), which one would 

speculate to be possibly indirect and not only related to its role in the splicing of some DDR 

genes. In line with these data, our results have identified EWSR1 as a possible new player 

of the ATR pathway, as they indicate that EWSR1 may be involved the RS response. Indeed, 

we have shown that the absence of EWSR1 causes accumulation of RS and sensitivity to 

the limitation of the RS response by ATR inhibitors. These results are particularly relevant, 

given that EWSR1 alteration has been linked to Ewing Sarcoma development, where it is 

commonly found as the translocation EWS/FLI1. Nonetheless, some of the physiological 

implications of the translocation are unclear, as it not formally demonstrated whether it 

implies EWSR1 loss of function. Conversely, most studies propose that EWS/FLI1 gain of 
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function is responsible of Ewing Sarcoma onset and progression by promoting abnormal 

transcription activity of FLI1 (Ohno et al., 1993; Wakahara et al., 2008; Yang et al., 2010; 

Niedan et al., 2014), therefore providing a molecular mechanism with clinical relevance in 

tumorigenesis. Nonetheless, our results show that both EWSR1-/- cells and cells expressing 

heterologous EWS/FLI1 protein tend to accumulate high amounts of RS and, more 

importantly, the sensitivity towards ATR inhibitors found in Ewing Sarcoma cell lines and 

EWS/FLI1 expressing cell lines is shared by EWSR1 deficient cells. These results support 

the idea that EWS/FLI1 could function as a dominant negative form of EWSR1.  Additionally, 

it is also tempting to speculate that the loss of EWSR1 function, which leads to accumulation 

of RS, could contribute to the tumorigenesis of Ewing Sarcoma and to the response to 

chemotherapy in this tumour type. 

Irrespective of the high amounts of RS associated with EWSR1 ablation and EWS/FLI1 

translocation, and of the possible contribution of RS to Ewing Sarcoma development, the 

exact role of EWSR1 in the response to RS remains unclear. Given that the genes involved 

in the DDR whose splicing is regulated in part by EWSR1 are not directly involved in the 

response to RS (Paronetto et al., 2011), it is possible that EWSR1 role in the response to RS 

could be independent of its splicing function. But this poses the intriguing question of what is 

the exact role of EWSR1 in the RS response? 

 In an attempt to gain further insight into this function of EWSR1, we conducted 

proteomic studies to identify EWSR1 interactors. By doing this, we demonstrated that 

EWSR1 strongly interacts with the methyltransferase PRMT1, and importantly that this 

interactions is lost in cells expressing EWS/FLI1 fusion protein. Additionally, we also 

observed that EWSR1 is di-methylated on the Arg506 residue, and that the levels of this 

modification increase in the presence of DNA damage, suggesting functional relevance. In 

this regard, it has been suggested that the methylation of arginine residues on proteins is 

involved in a number of different cellular processes, such as regulation of transcription, RNA 

metabolism and DNA damage repair (Bedford and Richard, 2005) and that PRMT1 is 

arguably the predominant mammalian protein arginine methyltransferase (Tang et al., 2000). 

Hence, it is also tempting to speculate that the patrons of methylation on EWSR1, by PRMT1 

or other methyltransferases proteins (Belyanskaya, 2001; Pahlich et al., 2005; Kim et al., 

2008; Pahlich et al., 2008) could regulate its function in the presence of DNA damage. 

Importantly, this regulation is lost in EWS/FLI1 fusion protein due to the loss of the C-terminal 

region of EWSR1 in this translocation.  
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Regardless of a role in the DDR, our proteomic analyses also demonstrated that 

EWSR1 strongly interacts with proteins involved in RNA metabolism and nucleolar proteins. 

Of note, all EWSR1 translocations in Ewing Sarcomas involve the loss of the C-terminal 

region, which is suggested to mediate RNA binding, and therefore, this indicates that the loss 

of this region would also lead to impaired RNA binding by EWSR1. Interestingly, among the 

all the identified interactors, the five whose silencing confers synthetic lethality in cells 

bearing the EWS/FLI1 fusion protein, are related with nucleolar processes such as mRNA 

export (Huang and Steitz, 2001; Rayala et al., 2004) or ribosomal RNA maturation during 

cell cycle progression (Pan et al., 2015). This finding might have relevant implications, as it 

suggests that targeting RNA metabolism pathways might be particularly detrimental for 

Ewing Sarcoma cells. We must note, however, that EWS/FLI1 overexpression does not 

