
Universidad Autónoma de Madrid
Escuela politécnica superior

Máster Universitario en Investigación e
Innovación en TIC (i2-TIC)

Trabajo Fin de Máster

REAL-TIME SOFTWARE
TECHNOLOGY AND ITS USE IN

EXPERIMENTAL NEUROSCIENCE

Autor: Rodrigo Vicente Amaducci Szwarc
Tutor: Pablo Varona Martínez

Junio 2017

REAL-TIME SOFTWARE
TECHNOLOGY AND ITS USE IN

EXPERIMENTAL NEUROSCIENCE

Autor: Rodrigo Vicente Amaducci Szwarc
Tutor: Pablo Varona Martínez

Grupo de Neurocomputación Biológica (GNB)
Escuela Politécnica Superior

Universidad Autónoma de Madrid
Junio 2017

i

Resumen

Resumen

Debido a las complicadas dinámicas no lineales de los sistemas neuronales así como a la in-
capacidad existente a la hora de observar más de unas pocas de las señales que participan en
dichas dinámicas de forma simultánea, el estudio de estos sistemas es muy complejo. Además,
el paradigma tradicional de trabajo es el de estímulo-respuesta, en el cual se registra el compor-
tamiento del sistema al responder a ciertos estímulos de entrada y se estudian estos resultados a
posteriori, lo que impide caracterizar completamente la dinámica de su funcionamiento. Las tec-
nologías de ciclo cerrado permiten superar estas adversidades mediante la observación, el control
y la interacción bidireccional con estos elementos neuronales. Sin embargo, la implementación
de este tipo de tecnologías no es tan sencilla debido a que en muchos casos la detección y estim-
ulación del sistema biológico debe hacerse de acuerdo a ciertas restricciones temporales precisas.
Esta capacidad del sistema para ejecutar tareas y responder a eventos externos (síncronos o
asíncronos) en una determinada franja de tiempo es lo que se conoce como funcionamiento en
"tiempo real".

Los ordenadores personales actuales poseen la suficiente potencia de procesamiento como
para cumplir con los requisitos de tiempo real, sin embargo debido al funcionamieno de los
planificadores de los sistemas operativos de proposito general (Windows, Linux, MacOS), que
no puede ser controlado por el usuario, no existe manera de asegurar que un proceso de tiempo
real se ejecutará sin interrupciones y cumpliendo con las restricciones temporales. Por otra
parte, las implementaciones en hardware pueden cumplir con dichas restricciones temporales
pero son menos programables. Por ello, existen también los llamados sistemas operativos de
tiempo real (RTOS). Sin embargo, esta tecnología es a menudo difícil de instalar, configurar y
manejar. Estas dificultades relativas a los RTOS provocan que muchos equipos y laboratorios
dedicados a la neurociencia no vean viable invertir tiempo y esfuerzo en dominar esta tecnología
para realizar experimentos de ciclo cerrado.

En este trabajo se realiza una comparativa cuantitativa de las herramientas para tiempo
real RTAI, Xenomai y Preempt-RT, de acuerdo a su rendimiento así como su usabilidad y ac-
cesibilidad, en la que se compara sus valores de latencia y la variabilidad (jitter) de estos. La
comparativa se lleva a cabo en el contexto del uso de la tecnología de tiempo real en neurocien-
cia experimental. Además se ha desarrollado una librería de modelos neuronales y sinápticos
en tiempo real para su uso en circuitos híbridos, con neuronas vivas y modelos artificiales, y
experimentos de ciclo cerrado. El correcto funcionamiento de dicha librería ha sido probado
mediante su integración en circuitos híbridos, tanto con neuronas vivas como electrónicas, así
como con el manejo de un motor de pasos para la estimulación mecánica.

Palabras Clave

Tecnología software en tiempo real, Tecnologías de ciclo cerrado en neurociencia, Circuitos híbri-
dos, Modelos neuronales, RTAI, Xenomai, Preempt-RT

iii

Real-time software technology and its use in experimental neuroscience

Abstract

Due to the complicated non linear dynamics of neuronal systems, as to the existing inability
to observe simultaneously more than a few signals of the ones involved in said dynamics, the
study of these systems is quite complex. Moreover, traditionally the working paradigm is the
stimulus-response one, where the system behaviour is recorded while it responds to certain input
stimuli and the results are studied afterwards, thus preventing the complete characterization of
the behavioural dynamics. Closed-loop technologies allow to overcome these difficulties through
online observation, control and bidirectional interaction with these neural elements. Never-
theless, implementing this kind of technologies is not an easy task because in many cases the
detection and stimulation must be done within some precise temporal boundaries. This ability
of the system to complete tasks and respond to external events (synchronous and asynchronous)
within a determined time slot is known as "real-time" performance.

