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Abstract

Computer vision is the branch of artificial intelligence concerned with enabling

computers to understand images and videos. The fields of application are diverse

and solutions have been implemented to automatize different problems. Despite

some impressive achievements, computer vision applications undergo important

limitations if compared with human vision. Our objective is to understand the

reasons why computer vision results are often behind those of human vision.

We need to understand why we see what we see and how reliable is it. The

results of visual perception are a selection of statistical reflections of visual history

and not a veridical representation of the physical world. Our false sensation of

certainty is a consequence of a stable world, in which things change but maintain

a certain degree of invariance. Our visual system is able to detect these invariant

properties and relate them to represent the physical world.

Computer vision state-of-the-art methods classify sets of features to recognize

objects. Our thesis statement is that pattern classification cannot explain by

itself the variety of results from human vision. What is perceived is not only

a function of the elements on the image but also includes the knowledge of the

perceiver and what has been perceived before. We propose that perception is a

process of information gathering, which could be approached as a search problem,

and addressed by an intelligent agent.

We suggest that what is perceived are categories, which are sets of objects,

each of them defined by a set of constraints relating properties. Thus, any relation

of properties might be considered as the definition of a category, allowing to

categorize anything with a form. Different kinds of computer vision problems

can be approached by categorizing the whole without categorizing the parts.

Direct categorization of the whole is in many cases more reliable and efficient
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than an indirect one based on the comprehension of the categorization of the

parts. Machine visual systems adapt through a continuous process of integrating

the collected information.
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Resumen

La visión artificial es la rama de inteligencia artificial que se ocupa de permi-

tir que los ordenadores puedan comprender el contenido de imágenes y videos.

Los campos de aplicación son diversos y ya se han implementado soluciones para

automatizar diferentes tipos de problemas. A pesar de algunos logros impresio-

nantes, las aplicaciones de visión artificial sufren de importantes limitaciones en

comparación con la visión humana. Nuestro objetivo es comprender las razones

por las que los resultados de aplicaciones de visión artificial suelen estar por detrás

de los obtenidos por la visión humana.

Necesitamos comprender por qué vemos lo que vemos y su fiabilidad. Los

resultados de la percepción visual son una selección de reflexiones estad́ısticas

de la historia visual y no una representación veŕıdica del mundo f́ısico. Nuestra

falsa sensación de certeza es la consecuencia de un mundo estable, en el cual las

cosas cambian, pero también mantienen un cierto grado de invarianza. Nuestro

sistema visual es capaz de detectar estas propiedades invariantes y relacionarlas

para representar el mundo f́ısico.

Los métodos del estado del arte en visión artificial clasifican conjuntos de

caracteŕısticas para reconocer objetos. Nuestra tesis afirma que la clasificación

de patrones no puede explicar por śı sola la variedad de resultados que ofrece la

visión humana. Lo que se percibe no depende únicamente de los elementos de la

imagen sino que también depende del conocimiento del perceptor y de lo que ha

sido percibido con anterioridad. Proponemos que la percepción es un proceso de

recogida de información que puede enfocarse como un problema de búsqueda y

abordarse mediante agentes inteligentes.

Sugerimos que lo que se percibe son categoŕıas, las cuales son conjuntos de

caracteŕısticas, cada una definida por un conjunto de condiciones que relacionan
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propiedades. De esta forma, cualquier relación de propiedades puede consider-

arse como la definición de una categoŕıa, permitiendo categorizar cualquier cosa

con forma. Diferentes tipos de problemas de visión artificial se pueden abordar

mediante la categorización del todo sin categorizar las partes. La categorización

directa del todo es en muchas ocasiones más fiable y eficiente que la categorización

indirecta a través de la comprensión de la categorización de las partes. Los sis-

temas de percepción visual automática deben poder adaptarse a través de un

proceso continuo de integración de la información recopilada.
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Chapter 1

Introduction

The visual world is likely the main source of information for humans. We use it

to move around, to find food or friends, to avoid dangers or just to learn new

things. Representations of the visual world, paintings, pictures and more recently

video are an important part of our lives. People enjoy painting, collecting art,

visiting galleries, taking pictures or going to the cinema. We have successfully

developed tools to introduce these representations into computers, which can now

easily store, display or transmit them. Computers are in fact one of the main

tools to create or edit images, what is known as computer graphics.

Many movies include computer graphics achieving impressive results, which

would be difficult to reach by humans without the support of machines. On the

other hand something that healthy humans do effortlessly, understanding what

images represent, is still a big challenge for machines. Understanding the con-

tent of images is fundamental to implement image retrieval systems, automatize

surveillance tasks or to develop intelligent agents like self-driving cars. The re-

search field concerned with image understanding is referred to by different names,

computer vision, machine vision or visual perception. Some authors differenti-

ate between computer vision and machine vision (Davies [2008] p.13) but the

difference is questionable. For us the only difference will be image acquisition,

computer vision only deals with digital images while machine vision includes the

techniques for digitization. Unless stated otherwise, in this dissertation we will

use them indistinctly. In fact in many cases we would rather use machine visual

perception because it includes the word perception instead of vision. The mean-
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ing is the same, but vision is usually associated to sensors, and we will explore

the differences between sensors and perceptual systems.

Machine perception is usually related to artificial intelligence (AI), and this

dissertation seeks to better understand the relationship between them. At first

sight the concept of AI might seem easy to understand, AI is just about making

machines emulate human intelligence. The problem is that even though human

intelligence is something familiar for most people, the answer to the simplest

question What is intelligence? is not so simple. Instead of considering the nature

of intelligence, very often we just evaluate the intelligence of a machine by com-

paring it with the equivalent human actions. A machine that plays chess is likely

considered an intelligent machine, whereas one that cuts plastic pieces is not. In

fact the evaluation of a machine’s intelligence can change over time, for example

optical character readers used to be considered as AI programs in their beginning,

but when results reached sufficient reliability they lost their “intelligent status”

(Schank [1991]).

The example of optical character readers can be extrapolated to many appli-

cations of computer vision, whether it is an intelligent machine or not is usually

determined by how impressive the activity undertaken by the machine is. In this

dissertation we suggest that any machine able to perceive could be considered

an intelligent machine when perception is understood as a process of information

gathering. This PhD Thesis explores the fundamentals of vision to understand

how visual perception systems can be built to emulate or improve the results

given by human vision.

1.1 Computer vision

1.1.1 Applications

Computer vision is attracting much interest. Today it is likely the most active

research field within artificial intelligence. Maybe the main trigger for such a

hectic activity is the evolution of hardware, which enables working with images

in a way unseen before. Affordable computers can store massive amounts of

images and videos. The resolution of digital cameras is measured in millions of
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pixels. Even low-power CPUs are now able to reproduce high quality video on

mobile devices. Millions of images are taken and uploaded everyday. Video is

everywhere. Such an amount of visual information cannot remain inaccessible to

computers, it needs to be exploited.

Computer vision has applications in different fields like document analysis

(Cermeño et al. [2014a]; He & Schomaker [2015]; LeCun et al. [1989]), video

surveillance (Buch et al. [2011]; Cermeño et al. [2017b]; Hu et al. [2004]), food

quality evaluation (Sun [2016]), sports analysis (Moeslund et al. [2015]) or affec-

tive computing (Perez et al. [2014]; Picard [2000]). These applications are already

part of our daily life with products like business card readers 1, game consoles 2

or autonomous driving cars 3.

(a) Xbox Kinect (b) Business card reader

Figure 1.1: Computer vision applications

Such products have computer vision systems that basically fulfill one of the

following four functions:

• Object 4 detection

1www.abbyy.com
2www.xbox.com/es-ES/xbox-one/accessories/kinect
3www.tesla.com
4The word object should be understood in a broad sense, an object may be an animal, a

person or a face
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• Object tracking

• Scene parsing

• Scene classification

Object detection methods seek to find known objects within an image, while in

a video sequence tracking methods relate objects from a frame to the objects from

previous frames. Scene parsing methods are closely related to object detection,

however the latter only search for a set of known objects in the image, while the

former try to divide the image into regions associated with semantic categories

such as person, car, sky, grass etc. Object detection reports the position of the

object when it is found, while scene parsing reports a description of the scene.

Finally scene classification methods assign a label to an image or video sequence.

But how could a machine fulfill such functions ?

1.1.2 Techniques

Answers to the previous question are usually found in Digital Image Processing

and Pattern Recognition literature. The distance between image processing and

computer vision is not clear. Some of the most cited books in the field are

somehow based or consider a useful paradigm that divides computerized processes

into three types: low-level (early), mid-level (intermediate) and high-level (Davies

[2008]; Forsyth & Ponce [2003]; Gonzalez & Woods [2008]). Low-level vision

deals with image transformations, such as noise removal filters or morphological

operations like erode or dilation, and feature extraction, such as edge detection

or texture analysis. Mid-level vision is concerned with extracting information

about the images, such as shapes and motion. High-level vision involves pattern

recognition, establishing a relationship between image features and object or scene

features.

The nomenclature of the paradigm suggests the idea of sequential processing:

first low-level, then mid-level and finally high-level processing. Figure 1.2 repro-

duces a diagram from Szeliski [2010] describing the relationship between different

techniques in computer vision. It also suggests a sequential processing, segmen-

tation and feature detection connected from one side to image processing and to
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Figure 1.2: Relationship between images, geometry, and photometry, as well as
taxonomy of the topics covered in Szeliski [2010]

recognition on the other side, in what could be seen as three levels. However

the author warns that “this taxonomy should be taken with a large grain of salt,

as the processing and dependencies in this diagram are not strictly sequential”

(p.19).

1.2 Motivation of the Thesis

Eduardo Cermeño has worked in a company specialized in computer vision ap-

plications since 2004. Everyday, people and companies show their interest in

automatizing a wide range of tasks such as those involving vision, from qual-

ity verification to behavior analysis. For instance companies wish to know how

many people go into their shops, what are the most visited areas, how long do cus-

tomers have to wait in a queue before paying, even their mood when leaving the

shop. Human observers could collect information to answer all these questions,
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but could a machine do it? In this dissertation we deal with the fundamental

questions that need to be solved to understand how machines could emulate or

improve the results of human visual perception: what has to be perceived?, how

does a machine perceive it? and how do we build such a machine?

We bound the first question by considering it equivalent to could a machine

perceive everything that is perceived by a human? The answer to this question

requires knowledge about what humans are able to see. Answers to the second

one should propose a strategy for perceiving whatever has been answered in the

first question, and explain why such a strategy is appropriated.

Computer vision literature presents many techniques but does not explain

their role in the process of visual perception. For example, we know that segmen-

tation divides images into parts, but why should we need to divide an image into

parts ? Some authors consider in their books object recognition to be a high-

level process (Davies [2008]; Forsyth & Ponce [2003]), whereas others (Gonzalez

& Woods [2008]) consider it an intermediate process, but if we are interested in

scene classification why should we perform object recognition ? However paradox-

ical it may seem, we have not found an explicit computational theory for machine

visual perception, that explains what is computed and why. The same problem

was tackled by Marr [1982] for human vision. The way Marr [1982] approaches

vision has been very inspiring. The same questions and methodology used for

understanding human vision can be used to better understand computer vision.

Marr [1982] suggests that neurophysiological findings are not enough to un-

derstand human vision, the present Dissertation questions whether research in

new features or classifiers is sufficient to understand how a perceptual systems

comparable to human vision could be designed. At the beginning of the cen-

tury Viola & Jones [2001] and Lowe [2004] presented two promising methods

for extracting features for object recognition. In 2012, after the publication of

the dataset Imagenet (Deng et al. [2009]), a different approach was presented by

Krizhevsky et al. [2012], starting a new wave of methods based on convolutional

neural networks, that have surpassed previous state-of-the-art methods for object

recognition (Girshick et al. [2014]; He et al. [2016]; Sun & Ponce [2016]) and scene

parsing (Grangier et al. [2009]; Karpathy & Fei-Fei [2015]).

Very often machine visual perception is seen as a pattern recognition problem.
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If this were the case we would not be far away from the solution. Simonyan &

Zisserman [2015] achieves a top-5 error rate of 6.8 % in the Imagenet Large Scale

Visual Recognition Challenge - ILSVRC- (Russakovsky et al. [2015]). This means

that a proportion of 93.2 % of the images had their ground-truth label among a

set of 5 predictions given by their algorithm. The ILSVC test set has 100.000 im-

ages with 1000 categories covering plants, geological formations, natural objects,

sports, artifacts, fungus, people, animals, food etc.

However the reality is that we are not as close to finding a solution as these

results might let think. Real world applications very often go beyond object

recognition. People are able to perceive birds in the sky or in videos, even if they

are a few pixels in size. People are able to distinguish between a moving tree and

a human intruder, even under a costume. They are able to recognize the effects

of an illumination change, even if they have never seen a change like that before.

The present PhD Thesis is motivated by the experience acquired in a company

that develops computer vision applications and the will to explore fundamental

questions for which no answer has yet been found.

Russell & Norvig [2014] states that some influential founders of AI (Beal

& Winston [2009]; McCarthy [2007]; Nilsson [2005] “have expressed discontent

with the progress of AI”. They think that research in AI should focus less on

“ever improved versions of applications that are good for a specific task” and

“return to its roots”: “machines that think, that learn and that create” (p.27).

Our research is about machines that see, about understanding what is required

to make machine visual perception comparable to human vision. We are not

searching new methods for solving a particular task involving vision, nor a general

method to implement visual perception, we are searching for a theory that let

us explain why the results of such or such computer vision system is not able to

achieve the same results as human vision.

1.3 The Thesis

The Thesis developed in this dissertation proposes a theoretical general frame-

work for explaining which computations are required by machine visual perception

to achieve the results of human vision. It could be stated as follows:

7



Machine visual perception is an iterative heuristic process by which information

related to an image is collected. The process combines top-down and bottom-up

approaches to transform a set of pixels into a hierarchy of categories. Low level

features are computed to recognize what has been seen before, while high level

features are computed to comprehend what is been seen. A visual perception

system is an intelligent agent whose program has three basic operators: segmen-

tation, recognition and reasoning, and whose objective is to determine whether

an image or its parts satisfy the conditions of a set of target categories.

1.4 Outline of the dissertation

In order to understand how a machine could achieve the results of human vision,

the first step should be understanding the nature of those results. One of the

objectives of this dissertation is analyzing the main theories about human visual

perception. The neurophysiological basis of human vision is often present in

the introduction of books on computer vision, and has inspired several methods

applied in this area, such as Artificial Neural Networks (ANNs). The study of

neurons involved in visual perception shows how human vision is biologically

implemented but may not be enough to understand what is perceived or why this

implementation is appropriate. Neurophysiology is closely related to psychology,

the branch of science dealing both with mind and perception. We have reviewed

relevant works from the field of psychology in search of answers to questions like

“why do things look as they do?” (Koffka [1935]) or “why do we see what we do?”

(Purves & Lotto [2003]). Psychology analyzes the processes of the mind behind

vision and explain the logic of using such processes for vision, not only how they

could be implemented. Marr [1982] outlines these different levels of explanation

in table 1.1.

The second objective is to present a theoretical framework for explaining which

computations are required to achieve the results of human vision. Visual percep-

tion is approached as an information processing activity, of which we analyze both

the input and output. Based on this analysis we propose an algorithm with the

actions required to perform the transformation of the input into the output. The

theoretical framework deals with the levels of explanation called “Computational
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Computational theory Representation and
algorithm

Hardware implemen-
tation

What is the goal of
the computation, why
is it appropriate, and
what is the logic of the
strategy by which it
can be carried out?

How can this compu-
tational theory be im-
plemented? In partic-
ular, what is the rep-
resentation for the in-
put and output, and
what is the algorithm
for the transforma-
tion?

How can the represen-
tation and algorithms
be realized physically?

Table 1.1: The three levels at which any machine carrying out an information
processing task must be understood. After Marr [1982] p.25

theory” and “Representation and algorithm” in table 1.1. Then we review several

state-of-the-art methods from the literature used to implement computer vision

applications. We analyze the role that each of them could have in the scope of

our framework.

The PhD Thesis has been motivated by concerns arising from the development

of real world applications. We have selected four different types of application to

test the principles of our theory. The objective is not to find the best method

solving each problem, but to evaluate whether the application of these principles

leads to results comparable to human vision in a variety of applications, and

therefore evaluate their validity.

The dissertation is structured in five chapters, as follows:

• Chapter 1 introduces the topic of visual perception and gives the motiva-

tions, outline and contributions of this PhD Thesis.

• Chapter 2 reviews works related to visual perception from the fields of

neurophysiology and psychology, so that human vision results are better

understood.

• Chapter 3 presents a novel framework for machine visual perception. We

follow Marr [1982] scheme with three levels of explanation. We first describe
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a computational theory for vision, then a representation and algorithm, and

finally we review state-of-the-art methods to implement the fundamental

operations of the algorithm.

• Chapter 4 studies four applications of computer vision with different types

of perception: perception of activity, authorship, intrusion and aesthetics.

Human experts would likely suggest approaches based on high level features,

but in all the cases results comparable to those given by human vision can

be achieved without following the human-based suggestions.

• Chapter 5 concludes the dissertation summarizing the main results obtained

and outlining future research.

1.5 Research contributions

The research related with this PhD Dissertation yield the following contributions:

1.5.1 Articles

1.5.1.1 Learning crowd behavior for event recognition

This paper presents a new method for event recognition based on machine learning

techniques. One machine is trained per kind of event using color, texture and

shape features. Testing is performed on the PETS 2009 dataset. We evaluate

accuracy of our automatic system with six different kind of events and then

compare the results with human classification (Cermeño et al. [2013]).

1.5.1.2 Offline handwriting segmentation for writer identification

In this paper we present a new technique for off-line text-independent handwriting

analysis based on segmentation. Segmentation is a common step used in different

research works in order to generate connected components that will be processed

to extract features (geometry, concavity etc.). Our work focuses in the segmen-

tation process and the information that can be directly extracted from the way a

writer joins or separates ink connected components without need of analyzing the
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components themselves. The proposed multi-segmentation method shows good

results tested on its own with real documents from police corps database and

suggest an improved way to apply segmentation to other connected component

based systems (Cermeño et al. [2014a]).

1.5.1.3 Simulation of human opinions about calligraphy aesthetic

This paper proposes a method for simulating human opinions about graphical

artistic expressions like calligraphy using computers. Scanned images of hand-

writing texts from a large database are labeled as “beautiful writing” or “ugly

writing” by two persons based on their own likes. Our objective is to replicate

these opinions using machine learning techniques. Shape features are extracted

from the images in order to encode aesthetic principles. A classifier based on k-

nearest-neighbors algorithm is trained to automatically label images. The results

are promising since most of the different configurations of the system present

good performance. Both, method and feature selection results could be of use for

future work on aesthetic classification by computers (Perez et al. [2014]).

1.5.1.4 Intelligent video surveillance beyond robust background mod-

eling

The increasing number of video surveillance cameras is challenging video con-

trol systems. Different video analysis methods have effectively met the main

requirements from the industry of perimeter protection. High accuracy detection

systems are able to process real time video on affordable hardware. However

some problematic environments cause a massive number of false alerts. Many

approaches in the literature do not consider this kind of environments while oth-

ers use metrics that dilute their impact on results. A video surveillance solution

implemented as an intruder detector will repeat steadily the same false alerts

and can hardly be considered to be “intelligent”. We benefit from the observa-

tion that problematic environments only occur occasionally to propose a method

that manages directly these environments when they show up. Our approach is

based on machine learning and global features, bringing adaptability to the video

surveillance solution. Tests with thousands of hours of video show how good an
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intruder detector can perform but also how a simple fault in a camera can flood

a control center with alerts. The new proposal is able to learn and recognize

events such that alerts from problematic environments can be properly handled

(Cermeño et al. [2017b]).

1.5.1.5 Segmentation as a characteristic for writer identification

Forensic experts are able to identify the authorship of a document by analyzing

its handwriting. Computer vision methods have been used to automatize this

task. However, like for many other computer vision applications, segmentation

represents a problem. The challenge is to segment words into characters, such

that pattern recognition techniques can be used to classify them. Character

classification has proved to be a successful approach but automatic segmentation

very often shows poor results. In this work we show how segmentation can by itself

help to identify writers. Segmenting handwriting into connected components is

a simple and common step in writer identification methods, however those with

better results usually require to segment connected components into smaller units.

We propose a new framework for handwriting segmentation, in which instead of

using multiple segmentation techniques, we use several values for a segmentation

parameter. Our method is only based in connected components and correctly

identifies 92% of the authors of free-style handwritten documents (Cermeño et al.

[2014b]).

1.5.2 Patents

1.5.2.1 Method and device for change in illumination for vision sys-

tems

The invention relates to a method and device for the detection of changes in

illumination for vision systems between a digital image of an area and a digital

image of a background model of said region of study of the same size, wherein,

based on such images, at least one blob of a region which reflects the differences

between the background model and the current or detection image of the area is

selected by segmentation techniques, the spatial correlation between the pixels of
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the blob in the detection image and in the background model image being found.

According to the correlation with respect to a threshold value thereof, this change

is associated with a change in illumination. An implementation suitable for video

surveillance systems is provided together with the previous device (Gonzalez et al.

[2017]).

1.5.2.2 Video surveillance system based on the analysis of sequences

of images generated by events

This invention is framed in the field of video surveillance, that is, of activity or

presence detection technologies based on video analysis. More specifically, the

invention relates to a video surveillance system configured to perform precision

analysis of the captured images, wherein the analysis is applied to certain se-

quences of images or clips defined by different configurable events. The system

described in the invention further allows its combination with other traditional

video detection and processing systems, substantially improving their efficiency

and accuracy (Cermeño et al. [2017a]).
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Chapter 2

Related works

2.1 Physiological basis of vision

Before talking about pixels, frames, video or computing we will review some con-

cepts of the physiological basis of visual perception. Physiology is the branch of bi-

ology dealing with the functions and activities of living organisms and their parts,

including all physical and chemical processes. Trying to understand the processes

behind the transformation of a subset of electromagnetic radiation (light) into

information treatable by our brain will give us ideas or a reference for a better

achievement of our work. In the past, neurophysiology has successfully inspired

some of most important methods in pattern recognition (LeCun et al. [2015]).

Our task has been greatly supported by excellent publications that either

introduce or bring together the most important findings from biologists and neu-

rophysiologists in the field of visual perception. Yantis [2001] has collected some

of the best articles written about vision in the book “Visual Perception: Essential

reading”. “Basic Vision: an introduction to visual perception” (Snowden et al.

[2006]) is an enjoyable and easy to read book full of practical images that let the

reader experience some of the visual phenomena (ex: Troxler fading). “Visual

Perception: Physiology, Psychology and Ecology” (Bruce & Green [1990]) is the

main reference for both most of the section and of the present chapter. Yantis

[2001] and Snowden et al. [2006] also cover ground for other sections, but in Bruce

& Green [1990] we found many of ideas for the approach we were looking for.
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2.1.1 Light

We will introduce the concept of vision along with the definition of light. Light

is one form of energy that is reflected or emitted from objects in the form of

electrical and magnetic waves that can travel through space with a wavelenght of

400 to 700 nm 2.1, which is the bandwidth perceived by most people. We could

say that light is defined by means of the limitations of the human visual system.

Figure 2.1: Light spectrum

Objects, animals or people emit an electromagnetic radiation called thermal

radiation if their temperature is above absolut zero. Most of the times we do not

see this radiation because its wavelenght (14.000 nm or more) is far away from

the visible bandwidth. If you heat up an object its themal radiation changes.

Around 798K a solid or liquid starts to glow with a middly dull red color. At

higher temperatures the substance becomes brighter and its color changes from

red towards white and finally blue. Incandescent light bulbs or lamps are an

example of every day use of this reaction. A wire filament is heated to a high

temperature (2500K or more) until it glows emiting visible light (visible is redun-

dant when used with light but we may use it to avoid confusions). A detailed

description about the relation between heat and light can be found in the classic

book Wickenden [1910].

Objects around us are not at 2500K but 270K to 315K (-3 to 42 degrees

celsius), their thermal radiation is out of the visible bandwidth, so it is not that

kind of energy that we usually perceive but instead we usually perceive the light

reflected by matter.

When light passes through a medium, even transparent (e.g.: air or water),
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photons collide with particles of matter giving up their energy and disappearing

in a process called absorption. Absorption is different in water (stronger) than

in air. Longer wavelenghts are absorbed more strongly, making deeper water

progressively bluer. If light passes through a transparent or translucent medium

its energy is not absorbed but as a result of the change of medium rays may

change their direction in a phenomena called refraction. When light reaches an

opaque surface, some of its energy is absorbed and some of it is reflected. Black

surfaces for example absorb most of the light falling on it and reflect little. Silvery

surfaces do the opposite and reflect most of the light.

In general surfaces change the spectral composition of the light reflected from

them by absorbing some wavelenghts more strongly than others. The texture of

a surface has an important effect on how coherently light is reflected. Smooth

surfaces reflect light uniformly while rougher ones will reflect light with different

angles in an incoherent way.

2.1.2 The eye

The organ in charge of catching and converting light energy into neural signals

is the eye. The main elements of the eye are pupil, iris, cornea, lens and retina.

Pupil is the aperture of the eye allowing light to strike the retina. The iris is a

circular structure responsible for controlling the diameter and size of the pupil

thus the amount of light that reaches the retina. The cornea is the transparent

front part of the eye that covers iris, pupil and aqueous humour. The lens is

also a transparent structure that along with the cornea helps to refract light

to be focused on the retina. It is clear that the retina plays a key role in the

transduction of light, so in this section we will focus on it.

The retina is a complex structure composed of several layers of neurons, some

of which are sensitive to light, the photoreceptors cells. There are mainly two

types of photoreceptors in the human eye, rods and cones. Rods respond very well

to extremely dim light and are therefore very useful in dim conditions (night).

When the rods are exposed to high levels of light for a prolonged period they

become desensitized because of saturation. The rod system, also called scotopic,

is useless in full daylight.
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Figure 2.2: Human eye with a schematic enlargement of the retina ( http://
webvision.med.utah.edu/ )

On the other hand the cone (or photopic) system operates best at greater

light intensities. The photopic system is made of three types of cones. The first

type sometimes called “red” or “L” cones are more sensitive to long wavelenghts,

the second type called “green” or “M” are most sensitive to middle wavelenghts

while “blue” or “S” cones are more sensitive to shorter wavelenghts. Our color

vision is possible thanks to these different types of cones.

Together scotopic and photopic systems enable us to detect lights that differ

in amount by many orders of magnitude. Human vision is able to handle ap-

proximately seven log units of light intensity, but at any one time it is effective

over a range of only one or two log units. Our visual system can adapt itself

to cover higher or lower ranges in a process called light adaptation. When light

intensity suddenly increases, photoreceptors impulses rise rapidly and then fall

to a steady level. When a photoreceptor is adapted to light and then left in

darkness its sensitivity to light gradually rises. The process of dark adaptation

is much slower than light adaptation. As a result of these processes the output

of photoreceptors is quite stable over a wide range of light intensities. Sudden

changes in light intensity like an object occluding a light source, a shadow etc.
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will activate the photoreceptors. This way gradual changes in the environment

such as diurnal fluctuation in light level are somehow filtered while events that

could be relevant (prey or predator appearance) have a clear impact in the neural

activity of the retina. The retina, visual adaptation and photoreceptors are well

covered in Dowling [1987].

Hartline et al. [1956] demonstrates that the responses of the photoreceptors

interact with one another through a process of lateral inhibition. Each cell in-

hibits the firing rate of those in a roughly circular area around it, thus enhancing

the contrast in light patterns and sharpening the perception of shapes. Lat-

eral inhibition stands out rapid spatial changes, very much like adaptation gives

prominence to temporal changes in light intensities.

Another layer of neurons in the retina is made of cells of different sizes called

retinal ganglion cells. Larger ones are refered to as M cells (M for magnocellular)

while smaller ones are called P cells (P for parvocellular). Ganglion cells receive

information from photoreceptors which synapse with it. P cells activity depends

on the wavelength of the light reaching the retina, integrating the information

from the red and green cones. For example some P cells are excited by green

cones and inhibited by red cones. On the other hand M cells seem to mix the

signals from different cones (Snowden et al. [2006]). It seems that P neurons in

the retina are concerned with color while M neurons process information about

motion. We will get back to this idea in the next section.

Physiological measurements on the ganglion cells show that a spot of light

shining on a small part of the retina will only modify the activity of a few ganglion

cells while others present no changes. We define the receptive field of a neuron in

the visual system as the area on the retina over which light stimulus can modify

its behaviour. Kuffler [1953] shows that the effect of a spot of light on a receptive

field depends on whether the light falls in a small circular area in the center

of the field or in the surrounding area. There are two types of this receptive

field, called “ON-centre” and “OFF-centre”. Snowden et al. [2006] defines an

ON-centre unit as one whose firing rate increases when light hits its centre and

decreases when light hits the surrounding, and an OFF-centre unit as one whose

firing rate decreases when light hits its centre and increases when light hits the

surrounding (figure 2.3).
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Figure 2.3: On and Off center receptive fields respond to light stimulus (Wikime-
dia Commons)

What happens if we stimulate both center and surrounding? Together these

inputs tend to cancel out so there is is little or no change in the response of the

cell. In order to get a response from a cell we need to have a change in the light

occurring within the receptive field. Retinal ganglion cells only respond if there

are changes in the luminance profile within the receptive field, such as an edge

and do not respond to changes in the overall luminance of the whole visual field.

2.1.3 Visual pathways

Ganglion cell axons compose the optic nerve which is in charge to transmit the

visual information from the retina to the brain. The optic nerve from one eye

leaves it at the blind spot and converge with the optic nerve from the other eye

in the optic chiasm. At this stage some fibers cross over to the other side of the
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brain and the optic nerve changes its name to optic tract.

The optic tract reaches the thalamus that among other functions relays sen-

sory information from the retina to the cerebral cortex. With respect to the

visual system the relevant relay is the lateral geniculate nucleus (LGN). LGN has

a distinctive structure made of six layers of neurons, three receive input from one

eye and the other three from the other. There are two magnocellular layers and

four parvocellular layers. The magno layers are contacted by the axons of the M

cells while parvo layers are contacted by P cells from the retina (Purves & Lotto

[2003]). This way of routing information from the retina to the LGN defines two

pathways, sometimes referred to as M and P pathways.

Livingstone & Hubel [1987] presents evidences that cells in the P and M

pathways handle different visual information such as color properties, contrast

sensitivity, spatial resolution and temporal properties. For example “over 80%

of P neurons show color-opponency... while M neurons receive summating input

from the red and green cones”. The P pathway seems to be more suited for

encoding color. M cells are more sensitive than P cells to luminance contrast

and have a shorter latency. The M pathway seems to be more suited to process

information about changes in the stimulus, like motion or flickering. The existence

of these differentiated pathways suggests some kind of parallel processing in the

visual system. Stone [2013] treats this topic in depth.

Another interesting feature of the visual pathways is the retinopic mapping of

stimulus. Light from two adjacent parts of the visual world reflect on to adjacent

segments of photoreceptors in the retina, that project into adjacent ganglion

cells that are connected with adjacent LGN cells forming an orderly map of the

visual world. LGN cells have, like retinal ganglion cells, concentric receptive fields

(Bruce & Green [1990] p.49-50).

On the other hand, there is an important difference between the retinal gan-

glion and the LGN cells. The ones in the LGN receive its biggest input from the

cortex, the area where LGN sends its output. So the biggest input to the LGN

comes “top-down” rather than “bottom-up”. This has led to the idea that the

LGN might be important in filtering what information gets through to the cortex

(Snowden et al. [2006] p.39 ).

The primary visual cortex, also called striate cortex or just V1 is the largest
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of the visual areas and clearly very important for vision. Here again we find that

the retinopic mapping from LGN is present. Things that are close together in

the visual scene are imaged on neighboring areas of the retina. They will be

processed by neighboring cells in the LGN and will be analyzed by neighboring

neurons of the visual cortex.

Hubel & Wiesel [1959] describes two classes of neurons in the cortex with

receptive fields behaving in a different way than the ones we saw before: simple

and complex cells. Simple cells perform linear spatial summation of light intensity

in their fields. Their responses to stationary patterns of light depend on the

position and orientation of the stimulus. They present their maximum response

to a bar or edge oriented at a particular angle to the visual axis 2.4.

Figure 2.4: Simple cell response to different orientations of a stimuli after Hubel
& Wiesel [1968]

Complex cells are also more responsive to orientated lines but do not show

discreate ON and OFF regions, so if a small spot of light strikes a point in the

receptive field the cell may give both ON and OFF output. Hubel and Wiesel

proposed that complex cells could be built with a combination of simpe cells

with connected outputs. The complex cell could operate with these outputs, for

example an OR operation. A third class of cell described by the authors are the
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hypercomplex cells, which are also sensitive to the size of the bar. If these cells

belong to a third class or are just a subtype of complex cells has been argued and

even the authors of Hubel & Wiesel [2005] correct themselves for some of their

assumptions from 1959.

In Hubel & Wiesel [1962] visual pathways are presented as a continuous pro-

cess with several levels where each level requires more parameters in order to

influence the firing of its cells. This hierarchical organization begins in the retina

where a spot of light with correct position, size and intensity will make a gan-

glion cell fire. Geniculate cells appear to be more sensitive to the size of the spot,

demanding something closer to the optimum to fire. When the information from

the LGN reaches the simple cells from the cortex requirements are increased and

a specific orientation is necessary.

When we reach complex cells, refered to as “higher-order neurons” by the

authors, responses become less selective. Complex cells may be concerned with

stimulus orientation but they may not be so demanding towards the stimulus

position: “Their responsiveness to the abstraction that we call orientation is thus

generalized over a considerable retinal area” (Hubel & Wiesel [1962]).

Through this review of works on how visual stimulus are treated by neurons

from the retina to the cortex we found several interesting concepts like “day

and night” systems, adaptation , edge detectors, parallel processing, hierarchical

organization, specialization or generalization. We mentioned LGN or V1, but

“forgot” about many other areas of the brain that deal with vision (superior

culliculus, V2, V3 etc). We consider that traveling further on the visual pathway

is out of the scope of this work. Actually a complete physiological description

of vision is still missing, even if a lot has been, and is being done to better

understand how our brain works.

2.2 Theories about visual perception

Trying to understand perception by studying only neurons is like try-

ing to understand bird flight by studying only feathers: it just cannot

be done. In order to study bird flight we have to understand aerody-

namics; only then do the structure of feathers and the different shapes
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of bird wings make sense (Marr [1982] p.27).

Marr’s image of bird flight stands out the difficulty to understand vision only

through the analysis of neural activity. In this section we will present some of

the most important theories and hypothesis about visual perception. Some of

them do try to fill the gap between our subjective perceptions and the activity

of our neurons, whereas others give more importance to different psychological

hypotheses. Reading arguments defending one theory and rejecting others has

been very instructive. In this section we have tried to present the main ideas and

concepts from some of the most relevant scientists that have worked in the field

of perception. This does not mean that we agree or disagree with them, just that

we find them interesting to define a theory for machine visual perception.

2.2.1 Single neuron hypothesis

Barlow [1972] pushes further the idea of neuron specialisation and proposes that

“our perceptions are caused by the activity of a rather small number of neurons

selected from a very large population of predominantly silent cells. The activity

of each single cell is thus an important perceptual event”. In a previous work

with frogs Barlow [1953] shows that a black disc moving rapidly to and fro within

the receptive field of one particular type of ganglion cell caused a strong response

that could be maintained as long as the movement was continued. When the

same stimulus was presented to an intact frog, there was a sudden reaction of a

jump and snap. This reaction suggests that Barlow had found a neuron behaving

as a “bug detector”, and that this “bug detector” is directly a retinal cell, not a

“higher-order” cell in the cortex. Lettvin et al. [1959] suggests that actually there

are four different classes of specialised neurons in the frog’s retina whose activation

is nearly independent of the general illumination: contrast, convexity, movement

and dimming detectors. The second class of neuron “convexity detector” has the

same behavior that the “bug detector” described by Barlow [1953].

In general, Barlow [1972] considers neuron activities as thought processes,

able to discriminate depth of objects, ignore irrelevant causes of variation, give

prominence to what is relevant or detect patterns. Perret et al. [1982] presents

the response of cells in the superior temporal sulcus (STS) to face patterns, either
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real, projected, human or rhesus monkey faces. Among 497 neurones, 48 seemed

to be activated by faces, since the response to face patterns was two to ten times

larger than the response to gratings, simple geometrical stimuli or complex 3D

objects. Barlow [1969] uses the concept of “trigger features” to refer to specific

stimuli that make a cell fire.

In order to get a deeper understanding on how these neurons react to face

features, Perret et al. [1982] covers some parts of the faces or presented parts

isolated (eyes, mouth, hair etc.). The results show that some cells were activated

by features of the face as well as they were by the whole face. Different cells were

activated by different features, and combined features had stronger responses

than any of them tested individually. The authors suggest that they represent

a high stage in visual processing of faces, and stick to the theory that complex

patterns can be coded at a single cell level.

Sherrington [1941] uses the notion of “one ultimate pontificial nerve-cell, ...

the climax of the whole system integration” in opposition to the notion of mind

as “million-fold democracy whose each unit is a cell”, which he believed was

more accurate. However the “pontificial cell” is an interesting concept for us.

Barlow [1972] proposes that it should be replaced by “cardinal cells” because

“the whole of subjective experience at any one time must correspond to a specific

combination of active cells. Among all the cardinals only a few speak at once”.

The concept of “pontificial cell” means that for every object or scene that can be

recognized there must be a single cell specialised to do it. Since our perception

usually includes several objects or scenes, several cells would be required, thus

the “cardinal cells”. We could easily find the parallelism between “cardinal cells”

and the group of specialised neurons involved in the visual processing of faces

described by Perret et al. [1982].

The “pontificial cell” concept has several weaknesses, for example the amount

of possible perceptions is probably larger than the number of neurons in the brain.

A second problem would be the variations of some percepts, for example people

faces. Lettvin used “grandmother cell” to refer to a hypothetical cell that would

be able to recognise all views of grandmother’s face. This hypothetical cell should

be able to cope with different poses, hair-dresses, glasses, age effects etc. A group

of cells sensitive to features, like the ones described by Perret et al. [1982], or even
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a group of “cardinal cells” able to learn the different percepts the grandmother’s

face could create, are likely better to succced in the task of recognition than just

a “grandmother cell”. Quiroga et al. [2008] rejects the idea of the “grandmother

cell” and suggest a very sparse representation of information.

Quiroga et al. [2005] reports neurons that are selectively activated by different

pictures of people, landmarks, objects or letter strings. For example they found

a neuron that fires to pictures of the Eiffel Tower and Tower of Pisa but not to

other landmarks, or another cell that fires to Jennifer Aniston and Lisa Kudrow

pictures, both actresses in TV series “Friends”. In the words of the authors

“results suggest an invariant, sparse and explicit code, which might be important

in the transformation of complex visual percepts into long-term and more abstract

memories.”

2.2.2 Computational theory of vision

“The transformation of complex visual percepts into long-term and more abstract

memories” could be handled by “a complex information-processing system”. The

last quotation is the title of the second section in the first chapter of Marr [1982],

which approaches vision as a complex information-processing task that “produces

from images of the external world a description that is useful to the viewer and

not cluttered with irrelevant information” (Marr [1982] p.31). Marr is the father

of the theory we present in this section, and we are lucky to have most of his

research collected and clearly explained in his book Vision. That is why we will

continuously refer to it through all the section.

