
  DISCUSSION 

 

 

Universidad Autónoma de Madrid 

Departamento de Bioquímica 

 

 

 

 

 

 

 

Microtubule associated protein-4 

(MAP4) balances T cell activation through the 

regulation of positive and negative signals 

 

 

 

Tesis doctoral 

Eugenio Bustos Morán 

Madrid, 2017 



  DISCUSSION 

 

 

Departamento de Bioquímica 

Facultad de Medicina 

Universidad Autónoma de Madrid 

 

 

 

 

Microtubule associated protein-4 (MAP4) balances T cell 

activation through the regulation of positive and negative 

signals 

 

Memoria presentada por el Licenciado en Biología: 

Eugenio Bustos Morán 

Para optar al título de Doctor por la Universidad Autónoma de Madrid 

Director de la Tesis: Francisco Sánchez Madrid, Doctor en Ciencias 

Biológicas y Catedrático de Inmunología de la Universidad Autónoma de 

Madrid. 

Este trabajo se realizó en el Centro Nacional de Investigaciones 

Cardiovasculares (CNIC) y el Servicio de Inmunología del Hospital 

Universitario de la Princesa. 

Madrid, 2017 



  DISCUSSION 

 

 

Francisco Sánchez Madrid, Doctor en Ciencias Biológicas y Catedrático de 

Inmunología de la Universidad Autónoma de Madrid, 

 

CERTIFICA: 

 

Que Eugenio Bustos Morán, licenciado en Biología por la Universidad 

Autónoma de Madrid, ha realizado bajo mi dirección el trabajo de 

investigación correspondiente a su Tesis Doctoral con el título: 

 

Microtubule associated protein-4 (MAP4) balances T cell activation 

through the regulation of positive and negative signals 

 

 

Revisado este trabajo, el que subscribe considera el trabajo realizado 

satisfactorio y autoriza su presentación para ser evaluado por el tribunal 

correspondiente. 

Y para que así conste y a los efectos oportunos, firma el presente 

certificado en Madrid a 26 de Abril 2017. 

 

 

 

Fdo. Prof. Francisco Sánchez Madrid 



  DISCUSSION 

 

 

A mis padres, a mis hermanos y a mi sobrina 

A mis amigos 

A Rocío 

 

 

 

 

 

 

 

 

 

 

 

 

“Sólo tú puedes decidir qué hacer  

con el tiempo que se te ha dado”  



  DISCUSSION 

 

 

Agradecimientos 

 

Siempre he pensado que para que la Ciencia avance adecuadamente, debe 

triunfar la colaboración entre los científicos frente al afán competitivo que a veces se 

promueve desde las revistas. Como siempre dice Paco, la ciencia es impersonal, puesto 

que no es cosa de uno solo ni de unos pocos sino el resultado de la colaboración de 

mucha gente. En ese sentido, mi tesis al igual que el resto de trabajos científicos es el 

resultado de la influencia, la ayuda y el apoyo de mucha gente que me han permitido 

llegar a este punto.  

En primer lugar, me gustaría agradecerle esta tesis al Dr. Sánchez Madrid, o 

como yo le llamo, Paco, no sólo por permitirme realizar mi trabajo doctoral en su 

laboratorio, sino por depositar su confianza en mí, ayudarme a poner punto y final a 

caminos en los que me encontraba bloqueado y “picarme” siempre para que no me 

conformase e intentara siempre romper el “techo” de mi carrera científica. 

En segundo lugar, querría agradecerle este trabajo especialmente a Noelia. Ella 

fue la que me recomendó para el laboratorio, y, aunque tengamos nuestras diferencias 

sobre temas tan importantes como el orden de mi poyata, la alineación de mis figuras o 

la combinación de colores elegida para un esquema, siempre ha estado ahí apoyándome 

en mi trabajo, en los malos momentos de desesperación y colaborando estrechamente 

conmigo. 

Llegado a este punto, no puedo dejar de acordarme de toda la gente de mi 

laboratorio que me ha ayudado: La gente de la Prince como Ángeles Ursa, quién me 

enseñó, entre otros miles de cosas a hacer filtros cónicos con el papel; Hortensia, que 

siempre me ayudaba cuando se lo pedía, independientemente de lo liada que estuviese; 

Lola, que se ha peleado junto a mí con el “técnico” de las centrifugas, y Ali, que me ha 

salvado más de una vez la vida con alguno de sus protocolos o consejos.  También me 

acuerdo, por supuesto, de gente que ya no está, como Aitana y Bea, el equipo de las 

rubias junto con Noelia, que a la vez que intentaban hacerme la vida imposible con sus 

“viperinas” maldades me alegraban los días y me cuidaban; o Eva, salmantina como yo, 

a la que siempre me gustaba asustar durante sus guardias. Incluyo, además en los Pacos 



  DISCUSSION 

 

 

a los “Navarros” partiendo de María, que me ha ayudado infinito con sus sabiduría de 

inmunología y experimentos, y a la gente de su grupo: Cande, Raquel, Ángela y Gloria. 

Tampoco me olvido de la gente del CNIC puesto que, aunque tengamos menos 

contacto día a día, siguen formando parte de mi familia científica. Ana, que me alegra 

cada seminario al intentar retrasar el suyo y dio nombre al “antiviaje”, Irene, que 

siempre está de buen ánimo y te ayuda con una sonrisa a lo que sea y Dani, el “T-rex” 

original con el que siempre he tenido conversaciones científicas muy enriquecedoras. 

También agradecer a Noa por su ayuda con el análisis y la microscopía TIRF, a Marta, 

María Laura, Olga, Vera y Danay, así como los excompis Fran, Carol, Cris, Giulia y 

Mittel. 

Por otro lado y, aunque no formen parte de mi grupo, los frikis jurásicos se han 

ganado un lugar entre mis mejores amigos: Álvaro, el RESIDENTE con mayúsculas 

que siempre me sorprende con su conocimiento desde inmunología hasta la Roma 

antigua o la Segunda Guerra Mundial; Rafa, la persona más noble que yo conozco, co-

guardián del nitrógeno y gran científico; Javi, el señorito andaluz, con el que me río 

mogollón y al que siempre recordaré como “MichelAngelo”; Norman, nuestro 

entrenador Jurásico; David, con sus roles in vivo; y finalmente Santi, nueva adquisición 

estrella de los frikis pero con el que he pasado grandes momentos hasta ahora. 

Aunque desearía incluir a cientos de personas con las que guardo gratos 

recuerdos y anécdotas he de resumirlo en agradecerle este trabajo también al resto de 

gente del Norte, de High-tech, los Urzainquis, los de Ceci y los de Isidoro; tanto 

becarios como jefes que me han ayudado. Sí me gustaría destacar a Dani y a Marina, el 

uno por que me alegra los días con su buen ánimo y la otra porque espero que me siga 

considerando “el fuerte” aun cuando ya no esté. También a los residentes y técnicos del 

Servicio de Inmunología. Y por supuesto, a María Ángeles (la Secre), que, aunque de 

vez en cuando nos encasqueta algún marroncillo, cuida de nosotros como de sus hijos. 

Fuera del círculo científico, creo que la influencia de mis amigos de la 

Universidad (de primera o tercera generación) me ha ayudado a superar la tesis y definir 

mi camino. Por un lado los “chorreros”: Jaume, con mención especial por ser mi 

hermano gemelo y mejor amigo, Vicente, Bea, Cande, Paula, Pablo, Gonzalo, Alba, 

Andrés, Jano y Dani. También a gente que conocí más tarde como Ana o Raquel con las 



  DISCUSSION 

 

 

que he pasado infinitas horas en la sala de estudio. A los posturitas, Benito y mis 

“expatriados” Anabel, Manolo y Faiz. A la gente de mi instituto, especialmente a Silvia, 

con la que he compartido más de media vida. 

Agradecer también a mi familia. A mis padres, porque, aunque me meta con 

ellos llamándolos “letrosos”, los quiero mucho y les estoy increíblemente agradecido 

por darme no sólo la oportunidad de estudiar lo que quería y dedicarme a esto, sino 

también por todos los valores y principios que me han transmitido. A mis hermanos, o 

mis clones según dice la gente, Pablo y María, y a mis hermanos políticos (Ale y Peña). 

Por supuesto, a mi sobrina Claudia, que saca la poca humanidad que en mi queda. A 

todos mis familiares en general tíos, primos y abuelos (que, aunque ausentes, están 

siempre presentes). 

Por último, quiero agradecerle esta tesis a Rocío. Ella ha sido mi persona en este 

periodo, primero como compañera de trabajo, luego como una gran amiga y finalmente 

como mi pareja. Ha sido la fuerza que me faltaba a veces, mi alegría en momentos duros 

y sobretodo una persona que ha estado a mi lado a lo largo de este camino 

acompañándome y apoyándome. Desde lo más hondo de mi corazón, muchas gracias.  



  DISCUSSION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary  



 SUMMARY 

 

 
 

 

Summary 

  

T cell receptor (TCR) recognition of a specific antigen, bound to the major 

histocompatibility complex of an antigen presenting cell (APC), triggers the activation of 

the T lymphocyte and promotes its effector function. T cell activation leads to the 

rearrangement of different proteins involved in the activation into a very specialized and 

polarized structure known as the Immune Synapse (IS). This structure generates the 

segregation of the TCR signalosome within the cSMAC, while excluding adhesion 

molecules, like integrins, to the pSMAC. TCR activation pathway involves a cascade of 

phosphorylation of many molecules. Among them, phospholipase gamma 1 (PLCγ1) is an 

important amplifier of the signal by generating two second messengers, inositol-1,4,5-

triphosphate (IP3) and diacylglycerol (DAG), essential for T cell function. DAG production 

promotes the translocation of the microtubule organizing center (MTOC). MTOC 

polarization is accompanied by the displacement to the contact area of other important 

organelles for T cell activation like mitochondria, multivesicular bodies or Golgi Apparatus. 

In addition, it induces the nucleation of MT growth in the proximity of the contact, 

promoting the polarized secretion of vesicles essential for cytotoxic functions, like lytic 

granules, or for a proper activation of T cells (cytokines or recycling vesicles). 

 

 Microtubule associated protein-4 (MAP4) is a molecule that regulates the stability 

of microtubules and its assembly in different physiological processes such as cell division, 

primary cilia formation or myogenesis. Provided the importance of the MT network in T 

cell activation and IS proper architecture, we hypothesized that MAP4 could be modulating 

T cell activation. We found that MAP4 decorates T cell microtubules and MTOC, 

controlling their assembly and stability upon activation and regulating a timely translocation 

of the MTOC. Moreover, we proved that MAP4 promotes TCR phosphorylation and 

activation, as well as the activation of some downstream molecules. We demonstrated that 

MAP4 controls the movement of recycling CD3ζ-nanovesicles maintaining TCR signal. 

Unexpectedly, we discovered that MAP4 negatively modulates the activity of PLCγ1, DAG 

production and NFAT and NF-κB activity. In fact, MAP4 balances IL2 secretion and CD69 

expression. These results point to a modulatory role of MAP4 acting as a balancer of T cell 

activation and effector function. 
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Resumen 

 El reconocimiento por parte del receptor de células T (TCR) de un antígeno 

específico, unido al complejo mayor de histocompatibilidad de una célula presentadora 

(APC), controla la activación del linfocito T e induce su función efectora. La activación de 

la célula T promueve la reorganización de las diferentes proteínas señalizadoras en una 

estructura polarizada conocida como la Sinapsis Inmune (IS). Esta estructura promueve la 

agregación de la maquinaria de señalización asociada al TCR en el cSMAC, excluyendo a 

moléculas de adhesion, como las integrinas, al pSMAC. La activación del TCR implica la 

fosforilación de muchas moléculas. Entre ellas, la fosfolipasa C gamma 1 (PLCγ1) actúa 

como amplificador al generar dos segundos mensajeros, el inositol-1,4,5-trifosfato (IP3) y 

el diacilglicerol (DAG).  También se produce la translocación del centro organizador de 

microtúbulos (MTOC), acompañado de la polarización de otros orgánulos importantes 

como las mitocondrias, los cuerpos multivesiculares o el aparato de Golgi. Induce, además, 

la nucleación de microtúbulos favoreciendo la secreción polarizada de vesículas con 

funciones citotóxicas (gránulos líticos) o para la activación de las células T (citoquinas o 

vesículas de reciclaje).  

La proteína de asociación a microtúbulos-4 (MAP4) es una proteína que regula la 

estabilidad y ensamblaje de los microtúbulos en diferentes procesos fisiológicos tales como 

división celular, formación del cilio primario o miogénesis. Considerando la importancia 

del citoesqueleto de tubulina en la activación de las células T y en la formación de la IS, 

nuestra hipótesis es que MAP4 podría estar modulando este proceso. Hemos localizado a 

MAP4 en los microtúbulos y MTOC de la célula T, controlando su ensamblaje y estabilidad 

y regulando la translocación del MTOC. Además, hemos demostrado que MAP4 promueve 

la activación y fosforilación del TCR así como de algunas moléculas subyacentes. Hemos 

observado que MAP4 controla el movimiento de las vesículas de reciclaje que contienen 

CD3ζ, ayudando a mantener la señal del TCR. Inesperadamente, hemos descubierto que 

MAP4 regula negativamente la actividad de PLCγ1, la producción de DAG y la actividad 

de NFAT y NF-κB. De hecho, la proteína MAP4 equilibra la secreción de IL2 y la 

expresión de CD69. Estos resultados apuntan a un papel modulador de MAP4, actuando 

como un factor equilibrador en la activación y función efectora de las células T.  
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1. Introduction 

 

Immunity constitutes a highly specialized system that protects the human body 

against pathogens and external threats. It is composed by several subtypes of cells, with 

different functions, as well as by an intricate communication network between them.   

The Immune System is formed mainly by two “branches”: the innate immunity and the 

adaptive immunity (Figure I1). The innate immunity acts as the first barrier of defense 

against external threats. It responds normally recognizing general patterns or molecules 

present in the infectious microorganisms. Moreover, it also acts very fast counteracting 

the pathogens within the earliest times upon infection. Additionally, innate immunity 

activates the adaptive immune response. 

The adaptive immunity, on the contrary, conducts its function at later times of 

the infection. However, it is highly specific, due to the clonal selection and proliferation 

only against particular antigens. Furthermore, it is responsible for the generation of a 

pool of memory cells that protect our body against a reinfection. Adaptive immunity 

axis relies mainly in the lymphocytes. B lymphocytes are responsible for the humoral 

immune response that depends on specific antibody generation. T cells, however, can 

contribute either to the regulation of the humoral immune response or directly to the 

cellular one.  

T lymphocytes are composed by two main subsets: CD8+ and CD4+ T cells. 

CD8+ T cells participate in the cellular cytotoxic response, killing those cells from the 

host that have been infected by intracellular pathogens. Conversely, CD4+ T cells 

functions are more diverse and depend on the specific subset. They constitute an 

important link between the innate and adaptive immunity by enhancing the activation 

and recruitment of other leukocytes and therefore orchestrating the global response. 
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Figure I1. Immune system cell types. Innate immunity responds rapidly upon infection. 