Actual computers have enough processing power and speed to comply with real-time require-
ments, but due to the general purpose operating systems (Windows, Linux, MacOS) schedulers’
behaviour, which can not be controlled by the user, there is no way to ensure that a real-time
process will be run without interruptions and respecting the temporal restrictions. On the other
hand, hardware implementations can fullfil such boundaries, but are also less programmable.
For this reason the real-time operating systems (RTOS) exist. However, this technology is often
difficult to install, configure and use. This RTOS-related complications provoke that many neu-
roscience researching teams and laboratories do not consider feasible to spend time and effort
to implement this tools for closed-loop experiments.

In this work a quantitative comparison between the real-time solution RTAI, Xenomai and
Preempt-RT is carried out, focusing on their performance, usability and accessibility, by com-
paring their latency values and jitter. The comparison done in the context of real-time software
technology usage in experimental neuroscience. Furthermore, a real-time neuron and synapse
model library was developed for its use in hybrid circuits and closed-loop experiments. To val-
idate the correct functioning of said library it was used in hybrid circuits, with both electronic
and living neurons, and to control a stepper motor for mechanical stimulation.

Key words

Real-time sfotware technology, Closed-loop technology in neuroscience, Hybrid circuits, Neuron
model, RTAI, Xenomai, Preempt-RT, Closed-loop technology in neuroscience

iv

Acknowledgements

Para empezar, agradecer al Grupo de Neurocomputación Biológica el que me haya dado la opor-
tunidad de introducirme en el mundo de la investigación y la neuroinformática,. Especialmente
a mi tutor Pablo, por la confianza y apoyo brindados todo este tiempo, así como a todos mis
compañeros del laboratorio, por toda la ayuda que me han proporcionado, pero sobretodo por
hacer más amenas los largos días de trabajo.

Como siempre, dar las gracias a mis padres, que toda mi vida han sido el punto de referencia,
que me han animado y apoyado en mis decisiones y que si hoy estoy escribiendo esto es sobretodo
gracias a ellos. Y por supuesto, agradecer a Andrea todo el cariño y el ánimo que me ha dado
mientras recorriamos juntos (y seguiremos recorriendo) esta nueva etapa de nuestras vidas.