Marr proposes that understanding vision requires questions like “why” and

“how”. To him, scientists in the 1950s and 1960s put most of the efforts in

describing the behavior of cells. Barlow [1953] presents neurons that behave like

bug detectors, Perret et al. [1982] describes neurons that look like face detectors or

Gross et al. [1972] who shows neurons that could play the role of hand detectors,

but these findings would not explain “why or even how such a thing [detector]

may be constructed from the outputs of previously discovered cells” (Marr [1982]

p.15).

According to Marr [1982] p.19:
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there must exist an additional level of understanding at which the

character of the information-processing tasks carried out during per-

ception are analyzed and understood in a way that is independent

of the particular mechanisms and structures that implement them in

our heads. This was what was missing - the analysis of the problem

as an information-processing task. Such analysis does not usurp an

understanding at the other levels - of neuron or of computer programs

- but it is a necessary complement to them, since without it there can

be no real understanding of the function of all those neurons.

If we replace “neurons” by “computer vision techniques” we find one of the

motivations of our thesis (1.2). Without a high-level analysis of the problem of

perception we cannot really understand why we should use such or such technique

to build computer vision systems.

Marr introduces a “new level” of analysis of the “problem”: the computation

theory level, which is a complement to other levels: representation and algorithm,

and hardware implementation. The original definition of the three levels is in-

cluded in figure 1.1. In these terms, neural activity description would fall in the

“hardware implementation” level. Neurophysiology research usually would be re-

lated to this level, however some findings could help to understand the type of

representation being used. The author underlines the importance to “have a clear

idea about what information needs to be represented and what processes need

to be implemented” before making inferences from neurophysiological findings

about algorithms and representations.

The concepts “representation” and “process” have several pages dedicated

in Marr [1982] p.20-24. Representation is important to solve problems, Marr

uses the example of roman and arabic numeral systems which both represent

numbers. The effort required to multiply arabic numbers (e.g.: 1240 x 349) is

lower than the one required to multiply roman numbers (XXVII x CXXI). We

will discuss about representation in next chapters, since it is indeed a big issue

for any computer program and even bigger for one related with machine vision.

An algorithm requires representation for its input and for the output, which can

be the same for both, or not.

Processes in visual perception must derive properties of the world from images
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of it. A pattern of light could be a representation of the visual world in a particular

moment. The neural response from the photoreceptors in the retina could be

another one. The transformation of light into nerve impulses is a process where

an electromagnetic representation of a scene is transformed into an electrical one.

But as we mentioned before, for Marr the key point, and also the missing point,

was the top level, a computational theory for vision, since “the computations

that underlie perception depends more upon the computational problems that

have to be solved than upon the particular hardware in which their solutions are

implemented” (p.27).

So, what is the “computational problems that we have to solve” in human

vision? One of the best answers we find in the book could be “building a de-

scription of the shapes and positions of things from images” (p.36). We underline

“human vision” because Marr judges his approach good enough to understand

vision from different animals, not only humans. The main idea is that vision is

used for different purposes by the different animals, so different representations

and processes would be necessary to understand their vision. For example, Marr

suggests that a housefly may not have “any explicit representation of the visual

world around him- no true conception of a surface, for example, but just a few

triggers and some specifically fly-centered parameters” (p.34). Humans do have

an explicit representation of the visual world, and thus need vision to give a

description of shapes and positions of the things from images.

Most chapters of the book (2 to 5) describe in detail a representational frame-

work for deriving shape from images and answer the question Marr considers

necessary to understand human vision completely:

what kind of information does the human visual system represent,

what kind of computations does it perform to obtain this informa-

tion, and why? How does it represent this information, and how are

the real computations performed and with what algorithms? Once

these questions have been answered, we can finally ask, how are these

specific representations and algorithms implemented in neural ma-

chinery? (Marr [1982] p.99)

In the next chapter (3) we will propose answers to all these questions for
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machine visual perception systems.

Table 2.1 summarizes the overall framework. We will not get into a detailed

description of all the processes and representions introduced by Marr [1982]. How-

ever we want to present some extra relevant concepts treated by the author. The

first one is modularity. Every computer scientist knows that a large problem

should be addresed by solving smaller problems. If these smaller problems can be

solved by independant modules, the result would be easier to debug and improve.

Marr [1982] (p.102) enumerates these advantages and incorporates “the principle

of modular design” to the processes described for vision understanding: “The

existence of modular organization in the human visual processing proves that dif-

ferent types of information can be analyzed in relative isolation”. Following this

principle Marr presents computational theories for different decoding processes

like stereopsis, directional selectivity, structure from apparent motion, depth from

optical flow, surface orientation from surface contours, surface orientation from

surface texture, shape from shading, photometric stereo or light and color as an

approximation to reflectance.

The principle of modularity is applied in the different stages of the represen-

tational framework (2.1), for example in the 3D model representation (p.313).

According to the author “recognition involves two things: a collection of stored

3D model descriptions and various indexes into the collection that allow a newly

derived description to be associated with a description in the collection” (p. 318).

In his theory there are three indexes. With the first one, called specific, 3D mod-

els without component decomposition are matched, then, in the next level details

about components are required to finally find the correct 3D model. The adjunct

index provides access to 3D models for its components based on their locations,

orientations and relative sizes. The third index, called parent index uses compo-

nent recognition to recognize the whole shape (ex: recognizing horse legs provides

access to horse shape).

The last point we wish to outline are “constraints” or rules. When Marr

introduces the concept “computational theory” he states that

its important features are: (1) that it contains separate arguments

about what is computed and why, and (2) that the resulting operation
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Name Purpose Primitives
Image(s) Represents intensity Intensity value at each point

in the image

Primal sketch Makes explicit important
information about the two-
dimensional image, primar-
ily the intensity changes
there and their geometrical
distribution and organiza-
tion.

Zero-crossing
Blobs
Terminations and disconti-
nuities
Edge segments
Virtual lines
Groups
Curvilinear organization
Boundaries

21/2-D sketch Makes explicit the orienta-
tion and rough depth of the
visible surfaces, and con-
tours of discontinuities in
these quantities in a viewer-
centered coordinate frame.

Local surface orientation
(the “needles” primitives)
Distance from viewer
Discontinuities in depth
Discontinuities in surface
orientation

3-D model repre-
sentation

Describes shapes and their
spatial organization in an
object-centered coordinate
frame, using a modular hier-
archical representation that
includes volumetric prim-
itives(i.e., primitives that
represent the volume of
space that a shape occupies)
as well as surface primitives.

3-D models arranged hierar-
chically, each one based on
a spatial configuration of a
few sticks or axes, to which
volumetric or surface shape
primitives are attached.

Table 2.1: Representational framework for deriving shape based on the original
table by Marr [1982]
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is defined uniquely by the constraints it has to satisfy. In the theory

of visual processes, the underlying task is to reliably derive properties

of the world from images of it; the business of isolating constraints

that are both powerful enough to allow a process to be defined and

generally true of the world is a central theme of our inquiry (Marr

[1982] p.23).

The first part of the quotation “resulting operation is defined uniquely by the

constraints it has to satisfy” introduces the idea of constraint-based programming,

which is “to solve problems by simply stating constraints (conditions, properties)

which must be satisfied by a solution of the problem” (Fruhwirth & Abdennad-

her [2003] p.2). Representations and processes are designed by constraints and

assumptions (Marr [1982] p.43 & p.267). It seems that the whole “problem” of

vision could be addressed by means of a modular constraint solving approach.

2.2.3 The ecological approach to visual perception

In perception, perhaps the nearest anyone came to the level of

computational theory was Gibson (Marr [1982] p.29).

The theory of information pickup purports to be an alternative to

the traditional theories of perception. It differs from them all (Gibson

[1986] p.251).

In this section we will present the “Ecological approach to visual perception”

introduced by Gibson and explained in detail in his book “The Ecological Ap-

proach to Visual Perception” originally published in 1979. For this study we have

used a latter publication: Gibson [1986]. Our introductory paragraph shows how

Marr and Gibson did not agree even in their disagreement. Marr considers the

ecological approach to be very close to the computational theory while Gibson

strongly rejects any information processing based theory. Some works like Bruce

& Green [1990] suggest that the ecological approach could be considered at a

more global level of analysis than the computational. From the point of view of

machine perception, Gibson’s works provide useful ideas that perfectly fit within

Marr’s framework.
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For Gibson “perceiving is an achievement of the individual, not an appearance

in the theater of his conciousness” (Gibson [1986] p.239). He rejects the idea that

vision is based on processes like recognition, interpretation, storage or retrieval of

ideas, applied over an image (representation) in the brain. According to Gibson

we do not perceive color, form, location, time or motion (Gibson [1986] p.85),

when we “see” objects, places or events, we are perceiving what these things

afford, the so called “affordances”. A house could afford “sleeping” or “staying

warm”, an apple “eating” or “throwing”. An affordance is the opportunity for

action provided by a particular object or environment. But how do we perceive

these affordances? In Gibson’s approach this is done by continuously picking up

information from the ambient optic array, that is the structure arrangement of

light with respect to a point of observation. In other words, the spatial pattern

of light reflected by textures from different surfaces. To better define the concept

of picking up information we use Gibson’s own words.

Picking up information is not to be thought of as a case of commu-

nicating. The world does not speak to the observer. Animals and

humans communicate with cries, gestures, speech, pictures, writing

and television but we cannot hope to undertand perception in terms

of these channels; it is quite the other way around. Words and pic-

tures convey infomation, carry it or transmit it, but the information

in the sea of energy around each of us, luminous or mechanical or

chemical energy is not conveyed. It is simply there. The assumption

that information can be transmitted and the assumption that it can

be stored are appropriate for the theory of communication, not for

the theory of perception (Gibson [1986] p.242).

This description attacks other theories’ basis, starting with the concept of

information. If information cannot be transmitted or stored the different repre-

sentations described by Marr would not make sense. Gibson’s theory states that

we do not have to process any kind of information because the information is

already there, in the structure of light. When we “perceive” we directly pick up

this information. Gibson uses the word information to refer to a “specification of
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the observers’s environment not to the specification of the observers’s receptors

or sense organs” (p.242).

Instead of a sense, the theory of information pickup requires a perceptual

system. Gibson underlines that a perceptual system is active whereas a sense is

passive. A sense has receptors, a perceptual system is made of organs, in the

case of the perceptual system, it would include lens, pupil, chamber, retina in

the first level, eye muscles, mobile head etc. in the following levels up to the

body itself, whose movements change the optic array. The perceptual system can

orient, explore, investigate, adjust, optimize, resonate, extract and come to an

equilibrium.

Several interesting ideas follow the “active” character of a perceptual system.

In the case of senses, attention is something that can be consciously focused,

while in the perceptual system it is a skill than can be educated (p.246). We

could think about examples for this assertion. Why do people that study, repair

or sell some kind of product (e.g.: a toaster) usually notice its presence while

other people do not? Even if both can recognize the product without problems.

It can be observed that the perceptual system of the one working with the product

is more educated to perceive it. In the words of Gibson, the perceptual system

“has become sensitized”, this happens when it is attuned to a certain sort of

information.

We already mentioned that a perceptual system can be adjusted, optimized

or attuned. It does not require memory. Gibson rejects the idea of memory as

the bridge between the past and the present, the assumption that past ceases

to exist unless it is preserved in memory, or the existence of images or pictures

representing the past stored somewhere. Instead of storing images of the past,

Gibson proposes that recognition is done thanks to a perceptual system that

resonates to invariants of the structure of light. These propositions have been

successfully implemented with ANN (Duda et al. [2012]), patterns can be stored

by modifying the parameters of an ANN.

The information a child uses to identify his mother despite the different figures

she may have in the optic array are features of her (eyes, mouth, hair etc.) that are

invariant to a certain degree. In the ecological approach invariants refer to some

measure of the structure of light reflected from an object, a scene or an event that
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remains constant while other measures vary. In Gibson’s words, invariants specify

the persistence of the environment. According to him everything in the world

persists in some respects and changes in others. In order to perceive persistence

and change we pick up invariants of the structure of the ambient optic array.

The concept of invariance is somehow loose. There are invariants specifying

every particular face, landscape, painting, animal, place etc. In fact, Gibson’s

definition of abstraction is “invariance detection across objects” (p.249). As we

pointed before (1.2) finding robust features has been one of the tasks, that has

attracted more attention in the field of image recognition. In fact results suggest

that such invariants can successfully be extracted (Simonyan & Zisserman [2015]).

The theory of picking up information offers more interesting ideas. For ex-

ample, information in the ambient light is inexhaustible. “A perceiver can keep

on noticing facts about the world she lives in to the end of her life without ever

reaching a limit” (p.243). We think it should be easy for any reader to find his

own example of noticing something that has been there for years, just in front of

his eyes. Our perception changes, not only because of changes in the environment

but also in ourselves. The same object may be perceived differently depending

on factors such as necessity. The ecological approach to vision states that all the

information is there and we continuously are picking up parts of it. Even if the

same information is available two different persons will pick up different parts.

This is a nice introduction to the fact that different people have different percep-

tions in the same situation. Using the ecological approach terms, different people

may have perceptual systems that have been attuned differently and resonate in

different ways to the invariants of the optic array.

2.2.4 Gestalt laws of perceptual organization

Invariance is the main difference between Gibson’s concept of affordance and the

concept from which it derives, Koffka’s “demand character”.

The post-box has a demand character only when the observer needs to

mail a letter. He is attracted to it when he has to post, not otherwise.

The value of something was assumed to change as the need of the

observer changed (Gibson [1986] p.138-139).
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Contrary to “demand character”, affordances are invariant so they are al-

ways there, even if the observer does not perceive them. In this section we will

leave Gibson’s terms and focus on the Gestalt psychologists’ ideas, who not only

influenced him but many others, including Marr.

Not surprisingly, we will start by one of the “founders” of the Gestalt school:

Koffka. Koffka [1935] presents the idea of a prescientific stage where man would

behave as the situation tells him to behave: “fruit says ’Eat me’; water says

’Drink me’; thunder says, ’Fear me’ and woman says, ’Love me’” (p.7). Accord-

ing to Koffka man has learned to “distrust what things told him” and find the

errors in his original world based on knowledge of individual things. He opposes

this knowledge to the scientific knowledge resulting from a new activity called

thinking. For the moment we will look to the ideas of “error” and “distrust”,

avoiding other interesting considerations that arise from “direct knowledge” ver-

sus “scientific knowledge”. German and romance languages offer different words

for each type of knowledge. Direct knowledge could be associated with “Cogni-

tionis” in latin and “Kenntnis” in German, while scientific knowledge could be

“Sapientae” in latin and “Wissen” in German.

A false or misleading perception is called illusion. Figure 2.5 includes two

examples. In the first case (a) we have two lines with objectively the same length

but one appear to be longer that the other. In the second case (b) we perceive a

white triangle that does not exist.

As we can see, sometimes, our perception is wrong, the information catched by

our visual system does not correspond to reality. Other times our visual system

can get more than one perception from the same stimulus, a well known example

is E. Rubin’s vase (figure 2.6). The picture can be seen either as a pair of black

faces over a white background or as a white vase over a black background, but

both cannot be perceived at the same time. In this picture the definition of

“ground” and “figure” is ambiguous. The work about figure and ground Rubin

[1958] proposes that a common border of two fields determines the perception of

a figure and background, being the figure the field more affected by the “shaping

effect”. According to Rubin fields experienced as figures are richer, with a more

differentiated structure, with greater structural solidity of the color and appear

to be closer to the viewer than the field experienced as background. If we look at
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(a) The Mller-Lyer Illusion (b) The Kanizsa triangle

Figure 2.5: Example of illusions

figure 2.6 and perceive a vase, we could appreciate the details of its shape, but if

we try to look at the shape of the background our perception will shift and we

will see two faces and lose the vision of the vase.

Figure 2.6: The picture devised by E. Rubin in 1915

Ambiguous perceptions are not common, most of the times we are certain of

what we “see”. We perceive an organised and stable world rather than shifting

interpretations of it. In order to explain how we organise the different elements
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perceived from a visual scene, the Gestalt perceptual organisation relies on the

“law of Prägnanz”, also called “law of good form” or the “good Gestalt principle”.

According to this law dominant percepts are the ones with elements grouped

together in a simple, stable, regular... ordered way. The concept was introduced

by Wertheimer [1938] and refined with a number of principles or factors:

• Proximity

• Similarity

• Common Fate (trends of motion)

• Closure (filling gaps of figures)

• Direction

• Objective set

• Good curve

• Past Experience

Those factors somehow define what “ordered” elements are. In fact the con-

cept of order is important because it can easily be assimilated to the more ab-

stract concept of “Prägnanz”. We have chosen an extract from the introduction

of Koffka [1935] to better describe it.

We speak of an orderly arrangement of objects when every object is

in a place which is determined by its relation to all others. Thus the

arrangement of objects thrown at random into a lumber room is not

orderly, while that of our drawing room furniture is. Similarly we

speak of an orderly march of events (Head) when each part event oc-

curs at its particular time, in its particular place, and in its particular

way, because all the other part events occur at their particular times,

in their particular places, and in their particular ways. An orderly

march of events is, e.g., the movement of the piano keys when a prac-

ticed player plays a tune; a mere sequence of events without any order
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takes place when the keys are pressed down by a dog running over the

keyboard (p.15).

In the book Koffka debates if order should be considered as subjective, why

should the lumber room be considered more ordered than the drawing room ?

If both result from the application of mechanical laws, why should a personal

feeling of preference be used to determine whether the room is ordered or not?

The Gestalt theory tries to demonstrate that order is a “characteristic of natural

events and therefore within the domain of physics” (p.17). The presence of this

characteristic could be given by the principles of perceptual organization listed

above.

The whole is other than the sum of its parts.

This assertion from Koffka is one of the tenets of the Gestalt theory. In figure

2.5b the analysis of the parts would give us no clue about a white triangle, it

is the organization of the parts that we perceive as a triangle. We will not lose

the opportunity to use a more complex and beautiful illustration for these ideas.

Figure 2.7 shows Monet’s painting “La Gare Saint Lazare”. Figure 2.8 presents

two crops from the previous image. Please note, that image 2.7 has been rescaled

to fit in the document, while image 2.8 did not undergo any image rescaling. If

we look at the whole image, it is easy to perceive the train, people waiting, the

station etc. If we only have a look at the parts of the image where the train, or

the people are, perception of the figures becomes harder.

The statement “The whole is other than the sum of its parts” could be taken

from a more general perspective. Wertheimer and Koffka use the example of mu-

sic. One could analyse separately members of an orchestra playing, to eventually

discover a formula to predict the note played by each member in a moment of

time. However this knowledge would not lead us to explain why each member

plays that note at that moment. On the other hand if we listen to all the musi-

cians as one symphony, not only would we know what each musician did but also

why he did it, so “the whole performance woud be meaningful” (Koffka [1935]

p.18).

Some may find music and symphonies a little bit abstract, so we’ll look at

something more concrete, a bookcase for example. Let’s imagine that we get a
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Figure 2.7: La Gare de Saint Lazare - Monet

“do it yourself” model as a surprise present, without instructions. At first we

would be puzzled trying to guess which kind of furniture could be build with

those boards and screws. An isolated analysis of each piece would hardly tell us

the nature of the piece of furniture we need to build. Considering all the pieces

we could start filtering options, for example if we do not have table legs, it is

not likely to be a table. We could look to each piece in detail and see which

kind of screw it needs and derive what pieces may come together. There are a

lot of chances that several options come up. An image of the whole bookcase

built would serve not only to identify it, but also to explain how to build it. The

difference between images of the parts and one image of the whole is that the

last one shows the connections between the parts. One single image of the whole

carries more relevant information to explain what it is and why those pieces are

required, than five images of each piece, “multum non muta”.
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(a) Train from image 2.7 (b) People from image 2.7

Figure 2.8: Crops from La Gare de Sain Lazare

2.2.5 An empirical theory of vision

Figure 2.9 presents two examples of optical illusions. In our opinion, in the first

image the photographer is holding a miniature while in the second one he is

not holding anything, just playing with the effect of perspective, but we could

hardly argue against someone with a different opinion. In these examples the

pattern of light of a small plastic miniature would be the same as the one from a

huge steal construction. We could consider these examples as rare cases in which

two different sources result in the same retinal output. According to Purves &

Lotto [2003] they are not rare, actually every percept may be generated by many

sources:

the sources of any retinal stimulus (and thus its significance for

subsequent action) are unknowable directly. Any element of a visual

stimulus could have arisen from many - indeed , infinitely many- dif-

ferent objects and conditions. As a result, the output of any detector
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(a) Atomium, Real or Fake (b) Eiffel Tower, Real o Fake

Figure 2.9: Photographies of European Landscape

to the rest of the visual system is necessarily as ambiguous as the

stimulus it presumably encodes (p.5).

Most people fail to find a sheep in figure 2.10, they see snow and grass (please

go ahead and try to find it before continuing). However if they could walk further

into the field, they would notice that the brown grass is not such, but a mass of

hundreds of brown sheep (figure 2.11). In this example there is no artificial trick,

just the fact that perception of brown grass could be generated by real grass, by

hundreds of sheep, and maybe by many other “objects and conditions”.

This “ambiguity” is counterintuitive, Purves & Lotto [2003] recognizes that

visual stimuli ambiguity could be “hard to appreciate at first... a quick look

around most environments provides a definite and clearly useful sense of the real

world” p.5. The authors state that we cannot be sure of the nature of the source of

what we “see” (perceive), because what we “see” can be generated by an infinite

number of sources. Nevertheless, despite this ambiguity, most of the time we are

sure that what we “see” is what it is in reality.

The inherent ambiguity of visual stimuli is “the primary problem with this

(Marr’s) or any rule-based scheme of vision”, according to them the visual sys-

tem has no means of determining directly the relationship between stimulus and

source. Purves & Lotto [2003] claims that what we see is “a probabilistic mani-

festation of the past rather than a logical analysis of the present” p.11. So, given

a visual stimulus, viewers see the “probability distribution of the possible sources

of the stimulus” p.10, or in other words a “statistical reflection of visual history”
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Figure 2.10: Photography of snow and grass by Liezel Kennedy @pilgrimfarms

(p.227), but not necessarily the “real world”. In fact discrepancies between reality

and perception are what we refer to as visual illusions.

In the probabilistic concept of vision, a given neuron or group of neurons

cannot simply encode image features nor can they encode a particular perceptual

quality seen by the observer (p.210). This statement is reinforced by physiological

facts, for example LGN inputs come in majority from the cortex and not from

the retina. For Purves and Lotto,

“neural responses are difficult to rationalize in terms of a hierar-

chical progression from image features detected at the input stages

of the visual system to a higher order, convergent representation of

those features in neurons whose properties correspond to the percep-

tions reported by human observers” (p.211)

Instead of that, neuron activity should be considered “in terms of its contribu-

tion to the conjoint probability distribution that describes the relative frequency

of occurrence of all the possible sources of any component of the stimulus in re-

lation with the rest of the scene” (p.223). The idea is that our visual system is
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Figure 2.11: Photography of sheeps by Liezel Kennedy @pilgrimfarms

not encoding and decoding information on which cognitive operations could be

based, instead a visual stimulus generates a pattern of neuronal activity that has

been formed by the probability distribution of what this stimulus turned out to

be in the past. Neuron activity does not encode any feature, it’s just a statistical

contribution to the probabilistic significance of the pattern as a whole (p.223).

When the authors refer to the “past” they consider both phylogenetic (race

inheritance) and ontogenetic (individual experience) contributions. The archi-

tecture of the visual system “should be a more or less direct manifestation of

the statistical relationships between images and sources experienced over the ex-

istence of a species and the lifetimes of its individual members” (p. 219). We

could therefore consider a person’s perceptual system as unique, with similar base

to other members of the species but adapted or tuned with personal experiences.

Another interesting suggestion from Purves & Lotto [2003] is that visual per-

ception and reflex responses are much the same in its overall organization and

purpose (p.224). To illustrate this idea, they describe saccades. Saccades are

the conjunctive eye movements that direct the gaze of the two eyes to objects of
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interest, its frequency is about three times per second. “Saccades usually occur

in response to aspects of the retinal stimulus about which the observer has little

or no conscious knowledge” (p.223). This means that very often, visual patterns

generate neuronal patterns that make our eyes to move without being aware of

it. We can of course consciously move them, but it is interesting to notice that

consciousness is not required. If we follow this path, visual perception could be

defined without awareness.

2.3 Visual attention

In the previous sections we have seen that visual system has to deal with a

large quantity of information. Some pretend it is actually “inexhaustible” or

“infinite”. We have discussed how our perceptual system could represent, describe

or organise it. We found answers for questions like “why do things look as they

do” (Koffka [1935]) or “how could we construct such a perceptual system” (Marr

[1982]). In this section we will review theories about information selection. No

matter how powerful human brain turns out to be, if it has to deal with potentially

infinite amounts of information, there must be mechanisms to select the most

significant one. The system in charge of selectivity is visual attention.

2.3.1 Perception and Attention

We already introduced the concept of attention while describing the theory of

information pickup (Gibson [1986]). Perception and attention seem to be closely

related. For example, Gibson realized “that perceiving is an act, not a response,

an act of attention, not a triggered impression, an achievement, not a reflex.”

(Gibson [1986] p.149). Gestalt psichologists also treated attention in their works,

Koffka [1935] defines attention “as an Ego-object force” that can be either vol-

untary or involuntary (p.358).

Involuntary attention is called exogenous attention or stimulus-driven capture.

Voluntary attention is called endogenous or goal-directed attention. The former

corresponds to an automatic orienting response to a location where sudden stim-

ulation has occured. The latter corresponds to our ability to willfully monitor
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information at a given location (Carrasco [2011]). They can also be thought of as

“bottom-up” or “top-down” processes respectively (Snowden et al. [2006] p.259).

Prinzmetal et al. [2009] proposes that “voluntary and involuntary attention

affect different mechanisms and have different consequences for performance mea-

sured in reaction time. Voluntary attention enhances the perceptual representa-

tion whereas involuntary attention affects the tendency to respond to stimuli in

one location or another”. The paper refers to several other differences between

the two systems, for example, voluntary attention increases during development

whereas involuntary attention decreases with age. Under voluntary attention

more perceptual processing resources are allocated which results in a “more veridi-

cal perceptual representation” , attended objects are perceptually processed faster

and more completely than unattended objects etc. On the other hand involuntary

attention “selects the output from perceptual processing”. Mack & Rock [1998]

exposes fundamental questions about perception and attention:

What is the relationship between attention and perception ? How

much, if anything, of our visual world do we perceive when we are not

attending to it ? Are there only some kinds of things we see when we

are not attending ?

Despite the general impression that we see nearly everything in our field of

view, Mack & Rock [1998] suggest that most of the time we perceive very little if

anything of the information catched by our retinas. Attention is often thought of

as the mechanism we use to look more closely at some things, but not as some-

thing necessary to “see”, whereas Mack & Rock [1998] give critical importance

to attention in perception, their main hypothesis is that “there is no (conscious)

perception without attention” (the word conscious has been added according to

further explanation in the book p.13). In their book “Inattentional Blindness” the

authors describe a phenomenon, called inattentional blindness, that occurs when

healthy people (without vision defects) fail to perceive an unexpected stimulus

that is in plain sight.

A popular extension of the “Inattentional Blindness” for dynamic events was

presented by Simons & Chabris [1999]. Half of observers failed to perceive a highly

salient but unexpected stimulus: a gorilla passing through a group of people play-
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ing with a basketball. Observers were told to perform some tasks involving focal

attention, for example counting ball passes. The level of inattentional blindness

was found to depend on the difficulty of the ordered task. Simons & Chabris

[1999] results are consistent with Mack & Rock [1998] findings: “observers fail

to report unexpected, suprathreshold objects when they are engaged in another

task”.

Nevertheless, attention can be captured. Mack & Rock [1998] presents evi-

dences that there are “meaningful stimuli that can attract attention under condi-

tions of inattention and that are thus consciously perceived” (p.18), for example

a cartoon-like happy face or seeing his own name. These statements lead to the

idea that retinal input from unexpected stimuli are also subjected to extensive

processing and only objects to which voluntary attention is directed or the ones

that are able to capture attention are perceived. “Attention provides the key that

unlocks the door dividing unconscious from conscious perception”.

2.3.2 Serial models: FIT and GS

The work Sternberg [1966] introduces the idea that a high speed “exhaustive-

scanning” process takes place in memory when subjects judge whether a test

symbol is contained in a short sequence of symbols. Exhaustive-scanning means

that searching for item i in a list of N items is done serially and requires all

items in the list (N) to be classified as targets or distractors before returning a

positive (match with target) or negative (no match) answer. Exhaustive scanning

opposes self-terminating scanning, where positive answering is returned as soon

as a match is achieved. Sternberg [1969] suggests that exhaustive-scanning is

used to “determine the presence of an item in the list” while self-terminating

scanning is used to “determine the location of an item in the list”.

Treisman & Gelade [1980] presents a theory of attention involving serial object

evaluation: “A feature integration theory of attention” (FIT). In a first stage fea-

tures are registered “early, automatically, and in parallel across the visual field”,

and then in a latter stage requiring focused attention “objects are identified sep-

arately”. The visual scene is coded along a number of separable dimensions or

feature maps. A feature is a particular value on dimension, for example, color
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and orientation are dimensions while red and vertical are features on those di-

mensions. Feature maps are organised retinotopically. According to Treisman

and Gelade stimulus locations are processed serially with focal attention in or-

der to recombine separate representations into objects that would be consciously

perceived and stored. “Floating-free” features, the ones that have not been re-

combined, would not be consciously perceived or would “perhaps recombine to

form illusory conjuctions” (Treisman [1977]). The fact that unattended areas are

not perceived as empty space is explained by means of top-down processing which

is “capable of utilizing past experience and contextual information”.

Treisman and Gelade clearly differenciate between “feature seach” and “con-

juction search”, we can “detect and identify separable features in parallel across

a display” but “conjuctions, in the other hand, require focal attention to be di-

rected serially to each relevant location; they do not mediate texture segregation,

and they cannot be identified without also being spatially localized” (Treisman

& Gelade [1980]). Spatial localization is interesting, in the case of features, their

identity “can be registered not only without attention but also without any spa-

cial information about their location”. Feature localization is considered as a

“special kind of conjuction task”, a conjunction between feature and spatial loca-

tion, thus attention is required to perceive correctly the feature and its location.

The FIT suggests two ways of becoming aware of unitary objects. The first one

is the one we have described in this section, integrating features registered under

the same spatio-temporal “spotlight”. The second one is through top-down pro-

cessing. When focused attention is prevented by brief exposure or overloading,

the presence of an expected object can be checked by matching its disjunctive

features to those in the visual scene without also checking how they are spatially

conjoined.

An alternative to the feature integration model for visual search was published

by Wolfe et al. [1989]. The authors propose that the serial stage described by

Treisman & Gelade [1980] could be “guided” by information from the parallel

processing. In the FIT if the parallel processes fail to identify a target, the serial

stage receives no information other than the registered features. However it would

be more convenient if it could guide the next stage. For example if we consider

the task of searching for a red X among a group of green Xs and red Os, parallel
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processing could differentiate between red and green items. The locations of the

green items could be passed to the serial processing stage to avoid wasting time

and effort in their analysis. This way information from the parallel processes

would guide the serial processing.

Wolfe [1994] presents a second version of its guided search model (GS2) based

on “activation maps”. An activation map is a weighted sum of feature maps. Like

in the FIT, the visual scene is coded along different retinotopical feature maps,

but in the case of GS2 feature representation depends on stimulus-driven (bottom-

up) and user-driven (top-down) activation component. The bottom-up activation

is a measure of how unusual the feature is in its present context. The activation

for one location depends on the difference between the value of the feature in this

location and the value of the same feature in the neighbouring locations. The

author uses a 5x5 matrix to calculate the activation of a particular location, with

the location in the central position. The top-down activation is a measure of how

important is the feature in the target. If one feature is present in the target and

not in the distractors it gets more weight. The activation for one location depends

on the difference between the value of the feature and the target value for the

feature. “Each feature module can be thought of as a pair of topographic maps

with hills of higher activation marking locations receiving substantial bottom-up

or top-down activation. Attention is attracted to the hills.” The serial process

will evaluate the location with more activation, if the target is not identified,

attention will shift to the next highest activation location and so forth.

2.3.3 Race models: FIRM and TVA

Bundesen [1987] introduces the concept of race models for selection from multi-

element displays. In a race model items are processed in parallel and attention

selection is made of those items that finish first (the winners of the race). The

selection of targets rather than distractors is based on processing of targets faster

than processing of distractors. In Shibuya & Bundesen [1988] the authors propose

a fixed-capacity independent race model (FIRM). The model processes in a first

stage attentional weights for each item. An attentional weight (w) is a measure

of the strength of the sensory evidence that the item is the target. The amount
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of processing capacity dedicated to each item is proportional to the attentional

weights, so more capacity is allocated to items with higher evidence to be the tar-

get. The time required to encode each item follows an exponential distribution

with the item’s processing capacity as rate parameter.

Bundesen [1990] presents the FIRM as a particular case of a more general

theory, the “theory of visual attention” (TVA). TVA integrates into a unified

mathematical frame the biased choice model (Luce [1963] ) to describe single-

stimulus identification (selection of categories) and the choice model for partial

report (selection of objects). The previous models were non-process models, but

thanks to the race model a process interpretation could be provided.

In the TVA attentional weight of an item (wx) is determined by summing up

products of two factors across all perceptual categories:

wx =
∑

j∈R
η(x, j)πj

where R is the set of all perceptual categories, η is the strength of the sensory

evidence that element x belongs to category j, and πj is the pertinence value of

category j. A pertinence value is a measure of the current importance of attending

to elements that belong to category j.

The rate parameter is determined by the rate equation:

v(x, i) = η(x, i)βi
wx∑
z∈S wz

where η is the strength of the sensory evidence that element x belongs to cate-

gory i and βi is a perceptual decision bias associated with category i (0 ≤ βi ≤ 1),

which represents a measure of the perceiver’s general bias toward identifying any

presented stimulus as stimulus i. wx and wz are attentional weights of elements

x and z, respectively. S is the set of all elements in the visual field (definitions

from Bundesen & Habekost [2008]).

The weight and rate equations are the two central equations of the TVA. If

we combine them v is a function of η (strength of sensory evidence), β (per-

ceptual bias) and π (pertinence) values. We could consider parameter η to be

“data driven” or bottom-up, whereas π and β should be considered as top-down
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parameters because they are user-driven.

If we suppose η, β, π to be constant during the period in which the stimulus is

exposed, the FIRM can be obtained from the TVA (Bundesen & Habekost [2008]

p.65).

The author presents TVA as a unified theory of visual reognition and attention

selection opposing “early selection” and “late selection” traditional approaches.

Early selection theories claim that attention comes before recognition (ex: FIT

or GS). Late selection theories claim that pattern recognition is executed before

attention (ex: Deutsch & Deutsch [1963], Rumelhart [1970]). According to Bun-

desen & Habekost [2008], “selection and recognition are neither early nor late in

relation to one another but occur simultaneously” (p.43). “In agreement with

late selection theories TVA assumes that strength of sensory evidence for percep-

tual categorizations... are computed before selection takes place... In agreement

with early selection theories, the categorical recognition problem is resolved only

for those elements that are selected (encoded into the visual short-term memory,

VSTM)” (p.44). It is important to note the difference between “holding a repre-

sentation of sensory evidence and achievement of full recognition”, since only in

the latter case is a categorical decision about the nature of the object made by

the perceptual system.

In Broadbent [1971] selection of inputs is referred to as “filtering” and classi-

fication of the selected inputs is referred to as “pigeonholding”. In TVA, filtering

mechanism is represented by attentional weights. Increasing the pertinence value

π of category i in relation with other categories will speed up the encoding pro-

cess of item belonging to category i. The pigeonholding mechanism is represented

by perceptual bias parameters βi. Increasing the bias associated with category i

will increase the v value of categorization that any x element of the visual field

belongs to category i.

2.4 Summary

This chapter reviews some of the most important works about human vision

published by physiologists and psychologists. Even if visual perception is yet

not completely understood, different theories provide valuable ideas that explain
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why we see what we do and what kind of neurophysilogical architecture is able to

support the process of perception. Experiments with humans point different issues

relevant for machine perception building.

First, human vision can be wrong. Visual illusions are the main proof that

our vision, even in healthy people might be wrong (Coren & Girgus [1978]). In

general we have the impression that our vision is right, which can be explained

by the fact that very often it is. The probability of information reported by

healthy human vision to be correct is in general high. Different theories justify

this reliability. Human visual perception is attuned by the fact of perceiving,

the more it perceives the more attuned it gets. A human is also capable of

improving perception by completing “direct knowledge”, “what things told him”

with “scientific knowledge”, results of reasoning. These are two different forms

of learning. Attunement is a direct way of learning, adjusting the system to

give better responses. Reasoning over scientific knowledge results in conclusions

that might be learned. Both should be considered to improve the probabilities of

perceiving.

The theory that perception should be considered as a stochastic process is

founded in the fact that visual stimuli are inherently ambiguous. Therefore im-

proving visual perception requires increasing the reliability of the stochastic pro-

cess behind it. Different factors seem to have influence in reliability, for example

the number or quality of features. Showing more features of a particular object

increases the response of some determined neurons. Choosing invariant features

allows this response to be fired even if the objects change their pose. A third

relevant factor is context, some patterns cannot be recognized out of a context.

Second, human vision is selective. We are only aware of a fraction of the

objects that we are able to perceive. It is not a problem of recognition ability,

it is just that the visual system only reports a part of what could be reported.

This behavior can be justified by the amount of potential information that could

be perceived, which could require too many resources. Time is a variable that

influences perception results, increasing the exposure time might increase the

number of objects recognized. This could be explained either by the stochastic

or selective character of perception. The selection criteria can be bottom-up, a

function of the stimulus, or top-down, a function of the previous knowledge of
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the system.

Gibson [1986] challenges some of the most commonly accepted beliefs about

vision. According to it neither color nor forms are perceived, but affordances,

and such affordances would be directly picked from the structure of the light.

These hypotheses give a high-level answer to the fundamental questions about

visual perception: What is visual perception? and How is it performed? Another

reference in the field, Marr [1982] proposes different answers. Instead of picking

up affordances, vision would be the process by which a description of shapes and

positions of things is built from images. Instead of being direct, visual perception

would be a sequence of information-processing tasks. Machine visual perception

requires its own theory that determines the answers to the fundamental questions.
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Chapter 3

Theoretical framework for

machine visual perception

The previous chapter describes different answers given by psychologists to the

fundamental questions of human vision. These questions are also valid for com-

puter vision. Inspired by the different theories of human vision, in this chapter we

propose a new framework to build visual perception systems. We use the three

levels of explanation described in Marr [1982] to present our approach. In the

first level, “computational theory” we focus on the questions what is computed ?

and why should we compute it ? In the second level level, we describe a formal

scheme for representing certain entities or types of information and an algorithm

for visual perception. Finally we cover the third level with the analysis of different

techniques that could be used to implement visual perception systems.

3.1 Computational theory

Machine perception is usually considered as a pattern recognition problem, how-

ever we think that human vision results could be achieved or improved only by

considering it as a search problem. Pattern recognition might be a necessary

technique to find information leading to the target, but it is not by itself the

approach that will give the best results. The computation of visual perception

has to integrate time and knowledge, it has to be treated as a process. The goal
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of such a computation, finding targets, can be achieved by gathering information.