It is formed by monocytes derived cells (dendritic cells and macrophages), mast cells, and 

granulocytes (basophils, eosinophils, neutrophils). Complement proteins are also an 

essential component of this type of immunity. The adaptive response is slower but more 

specific in its response against the pathogen. It is composed by both B lymphocytes and T 

lymphocytes. T lymphocytes are divided in two subsets of cells CD4+ (helper T cells) and 

CD8+ (cytotoxic T cells). Natural killer T cells (NK) and γδ T cells, due to their 

characteristics, form an intermediate group between innate and adaptive immunity cells. 

(Dranoff, 2004). 

 

 

 

  

1.1 The Immune Synapse (IS) 

Naïve T cell activation normally takes place initially in the lymph nodes or 

lymphoid associated organs through the formation of a structure called the immune 

synapse (IS). The IS is a highly specialized structure that is formed at the contact 

between a lymphocyte (either a B cell, a T cell or a NK cell) with the corresponding 

antigen presenting cell (APC). This interaction leads to a rearrangement of the 
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Figure I2. Immune Synapse structure. The IS is formed in the contact area between a T 

cell and an APC. It is constituted by three concentric SMACs. The cSMAC (brown) is 

composed by the TCR and correceptors like CD28. CD4/CD8 and CD2 are normally in 

the external limit of the cSMAC. cSMAC is also the place of aggregation of activation 

enhancers like PKC-θ and, later, of negative regulators like CTLA-4. The pSMAC (green) 

is formed by adhesion molecules like LFA1 and its linkers to the actin cytoskeleton (talin). 

Finally, the dSMAC (grey) is composed by glycosylated molecules like CD43 and CD45. 

CD45 is initially excluded to the dSMAC and later is concentrated in the cSMAC to 

negatively control T cell activation. (Huppa & Davis, 2003) 

activatory molecules in different supramolecular aggregation clusters (SMACs) (Huppa 

& Davis, 2003). Although the triggering of the activation normally takes place in small 

microclusters, formed by the TCR and associated signalosome (Seminario & Bunnell, 

2008), the maturation of this contact favors the congregation of these cell surface 

adhesion and signaling molecules into three described SMACs: central (cSMAC), 

peripheral (pSMAC) and distal (dSMAC) (Huppa & Davis, 2003) (Figure I2). 

  

The cSMAC is mainly constituted by the T cell receptor (TCR) and the 

associated molecules (co-receptors) necessary for T cell activation like CD28, CD2, 

CD4 or CD8. The pSMAC, on the contrary, is formed by adhesion molecules like 

integrins (LFA1, VLA4) and also it constitutes the area where actin polymerization 

occurs (Huppa & Davis, 2003). This polymerization, in addition to myosin IIA function, 
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is necessary for the generation of a centripetal flux that enhances TCR displacement to 

the central region and the formation of the different SMACs (Ilani et al, 2009). The 

dSMAC refers to the region where molecules excluded from the IS are accumulated. 

This exclusion could be size dependent, for example due to the grade of glycosylation 

of the molecule (CD43), and also it is essential for the physical separation of the TCR 

from negative regulators like CD45 and other phosphatases (Huppa & Davis, 2003).  

 Although the precise role of the IS is still under debate, it is currently accepted 

that the IS acts as a mechanism of polarization that sustains TCR signaling more than 

triggering it. In fact, it has been suggested that the cSMAC is also a region for TCR 

degradation (Varma et al, 2006) and, therefore, that the balance between TCR recycling 

and degradation in this area promotes a fine tuned T cell activation. The other main 

function of the IS is to generate a polarized contact that redirects the traffic of cytokines 

and cytolytic granules to the cleft of the synapse. This way T cells polarize the secretion 

exclusively to the conjugated target cell avoiding “off-target” effects and also a dilution 

effect of the lytic molecules (Huse et al, 2008). 

1.2 T cell receptor (TCR) signaling cascade 

TCR triggering depends on the recognition by the variable region of the TCRαβ 

of a specific antigen bound to the major histocompatibility complex (MHC) of an APC. 

When the antigen is recognized and the stable binding established, CD3ε chain, which 

is associated to the TCR as CD3γε or CD3δε, undergoes a conformational change prior 

to any kind of phosphorylation (Gil et al, 2002). This conformational change leads to 

the exposition of a proline enriched region (PRS) that promotes the accumulation of 

Nck (Gil et al, 2002). The Nck recruited, then, associates with the SH2 domain-

containing leukocyte protein of 76 kDa (SLP76) and with Vav controlling, downstream, 

the cascade responsible for actin polymerization (Bustos-Moran et al, 2016). In parallel, 

TCR engagement causes the exposure of CD3ζ immunoreceptor tyorisne-based 

activation motifs, ITAMs, which can be phosphorylated by the Src-family kinases Lck 

or Fyn. This phosphorylation allows the accumulation of proteins containing SH2-

domains like the ζ-chain-associated protein kinase 70 (ZAP70). On the one hand, CD3ζ-

ZAP70 binding favors the aggregation of CD4/CD8 closer to the TCR-MHC complex. 

CD4/CD8 establishes a lateral contact with the MHC (MHC class II in the case of CD4 

or MHC class I for CD8) that stabilizes TCR-MHC contact and also enhances ITAM 
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phosphorylation, due to its intracellular binding to Lck (Gascoigne et al, 2011). On the 

other hand, when ZAP70 binds to the phosphorylated ITAMS, it is able to 

phosphorylate the linker of activated T cells protein (LAT). LAT is an adaptor protein 

that amplifies TCR signaling by promoting the accumulation of different molecules to 

the contact area. It is phosphorylated in several residues (Y191, Y171, Y226 and Y132) 

(Balagopalan et al, 2010). The combination of the different residues leads to the 

recruitment of several molecules. For example, Y191 and Y171 phosphorylation favors 

the stabilization in this area of SLP76 and other associated molecules like Gads, son of 

sevenless (Sos) or Grb1. Additionally, LAT Y132 phosphorylation allows the 

recruitment of phospholipase C gamma-1 (PLCγ1) and its phosphorylation by the 

interleukin-2-inducible T cell kinase (Itk) (Balagopalan et al, 2010). Once 

phosphorylated, PLCγ1 activates and catalyzes the transformation of the membrane 

phosphatidilinositol-4,5-biphosphate (PIP2) into inositol-1,4,5-triphophate (IP3) and 

diacylglycerol (DAG) (Bustos-Moran et al, 2016). On the one hand, the IP3 generated 

binds to specific receptors in the endoplasmic reticulum (ER) and induces the release of 

ER-stored calcium. Then, ER calcium release promotes the interaction of the stromal 

interaction molecule 1 (STIM1) with ORA1 membrane calcium channels and triggers 

calcium global wave. Eventually, calcium intracellular increase promotes the activation 

of the nuclear factor of activated T cells (NFAT), a transcriptional factor essential for 

interleukin-2 (IL2) generation and T cell proliferation (Kummerow et al, 2009). On the 

other hand, DAG activates protein kinases C (PKCs) (serine/threonine kinases). PKCs 

are important proteins both for centrosome polarization and cytoskeleton rearrangement 

(Quann et al, 2011) and to the activation of transcription factors like the nuclear factor-

κB (NF-Κb) complex (Paul & Schaefer, 2013). PKC, in conjunction with DAG, 

activates protein kinase D-2 (PKD2), which acts as another amplifier of TCR cascade 

mediating the secretion of cytokines that promotes T cell function and proliferation like 

IL2 or  interferon γ (IFNγ) (Navarro et al, 2014; Navarro et al, 2012). Additionally, 

DAG promotes the polarization and activation of Ras-GRP, a protein essential in the 

activation of Ras and the triggering of the mitogen-activated protein kinase (MAPK) 

cascade (Navarro & Cantrell, 2014). MAPK cascade results in the phosphorylation of 

the extracellular signal-regulated kinases (ERK1/2). Later ERK1/2 activate several 

transcription factors like ELK-1, SAP-1 and SAP-2, leading to the expression of genes 

such as c-Fos or Jun. Furthermore, ERK1/2 also phosphorylates MNK1 and MNK2, 



LIS  INTRODUCTION 

 

~ 14 ~ 
 

Figure I3. TCR signaling cascade. TCR recognition of the peptide bound to the corresponding 

MHC leads to the exposure of the ITAMs, which are phosphorylated by Lck. ITAMs 

phosphorylation allows the binding of ZAP70 (SH2 domains) which activates LAT. LAT adaptor 

protein amplifies the signal by recruiting PLCγ1, which generates IP3 and DAG as second 

messengers. While IP3 induces calcium wave and NFAT activation, DAG activates both PKCs 

and Ras, inducing PKD2 and MAPK pathways. Finally, Nck interaction with SLP76 and Vav 

promotes the recruitment of actin polymerization factors like Cdc42 or Rac at the pSMAC. 

(Bustos-Moran et al, 2016) 

which participate in the activation of the eukaryotic translation initiation factor eIF4-E 

needed for the anabolism necessary for the effector function and clonal expansion 

(Navarro & Cantrell, 2014) (Figure I3). 
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1.3 Microtubule organizing center (MTOC) polarization 

One of the hallmarks of T cell activation is the rearrangement of the tubulin and 

actin cytoskeleton. Tubulin cytoskeleton reorganization at the IS depends mainly on the 

polarization of the MTOC towards the contact area (Martin-Cofreces et al, 2014). This 

polarization has been proved to be essential as reinforcement for T cell activation and 

sustained signaling (Martin-Cofreces et al, 2008). The reorientation of the MTOC also 

promotes the polarization of other important organelles for T cell proper activation such 

as mitochondria, Golgi apparatus or multivesicular body (MVB) (Martin-Cofreces et al, 

2014). MTOC polarization leads to the polarized secretion of associated vesicles 

allowing a paracrine signaling of the cytokines secreted and a directional transmission 

of exosomes towards the APC. In fact, a proper reorientation of the centrosome is 

essential for the polarized secretion of the lytic granules towards the target cells, 

avoiding the “off-target” consequences of a non-polarized release (Huse et al, 2008; 

Martin-Cofreces et al, 2014). 

The mechanism underlying MTOC polarization has been thoroughly studied in 

the literature. However, some details in the mechanism still remain unclear. One of the 

main factors involved in MTOC reorientation is DAG production (Quann et al, 2009). 

During early TCR activation DAG is produced and accumulated at the contact area with 

the APC. This favors the recruitment of proteins containing DAG-responsive domains 

like PKCs (Quann et al, 2011). Among the family of PKCs, there are three subsets: 

conventional PKCs (cPKCs), which are DAG and calcium dependent, novel PKCs 

(nPKCs), which are only dependent on DAG and, finally, atypical PKCs (aPKCs), 

which depend neither on calcium nor on DAG. Since calcium signaling is not essential 

for MTOC polarization, most of the studies have focused on nPKCs (Quann et al, 

2011). When DAG is accumulated at the IS, three of the PKCs are recruited: PKCε, 

PKCη and PKCθ. PKCε and PKCη are firstly recruited to the IS, due to their higher 

affinity for DAG, and they are responsible for the posterior recruitment of PKCθ. Both 

PKCε and PKCη have overlapping functions since only the double knockout mice 

rendered a defect in MTOC polarization. Once recruited to the IS PKCs have been 

observed to promote the proper localization of dynein and non-muscle myosin IIA, 
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Figure I4. MTOC polarization mechanism. Initially, a migrating T cell has the MTOC 

placed at a structure known as uropod. T cell engagement with the corresponding APC 

enhances the production of DAG. This leads to the recruitment of PKCε and PKCη to the 

contact area. The recruitment of both nPKCs promotes the accumulation of PKCθ at the 

IS. Then, clustered PKCs regulate, by phosphorylation, the proper localization and activity 

of dynein/dynactin complex and myosin IIA, which generate the forces necessary for 

MTOC polarization. Modified from (Bustos-Moran et al, 2016) 

regulating by this way the polarization of the centrosome (Huse et al, 2013; Quann et al, 

2011) (Figure I4). 

 

  

The two principal molecular motors underlying MTOC polarization are dynein 

complex and myosin IIA. Dynein complex is a multimeric complex composed by two 

heavy chains that bind to MTs and contain the motor domain, and two light chains that 

stabilize the complex and allow further interactions. Dynein complex is associated with 

dynactin, a multisubunit complex that enhances its processivity (Kardon & Vale, 2009). 

The docking of the dynein/dynactin complex at the IS is favored by the adhesion and 

degranulation promoting adapter protein (ADAP). This protein clusters at the pSMAC 

in association with the integrin ring (Combs et al, 2006). ADAP is able to bind both to 

dynein complex and to MTs at the same time, generating the tension along the MT 

necessary to attract the MTOC and dock it to the contact area (Combs et al, 2006). 

Although dynein-dependent mechanism has been suggested to not be essential, since 

dyenin depletion or inhibition in mouse cells was not enough to block MTOC 
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polarization (Hashimoto-Tane et al, 2011), other studies detected a complete blockade 

of MTOC polarization when dynein was knocked-down or blocked with p50-dynamitin 

overexpression (Martin-Cofreces et al, 2008).  

The other molecular motor involved in MTOC polarization seems to be myosin 

IIA. Chemical inhibition of this protein reduced modestly MTOC polarization. 

Strikingly, the combination of myosin IIA inhibition and dynein complex depletion 

rendered a much higher effect on MTOC translocation (Liu et al, 2013). Based on this, a 

model has been proposed for MTOC polarization suggesting that dynein complex would 

dock to the pSMAC, due to its interaction with ADAP, and attract the MTOC by pulling 

from the MTs. Meanwhile a pool of myosin IIA, placed at the opposite site, will push 

the centrosome from behind towards the contact area. In parallel, DAG production and 

nPKCs activity would control by phosphorylation the action and localization of both 

molecular motors to promote MTOC proper translocation (Huse et al, 2013). 

Finally, in accordance with the idea that MTOC polarization is a reinforcement 

of TCR signaling instead of one of its triggering signals, it has been proved that either 

ITAM phosphorylation (Lowin-Kropf et al, 1998) or LAT and SLP-76 activation are 

essential for a proper polarization of the MTOC (Kuhne et al, 2003). Accordingly, Lck 

has been seen to be more important to maintain the MTOC docked to the IS area than to 

its complete polarization per se (Tsun et al, 2011), while Fyn, another Src-family 

protein functionally similar to Lck, impairs MTOC polarization when blocked (Martin-

Cofreces et al, 2006). Therefore, TCR proper triggering is necessary, in addition to 

DAG signal, for MTOC timely translocation and docking. 

1.4 Microtubule associated protein-4 (MAP4) structure 

 Microtubule associated proteins (MAPs) are proteins that bind to the MTs 

regulating their stability and growth by several mechanisms: controlling the rate of 

growth/shrinkage, the frequency of rescue events or some MT posttranslational 

modifications (PTMs) (Bowne-Anderson et al, 2015). Microtubule associated protein-4 

is a protein firstly described in HeLa cells as protein bound to the microtubules with a 

Mw of 210 kDa (Bulinski & Borisy, 1980a). Later, it was demonstrated that MAP4 was 

expressed along different kind of cellular tissues, being considered as an ubiquous MAP 

in mammal proliferating and differentiated cells (Bulinski & Borisy, 1980b; Parysek et 
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Figure I5. MAP4 structure and domains. MAP4 structure is formed by a basic region 

delimited by two extreme acidic regions. The N terminal domain is formed by an acidic 

region constituted by the repetition of the KDM motif. The C terminal domain is also 

acidic and well conserved. Finally, the basic region is responsible for the binding to the 

MTs. It is formed by a proline enriched domain (S-P) followed by a variable number of 

repetitions of the tau and MAP2 homolog PGGG domain. MAP4 is bound to the MTs by 

the basic domain, while the N-terminal acidic domain is projected outside. 

al, 1984). MAP4 protein is encoded by one single gene that generates several isoforms 

due to alternative splicing (West et al, 1991).  