v

Real-time software technology and its use in experimental neuroscience

vi

Contents

Figures index viii

1 Introduction 1

1.1 Motivation of the project . 1

1.2 Project goals . 2

1.3 Organization of the report . 3

2 State of the art 5

2.1 Real-time in neuroscience . 5

2.2 Real-Time Operating Systems . 6

2.2.1 RTAI . 7

2.2.2 Xenomai . 9

2.2.3 Preempt-RT . 11

2.2.4 Other RTOS solutions . 13

2.2.5 Real-time software for closed-loop neuroscience 13

2.3 Neuron models . 13

2.3.1 Izhikevich neuron model . 14

2.3.2 Hindmarsh-Rose neuron model . 15

2.3.3 Rulkov map neuron model . 16

2.3.4 Synapse models . 17

3 Real-time solutions comparison 19

3.1 Structure of the test . 19

3.2 Results . 21

3.2.1 Non real-time Linux . 21

3.2.2 RTAI . 22

3.2.3 Xenomai . 25

3.2.4 Preempt-RT . 27

3.3 Comparison . 29

vii

Real-time software technology and its use in experimental neuroscience

4 Neuron model library implementation 33

4.1 Neuron models . 33

4.2 DAQ communication . 35

4.3 Real-time functions . 36

4.4 Main program . 42

5 Validation tests 45

5.1 Stepper motor experiment . 45

5.1.1 Setup . 45

5.1.2 Results . 46

5.2 Electronic neuron experiments . 46

5.2.1 Setup . 46

5.2.2 Results . 47

5.3 Real neuron hybrid circuit experiments . 47

5.3.1 Setup . 48

5.3.2 Results . 49

6 Conclusions and future work 57

6.1 Conclusions . 57

6.2 Future work . 58

Bibliography 65

A Appendix A: Implemented code repositories 67

B Appendix B: RTOS Installation Manuals 69

B.1 RTAI . 69

B.2 Preempt-RT . 73

viii CONTENTS

Figures index

2.1 Diagram of an hybrid circuit experiment. 6

2.2 Different real-time applications for closed-loop experiments. 14

2.3 Different dynamics generated by Izhikevich model and parameters diagram (from
[Izhikevich, 2003]). 15

2.4 Hindmarsh-Rose neuron model dynamics and phase space for the model with fixed
values z = 1.95 and I = 2. 16

2.5 (a) Spiking-bursting behaviour generated by Rulkov Map with different σ and α
values. (b) Bifurcation diagram on the parameter plane (σ,α). Both figures taken
from [Rulkov, 2002]. 17

3.1 top command execution in a non real-time system. 23

3.2 top command execution in an environment with core 0 isolated. 23

3.3 Latency values (in microseconds) occurrences with a non real-time operating sys-
tem. Intel I7 processor used. 24

3.4 Latency values (in microseconds) occurrences with a non real-time operating sys-
tem and an isolated core. Intel I7 processor used. 24

3.5 Latency values (in microseconds) occurrences with RTAI. 26

3.6 top command execution in Xenomai . 27

3.7 Latency values (in microseconds) occurrences with Xenomai. Intel I7 processor
used. 28

3.8 Latency values (in microseconds) occurrences with Preempt-RT. Intel I7 processor
used. 28

3.9 Latency values (in microseconds) occurrences Preempt-RT and an isolated core.
Intel I7 processor used. 29

3.10 Jitter and maximum latency comparison among the different real-time solutions
tested. 30

4.1 Comparison of Izhikevich model original paper and implemented model. 34

4.2 Comparison of Hindmarsh-Rose model original paper and implemented model. . . 35

4.3 Comparison of Rulkov Map model original paper and implemented model. 35

4.4 Comparison between an Izhikevich model sending every point generated and an-
other skipping some. 39

4.5 Time distribution inside an iteration of the loop. 41

ix

Real-time software technology and its use in experimental neuroscience

4.6 Latencies during a 20 minutes two-neuron interaction between an Izhikevich model
and an electronic neuron, connected by a chemical synapse. 43

5.1 Latency values distribution during the stepper motor experiment without real time. 46

5.2 A computational Izhikevich model connected to an electronic neuron through an
electric synapse. 47

5.3 A computational Izhikevich model connected to an electronic neuron through a
chemical synapse. 48

5.4 Pictures of the crab used in the experiments and its stomatogastric ganglion seen
through the microscope. 49

5.5 Pyloric CPG and representation of some of its neuronal behaviour. 49

5.6 A computational Izhikevich model connected to a LP neuron through an electric
synapse. 50

5.7 A computational Izhikevich model connected to a LP neuron through an electric
synapse. 50

5.8 A computational Izhikevich model connected to a LP neuron through a chemical
synapse. 51

5.9 A computational Hindmarsh-Rose model connected to a LP neuron through an
electric synapse. 51

5.10 A computational Hindmarsh-Rose model connected to a LP neuron through an
electric synapse. 52

5.11 A computational Hindmarsh-Rose model connected to a LP neuron through a
chemical synapse. 52

5.12 A computational Rulkov Map model connected to a LP neuron through an electric
synapse. 53

5.13 A computational Rulkov Map model connected to a LP neuron through an electric
synapse. 53

5.14 A computational Rulkov Map model connected to a LP neuron through a chemical
synapse. 54

5.15 Latencies for various of the hybrid circuits experiments performed. 54

5.16 Signal delay caused by high latency values. 55

5.17 Latency values during the hybrid circuit experiment without real-time. 55

x FIGURES INDEX

1
Introduction

1.1 Motivation of the project

Neural systems have non linear dynamics, affected by various learning and adaptation mecha-
nisms, and processes information in different spatial and temporal scales. Moreover, the nervous
system is only partially observable, meaning that usually few signals of the ones concerned in the
neural dynamics can be accessed at the same time. Along this limited spatial and temporal res-
olution, most of the experimental neuroscience research is based in traditional stimulus-response
paradigms, recording the behaviour of the system under different stimuli and then analysing the
collected data offline, so the highly complex non-stationary neural activity, which is influenced
by the context and previous events feedback, can not be completely understood. A way to over-
come the difficulties of studying these transient dynamics is to interact online with the system
through closed-loop technologies, which are able of producing precise stimulus according to the
input information and can provide truly valuable insights on the neural processes along with
allowing more flexibility in the experiment, and also favour its automation and control of neural
dynamics [Varona et al., 2016] [Chamorro et al., 2012].