Our theory is inspired by the theory of information pick up from Gibson [1986],

by the theory of visual attention from Bundesen & Habekost [2008] and by the et-

ymology of the word perception, “a taking”, “collecting” or “gathering” in latin:

“perceptio”. In order to defend the previous claims, we will analyze the nature

of what can be known from an image and discuss why information gathering is

more appropriate than pattern recognition to emulate human vision.

3.1.1 What is computed: Categories

What can be perceived from an image? Before defining any process or algorithm

we need to understand what is computed in visual perception, the result of the

process. We have seen how researchers in human vision suggest different and

sometimes opposite answers:

A description of the shapes and positions of things from images (Marr

[1982] p.36).

Places, attached objects, objects, substances together with events,

which are changes of these things. To see these things is to perceive

what they afford (Gibson [1986] p.240).

The computation of a shape may be different from the computation of an af-

fordance, which is an unusual concept presented in section 2.2.3. The affordances

of the environment are “what it offers the animal, what it provides or furnishes,

either for good or ill” (Gibson [1986] p.127). Affordances allow one form to be

perceived in several and different ways. For example the image of a house can be

perceived as “warm” or “protection”, an apple as “eating” or “throwing”. For

human beings perceiving food, safety or danger is vital, often much more than

forms.

The answer we propose for the fundamental question asked in the beginning of

the section, is categories. It is grounded on the book “Categoriae”, where Aris-

totle intends to classify every object of human apprehension under ten heads:
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Substance, Quantity, Quality, Relatives, Somewhere, Sometime, Being in a posi-

tion, Having a state, Acting and Being acted upon (Reid [1819]). A summary of

what Aristotle said about each category can be found in Studtmann [2014].

In the following subsections, we illustrate what different people may perceive

from the same image. Then we discuss the nature of categories, which is the first

step to understand our strategy to emulate or improve human vision.

3.1.1.1 An Illustration

We start with an example: Velazquez’s painting “Las Meninas” 3.1.

Figure 3.1: Las Meninas - Velazquez (Museo del Prado)

The following could be answers to the question “what do you perceive in this

image?” given by a person without any particular knowledge of the painting.

• Many people

• A dog
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• Adults and children

• Dwarfs

• Men and women

• People from a past period

Most people without interest in painting could answer “people” (Substance),

“people from a past period” (Sometime and Substance) or “many people” (Quan-

tity and Substance). Some others willing to describe it, could add “a dog” or

“dwarfs”. Without specific knowledge in history or in dog breeds it is difficult to

give the following answers.

• On the left Velazquez, in the middle Margarita Teresa de Austria. Sour-

rounding Margarita: Isabel de Velasco and Maŕıa Agustina Sarmiento. On

the right Maŕıa Bárbola and Nicolasito Pertusato (dwarfs). Behind them

Marcela de Ulloa dressed in mourning talking to a bodyguard and at the

door José Nieto (identifications by Antonio Palomino).

• A Spanish Mastiff lying on the floor (the dog)

• Maids of honor surrounding Margarita

• A painter at work on the left (Velazquez)

• Court of Felipe IV

• 1656

We can recognize a few extra categories like “somewhere” (on the floor) or

“having a state” (dressed in mourning). Next, a list presenting opinions from

painters or art experts.

• The true philosophy of the art (Thomas Lawrence)

• Theology of painting (Luca Giordano)

• Representation undertakes to represent itself in all its elements (Foucault

[2002])
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• Corona Borealis (Lassaigne [1973])

• Velazquez masterpiece “Las Meninas”

Finding the Corona Borealis in the painting requires a big effort of search even

for experts in astrology. Stating that it is “Theology of painting” or “The true

philosophy of the art” requires a broad knowledge of painting and a deep analysis

of the art. The last list is made of answers that could be given by people more

or less instructed, not necessarily art experts, who paid some extra attention to

the painting.

• Palace master key

• La Orden de Santiago

• Bag of coins

• Dog stepped on

• Large canvas

• More people on the right side

Many people passing by the picture in the museum do not notice that the

dog is stepped on. Many more miss the key in Velazquez’s waist, and just a

few are able to relate it with the position of Velazquez in the king’s court or to

Velazquez’s ambition to present himself as a key figure in the court.

From this example we can draw two conclusions about human vision: first,

what is perceived does not depend only on the content of the image but also on

the knowledge of the perceiver, and second, the same object can be perceived

as several categories. As a consequence depending on the perceiver the same

object may have a different set of categories associated. We call categorization

the process of relating an object with one or more categories.
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3.1.1.2 Concept, term and definition

Relating an object and a category is not an arbitrary process. A category is not

just a label for a set of objects, it is a concept representing the set of objects. In

the work about the acts of mind, Wallace [2011] defines concept as “the internal

representation of a thing’s essence”, which is “both intellectual knowledge, ‘that

which’ (id quod) is understood and the means ‘by which’ (id quo) the thing

known is understood” (p.14). On the other hand a term is only a way to refer

to the concept, a sign of it, it is not a definition of it. A sign is “something that

shows itself to the senses and other than itself to the mind” (Aurelii Augustini
1). A term can be arbitrary, different languages use different words (terms) for

the same concept, but a definition cannot.

In the picture 3.1 the term “meninas” can be associated to the whole paint-

ing, or to some characters of the painting which are different concepts. Terms

are sometimes ambigüous but the definition of a concept should not, since it is

the means by which the thing is understood. The definition of a concept is an

expression of the properties, attributes, qualities or characteristics of the thing

represented by it. Since the definition of a concept not only expresses what we

understand about the thing but also the characteristics by which we know the

thing, it is fundamental for categorization.

The classical Aristotelian view claims that categories are discrete en-

tities characterized by a set of critical properties which are shared by

their members. These properties stipulate the conditions which are

both necessary and sufficient to define the intension and extension of

a class thus enabling categorization of entities. (Lima & Raghavan

[2014])

A category is a concept, whose definition characterizes the members of the

category. The definition of a category is the set of critical properties which are

shared by its members. We will call characteristics the critical properties of a

category. Wallace [2011] states that a definition is not true or false, it can be

good or bad, adequate or inadequate. A good definition is the one that stipulates

1Signum est quod se ipsum sensui et praeter se aliquid animo ostendit; De Dialectica Liber
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the conditions which are both necessary and sufficient to determine whether an

object is a member of the category or not. A bad definition may either exclude

members of the category, or characterize objects that are not members of the

category. In order to emulate or improve the results of human vision we need to

be able to build similar or better definitions for categories.

3.1.1.3 Propositional knowledge and knowledge by acquaintance

The definition of a category is knowledge by which the thing known is understood.

In the classic philosophy, knowledge was defined as a “justified true belief” (JTB).

JTB claims that an agent S knows that a proposition P is true if and only if (1)

P is true, (2) S believes that P is true and (3) S is justified in believing that

P is true. A proposition is a relation between two concepts, called subject and

predicate. A predicate can be said, or not said of a subject, a predicate can or

cannot be present in the subject (Studtmann [2014]). Unlike concept definitions,

propositions always involve truth or falsity. “True” means that what is is, and

that what is not is not; and false means just the reverse (Wallace [2011] p.18). We

link the idea of justification with the satisfaction of the definition of a category.

A predicate, which is a category, can be said of a subject, when the latter satisfies

the definition of the former, which is the way of justifying the proposition.

Ichikawa & Steup [2001] suggests that JTB “is an attempt to explicate propo-

sitional knowledge, not knowledge by acquaintance”. The idea of two kinds of

knowledge has already been found in Koffka [1935] (2.2.4). Helmholtz [1995]

distinguishes between “das Kennen” and “das Wissen”. The former is knowl-

edge that consists of “mere familiarity with phenomena” (acquaintance) while

the latter is knowledge that consists of knowledge of phenomena “which can be

commnunicated by speech” (propositions). Using Helmholtz [1995] words:

Besides the knowledge which has to do with notions, and is, there-

fore capable of expression in words, there is another department of

our mental operations, which may be described as knowledge of the

relations of those impressions on the scenes which are not capable of

direct verbal expression. For instance, when we say that we know a

man, a road, a fruit, a perfume, we mean that we have seen, or tasted,
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or smelled, these objects. We keep the sensitive impression fast in our

memory, and we shall recognize it again when it is repeated, but we

cannot describe the impression in words, even to ourselves. And yet

it is certain that this kind of knowledge (Kennen) may attain the

highest possible degree of precision and certainty, and is so far not

inferior to any knowledge (Wissen) which can be expressed in words;

but it is not directly communicable, unless the object in question can

be brought actually forward, or the impression it produces can be

otherwise represented (p.198).

The knowledge that defines a category may be propositional knowledge, knowl-

edge by acquaintance or a combination of both. Being able to handle both kinds

of knowledge might be critical or advantageous for visual perception.

3.1.1.4 Judgment

Judgment is the operation of the intellect by which something is affirmed or de-

nied of something else (Wallace [2011] p.17). A perceptual system is able to

affirm or deny that an object o is a member of a category i when it is able to

justify the proposition, o is i. This justification is based on the evaluation of the

constraints of the category. For machine visual perception, judgment is the com-

putation by which the system evaluates whether an object satisfies the conditions

or constraints of the category, the characteristics expressed in its definition.

3.1.2 The computation: Information gathering

3.1.2.1 Knowledge, information and data

In order to compute categories we propose to gather information. Information

is closely related to knowledge, the DIKW model (Data Information Knowledge

Wisdom) defines it as follows “knowledge is the appropriate collection of infor-

mation, such that it is intent to be useful” (Ackoff [1989]; Bellinger et al. [2004]).

The basic idea is to gather information that can be evaluated to determine if it

satisfies the constraints of potential categories.
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The concept of usefulness is interesting because it conveys the idea of goal.

Something is useful when it helps to achieve a goal. The concept collection

directly refers to the result of gathering. The word information comes from the

latin “formare”, to give shape. Therefore information is what has a shape or

form. On the other hand the word data comes from the latin “dare”, what is

given. When a relationship between unstructured data is established, it becomes

information. Such information can be related with other information, which is a

way of structuring information. Giving signification to a form is an example of

relating two types of information, the former is intrinsic to the image, while the

latter is extrinsic to it.

We propose that both kinds of information should be gathered to emulate

human vision. If we consider visual perception as a mere pattern recognition

problem, computation consists in matching information known from a determined

category with information found in the image. The main problem is to find the

right information. That is why we propose that visual perception should be

considered as a search problem, and not only as a pattern recognition one. In

fact pattern recognition can be used as an heuristic for the search problem. We

will further develop this idea in section 3.2.2.

Visual perception can therefore be seen as a process of gathering information

starting from the image. Information are the relations between the different sets

of elements of the image. These relations define forms. Information are also

the relations between these forms and their signification. Among the different

strategies for gathering information, one leading to a useful collection should

be chosen. There is a key difference between useful information and the target

information. Useful information is not only information directly characterizing

the target, but also information that guides the search of the target.

3.1.2.2 Perceptual systems

The world is specified in the structure of the light that reaches us,

but it is entirely up to us to perceive it (Gibson [1986] p.63).

In this section we discuss why a perceptual system should be considered as an

intelligent agent and not as a sensor. Our proposal is inspired again by Gibson
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[1986], that claims that a perceptual system is “radically different from a sense”

(Gibson [1966]), that “perception is not a response to a stimulus but an act of

information pickup” (Gibson [1986] p.57).

On the other hand the definition of agent from Russell & Norvig [2014]: “an

agent is anything that can be viewed as perceiving its environment through sen-

sors and acting upon that environment through actuators” (p.35) might be con-

founding for our purposes, since it associates sensors and perception. Moreover

Russell & Norvig [2014] states that “Vision -and all perception- serves for further

the agent’s goals, not as an end to itself” (p.946). There is no doubt that vision

can serve to an agent’s goals, but why should not be visual perception a goal by

itself, affirming that an image contains (or not) this or the other object ? Why

collecting information should not be the goal of an agent, such that we can use

the notion of agent for analyzing perceptual systems?

Actually the proposals in Gibson [1986] about perception satisfy Russell &

Norvig [2014] definition of agent if we circumvent the differences about sensors

and actuators in a visual system. Russell & Norvig [2014] states “A human has

eyes, ears, and other organs for sensors and hands, legs, vocal tract, and so on

for actuators” (p.35), while Gibson [1986] states that the retina is a receptor

that can be stimulated whereas the eye is a perceptual organ, “receptors are

stimulated, whereas an organ is activated” (p.53). The eye is one among a hier-

archy of organs, including a head that can turn or a body that can move. These

organs constitute what Gibson [1966] calls a perceptual system. So Gibson’s

definition of perceptual system includes not only what Russell & Norvig [2014]

calls sensors but also what could be called actuators, head and body. In fact

the eye might also be considered as an actuator, Dodge [1903] presents five types

of eye movements: fixation, saccadic movement, pursuit movement, convergence

and divergence, and compensatory movement. Gibson [1986] completes the list

with other adjustments of the visual system: eye blinking, accommodations of

the lens, adjustment of the pupil and dark adaptation of the retina (p.216-218).

If we consider the structure of light arriving to the retina as the environment,

several components of the eye (2.2), as well as the head and body, act upon the

environment.

In computer vision the structure of light from a scene is represented in a digital
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image. Some devices generating digital images can operate with different resolu-

tions, representing the same captured structure of light with more or less pixels,

some can pan, tilt or zoom, others are mounted on moving robots. In computer

vision we consider any visual information warehouse or source as the environ-

ment. There are many actuators that act upon them. We might think of physical

devices like zoom lenses for cameras, but also computer programs that load, crop,

rescale, modify or in general process digital images (Gonzalez & Woods [2008]).

In this work we will use “visual perception system” or “perceptual system” to

refer to an intelligent agent that extracts information from images and whose

actions are intended to maximize the probability of finding targets. Hereafter

we will only consider actions related with image processing, avoiding anything

related with image acquisition. Targets might be a small or large collection of

categories of objects. The term object should be understood in a broad sense, an

object can be concrete (e.g.: Julius Caesar), abstract (e.g.:number 7), fictional

or invented entities (e.g.:beauty, unicorn, honesty etc.) (Nilsson [1998] p.241).

Displaying the extracted information on a screen, writing it to a file or sending it

through network packets are other kind of possible actuators (Russell & Norvig

[2014] p.35) but again not relevant for this work.

We could avoid the discussion about Russell & Norvig [2014] statement: “Vi-

sion -and all perception- serves for further the agent’s goals, not as an end to

itself” (p.946), accepting that the goal of a perceptual system is to fill a database

with information from images, but we would be missing a crucial point, the fact

that a perceptual system should not be passive like a receptor, it must be ac-

tive. One of the main ideas we have taken from Gibson [1986] about perceptual

systems is:

such a system is never simply stimulated but instead can go into

activity in the presence of stimulus information. (p.53).

In a sensory mechanism, the application of energy stimulus exceeding a thresh-

old can be said to cause a response (p.56). But perception may not depend on

the intensity of a stimulus. In section 2.3.1 we presented an experiment where

people did not perceive a black gorilla passing through the scene. The fact of

missing the gorilla can hardly be associated with a weak stimulation, there must
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be another cause. A simple explanation is that they did not expect it, they were

looking for other things, or in other words, their goal was different. Our proposal

is that the activity of a perceptual system depends on its goals, its rationality 1

and its architecture, which makes the notion of agent interesting for analyzing

perceptual systems (Russell & Norvig [2014] Chapter 2).

As mentioned before, the goal of a visual perception system is to find target

categories. Each system will have its own targets, which can be more or less

specific, for example a cat or an animal. The strategy to find the targets is to pick

up as much useful or interesting information as possible. Collected information

would be used to evaluate if we have found a target, or if we are closer to finding

one. Such computations are what rational agents do.

Rationality at any given moment depends on four things (Russell & Norvig

[2014] p.38):

• The performance measure that defines the criterion success

• The agent’s prior knowledge of the environment

• The actions that the agent can perform

• The agent’s percept sequence to date

In a visual perception system considered as a rational agent, success would be

finding the target categories. The performance measure that defines the criterion

success would be the probability of finding these targets, the measure of how likely

it is that targets are in the image or the measure of how confident the system

is about the categorization of a target candidate. The agent’s prior knowledge

of the environment would be the knowledge about all the information that could

be picked up. The agent’s percept sequence to date would be the information

already gathered.

We resume the computation of a visual perception system using a quote of

Russell & Norvig [2014] for rational agents:

For each possible percept sequence, a rational agent should select an

action that is expected to maximize its performance measure, given

1The meaning of rationality is the one given by Russell & Norvig [2014]
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the evidence provided by the percept sequence and whatever built-in

knowledge the agent has (p.38).

A common requirement is to perceive in real time, this means to extract

information, such that a human being will have the sensation of immediateness.

On the other hand some problems might lead to lapses of minutes or hours to

extract information from one image. An agent action requires time and computing

power, therefore time and the agent architecture’s capacity may limit the possible

actions an agent can perform at a given moment. Selecting the right action given

the evidence provided by the percept sequence is what we called rationality. The

function mapping a percept sequence to an action is called the agent function and

is implemented by the agent program (p.36). Together architecture and program

define the agent.

3.2 Formalization of visual perception systems

In the previous section we have defined visual perception as the process by which

a perceptual system picks up and categorizes information related to an image.

In this section we present how the input of the process, the image, and the

output, intrinsic and extrinsic information can be represented. Then we present

an algorithm and the primitives to perform the transformation from an image to

a set of categories.

3.2.1 Representation

Representation is a formal system for making explicit certain enti-

ties or types of information, together with a specification of how the

system does this (Marr [1982] p.20).

The big problem for AI (Artificial Intelligence) is what to say, not how

to say it... the first step in representing knowledge about a world is to

conceptualize it in terms of objects, functions and relations... there

are many choices about what kind of objects we think might exist

in our world. We are free to conceptualize the world in any way we
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wish; however some conceptualizations will be more useful (not neces-

sarily more “correct”) than others. Next we invent predicate-calculus

expressions whose intented meanings involve objects, functions and

relations. Finally, we write wffs [well formed formulas] that are sat-

isfied by the world as we have conceptualized it. These wffs will be

satisfied by other interpretations as well; we need only to take care

that they are not satisfied by other interpretations that our state of

knowledge about the world can preclude (Nilsson [1998] p.248).

3.2.1.1 The input: digital images

We have already defined light as one form of energy that is reflected or emitted

from objects in the form of electrical and magnetic waves within a particular

wavelength range. Different devices have been designed to capture light, cameras

and scanners are common examples. The purpose of these optical instruments is

to produce a picture or a sequence of pictures to be viewed by people. Details

about the different sensors (CCD, CMOS) used for imaging applications as well

as other practical uses of digital still cameras can be found in Nakamura [2005].

In this work we will not go any further on how computer images are generated,

the technology behind the sensors, but we will focus on what these images are

and what can be done with them. We will assume that visual information lies in

images and videos (sequences of images) stored in a computer files.

A useful representation of an image in computer vision is a matrix of pixels

(picture elements), where the value of each pixel encodes the visual intensity

or brightness of the corresponding point in a scene (Gonzalez & Woods [2008]

p.55-56). The smallest discernible change in the intensity level is called intensity

resolution (p.60). The number of intensity levels in a digital image is based on

hardware considerations and is usually an integer power of two, for example 8 bits

(28) lead to values between 0 and 255, representing black and white respectively.

In order to deal with color images, the most popular color space, RGB, encodes

the intensities of three components: Red, Green and Blue, using 8 bits for each,

24-bits are used to encode more than 16 Million different colors. RGB is inspired

by the three different types of cones in the retina, which are sensitive to different
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wavelengths. There are other color models, like CMYK (cyan, magenta, yellow

and key (black)) and several color spaces based on the RGB model, like YUV

and HSV. For most applications the choice of the model is not relevant, however

some works like Podpora et al. [2014] suggest that machine vision applications

can benefit of a particular model. Gonzalez & Woods [2008] covers different color

models and transformations (Chapter 6).

The size of a digital image in a computer, the number of pixels, is usually

referred to as pixel resolution or just resolution and expressed with the set of two

integer number, the first being the number of columns in the matrix (width) of

pixels and the second the number of rows (height). When talking about image

quality it would be more accurate to talk about spatial resolution, which quan-

titatively is the number of pixels per unit distance (Gonzalez & Woods [2008]

p.60). If we assume the same scene is represented, then a higher pixel resolution

is equivalent to a higher spatial resolution. Figure 3.2 presents three images of

the same scene with different resolutions. In the image with high resolution we

can read the numbers of the car’s license plate “9557”, whereas in the other two

images this data is lost. High resolution images allow us to perceive more de-

tails from the image, another example are the wiper arms. In the low resolution

image it is impossible to be sure if the car has or not wiper arms, the distance

represented by each pixel is bigger than the size of the required details.

Figure 3.2: Resolution Test (Image from Wikimedia Commons)

Resolving power is the ability of an optical device to distinguish two adjacent

points which are close together into individual images. Resolving power depends

on spatial resolution and intensity resolution, since two points with the same
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intensity will be indistinguishable. The resolving power is defined as the reciprocal

of the limit of resolution (either a distance or an angle) (Born & Wolf [1999]

p.461). In the image 3.2 we can play with the resolution power of our eyes by

zooming in the different images (or moving away and getting closer if you are not

reading the digital document), pixels will appear and disappear. If the reader

steps back enough (the distance depends on the size of displayed image) the

three images are perceived to have the same quality. In the 15-inch screen used

to write this document, we have zoomed in the three images of 3.2 separately, so

that each of them covers the whole screen. Recognizing a car in the left sample

is not evident, specially for people that have not watched it before and have no

prior idea about it. Intuitively, being able to distinguish the small details of a

picture makes the whole harder to recognize.

For digital images spatial resolution limits the amount of potential informa-

tion, by definition, nothing will appear when zooming in a pixel. For example,

if we have one pixel per meter, we will not be able to distinguish details smaller

than one meter. Some image-forming devices can generate images with different

resolutions, others can pan, tilt or zoom, making details easier to see. Computer

programs can also perform several operations over an image to shrink or zoom it

(Gonzalez & Woods [2008] p.65). The latter, called digital zoom, may be less ac-

curate than the former because they are based on estimations (Nakamura [2005]

p.243).

3.2.1.2 Intrinsic information

The visual world can be regarded as being composed of smooth sur-

faces having reflectance functions whose spatial structure may be elab-

orated (Marr [1982] p.44).

The medium is separated from the substances of the environment by

surfaces (Gibson [1986] p.22).

In digital images surfaces are sampled and quantized in sets of pixels, whose

separation is not always obvious. The intrinsic information of an image are the

spatial structures of the set or subsets of pixels composing it. Structures, space
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and change are some of the topics covered by mathematics. In this section we

discuss how different branches of mathematics may contribute to transform data

into information.

Functions and relations. A digital image can be represented by a function

f(x, y) mapping the coordinates (x, y) to the value of the pixel (Gonzalez &

Woods [2008] p.55). To illustrate the following ideas in a more comfortable way,

we will use examples with just one row.

In mathematics a function is a particular case of a relation where each input is

mapped to exactly one output. Formally speaking a relation is a set of tuples with

objects related, in the case of a function, each element of the input appears in

just one tuple, whereas in a relation, it can appear in several tuples. For example

the set of pairs (2-tuples) {(1, 1), (2, 0), (2, 1), (3, 0), (4, 0), (4, 1)} describes a

binary relation R1 between two sets, the first one being the indices of a row with

4 elements {1, 2, 3, 4} and the second one the set of possible values or outputs

0, 1. Indices 2 and 4 appear in two pairs each, thus R1 is not a function. A binary

relation between two sets A and B is defined by a subset of pairs of the Cartesian

product of the two sets.

The application of the relation R1 over the set {1, 2, 3, 4}: {R1(1), R1(2),

R1(3), R1(4)} can have different results: {[1001] [1101] [1100] [1000]}. While a

function can represent an image, a relation can represent a set of images. In

section 3.1.1 we claimed that a category is a set of objects that satisfy the def-

inition of a concept. We could say that the set of all the possible results of the

application of a relation over a set of coordinates is a category and the relation

between all the indices and values is a property of the category.

Analytic geometry. Descartes [1897] introduced the idea of using a coordinate

system to study Geometry, such that geometrical shapes could be defined and

represented with functions, equations or vectors. This branch of Geometry is

called Analytic Geometry and leverages several techniques from Linear Algebra.

Linear Algebra studies objects with a structure of vector space (Fraleigh et al.

[1995]), for example matrices. Since images might be represented by matrices,

Linear Algebra techniques like linear transformations, linear equations or linear
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least squares resolution, can be used to extract properties, like determinants or

eigenvalues.

Differential geometry. Analytic Geometry is continued by Differential Geom-

etry. The foundational “Theorema Egregium” proved by Gauss [2007] claims that

“a Gaussian curvature can be expressed solely in terms of the first fundamental

form coefficients and is therefore an intrinsic property” (Bronstein et al. [2008]

p.35). Informally, a Gaussian curvature can be expressed using angles, distances

and their rates on the surface itself, without references to the particular way the

surface is deployed in the Euclidean Space (leaving aside the coordinate system).

The properties of surfaces preserved through deformation, twisting or stretching

are studied by Topology. A surface can be represented by a set of its invariant

properties.

Digital geometry. Digital images result from a process of digitization. The

branch of Geometry dealing specifically with the study of geometric or topolog-

ical properties of sets of pixels is Digital Geometry. Klette & Rosenfeld [2004]

presents Digital Geometry as well as related disciplines: Affine Geometry, Pro-

jective Geometry, Vectors and Geometric Algebra, Graph Theory, Topology, Ap-

proximation and Estimation, Combinatorial Geometry, Computational Geome-

try, Integral Geometry and Mathematical Morphology.

Measures.

A function that takes pictures into numbers is called a picture prop-

erty; a function that takes k-tuples (e.g., pairs) of pictures into num-

bers is called a relation among (or between) pictures. This chapter

defines classes of picture properties, such as predicates, local proper-

ties, linear properties, and invariant properties. Particular attention

is given to the study of moments, which are an important class of

linear properties (Klette & Rosenfeld [2004]).

In mathematical analysis functions that assign numbers to sets or subsets are

called measures. Moments, for example are a specific quantitative measure of
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the shape of a set of points used in statistic. In general, statistic is the measure

of some attribute of a set of data. “Generally speaking in the problem of shape

similarity we are looking for a quantitative measure of distance between two

shapes” (Bronstein et al. [2008] p.3). So, besides of mapping coordinates to

values, functions can also be applied to map images (pictures) with values. This

kind of functions represent properties of the image, whose expressions belong to

the concept’s definition. The set of images in a category satisfy the concept’s

definition, which is a common set of properties represented by a set of functions.

Relations between parts. Instead of mapping a whole set of pixels, we might

map only a subset of pixels to a number. Measures can be assigned to parts or

regions of an image, just like to the whole. Since they have different elements,

the properties of the whole and the parts may be different. In the last quote the

authors refer to functions that map a k-tuple of images into a value as “relations”.

Each part of an image is an image, therefore we might also get properties of the

relation between the parts of an image. A particular case of relations between

parts are derivatives. A derivative of a function y = f(x) is a measure of the rate

at which a value y (e.g. the value of a pixel) changes with respect to the change

of a variable x (e.g. coordinate).

Relation of the whole and its parts. The relation between the parts and

the whole is the relation of inclusion. Gibson [1986] suggests that “inclusion”

is the relation that defines “locus”: “the optic array” should be conceived as a

nested hierarchy of solid angles and that the optic “array is more like a hierarchy

than like a matrix... in an ambient hierarchical structure, loci are not defined by

pairs of coordinates for the relation of location is not given by degrees of azimuth

and elevation (for example) but by the relation of inclusion” (p.68). A whole

can be represented by a subset of its parts, we can just associate the whole to

a concept whose definition expresses the relation of its parts. The properties of

each part are “propius” to the part (the part’s own) considered as a whole itself

and therefore does not have to be properties of the whole. The same concept

cannot be associated to the whole and one of its parts (or a subset) unless both

have the same set of properties, in other words, unless both are members of the
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same category.

Segmentation. To get a rough idea of the amount of parts or regions a digital

image can be divided into, we simplify the problem assuming that a part must

be rectangular, so that we can use the formula to find the number of submatrices

of a matrix (m(m+1)n(n+1)
4

). For example considering the resolution of the picture

3.1 (1125x675) we get thousands of millions of regions. If we add non rectangular

regions the number would be even larger. The process of dividing an image into

regions is called segmentation and is one of the most difficult tasks in image

processing (Gonzalez & Woods [2008] p.689).

Feature extraction. If the amount of possible regions is massive, the number

of possible properties is even larger. Different functions can be applied to the

elements of each part to extract properties, several relations can be established

between the parts and the whole, and even more can be established between

parts. All these relationships are properties of the image, and their number

multiplies the number of parts. When trillions of features might be extracted

from a single image, the challenge is to find the ones that are useful for the goal

of the computation.

Numeric features are the ones whose values are numbers. Characteristic func-

tions are functions mapping features with categories, and thus the way to rep-

resent the constraints that determine the membership of a category. Categori-

cal features are the ones whose values are represented by a term. Characteristic

functions can map both numeric and categorical features into categories. Charac-

teristic functions are a form of proposition where what is evaluated is the subject

and what is characterized is the predicate.

3.2.1.3 Extrinsic information

Now, let’s suppose that we want to build a spanish people detector in pictures.

The detector could carefully extract all the intrinsic information from picture 3.1

trying to find something that characterizes a “spanish”. Another option is to use

the known fact that Velazquez was spanish. This knowledge is not in the image,

it is something extrinsic.
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Visual perception systems can be seen as agents that give signification (mean-

ing) to images. Nilsson [1998] suggests that in Artificial Intelligence “Semantics

has to do with associating elements of a logical language with elements of a do-

main of discourse. Such associations are what we refer to as ‘meaning’” (p.222).

Intrinsic information has to deal with geometric and topological properties, about

how the image is organized. However other kinds of information can be associ-

ated to a structured set of pixels, information that does not say anything about

the spatial structure of an object. This is what we call extrinsic information

of an image. What can be said of something is the predicate of a proposition

and this something is the subject. Extrinsic information can be expressed with

propositions.

Relation of propositions. Let’s consider the concepts enemy, danger, weapons

and target. When we detect an enemy we can affirm “there is a target”. How-

ever if we detect an enemy and weapons we can affirm “there is a danger”. The

relation between enemy, weapons and danger does not say anything about the

spatial structure of the objects or the scene, but in order to categorize the enemy

as target or danger we need the information “if there is an enemy and weapons

then there is danger” and “if there is an enemy and no weapons then there is

a target”. “There is an enemy”, “there is danger” or “there is a target” are

propositions about the world. A perceptual system can categorize a set of pixels

as enemy and express “this set of pixels is an enemy”, a proposition where “the

set of pixels” is the subject and enemy is the predicate. However to affirm “this

set of pixels is a danger” requires a relation between two propositions “this set of

pixels is an enemy” and “this set of pixels is a weapon” and the conclusion “this

set of pixels is a danger”.

Propositional calculus. Propositional calculus provides a language to repre-

sent propositions and the relations between them. The elements of the language

are atoms and connectives. Atoms are True, False and any string of our choice

that will be associated with a proposition about the world. The connectives are

∨ (or) ∧ (and) ⊃ (implies) ¬ (not). A sentence or well-formed formula (wff) is

either an atom or atoms connected by connectives. The language has rules of
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inference which can produce additional sentences. For propositional calculus, we

associate atoms with propositions about the world (Nilsson [1998] Chapter 13).

The previous example could be represented by E (there is an Enemy), A (there

is a Weapon) , D (there is Danger) and Ta (there is a Target) and the expression

E ∧ A ⊃ D and E ∧ ¬ A ⊃ Ta.

Predicate calculus. Propositional calculus let us represent propositions and

express relations between them. However with propositional calculus we cannot

talk about the objects, we cannot express properties about them and hence we

cannot represent the definition of a category. Predicate calculus has objects, also

called individuals, functions on these individuals that map n tuples of individ-

uals with individuals (number 10 and 2 mapped into quotient 5) and relations

over individuals (Loaded(w), Bigger(4,2), Brother(John, Bill)), also called pred-

icates (Nilsson [1998] p.241). We can create sentences using connectives (like

in propositional calculus) and also quantifiers that let us express properties of

entire collections of objects instead of enumerating the objects by name. More

details about predicate calculus can be found in Nilsson [1998] (p.239-268) and

Russell & Norvig [2014] (p.290-320) (predicate calculus is also called first-order

logic). Predicate calculus has all the elements to represent objects, categories,

properties and knowledge.

Using predicate calculus we can associate the string “V” with the object “Ve-

lazquez”, the predicate WearsS(x) with the function that maps a person x with

True if he wears “the symbol of la Orden de Santiago” and False if he does

not, and the predicate MemberO(x) with the function that maps a person x

with True if he is a member of “la Orden de Santiago” and False if he is not.

Thanks to this interpretation we can express: “Velazquez wears the symbol of

la Orden de Santiago”: WearsS(V ) and infer using the propositional sentence

(∀x)[WearsS(x) ⊃ MemberO(x)] that Velazquez is a member of la Orden de

Santiago: MemberO(V). Predicate calculus gives us a simple way to express

predicates that represent characteristic functions: MemberO(x), which indicate

the membership to a category “Orden de Santiago”, and also properties of the

category’s members: WearsS(x).

Predicate calculus does no more than provide a uniform language
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in which knowledge about the world can be expressed and reasoned

about (Nilsson [1998] p.248).

3.2.1.4 Knowledge base

In AI knowledge about the world is represented by a collection of sentences called

knowledge base (KB). Ontology is the study of the relationships between cate-

gories, which “organizes everything in the world into a hierarchy of categories”

(Russell & Norvig [2014] p.444). Intuitively organization is fundamental for any

search problem. When something is organized search requires less resources. Kof-

fka [1935] and other works from the Gestlalt (2.2.4) discuss the concept of order

and propose laws to group elements together. Our definition for organization is:

a set of relations that simplifies search. Therefore the better the ontology of a

perceptual system is the less resources the system will require to find targets.

Gruber [1995] defines ontology as “an explicit specification of a conceptu-

alization”. Conceptualization usually starts with the acquisition of knowledge

from another entity. Expert systems for example implement a conceptualization

given by a human expert in a field of application. Formal languages are therefore

the first choice to create conceptualizations. One of the advantages of formal

languages is that we have well studied mechanisms to reason about well formed

formulas (wffs), and therefore automatically create new propositions, which are

knowledge.

Perception is the other way, by which information can be acquired. How-

ever the information in an image, its intrinsic information (3.2.1.2) is not easily

expressed in words, or in general with formal languages. This difficulty has some-

times been understood as the impossibility to express the knowledge by which an

object can be recognized:

What is the real shape of a cloud?... or of a cat? Does its real shape

change whenever it moves? If not, in what posture is its real shape

on display? Furthermore, is its real shape such as to be fairly smooth

outlines, or must it be finely enough serrated to take account of each

hair? It is pretty obvious that there is not answer to these questions

- no rules according to which, no procedure by which, answers are to
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be determined (Austin & Warnock [1964] p.67).

We think that once again, only propositional knowledge has been considered.

Answers to the previous questions might be given by knowledge by acquaintance,

which is easier to represent using relations of geometric properties. Geometric

properties can be represented using mathematics 1, which can be seen as a formal

language, or by a collection of images. Storing a set of images of a category may

not be the most efficient way of representing intrinsic information, but is one

possible way.

Knowing is an extension of perceiving (Gibson [1986] p.258).

3.2.1.5 Uncertainity

We think that Austin & Warnock [1964] is also missing another critical point:

the stochastic nature of perception. In the first chapter we have seen how our

confidence in human vision might be misleading. The number and complexity

of the structures in the visual world, challenge the constraints that characterize

categories. Indeed, it is not easy to define “the real shape” of a cat, just like

many other objects. Organic beings grow older, non organic get deteriorated or

renovated. Categories are not closed, new objects come out everyday. Compare

today’s phone and the ones from our old parents. The number of potential layouts

under which objects are perceived is large and each layout may influence in its

geometric description (different angles, levels of occlusion, positions etc.).

Logical approaches like entailment, theorem proving or propositional model

check (Russell & Norvig [2014] Section 7) , are unfeasible or impossible in real

world problems. Either the number of models is too large to be computed or

unknown. When we cannot create absolute constraints to define categories, there

is a degree of uncertainty about the categorization that must be represented.

The main tool for dealing with degrees of belief is probability theory.

The ontological commitments of logic and probability theory are the

same - that the world is composed of facts that do or do not hold in any

1in ancient greek mathematics means “that which is apprehended”
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particular case - but the epistemological commitments are different:

a logical agent believes each sentence to be true or false or has no

opinion, whereas a probabilistic agent may have a numerical degree

of belief between 0 and 1 (Russell & Norvig [2014] p.490).

Unconditional or prior probabilities refer to degrees of belief in propositions

in absence of any other information (Russell & Norvig [2014] p.493), so when

the number of different objects increases the prior probability that one of them

belongs to a category decreases. Conditional or posterior probabilities refers to

the degree of belief in a proposition given another proposition. Given proposition

A and B we write p(A|B) = p(A∧B)
p(B)

to express the probability of A given B. p(B)

is the probability that an object satisfies B, p(A) is the probability that an object

belongs to category A. We wish p(A ∧ B) to be as close as possible to p(B), so

that few objects satisfy B and do not belongs to A and few objects that belong

to A do not satisfy B. Such a constraint would be a perfect characteristic of the

category. Since the cardinality of some categories may be unknown, we will need

to estimate probabilities, and hence the importance of a stochastic approach.

We illustrate how intrinsic and extrinsic information can be combined in a

stochastic process to find a target of which we have no description. Let’s imagine

that we want to recognize Margarita Teresa de Austria but we have no description

of her. However we do have features that let us recognize from an image the

following categories Felipe IV, Mariana of Austria, a face, a child, an adult, a

girl and a boy. If we also have extrinsic information, for example the fact that

only one daughter of Felipe IV and Mariana of Austria grew older than 1, we can

deduce that Margarita is one of the three girls in the middle of the painting. The

process would be, we recognize Felipe IV and Mariana de Austria. There is a

high probability that people in the picture are related to them. We can recognize

the face of three girls, and infer that one of them is Margarita. Information about

Felipe IV could be avoided if information about Mariana of Austria is included.

However information about Mariana of Austria cannot be avoided since Felipe

IV had another daughter with Isabel of Borbón.

Another option would be to select information about las Meninas. If the

system can recognize the painting, faces, children, boys and girls and knows that

Margarita is one of the main characters of the painting we could deduce that the
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best represented face among the three girls corresponds to Margarita’s. Each way

requires different knowledge and offers different levels of certainty. Joining the

probabilities of both may give a stronger evidence. Once we have deduced the

identity of the girl in the middle of the image we can grasp the features from the

spatial structure of Margarita’s face and add it to the knowledge base, so that

next time she can be recognized directly, for example in an isolated crop of the

painting.

In the first case it is the spatial structure of different parts of the painting

related with extrinsic information about the target that leads us to the result.

In the second case it is the spatial structure of the whole related with extrinsic

information about it that ends up in the same conclusion.

3.2.2 The process of visual perception

In the first section of this chapter we claim that visual perception systems able

to emulate human vision cannot be modeled as sensors, a more powerful model

is required. The concept of rational agent has many advantages to implement

our theory. In this section we show how a perceptual system can be modeled

as an intelligent agent. We present its possible actions and an agent program

to efficiently gather information from images. Finally we discuss how visual

perception systems can be improved through learning.