The structure of MAP4 contains two acidic regions separated by a long basic 

domain responsible for the binding of MAP4 to the microtubules by electrostatic forces. 

The N-terminal region is composed by an acidic conserved domain consisting of a 

variable number of 14-aminoacid degenerated repeats, with KDM as consensus 

sequence. The function of this domain is not well known, but, according to its structure 

(flexible), it could act as a projection domain. This acidic region is followed by a basic 

domain (a third of the protein) containing both a serine-proline (S-P) rich domain, 

which it is thought to stabilize the binding to the MTs, and also a PGGG MT-binding 

domain, which is conserved along other MAPs like tau or MAP2.  Finally, the C-

terminal region is also well conserved and formed by acidic amino acids (West et al, 

1991) (Figure I5).  
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A study with chimeras of the different MAP4 domains fused to GFP revealed 

that both the S-P rich domain and the PGGG repetition are necessary for a proper 

binding to the MTs. (Olson et al, 1995). Conversely, the N-terminal acidic domain and 

the conserved C-terminal acidic region would modulate the strength of the binding due 

to the negative charges (Iida et al, 2002; Olson et al, 1995).  

In vitro characterization of the functions of MAP4 in MT stability generated, at 

first, some kind of controversy. Two studies, one overexpressing MAP4 (Barlow et al, 

1994) and another one blocking its function by microinjection of anti-MAP4 antibodies 

(Wang et al, 1996) showed non-detectable effect on MT stability or assembly. 

Strikingly, a parallel study of overexpression of either the full length MAP4 or some of 

their domains rendered a change on MT stability (Olson et al, 1995). Accordingly, two 

studies with different approaches (MAP4 overexpression or silencing) agreed that 

MAP4 strongly regulates both MT stability and assembly by favoring the tubulin 

polymer fraction and regulating some posttranslational modifications like tubulin 

detyrosination (Nguyen et al, 1997; Nguyen et al, 1999). 

 

1.5 MAP4 physiological functions 

MAP4 has been studied in many physiological processes related with cell 

polarization and microtubule reorganization. The majority of the studies have been 

conducted in cell division since this system has a high impact on microtubule 

rearrangement for mitotic spindle formation. A first study described the phosphorylation 

of MAP4 in two residues (Ser 696 and Ser 787) during cell division by cyclin B-cdc2 

complex affecting to cell division progression (Ookata et al, 1997). Moreover, mutation 

of these two residues leads to defects in mitotic cycle progression due to a delay in 

G2/M phase (Chang et al, 2001). Accordingly, depletion of Xenopus MAP4 homolog 

(XMAP4) in blastomeres caused disruptions in the assembly of mitotic spindles (Shiina 

& Tsukita, 1999).  Finally, a molecular study unveiled the mechanism underlying these 

defects (Samora et al, 2011). In this work, the authors proved that MAP4 depletion 

generates defects in the M-plaque formation and proper alignment of the chromosomes, 

as well as an improper z-orientation of the spindle pole and morphology. Samora et al., 

demonstrated that MAP4 interaction with molecular motors (like dynein complex), at 
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the cortical microtubules, controls proper mitotic spindle orientation. MAP4 absence 

allowed an enhancement of cortical forces that disrupted   spindle orientation, blocked 

cell cycle progression and explained the defects observed in cell division in other 

systems (Samora et al, 2011). (Figure I6). 

  

In line with this, MAP4 has a role in vesicle movement by affecting to the 

gliding of molecular motors. Analysis of MAP4 overexpression has shown defects in 

the recycling pathway of some molecules as well as in the anterograde transport of 

Golgi Apparatus and lysosomal movement. This reduction in vesicle displacement is 

caused either by a steric impediment for a proper gliding of the motor MAPs along the 

MT or by a competition for the binding sites, but not by changes in MT stability 

Figure I6. MAP4 regulation on cell division.  During mitotic spindle formation astral 

microtubules are first attached to the cortex through the interaction of CLASP1 with 

cortical proteins. Then, force generation (FG) by dynein molecular motors pull the 

microtubules changing from an End-interaction to a Side-interaction. This side-interaction 

causes a limitation of the forces generated since dynein gliding is reduced due to MAP4 

MT decoration. In short, MAP4 presence limits side MT FGs, providing a proper mitotic 

spindle orientation. Modified from (Samora et al, 2011) 
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(Bulinski et al, 1997). Moreover, XMAP4 overexpression in Xenopus melanophores 

rendered a defect in the vesicle transport mediated by dyneins (towards the minus end) 

while favouring the movement of kinesin-dependent granules (towards plus end), by 

interacting with p150Glued and increasing kinesin processivity (Semenova et al, 2014). In 

accordance, it has been shown that MAP4 plays a role in the perinuclear transport of 

butyrophilin-3 (BTN3A1), a factor that mediates type I interferon response by 

activating the complex formed by TANK-binding kinase 1 (TBK1) and interferon 

regulatory factor-3 (IRF3). In response to nucleic acid detection, MAP4 is 

phosphorylated (S696), leading to the disruption of its interaction with the MTs and 

BTN3A1-TBK1 complex. This allows BTN3A1-TBK1 complex to bind to dynein and 

move towards the perniculear region, where it catalyses IRF3 phosphorylation and its 

consequent gene regulation (Seo et al, 2016). 

Additionally, the role of MAP4 during primary cilia formation has been 

demonstrated, proving a competion with septin complex (septin 2, 7 and 9) for MT 

binding and blocking the elongation of the cilia (Ghossoub et al, 2013). Finally, two 

specific muscle MAP4 isoforms (mMAP4 and oMAP4) have been observed to be 

essential for the formation of the myotube and cell muscle differentiation participating 

in the rearrangement of the muscular MTs into a parallel array (Mangan & Olmsted, 

1996; Mogessie et al, 2015). 

Furthermore, due to its regulation over MTs and molecular motors, MAP4 has 

also been studied in some pathologies involving the tubulin cytoskeleton such as HIV 

infection (Gallo & Hope, 2012), cardiac hypertrophy (Cheng et al, 2010; Chinnakkannu 

et al, 2010), acute lung injury inflammation (Li et al, 2015)  and bladder cancer 

metastasis (Ou et al, 2014).  

1.6 MAP4 regulation by posttranslational modifications (PTMs) 

Similarly to other MAPs, MAP4 binding affinity to the MTs is mainly regulated 

by phosphorylation. The addition of a negative charge from the phosphate to the basic 

region reduces the electrostatic forces responsible for the binding to the MT. MAP4 

phosphorylation has been thoroughly studied along the literature. Several 

phosphorylation sites have been detected by mass spectrometry (mainly serines and 

threonines) according to Phosphosite data base (Hornbeck et al, 2015). However, just a 
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few sites have been tested by mutagenesis or complementary approach. S696 and S787 

have been studied in the context of cell division and inflammation (Chang et al, 2001; 

Li et al, 2015; Seo et al, 2016), while feline MAP4 S924 and S1056 (corresponding to 

human S941 and S1073, respectively) phophorylations have proved to be enhanced in 

cardiac hypertrophy (Chinnakkannu et al, 2010). In accordance, the specific kinase 

responsible for MAP4 phosphorylation varies depending on the system. Several kinases 

like MARK2 (Cheng et al, 2010; Ebneth et al, 1999), cyclin B/cdc2 kinase complex 

(Ookata et al, 1997) or protein kinase A (PKA) (Ou et al, 2014) have been observed to 

phosphorylate MAP4 in different context. Therefore, MAP4 phosphorylation seems to 

be highly variable depending on the system studied. Additionally, a recent study has 

suggested a regulation of MAP4 by acetylation. Several residues within MAP4 

sequence have been detected to be acetylated and this has been correlated with a 

reduction in MAP4 affinity for the MTs (Hwang et al, 2016).  
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2. Objectives 

 

MAP4 has been involved in several physiological processes, controlling MT 

stability and cell polarity. We postulate that MAP4 could be modulating T cell MT 

dynamics and therefore affecting to its proper activation.  

In order to challenge our hypothesis, our aims were: 

 

1. Analyze the localization of MAP4 during IS formation and its role in T cell 

microtubule stability and dynamics. 

 

2. Assess the effect of MAP4 reduction on T cell early signaling and T cell effector 

function. 
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3. Materials and methods  

 

3.1 Reagents and antibodies 

Fibronectin (FN), poly-L-lys (PLL), dimethyl sulfoxide (DMSO), nocodazole 

(NCD) and methanol were from Sigma-Aldrich. Staphylococcus aureus enterotoxin E 

(SEE) from Toxin Technologies. Cell tracker CMAC (7-amino-4 

chloromethylcoumarin; 0.1 µM), Fluo-3AM, Prolong Diamond anti-fade mounting 

medium and phalloidin conjugated to Alexa-568 or 647 (1:100) were from Invitrogen. 

GHOST Dye Violet 510 was from TOMBO Biosciences. Dual Luciferase Reporter 

Assay System was from Promega.  Human IL2 (10 µg/ml) from Jackson 

ImmunoResearch. IC Fixation buffer was from eBiosciences. Paraformaldehide (PFA) 

was from Electron Microscopy Sciences. Mojosort Human CD4 T cell isolation kit was 

from Biolegend. 

Antibodies used are indicated in the table below: 

 Primary Antibodies  

Antibody Host species Specificity Manufacturer Application 

Anti-CD3ζ-pY83 Rabbit CD3ζ-pY83 Abcam WB 

Anti-CD3ζ Rabbit CD3ζ Abcam WB 

Anti-MAP4 Rabbit MAP4 Abcam WB and IF 

Anti-LAT-pY132 Rabbit LAT-pY132 Abcam WB 

Anti-LAT-pY191 Rabbit LAT-pY191 Abcam WB 

Anti--Tubulin-

FITC 

Mouse α-tubulin Sigma-Aldrich IF 
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Anti--Tubulin Mouse α-tubulin Sigma-Aldrich WB and IF 

Anti-β-Actin Mouse β-Actin Sigma-Aldrich WB 

Anti-PKCθ Rabbit PKCθ BD-Pharmigen WB 

Anti-CD4 V450 Mouse CD4 BD-Pharmigen FACS 

Anti-CD3ε V500 Mouse CD3ε BD-Pharmigen FACS 

Anti-Vβ8-FITC Mouse TCR (Vβ8) BD-Pharmigen FACS 

Anti-human CD28 Mouse CD28 BD-Pharmigen Activation 

Anti-ERK1/2-

pT202/Y204 

Rabbit ERK1/2-

pT202/Y204 

Calbiochem WB 

Anti-p65 Rabbit p65 Santa Cruz WB 

Anti-PKCθ Goat PKCθ Santa Cruz IF 

anti-PKCθ-pT538 Rabbit PKCθ-pT538 Cell Signalling WB 

anti-PLCγ1 Rabbit PLCγ1 Cell Signalling WB and IF 

anti-PLCγ1-

pY783 

Rabbit PLCγ1-

pY783 

Cell Signalling WB 

anti-ERK1/2 Mouse ERK1/2  Cell Signalling WB 

anti-SMC1 Mouse SMC1 Cell Signalling WB 

Anti-human CD3ε 

(HIT3α) 

Mouse CD3ε Biolegend Activation 

Anti-GAPDH Mouse GAPDH Biolegend WB 

Anti-CD19-Percp-

Cy5.5 

Mouse CD19 Immunotools FACS 
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Anti-CD69-FITC Mouse CD69 Immunotools FACS 

Anti-

detyrosinated 

tubulin  (Glu) 

Rabbit Detyrosinated 

(Glu) α-

tubulin 

Dr. M.A. 

Alonso 

WB 

  

Secondary Antibodies 

Antibody Host 

species 

Specificity Manufacturer Application 

GAM-488/568/647 Goat Mouse IgG Invitrogen IF 

GAR-488/568/647 Goat Rabbit IgG Invitrogen IF 

DAG-488/568/647 Donkey Goat IgG Invitrogen IF 

GAM-HRP Goat Mouse IgG Pierce WB 

GAR-HRP Goat Rabbit IgG Pierce WB 

GAM Goat Mouse IgG Jackson 

Laboratories 

Activation 

 

3.2 Cells 

The human Jurkat-derived T cell line E6.1 (Vβ8+ TCR) and the lymphoblastoid 

B cell line Raji were from ATCC. Human cell lines were tested for mycoplasm 

contamination routinely and authenticated through specific surface markers. Cell lines 

were cultured in “complete medium” consisting of RPMI 1640 + GlutaMAX-I + 25 mM 

Hepes (Gibco-Invitrogen) supplemented with 10 % fetal bovine serum (FBS) (Hyclone, 

Thermofisher).  



LIS  MATERIALS AND METHODS 

 

~ 32 ~ 
 

Human peripheral blood mononuclear cells (PBMCs) were isolated from buffy 

coats obtained from healthy donors by separation on a Biocoll gradient (Biochrom) 

according to standard procedures. Monocytes were first separated from PBMCs by a 30 

min adherence step in RPMI supplemented with 10% (FBS) at 37ºC. Non –adherent 

cells were obtained afterwards, and CD4+ cells were isolated with the Mojosort Human 

CD4 T cell isolation kit from Biolegend following manufacturer instructions. CD4+ T 

cells were checked after isolation by FACs to ensure a purity higher than 90%. To 

generate T cell lymphoblasts, cells were activated for 48 hours with anti-CD3ε and anti-

CD28 (10 µg/ml and 8 µg/ml, respectively) coated plates. Then, cells were washed from 

the stimulus and grown in the same medium as cell lines but supplemented with human 

IL2 (50 U/ml). Lymphoblasts generated were used at day 7-8 post-activation. All these 

studies were performed according to the principles of the Declaration of Helsinki and 

approved by the local Ethics Committee for Basic Research at the Hospital La Princesa 

(Madrid); informed consent was obtained from all human volunteers.  

 

3.3 Plasmids, siRNAs and transfection 

Mouse GFP-MAP4 plasmid was a kind gift from Dr. Miguel Vicente (Olson et 

al, 1995); PKCθ-C1 domain fused to GFP or mCherry was provided by Dr. Isabel 

Mérida (Carrasco & Merida, 2004; Gharbi et al, 2011); NFAT (9x)-Luciferase  was a 

gift from Dr. Juan Miguel Redondo (Wilkins & Molkentin, 2004)  and NF-κB (5x)-

Luciferase construction was kindly provided by Dr. Maria José Calzada. pRenilla-CMV 

plasmid was from Promega. CD3ζ-Cherry, C-term-AKAP450-GFP, HDAC6-GFP and 

tubulin-mCherry were described previously (Martin-Cofreces et al, 2012; Robles-

Valero et al, 2010; Serrador et al, 2004; Vinopal et al, 2012). 

T cells were transfected with a pool of two specific double-stranded siRNAs 

against human MAP4. (UAGGAGAGGAGAACCAGAU and CCAGAUUCU 

AUCCUCAUCU) or a scramble negative control (CGUACGGGAAUACUUCGA). 