Nevertheless, closed-loop technology, which allows online observation, control and interaction
with the neural elements, presents some difficulties in its implementation. Both the information
acquisition and the stimulation of biological components during the experiments often require
of the compliance of certain precise temporal restrictions, in the scale of milliseconds or lower.
To this effect the system must run in what is known as real-time, which can be defined as the
capacity of the system to carry its tasks and respond to asynchronous external events in a limited
time slot [Furht et al., 1991]. Hence, the use of real-time technology ensures the accomplishment
of the operations within some established temporal boundaries, either tolerating some faults
under a determined threshold or none, which is usually the case in the biomedical field.

Delivering a hardware-based real-time implementation is relatively easy, since electronic com-
ponents are able to fullfil without complications the speed and precision requirements specified
in most cases [Robinson and Kawai, 1993] [Le Masson et al., 1995] [Broccard et al., 2017].
However, their main disadvantage is that they are poorly manageable and programmable, in
contrast to software solutions, which offer systems and programming languages far more user-
friendly and workable. Furthermore, at the beginning of this century personal computers had
already achieved a processing power and speed that let them comply with very strict real-time

1

Real-time software technology and its use in experimental neuroscience

restrictions in hardware capacity terms, despite of some latency generated in the data busses.
The problem is that typical modern operating systems are general purpose operating systems
(GPOS), such as Windows, MacOS or Linux, which are multitask environments with schedulers
that are in charge of assigning the computer resources to the different running tasks due to some
specific policies, and cannot be handled by the user. Because of this, there is no way of ensuring
that a specific task will be run without interruptions and therefore real-time cannot be assured.
A special kind of operating systems, the real-time operating systems (RTOS), are needed for a
task to run within the established time margins and hence to perform software-based real-time
experiments.

Numerous RTOS implementations exist, each of them with a different purpose and architec-
ture, and they all present some advantages and disadvantages regarding to the others in various
aspects, such as performance, usability and accessibility. This heterogeneity in the RTOS so-
lutions, along with the difficulties they may lead to, causes many neuroscience research teams
and laboratories to overlook real-time closed-loop experiments. Therefore, an analysis of the
available tools and platforms and how can they be applied to experimental neuroscience could
be of great use for such teams and laboratories.

1.2 Project goals

The main goal of this work is to provide an analysis for a future development of a standardized
approach for real-time software technology aimed at closed-loop interaction in different aspects
of experimental neuroscience, such as electrophysiology or Brain-Computer Interfaces (BCI). It
can be divided in the following subtasks:

• Test and comparison of three open-source and free real-time solutions for a GPOS, Linux,
analysing their behaviour in different situations and with various system configurations:
RTAI, Xenomai and Preempt-RT.

• Study of the viability of the tested RTOS in order to design and develop real-time soft-
ware aimed at its use in experimental neuroscience, accordingly both to their capacity to
fullfil the temporal restrictions (latency, jitter, etc) with speed and precision, as to their
accessibility and usability.

• Implementation of a real-time neuron model library in order to use it in hybrid circuits
experiments. The paradigms are the Izhikevich, Hindmarsh-Rose and Rulkov Map models.
Two types of synapse models are also implemented: electrical and slow and fast gradual
chemical synapses.

• Adaptation of the library to communicate the models with National Instruments’ data
acquisition devices, which act as interfaces between the computer and the real neurons,
using the open-source Comedi drivers library.

• Implementation of the library as a stand-alone command-line interface program and per-
formance of validation tests with electronic, living neurons and mechanical stimulation
devices.

2 CHAPTER 1. INTRODUCTION

Real-time software technology and its use in experimental neuroscience

1.3 Organization of the report

This document is divided in the following chapters:

• State of the art: in this chapter the current context of the techniques and tools which
will be used in the development of this work will be studied.

• Real-time solutions comparison: comparison among the different real-time solutions
introduced and described in Chapter 2, focusing on their performance, usability and ac-
cessibility.

• Neuron model library implementation: in this chapter the design and implementa-
tion of the real-time neuron model library will be detailed, also describing the differences
between the versions developed for each RTOS.