3.2.2.1 Processing modules

In section 3.1.2.2 we discuss why perceptual systems should be considered as in-

telligent agents and not as sensors. The first step in designing an agent is to

specify the task environment, which is done by describing the P.E.A.S.: Perfor-

mance measure, Environment, Actuators and Sensors (Russell & Norvig [2014]

p.41).

We have limited the environment to information from digital images. These

are a sampling of the world created by image acquisition devices. The goal of

the agent is to find target categories represented in the images. Sensors are the

components of the agent that evaluate data, sets of pixels, from the image to cat-

egorize it. A sensor has built-in the definition of a category and the constraints
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that characterize it. It evaluates in what degree a set of pixels satisfies these con-

straints and therefore gives a degree of evidence that this set of pixels represents

an object member of the category. Sensors implement the transformation of an

image into a set of intrinsic information. In this paragraph we have used the

term sensor to comply with the acronym P.E.A.S., which is widely used in AI.

However for visual perception systems we prefer the term recognizer, the term

sensor would be better used for cameras. The set of recognizers of a perceptual

system is called the recognition module.

Images can be a very large collection of data but objects may be represented

only by a part of it. When a sensor evaluates the wrong set of data it will

not be able to extract the right information. We consider that segmentation

methods are actuators that divide an image into parts, so that recognizers can

evaluate them. Segmenters implement the transformation of an image into a set

of images. The set of segmenters of a perceptual system is called the segmen-

tation module. Perceptual systems may have other kinds of actuators, that we

group in the pre-processing module. Pre-processing techniques seek to improve

the conditions of the image and are usually filters, for example noise filters. These

techniques transform an image into a different image. Segmentation is often seen

as a pre-processing method, but we think that segmentation is much more. The

results of segmentation by themselves are characteristic. Segmentation can be

seen as a function mapping an image with a number of segments. Moreover, seg-

mentation methods evaluate data and categorize pixels according to the degree of

satisfaction of a set of constraints, just like recognizers. Sometimes, the boundary

between segmenters and recognizers fades out, when recognition is performed with

the features given by the segmenter, or when segmentation is based on pattern

recognition.

The performance measure is the evidence that the target categories are repre-

sented in the image. The evidence given by the recognizer of each target category

can be used to calculate a performance measure, but they are only one part of the

parameters. Let’s take for example a scene categorized as “beach” and another as

“city”. If the target is a “palm tree”, the probability of finding one in an image of

a beach is higher than in the city. These evidences are not given by recognizers,

we need another kind of component that we call rational module.

78



The rational module manages the KB, the component that reasons about the

intrinsic information extracted from the image and the extrinsic information rep-

resented in the KB. The conclusions of this reasoning provide rational evidences

that are computed together with the geometric evidences given by the rest of the

modules to categorize an image. The rational module also has a second function,

to guide the process of search. It is the program of a rational agent mapping the

information gathered with actions, the component that decides the next action

as a function of the collected information.

3.2.2.2 State space

State space is a common representation for search problems in AI (Nilsson [1998]

Part II). In our Thesis for visual perception a state must describe the information

that has been collected. A state has a list with all the categories from which the

system has information. This information can be a geometric degree of evidence

η given by the recognition module, a rational degree of evidence β given by the

rational module or a degree of pertinence π1 associated. The degree of pertinence

represents the importance that has been given to this category by an external

source, not by the visual perception system. A target category is very pertinent

for example, but may not be represented in the image.

Hierarchical structure. A state has also a list with segments of the image.

Each segment is itself an image, from which information can be collected. We im-

plicitly associate a segment with the set of pixels it represents, but do not express

it explicitly. Each segment has its own list with all the categories and one with

its own segments. The list of categories should include all the known categories,

but we can assume that any known category not present in the list has η, β and

π equal to zero. Finally for each segment we can include a reference to show if

a category has been activated for that segment. We use “category activation” to

represent the output of a visual perception system at a given moment. Even if

the same segment might be associated with several categories, this cannot happen

at the same time. A screwdriver can be perceived as a tool or as a weapon, but

1We use a nomenclature inspired by Bundesen & Habekost [2008], where the geometric
evidence is called sensory evidence and the rational evidence is called perceptual bias
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not both at the same time. The data structures used to represent states can be

described as follows (3.2.2.2).

categoryList ≡
(

(category1, η1, β1, π1), ...(categoryn, ηn, βn, πn)
)

segmentList ≡ (segment1, ...segmentn)

segment ≡ [activationId, categoryList, segmentList]

The name of each category is arbitrary, it is just a term, a way to refer to it.

The information about the categories could also be grouped in three lists, one for

the values of η, another for the values of β and another for the values of π but

in this case we would need to explicitly include all the categories with value 0.

These structures represent information in a hierarchy, in which the whole image

is at the top and is divided recursively into smaller regions.

State ≡ [activationId, categoryList, (Image)]

Image ≡ [activationId, categoryList, (region1...regionn)

regionn ≡ [activationId, categoryList, (subregion1...subregionn)]

When the state space graph becomes too complex, an implicit representation

can be given by three components: (1) a description of the start node, (2) func-

tions to transform a state description representing one state of the environment

into one that represents the state resulting after an action, these functions are

usually called operators, and (3) a goal condition (Nilsson [1998] p.130).

Start state. The start state has no category activated and a category list made

of categories judged pertinent (with π value different of zero) or with rational

evidence drawn from previous images, for example in videos. The segment list

contains one segment, the whole image, which is a copy of the start state but

with the segment list empty. In specific search, targets are pertinent, but also

categories related to the targets, for example if the target is “city”, the category

“building” might also be relevant.
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Goal states. The goal states are the ones, where sufficient evidences have been

found for a sufficient amount of target categories for a determined image. The

specification of sufficient is different for each problem. We can group them in

two classes, “specific search” and “description”. In specific search problems the

targets are specified a priori: “search for cats”. In description problems anything

can be a target: “tell me what is represented in the image”. In the first type of

problem, the number of goal states is usually small, whereas in the second it is

very large.

Transitions. The transition from one state to another is the effect of the ac-

tions segmentation, recognition and reasoning, which in this context are called

operators. The operator Recognize provides geometric evidence ηi from an im-

age I for any category i which has a recognizer in the recognition module. The

operator Segment provides a set of regions S generated from image I. The set of

regions is represented in the state as the segment list of image I. Each segment

has its own category list and segment list. The first one is initialized as the start

state, except for the βi which are computed using information from the segment’s

parent and an empty segment list.

We use the term region to refer to a segment of an image. There is no difference

in the nature of an image (I) and a region (R), I is just the first R. The rational

module has three processes: Categorize, Divide and Comprehend. The first one

acquires information with the operator Recognize and activates a category for

the region. The second one is based on the operator Segment. The process of

division can be iterated to build a hierarchy of segments. The decision of dividing

into more parts is computed with the information gathered by the processes

Categorize and Comprehend. The latter acquires information with the operator

Reason and also activates a category for the region. These processes define the

agent’s program.

The number of transitions depends on the complexity of the image, the knowl-

edge of the system and its goal. A complex image is likely to have more objects

and therefore require more segmentation. More knowledge means a bigger KB

that could be explored, and thus more propositions might pop up. The effect of

these factors is an increase of the number of transitions.
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3.2.2.3 Processing strategy

Exploring human knowledge can be extremely expensive. The dictionary of “La

Real Academia Española de la Lengua” has more than 90.000 entries (www.rae.es),

Diller [1978] assumes that Webster’s dictionary contains more than 450.000 en-

tries. The number of possible relations between these entities is unapproachable.

In fact it is likely that for any category a relationship can be found with any other

category. This means that when a region is categorized, the rational module could

eventually pop up every single category known by the system.

Knowledge pruning. To avoid this, we can limit or inhibit much of the knowl-

edge that will be used. For example we could use a domain specific ontology or

a taxonomy. A taxonomy is usually a hierarchy of concepts defining relations

of subcategory or supercategory, whereas an ontology studies any type of rela-

tion between categories. Another advantage of using a taxonomy is that we can

avoid recognizers for categories like “animal” or “food”. It seems difficult to find

a geometric property shared by a lion, a snake and a cow. However a domain

specific ontology may be necessary when specific search deals with abstract cat-

egories. For example, “window” is not likely a subclass of “danger”, however a

relationship between them could be found in an ontology about house risks.

Heuristic search. Exploring an image can also be expensive. In the megapixel

image representing “las Meninas” (3.1) we could easily extract millions of differ-

ent segments (3.2.1.2). For many real world problems, an exhaustive search of

the space generated by the relations between categories and segments could be

unfeasible or expensive. In such cases, AI problems can be approached with in-

formed or heuristic search. We take advantage of the agent’s knowledge, either

from its KB or from its percept list, categories gathered, to guide the search.

The goal states are defined by a minimum of evidence that has to be reached

on a minimum of categories. A natural heuristic is the difference between the

evidence of the candidate state and the target states. The closer the better. The

information gathered from the image provides new categories but also allows to

update the rational evidences β of related categories. Heuristics are used within

an evaluation function that determines whether the perceptual system should
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segment a region, analyze another segment, or integrate the information. For

example, given an image segmented in three regions, we have categorized one of

them as a car and another as a bicycle. If we are looking for a wheel, should

we segment the region with the car, categorize the third region or integrate the

categories “car” and “bicycle”? The agent has to select which process will be

executed next: Categorize , Divide or Comprehend.

After each segmentation the agent has to select which region should be cat-

egorized first. We suggest a method based on the rate parameter equation from

Bundesen & Habekost [2008].

v(x, i) = η(x, i)β(x, i)
wx∑
z∈S wz

(Eq.1)

where S is the set of segments, i is a category and

wx =
∑

j∈V
η(x, j)πj

where V is the set of all the categories that can be recognized by the recog-

nition module. Instead of a fixed and global βi, its value undergoes different

changes by the process of perception in function of the segment.

Recognize transforms pixels into geometric degrees of evidence, each recognizer

i, gives a ηi value. Categorize transforms a set of segments into a pair composed

of a segment with activated category, it affirms that a region is one category or

the other.

The affirmation that a region is a category is done implicitly by selecting the

region x with the highest v(x, i), which at the same time is relating x with the

category i. The process of visual perception is not about reporting meaning-

less terms, it is about attuning a system. Maybe now the quotes from Gibson

[1986] and Purves & Lotto [2003] make more sense in a context of machine visual

perception:

such a system is never simply stimulated but instead can go into

activity in the presence of stimulus information (Gibson [1986] p.53).

the visual system is not organized to generate a veridical represen-

tation of the physical world, but rather is a statistical reflection of
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visual history (Purves & Lotto [2003] p.227).

When different regions have been categorized the system can integrate them

into a whole. It is the process that we have called Comprehension. Segments can

be combined in different ways, and thus another selection must be done. We use

a formula inspired by the previous one, but instead of several segments, we have

several combinations of categories as input.

u(x, i) = β(x, i)
wx∑
z∈P wz

(Eq.2)

where P is the set of possible combinations made with the active categories

from a region’s segment list, i is a category and

wx =
∑

j∈Z
β(x, j)πj

where Z is the set of all the categories known by the system and β(x, j) is the

rational evidence that a combination of categories x can be related with category

j.

The main difference between Comprehend and Categorize is that the former

updates the rational evidence for some categories of the segment (β) and the

latter updates the geometric evidence ( η).

A state can be evaluated at any moment to check if we have reached a goal

state. We suggest that goal states should be defined by evidences for categories

and not by active categories. The set of active categories could be assimilated

to momentary perceptions, while a state represents the collected information.

States are the results of perception over the time, more time means more infor-

mation gathered. Over time, an image or one of its region can have different

categories activated. Given a list of target categories, a state should have suffi-

cient information for the perceptual system to find most of the categories that

have been activated in previous states. We could say that states have memory,

maybe representing something like the Visual Short Term Memory (VSTM) for

humans.
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3.2.2.4 Processing algorithm

In this section we propose an algorithm for the processing strategy presented

in the previous section ( 3.2.2.3). We have divided it in four processes: Visual

Perception, which is the main process, Categorize, Divide and Comprehend. When

a variable appears both as a result and a parameter of a function, its content

has been modified. As stated before, the goal of the computation is to gather

information, which is collected in the variable state. The functions, actions, or

operators that add the information are:

• Recognize: this operator modifies the values η in the categoryList of an

image or region.

• Segment: this operator directly modifies the segmentList of an image or

region, but also modifies indirectly the values β with a call to function

Comprehend.

• Reason: this operator modifies the values β in the categoryList of an image

or region.

We have two selection mechanisms, isBetterThan and SelectAction. The for-

mer one selects a pair of category and region to be categorized or a pair of category

and set of information to be categorized. The latter selects the process with more

evidence to lead to a goal state.

The variable state is also modified by two other functions: Activate and Ini-

tialize. The first one sets activationId to the last category found for the image or

region, while the second one is used to create the data structures in the beginning.

We will further discuss the role of these functions in the next section (3.2.2.5).
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Process 1 Visual perception

Require: I, an image

Require: pertinentList, a list with pertinent categories

Require: targetList, a list with target categories

Require: machine, a machine with previousState and non empty recognition,

segmentation & rational modules

Require: state , state with activationId, categoryList & segmentList

Require: segmentList empty

state← Initialize(state, previousState, pertinentList)

scene← Initialize(scene, previousState, pertinentList, I)

push scene into segmentList

repeat

scene← Categorize(segmentList)

nextAction← SelectAction(machine, scene, targetList)

if nextAction = SEGMENT then

scene← Divide(scene, targetList)

else if nextAction = REASON then

scene← Comprehend(scene)

end if

until nextAction = STOP

return state

scene has the structure described in 3.2.2.2 for a segment. The main process

Visual Perception handles the special case, in which the segment list has only one

segment, the whole scene. Visual Perception transforms an image I into a col-

lection of information called state. previousState contains information collected

from previous images. machine has the different modules, the actuator Recog-

nition with the recognizers representing the known recognizable categories, the

actuator Segmentation with the segmenters representing different ways of relating

pixels and the rational module with all the known categories and their relations.
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Process 2 Categorize a segment list

Require: S, the segment list of an image or region

Require: V, a list with all the categories that can be recognized

Require: machine, recognition, segmentation and rational modules

for each s ∈ S do

s← Recognize(s) . Modify η in s categoryList

for each i ∈ V do

rate← v(s, i)

if rate isBetterThan max then

max← rate

selectedSegment← s

selectedCategory ← i

end if

end for

end for

Activate(selectedSegment,selectedCategory), . Modify activationId

return selectedSegment

Ensure: selectedSegment and selectedCategory have been assigned a value

Categorize transforms a whole divided into parts, a segment list, into a cate-

gorized segment. Categorize modifies the η values in the selected segment cate-

goryList and activates the selected category. Selection is a function of η, β and

π as shown in equation Eq.1.
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Process 3 Divide a segment by creating a list of subsegments

Require: segment, a segment with activationId, categoryList & segmentList

Require: targetList, a list with target categories

segment ← Segment(segment) . Modify segmentList

segmentListCopy copy(segmentList)

repeat

s← Categorize(segmentListCopy)

repeat

nextAction← SelectAction(machine, segment, targetList)

if nextAction = SEGMENT then

s← Divide(s, targetList) , s is a part of segment

else if nextAction = REASON then

segment← Comprehend(segment) . Modify β in categoryList

else if nextAction = select another subsegment then

pop(s, segmentListCopy)

end if

until nextAction = select another subsegment or return

until (nextAction = return) or (segmentListCopy is empty)

return segment

Ensure: segmentList is not empty

Divide is the recursive process in charge of building the hierarchy of segments

that compose a whole. Each segment can be divided in subsegments until the

selection function determines that further segmentation is not worth it. After

the categorization of each subsegment, the system may choose to comprehend

the subsegments categorized so far. The process Divide may stop when the sys-

tem considers that it has gathered all the information that was required or if it

considers that exploring other segments might be more useful. The algorithm

contemplates the possibility of segmenting a region several times.
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Process 4 Comprehend a segment

Require: segment, a segment with activationId, categoryList & segmentList

Require: Z, a list with all the categories known

Require: machine, recognition, segmentation and rational modules

S copy elements of segmentList with activationId

T ← Combine(S) . Create all the possible tuples with elements of S

for each t ∈ T do

segment← Reason(segment,t) . Modify β in categoryList

for each i ∈ Z do

rate← u(t,i)

if rate isBetterThan max then

max← rate

selectedCategory ← i

end if

end for

end for

Activate(segment,selectecCategory) . Modify activationId

return segment

Comprehend transforms a list of subsegments into a categorized segment. A

selection function decides which combination of parts is more useful to define

a whole. We have chosen to go over all the known categories, Z. This could

require many resources. For many cases, considering the list of categories that

can be recognized, V , may be a good option to reduce the computational cost.

We could also build an ad-hoc category list for each problem following the idea

of “knowledge pruning” (3.2.2.3).

3.2.2.5 Improving visual perception

Visual perception systems can be improved with better or more knowledge, new

categories or relation between categories. Better definitions allow more reliable

categorizations and are usually the result of better feature selection. New defini-

tions allow categorizations that previously were not possible. When a perceptual
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system tackles a new object or situation it must be able to learn it, to create a

new definition so that when facing the same scene again it can categorize it.

Learning is an important branch of IA systems (Russell & Norvig [2014] Chap-

ter V). Machines can learn from examples or learn from what they already know,

by reasoning. Reasoning is the process by which the perceptual system passes

from two or several propositions, called the premises, antecedent or prior knowl-

edge, to another proposition, called the conclusion or consequent (Wallace [2011]

p.20). Very often prior knowledge is represented by formal languages (3.2.1.3,

Russell & Norvig [2014] Section 19), and can therefore be introduced by human

experts.

Learning from examples can be unsupervised or supervised by a human or

another system. In supervised learning the system observes input-output pairs,

whereas in unsupervised learning no feedback is provided. But “How can we be

sure that our learning algorithm has produced a hypothesis that will predict the

correct value for previously unseen inputs?” (Russell & Norvig [2014] p. 724). We

can easily adapt this question to the visual perception problem: “How can we be

sure that our categories’ definitions are good enough to characterize every object

member of the category and only those when there are unseen representations

of objects?”. This is an example of PAC (Probably Approximately Correct)

learning, which are based on the axiom “future examples are going to be drawn

from the same fixed distribution as past examples”. It is exactly the theory

defended by Purves & Lotto [2003] (2.2.5) to explain why we see what we do.

Purves & Lotto [2003] suggests that rule-based schemes of vision are not

able to deal with the inherent ambiguity of visual information. We would suggest

that rule-based definitions are sometimes less appropriate than definitions learned

from examples. Which would be the rules to differentiate between running an

evacuating? Which would be the rules to differentiate the effect of one flash of

lightning from another? One way of improving visual perception systems is to

find definitions learned by examples, what we called knowledge by acquaintance

to replace or complement definitions based on propositional knowledge. Catego-

rization based on geometric evidence does not need to segment and comprehend,

and is therefore more efficient.

The process of learning could easily be integrated in the algorithm described
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in the previous section (3.2.2.4). The two functions Initialize and Activate rep-

resent learning. With the first one status acquires knowledge about the problem

coming from previous images. The second one could be associated with a new

action LearnFromExample by which the machine acquires new recognition capac-

ities. Once that a segment has been categorized (activated) the system acquires

knowledge by acquaintance from the image. For this purpose categorization could

be seen as the process providing labels for the images so that supervised learn-

ing can take place. Let’s remember that the same segment might be activated

more than once and therefore might contribute to the learning process of different

recognizers.

3.3 Analysis of implementation methods of vi-

sual perception systems

There are many different approaches to implement segmentation, recognition,

reasoning, selection or learning. In this section we present some of the most

important ones and review relevant methods that use them. We have organized

the section in five subsections, one per type of computation.

3.3.1 Segmentation

Segmentation is the process of dividing an image in parts, regions or segments.

These segments can play two different roles in visual perception. They can rep-

resent the target categories, or provide information to categorize the whole. A

segment is a set of pixels that are related, and thus can be seen as a category. The

elements of this set are members of the category while the rest is not. Segmenta-

tion can threfore be seen as a process of categorization of an image, by which each

pixel is assigned to a particular set. Considering a segment as a category may not

be intuitive because by itself it is only intrinsic information that may or may not

be known by the system. Usually we feel more comfortable when categorization

yields known categories, categories with signification. What makes the difference

between categories with signification and without it, is the fact of relating the set

of properties defining them to extrinsic information.
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However the difference between the kind of categorization used to recognize

an object and the one used to divide an image is the approach to the constraints

defining the categories. Recognition evaluates how well the elements satisfy each of

the definitions known by the system, while segmentation evaluates which elements

satisfy a given definition. We have divided the definitions used for segmentation in

three classes depending on the main constraints. In the first class, elements belong

to a category when they satisfy a geometric constraint about their coordinates. In

the second class, semantic segmentation, elements belong to a category when they

satisfy geometric constraints of surfaces. In the third class, elements belong to a

category when they satisfy a spatio-temporal condition. The following subsections

present some of the most relevant methods in object recognition literature and

analyze their segmentation approach.

3.3.1.1 Sliding window

A straight forward way to divide an image is to consider it as a grid of smaller

images. The size of each segment of the grid determines the number of segments,

smaller segments means more segments. If we need to find objects of different

sizes we have to apply different segment scales. In order to avoid missing objects

all the positions must be processed. The approach that, for all positions and scales

in an image evaluates a score function to find its local maxima, is referred to as

“sliding window” (Harzallah et al. [2009]). Sliding window has been successfully

implemented to detect human bodies (Dalal & Triggs [2005]), human faces (Viola

& Jones [2004]) and different objects (Laptev [2006]) from the PASCAL database

(Everingham et al. [2010]).

The sliding window algorithm itself is very simple but since the search space

is huge, the number of window candidates (segments) can be very large. As a

consequence potential algorithms for the recognition module have to be selected

under strong limitations from a performance point of view. Viola & Jones [2004],

for example, uses a cascade of weak classifiers to improve performance. To limit

the amount of window candidates, exhaustive search can be limited by using

heuristics to guide the search. Lampert et al. [2008, 2009] suggest to use a branch

and bound approach. Alexe et al. [2012] describes cues to measure the objectness
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of an image windows. Most successful methods based on sliding window follow

a top-down approach to minimize the amount of segments generated and evalu-

ated. Harzallah et al. [2009] states that the performance of sliding window based

systems depends, among others, on an efficient search strategy.

In this approach the criteria used to generate segments are position and scale.

The elements of the segment do not have to satisfy any other constraint, so the

segmentation process gives no information about the data bounded by the win-

dow and no information about the relations between the parts of the image. In

the previous section we have discussed the importance of the relations between

the parts and how these relations constitute valuable information for perception.

Felzenszwalb et al. [2010] presents a method built on sliding window (Dalal &

Triggs [2005]) and completed with a mixture of multiscale deformable part mod-

els. The use of part based models improves the precision of object detection.

The authors suggest that future work could include grammar based models that

represent objects with variable hierarchical structures.

3.3.1.2 Semantic segmentation

Gibson [1986] claims that surfaces are one of the basis of perception (2.2.3).

Hoiem et al. [2007] recovers Gibson’s ideas about surfaces and proposes a method

to construct the surface layout, “a labeling of the image into geometric classes”.

Felzenszwalb & Huttenlocher [2004] proposes to consider the pixels of an image

as vertices of a graph, where the weight of the edges is some measure of the

dissimilarity between the two pixels connected by that edge. The weights define

relations between the pixels, they define the intrinsic structural information of

the image. However not all the relations are relevant, segmentation algorithms

should select the ones that are likely to be given signification. Felzenszwalb &

Huttenlocher [2004] chooses measures based on the difference in intensity (color)

to segment images into regions, similar to what we could call surfaces.

Beyond defining surfaces, segmentation should define figure and background.

This topic was widely covered by Gestalt theorists (2.2.4). In the work Carreira

& Sminchisescu [2010], Gestalt properties are used besides graph partitions and

regions properties to predict whether segments have regularities typical of pro-
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jections of real objects (figures). Endres & Hoiem [2010] uses three classifiers

to predict if a region is likely to be foreground or background, if two regions are

likely to lie on the same object and if a region lies on the left, right, top or bottom

of an object. Then a ranking model ranks the likelihood of a set of proposals of

being an object. In Carreira & Sminchisescu [2010] and Endres & Hoiem [2010]

the methods require previous training but are category-independent, this means

that segmentation does not depend on the object represented by the segment.

Category-independent approaches follow the idea of early selection (2.3.3), se-

lection comes before recognition. Attention would be directed to the candidates

ranking higher.

Since semantic segmentation processes the intrinsic structure of an image, it

may seem natural to have category-independent algorithms. However category-

independence is not exclusive of semantic segmentation, we already presented the

work Alexe et al. [2012] based on sliding windows, which is category-independent.

This is achieved by creating a generic category in which all the different objects

may fit, with a constraint called “objectness”. “Objectness” is somehow what Ru-

bin [1958] defines with “richer, with a more differentiated structure, with greater

structural solidity of the color and appear to be closer to the viewer than the field

experienced as background” (2.2.4).

Semantic segmentation can also be category-dependent. Arbelaez et al. [2012]

uses multiscale low-level hierarchical segmentation (Arbelaez et al. [2011]) to pro-

duce “high quality object candidates... in a simple and generic way without

mid-level information or learning” and then applies a multi-class high level re-

gion representation that integrates scanning-window part detectors and global

appearance cues (Felzenszwalb et al. [2010]). This representation is used to make

pixel level decisions, in other words, to label each pixel. We have to note, that

each pixel may belong to more than one region, since region candidates have been

produced by a multiscale hierarchical segmentation process.

Uijlings et al. [2013] implements Felzenszwalb & Huttenlocher [2004] using

multiple thresholds and a hierarchy, showing the latter better results. The authors

state that “images are intrinsically hierarchical [...] This prohibits the unique

partitioning of objects for all but the most specific purposes”. The paper shows

how an image region is formed because of a variety of reasons, similar color,
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texture or inclusion, and therefore suggests the use of diverse strategies to find

objects. The use of a hierarchical algorithm is also a way to take into account

all object scales, aiming to capture all possible object locations. Uijlings et al.

[2013] is an example of several ideas exposed in this dissertation. The elements of

an image can be related in a variety of ways, and among the resulting relations,

more than one can be given signification. The more “strategies” the perceptual

system can execute, the more chances to find objects. Depending on the chosen

configuration, “single strategy ”, “fast selective search” and “quality selective

search”, the number of strategies used, windows created, time consumed and

accuracy increases. The results of segmentation depend not only on the algorithm,

but also on how it is executed. In fact more than one configuration could be

applied, starting by the fastest. Its results may or may not advice to process the

image with a more powerful configuration. “Quality selective search” takes 20

times more time than “fast selective search”, but the recall increases from 0.98 to

0.99. The idea of starting with a fast processing configuration is justified. Another

interesting point is the fact that the process of grouping regions is repeated until

the whole image becomes a single region. To comprehend the essence of the image,

it is not enough to grasp the essence of its parts, a relation between all the parts

must be apprehended to grasp the essence of the whole. Girshick et al. [2014] uses

Uijlings et al. [2013] to generate category-independent region proposals, which

are processed with a convolutional neural network (Krizhevsky et al. [2012]) to

provide more precise object location than sliding-window approaches.

3.3.1.3 Motion detection

The previous segmentation types process still images. However motion plays an

important role in perception. In section 2.1.3 we present works suggesting that the

human visual system has different pathways to process information about spatial

structure (P pathway) and information about temporal changes (M pathway).

Motion detection can be used to divide images into foreground (moving elements)

and background (still elements).

Background subtraction techniques are probably the most popular choice in

the literature to detect motion. The idea is to extract foreground objects from
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an image by subtracting a “background model” image from the original one. The

main challenge is to generate a “background model” fast and with robust re-

sults. Brutzer et al. [2011] and Bouwmans [2014] describe the main challenges for

background subtraction (BS) methods. Piccardi [2004] compares different back-

ground subtraction methods. “Running gaussian average” has the best speed

performance while “Mixture of Gaussians” or “Kernel density estimation” give

better accuracy. Xu et al. [2016] classifies background modeling methods in para-

metric and nonparametric categories . Two methods show a performance over 20

FPS. “Adaptative Gaussian Mixture Model” (AGMM) improves classic Mixture

of Gaussians by automatically adapting to the scene by choosing the number of

components for each pixel (Zivkovic [2004]). “Visual Background Extraction”

(ViBe) improves other methods by storing values of pixels taken in the past

and choosing randomly which values to substitute instead of replacing the oldest

(Barnich & Droogenbroeck [2011]). Both outperform other methods in difficult

conditions, such as bad weather.

The second approach, temporal filtering, is based on temporal differencing

(Lipton et al. [1998]). This method uses a thresholded difference of pixel between

consecutive images (two or three) to extract the moving object, so it shows high

computing performance. However its detection accuracy may be weak, failing in

extracting all the relevants pixels of a target object or leaving holes inside moving

objects (Kim & Street [2004]).

Finally optical flow is an approximation to image motion defined as the pro-

jection of velocities of 3D surfaces points onto the imaging plane of a visual sensor

(Beauchemin & Barron [1995]). Different optical flow techniques are detailed in

Barron et al. [1994], most of them are computationally complex. Another im-

portant withdraw is that optical flow algorithms are very sensitive to noise (Hu

et al. [2004]).

3.3.2 Recognition

Recognition is the process by which the perceptual system evaluates whether the

elements of an image satisfy the constraints of a set of known categories. The

challenge is to find the best definition for each category. In section 3.2.1.2 we
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show several branches of geometry providing tools to represent the geometric

properties of an object or image. In this section we present the features used by

some of the most relevant methods used in computer vision. We have made two

classifications, one to differentiate low and high level features and a second one

to differentiate local and global features. We finally review algorithms used to

classify the features.

3.3.2.1 Low level and high level features

One of the main concepts in geometry is curvature. Nixon & Aguado [2012]

considers curvature “as the rate of change in edge direction”, which character-

izes the points in a curve. Points where the edge direction changes rapidly are

corners, whereas points where there is little change in edge direction correspond

to straight lines. According to Nixon & Aguado [2012] these extreme points are

very useful for shape description and matching, since “they represent significant

information with reduced data” (p.180). Indeed, under these definitions, the dif-

ference between a pixel representing a corner and one representing a straight line

is the relation between a pixel and its neighbors.

A surface can be represented by a set of its invariant properties (3.2.1.2).

Invariants are one of the tenets of Gibson [1986]. According to this work, in

order to perceive persistence and change we pick up invariants of the structure of

the ambient optic array. In computer vision, using invariant features to represent

things is important to be able to recognize this thing in different environments.

When a feature depends on the object’s position or illumination conditions, we

have more chances to miss that feature.

All the previous features are low level features, features that can be extracted

without any shape information (Nixon & Aguado [2012] p.138). Shapes are par-

ticular spatial relations of pixels, and are considered as high level features (p.218),

for example, a face. We could think of high level features as the ones, that by

themselves have signification, whereas low level features are the ones that have

not. Maybe the most important idea behind low and high level features, is once

again, hierarchy. High level features are relations of low level features.

The values of the pixels of an image are likely the simplest features of an image,
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the relation between the coordinates of a pixel (x, y) and its value. Relations

between these features are high level features called templates. Spatial relations

can be directly approached by model or template matching. A template can be

represented by a function T (x, y) mapping coordinates (x, y) of a window (image

segment) to some value. We have seen that an image can be represented by

a function I(x, y), we could therefore consider template matching as a method

of parameter estimation. More details can be found in Nixon & Aguado [2012]

(p.222-230). Since a template is a function over a window, template matching has

difficulty to deal with rotation and scale invariance. Solutions in the frecuency

domain have been tried to deal with these difficuties (Derrode & Ghorbel [2001]),

but still face one of the main issues for template matching: processing speed.

Stockman & Agrawala [1977] shows that Hough curve detection can be equivalent

to template matching and Princen et al. [1992] suggests ways of implementing

Hough-like algorithms to improve performance. Weiss et al. [2012] demonstrates

that Hough transform is well suited for real-time detection.

The relation between the coordinates of a pixel and its value are just one

among many. For example, Viola & Jones [2001] implements a cascade of simple

low level features, Haar wavelets, to represent shapes. Cascade filtering is useful

to minimize the cost of extraction of the features. More expensive operations are

applied only at locations that have already passed filters with lower processing

costs. A filter is just a binary function that classifies a set of pixels, ergo a charac-

teristic function (constraint) of a category (3.2.1.2). We find the idea of cascade

filtering in the very popular work Lowe [2004] presenting Scale-Invariant feature

transform. In this case the author uses distinctive scale-invariant keypoints in-

stead of simple templates like Haar wavelets. “Descriptors” of the keypoints are

compared to recognize the searched thing. “Descriptors” define the constraints

that a region must satisfy to be identified as a particular category. Extracting

more than one keypoint increases the probability to match an object correctly.

Schneiderman & Kanade [2004] presents a method based on two pre-computed

probability distributions representing the statistical knowledge of the object ap-

pearance. Probabilities are computed over different parts of the object and then

combined in a classifier. In the paper we find some of the main points of our

theory, “parts need not have a natural meaning to us (such as a nose or an eye),
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but could be defined as a group of pixels, or transform variables, that satisfy

certain mathematical properties”, such properties are low level features.

Today some of the most popular methods for image recognition are based on

Convolutional Neural Networks (CNNs). CNNs already had good results in the

1980s, for example recognizing handwritten numbers (LeCun et al. [1989]), but

today’s popularity comes from the results showed by CNN trained with 1.2 million

images from Imagenet database (Deng et al. [2009] Krizhevsky et al. [2012]).

CNNs have an architecture with different types of layers, where convolutional,

pooling and fully-connected layers are usually implemented. Convolutional layers

use kernels, which usually are small templates made with a set of weighting

coefficients. Template convolution calculates new pixel values by placing the

template at the point of interest, multiplying surrounding pixels by the weights

and summing the results. Template convolution is therefore a relation between

a set of pixels. Like other approaches combining low level features, CNNs use

a classifier to represent the constraint satisfaction evaluation that categorizes

an image. CNNs are likely the most important instance of “Deep Learning”

algorithms (LeCun et al. [2015]), which have structures built with several layers

of processing units. The different layers relate information from the previous

ones, and therefore can be seen as a hierarchy of features, from lower to higher.

3.3.2.2 Local and global features

In the previous section we have seen how features can be organized in a hierarchy

where only high level features are given signification. The idea of hierarchy is

also found in Hall [1979] with a proposal about the organization of scenes, and

thus images: “natural scenes may be described in terms of hierarchical structures

such as scene-object-surface-boundary-point in which each pattern is described

in terms of simpler patterns”. This hierarchy is represented with local and global

features. Local features are features from parts of a whole, while global or holis-

tic features are features of the whole. “Cars” may be features of a “parking”,

“wheels” may be features of a “car”, “circular” may be a feature of a “wheel”,

such that a parking could be recognized by its local features, “cars” , the object

“car” could be recognized by its local features “wheels” and the object “wheel”
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could be recognized by the global feature circular.

Bottom-up approaches integrate the categorizations of the parts to categorize

a whole. On the other hand global features categorize the whole without explicitly

categorizing the parts. Oliva & Torralba [2001] claims that object recognition is

not needed to recognize a scene, that the “gist” (essence) of a scene can be grasped

by the means of global features (Oliva & Torralba [2006]). Global features are

the result of relations between all the elements composing a whole. An image, a

matrix of pixels, is a global feature of the image itself. Such a feature would be

too specific, so that in order to define categories more generic features should be

chosen.

Moments are quantitative measures of the shape of a set of points. Moments

were originally introduced in image analysis by Hu [1962] and further developed

by Teague [1980] with Zernike moments (Nixon & Aguado [2012] p.383-393).

Torralba & Oliva [2003] presents how simple image statistics can be used to

predict the presence or absence of objects in the scene before exploring the image,

thus without segmentation nor object recognition.

Techniques used to describe regions can also be applied to describe the whole

image. One of the important characteristics used to identify regions is texture

(Haralick et al. [1973]), an image could be considered as a texture, such that

texture descriptors (Haralick [1979]) represent the image. Ojala et al. [1996]

compares different texture measures and suggests that distributions of features

values should be used instead of single values. Ojala et al. [1996] also present

texture measures based on local binary patterns (LBP), which combine several

local descriptions of the whole image into a global description. LBP have been

successfuly used in a wide range of applications, like face recognition (Ahonen

et al. [2006]) or writer identification (Bertolini et al. [2013]).

Lazebnik et al. [2006] suggests that global features can not only be used to

capture the “gist” of an image but also to inform the subsequent search for

specific objects. An image is repeatedly subdivided to compute histograms of

image features over the resulting subregions. He et al. [2004] suggests to extract

features at different scales and combine them using “Conditional Random Fields”

(CRF - Lafferty et al. [2001]) to help disambiguate classifications. The idea is

that context can provide useful information to correctly categorize a part. In
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the same line Murphy et al. [2003] and Murphy et al. [2006] present how global

features can be used to help resolving local ambiguities. It is somehow similar

to what we find in Gibson [1986] “ground theory of space perception” where the

character of the visual word is not given by objects but by the background of the

objects (p.150). Oliva & Torralba [2007] concludes that:

a scene composed of contextually related objects is more than just the

sum of the constituent objects. In the absence of enough local evi-

dence about an object’s identity, the scene structure and prior knowl-

edge of world regularities might provide the additional information

needed for recognizing and localizing an object. Even if objects can

be identified by intrinsic information, context can simplify the object

discrimination by decreasing the number of object categories, scales

and positions that must be considered. How objects are remembered

also depends on the scene context they are in.

3.3.2.3 Classification of features

We say that a model m, in this case an image, satisfies a sentence α, in this case

a property, if the sentence α is true for this model. How could a measure be true

or false ? Again we can use a function mapping the measure to the value true or

false, or to the probability of truth or falsity. Such a function is called a classifier.

A simple way to implement a classifier is to introduce a threshold, measures above

it are attributed one class and the ones below it another one. In the previous

subsection we have seen several examples of methods using classification. In

all of them more than one feature was used. Perception is about relations, in

this case relations of features. We find different approaches in the literature to

implement classifiers, being neural networks and support vector machines among

the most popular choices (Forsyth & Ponce [2003] p.601-618). Both are examples

of parametric models.

Parametric classifiers have a finite number of parameters, a better choice of

the parameter set yields better classification results. In section 3.3.5 we discuss

how these parameters can be chosen. There is another type of classifiers that does

not use parameters, but the idea of distance (Nixon & Aguado [2012] p.417-420).
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“It is reasonable to assume that example points ‘near’ an unclassified point should

indicate the class of that point” (Forsyth & Ponce [2003] p.587). Nearest neigh-

bors methods are based on this heuristic. In parametric models, labeled samples

are required to determine the parameter set, in the non-parametric models, they

are also required to calculate the distance between them and the evaluated im-

age. Knowledge for classification can either be represented with the parameters

of parametric classifiers or with the samples used in non-parametric classifiers.

When the spatial relation between features is relevant, in other words, when

context matters, graphical models like Markov Random Fields or Conditional

Random Fields (Lafferty et al. [2001]) are useful because they have the capacity

to predict sequences of labels. Conditional Random Fields have successfully been

used in some promising methods to improve the results of CNNs (Farabet et al.

[2013] Chen et al. [2015]).

Classification evaluation. Let A be the predicate IsTheObject(x) and B Prop-

erty(x), when p(A ∧B) is different from p(B) some elements satisfying B do not

satisfy A. This means that some object x with Property(x), does not belong to

the category defined by IsTheObject(x). Such cases are called False Positives.