Both were used at a final concentration of 3,5 μM. 

For transfection, T cell lines were centrifuged 5 min at 1200 rpm and washed 

with HBSS (Hank´s balance salt solution; Lonza) and resuspended in Opti-Mem I 

(GIBCO-Invitrogen) in a cell concentration of 15x106 cells per 400 µl. Plasmid was 
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added, at a concentration of 1.5 µg per 106 cells, and electroporation was performed 

with a gene-pulser III system from BioRad (240 mV, 975 mΩ). After transfection, cells 

were cultured in the medium described for cell lines. Experiments were performed 24 h 

post-transfection for DNA transfection and 72 h post-transfection for siRNA 

transfection. 

 

3.4 T cell activation  

For Jurkat T cell line antigen stimulation, Raji B cells were pulsed with 0.5 

µg/ml of SEE for 30 min at 37ºC. Then, SEE was washed and Raji cells were mixed 

with Jurkat T cells (ratio 1:5). Cells were pulsed at low speed to favor the formation of 

conjugates and allowed them to activate at 37ºC for the indicated times. 

For human T cell lymphoblast stimulation, cells were incubated either with anti-

CD3ε and anti-CD28 (5 µg/ml and 3 µg/ml, respectively) coated plates at 37ºC or with 

the soluble antibodies crosslinked with a secondary antibody for the indicated times. In 

this late scenario, cells were pre-cooled at 4ºC for 20 min and, then, antibody mix was 

added and let to bind for 20 min at 4ºC. Later, cells were washed twice with cold HBSS 

and the hamster anti-mouse secondary antibody was added for 15 min at 4ºC. Finally, 

cells were warmed at 37ºC and activated for the indicated times. 

3.5 Cell lysis, fractioning and immunoblotting 

Cells were normally lysed for 20 min at 4ºC in 50 mM Tris-HCl pH 7.5 with 1% 

NP40, 0.2% Triton X-100, 150 mM NaCl, 2 mM EDTA, 1.5 mM MgCl2, and 

phosphatase and protease inhibitors. Lysates were spun at 21000 x g for 10 min at 4ºC 

to remove debris and nuclei.  Supernatant was mixed with Laemli solution and β-

mercaptoethanol (final concentration 0.15 M) and boiled for 10 min at 100ºC. 

For nuclear/cytoplasmic fractioning cells were lysed at 4ºC in 10 mM Tris-HCl 

pH 7.5 wih NaCl 10 mM, MgCl2 3 mM, EGTA 0.1 mM and NP40 0.05%. Then, cells 

were spun at 650 x g for 15 min at 4ºC and supernatant was recovered as the 

cytoplasmic fraction and mix with Laemli solution and β-mercaptoethanol. Cell pellet 
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(nuclear fraction) was washed once with lysis buffer without NP40 and resuspended in 

Laemli solution and β-mercaptoethanol. Both fractions were boiled at 100ºC for 10 min. 

For immunoblotting cells were resolved by SDS-PAGE and transferred to a 

nitrocellulose membrane. After blocking with TBS (Tris-buffered saline) containing 

0.2% TWEEN and 5 % BSA, membranes were blocked with primary antibodies (O/N at 

4 ºC) and peroxidase-labeled secondary antibodies (30 min RT) and detected with the 

ImageQuant LAS-4000 chemiluminiscence and fluorescence imaging system (Fujifilm). 

3.6 Cell conjugate formation, immunofluorescence and IS analysis 

Raji B cells were washed once with HBSS and loaded with the CMAC cell 

tracker (10 μM) and with SEE for 30 at 37 ºC. T cells (1.5 × 105 cells) were mixed with 

the APC (1:1) and plated onto Poly-L-Lys-coated slides (50 μg/ml; 1h at 37ºC). Cells 

were allowed to conjugate and settle for the indicated times at 37 °C, and then fixed. In 

the case of MAP4 staining, cells were fixed in 100% methanol 5 min at 4ºC, washed 

and followed by PFA 4% 10 min at RT. In the rest of stainings, cells were fixed with 

2% paraformaldehyde and 0.12mM sucrose in PHEM (60 mM PIPES, 25 mMHepes, 5 

mM EGTA, 2 mM MgCl2), and permeabilized for 5 min at room temperature with 0.2% 

Triton X-100 in immunofluorescence solution (PHEM containing 3% BSA, 100 μg/ml 

γ-globulin and 0.2% azide). Cells were blocked for 30 min with immunofluorescence 

solution and stained with the indicated primary antibodies, followed by Alexa Fluor 

488, 568 or 647-labeled secondary antibodies, alexa-conjugated phalloidin (5 μg/ml) or 

FITC-conjugated anti--tubulin (0.1 µg/ml). Cells were mounted on Prolong Diamond 

and analyzed with a Leica SP5 confocal microscope (Leica) fitted with a HCX PL APO 

40x or 63x oil objective.  

Images were processed and assembled using Image J software 

(http://rsbweb.nih.gov/ij/) and Photoshop software. For quantification in individual ISs, 

we used a home-made plugin for Image J software (http://rsbweb.nih.gov/ij/) called 

‘Synapse Measures'. By comparing fluorescence signals from multiple regions of the T 

cell, APC, IS, and background fluorescence, the program yields accurate measurements 

of localized immunofluorescence. A detailed description of Synapse Measures, 

including the algorithms used, is described (Calabia-Linares et al, 2011). 

http://rsbweb.nih.gov/ij/
http://rsbweb.nih.gov/ij/
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3.7 Nocodazole treatment 

Jurkat T cells were treated with the vehicle (DMSO) or nocodazole (8 µM) for 

1h, and then washed twice with HBSS at RT. Finally, cells were plated in complete 

medium and let to recover at 37ºC for 1.5 h. The last 30 min of recovery, cells were 

settled in Poly-L-Lys-coated slides and then fixed as described. 

 

3.8 Time-lapse confocal and total internal reflection fluorescence (TIRF) video 

microscopy 

For time-lapse confocal video microscopy Raji B cells were used as APCs 

(5x105). Once SEE-pulsed or unpulsed, they were allowed to adhere to fibronectin-

coated coverslips in Attofluor open chambers (Molecular Probes-Invitrogen) at 37 ºC in 

a 5% CO2 atmosphere. The cells were maintained in 1 ml HBSS (1% fetal bovine 

serum, 25 mM HEPES). T cells were added (1:1 ratio) and a series of fluorescence and 

differential interference contrast frames were captured using a TCS SP5 confocal laser 

scanning unit attached to an inverted epifluorescence microscope (DMI6000) fitted with 

an HCX PL APO 63x/1.40-0.6 oil objective. Images were acquired and processed with 

the accompanying confocal software (LCS; Leica) and Image J software 

(http://rsbweb.nih.gov/ij/).  

For TIRF microscopy (TIRFm), T cells transfected with CD3ξ-mCherry were 

allowed to settle onto glass bottom dishes (No 1.5 Mattek; Ashland, MA, US) coated 

with anti-CD3 (10 µg/ml) and anti-CD28 (8 µg/ml). Recording was initiated 5 min after 

cells were plated, and cells were visualized with a Leica AM TIRF MC M system 

mounted on a Leica DMI 6000B microscope coupled to an Andor-DU8285_VP-4094 

camera fitted with a HCX PL APO 100.0x1.46 OIL objective. Images were processed 

with the accompanying confocal software (LCS; Leica). The laser penetrance used was 

200 nm for laser of 561 nm, using the same objective angle. Time-lapse settings were 

optimized for each type of experiment and are specified throughout the text. 

Synchronization was performed with the accompanying Leica software, and images 

were processed with Imaris, matlab and Image J software (http://rsbweb.nih.gov/ij/). 

http://rsbweb.nih.gov/ij/
http://rsbweb.nih.gov/ij/


LIS  MATERIALS AND METHODS 

 

~ 36 ~ 
 

3.9 Quantitative real-time PCR (qPCR)  

RT-PCR was performed with 1 µg of RNA isolated with Trizol RNA reagent 

(Invitrogen) from Jurkat T cells. mRNA levels of IL2 and CD69 genes were measured 

by triplicate using the Power SYBR Green PCR master mix from Applied Biosystems. 

Expression levels were normalized to the expression of glyceraldehydes-3-phosphate 

dehydrogenase (GAPDH) or Actb (actin) as indicated.  

Primer sequences are listed below: 

 

3.10 ELISA and flow cytometry (FACs) 

 Jurkat T cells were co-cultured with SEE-pulsed Raji B cells (1:1) for 24 h. For 

primary T cell lymphoblasts, cells were stimulated with anti-CD3 and anti-CD28 coated 

plates. Cells and supernatant were recovered after 24 h (Jurkat) or 16 h (primary T 

cells). Cells were used for CD69 flow cytometry analysis and supernatant was used for 

IL2 detection by ELISA (DyaClone) following manufacturer´s instructions.  

For FACs analysis, cells were first blocked at 4ºC for 20 min in blocking 

solution [1% BSA, 1% FBS, 100 μg/ml γ-globulin and 0.02% sodium azide in 

phosphate saline buffer (PBS)].  Then, cells were stained with the corresponding 

primary conjugated antibody 30 min at 4ºC, washed twice with cold PBS and fixed in 

Primer sequence 

Gene Forward primer 5´-3´ Reverse primer 3´-5 

IL2 AAGTTTTACATGCCCAAGAA

GG 

AAGTGAAAGTTTTTGCTTTGA

GCTA 

CD69 CAAGTTCCTGTCCTGTGTGC GAGAATGTGTATTGGCCTGGA 

GAPDH AGCCACATCGCTCAGACAC GCCCAATACGACCAAATCC 

Actb CCAACCCGCGAGAAGATGA CCAGAGGCGTCAAGGGATAG 
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IC Fixation Buffer (eBioescience) for 20 min at 4ºC. FACs analysis was conducted in a 

FACs Canto II cytometer (BD). 

 

3.11 TCR internalization and recycling measurement 

 For TCR internalization measurement, Jurkat T cells were stimulated with anti-

CD3ε (clone HIT3α) and CD28 antibodies-coated plates for the indicated times. Cells 

were then fixed as described, stained for CD3ε (clone UCHT1) and analyzed in the 

cytometer. 

 For recycling experiments, Jurkat T cells were stimulated with anti-CD3ε (clone 

HIT3α) and CD28 antibodies-coated plates for 60 min. Then, cells were washed twice 

in cold HBSS to remove the stimulus and plated in complete medium to allow the 

recycling. At the indicated times, cells were fixed and stained for CD3ε (clone UCHT1) 

and TCR (Vβ8) and analyzed in the cytometer. 

3.12 Luciferase assay 

 Jurkat T cells were transfected with NFAT-Luciferase or NF-κB-Luciferase 

construction plus pRenilla-CMV plasmid (2 µg + 0.04 µg per 106 cells, respectively). 

After 24h, cells were activated with SEE-pulsed Raji B cells for another 24h. Then, 

cells were washed twice with HBSS and lysed with the lysis buffer from the 

commercial kit (Dual Luciferase Assay Reporter). Luciferase measurement was 

conducted following the kit provider´s instructions and using a Fluostar Omega 

luminometer (BMG Labtech). Measurements were normalized to Renilla levels and 

protein quantity (measured by BCA assay). 

3.13 Calcium measurement 

Cells were washed twice with HBSS, resuspended in calcium buffer (10 mM 

Hepes, 1% FBS, 1 mM CaCl2, 1 mM MgCl2 in HBSS) and stained with Fluo-3AM (5 

µM) 30 min at 37ºC. Then, cells were washed once with HBSS and resuspended again 

in calcium medium for their measurement at FACs. Cell basal fluorescence was 

recorded for 1 min and then commercial crosslinked anti-CD3 + anti-CD28 (StemCell) 

was used to stimulate the cells (following manufacturer’s instructions). Calcium wave 
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was measured for 5 min and then ionomycin was added and recorded for 1 min as a 

positive control. Calcium measures were analyzed by FlowJo analyzing the 

fluorescence at the peak of the calcium wave or at the plateau and normalizing to the 

initial basal level of fluorescence. 

 

3.14 Statistical analysis 

First, data was analyzed with a ROUT test (Q = 1.00 %) to detect outliers. Then 

a Shapiro-Wilk normality test was applied to determine the application of parametric or 

non-parametric tests. Accordingly, a Student-t test (parametric) or U-Mann Whitney 

(non-parametric) analysis was used for pairs of non-dependent data. Krukal-Wallis test 

was used for non parametric grouped analysis. Finally, when samples compared were 

dependent samples a paired analysis was used; either paired t-test (parametric) or 

Wilcoxon test (non-parametric). All statistic analysis was performed with GaphPad 

Prism software. 
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Figure 1. MAP4 decorates T cell MTOC and MTs.  Maximal Z projection of a confocal 

stack of conjugates of Jurkat T cells with unpulsed or SEE-pulsed (two representatives 

images) Raji B cells (APCs; 30 min). Cells were fixed and stained for α-tubulin (green) 

and MAP4 (magenta). Bright field image with CMAC in cyan (APCs) is also shown. 

Scale bar of 10 µm. 

 

4. Results 

 

4.1 MAP4 localization at the IS 

To assess MAP4 localization in CD4+ T cells upon IS formation, MAP4 was 

immunostained in Jurkat T cells conjugated for 30 min with SEE-pulsed Raji B cells 

(SEE-APCs) (Figure R1).  When compared to α-tubulin staining, MAP4 distributed 

with a similar pattern, decorating both the MTOC and also the MTs in T cells. 

Surprisingly, non apparent changes were detected in MAP4 localization between 

activated vs non-activated T cells.  
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Figure R2. MAP4-GFP accompanies MTOC during its translocation. Time-lapse Z-

stack maximal projection of Jurkat T cells transfected with GFP-MAP4 (green) plus 

Tubulin-Cherry (magenta) and activated with SEE-pulsed Raji B cells. Images were taken 

each 43 s. Bright field is also shown (* APC cell). Scale bar 10 µm.  

 

 

Next, to analyze the dynamic localization of MAP4 upon T cell-APC contact 

formation, Jurkat T cells co-transfected with rodent MAP4 coupled to GFP and α-

tubulin-mCherry were conjugated with SEE-APCs. Time-lapse confocal microscopy 

revealed a similar behavior for both proteins (Figure R2 and Movie S1). The results 

highlighted MTOC decoration of MAP4. In fact, MAP4 seems to accompany the 

centrosome along its translocation towards the contact area.  

 

 

These results prove that MAP4 is expressed in T cells and decorates T cell 

MTOC and microtubules during its activation. 
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4.2 MAP4 role on T cell MT dynamics and MTOC translocation 

Since MAP4 seems to be mainly accumulated at T cell MTOC, we hypothesized 

that MAP4 could be important for the assembly of new MTs during IS formation. To 

address this, we first measured the ability of MTs to reassemble in control cells or cells 

depleted of MAP4 using specific siRNAs (MAP4 KD) (Figure R3A). First, T cells 

were treated with nocodazole (8 µM) or vehicle (DMSO) for 1 h to fully depolymerize 

MTs. Then, cells were washed twice and its MT re-assembly capacity was analyzed 

after 1.5 h of recovery. While most control cells proved to be able to completely recover 

their MT array, the majority of MAP4 KD cells displayed their tubulin fully 

depolymerized, showing a  ring-shaped concentration around the nucleus (Figure R3B 

and C), indicating that MAP4 is required for the assembly of new MTs.  