Figure 23. Possible functions of EWSR1 in the DDR and potential effects of the EWS/FLI1 

translocation. In the context RS, EWSR1 could be activated through post-translational modification 

such as phosphorylation or di-methylation. Upon activation, EWSR1 could promote suppression of 

the RS via its previously described function in transcription and alternative splicing of DDR genes, 

possibly more specifically in the nucleolus. Remarkably, our work also suggests that EWSR1 acts 

operate to limits RS directly through an unknown mechanism. EWS/FLI1 expression could function 

as a dominant negative of EWSR1 protein and therefore, ablate EWSR1 normal functions implying 

an accumulation of DNA damage that could contribute to tumour onset.  
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particularly sensitise cells to inhibition of RNA polymerase I, which is the polymerase in 

charge of in rRNA synthesis (not shown). In any case, and in addition for its cancer 

implications, these data support an important role of EWSR1 in RNA biology, since nucleoli 

are structures essential for rRNA biogenesis and consequently highly enriched in RNA. 

Further studies are required to determine the exact role of EWSR1 in the response to 

replication stress, and to what extent this is linked to its functions in RNA metabolism or 

nucleolar integrity. However, our data supports an important role of EWSR1 for preserving 

genome integrity (reviewed in Kovar, 2011; Paronetto, 2013), and provide the first evidence 

of the potential of ATR inhibitors in the treatment of Ewing Sarcomas.
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1. AMLMLL cells are highly sensitive to ATR inhibitors in vitro as independently of p53, due 

to the generation of high loads of DNA damage. 

2. A treatment with ATR inhibitors as single agent shows remarkable efficacy in an allograft 

mouse model of MLL-translocation driven AML, as well as in xenografts of a human 

AML-MLL cell line. 

3. Targeting the DSB response with ATM inhibitors as single agent also shows efficacy in 

a preclinical allograft model of AMLMLL. 

4. Ewing Sarcomas cells present increased level of RS, as evidenced by an increase of 

γH2AX in replicating cells as well as intrinsically perturbed replication rates. 

5. Expression of EWS/FLI1 or EWS/ERG translocations suffices to generate RS and to 

sensitise human or mouse cells to ATR inhibitors.  

6. ATR inhibitors show efficacy as a single agents in xenografts of Ewing Sarcoma cells, 

along with a high load of treatment-induced DNA damage in tumour cells. 

7. Loss of EWSR1, the gene involved in Ewing Sarcoma initiating translocation, leads to 

RS and sensitivity to ATR inhibition, suggesting that -in addition to the translocation- the 

loss of endogenous EWSR1 can contribute to the response to chemotherapy in Ewing 

Sarcomas. 

8. EWSR1 interacts primarily with proteins involved in nucleolar biology such as NUP155, 

CCT2, SFRS3, MKI67IP or TINP1; and simultaneous expression of EWS/FLI1 with 

either knockdown of these genes leads to synthetic lethality, suggesting an important 

role of EWSR1 in nucleolar biology.
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1. Las células AMLMLL son altamente sensibles a los inhibidores de ATR in vitro de forma 

independiente a p53, debido a la generación de una enorme cantidad de daño en el 

DNA. 

2. El tratamiento con inhibidores de ATR como único agente muestra una remarcada 

eficacia en un modelo de ratón allograft de AML derivada de una translocación en el 

gen MLL, así como en modelos de xenografts de una línea celular AML-MLL humana. 

3. Interferir con el mecanismo de reparación de dobles roturas del DNA usando inhibidores 

de ATM como agente único también muestra eficacia en un modelo allograft de ratón 

preclínico de AMLMLL. 

4. Las células de Sarcoma de Ewing presentan un aumento en los niveles de RS, 

evidenciado por un incremento de γH2AX en las células que están en fase de 

replicación, así como un ratio de replicación intrínseco alterado. 

5. La expresión de las translocaciones EWS/FLI1 o EWS/ERG son suficientes para 

generar RS y sensibilizar a las células, tanto humanas como de ratón, frente a los 

inhibidores de ATR. 

6. Los inhibidores de ATR muestran eficacia como agente único en xenografts de células 

de Sarcoma de Ewing, conjuntamente con una elevada cantidad de daño en el DNA 

inducido por el tratamiento de las células tumorales. 

7. La pérdida de EWSR1, el gen involucrado en la translocación que inicia el Sarcoma de 

Ewing, genera RS y sensibilidad a la inhibición de ATR, sugiriendo que -además de la 

translocación- la pérdida del gen EWSR1 endógeno puede contribuir a la respuesta a 

la quimioterapia en el Sarcoma de Ewing. 

8. EWSR1 interactúa de forma primaria con proteínas involucradas en la biología nucleolar 

como NUP155, CCT2, SFRS3, MKI67IP o TINP1; y la expresión simultánea de 

EWS/FLI1 junto con el silenciamiento de estos genes lleva a una letalidad sintética, 

sugiriendo un papel importante de EWSR1 en la biología nucleolar. 
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