• Validation tests: this chapter will explain the carried out tests in order to validate the
correct functioning of the library described in the previous one, and their results will be
presented.

• Conclusions and future work: in this final chapter the results of the project will be
summarized, and the fulfilment of the goals discussed. Additionally, other aspects and
ideas will be introduced as possible future work.

CHAPTER 1. INTRODUCTION 3

2
State of the art

In this chapter the state of the art of the technologies, tools and techniques approached along
this project will be studied.

2.1 Real-time in neuroscience

Electrophysiology is the study of electrical properties of biological cells and tissues, such as
membrane potential or current changes [Covey and Carter, 2015]. In the field of neuroscience,
electrophysiology techniques had been around for almost 200 years, since Galvani discovered
that electrical activity was connected to the functioning of the nervous system [Scanziani and
Hausser, 2009].

Nevertheless, it was not until sixty years ago when a major scientific progress was made, and
became a basic technique for real-time control in electrophysiology [Bauer et al., 2014]. First, a
neuron model to describe ions movement through the cell membrane to generate the action po-
tential was designed, based on the demonstration of such potential influence in membrane’s ions
permeability [Cole and Curtis, 1939] and that during this event the membrane potential surpasses
0 mV [Hodgkin and Huxley, 1939]. In order to better study these phenomena, the voltage-clamp
technique was developed by Cole and Marmont, and used in Hodgkin and Huxley experiments
[Hodgkin et al., 1952]. It uses an intracellular electrode to measure membrane potential, which
goes through an operational amplifier which fits the measured value to a fixed control one and,
lastly, it is reintroduced as a current back into the neuron using a second electrode, thus forming
a closed-loop circuit. Numerous alternative techniques, such as space-clamp, patch-clamp and
single-electrode voltage-clamp, have been derived from the original voltage-clamp.

Voltage-clamp allows the user to control membrane potential, keeping it fixed at a specific
value. At the 90’s a new variant appeared, the dynamic-clamp [Sharp et al., 1993] [Destexhe and
Bal, 2009], which reads and writes the signal as the standard voltage-clamp, but also performs
some operations over it in the middle. This way more complex studies can be carried on than
the ones done by fixing the potential, like creating hybrid circuits between real neurons and
computer-simulated neuron models connected bidirectionally. However, dynamic-clamp needs a
computer able to receive the data, perform the appropriate operations and send it back to the
data acquisition device (DAQ) with a proper frequency, established by the DAQ, neither faster
nor slower.

5

Real-time software technology and its use in experimental neuroscience

Read voltage

Calculate model

Send current

Variable wait time

V

I

1/f

Figure 2.1: Diagram of an hybrid circuit experiment. Membrane potential (V) of the real
neuron is obtained using and electrode and sent to a computer, which uses it as input for a
computational neuron model and sends back the resulting current (I), which is introduced in
the real cell through another electrode. All this process has to be completed within an specific
period, due to the neuron activity frequency (f).

This kind of closed-loop experiments may need hard real-time. Nevertheless, not all closed-
loop implementations require this technology, as for example in models simulations [Elices and
Varona, 2017]. In most cases the researcher wants them to run faster than a realistic situation or
maybe the model is so computationally heavy that it cannot run as fast a biological system, but
these simulation conditions there are not temporal boundaries. Other scenarios that may just
need soft real-time, as the one discussed later in Chapter 5. Even if hard real-time is required,
not always an RTOS is necessary, since hardware-based real-time solutions can be available
(despite of the mentioned drawbacks) [Franke et al., 2012][Müller et al., 2013][Tessadori et al.,
2012].

Although this project focuses on the uses of real-time technology in electrophysiology, other
neuroscience aspects can also benefit from it. But first, is important to emphasize that the
"real-time" term has different meanings in neuroscience literature. In most cases it refers to
an online recording, feedback or control, like for example the explained in [Rana et al., 2016],
about functional magnetic resonance imaging (fMRI), a technique that allows to record the
brain activity with high spatial resolution and in a non invasive way (but has low temporal
resolution), where closed-loop experiments can be used to observe the brain response to differ-
ent stimuli online and change them dynamically. More examples can be found in optogenetic
[Prsa et al., 2017] or electroencephalography (EEG) experiments, like the ones that combine BCIs
with virtual reality [Arrouët et al., 2005]. All these stimulation and detection techniques can
also use strict hard real-time technology to improve their performance, as are used for different
activity-dependent stimulation experiments, like examples which use simultaneous electrophys-
iological and video tracking [Muñiz et al., 2011], electric signalling [Lareo et al., 2016] or drug
microinjection [Chamorro et al., 2009]. In this work we always refer to strict hard real-time.