 

Figure R3. MAP4 KD T cells show a defect in MT assembly. (A) Immunoblot of 

MAP4 expression in scramble-transfected (control) and MAP4-silenced Jurkat T cells 

(MAP4 KD). Actin is shown as a loading control. (B)  Maximal Z projection of confocal 

stacks showing the recovery of MTs in MAP4 KD cells treated with vehicle (DMSO) or 

Nocodazole (8µM), washed and recovered for 1.5 h. Cells were fixed and stained for α-

tubulin (green). The inset shows magnification of one cell. Scale bar of 10 µm. (C) 

Quantification of cells with recovered MTs from experiments as in (B) (at least 340 cells 

were counted from two different experiments). Graph represents Mean ± s.d. 
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Additionally, to study the role of MAP4 in MT stability in a more physiological 

context, we analyzed whether MAP4 participates in MT stabilization in response to 

TCR signals. α-tubulin de-tyrosination (Glu) was measured as a marker of MT stability 

upon TCR activation (Andres-Delgado et al, 2012). Interestingly, the increase of de-

tyrosinated tubulin detected in control cells upon TCR triggering was prevented in 

MAP4 KD cells activated with SEE-pulsed APCs. (Figure R4A and B).  

 

As a control, the percentage of conjugates formed by MAP4 KD cells was 

analyzed. Control and MAP4 KD Jurkat T cells were conjugated with SEE-pulsed Raji 

B cells for 30 min and the ratio between T cells conjugated over the whole number of T 

cells was measured. As shown in Figure R5 no changes in the overall efficiency of 

conjugate formation were detected.  

Figure R4. MAP4 controls T cell microtubule stability upon TCR activation. (A) 

Inmunoblot of de-tyrosinated tubulin (Glu) in control or MAP4 KD cells. Cells were 

activated with SEE-APCs for the indicated times. α-tubulin and Smc1 were used as 

loading controls. (B) Quantification of detyrosinated tubulin as in (A) (paired t-test; *,P-

value < 0.05; n=4). Graph represents Mean ± s.d. 

Figure R5. MAP4 deficiency does not affect 

to conjugate formation. Quantification of the 

percentage of control or MAP4 KD T cells 

conjugated with SEE-APCs for 30 min. T cells 

conjugated were counted and the number 

normalized to the whole number of T cells 

[1138 and 1146 cells, from three different 

experiments, Wilcoxon test, non-significant 

(ns)]. Graph represents Mean ± s.d. 
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 MTOC reorientation is a hallmark of T cell activation during the formation of 

the IS that highly depends on MT dynamics (Martin-Cofreces et al, 2014). 

Consequently, we next analyzed the distance of the MTOC to the IS at different time 

points of conjugation in control and in MAP4 KD Jurkat T cells. A significant increase 

in the separation of the MTOC to the contact area was observed in MAP4 KD cells 

compared to control cells, especially shortly upon activation (Figure R6A and B). This 

defect in MTOC polarization seems to be more a delay than a total impairment since the 

differences between control and MAP4 KD cells disappeared at longer time points 

(Figure R6B).  

 

Figure R6. MAP4 controls a timely translocation of MTOC. (A) Maximal Z projection 

of confocal stacks showing MTOC translocation in control and MAP4 KD cells 

conjugated with unpulsed or SEE-APCs (30 min). Cells were fixed and immunostaining of 

α-tubulin (green) and β-actin (magenta) was performed. Bright field images including 

CMAC-labeled APCs (cyan) are shown. Scale bar of 10 µm. (B) Quantification of the 

distance of MTOC to the contact area (µm) as in the (A) for the indicated times [Mann-

Whitney test; ****; P-value < 0.0001; Control n=216 (15 min), 196 (30 min), 95 (60 min); 

and MAP4 KD n=231 (15 min), 251 (30 min), 105 (60 min) from three different 

experiments]. Graph represents Mean ± s.d. 



LIS  RESULTS 

 

~ 46 ~ 
 

In order to exclude side effects of siRNA approach and to support the specific 

role of MAP4 in this process, MAP4 KD cells were reconstituted with the rodent GFP-

MAP4 construction (not affected by the pool of siRNAs used); rescuing a proper 

MTOC translocation (Figure R7). 

 

 

Together, these results indicate that MAP4 is an important mediator of MT 

assembly, most probably by controlling MT stability, in response to signals emanating 

from the IS.  Consequently, MAP4 controls the timely translocation of the MTOC to the 

IS.  

 

 

Figure R7. GFP-MAP4 rescues the defect in MTOC polarization of MAP4 KD cells. 

Quantification of the distance of MTOC to the contact area (µm) in control or MAP4 KD 

cells transfected with GFP versus MAP4 KD cells reconstituted with GFP-MAP4. 

[Kruskal-Wallis test;****; P-value < 0.0001; n= 201 (control), 216 (MAP4 KD), 165 

(MAP4 KD + GFP-MAP4), from two independent experiments)]. Graph represents Mean 

± s.d. 
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4.3 MAP4 effect on TCR early signaling pathway 

In order to ascertain whether the defects observed in the tubulin cytoskeleton 

due to MAP4 decrease can lead to a change in the signaling at the T cell receptor level 

(TCR signalosomes), we studied the pattern of phosphorylation of TCR-downstream 

molecules such as CD3ζ, LAT, PKCθ and ERK, in control and MAP4 KD Jurkat T cells 

activated with SEE-pulsed Raji B cells (Figure R8). Immunoblot of these molecules 

and its quantitative analysis revealed a significant decrease in CD3ζ, LAT-Y191 and 

ERK 1/2 phosphorylation (Figure R8A and B).  

Figure R8. MAP4 sustains early T cell signaling. (A) Immunoblots showing 

phosphorylation of CD3ζ, ERK 1/2 and LAT Y191 in control or MAP4 KD Jurkat T cells 

activated with SEE-pulsed Raji B cells (SEE-APCs) for the indicated times. α-tubulin and 

GAPDH are shown as loading controls. (B) Quantification of CD3ζ, ERK2, LAT-Y191 

phosphorylation as in (A) (n=6, 7, 6, respectively; paired t-test; *, P-value<0.05). Graphs 

represent Mean ± s.d. 
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Surprisingly, other phosphorylation residues triggered upon TCR activation like 

another LAT phosphorylation site (Y132) or T538 activatory phosphorylation of PKCθ 

rendered no apparent changes in activated MAP4 KD cells, as shown by the 

immunoblots and their corresponding quantification (Figure R9A and B).  

 

Additionally, to confirm the phosphorylation defects observed in MAP4 KD 

cells with another kind of stimulus, control or MAP4 KD T cells were activated for the 

indicated times with crosslinked anti-CD3 + anti-CD28 human monoclonal antibodies 

and CD3ζ Y83 phosphorylation was analyzed. This polarizing system generated similar 

results, showing also a reduction of CD3ζ phosphorylation in MAP4 KD cells (Figure 

R10A and B). 

 

 

Figure R9. LAT-Y132 or PKCθ phosphorylation is not affected by MAP4 reduction.  

(A) Immunoblots showing phosphorylation of LAT (Y132) and PKCθ (T538) in control 

or MAP4 KD Jurkat T cells activated with SEE-pulsed Raji B cells (SEE-APCs) for the 

indicated times. α-tubulin is shown as a loading control. (B) Quantification of LAT -Y132 

and PKCθ phosphorylation as in (A) (n= 4 and 5; paired-t test; ns) Graphs represent Mean 

± s.d. 
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Figure R10. MAP4 also controls CD3ζ phosphorylation upon monoclonal antibody 

stimulation. (A) Immunoblot of CD3ζ phosphorylation in control or MAP4 KD cells 

activated with crosslinked anti-CD3 + anti-CD28 antibodies for the indicated times. β-

Actin is shown as a loading control. (B) Quantification of CD3ζ phosphorylation as in (A) 

(n=6, paired t-test, *, p-value < 0.05). Graph represents Mean ± s.d. 

Figure R11.  MAP4 KD has similar TCR/CD3 surface basal levels. Quantification by 

FACs of the surface basal levels of TCR (Vβ8) (A) and CD3ε (B) in control and MAP4 

KD Jurkat T cells (n=3; Mann-Whitney test; ns). Graphs represent Mean ± s.d. 

 

 

 

As a control to rule out a possible effect of MAP4 knocking-down on the basal 

TCR/CD3 levels of the T cells transfected, TCR (Vβ8) and CD3ε surface levels were 

analyzed by flow cytometry (Figure R11). No significant differences were detected on 

the surface levels of both molecules between control and MAP4 KD cells. 
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In short, MAP4 seems to act as a positive modulator of TCR signalosome by 

affecting to the pattern of phosphorylation of TCR-associated proteins, acting at 

different levels of the cascade. 

 

 

4.4 MAP4 regulation over CD3ζ-bearing nanovesicle dynamics and TCR/CD3ζ 

membrane exchange 

 

In order to assess the mechanism underlying MAP4 regulation on TCR 

signalosome, the dynamics of CD3ζ-bearing nanovesicles was analyzed. CD3ζ actively 

traffics through the endosomal compartments towards the IS (Yudushkin & Vale, 2010). 

This vesicle traffic is highly dependent on microtubule and sustains T cell activation at 

the IS (Martin-Cofreces et al, 2012; Soares et al, 2013). To analyze their dynamics, total 

internal reflection fluorescence microscopy (TIRFm) was used, since CD3ζ-bearing 

vesicles move within TIRFm range, and use the MTs as “trails” to displace. To this end, 

control and MAP4 KD Jurkat T cells transfected with CD3ζ-Cherry were settled and 

activated in a stimulatory surface coated with anti-CD3 + anti-CD28 antibodies. Images 

were taken every 100 ms with a laser penetrance of 200 nm and the trajectories of the 

vesicles were tracked (Figure R12A, and Movie S2 and S3). The quantitative analysis 

of the vesicle tracks through IMARIS software showed a significant defect in the 

movement and displacement of the vesicles (Figure R12A and B).  
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Figure R12. MAP4 blockades CD3ζ-bearing nanovesicle movement. (A) Map of 

trajectories of CD3ζ-mCherry-bearing vesicles in control and MAP4 KD cells spreading 

over anti-CD3/CD28-coated glass-bottom chambers. Images were taken every 100 ms 

under TIRF microscope with a 561 nm laser penetrance of 200 nm. Vesicles were tracked 

with Imaris software for 65 s and a maximal projection of the tracks is shown. A maximal 

projection of the fluorescent vesicles for time-lapse (Δt = 65 s) and an initial bright field 

image (t=0) are also shown. (B) Quantification of the displacement length (µm) as in (A) 

(n=16 and 17 from three independent experiments; Student t-test; **, P<0.01). Graph 

represents Mean ± s.d. 

 

Since TCR sustained signal is also highly dependent on its cycle of degradation 

and recycling (Monjas et al, 2004), we decided to analyze the membrane exchange of 

CD3 and TCR molecules by analyzing its internalization and recycling rate. On the one 

hand, for internalization assay, control and MAP4 KD T cells were activated with anti-

CD3 + anti-CD28 coated surfaces for the indicated times. Then, cells were fixed and 
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Figure R13. CD3ε internalization 

remains unaffected in MAP4 KD. 

Quantification by FACs of the rate of 

internalization by CD3ε surface levels 

in control and MAP4 KD Jurkat T 

cells activated with anti-CD3 + anti 

CD28 coated plates for the indicated 

times. [n=5; Wilcoxon test, non-

significant (ns)]. Graph represents 

Mean ± s.d. 

 Figure R14. MAP4 does not affect to TCR/CD3 general recycling. Quantification by 

FACs of TCR (Vβ8) (A) and CD3ε (B) rate of recycling by surface levels of control and 

MAP4 KD Jurkat T cells activated with anti-CD3 + anti CD28 coated plates for 60 min 

and let to recycle for the indicated times.  [n=5; paired t-test, non-significant (ns)] 

 

CD3ε surface levels were analyzed by FACs. Nevertheless, no significant differences 

were detected in terms of CD3ε internalization (Figure R13).   

 

On the other hand, in order to analyze TCR/CD3ε global recycling, control and 

MAP4 KD T cells were activated with anti-CD3 + anti-CD28 coated surfaces for 60 

min. Then, stimulus was removed and cells were allowed to recycle for the indicated 

times. Finally, cells were fixed and TCR (Vβ8) and CD3ε surface levels were analyzed 

by FACs. However, no changes were observed in the general recycling rate in control 

and MAP4 KD cells upon activation (Figure R14).  
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Figure R15. MAP4 reduction 

enhances T cell activation markers. 

mRNA levels of IL2 and CD69 from 

control and MAP4 KD cells activated 

with SEE-pulsed APCs (4 h). mRNA 

levels were normalized to a 

housekeeping gene (Actb or Gapdh) 

and to the levels of the corresponding 

target mRNA in non-stimulated cells. 

(n=8 and 6; Wilcoxon test; **,P-value 

< 0.01; *,P<0.05). Graph represents 

Mean ± s.d. 

 

 

 

These results suggest that MAP4 affects, more likely, to the polarized action of 

CD3ζ-bearing nanovesicles rather than to the whole TCR internalization/recycling rate, 

promoting the continuous supply of CD3ζ necessary to maintain TCR signaling. 

 

4.5 MAP4 function in later activation markers and effector function 

Since we had observed some defects in the phosphorylation cascade downstream 

the TCR, we wondered whether the expression pattern of genes controlled by T cell 

activation such as CD69 or IL2 could also be affected.  To analyze mRNA pattern of 

expression of later activation markers, control or MAP4 KD Jurkat T cells were 

activated with SEE-pulsed APCs for 4h. Afterwards, whole mRNA was isolated and 

retro-transcribed. Quantitative analysis of IL2 and CD69 expression, by qPCR, rendered 

a significant increase in IL2 and CD69 mRNA expression in MAP4-silenced cells 

(Figure R15).  

 

 

 

In order to corroborate these results and study whether cytokine secretion was 

similarly affected, IL2 secretion was analyzed. Control and MAP4 KD Jurkat T cells 
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Figure R16. MAP4 modulates TCR-dependent cytokine secretion. (A) Analysis of IL2 

secretion levels (ρg per ml and 106 cells) measured by ELISA in control and MAP4 KD 

Jurkat T cells activated with SEE-APCs for 24 h (n=7; paired t-test; **, P-value < 0.01) (B) 

Analysis of IL2 secretion levels (ρg per ml and 106 cells) measured by ELISA in primary T 

lymphoblasts activated with anti-CD3 + anti-CD28 coated plates  for 24 hours (n=4; paired 

t-test;*, P-value < 0.05).  All graphs represent Mean ± s.d. 

were activated for 24 h with SEE-pulsed APCs and the quantity of IL2 accumulated in 

the resulting supernatant was analyzed by ELISA. In accordance, a significant increase 

in IL2 secretion was obtained due to MAP4 reduction (Figure R16A). Likewise, we 

decided to test this effect detected in primary T cells. Human CD4+ T lymphocytes 

isolated from buffy coats were activated and grown to generate T lymphoblasts. After 

their polarization, T lymphoblasts were knocked-down for MAP4 and their IL2 

secretion capacity was analyzed after 16 h of activation with anti-CD3 + anti-CD28 

coated plates. Interestingly, cytokine secretion analysis in primary T cells rendered a 

similar result, with a significant increase in IL2 secretion in MAP4 KD cells. (Figure 

R16B). 