On the other hand it may happen that an object x belonging to the category does

not satisfy Property(x), we call such cases False Negatives. In order to evaluate

classifiers different metrics can be used, some of the most important are recall,

precision, F-measure and percentage of correct classification:

Recall R =
TP

TP + FN

Precision P =
TP

TP + FP

F-measure F1 =
RP (1 + α)

R+ αP

PCC PCC =
TP + TN

TP + TN + FP + FN

Table 3.1: Evaluation metrics

Metrics depend either on False Negatives (FN), False Positives (FP) and True

Positives (TP) or True Negatives (TN). As one may guess a True Positive is an
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object x belonging to the category with the label of the category. A True Negative

is an object that does not belong to the category with a label different from the

one of the category. More information about evaluation of classifiers can be found

in Powers [2011].

3.3.3 Reasoning

When an image or one of its regions is categorized the perceptual system can

reason about it. Reasoning is the process by which information unknown by

the agent is inferred from information it knows. The information known by the

agent is the information that has been gathered so far and the information in

its knowledge base (KB). The information that can be inferred are probabilistic

propositions, that say something about the image or its regions. Reasoning is

one of the main topics in any AI book (Russell & Norvig [2014] Chapters III &

IV, Nilsson [1998] Chapter III, Pearl [2014]). In this section we introduce expert

systems and present relevant methods to handle categories and belief.

3.3.3.1 Expert systems

For many years expert systems have been used to support activities based on

specific knowledge: agriculture, communications, construction, financial, manu-

facturing, transportation or medical (Feigenbaum et al. [1989]). The knowledge

base of an expert system represents knowledge using some kind of formal lan-

guage like First-Order Logic (FOL) (Barwise [1977]), so that an inference engine

can manipulate that knowledge and deduce information requested by the user.

Such a system requires of knowledge engineers, computer scientists with arti-

ficial intelligence training, to represent the knowledge from a human expert in a

form that can be entered into the knowledge base (Nilsson [1998]). This conven-

tional approach to knowledge acquisition faces several limitations, theoretical and

practical (Potter [2003]). Experts should be able to provide the actual knowledge

used in a task but this may not always be the case, either because some kind of

knowledge is hard to express or because the expert is not able to retrieve it. On

the other side, knowledge engineers may also misunderstand, misinterpret or fail

to grasp the domain in hand. “To some extent, knowledge engineering is an art,
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and some people become more skilled at it than others” (Winston [1993]).

This weakness in expert systems is specially relevant for visual perception.

It is the same problem that we presented in section 3.2.1.4 with the quote from

Austin & Warnock [1964]. How can a cat in any position be described such that no

other animal can be mistaken for it? It seems difficult to find a set of propositions

expressing a definition to answer this question. On the other hand Simonyan

& Zisserman [2015], without any propositional knowledge, achieves impressive

results to classify cat among other animals under different light illumination and

poses.

3.3.3.2 Natural language

However propositional knowledge is important. Most of the humankind’s knowl-

edge has been conceptualized in dictionaries, encyclopedias, books, journals,

newspapers etc., an increasing number of them are digital or have been digitized

(Coyle [2006]), and hence are available in computer networks. Making computers

understand natural language is the key to unlock human knowledge about the

world.

Several approaches have been used to describe natural language (NL), a classic

one are production rule systems (Chomsky [1956]). A production system consists

of a set of rules, a working memory and a long-term memory. Its basic operation

runs repeatedly through a cycle of three processes: recognize, resolve and act.

“Recognition” matches rules against the current state of the working memory,

which results in the “conflict set”. “Resolve” selects a suitable set of rules from

the “conflict set” to execute. “Act” executes the actions and updates the working

memory of on-going assertions (Brachman et al. [1992]).

A second approach is the ontology web language (OWL). OWL facilitates

greater machine interpretability of Web content by providing additional vocab-

ulary along with formal semantics. OWL can be used to explicitly represent

the meaning of terms in vocabularies and the relationships between those terms

(McGuinness et al. [2004]). OWL is an XML-based vocabulary for describing

properties and classes, among others, relations between classes, cardinality, equal-

ity, characteristic of properties or enumerated classes. The strict definition of
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static structures given by XML schemas limits the capacity of OWL to represent

beliefs, knowledge that contains subjective degrees of confidence.

A better representation for beliefs are Bayesian networks, also called “belief

networks” (Pearl [2014]). A Bayesian network is a probabilistic directed acyclic

graph (DAG) whose nodes represent random variables and whose edges represent

conditional dependencies, providing means to express joint probability distribu-

tions over many related hypotheses. However Bayesian networks have a limited

expressiveness equivalent to propositional logic, and therefore are not suited to

refer to objects in the world (concepts), unlike First-Order Logic.

Semantic networks have an expressive power equal to First-Order Logic. Sowa

[2006] presents six common kinds of semantic networks : definitional, assertional,

implicational, executable, learning and hybrid. Definitional networks emphasize

the IsA relation between a concept type and a newly defined subtype, such that

any subtype inherits the properties of the supertype. While the information

in definitional networks is often assumed to be true, information in an asser-

tional network is asssumed to be contingently true, which makes them suitable to

represent the conceptual structures underlying natural language semantics. An

implementation of semantic networks to represent general knowledge and how it

is expressed in natural language is ConceptNet (Havasi et al. [2007]; Liu & Singh

[2004]; Speer & Havasi [2012]).

3.3.3.3 Language and perception

A perceptual system performing image description can be seen as a “visual trans-

lator” (Herzog & Wazinski [1994]) which generates natural language expressions

from images. Besides being the output of a perceptual system, language ex-

pressions can also be an input. Srihari [1994] classifies computational models for

integrating linguistic and visual information in two areas based on the input types

used by the systems as well as their functionality. The first group are the systems

that accept either language or visual input, but not both, while the second group

are the systems that deal with both linguistic and visual inputs. Bernardi et al.

[2016] sorts computational models for image description in three categories. The

first one called “direct generation” uses information detected in the image like ob-
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jects, scene types, actions etc. to drive natural language generation. The second

category referred to as “retrieval in visual space” exploits similarity between im-

ages in the visual space to transfer descriptions of known images to query images.

The third category is also based on retrieval but in this case similarity is com-

puted over the visual and linguistic space, thus called “retrieval in multimodal

space”. Bernardi et al. [2016] reviews 35 different approaches to automatic image

description published in less than five years, 17 of them retrieve descriptions and

images from a multimodal space.

3.3.4 Selection

This dissertation analyzes visual perception as a search problem with a state space

that in many cases cannot be approached by an exhaustive strategy. Selection is

therefore a key element that enables the possibility of finding target states with

limited resources. In this section we review how relevant methods implement

selection techniques.

3.3.4.1 Cascade methods

Cascade based methods process each segment of an image with a weak classifier

to get evidences about the relevance of what is represented on it. A weak classifier

should eliminate a large number of regions, those with low evidence to represent

a target category, with very little processing. The objective is to minimize the

number of False Negatives, interesting regions classified as non interesting, even

if the number of False Positives, non interesting regions classified as interesting is

high. Then a more complex classifier is used to eliminate more candidate regions.

This approach is followed by well known methods (Viola & Jones [2001, 2004]).

For these methods the decision that has to be taken is whether the region should

be discarded or if more features should be extracted and classified. Each segment

is classified at least once. When cascade-based methods are implemented with

sliding window segmentation, the number of segments can be controlled by scale

constraints. If the system has information about the size of the object it can

eliminate a range of scales, such that less regions are generated.

106



3.3.4.2 Branch and Bound

Forecasting the size of the target is not realistic in real world problems. Lampert

et al. [2008] proposes to avoid wasting resources evaluating all candidate regions

and target the search directly to identify the regions with highest scores from a

quality function, regions which are likely to represent a target category. Efficient

Subwindow Search (ESS), “organizes the search over candidate sets in a best-

first manner, always examining the rectangle set that looks most promising in

terms of its quality bound”. Only the most promising rectangle set is split into

a subset of rectangles which are evaluated. Branch and bound methods discard,

and therefore select regions depending on a quality function. Alexe et al. [2010]

shows that the number of segments evaluated by ESS (Lampert et al. [2008]) can

be very large when non-linear classifiers are used to make the selection.

3.3.4.3 Selective search

On the other hand selective search described in Uijlings et al. [2013] proposes to

select a combination of diverse similarity measures. Depending on this combi-

nation more or less segments are generated. The work presents three examples

called “single strategy” with 362 regions and 1 strategy, “selective search fast”

with 2147 and 8 strategies and “selective search quality” with 10.108 regions and

80 strategies. An agent implementing selective search could decide which combi-

nation seems more appropriate at each moment, and for each segment. Another

strong point about this method is that segmentation is bottom-up or data-driven.

Starting from an initial group of regions created with the method described by

Felzenszwalb & Huttenlocher [2004] a greedy algorithm iteratively groups regions

together. Instead of selecting a range of scales, this method suggests to select

a combination of similarity measures to divide an image or region into smaller

segments.

The selection can be knowledge-driven. Instead of starting with a “quality”

search the agent might start with a faster combination that generates less seg-

ments, then a categorization of these segments could provide information suggest-

ing further segmentation over one or the other region. A method implementing

selective search combined with a top-down approach is described in Xiao et al.
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[2015].

3.3.5 Learning

Learning is the process by which visual perception is improved. In section 3.2.2.5

we state that visual perception can be improved with better definitions, with new

categories or with information about them. Better definitions can be achieved

with better features or better constraints. New definitions can be created by

associating a set of properties and conditions with other categories. Information

about categories are relations between them. In this section we present methods

to improve or learn new definitions for categories and then analyze how perception

can increase the knowledge of the system and how knowledge can be used to

improve perception. Finally we show how state-of-the art learning techniques

can easily be fooled.

3.3.5.1 Improving recognition

Learning parameters. In section 3.3.2.3 we present two types of classifiers,

parametric and non-parametric. Parametric classifiers depend on a set of param-

eters to attribute a class to a feature vector. In order to find the best parameters,

methods like neural nets and support vector machines require training. The pro-

cess of training could be seen as one way of implementing knowledge by acquain-

tance. Previously labeled samples (known samples - kennen) are used to adjust

the weights (parameters) of a neural net (LeCun et al. [1998]) or a support vector

machine (Vapnik [2013]). These techniques are examples of supervised learning.

Each time that a perceptual system categorizes a region, the result can be used

to train, and therefore improve the recognition module.

Learning features. Good parameters can be learned, but also good features.

Chandrashekar & Sahin [2014] presents several methods for feature selection and

show how “more information is not always good in machine learning applica-

tions”. Instead of relying on a set of features selected by a human, machines can

do it by themselves. Farabet et al. [2013] proposes a multiscale convolutional

network trained from raw pixels for scene classification. Texture, shape and con-
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textual information are successfuly captured without need of engineered features.

Grangier et al. [2009] and Pinheiro & Collobert [2014] also avoid “hand-crafted

features” and fed directly the neural network with the pixels of the image. The

multiscale approach is substituted by sequential series of convolutional networks

(LeCun et al. [1995]). Pinheiro & Collobert [2014] shows that a recurrent ar-

chitecture (Recurrent Neural Networks - RNN) can also capture texture, shape

and contextual information. The authors claim that their method is “simpler and

completely feed-forward, as it does not require any image segmentation technique,

nor the handling of a multi-scale pyramid of input images”. While Farabet et al.

[2013] and Chen et al. [2015] include CRF to increase the capability of modeling

global relationships or improve localization, Pinheiro & Collobert [2014] avoids

any graphical model in order to keep simplicity and reduce computing costs. Fi-

nally Zheng et al. [2015] proposes to formulate CRF as an RNN to form part

of a deep network to perform end-to-end training combined with a CNN and

achieve state-of-the-art on Pascal VOC segmentation benchmark (Everingham

et al. [2010]).

Supervised learning depends on the availability of labeled data. For some

perceptual systems this might not be easy. Unsupervised feature learning is

a methodology in machine learning to build features from unlabeled data. A

common approach is to use an encoder-decoder architecture. A function called

encoder generates a feature vector from an input, in this case an image, then

another function called decoder reconstructs the input from the feature vector.

The reconstruction error is the loss function to train the encoder and decoder as

parametric classifiers, searching for the best parameters to minimize the recon-

struction error. Clustering algorithms like Kohonen (Kohonen [1990]) or K-Means

(Jain [2010]) can be seen as unsupervised learning algorithms, where the index of

the node or cluster is the feature. Dimensionality reduction algorithms, like PCA

(Forsyth & Ponce [2003] p.596) can also be considered as unsupervised learning

algorithm. In this case the weights associated with the eigenvectors would be the

features.

Clustering or dimensionality reduction methods can be used directly over im-

ages and achieve low error in recognizing the same image, but very often the

features are not robust to variations. For most of the real world applications,
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invariant features are required. In section 3.3.2 we present several methods to

extract invariant features (Viola & Jones [2001], Derrode & Ghorbel [2001]). How-

ever those methods use “hand-crafted features”. Ranzato et al. [2007] proposes

an unsupervised method for learning sparse hierachical features (low level) that

are invariant to local shifts and distorsions, directly from the raw pixels. This

method is presented as an alternative for supervised learning method for situa-

tions where the lack of labeled data causes over-fitting. More recently Le et al.

[2013] achieves to build a face detector (high level feature) only from unlabeled

images. Unsupervised learning can be seen as a way of increasing the capacity of

the recognition module.

3.3.5.2 Knowledge and perception

We have said that with each categorization the recognition module can be trained

and thus improved. When the parts of a whole are categorized the agent can also

learn this relationship. It seems reasonable that when more examples of the same

relation between the same set of parts and the same whole are found the agent

has more evidences that the whole is made of these parts. When the amount of

evidences if high enough, it could be considered a known proposition and therefore

be included in the knowledge base. This could be seen as the transition from

VSTM to long term memory. In classical IA, perception is a form of knowledge

acquisition.

On the other hand knowledge about the categories can be used to improve

perception, more precisely the processes of segmentation and recognition.

3.3.5.3 Fooling classifiers

Deep convolutional neural networks achieve impressive results recognizing ob-

jects in large datasets like Imagenet (Krizhevsky et al. [2012]; Simonyan & Zis-

serman [2015]). However these techniques, which represent state-of-the-art in

object recognition can easily be fooled. Nguyen et al. [2015] shows how deep neu-

ral networks classify unrecognizable images (3.3) with a confidence above 99%

.

We think that the experiments shown in Nguyen et al. [2015] support the idea
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Figure 3.3: Unrecognizable images Nguyen et al. [2015]

that visual perception has to be approached as a process of information gathering,

in which pattern recognition is one of the operations.

3.4 Summary

Visual perception is a process by which information is collected over time, so that

categories can be computed. A category is a set of objects that satisfy a definition,

which is a set of properties. Properties can be classified in two types intrinsic and

extrinsic. Intrinsic information are the relations between elements of an image

and can be represented by geometric features. Extrinsic information are relations

between concepts called propositions. Propositions are the fundamental elements

in formal languages, which are widely used to represent knowledge. However

propositions are only good to represent the so called “propositional knowledge”

in opposition with “knowledge by acquaintance”. The latter is better suited to

represent intrinsic information which is hard to express with words. Knowledge

by acquaintance can be as reliable as propositional knowledge or even more.

An object is categorized as a category when it satisfies its definition. Recog-

nition is the computation by which the perceptual system evaluates whether the

subject satisfies the definition of a category. Recognition is a fundamental compu-

tation for visual perception but is not sufficient to emulate human vision. Images
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might contain one or many objects, therefore a perceptual system must be able

to divide an image into the parts that represent these objects. This computation

is called division and might also be useful to generate features. The parts of a

whole can be categorized in order to categorize the whole, in a computation that

we have called comprehension.

The goal of visual perception is to find targets, to find categories. However

visual perception should not be considered as a process of simple categorization,

of pattern matching but as a process of information gathering, a search problem.

The amount of possible relations between the elements of an image and between

the categories of a knowledge base can create an unapproachable space of possible

categorizations for a single image. Human vision results can only be achieved by

a process of guided search.

We have chosen the intelligent agent paradigm to represent visual perception

as a search problem. A rational agent whose goal is to find a set of categories

would select at each moment the computation that maximizes the probabilities

to reach its goal. Such computations are performed with the data from the image

and the knowledge of the agent. The agent knowledge is composed of the prior

knowledge and the percepts, information gathered from the image. We have

proposed a program to implement the process of information gathering. The

information collected defines the status of the system, which can be evaluated

to find categories. The status of the system represents the Visual Short Term

Memory (VSTM).

The proposed algorithm combines top-down and bottom-up approaches, in a

similar way as Bundesen & Habekost [2008] TVA. The main process is a top-down

computation generating a hierarchy of segments. The agent explores the hierarchy

of segments following a strategy inspired by branch and bound. Branching is a

recursive process of segmentation, from image to regions, then subregions etc.

Bounding limits the number of regions that are segmented using heuristics about

the probability of finding relevant information in the subregions. Each region

can be categorized by classifying global features or by integrating local features.

Categorizing with low level features avoids segmenting a region to extract the

high level features associated to its parts.

Visual perception can be improved when the agent is able to learn. An agent
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can learn from its knowledge or from examples. In the first case reasoning gener-

ates new propositions from premises. In the second case the agent creates defini-

tions based on intrinsic information from the examples. Expressing the properties

that define an object or category with propositions is often complicated. This

fact combined with the stochastic nature of visual perception make definitions

learned from examples and based on geometric information more efficient than

ruled-based learning schemes for many real world cases. Moreover recognition of

geometric information does not need to segment a whole into parts, and thus is

more effective.
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Chapter 4

Applications of machine visual

perception

In the previous chapter we claim that the result of perception are categories, and

categories can be defined with properties or features. In section 3.3 we present

several methods to implement feature extraction. In this section we show that

different types of categories, which can be the result of human vision, can also be

perceived by machines. We also analyze the role of the three operators described

in section 3.2.2: recognize, segment and reason in the process of perceiving the

different categories, and the relation between the subprocesses Categorize and

Divide.

Four experiments have been chosen for this analysis. The first one deals with

crowd activity perception. It might seem challenging since crowds are made

of many people and their behavior is sometimes hard to describe precisely. The

second experiment is about handwriting authorship perception. Police corps have

developed scientific methods to identify the author of a handwritten document

by categorizing the characters inside. However handwritten documents are hard

to segment into characters because writers generate touching pieces of ink and

not separated characters. The third experiment deals with intrusion detection

systems based on video surveillance. Like human attention, computer based

systems might be attracted by motion, however the motion generated by sudden

illumination changes is not useful information and challenges the efficiency of
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the system. Finally, in the fourth example we analyze whether a computer can

emulate human subjective opinion about an artistic expression: calligraphy.

4.1 Activity perception

Our first example is about activity perception in video surveillance installations

and is based on the work Cermeño et al. [2013]. The number of video surveillance

cameras is increasing year after year, making automatic event recognition the

only way to manage the huge amount of information generated. Crowd control

is one of the most important challenges that today’s video systems face. From a

computational point of view the first problem is how to conceptualize “crowd”.

Saxena et al. [2008] defines crowd as a region corresponding to more than one

person which has coherent and homogeneous motion. A natural approach would

then be to detect people, determine if there is more than one, and analyze its

motion. Such an approach would belong to the so called “object-based methods”.

Junior et al. [2010] divides the literature about crowd analysis into “object-based”

and “holistic” methods.

Object based methods aim to analyze the group behavior through its indi-

vidual components, while holistic ones look at the crowd as a global entity. We

can easily associate the former with high level local features and the latter with

global ones. Detecting and counting people in a crowd might not be easy due

to segmentation problems. Tracking people might also be a difficult task in a

crowd, even for humans. In fact when a person sees a crowd it is likely that he

has not counted people, and nevertheless can affirm there is a crowd. Another

important issue is to define the concept of “region”. Watching ten people on a

street, if there are enough space between them, would not be considered as a

crowd by many. An object-based approach would have to add constraints about

the distances between objects.

On the other hand an holistic approach would rather represent the “impres-

sion” (3.1.1.3) of a crowd. Instead of trying to segment people, which in crowds

is difficult (Marques & Llach [1998], Tu et al. [2008]), we could just treat it as an

object and avoid the logical division in persons, which is only useful if we actually

need to count people. Junior et al. [2010] suggests that holistic methods present
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better results in very high-density crowds, which make sense, since segmentation

is harder in these environments.

Following these ideas, we wish to test if human activity can be addressed by

means of global features, such that logical division can be avoided.

4.1.1 Method

Since we are dealing with video and search for activity, background subtraction

seems to be a good choice to extract the relevant part of the image where action

takes place. We select simple global features to represent shape (Teague [1980]),

color (Almrabet et al. [2009]) and texture (Haralick et al. [1973]). These features

are calculated for the segmented part of each frame of a video sequence and put

together in a feature vector (FV), one per frame. Then a supervised learning

method is trained using frames labeled with the different crowd behavior.

Each FV is labeled with label “1” if it has been generated from a frame that

belongs to event En or “0” if it does not. We build up a training set with FV

labeled “1” or “0”. Once the MLP is trained its output will be used for labeling

testing FV, thus determining if it belongs to an event or not. This way we define

a two-class classifier specialized in one kind of event. If more than one event are

to be recognized we would need to train one MLP for each event following the

same procedure. A frame can be recognized by two different MLP, this could

have different meanings. It can be used to code new events, detect transitions

etc. Further logic may be applied with MLP outputs in order to define complex

behaviors.

4.1.2 Experiments

4.1.2.1 Data preparation

We test our method with PETS 2009. The dataset provides footage from a multi-

camera installation. Set number 3 (event recognition) has four different cameras

in four different positions recording at the same time. A camera position is called

view, therefore we will have four different views. We will only use set number

3 since it is the one designed for event recognition testing. Dataset 3, event
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recognition, is divided in four video sequences identified with four time stamps

(14-16, 14-27, 14-31, 14-33). Each view has the same sequences, so we have 16

video sequences to work with. Sequences are recorded at 7 FPS lasting between

19 and 58 seconds.

In order to increase the number of frames available for each experiment we

put together all the frames from each view in four new folders. We discard mixing

frames from different views because the extracted features make no sense when

changing from one camera view to the other. Another important issue is that

depending on the view, the starting and ending frames of an event may change.

(W) (R)

(S) (M)

(L) (E)

Figure 4.1: Events: (W) Walking, (R) Running, (S) Splitting, (M) Merging,
(L) Local Dispersion, (E) Evacuation
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4.1.2.2 Training

Each frame is labeled with “1” if it contains an event En or “0” if it does not.

So it is important to state when an event starts or ends. We will try to recognize

six events: walking (W), running (R), local dispersion (L), splitting (S), merging

(M) and evacuation (E). One frame may contain more than one event. Table C.1

shows the video script containing event information for every view. This script

has been done by evaluator number 1. We asked three other people to fill in script

for View 1 in order to evaluate the differences between people classifying the video

footage using the same event definitions provided by PETS organization, results

are shown in Table C.2.

We build up six training sets, one per kind of event (W, R, L, S, M, E) to

get one MLP for each event and each view. To create a training set we use

the same proportions that before, we select randomly 75% of the frames that

belong to event En for training and 25% for testing. Training and testing sets are

completed with frames that does not contain event En, with a final distribution

of approximately 40% FV with the event to be learned and 60% without it.

4.1.3 Results

Table 4.1 shows errors for the six events for each view using script by evaluator

1. In all the cases more than 88% of the FV are classified correctly, in most cases

more than 95%. The “worst” view is View 2. This is likely to happen because

it is harder to make a difference of people running, walking or merging from a

frontal point of view. The hardest event to be recognized is Local Dispersion.

View 1 View 2 View 3 View 4
Walking 1.13% 4.13% 1.50% 2.63%
Running 2.38% 4.06% 3.25% 1.67%
Splitting 1.23% 3.70% 5.95% 2.47%
Merging 0.75% 6.01% 0.38% 2.64%

Dispersion 7.84% 11.76% 7.02% 10%
Evacuation 0% 4.17% 0% 0%

Table 4.1: Event errors per view

Table 4.2 shows errors for the six events using scripts from all the evaluators
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but only for View 1. The error rates from evaluators 2, 3 or 4 are very similar to

the ones obtained training with evaluator 1 script, most of the cases show more

than 95% of FV properly classified. This is by far much better that the error

rates we see in Table C.2, when we compare the classification done by evaluator

1 and the others, just a few cases have error rates below 95%.

Evaluator 1 Evaluator 2 Evaluator 3 Evaluator 4
Walking 1.12% 1.12% 2.53% 0.87%
Running 2.38% 1.67% 0% 3.10%
Splitting 1.23% 2.30% 4.17% 1.07%
Merging 0.75% 2.63% 1.50% 1.89%

Dispersion 7.84% 6.06% 3.79% 4.76%
Evacuation 0% 0% 0% 0%

Table 4.2: Event errors per evaluator

Finally, Table 4.3 compares the results for evacuation generated using two

different algorithms. The first one is the result we get using MLP as seen above.

But the second one is the result of the combination of two MLPs, splitting and

running MLPs, since evacuation can be seen as the co-occurrence of both. To

perform this test, we did classify all the frames from the different Views using the

trained MLPs. Then we looked at all the frames with running and splitting event

and compared them with evaluator 1 script to see if it was a correct classification

or not. This test has no previous training to define evacuation.

MLP AND
View 1 0% 0.37%
View 2 4.17% 0.56%
View 3 0% 0.37%
View 4 0% 0.19%

Table 4.3: Comparation of methods for evacuation

4.1.4 Discussion

Four people given the same instructions label frames differently, which confirms

that conceptualizing crowd behavior is not simple. In fact complex events, like
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“dispersion” or “evacuation” present higher differences. However, our method

based on global features achieves very low error rates, without need to segment

or track people.

The “gist” or “impression” of the region where action takes place is enough to

differentiate between several crowd behaviors. We have used a simple method for

segmentation, background subtraction, which is an efficient method to detect ac-

tivity. Then we have trained one recognizer per event category. These categories

can also be seen as high level features that might be comprehended to find an-

other category. For example, the concept “evacuation” might be conceptualized

directly with a specialized recognizer, and or indirectly by the logic combination

of the results of two recognition modules, “splitting” and “running”. In three of

the four views the direct approach has slightly better results, however the mean

error in the indirect is a third of the direct approach, 0,3725% versus 1,0425%.

The method is extremely accurate, and in fact the errors are questionable.

For example some frames labeled as “local dispersion” can easily be considered

as “merging” frames. This kind of ambiguity is natural and can easily be resolved

with the context generated by the following frames, with more information the

system is able to increase its reliability.

4.1.5 Conclusions

Different activities can be successfully categorized by a set of low level features.

Even when the activity is defined by the actions of a set of people, the activity

can be recognized with global features. The whole can be categorized without

categorizing the parts. The only segmentation needed is the one that divides

background and foreground objects. This segmentation is simpler and avoids

the generation of segments and their comprehension. Learning is achieved with

examples, without need of rules describing the behavior of each element. The

activity is recognized as a global relation between all the elements that have

moved in the image.
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4.2 Authorship perception

The second example is about writer identification for police investigations and is

based on Cermeño et al. [2014a]. Handwriting can be considered as a biometric

feature, and thus can be used to determine the authorship of a document (Srihari

et al. [2002]). Tapiador & Sigüenza [2004] describes a manual method used by

police experts to compare different questioned documents that consist on the

classification of relevant characters based on their shapes. Each document is

then formulated using the results of the classification of its characters. We could

express this process in the terms of perception: in order to perceive the authorship

of a document, high level features, the characters, are classified to generate a

representation of the document. This example is interesting, because unlike most

of the examples of perception we could quickly think of (e.g.:object recognition),

authorship perception is not immediate, it requires some effort and an explicit

methodology.

One could question if writer identification is actually perception. Under our

definition “picking up and categorizing information related to an image” the

answer is yes. Aside from our definition, if we consider that face recognition is an

act of perception, why shouldn’t it be handwriting authorship recognition? Both

are visual biometrics. In fact, sometimes face recognition is not immediate and

requires the recognition of parts, for example explicit eyes or nose description.

Tapiador & Sigüenza [2004] also proposes a computer based method inspired

in the manual one to speed up and increase the reliability of the process. Fol-

lowing the steps that a policeman would undertake, each character is considered

individually, segmented as a new image and labeled with the letter it represents.

This process is done with the support of a digital image-manipulating tool, and

therefore requires human intervention to properly segment and categorize. Then

letter representations from an questioned document (unknown author) are auto-

matically compared to the representations of the same letters from documents

from known authors. This approach can be divided in two cycles: the first one

would segment and categorize each character, and the second one, would inte-

grate the information from the first one to categorize the image and conclude

who is the author of the handwriting.
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English handwritten characters classification can be done by a machine achiev-

ing an accuracy over 99% (Ciresan et al. [2011]). However segmenting handwrit-

ing into characters has proved to be more difficult (Stamatopoulos et al. [2013]

Saba et al. [2011]). Lu & Shridhar [1996] claims that “it is extremely difficult to

segment characters in handwritten words without the support from recognition

algorithms. Therefore, unlike the problem of machine printed character recog-

nition, the handwritten character segmentation and recognition are often closely

coupled”. The big difference between machine printed and western handwritten

character segmentation is that the former are always separated by spaces while

the latter may have some of the characters of a same word touching. The con-

straint used to segment machine printed words is not reliable for handwritten

ones.

On the other hand, finding touching words in a sentence is unlikely, and

therefore space separation can be much more reliable for word segmentation than

for character segmentation. Instead of following a bottom-up approach, picking

up each character of a word to recognize it, we can try a top-down one where a

direct hypothesis is made about the whole word before categorizing each of its

parts, in such a way that segmentation is guided by information extracted from

the whole. For example Koerich et al. [2005] proposes to combine two different

classification strategies operating in different representation spaces (word and

character) in order to improve word recognition. While Larson [2004] discusses

if humans use word shape or letters to recognize a word, Rehman & Saba [2012]

states that “Regarding word recognition, the problem is seemed to be solved in

small and static lexicons using holistic strategy. However, recognition accuracy

dropped significantly for larger lexicons. Therefore, segmentation based word

recognition is an alternative solution”.

Whereas handwriting variability is a problem for word recognition, it is a

strength for writer recognition. Without variability it would be impossible to

distinguish one author from the other. Works like Tapiador & Sigüenza [2004]

exploit the variability in the writing of letters, but as we have seen they face

the character segmentation problem, which derives from the variability in the

way an author joins letters. Thus, why not using this variability to perceive the

authorship of a document?
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Joint letters are connected pieces of ink. In handwriting analysis we usually

call them connected components. A writer could be considered as a stochastic

generator of connected components (Schomaker et al. [2004]). Depending on the

writer, these components may codify a character fragment, a character, a word

fragment or even a complete word. The segmentation procedure extracts con-

nected components from a scanned document. Schomaker et al. [2004] suggests

to generate a codebook with connected components, and thus replace the classifi-

cation of characters with a classification of connected components, which are easy

to segment. This kind of methods simplify the process of segmentation and rely

on the recognition of high level features, the connected components (COCOs).

Connected components can be described with different kinds of features.

Grapheme-based features describe COCOs by mapping their local structures into

a common space. Schomaker & Bulacu [2004] and Schomaker [2008] are two

examples of methods using grapheme-based features. More recently Christlein

et al. [2015] describes COCOs using Zernike moments extracted on contours and

encoded into a Vector of Locally Aggregated Descriptors (VLAD). Xiong et al.

[2015] follows the bag-of-words model with SIFT features.

On the other hand we have texture-based features that consider handwriting

as a texture, such that writer identification becomes a problem of texture recogni-

tion. Local binary patterns (LBP) and Local phase quantization (LPQ) generate

useful descriptions, such that COCOs can be compared (Hannad et al. [2016]).

Some texture-based approaches avoid COCOs evaluation and directly compare

handwriting textures with promising results (Bertolini et al. [2013]; Nicolaou et al.

[2015]).

Segmentation is sometimes seen as a problem for writer identification, like for

many other computer vision applications. However experiments have shown that

COCOs produced by a simple segmentation algorithm can be analyzed in terms

of probability distributions that are able to characterize upper-case handwrit-

ing (Schomaker & Bulacu [2004]). To deal with more realistic situations, where

upper-case and cursive handwriting coexist, Schomaker et al. [2004] extends the

previous work with the introduction of “fraglets”, which are segments of COCOs.

The hypothesis behind segmenting COCOs is that working at word or syllable

level may be confounding because it makes writer identification depend on the

123



content of the text. Other publications using fragmented COCOs consider that

fragments have a higher discriminative power than COCOs (Bensefia et al. [2005];

Hannad et al. [2016]).

We do not try to segment handwriting into characters, which has proved

to be difficult, but neither do we try to segment COCOs into fragments. We

focus on simple segmentation of handwriting into COCOs and evaluate the effects

of relaxing the fundamental constraint that defines a COCO: connection. A

connected component is represented by a set of foreground pixels, in which any

pixel has at least one neighbor member of the set. We propose a new framework

for segmentation based on different definitions for the concept “neighbor”. The

constraint “neighborhood” is enlarged from touching elements to elements closer

than a determined distance. Multiple distances are used to generate COCOs, so

that we call it multi-segmentation. The hypothesis is that juxtaposition may not

be the best constraint to define neighborhood, and that exploring more than one

segmentation space might generate useful information for writer identification.

In other fields, like object recognition, adopting different segmentation strategies

has proved to be effective (Uijlings et al. [2013]).

4.2.1 Method

4.2.1.1 Handwriting segmentation

The first idea of our method is that when we segment an image we are creating

a relation between the segments that represent information valid to identify the

authorship of a document. The second idea is that using more than one parameter

for segmentation might be useful. Resolving power, the ability to distinguish two

adjacent pixels is a basic way of segmenting an image. When we are not able

to group pixels together, for example when zooming in a high resolution picture,

perceiving the whole becomes harder. If we relax the constraints to consider that

pixels belong to the same segment, perceiving wholes is easier but we sacrifice

the perception of details. In this case we are not interested in details but in

analyzing the image as a whole, so we can relax the constraints of segmentation.

To do so, we consider that two pieces of ink may be connected even if there are

some background pixels between them. Actually what we do is to simulate that
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Figure 4.2: Growth levels: 0,2, 4, 6, 8, 10

a thicker pen goes over the handwriting in what we call a process of “growing

the connected components”. Instead of having just one pen, we simulate several

pens of different sizes. Each pen represents a different segmentation, leading to a

different set of COCOs, and hence the name multi-segmentation for our method.

It is composed of the following steps. We first binarize the image in order

to get rid of noise coming from the original document, its scanning process or

image compression. We complement the image, such that background pixels

become black and foreground pixels white. Then we apply a simple segmentation

algorithm. We scan the image line after line, labeling each pixel. For every white

pixel a new label is created only if there are no neighbors already labeled. If there

is one its label is adopted. In case of several neighbors the first label is adopted

and expanded to the other neighbors. At the end each group of pixels with the

same label is considered as a connected component. The rectangle containing a

connected component is called block.

In order to implement a multi-segmentation scheme we need to apply a growth

algorithm to the image. Every white pixel neighbor becomes white. The growth

algorithm admits a parameter to fix the growth radio. The segmentation algo-

rithm is then applied over the grown components.

Depending on the image resolution and the writers characteristics different

growths are required to compose letters, then syllables and then words.

125



4.2.1.2 Size analysis

Our first approach tries to describe an author’s handwriting by using the number

of connected components generated. We take advantage of what we presented

as a problem: how a writer groups the pieces of ink. If a COCO corresponds to

a letter, a syllable or word is not relevant. We focus on how many COCOs the

writer generates and their size.

In order to compute this we calculate:

• Histogram of block size

• Histogram of block ratios (width to height)

Block size could be a problem in some cases, for example if an author uses

bigger letters than usual. However police experts expressed their interest on these

features since very often one person writes within the same size range. Block

ratios are not affected if an author changes the size of its writing. Empirical tests

show that 8 to 12 histogram bins provide optimal results.

Multi-segmentation brings the chance to multiply the number of features and

make them robust against an author’s writing size change from one document

to another. For each growth we calculate the histograms described above. Then

for each histogram bin we calculate its evolution ratio, this is, how much it has

increased or decreased from the previous growth level. With all these data we

can build a feature vector for every writing sample. This feature vector is a

compilation of several probability distributions related to the whole image. When

two samples are compared, the images as wholes are compared, not their parts.

In order to identify an author we need a classification algorithm. Two clas-

sifiers are considered for writer identification, Euclidean distance (ED) and Mul-

tilayer Perceptron (MLP). Schomaker & Bulacu [2004] suggests the use of MLP

or Support Vector Machines (SVM) for writer verification but has some objec-

tion to apply them for writer identification. Gazzah & Amara [2008] proposes to

use ensembles of MLP to classify features extracted from Arabic handwriting, as

well as trained SVM. MLP provides slightly better results than SVM (94,7% vs

93,76%) classifying structural and global features. For this work we implement

an ensemble of MLP, one per writer, with bipolar output indicating if the vector
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belongs to the selected writer or not. The output is also considered when several

MLP recognize positively the same vector.

4.2.1.3 Shape analysis

Size is just one type of feature among many. Our second approach extracts

features related to the shape of COCOs. Like in the previous section we wish

to represent a sample of handwriting by a probability distribution of its COCOs

components, but this time grouped by shape features. For each writing sample

we generate COCOs using the multi-segmentation method, then we extract the

shape features presented by Perez et al. [2014]:

• Mass: the number of pixels in the image that contain handwritten text.

This measure is normalized to the size of each image and it is in the range

[0,1].

• Center of mass: the unique point where the weighted relative position of

the distributed mass sums to zero. This measure is normalized to the size

of each image and is in the range [0,1].

• Eccentricity: the ratio of the distance between the foci and the major axis

length of the ellipse that has the same second-moments as the object. The

value is between 0 and 1.

• Orientation : the angle in degrees between the x-axis and the major axis of

the ellipse that has the same second-moments as the object. The value is

in the range [-90, 90].

• Euler number : scalar that specifies the number of strokes in the text minus

the number of holes in the text. A hole is defined as a space inside a stroke.

• Solidity: the ratio of the mass of the text and the area of the convex hull

of the text. The convex hull is defined as the minimum convex perimeter

that can contain the text.

• Extent: the ratio of the mass of the text and the area of the bounding

box that contains the text. The bounding box is the smallest rectangle

containing the text.
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Each COCO has associated a Connected Component Feature Vector (CO-

COFV). The method to create the probability distribution is similar to the one

described by Schomaker et al. [2004] or Schomaker & Bulacu [2004] but without

contours. A a self-organizing map (SOM) (Kohonen [1990]) is used to create a

codebook with COCOFV. In this work the SOM consists of a matrix of nodes.

Associated with each node is a weight vector of the same dimension of the input,

in this case a COCOFV. All the weight vectors are initialized with random values.

Then COCOFVs from writing samples selected for training are compared with

each node weight vector. The closest node is updated using a learning rate of

0.1, so the node weight vector becomes more similar to the FV. We repeat this

learning algorithm for 500 epochs with all the COCOFVs from the training set.

Every writing sample could be described as a probability distribution of the

COCOFVs in the SOM. The classification or mapping phase consists in calculat-

ing the number of COCOs similar to each node of the SOM. Thus we have a new

vector called writer feature vector (WFV) with as many components as nodes in

the SOM. Each component has the probability that the COCOs from the sample

are similar to its associated node. A writing sample is represented by a WFV.