 

 

 

In parallel, to analyze CD69 surface expression, control or MAP4 KD Jurkat T 

cells were activated for 24 h with SEE-pulsed APCs. Cells were stained for CD69 and 

analyzed by FACs. In accordance, to the gene expression analysis, membrane surface 

CD69 was significantly augmented in MAP4 KD cells. (Figure R17A). Similarly, 
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Figure R17. MAP4 knocking-down enhances CD69 surface expression.  (A) FACs 

analysis of CD69 surface expression in control and MAP4 KD cells activated with SEE-

pulsed APCs (24 h). Geometric Mean (GeoMean) of Fluorescence is shown (n=6; paired t-

test; **, P-value < 0.01). (B) FACs analysis of control and MAP4 KD primary T 

lymphoblasts activated with anti-CD3 + anti-CD28 coated plates. CD4+ cells were gated 

and normalized, GeoMean of fluorescence was analyzed (n=2). All graphs represent Mean ± 

s.d. 

MAP4 KD primary T lymphoblasts activated with anti-CD3 + anti-CD28 coated plates 

(16h) showed an increase in CD69 surface expression. (Figure R17B). 

 

 

 

4.6 MAP4 modulation on PLCγ1 activity and consequent diacylglycerol and 

calcium production  

Due to the differences detected in the TCR early cascade of activation and the 

pattern of expression of T cell activated genes when MAP4 is reduced, we considered to 

explore additional signaling intermediates downstream of the TCR. When studying the 

activatory phosphorylation of PLCγ1 (Y783), a significant increase was observed in 

MAP4 KD cells activated with SEE-pulsed APCs, specially at later times (5 and 15 

min) (Figure R18A and B). However, no changes in PLCγ1 accumulation at the IS 

were detected in conjugates of MAP4 KD cells with SEE-pulsed APCs analyzed by 

confocal microscopy (Figure R18C). This enhancement of PLCγ1 activity was 

supported by the detection of a similar increase in PLCγ1 phosphorylation in MAP4 KD 
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Figure R18. PLCγ1 activity is augmented due to MAP4 reduction. (A) Immunoblot 

showing PLCγ1 phosphorylation in control and MAP4 KD cells conjugated with SEE-

APCs for the indicated times. Tubulin is shown as loading control. (B) Quantification of 

PLCγ1 phosphorylation as in the (A) (n=6; paired t-test; *, P-value < 0.05). (C) Analysis of 

PLCγ1 accumulation at the IS in control or MAP4 KD Jurkat T cells activated with SEE-

pulsed APC cells for 30 min (n =69 and 66 from three independent experiments, Mann-

Whitney test, ns). (D) Immunoblot showing PLCγ1 phosphorylation in control and MAP4 

KD primary T lymphoblasts activated with crosslinked anti-CD3 + CD28 antibodies. 

Tubulin is shown as loading control. Quantification is shown under bands. (One 

representative gel out of three).  Graphs represent Mean ± s.d. 

human primary T lymphoblasts activated with crosslinked anti-CD3 + anti-CD28 

antibodies (Figure R18D). 

 

 

 

When PLCγ1 activates, it catalyzes the conversion of membrane 

phosphatidilinositol 4,5-biphosphate (PIP2) into second messengers: inositol-1,4,5-

triphosphate (IP3) and diacylglycerol (DAG). On the one hand, IP3 is responsible for 

the release of calcium from the endoplasmic reticulum (ER) and the consequent global 

calcium wave.  On the other hand, production of DAG activates several PKCs necessary 

for MTOC translocation and gene expression (Bustos-Moran et al, 2016). In order to 
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Figure R19. MAP4 controls DAG production at the IS (A) Maximal Z projection of 

confocal stacks showing conjugates of control and MAP4 KD Jurkat T cells expressing 

PKCθ-C1-GFP and activated with SEE-APCs (15 min). Cells were fixed and 

immunostained for actin (Magenta). Bright field images with CMAC in cyan (APCs) are 

shown. Scale bar 10 µm. (B) Quantification of PKCθ-C1-GFP accumulation at the IS as in 

(A) (n=63 and 75 from three independent experiments; Mann-Whitney test; **, P-value < 

0.01). 

functionally analyze the relevance of the increase in PLCγ1 phosphorylation detected in 

MAP4 KD, we decided to examine two of these downstream effectors of PLCγ1 

activity: DAG production and calcium signaling.  

In order to analyze DAG production at the IS, a construction containing PKCθ-

C1 DAG-responsive domain was used. Control and MAP4 KD Jurkat T cells were 

transfected with PKCθ-C1-GFP plasmid and conjugated with SEE-pulsed APCs (15 

min). Then, GFP accumulation at the IS was studied by confocal microscopy (Figure 

R19A). Quantitative analysis of PKCθ-C1-GFP clustering at the IS revealed a 

significant increase in DAG production in MAP4 KD cells (Figure R19B).  
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Figure R20. MAP4 does not affect to 

PKCθ IS clustering. Analysis of PKCθ 

accumulation at the IS in control or MAP4 

KD Jurkat T cells activated with SEE-

pulsed APC cells for 30 min (n =67 and 68 

from three independent experiments, 

Mann-Whitney test, ns). Graph represents 

Mean ± s.d. 

 

Surprisingly, when the accumulation of PKCθ whole protein (in comparison 

with its C1 domain) was studied in MAP4 KD cells conjugates, no apparent effect was 

detected (Figure R20).  

 

 

 

Accordingly, we decided to analyze the functional relevance of this DAG 

enhanced production on the activation of NF-κB complex. First, we studied the nuclear 

translocation of p65 (also known as RelA), one of NF-κB subunits, by 

nuclear/cytoplasmic fractioning of control and MAP4 KD cells activated with SEE-

pulsed APCs. Subcellular fractioning analysis showed an increase in the proportion of 

nuclear p65 upon activation in MAP4 KD cells (Figure R21A). Secondly, the 

transcriptional activity of NF-κB was assessed through a luciferase assay, using a 

construction constituted by five NF-κB-responsive sites fused to the gene of luciferase.  

Control and MAP4 KD cells were transfected with the NF-κB-Luciferase plasmid and 

activated with SEE-pulsed Raji B cells for 24 h. Consistently with p65 increased 

nuclear translocation, when measuring luciferase production, a significant increase in 

NF-κB transcriptional activity was detected in MAP4 KD compared to the control 

(Figure R21B).   
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Figure R21. MAP4 silencing promotes NF-κB transcriptional activity. (A) 

Immunoblot showing p65 nuclear translocation. Cytoplasmic/nuclear fractions from 

control and MAP4 KD cells conjugated with SEE-APCs for the indicated times. GAPDH 

and Smc1 are shown as loading controls for cytoplasmic/nuclear fractions, respectively. 

Quantification is shown under bands. (B) Quantification of NF-κB activity by a luciferase 

assay in control or MAP4 KD Jurkat T cells transfected with NF-κB (5x)-Luciferase 

construction and activated with SEE-pulsed APCs (24 h). (n= 5; paired t-test; *, P-value 

<0.001). All graphs represent Mean ± s.d. 
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In parallel, as another dowstream effector of PLCγ1 activity, calcium wave 

generated upon TCR activation was measured.  Control and MAP4 KD cells stained 

with Fluo3-AM were activated with a pre-crosslinked anti-CD3 + anti-CD28 and 
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Figure R22. MAP4 KD cells show no difference in the global wave of calcium. (A) 

Kinetics of calcium, measured by Fluo-3AM, of control or MAP4 KD Jurkat T cells 

activated with anti-CD3 + anti-CD28 (STEM CELL). Baseline was recorded for 1 min, 

stimulated and recorded for 5 min and then re-stimulated with Ionomycin and recorded for 

1min. (B) Quantification of the GeoMean of fluorescence of Fluo-3AM at the peak or 

plateau of the calcium wave. GeoMean was normalized to the baseline. (n=6; one sample 

t-test, ns). Graphs represent Mean ± s.d. 

calcium changes were measured by FACs. Strikingly, flow cytometry analysis revealed 

no changes in the global calcium uptake between control and MAP4 KD cells (Figure 

R22A and B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Nevertheless, since FACs measurement of calcium wave was not a good 

indicative of local calcium changes, but of the global calcium uptake of the cell, we 

decided to measure NFAT transcriptional activity as a reporter of local calcium. Aiming 
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Figure 23. MAP4 controls NFAT 

transcriptional activity. Quantification of 

NFAT activity by a luciferase assay in 

control or MAP4 KD Jurkat T cells 

transfected with NFAT (9x)-Luciferase 

construction and activated with SEE-

pulsed APCs (24 h). (n= 6; paired t-test; *, 

P-value <0.001). Graph represents Mean ± 

s.d. 

this, we transfected control or MAP4 KD cells with a construction containing nine 

NFAT-responsive sites fused to luciferase gene. Luciferase assay, upon activation, 

resulted in a significant increase in NFAT transcriptional activity in MAP4 KD cells 

upon activation (Figure R23).   

  

 

Finally, since MTOC translocation was delayed in MAP4 KD and MTOC 

polarization is dependent on DAG production (Quann et al, 2009), we hypothesized that 

the delay in MTOC translocation could boost the production of DAG to overcome this 

defect in MAP4 KD cells. Additionally, MTOC delay in polarization could be blocking 

the proper transport of DAG negative regulators like DGKs to the contact area. To 

further test this hypothesis, we decided to assess for DAG production in systems in 

which MTOC polarization was impaired independently of MAP4. For that purpose we 

transfected Jurkat T cells with HDAC6-GFP or C-term-AKAP450-GFP constructions 

(since both plasmids have been previously proved to blockade MTOC polarization) 

(Robles-Valero et al, 2010; Serrador et al, 2004) and measured DAG production. 

Strikingly, the analysis of PKCθ-C1-mCherry accumulation at the IS revealed a 

significant increase of DAG production in cells transfected with each one of both 

constructions (Figure R24 A and B). 
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Together these results suggests that MAP4 modulates PLCγ1 activity and its 

silencing induces an enhancement on DAG production at the IS, boosting the activation 

of associated transcription factors like NFAT or NF-κB and thereby promoting, lately, 

an increase in the expression of T cell activation markers. 

 

Figure R24. MTOC translocation controls DAG production. (A) Z-maximal 

projection of confocal stacks showing Jurkat T cells transfected with GFP alone, C-term 

AKAP450-GFP or HDAC6-GFP (green) plus PKCθ-C1-mCherry (magenta) and 

activated with SEE-pulsed Raji B cells for 15 min. Bright field and CMAC in cyan 

(APC) image is also shown. Scale bar 10 µm.  (B) Quantification of PKCθ-C1-mCherry 

accumulation at the IS as in (A). (n=73, 74 and 78 from three independent experiments; 

Mean±s.d.; Kruskal-Wallis test; ****, P-value < 0.0001).  

 



  DISCUSSION 

 

 
 

 

 

 

 

 

 

 

 

 

 

Discussion 



  DISCUSSION 

 

~ 65 ~ 
 

 

5. Discussion 

 

In this work, we have studied the role of MAP4 during T cell activation and 

immune synapse formation. We have proved that MAP4 decorates T cell microtubules 

and MTOC during the formation of the IS, accompanying the centrosome towards its 

polarization. Moreover, we have demonstrated that MAP4 controls T cell microtubule 

assembly capacity and the stability of the tubulin cytoskeleton upon TCR activation, 

promoting a timely translocation of the MTOC towards the contact area. In addition, we 

have identified a novel role of MAP4 controlling TCR activation and some of the 

molecules downstream this cascade. Furthermore, we have proved that MAP4 controls 

the displacement of the submembrane pool of CD3ζ-bearing nanovesicles, necessary for 

the maintenance of the signal. Finally, we have found that, strikingly, MAP4 negatively 

regulates T cell effector function and gene expression by controlling the local 

production of DAG and calcium and therefore affecting to the transcriptional activity of 

NF-κB and NFAT. 

 

5.1 MAP4 localization at the IS and tubulin cytoskeleton regulation 

MAP4 localization has been assessed in different systems and in response to 

different signals. In most of the studies MAP4 staining rendered a uniform pattern 

similar to the  tubulin staining and decorating mainly the microtubules along all their 

length (Chang et al, 2001; Chinnakkannu et al, 2010; Nguyen et al, 1997) or with a 

punctuated staining following the microtubules pattern (Samora et al, 2011). Although 

some centrosomal staining was detected in other cell types, the majority of MAP4 

protein was localized along the microtubules. In the case of T cells, we have detected a 

major staining of the centrosome and the decoration of just some microtubules, not all 

the tubulin array. Since MAP4 has been proved to be essential for the assembly of new 

microtubules either in vitro  (Aizawa et al, 1991) or in vivo (Nguyen et al, 1999), this 

enhanced localization at the centrosome could be explained by a predominant role of 
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MAP4 regulating the assembly of new microtubules upon MTOC translocation, more 

than by a general stabilization of the whole array of MTs. In fact, the detection of a 

defect in MT assembly in T cells depleted for MAP4 supports this idea.  

Although we would have expected a change in the localization of MAP4 upon 

TCR activation, maybe due to changes on its phosphorylation, we did not detect any 

apparent difference in the pattern between activated or non-activated T cells. This is 

consistent with previous observations where mutation of phosphorylatable sites of 

MAP4 rendered differences in the ability of MAP4 to stabilize microtubules or promote 

its assembly but do not alter its localization at the microtubular array (Chang et al, 

2001). According to this study, MAP4 localization would not be changed due to its 

phosphorylation but the strength of the binding with the MTs would be different, 

affecting to the ability of MAP4 to stabilize the MTs and promote their assembly. 

Another possibility is that MAP4 localization could exchange from the pericentrosomal 

area to the microtubules upon TCR activation. In this regard, it has been seen that 

hypoxia-induced MAP4 phosphorylation promotes its translocation from the 

microtubules to the mitochondria to induce an apoptotic response (Hu et al, 2014). 

Considering this, a possibility would be that T cell activation could lead to subtle 

changes in the proportion of MAP4 in the MTs compared with the centrosome, priming 

a more stabilizing or MT assembly function depending on its subcellular localization. 

 Besides MT assembly, MAP4 also seems to be regulating the stability of a 

subset of MTs, detyrosinated MTs, upon TCR activation. Tubulin detyrosination has 

been demonstrated to be necessary for a sustained T cell activation, since it modulates 

the proper polarization of the MTOC towards the contact area (Andres-Delgado et al, 

2012). Tubulin acetylation is another posttranslational modification (PTM) that has 

been proved essential for T cell activation and IS formation. However, our preliminary 

data did not show any effect on this modification in cells depleted for MAP4. This is 

consistent with previous works that have seen an effect of MAP4 only on the levels of 

detyrosinated tubulin (Nguyen et al, 1997).  

Tubulin PTMs are modifications that can be detected in different subpopulation 

of microtubules. Their function remains unclear yet, although they have normally been 

associated with populations of stable (acetylated, detyrosinated) or dynamic 

(tyrosinated) microtubules (Janke & Bulinski, 2011). Additionally, PTMs have been 
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proved important for the binding of different MAPs. For example, tyrosination is a 

modification that allows the association of end-binding stabilizing proteins containing a 

CAP-Gly domain like CLIP-170 or p150 (Peris et al, 2006). In fact, the changes 

observed on the pattern of these PTMs during several processes like cell cycle 

progression or differentiation suggests the existence of a “tubulin code” that would 

encode the different microtubule subpopulations depending on their PTMs (Janke & 

Bulinski, 2011). In accordance with this hypothesis, the fact that MAP4 is regulating 

only some tubulin PTMs and that its reduction does not seem to affect to the whole 

array of MTs supports a differential role of the subsets of microtubules during IS 

formation. In line with this, it would be very interesting to further assess the function of 

this “tubulin code” during T cell activation and its regulation by other MAPs. 

5.2 MAP4 effect on a timely MTOC translocation 

As our results prove, MAP4 reduction causes a defect in MTOC translocation. 

This defect seems to be a delay more than a total impairment, which suggests that 

MAP4 helps to prompt a timely translocation of the centrosome. This conclusion is 

further supported by the rescue of the phenotype when overexpressing the murine 

isoform of MAP4.  

Other MAPs have been studied in the context of centrosome polarization 

rendering similar phenotypes. Histone deacetylase-6 (HDAC6), for example, is a 

protein involved in tubulin deacetylation and it has been reported to impair the 

translocation of the centrosome towards the contact area either in CD4+ (Serrador et al, 

2004) or CD8+ cells (Nunez-Andrade et al, 2016). Additionally, the dynein/dynactin 

complex was demonstrated to be responsible for the pulling forces needed to attract the 

centrosome towards the IS (Combs et al, 2006; Martin-Cofreces et al, 2008). In fact, its 

depletion or the overexpression of dynamitin (p50), a blocker of the complex, resulted 

in a defect in MTOC translocation (Martin-Cofreces et al, 2008).  

A recent study has suggested a biphasic model for MTOC translocation, with an 

initial approximation to the IS and its posterior docking (Yi et al, 2013). In this study, 

the pulling forces were suggested to be a consequence of the capping of the MT plus 

ends to the cortical region and the posterior depolymerization of the MTs attached, in a 

capture-shrinkage way. In this sense, over-stabilization of the MTs would blockade 
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these forces. However, this model also supports that an initial MT polymerization is 

necessary for the capping of the microtubules to the membrane (Yi et al, 2013). Our 

data support this model, since MAP4 reduction does not totally impair MTOC 

translocation but delay it, probably because the defects in MT assembly slow down the 

initial capture of the MT ends at the plasma membrane but do not affect to the posterior 

shrinkage pulling force. In fact, in other systems, like in mitotic spindle orientation, 

where centrosome pulling forces mainly depend on lateral gliding of the microtubule 

through the anchored dynein/dynactin complex, MAP4 reduction rendered totally 

opposite effects, promoting this gliding and the attraction of the centrosome (Samora et 

al, 2011).  

In addition, part of the defect in MTOC polarization could be both a 

consequence of the defects observed in early CD3ζ ITAM phosphorylation, and also a 

cause for the reduction on the maintenance of T cell activation. 

Finally, Par1b/MARK2, a protein that has been found to phosphorylate MAP4 in 

other systems (Cheng et al, 2010), was proved to be important in the acquisition of the 

polarity during IS formation and for centrosome polarization in T cell activation (Lin et 

al, 2009). Therefore, this kinase could be accounting for the effect of MAP4 on MTOC 

translocation. After promoting the polymerization and capture of the MT ends in the 

cortical region, MAP4 could be phosphorylated by Par1b in order to allow the posterior 

shrinkage force necessary for centrosome translocation. 

5.3 MAP4 regulation of early TCR signaling 

  We have demonstrated an effect of MAP4 on early T cell activation by 

maintaining the normal levels of CD3ζ ITAM phosphorylation, as well as the activation 

of some of the molecules downstream the TCR. Our results showed that MAP4 

knocking-down generates a reduction in the levels of ITAMs phosphorylation. 

Nevertheless, this blockade was partial more than a total reduction of the 

phosphorylation levels. This suggests that MAP4 acts more like a modulator of the 

signal than a “key” protein in the TCR cascade.  

ITAM phosphorylation has been seen to be driven by Lck upon activation. TCR 

engagement to the MHC-bound antigen leads to the exposition of the ITAM tails 

allowing its phosphorylation by Lck. This favors the recruitment of SH2 containing 
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proteins like ZAP70, which phosphorylate other proteins, like LAT, amplifying the 

signal (Bustos-Moran et al, 2016). The TCR complex contains up to 10 ITAM regions 

by the combination of CD3 –ε, -γ, -δ (one each) and –ζ (three) (Love & Hayes, 2010). 

Although it is thought that the phosphorylation of the different ITAMs is somehow 

redundant and helps to potentiate the signal, a differential binding affinity has been 

shown for some proteins like ZAP-70 (Love & Hayes, 2010). Therefore, it would be 

interesting to study the effect of MAP4 in the phosphorylation of other ITAMs in order 

to elucidate differential patterns of molecule binding. 

In addition, CD3ζ reduced phosphorylation leads to a reduction in LAT Y191 

phosphorylation, without affecting significantly to LAT Y132 phosphorylation. The 

identity of the kinase that phosphorylates LAT in vivo still remains unclear although 

some in vitro assays have suggested a possible phosphorylation by ZAP70 (Zhang et al, 

1998), Itk (Perez-Villar et al, 2002) or Lck (Jiang & Cheng, 2007). However, a work, 

which aimed to unveil the early phosphorylation kinetics of molecules downstream the 

TCR, showed that LAT Y191 phosphorylation occurs in parallel to ZAP70 

phosphorylation, but prior to LAT Y132 phosphorylation (Houtman et al, 2005). 

Therefore, this work supports the notion that ZAP70 is the kinase responsible for LAT 

Y191 phosphorylation. Our results agree with this view, since CD3ζ reduced 

phosphorylation would lead to less ZAP70 activation and therefore LAT Y191 

phosphorylation.  

The fact that LAT Y132 is not significantly reduced in our MAP4 knock-down 

cells, combined with Houtman et al., observations that LAT Y132 phosphorylation is 

lagged upon TCR activation (Houtman et al, 2005), suggests the importance of other 

mechanisms underlying the phosphorylation of LAT Y132 residue, which might not be 

so highly affected by MAP4. Nevertheless, it would be interesting to study the pattern 

of phosphorylation of other LAT residues (like Y171 or Y226) in order to convey this 

hypothesis. 

Finally, ERK 1/2 phosphorylation was also reduced at longer time points of 

activation in cells knockdown for MAP4. ERK 1/2 protein is activated by Ras kinase 

pathway. Ras is a GTPase that gets active by the action of two guanosil exchange 

factors (GEFs): Ras-GRP and Sos (Genot & Cantrell, 2000). Ras-GRP is dependent on 

DAG production since DAG favors its accumulation near the membrane and 
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approximation to Ras (Genot & Cantrell, 2000). Sos is constitutively bound to Grb2 and 

its activation depends on the recruitment of Grb2 by LAT phosphorylation. A 

combination of a pair of phosphorylated sites (between Y171, Y191 and Y226 residues) 

is responsible for Grb2 binding to LAT (Balagopalan et al, 2010).  

The overlapping functions of both GEFs have been controversial. A study in 

Jurkat T cells proposed a model in which the interplay of Ras-GRP and Sos was 

necessary for Ras fully activation (Roose et al, 2007). According to the model, Ras-

GRP would be accounting for Ras-GDP transformation into Ras-GTP and, then, Ras-

GTP would bind to Sos1 and allosterically activate it. Active Sos would then act as a 

feedback loop to maintain Ras activatory pathway and the phosphorylation of 

downstream effectors like ERK 1/2 (Roose et al, 2007). However, a work in human 

primary T lymphoblasts seems to disagree with this model, suggesting that, in primary 

lymphoblasts, Ras-GRP would be the only activator of Ras pathway upon TCR 

activation. Conversely, Sos would enhance this cascade only in response to mitogenic 

signals like CD25 ligation with IL2 (Warnecke et al, 2012).  

In our case, since DAG seems to be increased upon TCR activation as a result of 

MAP4 knocking-down, we would have expected also an increase in ERK 1/2 

phosphorylation. Nevertheless, providing the role of Sos positive feedback loop over 

ERK 1/2 phosphorylation, maybe the decrease in LAT Y191 phosphorylation, which 

was observed in MAP4 KD cells, could lead to a reduced recruitment of Grb2-Sos 

complex and therefore a decrease in Ras activation. In accordance, the effect on ERK 

1/2 is detected at longer time than in the case of CD3ζ or LAT Y191 phosphorylations. 

This difference could be due to changes in the implication of Ras-GRP or Sos GEF 

function at different times of T cell activation kinetics. Consequently, MAP4 might not 

be affecting to Ras initial activation by Ras-GRP, but a possible impairment in Sos 

localization could prevent the maintenance of Ras activation due to the absence of the 

Sos-dependent positive feedback loop (Roose et al, 2007).  

5.4 CD3ζ-bearing nanovesicles movement and CD3/TCR membrane exchange 

CD3 cycle of recycling and degradation is essential for T cell activation. In a 

basal state TCR/CD3 molecules are internalized and recycled again to the membrane 

(Liu et al, 2000). However, TCR engagement with the corresponding antigen-MHC, 
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also triggers some signals that lead to its endocytosis and delivery to the lysosomes for 

its degradation (Liu et al, 2000; Valitutti et al, 1997). This reduction of surface TCR 

requires the polarized secretion to the IS of an intracellular pool of vesicles containing 

TCR/CD3 molecules, which help to maintain the activation (Das et al, 2004).  

In our work, we have detected a defect in the movement of this intracellular 

compartment of CD3ζ-bearing nanovesicles. We postulate that this defect in the 

movement of the vesicles leads to a reduction in the rate of polarized recycling towards 

the contact area, suggesting a mechanism to explain the decrease in CD3ζ 

phosphorylation detected upon activation. In fact, this hypothesis is supported by the 

discovery of a pool of phosphorylated CD3ζ in the endosomal compartment (Yudushkin 

& Vale, 2010). Whether CD3ζ-nanovesicles observed belong to this phosphorylated 

pool or not, however, would require further experimentation. 

 Furthermore, the defects observed in ITAM phosphorylation do not seem to be 

caused by an alteration in the basal internalization/recycling rate since the surface basal 

levels of CD3ε and TCR remained unaffected by MAP4 depletion. Moreover, neither 

the rate of internalization nor the general recycling upon activation are affected in 

MAP4 knocking down cells. This suggests that the effect observed is restricted to the 

polarized compartment that maintains CD3ζ levels at the IS.  

In fact, the polarized recycling towards the contact area has been proved to be 

dependent on microtubule transport (Das et al, 2004). Another MAP protein, the end-

binding protein 1 (EB1) has been demonstrated to be essential for the movement of 

vesicles to the vicinity of the IS, by coupling the movement of CD3ζ and LAT-bearing 

vesicles with the growth of the microtubules from the MTOC (Martin-Cofreces et al, 

2012). According to this, MAP4 depletion could be impairing the growing of new 

microtubules from the centrosome avoiding nanovesicle movement towards the IS and 

therefore its fusion. In addition, since MAP4 has been also proved to affect to vesicle 

traffic in other systems due to its effect on kinesin and dynein-driven transport (Bulinski 

et al, 1997; Semenova et al, 2014; Seo et al, 2016), we cannot rule out that the effect on 

vesicle displacement observed is caused by a similar mechanism. In addition, polarized 

recycling is dependent on intraflagellar transport proteins that normally act in the 

vesicle trafficking of the primary cilia (Finetti et al, 2009). Providing that MAP4 

interacts with septin complex controlling their binding to primary cilia microtubules 



  DISCUSSION 

 

~ 72 ~ 
 

Figure D1. Model for MAP4 control on TCR/CD3ζ-bearing vesicles dynamics. TCR 

engagement to the MHC-bound peptide leads to the activation of the TCR and its posterior 

degradation by ubiquitination. Polarized recycling of TCR/CD3 vesicles is necessary for 

the maintenance of the signal. MAP4 can be affecting to this trafficking by several 

mechanism. It can be interacting with IFT complex and therefore affecting to its 

functionality. Another possibility is that, since MAP4 increases the processivity of kinesin 

transport through its interaction with p150, it might enhance plus end directed transport. 

Finally, MAP4 MT assembly activity could favor the growth of MTs bearing these 

vesicles (associated to EB1) and allow their approximation to the fusion area. 

(Ghossoub et al, 2013; Kremer et al, 2005), another possibility is that MAP4 is 

affecting, somehow, to the functionality of the IFT complex (similarly to septins) and 

therefore regulating CD3ζ polarized recycling (Figure D1). 
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Although we did not monitor MTOC translocation in the TIRFm approximation, 

we consider that the defect in CD3ζ-bearing vesicle dynamics does not seem to be due 

to MTOC translocation delay, since the number of vesicles detected at the area was not 

affected and the defects in the vesicle displacement were maintained along time. 

Besides similar defects in nanovesicle movement have been observed in proteins, like 

Aurora A, which, although does not affect to MTOC translocation, has an effect on 

microtubule nucleation and growing (Blas-Rus et al, 2016).  

Finally, our model suggests that MAP4 would be enhancing the polarized 

transport of the CD3ζ-bearing vesicle pool to the IS to help to maintain the signal as a 

positive regulator. Nevertheless, CD3ζ activation is dependent both in CD3 polarized 

recycling and lateral diffusion and aggregation of CD3 microclusters. In consequence, 

since the movement of these microclusters is also regulated by a dynein-microtubule 

dependent mechanism (Hashimoto-Tane et al, 2011), we cannot rule out the possibility 

that the defect observed in ITAM phosphorylation is also partially caused by a defect in 

this lateral microcluster movement and fusion due to microtubule instability in MAP4 

KD cells.  

5.5 PLCγ1 negative control by MAP4 

One of the most striking results of this work was the discovery that MAP4 

knocking-down resulted in an enhanced expression of T cell activation markers like IL2 

and CD69. Unexpectedly, we found that PLCγ1 activity, measured by its 

phosphorylation at Y783, was enhanced upon TCR activation when MAP4 was 

reduced. This difference in the levels of activation in comparison with other early 

activation markers like CD3ζ phosphorylation or LAT Y191 activation suggested us 

that PLCγ1 could constitute the key protein to explain the increase in T cell activation 

observed. 

 PLCγ1 is a protein that catalyzes the transformation of PIP2 into two second 

messengers that amplify TCR signaling: IP3 and DAG. Its function has been proved 

essential for T cell activation controlling NFAT or NF-κB activity, IL2 secretion or T 

cell differentiation, especially in Treg cells (Fu et al, 2010). PLCγ1 activation depends 

both on its interaction with LAT Y132 phosphorylated residue (Zhang et al, 2000), as 

well as on its phosphorylation by Itk (Bogin et al, 2007). Since we did not detect any 
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changes in PLCγ1 total clustering at the IS, which is consistent with the absence of 

significant changes in LAT Y132 phosphorylation, we wondered what could be 

affecting to PLCγ1 phosphorylation. Accordingly, PLCγ1 has been proved to be 

phosphorylated independently of its association with LAT (Braiman et al, 2006). It is 

thought that SLP-76 interaction with Itk and also with PLCγ1 favors the physical 

proximity of both proteins allowing its phosphorylation. Then, PLCγ1 would be able to 

bind to LAT Y132 residue, get close to membrane PIP2 and become fully active 

(Braiman et al, 2006). Therefore, one possible mechanism is that PLCγ1 enhanced 

activity is due to an increased phosphorylation by Itk.  