In order to compare known author writings with questioned samples (unknown

authors), we compute the WFV of the questioned document and compare it with

the WFV of samples from known authors. We assume that the author of the

questioned sample is the one that wrote the “known sample” which WFV is

closer to the questioned sample WFV. We use the Euclidean distance to compare

the WFV. Growth 1 COCOs are the ones from growth 0 plus the ones from

growth 1, growth 4 COCOs include COCOs from all the previous levels, 0,1 ,2 3

and also 4. The higher the growth level the more COCOs to describe the sample.

When two samples are compared, the description of each image as a whole is

compared, not its parts.

4.2.2 Experiments with a small group of authors

4.2.2.1 Database description

The first database used in these experiments was created with spanish police

corps using writing samples from real investigations. Samples contain mixed-
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style handwriting with upper-case and cursive styles from 8 different authors. The

documents have been “treated” by forensic experts and contain arrows, circles

and other symbols used for manual handwriting recognition that may add noise

to the automatic recognition. Scanning is done with a resolution of 300 DPI,

after that the only manual processing on our side is to cut a region of interest

containing between 50 to 80 words. This is done by cropping a rectangle from

a document scanned using a basic image edition tool. No special care has been

taken so samples may have non aligned text or truncated words in the edges.

We build three testing sets using documents from the database. For the first

one TS1 we split 8 documents from different writers into 16 samples. One sample

will be considered unknown and the second one known for each author. The

second set TS2 is composed of 10 samples, 2 from each writer. In this case we use

different documents. The third set TS3 is done using TS1, and composed of 16

samples in each group, “known” and “unknown”. We split each known sample

in two new samples in order to have smaller “known” samples. Then we join the

original two groups of samples to form the unknown samples. The idea of this

set is to test with small samples (less than 40 words).

4.2.2.2 Feature vector generation

We decide to divide the feature extraction in three phases A, B and C. Phase

A includes growth radios of values 2, 3 and 4 pixels. Phase B growth radios of

values 6, 8 and 10. Phase C includes growth radios 10, 12 and 14. Segmentation

is processed over the samples after applying the different growths in order to

obtain the connected components.

For each block containing a connected component we calculate the size and

width-height ratio in order to obtain a probability distribution for a given growth

and writer. This distribution is coded in two histograms with 10 bins each. Since

each phase is composed of three growth steps we generate 60 features. After

that the feature vector of each phase is completed with the ratios of equivalent

histogram bins within the phase, adding 10 new features per histogram and evo-

lution ratio, thus 40 in total (one phase has two ratios calculated between three

growth steps). In our example with three phases the size of one writer’s feature

129



vector is 300. Vectors from known writers would be used for training whereas

unknown samples are used to test the system.

4.2.3 Results for a small dataset

The following tables contain the results from the classifiers. When using MLP,

after executing all the tests, “unknown” and “known” groups are swapped so the

training files become testing files and testing files become training files. Results

show the average.

0 A A + B A + B + C
TS1 37.5% 43.8% 18.8% 12.5%
TS2 50% 60% 30% 30%
TS3 15.6% 15.6% 9.4% 3.1%

Mean 34.4% 39.8% 19.4% 15.2%

Table 4.4: Error rates with MLP classifier

Table 4.4 presents the results of MLP using features from one, two and three

phases over the different testing sets. We can see that for all the sets performance

is improved when more phases are added. TS1 with all the growth phases has

an error of 12,5%, this is one mistaken authorship over eight. Without multi-

segmentation the error rate is 3 times higher (37,5%), while random classification

would show 87.5% of error. TS3 shows even better results with zero or one error

depending on the training group selected, thus an error rate of 3%. The worst

results are found in TS2, with one or two mistakes over five writers.

0 A A + B A + B + C
TS1 12.5% 62.5% 25% 25%
TS2 60% 60% 20% 40%
TS3 31.3% 56.3% 50% 43.8%

Mean 34.6% 59.6% 31.7% 36.3%

Table 4.5: Error rates with ED classifier

Table 4.5 presents the results using ED. The improvements derived from the

use of multi-segmentation are not very clear. Most of the results are worse than
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the ones obtained without growth phases. But in all the testing sets results are

improved when adding phases B and C to A.

M1 M2 M3 M4 M5 M6 M7 M8
W1 4 0 0 0 0 0 0 1
W2 0 4 0 0 0 0 0 0
W3 0 0 4 0 0 0 0 0
W4 0 0 0 4 0 0 0 0
W5 0 0 0 0 4 0 0 0
W6 0 0 0 0 0 4 0 0
W7 0 0 0 0 0 0 4 0
W8 0 0 0 0 0 0 0 3

Table 4.6: Confusion matrix for TS3 with actual Writer classes Vs predicted MLP
classes

We observe that MLP results are better than ED when using more growth

phases, without multi-segmentation there is not a clear improvement between

MLP and ED.

Table 4.6 shows the confusion matrix for TS3. As stated before we have

two samples per writer in the training set and two different ones on the testing

set. Once we have finished the classifications with these sets, we swap them to

classify again (training becomes testing and testing becomes training). Thus for

each writer 4 samples are classified. Just one error is reported, one of the samples

from writer 8 is considered to be from writer 1.

4.2.4 Experiments with a large group of authors

4.2.4.1 Database description

In order to evaluate multi-segmentation with a larger dataset we have selected

IAM dataset (Marti & Bunke [2002]). This database contains forms of different

handwritten English texts which were scanned at a resolution of 300dpi and saved

as PNG images with 256 gray levels. More than 650 authors have contributed to

the dataset but most of them with just one page, many others have only a couple

of lines. For our experiments we have built a set with 100 writers each of them

with two samples and more than two lines, a total of 200 samples.
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Like in the previous dataset, the only manual processing is to cut a rectangular

region with the handwriting inside. IAM samples do not have forensic annotations

and the writing is of better quality. With quality we mean that it is clear that

authors of IAM dataset took some time to write the samples and were aware that

others would use them. In the dataset from the police corps, authors wrote short

texts with instructions, orders or reports that were very likely to have just one

receiver and were going to be used once, so no special care was taken with the

calligraphy.

With basic segmentation (no growth) the number of COCOs generated is

most of the times between 200 and 300. If we apply the same growths than in the

previous experiments (0,1,2,3,4,6,8,10,12,14) the number of COCOs per sample

is usually around 1500. So with just 100 samples we were able to generate 150K

COCOs which is similar to the 152K COCOs used by Schomaker et al. [2004] to

train the SOM, but we required 100 pages instead of 300.

4.2.4.2 Baseline

IAM is a public dataset so we can use it to compare and evaluate the effects

of multi-segmentation with state-of-the-art techniques. Local Binary Patterns

(LBP) and Local Phase Quantization (LPQ) are two texture descriptors that

have shown some of the best results in the IAM dataset (Bertolini et al. [2013];

Hannad et al. [2016]). We implement both techniques to describe each connected

component.

Connected components are created using the same algorithm as the one in

the previous experiment but without growth. Each document is represented by

a set of COCOs. Each COCO is described by a texture descriptor. We first test

with LBP and then LPQ, the description given by these methods is an histogram.

We have used the same dissimilarity measure than Hannad et al. [2016] but with

euclidean distances. The dissimilarity between a document K from which the

author is known, and a query document Q from which the author is unknown is:

DIS(Q,K) =
1

card(Q)

card(Q)∑
i=1

min
hj∈K

(distance(qi, hj)) (4.1)
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where qi and hj are the histograms generated by LBP or LPQ from COCOs

i and j from a pair of documents Q and K. The distance between histograms is

computed as follows:

distance(qi, hj) =
NDim∑
n=1

∣∣qin − hjn∣∣ (4.2)

where NDim is the number of bins of the histogram. For LBP we have used

59 bins and a radio of 8, while for LPQ we have used 256 bins and a radio of 1.

The writer identified for document D is the one which wrote the document K,

whose dissimilarity is lower:

Writer(Q) = arg min
Ki∈RefBase

(DIS(Q,Ki)) (4.3)

We use the concept of Top-N to refer to the n best candidates to be the author

of a writing. The best candidates are the set of n candidates whose dissimilarity

DIS(Q,Ki) is lower. When the author of a questioned document is in the set of

candidates we consider it as a successful classification.

4.2.4.3 Multi-segmentation and local descriptions

In order to test the effect of multi-segmentation we compare the results of the

baseline study with the ones given by a combination of features generated by

multi-segmentation with the local descriptors (LBP and LPQ) used in the base-

line. For these experiments we have chosen the features based on shapes. Each

questioned document is represented by the distribution of its COCOs in a SOM,

the Writer Feature Vector (WFV). We can therefore calculate a dissimilarity be-

tween a questioned document Q and a document from a known author K using

the following formula:

DIS(Q,K) =
NDim∑
n=1

∣∣qin − hjn∣∣ (4.4)

where NDim is the number of bins of the histogram, which in this case is

the number of nodes of the SOM. In the experiments with SOMs presented in

Schomaker et al. [2004], results improve from 5x5 to 20x20 an then remain stable.
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We have used a 20x20 SOM, and thus histograms have 400 bins. qi and hj are

the histograms generated for questioned document i and document j for which

the author is known. This approach represents a document with one histogram,

whereas the local approach represents a document with a set of histograms, one

per connected component.

We combine both by adding the result of 4.1 and the results of 4.4, such that

we have only one dissimilarity measure for each pair (Q,K). Then we can identify

the writer using the formula 4.3. The evaluation is also done with the measures

Top-N.

4.2.5 Results for a large dataset

Figure 4.3: % of authors successfully identified using only a SOM. The number
in X axis represents the higher growth level from which COCOs are included.

Figure 4.3 shows the evolution of the percentage of documents successfully

classified using only a global description histogram based on the SOM for differ-

ent growth levels. The best result for Top-1 is 37 % with COCOs from growths up

to 3. The best result for Top-10 is 79 % with COCOs from growths up to 14. Us-

ing results from multi-segmentation improves the results of simple segmentation

(growth 0) in all the cases except one (growth level 6).

134



Figure 4.4: % of authors successfully identified using SOM and local descriptors
(LBP & LPQ). The number in X axis represents the higher growth level from
which COCOs is included

All the results for the different Top-N have been tabulated in C.3. In all them

except Top-3, we observe that growth levels 2,3 and 12, 14 present similar values.

Successful classifications increase from no growth to growth levels 2 and 3, but

then fluctuate without a clear tendency. The worst results are given by growth

level 6.

Figure 4.4 presents the evolution of the percentage of documents successfully

classified using a dissimilarity that combines both a global and a local description

for different growth levels and different top-n measures. The best result for Top-

1 is 92% with COCOs from growths up to 6 or 8 and LPQ. The best result for

Top-10 is 98 % with COCOs from growth 6 and LPQ.

The results using LPQ as local descriptor are high in all the cases. We observe

some improvements when the first growths are included but then results fluctuate

in a band of 3%. On the other hand the results from local descriptors implemented

with LBP increase when features from more growths are added. For example Top-

1 shows an improvement of 76.6%, from 30% to 53%. All the results for Top-1,
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Top-3, Top-5 and Top-10 are detailed in the appendix C.

4.2.6 Discussion

4.2.6.1 Multi-segmentation for a small group of writers

When analysing multi-segmentation on its own we reach 97% success rate in

writer identification with a text-independent database of 16 real short samples

from 8 different authors. These results are similar to the ones referred before Said

et al. [1998] with 10 writers. The original documents have noise, upper-case or

cursive styles. The process is full automatic once a piece of paper with more than

20 words has been digitalized without need of any customized pre-processing like

the one required by Said et al. [1998].

Comparing results of basic segmentation (no growth) and the different growth

phases within multi-segmentation suggests that writers characteristics may not

always be in the same level of segmentation. With basic segmentation there is

little difference between simple ED and MLP, almost 34% error rate. When we

use MLP results become better and better when we add more phases, whereas

ED average error rate keeps more or less the same. MLP is able to assign different

weights to the features from each writer while ED is not, so MLP can give more

importance to the features coming from relevant segmentation levels. In these

results we find somehow the idea that a unique partitioning of objects should be

rejected in favor of a combination of multiple partitioning strategies combined

(3.3.1.2).

4.2.6.2 Multi-segmentation for a large group of writers

Table 4.7 compares the best results for datasets with 100 writers from Bertolini

et al. [2013] using LBP and LPQ, from our baseline study using the same local de-

scriptors, LBP and LPQ, from writer identification based on multi-segmentation

SOM descriptors and from writer identification based on a combination of global

(multi-segmentation SOM) and local (LBP or LPQ) descriptors.

These results suggest that multi-segmentation descriptions are not good enough

to identify writers when the number of authors is increased. The effect of adding
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Bertolini et al. [2013] LBP 51.7%
Bertolini et al. [2013] LPQ 88%

LBP 30%
LPQ 84%

Multi-segmentation SOM 37%
LBP & Multi-Segmentation SOM 54%
LPQ & Multi-Segmentation SOM 92%

Table 4.7: Comparison of Top-1 measures for a dataset with 100 writers

more segmentation growth levels (figure 4.3) does not show any clear improve-

ment beyond the first or second increment.

Nevertheless figure 4.4 shows how the combination of multi-segmentation

descriptors and local descriptors has a positive effect. We have implemented

LBP and LPQ descriptors as baseline study. In the first case, adding multi-

segmentation descriptors increases the success rate in all the cases, up to 65.2%,

from 46% to 76%. LPQ baseline is also improved, but in a lower measure, the

best improvement is 9.5 % from 84% to 92%. This result reaches the ones pre-

sented by state-of-the-art methods. It is 4% higher than Bertolini et al. [2013] for

a dataset with 100 writers, and 4.7% lower than its best result for 650 writers.

The results of figure 4.4 suggest that adding more growth levels increases

the accuracy of the identification process up to a determined level, in which it

stabilizes, or even decreases. We may think that too big COCOs are less char-

acteristic than smaller ones. The results of growth 6 are specially interesting,

while classifying only with multi-segmentation descriptors shows the worst per-

centages for growth 6, when combined with LPQ, they show the highest ones for

Top-1, Top-3 and Top-10. We do not see any direct relation between the accu-

racy of multi-segmentation descriptors used alone or in combination with local

descriptors.

4.2.7 Conclusions

Instead of trying to emulate how a human expert would segment handwriting ,

which is usually a difficult task (Tapiador & Sigüenza [2004]), we process con-
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nected components. Segmenting handwriting into COCOs is simpler than seg-

menting into characters because the constraints that must be satisfied are simpler.

The same reasoning applies to COCOs and their fragments. Segmenting into frag-

ments requires an extra operation with its own constraints. The only constraint

that determines whether a pixel is connected to another or not is the distance,

the number of background pixels, between them. Instead of adding more con-

straints our method segments the same image with multiple distances, which in

our experiments are represented by “growth levels”.

Descriptors based on multi-segmentation outperform descriptors based on nor-

mal segmentation. For a small group of writers, a system can learn how to dif-

ferentiate writers only by analyzing the evolution of the probability distribution

of COCOs over the number of pixels defining neighborhood. We had no new of

categorizing each COCO. However for a large group of writers, this information is

not enough. We have shown that a combination of COCOs descriptors, which are

local features of the handwriting sample, with COCOs probability distribution,

which is a global feature, achieves state-of-the-art results.

Using multi-segmentation to generate the COCOs probability distribution in-

stead of simple segmentation increases the accuracy of classification in all the

cases. Under the multi-segmentation framework, improving writer identification

becomes a parameter estimation problem, in which we must find the best dis-

tance (growth level) to generate COCOs. We have seen how the best growth

level changes from one experiment to the other and therefore we have demon-

strated that searching more than one level gives better results. This case is an

example of why the process Divide should be included in a loop like the one shown

in section 3.2.2.4. Exploring the space of possible relations between foreground

objects improves the accuracy of perception.

4.3 Intruder perception

The third example is about intruder detection for perimeter protection using

video surveillance systems and is based on Cermeño et al. [2017b]. An intruder

is something or someone that should not be there, in an image it is represented

by one of its parts. The challenge is therefore to find how to characterize this
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part, how to segment it. In section 3.3.1 we classify segmentation methods into

sliding window, semantic and motion detection. An intruder can be a person,

so one could think of person detection methods. Ogale [2006] divides techniques

for human detection from video in two groups, the first one requires background

subtraction, whereas the second one does not. The latter are called “direct de-

tection”, assuming that background subtraction is a pre-processing phase. The

problem with the so called “direct detection” techniques is that intruders may

not have human appearance, and thus avoid the recognition. For perimeter pro-

tection assuming that intruders have the appearance of a person is not secure, not

only because of poor quality in the video but also because people can influence

it. They can crawl, creep or wear costumes to change the way they look.

On the other hand, background subtraction is a motion detection algorithm

independent from recognition. In perimeter protection, considering motion as

a characteristic of the intruder has many advantages. If the cameras are prop-

erly installed, an intruder must move on the protected area before becoming

an intruder, so static elements are more a potential intruder than a real one.

Motion detection is independent of the form of the intruder. Background sub-

traction techniques usually implement some kind of background model, which

actively learns changes in the environment, so that the perceptual system can

adapt. Without adaptation, the same detection would be reported again and

again. These techniques have a low complexity, most of them between O(1) and

O(5) (Piccardi [2004]). Such a complexity is impossible for exhaustive search

algorithms like sliding window, unless we reduce the number of scales and over-

lapping allowed for the windows.

Background subtraction has also limitations. Brutzer et al. [2011] lists the

main challenges for background subtraction techniques: gradual illumination

changes, sudden illumination changes, dynamic background, camouflage, shad-

ows, bootstrapping and video noise. Camouflage is just a resolution problem,

which can be found in any segmentation algorithm. For perimeter protection

bootstrapping is not required, since it tries to solve the problem of creating a

background model from initialization data with foreground objects, which is un-

likely for a protected area. Except some types of shadow (Sanin et al. [2012]),

the other challenges are usually handled with improvements in the background
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modeling (Bouwmans [2014]).

In this section we build an intruder detection system with state-of-the-art

techniques, in order to test it with thousands of hours of video from cameras used

to protect perimeters of real sites. The experiments are divided in two. The first

experiments aim to show the performance of the system in normal situations,

how reliable its detection is and how well it adapts to the natural changes in

illumination. The second experiments deal with abnormal situations, in this case

sudden illumination changes. Instead of proposing a new background modeling

algorithm or people detector, we propose to recognize these environments. If

characterizing these situations is easier than characterizing the potential forms of

the intruders our approach makes sense.

From the point of view of a perceptual system, the objective is not only to

pick up objects moving but also abnormal situations.

Automatizing video monitoring seeks to reduce the need of human interven-

tion, but could it also increase the reliability of human operators ? To answer this

question we need to understand the limitations of human operators. Human eyes

limit the number of screens one can watch at the same time. Human attention

capacity limits the number of monitoring tasks that can be effectively undertaken

at the same time (Simons & Chabris [1999]). The results of human operators de-

pend on the complexity of the environment watched, the number of distractors

and the frecuency of the events (Rankin et al. [2012]). Complex environments

(dynamic background, noisy cameras etc.) or a high number of distractors (e.g.:

irrelevant events) increase the chance that an operator misses an intruder. The

lack of events during a long period of time may impact in the operators attention,

and hence in its capacity to detect intruders.

The reliability of human operators can therefore be increased when we reduce

the time spent watching video where nothing happens and also when we reduce

the number of distractors. An automatic system should show only cameras with

high probability to be streaming an intrusion.
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4.3.1 Method

4.3.1.1 Implementing an intruder detection system

Our choice to build an intruder detection system is a combination of background

subtraction to segment the image and point tracking to model the behavior of

the intruder. We have seen that appearance may not be a secure characteristic

of an intruder, but the way it moves may be better. Background subtraction by

itself does not give information relating objects from one image with the following

ones. One way to characterize the way an object moves is to track its position

over time. Without tracking, the segments proposed as intruders would always

be appearing in the scene. Tracking results can be used to create constraints

characterizing intruders (Garćıa-Mart́ın et al. [2011]), such that a static segment

or the ones “moving” not moving in a particular direction are not considered as

intruders.

Background subtraction has been chosen over other motion detection tech-

niques because it offers high reliability and performance. Temporal filtering for

example is based on temporal differencing (Lipton et al. [1998]). This technique

uses a thresholded difference of pixel between consecutive images (two or three)

to extract the moving object, so it shows high computing performance. However

its detection accuracy may be weak, failing in extracting all the relevants pixels

of a target object or leaving holes inside moving objects (Kim & Street [2004]).

Optical flow is another approximation to image motion defined as the projec-

tion of velocities of 3D surfaces points onto the imaging plane of a visual sensor

(Beauchemin & Barron [1995]). Different optical flow techniques are detailed in

Barron et al. [1994], most of them are computationally complex. Another impor-

tant withdraw is that optical flow algorithms are very sensitive to noise, which is

very common in video from CCTV cameras (Hu et al. [2004]).

Contour tracking (Peterfreund [1999]) is likely the more reliable approach but

with a higher computational cost. Another decision factor is the video resolution.

Low resolution makes contour detection complicated. Many sites still have low

resolution cameras, which makes point (Salari & Sethi [1990]) or kernel (Hager

et al. [2004]) tracking more attractive. We choose point tracking using either

kalman (Zhong & Sclaroff [2003]) or particle filters (Yan et al. [2010]).
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Figure 4.5: Evolution of scene and its BS with illumination from a car

4.3.1.2 Detection of problematic environments

Overview. The ideal intrusion monitoring system would report every single

intrusion and only intrusions. When the system misses an intrusion we call it

false negative (FN). When the system reports an intrusion, whereas there is none,

we call it false positive (FP). The ideal intrusion monitoring system would have

zero false negatives and false positives. Table 4.8 represents these definitions.

Intrusion No intrusion

Detection True Positive (TP) False Positive (FP)

No detection False Negative (FN) True Negative (TN)

Table 4.8: Outputs for intruder detection classifier

Brutzer et al. [2011] shows that 70% is the best precision for 90% recall us-

ing BS. In the worst case, “sudden illumination change” or “light switch” the

precision goes down to 10%, even with a recall smaller than 50%. Examples of

images with light switching are shown in figure 4.5. None of the presented BS

algorithms is able to deal with these complex environments. Actually, even light

changes from clouds could be challenging as we can see in figure 4.6.

Analysing motion patterns by setting tracking rules could help, but sudden
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Figure 4.6: Evolution of scene and its BS with illumination from sun with clouds

foreground object appearance and disappearance conveils a big challenge for the

dynamic model estimators. If we look at the images from figures 4.7 we observe

foreground objects of different sizes and shapes. How would a human explain

why illumnation change is not an intrusion when lots of foreground objects show

up? Do we need to perceive the objects in a scenery to identify its semantic cate-

gory? This question is addressed by Navon [1977] when the author suggests that

human perception proceeds from global analysis, and this analysis is done before

extracting local features, so no object analysis would be required by humans to

recognize, for example, the “light switching” event.

These empirical and theoretical statements infer that object based approaches

(local) will not be able to handle some common happenings in video surveillance.

When replicating human procedure, global feature analysis could give compli-

mentary information to solve some of the local approach limitations. We propose

a new method to deal with such environments. It is not intended to improve de-

tection as such, but to improve the end-to-end solution by reducing the number

of FP an operator has to check. In a first stage objects are detected using an

implementation of an IDS as described above. The results of the first stage are

processed and classified. The idea is similar to the one used by people detec-

tion methods, first object detection and then a classifier verifies if it is a person,

but instead of recognizing people we recognize scenes. We are not interested in

recognizing “intrusion scenes” but in recognizing scenes that cause problems: FP.

In order to recognize these “problematic scenes” we use a classifier. In this

case a detection is to label a scene as “problematic”. But we must pay attention to

the difference between the “problematic scene detector” (PSD) and the “intruder
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Figure 4.7: Examples of foreground objects generated by illumination change

detection system” (IDS) metrics. In the latter a FP is a wrong intruder detection,

while in the former it means a wrong problematic scene detection.

We propose that for PSD, false negatives (not detecting a problematic scene)

are less harmful than false positives (classifying as problematic a scene that is

not). The reason for this is that “positives” may get lower priority in a review by

human operators. In case of doubt we’d rather have the video sequence verified

by an operator with regular priority.

Figure 4.8 shows a scheme of the complete system design. Only positives of the

first stage of intrusion detection are analyzed. In the second stage positives are

labeled, such that an operator can prioritize or even ignore some of the positives

reported by the first stage. In the following sections we show how global features

could help and a method to use them. This design does not pretend to describe

or compare best of class global features nor classifiers. We wish to present a

new approach to face false alarms for intrusion detection systems based on video
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Figure 4.8: System design
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surveillance.

Algorithm selection. Our proposal is to use global features to define “light

switching” or “sudden illumination changes” scenes and filter them, so that the

overall false positive decreases. Different algorithms can be used to extract global

features. Simple features like color and texture are recognized to be important

features for image representation (Makadia et al. [2010]). Color can be repre-

sented using “block truncation coding” (Mohammed & Abou-Chadi [2011]), a

technique that quantize color information and preserves statistical moments like

mean and standard deviation. Haralick et al. [1973] describes easily computable

textural. The extracted features representing a scene are called “feature vector”

or FV.

When an image representation is available for an observed frame or sequence,

event recognition, like human actions, become a classification problem (Poppe

[2010]). The survey on vision-based human action recognition describes two kinds

of direct classification, nearest neighbors for example, and discriminative, for ex-

ample Support Vector machines (Danafar & Gheissari [2007]). Another example

of dicriminative classifier are multilayer perceptrons (MLP) (Duda et al. [2012]).

In the case of “light switching” or “sudden illumination changes” we want to label

video frames or sequences with yes or no “light switching” or “sudden illumina-

tion change”. Our proposal is to train a classifier like KNN, SVM or a MLP to

learn this kind of scenes that should be filtered. Being able to recognize these

scenes will help to reduce the number of false positives of the intruder detection

system. The procedure would be:

• First an operator detect a concrete false positive that happens often

• Videos of this concrete false positive are stored to be used as training sam-

ples

• A classifier is trained to learn this false positive

Based on the previous research we propose to use global features to represent

images in order to identify common false positive scenes that should be filtered.

Albusac et al. [2009] found two main approaches for behavior analysis: (1) deal
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with normal patterns in order to detect deviations or anomalous behaviors or

(2) define abnormal patterns in order to carry out matching to detect abnormal

events. In the examples of “sudden illumination changes” or “light switching”

we propose to label these scenes as abnormal and match them with previously

learnt examples.

The abnormal pattern or false positive to be detected is called target. The

classifier is trained using FVs from target scenes and FVs from non-target scenes.

PSD will filter or prioritize the scenes classified as target.

4.3.2 Experiments

4.3.2.1 Evaluation metrics

Detection results may be compared using different metrics. Powers [2011] analyses

three metrics Recall, Precision and F-measure. Barnich & Droogenbroeck [2011]

and Elhabian et al. [2008] prefer to use another one called Percentage of Correct

Classification (PCC). Table 4.9 describes each metric.

Recall R =
TP

TP + FN

Precision P =
TP

TP + FP

F-measure F1 =
RP (1 + α)

R+ αP

PCC PCC =
TP + TN

TP + TN + FP + FN

Table 4.9: Evaluation metrics

A common problem for detection systems is that FP and FN are hard to

minimize at the same time. The higher sensibility of the detector the higher the

probability to make wrong detections (FP), but decreasing sensibility increases

the probability of missing elements (FN). In our opinion for an intrusion detection

system, FN are usually more important than FP. The probability to detect the

intruder must be as close to 1 as possible, even if this has a high FP rate as

a consequence. Since PCC assigns FN and FP the same importance we do not

recommend this metric to compare intrusion detection systems. F-measure is
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probably the best metric because it combines recall and precision in a way that

can be biased with a parameter α. α can be used to give more or less importance

to the FP rate.

However PCC can be a good metric to compare the performance of a deter-

mined intrusion detection system in different sites. Recall and precision depend

on TP, and hence if the number of TP of a site is small compared to another

site, even if the number of FP and FN remain the same, recall and precision will

be lower. On the other hand for PCC, when FP and FN remain the same, the

decrease in TP is compensated by an increase of TN, in such a way that PCC

remains the same.

Background subtraction comparison are usually evaluated using pixel-based

methods (Barnich & Droogenbroeck [2011]; Brutzer et al. [2011]; Xu et al. [2016]),

thus considering foreground detection as a binary classification of each pixel. In

this case a FP is a pixel labeled as foreground when it is not, and a FN is a pixel

labeled as background when it is not. Therefore we cannot extrapolate pixel-based

evaluations of background subtraction methods to intrusion detection systems.

As an example, using Brutzer et al. [2011] results, when a method presents a

recall over 0.9, more than 30% of the pixels labeled as foreground belong to the

background. If we consider foreground detection as an intrusion, it is likely that

every second several frames have background pixels labeled as foreground, and

thus reported as intrusion.

Instead of pixel-based methods we suggest that frame-based or sequence-based

methods give a better idea of the performance of an intruder detection system.

Frame-based methods consider intrusion detection as a binary classification of

frames, labeling each frame as intrusion or no intrusion. Sequence-based methods

consider intrusion detection as a binary classification of sequences of video, label-

ing the global sequence as intrusion or no intrusion. These evaluation methods

are used by “people detection” works (Garćıa-Mart́ın et al. [2011]). Gorodnichy

[2005] presents a survey of evaluation datasets used by the scientific community

in video analytics in the video surveillance context. The best suited for intruder

detection is probably the dataset “sterile zone” from the ILids collection. It is

composed of 24 hours of video of people walking, running, crawling or rolling in a

grassed area. For our tests we wish to have a dataset more extensive with video
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from different cameras and a period comprising many days.

4.3.2.2 Intruder detection using state-of-the-art methods

We have chosen 3 sites with a total of 76 analog cameras, table 4.10 shows the

number of cameras per site. Each site has a 5-6 year old DVR recording at

353x288 of resolution, six frames per second (FPS).

Site 1 Site 2 Site 3

25 26 25

Table 4.10: Cameras per site

We implement an IDS using Running Gaussian Average for segmentation and

a Particle Filter for tracking. We set three simple rules for intruder detection: it

must be bigger than four pixels, has to be tracked at least in three frames and

be within a wide area defined by a yellow polygon. We process 19 days of video,

thus 34,656 hours.

A “positive” is a sequence of video reported as intrusion. When two frames

are classified as intrusion, a 10 seconds video clip is recorded, so the maximum

number of positives per minute is 6, thus 360 per hour and more than 12.476.160

for all the cameras during the 19 days of experiment.

4.3.2.3 Detection of sudden illumination changes

In order to test our proposal to reduce false positives using a global approach

we picked twenty videos per day of camera 15. This camera is a clear exam-

ple of “sudden illumination change” that repeats over a period of time. Table

4.13 shows that this camera generates more than 90% of the positives of all the

cameras during the period of three days. The first day the number of positives

from camera 15 was two order of magnitude bigger than the number of positives

generated by the second camera with more positives. If we look at the timing,

we noticed that the IDS is generating positives continuously for hours. After

watching several video clips we notice that this camera is somehow damaged, the
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Figure 4.9: Frames from false positives videos in camera 15

night mode generates an effect of random “sudden illumination changes”. De-

scribing illumination changes with words is not simple, figure 4.9 shows two series

of frames from two of the problematic days illustrating the video streamed by the

camera. The problem stops after the third day.

Ten contiguous videos (positives) were picked between 21:00 and 22:00 each

day to form group A of videos, referred as D1A, D2A, D3A to identify day and

timing. Then ten contiguous videos were picked between 23:00 and 24:00 hours

each day for group B, referred as D1B, D2B, D3B. So each group has thirty video

clips of scenes where the IDS had reported intrusion, while none of them had any

intrusion event. We have a third group (DN) composed of thirty videos extracted

from recordings of the same camera in a day without sudden illumination changes.

These videos are almost indistinguishable from a visual point of view. None of

the videos of DN were labeled as intrusion by the IDS, since they represent no

intrusion. We use DN videos to validate our proposal.

The idea is to learn sequences with events that should not have been treated

as positives by the IDS and filter them with a PSD. In order to learn these scenes

we encode each scene’s color and texture features as described in section 4.3.1

into a feature vector FV.

Videos are subsampled to 1 FPS, we eliminate the two first frames that were

reported not to have intrusion by the IDS and discard the ones in excess of 11.

Then a binary multilayer perceptron (MLP) is trained to classify the FV, into

“target” or “no target”.

In the first group of experiments we have three sets of target videos: D1A, D2A
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and D3A. We train MLPs for each set of target videos with sets of videos from

group B (different hour) and group DN (no illumination change). For example

D1A is tested separately with D1B, D2B, D3B and DN. The number of frames in

all the sets is 110 (10 videos x 11 frames), except DN, which has 330 (30 videos x

11 frames). The training group is made with 75 % of the frames from the target

videos, while the testing group is made with the videos of the non-target set.

In the second group of experiments consider each day to have a different class

of illumination change. We wish to recognize sequences of D1A and try if we

can differentiate them from sequences from D2A and D3A. Then we change the

target to D2A and finally to D3A. When target is D1A, 75 % of the training set

come from D1A, while 25 % come from D2A and D3A. The same distribution is

found when target class is D2A and D3A. We guarantee that each class has its

75% in the training group and 25% in the testing group.

In the last experiment we consider all the illumination changes as one class.

Training is done with half of the sequences from group A (D1A, D2A, D3A) as

target and half of the sequences from group DN as non-target. Testing is done

with the other halves.

4.3.3 Results

4.3.3.1 Intruder detection using state-of-the-art methods

Table 4.11 describes the positives and PCC per site. PCC is calculated using the

formula described in section 4.3.2.1. We consider a true positive a sequence where

a living body is moving in the defined area. Figure 4.10 shows examples of true

positives sequences with rabbits, a bird or someone in a car. FP are positives due

to illumination changes.

Counting the number of FN was not affordable, because it would have required

reviewing thousands of hours of video but after analyzing the kind of intruders

that were detected (tiny rabbits or birds), much smaller than humans, we could

assume without much risk that we had zero false negatives. Even if this assump-

tion is somehow wrong it wont affect the following experiments where we test our

proposal since we aim to filter false positives. The rest of potential sequences are

counted as TN.
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Figure 4.10: Examples of frames with real elements detected

Site 1 Site 2 Site 3

Total 1186 1404 6027

Animals 471 765 879

People 523 300 317

Illumination changes 192 339 4831

PCC 99.995 % 99.992 % 99.882 %

Table 4.11: Distribution of positives and PCC per site

Site 3 has an order of magnitude more positives generated by illumination

changes than the other sites. Looking into the detail, we observe that most of

them are generated during 3 consecutive days (D1-D2-D3). The following results

are extracted from these days.

Table 4.12 shows the number of cameras from site 3 with zero postives, one

to four, five to nine and ten or more positives. Each day, more than 76% of the

cameras reported less than five positives.

Table 4.13 shows the distribution of all the positives reported. The first day

more than 97% of them were generated by a single camera (number 15). Day two

95% and day three more than 65%. If we take out the three cameras with more

positives (12% of the 25), we would reduce positives at least in 85% and up to

98.74%.
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0 1-4 5-9 >=10

Day 1 24% 44% 12% 20%

Day 2 60% 16% 12% 12%

Day 3 52% 24% 4% 20%

Table 4.12: Proportion of cameras with positives (true and false) in the intervals
from site 3

Total positives 1 cam. 2 cams. 3 cams.

Day 1 3738 97.96% 98.34% 98.74%

Day 2 861 95% 97.32% 89.56%

Day 3 244 65.16% 79.91% 85.65%

Table 4.13: Positives reduction subtracting most problematic cameras (1 cam.
corresponds to camera 15)

4.3.3.2 Detection of sudden illumination changes

Table 4.14 shows the results of the first group of experiments. Three different

target classes are defined and each one is tested with four sets of videos considered

to be non-target. When a non-target video is correctly classified we report it as

a rejection that could be filtered or prioritized before showing it to an operator.

High rejection means that the PSD considers the non-target videos to be different

from target ones. We observe high rejection in all the cases except on videos from

the same day.

In the second group of experiments we consider different days to have different

kinds of illumination changes. Table 4.15 shows the results of the PSD trying to

detect group A videos from D1, D2 and D3. More than 90% of the frames are

correctly classified.

The results of the classifier trained with group A as target shows a 100% of

rejection of non-target videos from DN. If all the FP caused by sudden illumina-
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Target / Non-target D1B D2B D3B DN

D1A 11.01% 94.52% 100% 100%

D2A 97.45% 23.74% 95.38% 100%

D3A 99.15% 77.69% 6.92% 100%

Table 4.14: Rejection rates of non-target videos

D1A D2A D3A Mean

Test Error 1.22% 7.31% 8.53% 5.68%

Table 4.15: Sequences misclassified when training and testing with videos from
group A (same hour different days)

tion changes are removed, the amount of FP in all the cameras would be reduced

to 729. Table 4.16 compares the precision of IDS with and without PSD. Results

are calculated using data from all the cameras, with an α value of 1.

Recall Precision F1

IDS 1 0.38 0.55

IDS+PSD 1 0.81 0.90

Table 4.16: Metrics of intrusion detection solutions

4.3.4 Discussion

4.3.4.1 Intruder detection system using state-of-the-art methods

We have implemented an IDS with state-of-the-art techniques. Manual sampling

suggests that it is able to detect the presence of any animal or person, and there-

fore has an insignificant number of FN. If we presume FN to be zero, then IDS
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reaches a recall of 1 in all the sites, which is the ideal case. However precision

is lower than the one from other methods, such that the F-Measure, which com-

bines both, recall and precision, is below state-of-the-art results. Our IDS is not

as robust as other methods in the literature but is faster (Piccardi [2004]). If we

look at PCC, all the sites present a measure over 99.88%. This result is important

because it shows that for perimeter protection even a simple method designed to

guarantee a high recall, reports less than 0.07% of the video as positives.

In the context of perimeter protection, the problem of evaluating intruder

detection system as if it was a people detection system is that we are forgetting

that more than 99.9% of the time there is no people in the scene. If among one

million sequences of 10 seconds of video, there were only two with people, and

the system would have wrongly classified one of them and nine other sequences,

the F-Measure would be below 0.2. Whereas if we consider intrusion detection

as a problem of background modeling, in the same example the F-Measure would

be above 0.99.

Different reviews of background modeling show how different techniques are

able to adapt to several changes. However, sometimes these changes are just too

extreme to allow the model to adapt. Sudden light changes like the ones seen in

camera 15 from site 3 are an example. Day 1 the PCC goes down to 57.61%. The

same camera, Day 3 has a PCC of 98.17%. To understand what these numbers

mean we can imagine that the difference between 100% and the PCC is the time

an operator spends with a camera. If we suppose that an operator can only verify

one camera at the time, in the case of PCC = 57% almost half of his time (43%)

would be spent on just one camera. It does not seem sustainable. Even a PCC

of 98% is hard to sustain for any monitoring center, since 50 cameras would take

all the operator’s time. To be profitable, monitoring centers require operators

to manage hundreds of cameras. In order to avoid monitoring center collapse,

common practice is to inhibit problematic cameras. this practice is supported by

results: inhibiting the three cameras with more positives would make the PCC

jump to 99.98%.
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4.3.4.2 Detection of sudden illumination changes

Instead of leaving aside problematic cameras, an intelligent system should learn

to identify the problem, such that the video coming from those cameras could be

further processed or at least be classified and prioritized. In this work we have

presented an alternative to camera inhibition: detecting problematic scenes.

In order to test its accuracy we executed different validation tests with FV

from sequences that have no frame in the training group. Results from table 4.14

show that a trained machine to learn D1A video sequences, rejects not only 100%

of frames from videos without sudden illumination changes (DN) but also 94.52%

and 100% of frames from D2B and D3B video sequences. Something similar

happens when training to learn sequences of class D3A: 99.15% and 77.69% of

the frames from other classes are rejected. Training to learn D2A video sequences

also shows very high rejection percentage with frames of D1B 97.45% and D3B

95.38%. A high rejection rate means that the system will not filter alarms it has

not learned, and thus will limit the risk of increasing the false negative rate of

the overall system.

If we look at sequences from the same day, table 4.14 shows that the rejection

rates are much lower, from 6.92% and up to 23.74%. Watching video from D1, D2

and D3 shows that videos from different days are in fact different from a visual

point of view. The nature of the event is the same, a damaged camera, but the

consequences have visual differences, illumination changes does not look exactly

the same. The proposal seems to be specific enough to differentiate between

different kinds of illumination changes. This hypothesis is reinforced by the results

from table 4.15. We are able to differentiate illumination changes from one day

and another with an accuracy up to 98.78 %.

The generalization test has proved to have been successful. The method is

able to learn the concept “sudden illumination change” from a combination of

the different illumination changes from D1, D2 and D3. This is a strong point

of our approach since it can be used as a specific classifier or as a generic one.

More errors appear when video sequences have higher visual likeness, so the more

visual differences there are between illumination changes, the better the classifier

works.
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PSD can be applied to classify, filter or prioritize detections of an IDS. PSD

should detect scenes belonging to previously trained classes. Errors in this clas-

sification have two possible consequences. The PSD FN, scenes that should be

filtered but which are not, are counted as a FP for the overall solution. The

PSD FP, scenes that should not be filtered, intrusions, but are wrongly classified

create new FN for the overall solution. The results from our experiments suggest

that our implementation of a PSD method can be very specific, detecting only

sequences very similar to the ones learned and therefore keeping the number of

FN of the overall system close to the one of the IDS.

4.3.5 Conclusions

State-of-the-art methods allow to build real-time intruder detection systems with

extremely high accuracy, so that one single operator could verify hundreds of

cameras. The level of attention of a computer is not comparable with the one

of a human. However empirical tests show how a single camera could saturate

a monitoring center with thousands of alerts caused by faulty light adaptation

system. Even when this kind of events would be rare, and statistics of state-of-

the-art methods would make us feel comfortable, when such an event occurs the

processing of this camera has to be turned off, either to ignore it or to watch the

video continuously.

Instead of trying to increase robustness for environments where modeling is

hardly possible, we propose a method to solve these problematic happenings

based on global features to learn scenes. We start from the observation that,

false positives (detections that should not be reported) are rare but when they

happen they do so with intensity, repeating in short periods of time (minutes

to hours). Being able to identify the first false positives, something a human

operator could easily undertake, then we could train an automatic system to

recognize the following ones and filter or prioritize them.

Global approach seems to fit better with events that are hard to be defined

using local features, which makes a lot of sense (Navon [1977]). However the

definitions (scene classification) we presented in this paper are only based in

visual likeness, while a human would rather prefer semantic definitions. “Sudden
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illumination changes” for example has a clear meaning for humans but may have

different representations in video. In our experimental events of class D1, D2

and D3 could be labeled with “sudden illumination change” even if their visual

representations are different. Some categories are hardly defined with high level

features. Categorizing the parts is sometimes a waste of resources.

The present method can be very specific so that it differentiates between

different types of illumination changes or it can be more generic to represent a

broader definition of a sudden illumination change. Specificity in the PSD is good

for the overall solution since it minimizes the number of FN. We assumed that

the IDS has a FN rate close to zero. A PSD with high precision will filter IDS

FP without adding FN to the overall solution, thus keeping its recall high. On

the other hand generalization in the PSD may be useful to reduce the number of

scene types, categories, that need to be learned. Our results are good in both,

specific and generic experiments, so we do not need to decide which one is more

important, however other kind of problematic scenes could require to do so.

The probability of intrusion is not increased by the fact that illumination

changes. A system with limited resources should give priority to the cameras

with higher chances of being capturing a suspicious scene, the information from

the whole scene could be used to avoid giving priority to cameras with illumina-

tion changes. Like Navon [1977] and Torralba et al. [2006] we believe that the

analysis of global features may offer relevant information to guide the process of

perception.

4.4 Aesthetic perception

The fourth example is about calligaphy perception and is based on Perez et al.

[2014]. The word calligraphy comes from the greek “kallos” (beauty) and “graphe”

(writing): “the beauty of writing”. Addressing art from a computational point

of view could be surprising since computers are the paradigm of logic and ratio-

nality, while art is related to emotions. However in the last few years there is an

increasing interest in a topic called “affective computing” which proposes to give

computer the ability to have emotions.
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Picard [2000] presents models for human emotion recognition, computer-assisted

learning, perceptual information retrieval as well as arts and entertainment. Tao

& Tan [2005] defines affective computing: “trying to assign computers the human-

like capabilities of observation, interpretation and generation of affect features”.

If we look in the literature for writing art generation and interpretation we find

several works about Chinese and Arabic calligraphy. Zhang et al. [2013] presents

a method for calligraphy style recognition based on global features and support

vector machine training. Moustapha & Krishnamurti [2001] generates arabic

calligraphic compositions by manipulating symmetric changes and analyzing its

visual effects. Xu et al. [2005] presents an intelligent system which is able to

generate a great variety of stylistic calligraphic characters. In order to select the

more pleasing characters Xu et al. [2007] introduces a neural-network algorithm

that is able to select the more pleasing ones. However the method requires the

intervention of humans to decompose a character into strokes, we find once again

the problem of segmentation. Segmenting characters in strokes is important be-

cause Xu et al. [2007] grades calligraphy by grading individual strokes and then

spatial layout of strokes.

We instead want to avoid complex segmentation, and thus will work directly

with the handwriting. Instead of dealing with high-level features, like characters,

we will use a set of low level features and test if a perceptual system is able to

find a set of features that represent people’s opinion about calligraphy.

4.4.1 Method

The objective of the pre-processing phase is just to clean the image. Cropped

images are binarized and complemented, such that handwriting becomes white

and non relevant information black.

The result of the preprocessing phase is a matrix of white and black pixels

(figure 4.11) that will be used as input for different algorithms in order to extract

shape feature that will help to describe the writing in a way that a classifier

can simulate the taste of a human. Pham [2000] presents a general framework

for constructing shape aesthetic measures, which “has been achieved by drawing

knowledge on how to produce aesthetic products from a number of fields to obtain
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Figure 4.11: Example of complemented images
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a rational view of aesthetics”. It groups basic principles for designing aesthetic

painting, graphics, etc. in four categories: opposing forces, resolution of conflicts,

movement and global impression. Pham [1999] describes which shape features

(called variables) influence in these aesthetic principles:

• Opposing forces: balance, contrast, proportion

• Resolution of conflicts: dominance, harmony, composition

• Movement: rhythm, gradation, dynamic

• Global impression: simplicity and solidity

Yang et al. [2008] compiles several shape feature extraction techniques we

found useful to compute most of the variables described in Pham [1999]. For this

work we use the following measures:

• Mass (m): the number of pixels in the image that contain handwritten text.

This measure is normalized to the size of each image and it is in the range

[0,1].

• Center of mass (xc, yc): is the unique point where the weighted relative

position of the distributed mass sums to zero. This measure is normalized

to the size of each image and it is in the range [0,1].

• Eccentricity (ec), is the ratio of the distance between the foci and the major

axis length of the ellipse that has the same second-moments as the object.

The value is between 0 and 1.

• Orientation (θ), is the angle the angle in degrees between the x-axis and the

major axis of the ellipse that has the same second-moments as the object.

The value is in the range [-90, 90].

• Euler number (ε): scalar that specifies the number of strokes in the text

minus the number of holes in the text. A hole is defined as a space inside

a stroke.
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• Solidity (so), is the ratio of the mass of the text and the area of the convex

hull of the text. The convex hull is defined as the minimum convex perimeter

that can contain the text.

• Extent (ex), is the ratio of the mass of the text and the area of the bounding

box that contains the text.

Figure 4.12: Calculation of the Euler number on different shapes

The bounding box is the smallest rectangle containing the text. We also added

the following simplified features

• Font-size (sz), small, big or variable.

• Text inclination (yes / no)

Inspired by Pham [1999] variables we relate opposing forces with mass and

center of mass. Resolution conflicts with eccentricity and orientation. Movement

with Euler number, inclination and size, and global impression with solidity and

extent. These ten features are stored in a feature vector FV which will be used

to represent an image. So we will have as many FV as images.

FV = [m, xc, yc, θ, ec, ε, so,ex, sz, in]

Image classification is done using an instance-based learning algorithm: k-

Nearest Neighbors algorithm (K-NN) (Cover & Hart [1967]). This kind of al-

gorithm stores “in memory” patterns from the training set and compares them

with testing patterns. The comparison is done using the Euclidean distance. A

random group of images is selected as training group. One or more persons label

each training image with “beauty” or “ugly”. For every test image, K-NN clas-

sifier is used with its corresponding FV to decide if it is “beautiful” or “ugly”

writing.

162



4.4.2 Experiments

4.4.2.1 Database description

The experiments are done using images from Marti & Bunke [2002]. This database

contains forms of different handwritten English text which were scanned at a res-

olution of 300dpi and saved as PNG images with 256 gray levels. It was first

published in Marti & Bunke [1999] at the ICDAR 1999. For our experiments we

picked 1051 samples from the database. The same text is written by different

authors, each scanned in a different page. The same authors also wrote different

texts, and again each is scanned in a different page. Figure 4.13 shows different

scanned pages of different texts from the IAM Database.

Figure 4.13: Samples from IAM database
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4.4.2.2 Human calligraphy evaluation

The classification between “beautiful” and “ugly” for the writing is done by ques-

tioning two people, and based on their sole opinion. No further instruction was

given. Figure 4.14 shows two examples of this classification. Text content is in

English, a language not spoken by the questioned people. This helps to avoid

influences from the content on the evaluation of the visual aesthetics.

A sample of writing is qualified as “beautiful” only if the two people classified

it like that. The same process is used to classify “ugly” images. Controversial

images, the ones that were classified as “beautiful” and “ugly” are removed. 283

out of 1051 (27%) were removed using this criterion. The rest of the dataset is

divided in two groups. The first group (training) is a random selection of 384

images. The second group (testing) is composed of the 384 images remaining.

Table 4.17 shows the composition of each group.

Figure 4.14: Type 0 = Ugly ; Type 1 = Beautiful
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Name Type 1(Beatiful) Type 0 (Ugly)
Training 114 270
Test 114 270

Table 4.17: Composition of “ugly” and “beautiful” groups

Name m xc yc ε θ E so ex sz in
FV X X X X X X X X X X
FV1 X X X X X
FV2 X X X X
FV3 X X X
FV4 X X X X X
FV5 X X X X X X
FV6 X X X X X
FVA X X X
FVB X X X X X

Table 4.18: Feature vector composition: m = mass; xcyc = center of mass coordi-
nates; ε = excentricity; θ = text orientation; (ε) = Euler number ; so = solidity;
ex = extent; sz = font sixe; in = inclination

For each image we create its FV as described in section 4.4.1. In order to

better understand the importance of each feature we create subvectors with a

selection of features from the main FV. Table 4.18 describes the selected features

for each subvector type: Fv1...Fv6.

Fv1, Fv2 and Fv3 were generated using a ranking algorithm to select features.

We used the same model than Guyon et al. [2002] for gene selection. A SVM is

used as estimator to assign weights to features. The goal is to select features by

recursively considering smaller and smaller sets of features. First, the estimator

is trained on the initial set of features and weights are assigned to each one of

them. Then, features whose absolute weights are the smallest are pruned from

the current set features. That procedure is recursively repeated on the pruned

set until the desired number of features to select is eventually reached.

FVA and FVB were generated for evaluator A and B using the same procedure

to select the features with relevant information. Features are considered relevant
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when their associated weights are positive.

Fv4, Fv5 and Fv6 were generated using the relation stated in section 4.4.1

between shape features and aesthetic principles. Fv4 represents the features of

“opposing force” and “resolution conflicts”. Fv5 represents the features of “op-

posing force” and “movement”, while Fv6 represents the features of “opposition

force” and “global impression”.

4.4.2.3 Automatic calligraphy evaluation

The classification of each feature vector is done using the K-NN algorithm. Test-

ing FVs are classified using training FVs. Testing Fv1 is classified using training

Fv1 and so happens with Fv2...Fv6. If the class proposed by the algorithm for a

feature vector is the same that the one the two people fixed for the corresponding

image we consider a success. If not it is considered a failure. We tried 1-NN,

2-NN, 3-NN, 4-NN and 5-NN. The best performant turned out to be 3-NN.

4.4.3 Results

Table 4.19 presents the results obtained in the tests using different feature selec-

tions, coded in different feature vectors (FV, Fv1...Fv6). In each case we show

the global success rate (SR) calculated by dividing success classifications by the

total of samples. Then the “beautiful” classification success rate (B) calculated

by dividing success classifications of “beautiful” writings by the total “beautiful”

images. The same calculation is done to get the “ugly” classification success rate

(U) with “ugly” writings.

4.4.4 Discussion

Table 4.17 shows that 228 were classified by people as “beautiful” while 540 were

classified as “ugly”. The proportion is 29,7% of “beautiful” versus 70,3% “ugly”,

so a dummy classifier, labeling all the images as “beautiful” will be successful in

29,7% of the cases. If all the images were labeled as “ugly” the successful rate

would be of 70,3%.
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Global Success B (Type 1) U (Type 0)
FV 74.47% 50.00% 84.81%
FV1 79.42% 60.52% 87.40%
FV2 75.52% 52.63% 85.18%
FV3 77.08% 54.38% 86.66%
FV4 63.80% 31.57% 77.40%
FV5 76.82% 53.50% 86.66%
FV6 64.58% 26.31% 80.74%

Table 4.19: Results for different Features Vectors compositions

“Ugly” writing classification minimum success rate is 77,4% and reaches a

maximum of 87,4%. So that every automatic classifier is better than the best

dummy classifier (70,3%). Looking at the “beautiful” writing samples we see

that 6 from 7 classifiers have better results than the dummy classifier (29,7%).

In the best case, the automatic classifier is able to double the success rate with

60,52%. The best classifier for “beautiful” images is also the best classifier for

“ugly” ones. This result suggests that the feature selection for this classifier is

the one that better represents aesthetic principles.

We have presented two approaches for feature selection. One that tries to

represent knowledge (wissen) about aesthetics and another one automatic, based

on the information learned from samples. The second one, which can be assim-

ilated to knowledge by acquaintance (kennen) clearly shows better results. The

representation of knowledge (wissen) might be questioned, maybe the aesthet-

ics principles are not properly represented by the combination of shape features

of FV4, FV5 and FV6. What is clear is that finding a representation based on

knowledge by acquaintance is easier. In fact the different feature selection for

each evaluator suggests that each person’s opinion should be represented by a

different feature selection.

Table 4.19 shows that 5 of the 7 tests performed better than 74%. In order to

have an idea of the importance of this error we can compare it with the proportion

of images that got different labels from the two people in the experiment: 27%.
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4.4.5 Conclusions

The “opinion” of 5 classification systems differs less from the human opinion than

the opinion between the two people collaborating with the tests. Of course we

would need further testing with more people and more opinions per person to

claim statistical evidence, but these experiments suggest that machines can be

trained to perceive subjective things, such as art, with results similar to humans.

In this example, again, low level features without signification have proven to

be more characteristic than high level features based on propositional knowledge.

4.5 Summary

Segmentation is a recurrent problem for different visual perception applications.

Dividing an image exactly how a human would do it is a challenging task and often

computationally expensive. However simple segmentation methods can effectively

be used to achieve good results. Describing people evacuating and people dis-

persing has proved to be hard. Two persons classify the same sequence of frames

differently. However we can make a machine learn a definition of evacuation and

dispersion so that it is able to classify video sequences accurately and avoid the

complex task of segmenting a crowd.

Perceiving the authorship of a handwritten document may seem a more com-

plex task than recognizing people walking or running. Experts build codebooks

with distinctive characters to support the task of writer identification. Segment-

ing handwritten words into letters is an extremely challenging task for a machine.

However writer identification can successfully be achieved with the analysis of

handwritten connect components, which can easily be segmented. Furthermore,

for a small group of documents, the separation between the connected compo-

nents has proved to be sufficient to identify writers, without connected component

analysis. For a larger group of writers, exploring the space of results of a seg-

mentation algorithm applied with multiple parameters improves the ones given

by simple segmentation. Perception is more accurate when more information is

gathered, even if the algorithm to extract it is the same with different parameters.

Analyzing the parts and combining global and local information can also improve
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perception.

In some cases the parts of a whole are not recognizable and therefore a global

description is required to categorize the event. Sudden illumination changes are

an example of such situations, in which describing the parts does not give useful

information. A global description based on low level features is good to define

both “sudden illumination changes” as one category and to define different sudden

illumination changes as several categories. Global descriptions can be specific or

generic.

Finally we have analyzed a subjective problem, aesthetic perception. Machine

learning techniques have shown much better results than theoretical attempts to

define “beauty”. The way of perceiving subjective categories like “beauty” is

similar to the way of perceiving authorship or actions. If we agree with Purves

& Lotto [2003] theory of vision, it makes a lot of sense.

the visual system is not organized to generate a veridical represen-

tation of the physical world, but rather is a statistical reflection of

visual history (Purves & Lotto [2003] p.227).
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Chapter 5

Conclusions

The present PhD dissertation seeks answers for the main questions about machine

visual perception: (1) can a machine perceive what a human perceives? and (2)

how can a machine achieve the results of human vision?. The answer of the

first question requires understanding what a human perceives. The answer to

the second question should present the requirements that a perceptual system

must satisfy in order to achieve the results of human vision. The question is

different to a third question, how do we build a machine able to perceive what a

human does?. The answer to this question would present the implementation of

a perceptual system or its modules. However it would not tell why the selection

of these modules is appropriate. If we wish to emulate or improve the results of

human vision, we need to understand what should be computed and why before

worrying about implementation.

5.1 Human and machine vision

5.1.1 Can a machine perceive what a human perceives?

The short answer would be yes it can. Theories for human vision propose that

we see shapes (Marr [1982]), affordances (Gibson [1986]), or a probabilistic repre-

sentation of the past (Purves & Lotto [2003]). All of them can be represented by

relations. Shapes can be represented by geometric relations of pixels. Affordances

can be represented by semantic relations, relations between a sign, a shape for
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example, and a concept. A concept can be represented by the relation of its prop-

erties. Perception is about relations, so that a machine will be able to perceive,

if it is able to deal with the different kinds of relations involved in visual percep-

tion. In chapter 3 we show how each of them can be represented and computed

by machines. In chapter 4 we present examples of a variety of computer vision

applications. The results of human visual perception can be emulated in fields as

different as activity, handwriting authorship, intrusion or aesthetic perception.

When several elements are related they are given a form and what is given a

form is etymologically information. Information is therefore the key element for

visual perception. Depending on the nature of the elements, we have different

kinds of information. We have proposed to group them in two types: intrinsic

and extrinsic information. The former are relations between intrinsic elements

of the image, pixels, while the latter are relations between extrinsic elements,

knowledge.

We have noted that perception results among humans are not homogeneous,

two people can perceive the same object differently. The images 2.9 illustrate the

statement from Purves & Lotto [2003]: “the output of any detector to the rest

of the visual system is necessarily as ambiguous as the stimulus it presumably

encodes” (p.5). The results of any visual system, human or artificial, are not

certain, but stochastic. When we see something in an image we consider that we

have sufficient evidence to affirm that that something is represented in the image.

When a machine categorizes an image, it considers that sufficient evidence has

been found to make such categorization.

The categorization of an image depends on the perceptual system that cat-

egorizes it, either human or artificial. The results of visual systems should not

be compared by the strength of the evidence collected, but by the quality of the

definitions used to categorize. For example does the painting from Velazquez 3.1

represent the Corona Borealis? We could not tell without evaluating the defi-

nition that leads to such categorization. In order to make a machine emulate

the results of human vision we need definitions equivalent to the ones used by

humans to categorize images. The results of experiments in sections 4.1 and 4.4

show how a machine can emulate the categorization of a particular person with

higher accuracy than another person.
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5.1.2 How can a machine achieve the results of human

vision?

Computers are powerful tools for information processing, they can store massive

amounts of information and perform many types of computation much faster than

our brains. Therefore computers seem well suited to implement visual perception

systems. The challenge is to find the appropriate computations to perform visual

perception. This task is challenging because most of the knowledge required in vi-

sual perception is knowledge by acquaintance, which is not the kind of knowledge

that a human can express with language.

Low level features. Despite the fact that vision is something natural to people,

describing objects that are seen might be complex, even for simple objects. How

could a person describe a cat, such that it can be recognized in its different poses

and not be confounded with a dog? Descriptions given by humans are based on

high level features, for example a cat has four legs, two pointy ears, mustache

etc. However definitions made of high level features are usually weaker than the

definitions based on low level features, since the former are based on the latter.

High level features are just a subset of the possible relations between low level

features, which have been conceptualized, but this does not imply that other sets

of relations between low level features are not more characteristic for the object.

Experiments in chapter 4 show how systems based on low level features are

able to emulate or improve the results given by humans. The features that a

person would use to describe an object may not be the best choice to create a

definition for a computer. Categorizing and describing are different actions. A

high level description is not necessary to categorize an image, but is the common

procedure by which people transmit knowledge about recognition because it is

easier to express with propositions than low level features.

A search problem. The strategy that we have proposed is to approach visual

perception as a heuristic search problem, in which information is gathered at every

step to guide the process of search. Like any other system, visual systems have

limited resources and in many real world situations the amount of information
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available would largely overload them. A heuristic strategy can produce good

results with less resources than approaches based on exhaustive search. In the

worst case the former can be equivalent to the latter, but an efficient visual system

should be able to find targets in many situations without exhaustively scanning

the image. In human vision, visual attention is the mechanism by which only a

fraction of the available information is processed.

Moreover gathering information may also be a form of verification. In sec-

tion 3.3.5.3 we present results showing that even state-of-the-art classifiers can

easily be fooled. Exploring several approaches leads to a variety of evidence that

compensates the weaknesses of isolated classification schemes.

Intelligent agent. The search is guided by the information gathered from the

image, the percepts, and the information known by the system, prior knowledge.

A well known paradigm in AI to study search problems are intelligent agents.

“For each possible percept sequence, a rational agent should select an action that

is expected to maximize its performance measure, given the evidence provided by

the percept sequence and whatever built-in knowledge the agent has” (Russell &

Norvig [2014] p.38). In this paradigm perception is usually associated to sensors.

However we suggest that only by considering perception as the goal of the agent

could we emulate the results of human vision. Given a particular image, a sensor

will always generate the same result. A perceptual system built as an intelligent

agent can perceive the same object as a weapon or as food, for example an

apple, depending on the percept sequence and its knowledge. If the system has

recognized the action of “throwing”, the apple would rather be considered as a

weapon and not as food.

With this approach, the result of visual perception is not a label, a term

without signification, but the evolution of the perceptual system. Perception

changes the percept list, but also the knowledge of the system. What has been

seen, can be extracted by evaluating the status of the system. An external system

could make queries to the visual system by evaluating if its status satisfies the

constraints that define a category. The same status can be queried several times,

with different category constraints, so that external systems could get information

about the image. The status of the visual system would encode the equivalent
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to the Visual Short Term Memory (VSTM). The categories activated within the

visual system at every moment could also be related with external systems and

be seen as instant perception. Instant perception might trigger a reaction outside

the visual system or be ignored, it fulfills the traditional role assigned to sensors.

Knowledge. Unlike sensors, perceptual systems learn and adapt, they acquire

knowledge. Knowledge representation is one of the main keys that have revolu-

tionized the field of computer vision in a few years. Deng et al. [2009] introduced

a dataset with millions of labeled images, Imagenet, which represented a never

seen before warehouse of knowledge by acquaintance. This knowledge was rep-

resented by a model inspired in biology: convolutional neural network (CNN).

CNN had already been used for image recognition more than twenty years before

(LeCun et al. [1990, 1995]), but with an architecture of around ten thousand con-

nections. To represent the knowledge of Imagenet Krizhevsky et al. [2012] uses

an architecture with sixty million parameters, whereas Simonyan & Zisserman

[2015] goes beyond a hundred million parameters.

5.2 An active system

5.2.1 Top-down and bottom-up processing

Our approach to visual perception combines top-down and bottom-up processes.

The key operation for this is segmentation, when and how to divide an image.

The principle is to segment as few times as possible and use first segmentation

methods based on simple constraints leading to a bounded number of segments.

In sections 4.1, 4.2, 4.3 we have seen examples where simple segmentation schemes

achieve good results, even when the results of segmentation are not those that a

human would select.

Before segmenting an image or a region the system should extract as much

information as possible. Direct categorization is performed by computing global

and local features. Global features represent statistics about all the elements of

the image while local features represent relations between neighboring elements
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without need of segmentation. The information gathered from direct catego-

rization is useful to decide if it is worth it or not the division of the image or

region into regions or subregions. This process is the top-down component of the

algorithm proposed for visual perception.

On the other hand the results of categorizing the parts can be used to catego-

rize the whole, in a process called comprehension. This is likely the first option

that humans use to justify what they perceive but the experiments from chapter

4 show that it is not always the best option, and very often implies expensive

computations. Comprehension is the main bottom-up process.

Segmentation can be guided by bottom-up and top-down information. With-

out prior information, segmentation is performed through the evaluation of dif-

ferent constraints about the elements of the image. When too many segments

are being generated, these constraints can be relaxed so that more elements are

integrated in the same segment. On the other hand when information is available,

segmentation can be guided by it. For example if we are searching for red items,

the constraint for segmentation should consider this top-down guidance. An im-

age can be segmented in many different ways, that is why top-down information

is so important. A classic example in psychology works is image 5.1.

Most people without information about the image content will not be able

to segment properly the image. There is no apparent relation between the black

spots. However once that this information is given, human vision quickly manages

to find the right segmentation criterion 1. One of the challenges in computer vision

is therefore to implement mechanisms to optimize the heuristic search.

5.2.2 The whole and its parts

Segmentation is more than a pre-processing technique, it is a relation between

the parts and the whole. This relation can be useful from both sides. The parts

of the whole can be reasoned as high level features to reach a conclusion about

the whole. Otherwise, information about the whole can be used to categorize

the parts. For example considering the parts of the the picture “La Gare de

Saint Lazare” (2.7) without the whole makes their categorization more difficult,

1A dalmatian under a tree
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Figure 5.1: Image by R.C. James

if possible at all. Another example is found in handwriting segmentation, a

connected component is easier to segment in characters when we have previously

categorized the connected component as a particular word (Koerich et al. [2005]).

Categorizing the whole by comprehension of its parts implies segmentation,

recognition of the parts and comprehension, which requires more resources than

the direct categorization of the whole. That is why a perceptual system should

learn to directly categorize new wholes. In section 4.1 we show how activities

that at first would be categorized by tracking each person, could be learned and

categorized directly with a simple motion detection, and without recognizing any

of its parts.

In fact the fundamental segmentation is the division between background

and foreground. Objects can only be categorized when the system is able to

differentiate them from background. This is also true for human vision, and a

famous example was given by Rubin [1958] with the image 2.6. Depending on

the segmentation criterion, a vase or two faces can be recognized, but not both

at the same time.
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5.2.3 Adaptation

There is little doubt that people are not born with but acquire skills.

The fundamental aspect of a skill is that an action executed now

depends for its accomplishment on the execution of prior actions: ac-

tivities are carried out on the basis of things done before. A machine’s

actions, however, are largely independent of what has gone before; its

ability to do something is due to its design, not to its past experience.

People acquire skills, but machines have their skills built-in (Beck

et al. [1981]).

The limitations noted in this early work about human and machine vision

define some of the requirements that computer vision needs to emulate human

vision. Machines have to be able to adapt. The approach described in section

3.2.2.4 is a procedure by which the system evolves. On one side the collected

information is integrated, such that new categorizations depend on the previously

categorized elements. This information can also be used, such that following

activities are carried out on the basis of that information.

On the other side, the information gathered improves and expands the recog-

nition capacity of the system. The results of categorizations are useful for op-

timizing the parameters of the recognizers or for creating new recognizers able

to directly recognize an object that has been categorized by comprehension of

its parts. Information is not simply stored, it is integrated, so that the machine

improves or acquires new skills. With every information gathered the perceptual

system changes, evolves, adapts to be more efficient.

The results of human vision cannot be achieved with a single action, such

an achievement requires a process of artificial intelligence involving knowledge

representation, probabilistic reasoning, heuristic search and pattern recognition.

5.3 Future work

In section 3.3 we have reviewed some of the most relevant publications in the field

of computer vision. In chapter 4 we have implemented methods for four different
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and specific visual perception applications. However we have not proposed a

general method for implementing machine visual perception systems. Some of the

components seem to be almost ready. Methods inspired in biology have shown

very promising results for recognizing scenes or objects (Farabet et al. [2013];

Karpathy & Fei-Fei [2015]; Krizhevsky et al. [2012]; Pinheiro & Collobert [2014];

Simonyan & Zisserman [2015]; Zheng et al. [2015]). Artificial neural networks

have proved to be useful models to represent knowledge and recognize patterns.

Recent research show how given a set of stimuli, unlabeled images in our case,

ANN are able to learn how to recognize human faces (Le et al. [2013]) without

need of engineered features.

Future work could explore how to implement a general method that integrates

the different kinds of knowledge such that heuristic search is guided by this inte-

gration. We have seen that features and parameters used in recognition can be

learned from examples, avoiding handcrafted rules. Constructing heuristic func-

tions by learning from experience would follow the same principle, and could be

a way of building systems able to adapt to different computer vision applications.

The main challenge for machine visual perception is likely the construction of

heuristic functions with a performance comparable to the ones implemented in

the human visual system.
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Appendix A

Introducción y conclusiones de la

Tesis (Castellano)

A.1 Introducción

El mundo visual es probablemente la principal fuente de información para los

seres humanos. Lo usamos para movernos, encontrar comida o amigos, para evi-

tar peligros o simplemente para aprender cosas nuevas. Las representaciones del

mundo visual, las pinturas, las imágenes y más recientemente el v́ıdeo son una

parte importante de nuestras vidas. La gente disfruta pintando, coleccionando

arte, visitando museos, tomando fotograf́ıas o yendo al cine. Hemos desarrollado

con éxito herramientas para introducir estas representaciones en los ordenadores,

que ahora pueden almacenarlas fácilmente, mostrarlas o transmitirlas. Los or-

denadores son de hecho una de las principales herramientas para crear o editar

imágenes, lo que se conoce como gráficos por ordenador.

Muchas peĺıculas incluyen gráficos por ordenador que logran resultados im-

presionantes, que seŕıan dif́ıciles de alcanzar sin el apoyo de las máquinas. Por

otro lado, algo que las personas hacemos normalmente sin esfuerzo, entender lo

que representan las imágenes, sigue siendo un gran desaf́ıo para las máquinas.

La comprensión del contenido de las imágenes es fundamental para implementar

179



sistemas de recuperación de imágenes, automatizar tareas de vigilancia o desar-

rollar agentes inteligentes como automóviles autodirigidos. Al campo de investi-

gación relacionado con la comprensión de la imagen se le conoce por diferentes

nombres, computer vison, machine vision o machine visual perception. Algunos

autores diferencian entre computer vision y machine vision (Davies [2008] p.13)

pero la diferencia es cuestionable. Para nosotros la única diferencia estaŕıa en

la adquisición de imágenes, computer vision sólo se ocupa de imágenes digitales,

mientras que machine vision incluye las técnicas de digitalización. A menos que

se indique lo contrario, en esta tesis los usaremos indistintamente. De hecho, en

muchos casos preferimos usar machine visual perception porque incluye la pal-

abra percepción en lugar de la visión. El significado es el mismo, pero la visión

suele asociarse a los sensores, y nosotros vamos a explorar las diferencias entre

los sensores y los sistemas perceptivos. En castellano los términos más habituales

son visión por ordenador y visión artificial. El segundo nos parece más adecuado,

especialmente si se quiere comparar con la visión humana. Nadie diŕıa “visión

por humano”, en cambio comparar la visión humana con visión artificial resulta

más normal. También se podŕıa considerar el término visión automática, la visión

de un autómata. De hecho la traducción de machine learning suele ser apren-

dizaje automático, y no aprendizaje por máquina. En este texto usaremos visión

artificial para traducir computer vision, visión automática para traducir machine

vision y percepción visual automática para machine visual perception.

La percepción visual automática suele estar relacionada con inteligencia ar-

tificial (AI), y esta disertación busca entender mejor esta relación. A primera

vista, el concepto de IA puede parecer fácil de entender, la AI pretende conseguir

que las máquinas emulen la inteligencia humana. El problema es que, aunque la

inteligencia humana es algo familiar para la mayoŕıa de las personas, la respuesta

a la pregunta más sencilla ¿ Qué es la inteligencia ? no es tan simple. En vez de

considerar la naturaleza de la inteligencia, muy a menudo sólo evaluamos la in-

teligencia de una máquina comparándola con las acciones humanas equivalentes.

Una máquina que juega al ajedrez es probablemente considerada una máquina

inteligente, mientras que una que corta piezas de plástico no lo es. De hecho,

la evaluación de la inteligencia de una máquina puede cambiar con el tiempo,

por ejemplo, los lectores de caracteres ópticos soĺıan ser considerados como pro-
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gramas de AI en sus comienzos, pero cuando los resultados alcanzaron suficiente

fiabilidad perdieron el estatus de inteligente (Schank [1991]).

El ejemplo de los lectores de caracteres ópticos puede ser extrapolado a muchas

aplicaciones de visión artificial, si una máquina es inteligente o no se determina

por lo impresionante que es la actividad realizada por la máquina. En esta tesis

sugerimos que cualquier máquina capaz de percibir podŕıa ser considerada una

máquina inteligente cuando la percepción se entiende como un proceso de recogida

de información. Esta Tesis doctoral explora los fundamentos de la visión para

entender cómo los sistemas de percepción visual pueden ser construidos para

emular o mejorar los resultados dados por la visión humana.

A.1.1 Vision artificial

A.1.1.1 Aplicaciones

La visión artificial está atrayendo mucho interés. Hoy es probablemente el campo

de investigación más activo dentro de la inteligencia artificial. Tal vez el principal

desencadenante de una actividad tan agitada es la evolución del hardware, que

permite trabajar con imágenes de una manera que nunca antes se hab́ıa visto. Or-

denadores asequibles pueden almacenar cantidades masivas de imágenes y videos.

La resolución de las cámaras digitales se mide en millones de ṕıxeles. Incluso las

CPUs de baja potencia ahora son capaces de reproducir video de alta calidad

en dispositivos móviles. Millones de imágenes son tomadas y subidas todos los

d́ıas. El video está en todas partes. Esa cantidad de información visual no puede

permanecer inaccesible a los ordenadores, sino que debe ser explotada.

La visión artificial tiene aplicaciones en diferentes campos, como análisis de

documentos (Cermeño et al. [2014a]; He & Schomaker [2015]; LeCun et al. [1989]),

video vigilancia (Buch et al. [2011]; Cermeño et al. [2017b]; Hu et al. [2004]),

evaluación de la calidad de alimentos (Sun [2016]), análisis deportivo (Moeslund

et al. [2015]) o computación afectiva (Perez et al. [2014]; Picard [2000]). Estas

aplicaciones ya forman parte de nuestro d́ıa a d́ıa en forma de productos como
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lectores de tarjetas 1, consolas de juegos 2 or veh́ıculos autodirigidos 3.

Los prodcutos anteriores incorporan sistemas de visión artificial que básicamente

cumplen alguna de las funciones siguientes:

• Detección de objetos

• Seguimiento de objectos

• Análisis de escenas

• Clasificación de escenas

Los métodos de detección de objetos buscan encontrar objetos conocidos den-

tro de una imagen, mientras que en una secuencia de v́ıdeo los métodos de

seguimiento relacionan los objetos de un fotograma con los objetos de los fo-

togramas anteriores. Los métodos de análisis de escenas están estrechamente

relacionados con la detección de objetos, sin embargo, estos últimos sólo buscan

un conjunto de objetos conocidos en la imagen mientras que los primeros tratan

de dividir la imagen en regiones asociadas con categoŕıas semánticas como per-

sona, coche, cielo, hierba etc. La detección de objetos informa de la posición del

objeto cuando se encuentra mientras que el análisis de escena informa de una

descripción de la escena. Finalmente, los métodos de clasificación de escenas

asignan una etiqueta a una imagen o secuencia de v́ıdeo. Pero ¿cómo podŕıa una

máquina cumplir con tales funciones?

A.1.1.2 Técnicas

Las respuestas a la pregunta anterior normalmente se encuentran en la literatura

de Digital Image Processing y Pattern Recognition. La distancia entre el proce-

samiento de imágenes y la visión artificial no está clara. Algunos de los libros más

citados en este campo se basan de algún modo o consideran útil un paradigma por

el cual el procesado general se divide en tres tipos: de bajo nivel (temprano), de

nivel medio (intermedio) y de alto nivel (Davies [2008]; Forsyth & Ponce [2003];

1www.abbyy.com
2www.xbox.com/es-ES/xbox-one/accessories/kinect
3www.tesla.com
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Gonzalez & Woods [2008]). La visión de bajo nivel se ocupa de transformaciones

de imagen, como filtros de eliminación de ruido u operaciones morfológicas como

erosión o dilatación, y extracción de caracteŕısticas, como detección de bordes o

análisis de textura. La visión de nivel medio se ocupa de extraer información sobre

las imágenes, por ejemplo formas o movimiento. La visión de alto nivel implica

el reconocimiento de patrones, estableciendo una relación entre las caracteŕısticas

de la imagen y las caracteŕısticas de objetos o escenas.

La nomenclatura del paradigma sugiere la idea del procesamiento secuencial:

primero bajo nivel, luego nivel medio y finalmente procesamiento de alto nivel.

La figura 1.2 reproduce un diagrama de Szeliski [2010] describiendo la relación

entre diferentes técnicas de visión artificial. También sugiere un procesamiento

secuencial, segmentación y detección de caracteŕısticas conectadas de un lado al

procesamiento de imágenes y de otro lado al reconocimiento, algo que podŕıa verse

como una división en tres niveles. Sin embargo, el autor advierte que “esta tax-

onomı́a debe tomarse con prudencia, ya que el procesamiento y las dependencias

en este diagrama no son estrictamente secuenciales” (p.19).

A.1.2 Motivación de la Tesis

Eduardo Cermeño ha trabajado en una empresa especializada en aplicaciones

de visión artificial desde 2004. Cada d́ıa, personas y empresas muestran interés

en automatizar una amplia gama de tareas, desde verificación de calidad hasta

análisis del comportamiento. Por ejemplo, las empresas desean saber cuántas

personas entran en sus tiendas, cuáles son las áreas más visitadas, cuánto tiempo

tienen que esperar los clientes antes de pagar, incluso su estado de ánimo al salir de

la tienda. Los observadores humanos podŕıan reunir información para responder

a todas estas preguntas, pero ¿podŕıa hacerlo una máquina? En esta disertación

tratamos las cuestiones fundamentales que deben ser resueltas para entender cómo

las máquinas podŕıan emular o mejorar los resultados de la percepción visual

humana: ¿qué se percibe ?, ¿cómo lo percibe una máquina? y ¿cómo construimos

tal máquina?