Itk regulation is quite complex and involves a phosphorylation by Lck, an 

autophosphorylation and also some conformational changes (Andreotti et al, 2010). A 

key event on Itk activation is its interaction with SLP-76. In fact, physical separation of 

active Itk from SLP-76 drives to the inactivation of Itk, even though being 

phosphorylated previously (Bogin et al, 2007). Therefore, it would be very interesting to 

study whether MAP4, or its indirect action over the microtubule network, could be 

somehow affecting to Itk-SLP76 interaction and therefore to PLCγ1 phosphorylation.  

Another possible mechanism to explain PLCγ1 enhanced phosphorylation relies 

on a reduced activity of its specific phosphatase: CD148. CD148 is a protein tyrosine 

phosphatase (PTP), which has been seen to dephosphorylate PLCγ1 in T cells, acting as 

a negative regulator of T cell activation (Baker et al, 2001; Harrod & Justement, 2002). 

However, the possibility of a reduced activity of this phosphatase in MAP4 knocked-

down cells seems less plausible, since CD148 has also been involved in the 

dephosphorylation of other proteins like ZAP70 or LAT (Harrod & Justement, 2002), 

whose activity was not enhanced, but even reduced, when MAP4 was blocked. 

Nevertheless, it would be very interesting to explore this idea, specially taking into 

account the fact that CD148 microclusters are initially excluded from the IS (Lin & 

Weiss, 2003). Similarly to other transmembrane phosphatases, like CD45, CD148 

microclusters might change its localization during the IS, moving centripetally towards 

its targets and promoting the termination of T cell activation signal (Varma et al, 2006). 

Accordingly, the regulation of the position and fusion of the microclusters containing 

CD148 by the tubulin cytoskeleton and dynein-associated motors (Hashimoto-Tane et 



  DISCUSSION 

 

~ 75 ~ 
 

al, 2011), would explain MAP4-dependent enhanced PLCγ1 phosphorylation (Figure 

D2). 

5.6 MAP4 KD enhanced DAG production and effect on NF-KB activity 

As we have already described, MAP4 KD cells showed an increase in PLCγ1 

activity. This resulted in an enhanced production of DAG, one of the second messengers 

responsible for TCR signal amplification. DAG production at the IS is mainly regulated 

by some enzymes called diacylglycerol kinases (DGKs), which catalyze the 

transformation of DAG into phosphatidic acid (PA), blocking its action. There are ten 

described DGKs, however, only two predominate in T cells: DGKα and DGKζ (Krishna 

& Zhong, 2013; Merida et al, 2008). DGKα is rapidly and transiently polarized to the IS 

(Sanjuan et al, 2003) and it has been proved to accumulate at the pSMAC, where it 

limits the accumulation of DAG to the cSMAC region (Chauveau et al, 2014). DGKα 

has been shown to influence MTOC polarization by regulating the spatial accumulation 

of DAG at the IS (Chauveau et al, 2014). Conversely, DGKζ seems to accumulate at the 

IS in a more extended distribution and remains attached for longer time. Its function at 

the IS has been associated with the global control over DAG production, more than with 

DAG localization, balancing the equilibrium between DAG and PA and acting as a 

“brake” for T cell activation (Gharbi et al, 2011). Accordingly, although most of the 

enhanced DAG generation detected in MAP4 KD cells can be explained due to the 

increased activity of PLCγ1, additionally, it could be also caused by a defect in the 

proper translocation of DGKs. In this sense, total impairment of MTOC translocation by 

transfection of HDAC6-GFP or AKAP-450 C-terminal domain resulted in a major DAG 

production, even when compared with MAP4 KD cells. Since it has been seen that 

MTOC translocation is highly dependent on DAG production (Quann et al, 2009), 

maybe the defect in MTOC translocation could act as a feedback loop boosting IS local 

DAG production and accumulation.  

In support of this hypothesis, it has been observed that SNX27, a marker of 

endosomal compartment, interacts with DGKζ and accumulates at the IS (Rincon et al, 

2011).  Although SNX27 localization probably does affect to initial DGKζ IS 

accumulation, it is conceivable that the polarization of SNX27-vesicles towards the IS 

helps to maintain DGKζ accumulated at that area for longer time. Therefore, MAP4 

knocking-down could be affecting to the accumulation of DGKζ at the IS, either due to 
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its delay in MTOC translocation (and the associated movement of the endosomal 

compartment) or as a result of a defect in the proper polarization and movement of 

SNX27-DGKζ bearing vesicles similarly to the one observed for CD3ζ-bearing vesicles. 

Consequently, it would be interesting to study how MAP4 reduction affects (directly or 

indirectly) to DGKζ translocation and, therefore, to T cell negative regulation (Figure 

D2). 

 

Figure D2. Model for MAP4-mediated control on PLCγ1 activation and DAG 

production. MAP4 could control PLCγ1 activity through different mechanisms. It could 

be affecting to the dynamics of CD148 microclusters (MC) along the MTs, favoring its 

congregation to the cSMAC after activation, and CD148 effect on dephosphorylating 

PLCγ1. Alternatively, MAP4 could be modulating Itk-SLP76 interaction, dampening Itk 

activity and therefore its kinase ability over PLCγ1. Finally, DAG production could also 

be balanced by an enhanced translocation of DGKζ to the contact area, maintaining its 

lasting accumulation at the IS. 
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One of the main DAG-downstream effector pathways is the axis consisting of 

PKCθ and NF-κB activation. Upon TCR engagement, PKCθ activation promotes the 

phosphorylation of CARMA1 protein leading to the formation of the CBM complex 

(CARMA1-BCL10-MALT1). This signalosome associates to the membrane due to 

interactions with the 3-phosphoinositide-dependent protein kinase 1 (PDK1) and CD28 

and promotes the activation of IκB kinases (IKKs). IKK kinases phosphorylate IκBα 

leading to its degradation. Eventually, the degradation of this negative regulator unlocks 

NF-κB complex (p65-p50 heterodimer) activation and translocation to the nucleus, 

allowing its transcriptional enhancing activity (Cheng et al, 2011; Paul & Schaefer, 

2013). 

In our work, we have demonstrated that MAP4 reduction causes an increase on 

p65 translocation to the nucleus upon TCR activation, as well as an augmented NF-κB 

transcriptional activity, as detected by the luciferase assay. This supports an enhanced 

activation of PLCγ1 and the major production of DAG. Nevertheless, no significant 

differences on PKCθ T538 phosphorylation or on PKCθ IS clustering were detected in 

MAP4 KD cells.  

PKCθ activation mainly depends on two factors: T538 phosphorylation by the 

germinal center kinase-like kinase (GLK) (dependent on the TCR) (Chuang et al, 2011) 

and its clustering and localization at the IS (Wang et al, 2012). However, other factors 

can affect to its degree of activation. For example, different phosphorylation residues, 

apart from T538, have been identified and their function has been uncovered as 

modifiers of PKCθ activity or plasma membrane localization (Wang et al, 2012). 

Additionally, although the initial localization in membrane domains of PKCθ depends 

on its C1-DAG responsive domain, later stabilization at the pSMAC-cSMAC transition 

area relies on its interaction with the correceptor CD28 (Huang et al, 2002; Yokosuka et 

al, 2008). In fact, it has been proved that PKCθ exchange between cytosolic 

compartment and CD28-plasma membrane domains is very dynamic (Yokosuka et al, 

2008). Therefore, although we did not detect any changes in T538 phosphorylation or 

general clustering in MAP4 KD cells, it would be important to elucidate whether the 

increase in DAG production is affecting somehow to PKCθ membrane exchange or to 

any of the other phosphorylation residues that act as modifiers.  
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In addition, although PKCθ has been the main isoform of PKCs described to 

function in TCR-mediated NF-κB activation, other isoforms (PKCε and PKCη) display 

higher affinity for DAG and they are recruited before PKCθ to the contact area (Quann 

et al, 2011). Therefore, we cannot rule out an effect of one of those other PKCs 

isoforms on NF-κB complex activation that would bypass PKCθ. 

 

5.7 Calcium regulation: global versus local control 

PLCγ generation of IP3 promotes the release of endoplasmic reticulum (ER) 

stored calcium to the cytosol. This compartment release leads to the activation of 

STIM1, an ER receptor that physically interacts with calcium activated channels 

(CRAC) from the plasma membrane called Orai1. Orai1 then favors a flux of calcium 

entry from the extracellular matrix that increases global calcium levels (Kummerow et 

al, 2009). Accordingly, apart from DAG increase production, we also assessed calcium 

levels as marker of PLCγ1 enhanced activity. Surprisingly, no significant changes in 

global calcium wave were detected in MAP4 KD by FACs analysis.  

Alternatively, calcium response was also measured through its activation of 

NFAT transcription factor. NFAT is a family of transcription factor that controls the 

secretion of many cytokines. In a basal state NFAT is highly phosphorylated, however, 

an increase in cytoplasmic calcium promotes the activation of calcineurin protein, 

leading to NFAT dephosphorylation. Once dephosphorylated, NFAT can translocate to 

the nucleus and this exerts its transcriptional function (Macian, 2005). In accordance, 

our results in MAP4 KD cells showed an increase of NFAT transcriptional activity. 

Since we wanted to use NFAT reporter as an alternative measure for local calcium more 

than a real reporter of TCR induced NFAT-IL2 activity, we decided to use IL4-

promoter NFAT binding sites instead. NFAT activity over IL2 promoter requires 

additionally the action of AP1 transcription factor to be functional (Macian, 2005); 

therefore, it would not be exclusively a reporter of calcium local intensity but it would 

also depend on other factors. In short, the increase on NFAT activity detected could be 

considered as a very sensitive marker for calcium increase, alternatively to FACs 

analysis.  
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A possible explanation for the differences observed in FACs calcium analysis 

relies on the different regulation of local and global levels of calcium at the IS. While 

global levels normally increase upon activation, local levels near the contact area 

remain lower. This effect is due to the mitochondrial repositioning at the IS, where they 

act as calcium storages, redirecting calcium away from CRAC channels to avoid their 

inactivation (Quintana et al, 2011). In fact, it has been shown that this mitochondrial 

repositioning is dependent on tubulin cytoskeleton rotation (Maccari et al, 2016). 

Therefore, although we did not detect an increase in global calcium levels in MAP4 KD 

cells, perhaps the defects on tubulin cytoskeleton are causing a mislocalization of 

mitochondria at the IS. This could result in an increase in local calcium due to increased 

IP3 production, explaining the results obtained by NFAT-Luciferase marker.  

 

5.8 Concluding remarks 

 

 In our work, we have identified a balancing role of MAP4 in T cell activation. 

On the one hand, it controls positive signals like MTOC timely translocation or 

polarized movement of CD3ζ-bearing vesicles, which help to sustain TCR 

phosphorylation and signaling. On the other hand, it negatively regulates the expression 

of T cell activation markers affecting to its effector function and acting also as a 

modulator of terminating signals. In short, its role in T cells helps to promote an 

accurate and fine-tuned response. In fact, considering the importance of IL2 or CD69 

genes in T cell function and differentiation (Boyman & Sprent, 2012; Gonzalez-Amaro 

et al, 2013), it would be, indeed, interesting to know how defects on MAP4 affect to Th 

subsets differentiation. Although most of the effects detected in MAP4 KD cells could 

be explained by its influence over tubulin cytoskeleton the differences obtained in 

comparison with other microtubule-associated proteins already studied in the context of 

T cell activation, suggest a differential function of this protein probably due to direct 

interactions with other components of the IS. Consequently, it can be considered that 

MAP4 dual role in T cell activation could be very useful to modulate T cell threshold of 

activation and gene expression pattern, therefore affecting to the coordination and 

strength of the immune adaptive response. 
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6. Conclusions 

 

The findings presented herein support the following conclusions: 

 

1) MAP4 decorates T cell microtubules and MTOC during Immune Synapse 

formation. 

 

2) MAP4 controls T cell microtubule assembly and detyrosinated microtubules 

stability upon TCR engagement, prompting a timely translocation of the MTOC. 

 

3) CD3ζ-bearing nanovesicles dynamics is affected by MAP4 reduction, leading to 

a decrease in ITAM phosphorylation and TCR signal sustainment. 

 

4) MAP4 knocking-down promotes an enhanced PLCγ1 activity, which leads to a 

major production of DAG and an increased NFAT and NF-κB transcriptional 

activity. 

 

5) MAP4 balances the production of IL2 and expression of T cell early activation 

marker CD69, therefore regulating T cell effector function. 
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7. Conclusiones 

 

Los resultados presentados en este trabajo permiten concluir: 

 

1) MAP4 se localiza en los microtúbulos y en el MTOC de las células T durante la 

formación de la Sinapsis Inmune. 

 

2) MAP4 controla el ensamblaje de nuevos microtúbulos y la estabilidad de los 

microtúbulos que contienen tubulina detirosinada en respuesta a la activación 

del TCR, favoreciendo, en consecuencia, una adecuada y correcta translocación 

del MTOC. 

 

3) La dinámica de las vesículas de reciclaje de CD3ζ se ve afectada por la 

reducción de los niveles de MAP4, provocando una disminución en el grado de 

fosforilación de los ITAMs y en el mantenimiento de la señal dependiente del 

TCR. 

  

4) La disminución en los niveles de MAP4 en la célula T, promueve una respuesta 

exacerbada de PLCγ1, que desemboca en una mayor producción de DAG y una 

actividad transcripcional incrementada de factores como NFAT o NF-κB. 

 

5) MAP4 modula la producción de IL2 y la expresión del marcador de activación T 

CD69, regulando, por tanto, la función efectora de la célula T.  
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9. Annexes 

 

9.1 Supplementary information 

 

 Supplementary Movie 1. Life imaging of GFP-MAP4 dynamics at the IS. 

Jurkat T cells transfected with GFP-MAP4 (green) and Tubulin-Cherry (magenta) 

were conjugated with SEE-pulsed Raji-B cells. Images were acquired each 43 s. 

Video was mounted in ImageJ. 

 

 Supplementary Movie 2. Tracking of CD3ζ-bearing vesicles at the IS in control 

Jurkat T cells. Control Jurkat T cells were transfected with CD3ζ-mCherry and 

allowed to settle on anti-CD3/CD28 coated surfaces and recorded under TIRFm. 

Images were taken each 100 ms for 30 s (video mounted at 10 fps). Imaris tracking 

analysis and fluorescence images are shown.  

 

 

 Supplementary Movie 3. Tracking of CD3ζ-bearing vesicles at the IS in MAP4 

KD Jurkat T cells. MAP4 KD Jurkat T cells were transfected with CD3ζ-mCherry 

and allowed to settle on anti-CD3/CD28 coated surfaces and recorded under 

TIRFm. Images were taken each 100 ms for 30 s (video mounted at 10 fps). Imaris 

tracking analysis and fluorescence images are shown.  
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