Acotamos la primera pregunta al considerarla equivalente a ¿podŕıa una máquina

percibir todo lo que es percibido por un ser humano? La respuesta a esta pre-
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gunta requiere conocimiento acerca de lo que los humanos son capaces de ver.

Para tratar esta última cuestión debemos proponer una estrategia para percibir

aquello que se haya respondido en la primera pregunta, y explicar por qué esta

estrategia es apropiada.

La literatura relacionada con visión artificial presenta muchas técnicas, pero

no explica su papel en el proceso de percepción visual. Por ejemplo, sabemos que

la segmentación divide las imágenes en partes, pero ¿por qué debeŕıamos dividir

una imagen en partes? Algunos autores consideran el reconocimiento de objetos

como un proceso de alto nivel (Davies [2008]; Forsyth & Ponce [2003] ), mientras

que otros (Gonzalez & Woods [2008]) lo consideran un proceso intermedio, pero si

estamos interesados en la clasificación de una escena ¿por qué debeŕıamos realizar

el reconocimiento de objetos? Por paradójico que parezca, no hemos encontrado

una teoŕıa computacional expĺıcita acerca de la percepción visual automática

que explique qué se calcula y por qué. El mismo problema fue abordado por

Marr [1982] para la visión humana. Su forma de enfocar la visión ha sido muy

inspiradora. Las mismas preguntas y metodoloǵıa utilizadas para entender la

visión humana pueden ser usadas para entender mejor la visión artificial.

Marr [1982] sugiere que los hallazgos neurofisiológicos no son suficientes para

entender la visión humana, la presente disertación cuestiona si la investigación en

nuevas caracteŕısticas o clasificadores es suficiente para entender cómo se podŕıan

diseñar sistemas perceptivos comparables a la visión humana. A principios de

siglo Viola & Jones [2001] y Lowe [2004] presentaron dos métodos prometedores

para extraer caracteŕısticas para el reconocimiento de objetos. En 2012, después

de la publicación del conjunto de datos Imagenet (Deng et al. [2009]), un nuevo

enfoque fue presentado por Krizhevsky et al. [2012], iniciando una nueva ola de

métodos basados en redes neuronales convolucionales que han revolucionado el

mundo del reconocimiento de objetos (Girshick et al. [2014]; He et al. [2016]; Sun

& Ponce [2016]) y del análisis de escenas (Grangier et al. [2009]; Karpathy &

Fei-Fei [2015]).

Muy a menudo la percepción visual automática se enfoca como un problema

de reconocimiento de patrones. Si este fuera el caso, no estaŕıamos muy lejos de

la solución. Simonyan & Zisserman [2015] logra una tasa de error de top-5 de

6.8 % en el desaf́ıo de reconocimiento visual Imagenet - ILSVRC- (Russakovsky
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et al. [2015]). Esto significa que un 93.2 % de las imágenes teńıa la etiqueta

correcta entre un conjunto de 5 predicciones dadas por el algoritmo. El conjunto

de pruebas ILSVC tiene 100.000 imágenes con 1000 categoŕıas que cubren plantas,

formaciones geológicas, objetos naturales, deportes, artefactos, hongos, personas,

animales, comida, etc.

Sin embargo, la realidad es que no estamos tan cerca de encontrar una solución

como estos resultados podŕıan dejar pensar. Las aplicaciones del mundo real muy

a menudo van más allá del reconocimiento de objetos. Las personas son capaces de

percibir aves en el cielo o en videos, incluso si apenas están representadas por unos

pocos ṕıxeles. Las personas son capaces de distinguir entre un árbol que se mueve

y un intruso humano, incluso si este está disfrazado. Son capaces de reconocer los

efectos de un cambio de iluminación, incluso si nunca han visto un cambio como

ese antes. Esta tesis doctoral está motivada por la experiencia adquirida en una

empresa que desarrolla aplicaciones de visión artificial y la voluntad de explorar

cuestiones fundamentales para las que aún no se ha encontrado respuesta.

Russell & Norvig [2014] afirma que algunos de los fundadores de AI (Beal &

Winston [2009]; McCarthy [2007]; Nilsson [2005]) “han expresado su descontento

con el progreso de la IA”. Piensan que la investigación en IA debeŕıa enfocarse

menos en “versiones de aplicaciones que cada vez incluyen nuevas mejoras para

tareas espećıficas ” y “ volver a sus ráıces ”:“ máquinas que piensan, que apren-

den y que crean ”(p.27). Nuestra investigación se centra en máquinas que ven,

en entender qué hace falta para que la percepción visual automática sea compa-

rable con la humana. No estamos buscando nuevos métodos para resolver una

tarea particular, ni un método general para implementar la percepción visual au-

tomática, estamos buscando una teoŕıa que nos explique por qué los resultados

de uno u otro sistema de visión artificial no alcanzan los ofrecidos por la visión

humana.

A.1.3 La Tesis

La Tesis desarrollada en esta disertación propone un marco general teórico para

explicar cuáles son los procesos requeridos para que la percepción visual au-

tomática pueda lograr los resultados de la visión humana. Podŕıa expresarse de
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la forma siguiente:

La percepción visual automática es un proceso heuŕıstico iterativo por el cual

se reune información relacionada con una imagen. El proceso combina métodos

descendientes y ascendientes para transformar un conjunto de ṕıxeles en una jer-

arqúıa de categoŕıas. Se procesan caracteŕısticas de bajo nivel para reconocer lo

que se ha visto antes, mientras que caracteŕısticas de alto nivel se procesan para

comprender lo que se está viendo. Un sistema de percepción visual es un agente

inteligente cuyo programa se basa en tres operadores básicos: segmentación,

reconocimiento y razonamiento, y cuyo objetivo es determinar si una imagen o

sus partes satisfacen las condiciones de un conjunto de categoŕıas objetivo.

A.1.4 Esquema general de la disertación

Con el fin de entender cómo una máquina podŕıa lograr los resultados de la

visión humana, el primer paso debe ser la comprensión de la naturaleza de esos

resultados. Uno de los objetivos de esta tesis es analizar las principales teoŕıas

sobre la percepción visual humana. La base neurofisiológica de ésta suele estar

presente en la introducción de libros sobre visión artificial, y ha inspirado varios

métodos aplicados en esta área, como las Redes Neuronales Artificiales (ANNs).

El estudio de las neuronas involucradas en la percepción visual muestra cómo la

visión humana se implementa biológicamente pero puede no ser suficiente para

entender lo que se percibe o por qué esta implementación es apropiada. La

neurofisioloǵıa está estrechamente relacionada con la psicoloǵıa, la rama de la

ciencia que se ocupa tanto de la mente como de la percepción. Hemos revisado

trabajos relevantes del campo de la psicoloǵıa en busca de respuestas a preguntas

como “¿ por qué las cosas se ven como se ven?” (Koffka [1935]) o “¿ por qué

vemos lo que vemos ? ” (Purves & Lotto [2003]). La psicoloǵıa analiza los

procesos de la mente detrás de la visión y explica la lógica de usar tales procesos,

no sólo cómo podŕıan ser implementados. Marr [1982] describe estos niveles de

explicación en la tabla 1.1.

El segundo objetivo es presentar un marco teórico para explicar qué cálculos

son necesarios para lograr los resultados de la visión humana. La percepción visual

se enfoca como una actividad de procesado de información, de la que analizamos
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tanto la entrada como la salida. A partir de este análisis se propone un algoritmo

con las acciones necesarias para realizar la transformación de la entrada en la

salida. El marco teórico se ocupa de los niveles de explicación llamados “Teoŕıa

computacional” y “Representación y algoritmo” en la tabla 1.1. Luego revisamos

varios métodos del estado del arte utilizados para implementar aplicaciones de

visión artificial. Analizamos el papel que cada uno de ellos podŕıa tener en el

ámbito de nuestra teoŕıa.

La Tesis doctoral ha sido motivada por inquietudes surgidas durante el de-

sarrollo de aplicaciones reales. Hemos seleccionado cuatro tipos diferentes de

aplicación para probar los principios de nuestra teoŕıa. El objetivo no es encon-

trar el mejor método para resolver cada problema, sino evaluar si la aplicación de

estos principios conduce a resultados comparables con la visión humana en una

variedad de aplicaciones, y por tanto, evaluar su validez.

La Tesis se estructura en cinco caṕıtulos, de la siguiente manera:

• El caṕıtulo 1 presenta el tema de percepción visual, y las motivaciones,

esbozos y aportes de esta tesis doctoral.

• El caṕıtulo 2 repasa obras relacionadas con la percepción visual de los cam-

pos de la neurofisioloǵıa y la psicoloǵıa, para que los resultados de la visión

humana se entiendan mejor.

• El caṕıtulo 3 presenta un nuevo marco para la percepción visual automática.

Seguimos el esquema de Marr [1982] con tres niveles de explicación. De-

scribimos primero una teoŕıa computacional para la visión, luego una repre-

sentación y un algoritmo, y finalmente revisamos los métodos más avanza-

dos del estado del arte que podŕıan usarse para implementar las operaciones

fundamentales del algoritmo.

• El caṕıtulo 4 estudia cuatro aplicaciones de visión artificial con diferentes

tipos de percepción: percepción de actividad, autoŕıa, intrusión y estética.

Un experto humano probablemente sugeriŕıa enfoques basados en carac-

teŕısticas de alto nivel, pero en todos los casos se pueden lograr resultados

comparables a los dados por la visión humana sin seguir las sugerencias

proporcionadas por una persona.
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• El caṕıtulo 5 concluye la Tesis resumiendo los principales resultados obtenidos

y esbozando futuras investigaciones.

A.2 Conclusiones

A.2.1 Visión artificial y humana

A.2.1.1 ¿Puede una máquina percibir lo que percibe un ser humano?

La respuesta corta seŕıa, śı puede. Las teoŕıas sobre visión humana propo-

nen que vemos formas (Marr [1982]), affordances (Gibson [1986]), o una repre-

sentación probabiĺıstica del pasado (Purves & Lotto [2003]). Todas ellas pueden

ser representadas por relaciones. Las formas pueden representarse mediante rela-

ciones geométricas de ṕıxeles. Las affordances pueden representarse por relaciones

semánticas, relaciones entre un signo, una forma por ejemplo, y un concepto. Un

concepto puede ser representado por la relación de sus propiedades. La per-

cepción se basa en el estudio de relaciones, de modo que para que una máquina

pueda percibir, tiene que ser capaz de manejar los diferentes tipos de relaciones

involucradas en la percepción visual. En el caṕıtulo 3 mostramos cómo cada uno

de estos tipos puede ser representado y procesado por máquinas. En el caṕıtulo

4 presentamos ejemplos de una variedad de aplicaciones de visión artificial. Los

resultados de la percepción visual humana pueden emularse en campos tan difer-

entes como el reconocimiento de actividad, de autoŕıa de manuscritos, de intrusión

o la percepción de estética.

Cuando se relacionan varios elementos se les da forma y lo que tiene forma

es etimológicamente información. La información es por tanto un elemento clave

en la percepción visual. En función de la naturaleza de los elementos se definen

diferentes tipos de información. Hemos propuesto agruparlos en dos tipos: in-

formación intŕınseca y extŕınseca. En el primer caso se trata de relaciones entre

elementos intŕınsecos de la imagen, ṕıxeles, mientras que en el segundo se trata

de relaciones entre elementos extŕınsecos, conocimiento.

Hemos observado que los resultados de la percepción no son homogéneos, dos
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personas pueden percibir el mismo objeto de manera diferente. Las imágenes 2.9

ilustran la afirmación de Purves & Lotto [2003]: “la salida de cualquier detector

hacia el resto del sistema visual es necesariamente tan ambigua como el est́ımulo

que presumiblemente codifica” (p.5). Los resultados de cualquier sistema visual,

humano o artificial, no son ciertos, sino estocásticos. Cuando vemos algo en una

imagen, consideramos que tenemos evidencias suficientes para afirmar que ese

algo está representado en la imagen. Cuando una máquina categoriza una imagen,

considera que ha encontrado evidencias suficientes para hacer tal categorización.

La categorización de una imagen depende del sistema perceptual que la cat-

egoriza, sea humano o artificial. Los resultados de distintos sistemas visuales no

debeŕıan compararse únicamente por la certeza obtenida por un clasificador de

patrones, sino por la calidad de las definiciones utilizadas para categorizar. Por

ejemplo, ¿representa el cuadro de Velázquez 3.1 la Corona Borealis? Es d́ıficil re-

sponder sin evaluar la definición utilizada para realizar esta categorización. Para

conseguir que una máquina emule los resultados de la visión humana necesita-

mos definiciones equivalentes a las usadas por los humanos para categorizar las

imágenes. Los resultados de los experimentos de las secciones 4.1 y 4.4 muestran

cómo una máquina puede emular la categorización de una determinada persona,

incluso con mayor precisión que otra persona.

A.2.1.2 ¿Cómo puede una máquina lograr los resultados de la visión

humana?

Los ordenadores son herramientas poderosas para el procesamiento de infor-

mación, pueden almacenarla en cantidades masivas y realizar cálculos de forma

más rápida de lo que lo podŕıa hacer un cerebro humano. Por lo tanto, parecen

adecuados para implementar sistemas de percepción visual. El desaf́ıo es encon-

trar los procesos adecuados que permitan realizar dicha percepción. Esta tarea

supone un desaf́ıo ya que la mayor parte del conocimiento requerido en percepción

visual es conocimiento por familiaridad , que no es el tipo de conocimiento que

un ser humano puede expresar con el lenguaje. En inglés usamos knowledge by

acquaintance y propotional knowledge. Las traducciones anteriores son las que

se ajustan con mayor exactitud a los términos ingleses, sin embargo se podŕıan
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haber usado los verbos, conocer y saber o bien conocimiento tácito y conocimiento

codificado, pero esto requeriŕıa de una discusión que va más allá de los objetivos

de esta tesis.

Caracteŕısticas de bajo nivel. A pesar de que la visión es algo natural para

las personas, describir los objetos que se ven puede ser complejo, incluso para ob-

jetos simples. ¿Cómo podŕıa una persona describir un gato de modo que pueda

ser reconocido en sus diferentes poses y no confundirlo con un perro? Las de-

scripciones dadas por los seres humanos se basan en caracteŕısticas de alto nivel,

por ejemplo, un gato tiene cuatro patas, dos orejas puntiagudas, bigote, etc. Sin

embargo, las definiciones de caracteŕısticas de alto nivel suelen ser más débiles

que las definiciones basadas en caracteŕısticas de bajo nivel, ya que las primeras

están basadas en las últimas. Las caracteŕısticas de alto nivel son sólo un subcon-

junto de las posibles relaciones entre las caracteŕısticas de bajo nivel que han sido

conceptualizadas, pero esto no implica que otros conjuntos de relaciones entre

caracteŕısticas de bajo nivel no sean más útiles para identificar el objeto.

Los experimentos del caṕıtulo 4 muestran cómo los sistemas basados en carac-

teŕısticas de bajo nivel son capaces de emular o mejorar los resultados dados por

personas. Las caracteŕısticas que una persona podŕıa utilizar para describir un

objeto no puede ser la mejor opción para crear una definición para un ordenador.

La categorización y la descripción son acciones diferentes. Una descripción de

alto nivel no es necesaria para categorizar una imagen, pero es el procedimiento

común por el cual las personas transmiten conocimiento sobre reconocimiento

porque es más fácil que expresar con proposiciones que caracteŕısticas de bajo

nivel.

Un problema de búsqueda. La estrategia que hemos propuesto es abordar

la percepción visual como un problema de búsqueda heuŕıstica, en el que la in-

formación se recoge en cada paso para guiar el proceso de búsqueda. Al igual

que cualquier otro sistema, los sistemas visuales tienen recursos limitados y en

muchas situaciones del mundo real la cantidad de información disponible los so-

brecargaŕıa en gran medida. Una estrategia heuŕıstica puede producir buenos

resultados con menos recursos que los enfoques basados en búsqueda exhaustiva.
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En el peor de los casos, el primero puede ser equivalente al segundo, pero un

sistema visual eficiente debe ser capaz de encontrar objetivos en muchas situa-

ciones sin escanear exhaustivamente la imagen. En la visión humana, la atención

visual es el mecanismo por el cual sólo se procesa una fracción de la información

disponible. Además, la recopilación de información puede ser también una forma

de verificación. En la sección 3.3.5.3 presentamos resultados que muestran que

incluso los clasificadores de última generación pueden ser fácilmente engañados.

La exploración de varios enfoques conduce a una variedad de evidencias que com-

pensan las debilidades de los esquemas de clasificación aislados.

Agente inteligente. El proceso de búsqueda se gúıa por lo percibido con ante-

riodidad y la información conocida por el sistema. Un paradigma bien conocido

en IA para estudiar los problemas de búsqueda son los agentes inteligentes. “Para

cada posible secuencia de percepciones, un agente racional debe seleccionar una

acción de la que se espera que maximice una medida de rendimiento dado un con-

junto de evidencias proporcionado por la secuencia de percepciones y cualquier

conocimiento que el agente haya incorporado” (Russell & Norvig [2014] p.38 ).

En este paradigma la percepción suele asociarse a sensores. Sin embargo, sugeri-

mos que sólo al considerar la percepción como el objetivo de un agente podremos

emular los resultados de la visión humana. Dada una determinada imagen, un

sensor siempre genera el mismo resultado. Un sistema perceptivo construido

como un agente inteligente puede percibir el mismo objeto como un arma o como

alimento, por ejemplo una manzana, dependiendo de la secuencia de percepciones

y su conocimiento. Si el sistema ha reconocido la acción “lanzar”, la manzana se

consideŕıa como un arma y no como alimento. Con este enfoque, el resultado de la

percepción visual no es una etiqueta, un término sin significado, sino la evolución

de un sistema perceptivo. La percepción cambia la lista de percepciones, pero

también el conocimiento del sistema. Lo que se ha visto, se puede extraer me-

diante la evaluación del estado del sistema. Un sistema externo podŕıa realizar

consultas al sistema visual evaluando si su estado satisface las restricciones que

definen una categoŕıa. El mismo estado se puede consultar varias veces, con difer-

entes restricciones de categoŕıa, para que los sistemas externos puedan obtener

información sobre la imagen. El estado del sistema visual codificaŕıa el equiv-
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alente a la Memoria Visual de Corto Plazo (VSTM). Las categoŕıas activadas

dentro del sistema visual en cada momento también podŕıan estar relacionadas

con sistemas externos y ser vistas como percepción instantánea. La percepción

instantánea puede desencadenar una reacción fuera del sistema visual o ser igno-

rada, cumpliendo el papel tradicional asignado a los sensores.

Conocimiento. A diferencia de los sensores, los sistemas perceptivos aprenden

y se adaptan, adquieren conocimiento. La representación del conocimiento es

una de las claves que han revolucionado el campo de la visión artificial en pocos

años. Deng et al. [2009] presenta una base de datos con millones de imágenes eti-

quetadas, Imagenet, que supone un almacén de conocimiento nunca antes visto.

Este conocimiento se representa mediante un modelo inspirado en bioloǵıa: una

red neuronal convolucional (CNN). Las CNNs ya hab́ıan sido utilizadas para el

reconocimiento de imágenes veinte años antes (LeCun et al. [1990, 1995] pero

con una arquitectura de alrededor de diez mil conexiones. Para representar el

conocimiento de Imagenet Krizhevsky et al. [2012] utiliza una arquitectura con

sesenta millones de parámetros , mientras que la utilizada en Simonyan & Zisser-

man [2015] supera los cien millones de parámetros.

A.2.2 Un sistema activo

A.2.2.1 Procesado descendiente y ascendiente

Nuestro enfoque de la percepción visual combina procesos descendentes y as-

cendentes. La operación clave para esto es la segmentación, cuándo y cómo

dividir una imagen. El principio es segmentar el menor número de veces posible

y que los métodos de segmentación iniciales estén basados en condiciones simples

que generen un número limitado de segmentos. En las secciones 4.1, 4.2, 4.3 se

presentan ejemplos en los que esquemas de segmentación simples logran buenos

resultados, incluso cuando los resultados de la segmentación no son los que un

ser humano seleccionaŕıa.

Antes de segmentar una imagen o una región, el sistema debe extraer la mayor

cantidad de información posible. La categorización directa se realiza mediante
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el cálculo de caracteŕısticas globales y locales. Las caracteŕısticas globales rep-

resentan estad́ısticas sobre todos los elementos de la imagen mientras que las

caracteŕısticas locales representan relaciones entre elementos vecinos sin necesi-

dad de segmentación. La información obtenida de la categorización directa es útil

para decidir si vale la pena o no la división de la imagen o región en regiones o

subregiones. Este proceso es el componente descendiente del algoritmo propuesto

para la percepción visual.

Por otra parte, los resultados de categorizar las partes se pueden utilizar para

categorizar el todo, en un proceso llamado comprensión. Esta es probablemente

la primera opción que los humanos usan para justificar lo que perciben, pero

los experimentos del caṕıtulo 4 muestran que no siempre es la mejor, ya que a

menudo implica un procesado costoso. La comprensión es el principal proceso

ascendente.

La segmentación puede ser guiada por información ascendente o descendente.

Sin información previa, la segmentación se realiza a través de la evaluación de

diferentes condiciones sobre los elementos de la imagen. Cuando se generan de-

masiados segmentos, estas restricciones se pueden relajar de modo que se integren

más elementos en el mismo segmento. Por otro lado, cuando la información está

disponible, la segmentación puede guiarse por ella. Por ejemplo, si estamos bus-

cando elementos en rojo, la restricción de segmentación debeŕıa considerar esta

orientación descendiente. Una imagen puede segmentarse de muchas maneras

diferentes, por eso es tan importante la información descendiente. Un ejemplo

clásico en trabajos de psicoloǵıa es la image 5.1.

La mayoŕıa de las personas sin información sobre el contenido de la imagen

no podrán segmentar correctamente la imagen. No hay relación aparente entre

las manchas negras. Sin embargo, una vez que esta información se da, la visión

humana rápidamente logra encontrar el criterio de segmentación correcto. Uno

de los retos en visión artificial es por lo tanto, implementar mecanismos para

optimizar la búsqueda heuŕıstica.
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A.2.2.2 El todo y las partes

La segmentación es más que una técnica de pre-procesamiento, es una relación

entre las partes y el todo. Esta relación puede ser útil desde ambos lados. Las

partes del conjunto pueden ser razonadas como caracteŕısticas de alto nivel para

llegar a una conclusión sobre el todo. Por otro lado, la información sobre el

conjunto se puede utilizar para categorizar las partes. Por ejemplo, teniendo en

cuenta las partes de la imagen “La Gare de Saint Lazare” (2.7) sin el todo su clasi-

ficación es dif́ıcil, si acaso posible. Encontramos otro ejemplo en la segmentación

de manuscritos, una componente conexa es más fácil de segmentar en caracteres

cuando previamente hemos categorizado la misma como una determinada palabra

(Koerich et al. [2005]).

La categorización del todo por la comprensión de sus partes implica la seg-

mentación, el reconocimiento y la comprensión de las partes, que requiere más

recursos que la categorización directa del todo. Es por eso que un sistema percep-

tual debe aprender a categorizar directamente nuevos conjuntos. En la sección

4.1 mostramos cómo las actividades que en principio se categorizaŕıan siguiendo

las indicaciones dadas por una persona, podŕıan aprenderse y categorizarse di-

rectamente con una simple detección de movimiento, y sin reconocer ninguna de

sus partes.

De hecho, la segmentación fundamental es la división entre el fondo y la figura.

Los objetos sólo se pueden categorizar cuando el sistema es capaz de diferenciarlos

del fondo. Esto también es cierto para la visión humana, encontramos un conocido

ejemplo en la imagen 2.6. Dependiendo del criterio de segmentación, se puede

reconocer un vaso o dos caras, pero no ambos al mismo tiempo.

A.2.2.3 Adaptación

No hay duda de que la gente no nace con habilidades pero las adquiere.

El aspecto fundamental de una habilidad es que la ejecución actual de

una acción depende de las ejecuciones previas: las actividades se llevan

a cabo sobre la base de las cosas hechas con anterioridad. Las acciones

de una máquina, sin embargo, son en gran parte independientes de lo

que ha pasado antes; su capacidad de hacer algo se debe a su diseño,
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no a su experiencia pasada. La gente adquiere habilidades, pero las

máquinas tienen sus habilidades incorporadas (Beck et al. [1981]).

Las limitaciones señaladas en este temprano trabajo sobre visión artificial y

la humana definen algunos de los requisitos que la visión artificial necesita para

emular a la visión humana. Las máquinas deben ser capaces de adaptarse. El

enfoque descrito en la sección 3.2.2.4 es un procedimiento por el cual el sistema

evoluciona. Por un lado, la información recogida está integrada, de modo que las

nuevas categorizaciones dependen de los elementos previamente categorizados.

Esta información también puede utilizarse de modo que las siguientes actividades

se lleven a cabo sobre la base de esa información.

Por otro lado, la información recopilada mejora y ampĺıa la capacidad de re-

conocimiento del sistema. Los resultados de las categorizaciones son útiles para

optimizar los parámetros de los reconocedores o para crear nuevos reconocedores

capaces de reconocer directamente un objeto que ha sido categorizado por la com-

prensión de sus partes. La información no se almacena sin más, se integra para

que la máquina mejore o adquiera nuevas habilidades. Con cada información

recogida el sistema perceptual cambia, evoluciona, se adapta para ser más efi-

ciente.

Los resultados de la visión humana no pueden lograrse con una sola acción,

semejante logro requiere de un proceso de inteligencia artificial que incluya la rep-

resentación del conocimiento, razonamiento probabiĺıstico, búsqueda heuŕıstica y

reconocimiento de patrones.

A.2.3 Trabajo futuro

En la sección 3.3 hemos revisado algunas de las publicaciones más relevantes en

el campo de la visión artificial. En el caṕıtulo 4 hemos implementado métodos

para cuatro aplicaciones de percepción visual diferentes y espećıficas. Sin em-

bargo, no hemos propuesto un método general para implementar sistemas de

percepción visual automática. Algunos de los componentes parecen estar casi lis-

tos. Métodos inspirados en bioloǵıa han mostrado resultados muy prometedores

para el reconocimiento de escenas u objetos (Farabet et al. [2013]; Karpathy &
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Fei-Fei [2015]; Krizhevsky et al. [2012]; Pinheiro & Collobert [2014]; Simonyan &

Zisserman [2015]; Zheng et al. [2015]). Las redes neuronales artificiales han de-

mostrado ser modelos útiles para representar conocimiento y reconocer patrones.

Investigaciones recientes muestran cómo dado un conjunto de est́ımulos, en nue-

stro caso imágenes no etiquetadas, las redes neuronales artificiales son capaces de

aprender a reconocer caras humanas (Le et al. [2013]) sin necesidad de procesos

de ingenieŕıa de caracteŕısticas.

El trabajo futuro podŕıa explorar cómo implementar un método general que

integre los diferentes tipos de conocimiento de tal manera que la búsqueda heuŕıstica

esté guiada por dicha integración. Hemos visto que las caracteŕısticas y los

parámetros utilizados en el reconocimiento se pueden aprender de ejemplos, evi-

tando reglas artesanales. Construir funciones heuŕısticas aprendiendo de la expe-

riencia seguiŕıa el mismo principio y podŕıa ser una forma de construir sistemas

capaces de adaptarse a diferentes aplicaciones de visión artificial. El principal

desaf́ıo para la percepción visual automática es probablemente la construcción

de funciones heuŕısticas con un rendimiento comparable al que implementa el

sistema visual humano.

————————————————————————
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Appendix B

Illustrations

We include a few images that help experiencing the limitations of our vision.
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B.1 Resolution

Images B.1, B.2, B.3 represent the same car that image 3.2, but isolated. This

way it is easier to experience how the car fades into a sea of pixels.

Figure B.1: Low resolution image
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Figure B.2: Medium resolution

Figure B.3: High resolution image
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B.2 Impossible images

Figure B.4: Belvedere by M.C. Escher

Several artworks by Escher represent impossible forms. We have selected
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two examples. The first one, “Belvedere” shows a plausible-looking building,

which in reality is impossible. At first sight, the building may seem normal, but

when observed with attention, we notice impossible structures. In the second

example paradoxical information about the floor and the walls prevent us from

understanding the image. How should the image be observed? When the layout

of objects does not follow certain principles, the Gestalt, even something as simple

as counting stairways becomes complicated.

Figure B.5: Relativity by M.C. Escher

B.3 Ambiguous images

Purves & Lotto [2003] claims that the visual stimulus is ambiguous. However

most of the times we have a sensation of certainty about what we see. The
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following images challenge this sensation.

Figure B.6: Old and young woman - Anonymous postcard

This german postcard from 1888 shows an old woman... or maybe a young

one. It is impossible to be sure without more information.

202



Figure B.7: Rabindranath Tagore by O. Shupliak

In image B.7 most people see an old man. It is a portrait of Rabindranath

Tagore, an Indian writer, who won the Nobel prize in literature. However if we

analyze the parts of the image, our perception may change. Figure B.8 reproduces

the same image in a bigger scale.
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Figure B.8: Rabindranath Tagore or a man riding a horse by O. Shupliak
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B.4 Color

Images B.9 and B.10 are two examples of how wrong can we be about colors. The

two dresses are the same color. Squares A and B are also the same color. Despite

our natural confidence in color, it is not always a reliable feature for recognition.

Figure B.9: Cartoon by Randall Munroe (https://xkcd.com/1492/)

Figure B.10: The chess board illusion
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B.5 Still or moving images

Image B.11 is static, however when we explore it we have the impression that the

circles are moving.

Figure B.11: Image based on “Rotating Snakes” by K. Akiyoshi
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Appendix C

Experimental data

C.1 Activity perception
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Class View Timestamp (frames)

Walking

1 14-16(0:37)&(108:163),
14-31(0:130), 14-33(0:186)

2 14-16(0:37)&(108:168),
14-31(0:130), 14-33(0:155)

3 14-16(0:40)&(108:165),
14-31(0:130), 14-33(0:189)

4 14-16(0:38)&(108:172),
14-31(0:130), 14-33(0:186)

Running

1 14-16(38:107)&(164:222),
14-33(336:377)

2 14-16(38:107)&(169:222),
14-33(336:377)

3 14-16(41:107)&(166:222),
14-33(336:377)

4 14-16(39:107)&(173:222),
14-33(337:377)

Splitting

1 14-31(55:130), 14-33(345:377)
2 14-31(54:130), 14-33(344:377)
3 14-31(51:130), 14-33(344:377)
4 14-31(56:130), 14-33(344:377)

Merging

1 14-27(0:92)&(185:270),
14-33(106:344)

2 14-27(0:93)&(185:271),
14-33(93:343)

3 14-27(0:333), 14-33(94:343)
4 14-27(0:333), 14-33(75:343)

Dispersion

1 14-27(93:133)&(271:299)
2 14-27(94:133)&(272:300)
3 14-27(89:138)&(268:296)
4 14-27(96:136)

Evacuation

1 14-33(345:377)
2 14-33(344:377)
3 14-33(344:377)
4 14-33(344:377)

Table C.1: Frame labelling per view

208



Class Viewer Error

Walking

1 412 frames
2 14/412 = 3.4%
3 95/412 = 23.06%
4 101/412 = 24.51%

Running

1 171 frames
2 8/171 = 4.68%
3 8/171 = 4.68%
4 2/171 = 1.17%

Splitting

1 109 frames
2 9/109 = 8.26%
3 19/109 = 17.43%
4 17/109 = 15.6%

Merging

1 418 frames
2 107/418 = 25.6%
3 40/418 = 9.57%
4 2/418 = 0.48%

Dispersion

1 70 frames
2 15/70 = 21.43%
3 105/70 = 150%
4 43/70 = 61.43%

Evacuation

1 33 frames
2 6/33 = 18.18%
3 7/33 = 21.21%
4 10/33 = 30.3%

Table C.2: Errors in evaluators labelling
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C.2 Authorship perception

Growth i Top 1 Top 3 Top 5 Top 10
0 26 49 58 63
1 26 49 62 70
2 36 57 64 76
3 37 54 64 76
4 28 52 63 77
6 26 44 56 77
8 36 57 63 75
10 34 53 62 74
12 33 49 65 79
14 36 56 63 71

Table C.3: Top-N measures of writers correctly classified (in %) with multi-
segmentation shape descriptors for different growth levels. Growth i includes all
the COCOs from levels [0 . . . i]

Growth i LPQ + New method LBP + New method LPQ baseline LBP baseline
0 86 39 84 30
1 89 37 84 30
2 89 45 84 30
3 91 51 84 30
4 91 48 84 30
6 92 42 84 30
8 92 54 84 30
10 90 48 84 30
12 91 49 84 30
14 91 53 84 30

Table C.4: Top-1 measure of writers correctly classified (in %) for different growth
levels. Growth i includes all the COCOs from levels [0 . . . i]
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Growth i LPQ + New method LBP + New method LPQ baseline LBP baseline
0 91 62 92 46
1 93 64 92 46
2 94 70 92 46
3 95 69 92 46
4 96 67 92 46
6 96 68 92 46
8 95 73 92 46
10 95 70 92 46
12 94 76 92 46
14 94 72 92 46

Table C.5: Top-3 measure of writers correctly classified (in %) for different growth
levels. Growth i includes all the COCOs from levels [0 . . . i]

Growth i LPQ + New method LBP + New method LPQ baseline LBP baseline
0 95 66 93 63
1 95 73 93 63
2 95 80 93 63
3 97 81 93 63
4 97 82 93 63
6 96 81 93 63
8 95 84 93 63
10 97 80 93 63
12 95 83 93 63
14 97 82 93 63

Table C.6: Top-5 measure of writers correctly classified (in %) for different growth
levels. Growth i includes all the COCOs from levels [0 . . . i]

Growth i LPQ + New method LBP + New method LPQ baseline LBP baseline
0 96 81 95 80
1 97 86 95 80
2 97 80 95 80
3 97 90 95 80
4 97 92 95 80
6 98 92 95 80
8 97 95 95 80
10 97 93 95 80
12 97 93 95 80
14 97 91 95 80

Table C.7: Top-10 measure of writers correctly classified (in %) for different
growth levels. Growth i includes all the COCOs from levels [0 . . . i]
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Acronyms

AGMM Adaptative Gaussian Mixture Model.

AI Artificial Intelligence.

ANN Artificial Neural Net.

BS Background Subtraction.

CCD Charge-Coupled Device.

CCTV Closed Circuit Television.

CMOS Complementary Metal Oxide Semiconductor.

CMYK Cyan Magenta Yellow and Key.

CNN Convolutional Neural Network.

COCO Connected Component.

CPU Central Processing Unit.

CRF Conditional Random Fields.

DAG Directed Acyclic Graph.

DPI Dots Per Inch.

DVR Digital Video Recorder.
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Acronyms

ED Euclidean Distance.

ESS Efficient Subwindow Search.

FIRM Fixed Capacity Independent Race Model.

FIT Feature Integration Theory.

FOL Firt Order Logic.

FPS Frames Per Second.

FV Feature Vector.

GS Guided Search.

HSV Hue Saturation Value.

IDS Intruder Detection System.

ILSVRC Imagenet Large Scale Visual Recognition Challenge.

KB Knowledge Base.

KNN K-Nearest Neighbors.

LBP Local Binary Pattern.

LGN Lateral Geniculate Nucleus.

LPQ Local phase quantization.

MLP Multi Layer Perceptron.

OWL Ontology Web Language.

PAC Probably Approximately Correct.

PCA Principal Components Analysis.
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Acronyms

PCC Probability of Correct Classification.

PEAS Performance Environment Actuators Sensors.

PETS Performance Evaluation of Tracking and Surveillance.

PSD Problematic Scene Detector.

RGB Red Green Blue.

RNN Recurrent Neural Network.

SIFT Scale-Invariant Feature Transform.

SOM Self Organizing Map.

SVM Support Vector Machine.

TVA Theory of Visual Attention.

VLAD Vector of Locally Aggregated Descriptors.

VSTM Visual Short Term Memory.

wff Well formed formulas.

WFV Writer Feature Vector.

YUV Luminance (Y), blueluminance (U), redluminance (V).
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Glossary

Affordance What the environment offers the animal, what it provides or fur-

nishes.

Categorize To recognize the relation between a set of elements. The process by

which a set of elements are evaluated to determine whether it satisfies the

constraints of a category.

Category A set of objects that satisfy the definition of the category, which is a

set of constraints.

Characteristic A property that serves to identify an object.

Comprehend To take together, to unite. The process by which a set of parts

is integrated into a whole.

Computational Theory The definition of what is computed and the reasons

that explain the result of the computation (why).

Concept The internal representation of the knowledge about an object.

Divide To segment a whole into parts. The process by which a whole is seg-

mented into parts.

Feature A distinctive attribute of something.

Information What has a form. Any relation of elements.
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Glossary

Knowledge A collection of information. In English, the term ”Knowledge” is

used for both knowledge by acquaintance and propositional knowledge. In

other languages different terms are used, for example in Spanish: ”Conocer”

and ”Saber”, in German: ”Kennen” and ”Wissen”.

Knowledge by acquaintance Knowledge of the relations of the impressions on

the scenes which are not capable of direct verbal expressions.

Object Anything that can be a subject or a predicate, either concrete, abstract,

real or fictional.

Ontology A definition of categories, properties and their relations.

Perception Information gathering.

Perceptual system A system that goes into activity in the presence of data.

Its activity is to gather information starting from data. In computer vision,

these data are the pixels of an image.

Property An attribute common to all members of a category. Properties are

features.

Propositional knowledge Knowledge that can be expressed with propositions.

Rational agent Something that acts and whose actions are selected in order to

reach a goal.

Recognizer A program that extracts and classifies features of an image or re-

gion. A recognizer represents the definition of a category.

Representation A formal system for making explicit certain types of informa-

tion.

Segmenter A program that divides an image into regions. A segmenter is char-

acterized by the constraint used to create the different regions or segments.

Signification A concept that has been related to a sign. A sign can be any set

of pixels for which an inner relation has been established.
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Glossary

Taxonomy A classification or arrangement of categories, which has usually a

hierarchical structure.

Term A sign to refer to a concept, but different to the concept and its definition.
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Brutzer, S., Höferlin, B. & Heidemann, G. (2011). Evaluation of back-

ground subtraction techniques for video surveillance. IEEE Conference on

Computer Vision and Pattern Recognition, 1937–1944. 96, 139, 142, 148

220



REFERENCES

Buch, N., Velastin, S.A. & Orwell, J. (2011). A review of computer vision

techniques for the analysis of urban traffic. IEEE Transactions on Intelligent

Transportation Systems , 12, 920–939. 3, 181

Bundesen, C. (1987). Visual attention: Race models for selection from multi-

element displays. Psychological research, 49, 113–121. 47

Bundesen, C. (1990). A theory of visual attention. Psychological review , 97,

523–547. 48

Bundesen, C. & Habekost, T. (2008). Principles of visual attention. Oxford

Psychology Press. 48, 49, 53, 79, 83, 112

Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research,

51, 1484–1525. 44

Carreira, J. & Sminchisescu, C. (2010). Constrained parametric min-cuts

for automatic object segmentation. IEEE Conference on Computer Vision and

Pattern Recognition, 3241–3248. 93, 94

Cermeño, E., Mallor, S. & Sigüenza, J.A. (2013). Learning crowd behav-

ior for event recognition. International Workshop on Performance Evaluation

of Tracking and Surveillance, 1–5. 10, 115
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