2.2 Real-Time Operating Systems

A real-time system can be described as one which "controls an environment by receiving data,
processing them, and returning the results sufficiently quickly to affect the environment at that
time" [Martin, 1965]. Contrary to what most people would likely think when they hear this term,
real-time is not a matter of speed (which is of course important, but also not a problem for actual

6 CHAPTER 2. STATE OF THE ART

Real-time software technology and its use in experimental neuroscience

computers in most cases) but of precision: the results must be delivered at the appropriate time,
neither sooner nor later. This is precisely the kind of behaviour that many neurons have: slow
activity (less than 1 kHz) but precise spiking coding. Therefore a real-time computer is needed
in order to work with the desire precision within the temporal bounds set.

There is always some latency in these operations, and some variation (jitter) among these
latencies, which depend on the computer and software where the process is running on. Not
all the tasks are equally sensitive to latency or data loss, therefore existing two categories of
real-time [Shin and Ramanathan, 1994]: soft/firm real-time, when some deadlines can be missed
and the system still works, but performance will degrade if too many are lost (for example, an
online music streaming application can lose a few packages and the service goes on unaffected),
and hard real-time, when every deadline must be hit or the system fails (the computer systems
of a nuclear plant or satellite communication systems, for example).

There are different ways of implementing an RTOS, but all of them have in common that
they rely on their scheduling algorithms (many of them are preemptive, which means that it
can interrupt a task running on the processor without its permission) and the way they handle
hardware interrupts. There are full real-time oriented RTOS and others that are based on GPOS,
transforming real-time environments by patching their kernel, which can also be classified in
dual-kernel (use a microkernel with the real-time functionalities along the standard one) and
single-kernel solution (the standard kernel is transformed to be real-time capable itself).

In the next sections several non-commercial approaches to implement RTOS are described.
Commercial solutions are usually discarded in research oriented applications due to funding
restrictions and dissemination goals.

2.2.1 RTAI

Real-Time Application Interface, mostly known as RTAI, is one of the first and most extended
open-source solutions to get a Linux-based RTOS. Developed since 1996 by Paolo Mantegazza
[Mantegazza et al., 2000], professor at the Dipartimento di Ingenieria Aerospaziale of Politecnico
di Milano, this dual-kernel patch became one of the most reliable and widely used, and was the
cornerstone for later RTOS projects as Xenomai.

Architecture

RTAI functioning is based on a Hardware Abstraction Layer (HAL), over which run both Linux
standard kernel and a microkernel with the real-time capabilities. Interruptions requests (IRQ)
generated by hardware components are first intercepted by RTAI kernel [Barbalace et al., 2008]
and, in case they do not alter real-time performance, sent to the HAL, that resend them to
Linux. In this structure, Linux is treated as a low priority process managed by RTAI real-time
kernel, which handles the interruptions and can preempt the other operating system tasks when
considers it necessary.

At first, the HAL implementation used was RTHAL, which collects all the pointers to func-
tions and data structures relevant for time critical operations in a single structure, so it is
easier to replace all these standard kernel functionalities with RTAI ones when hard real-time
is needed. This idea was similar to the used by other RTOS project active at the late 90’s,
RTLinux [Yodaiken, 1999], and there was dispute for the patent, so to avoid further problems
this implementation was replaced in RTAI 3.0 by an open-source one, ADEOS, which offered
slightly greater maximum latencies but works just as fine [Zhang et al., 2006].

ADEOS handles the different operating systems that are mounted over it as domains with
priorities, allowing and managing the shared usage of hardware resources among them [Nee-

CHAPTER 2. STATE OF THE ART 7

Real-time software technology and its use in experimental neuroscience

lakandan et al., 2005]. Highest priority domain receives the IRQs first and, if it is not interested,
sends them to the pipeline, which propagates them to the next highest domain, and so on.

How it works

Four different schedulers are included in RTAI [Dozio and Mantegazza, 2003], with preemptive
implementations of policies FIFO (First In First Out, the process does not leave the processor
until it finishes its task or is preempted), Round-Robin (same as FIFO, but with limited time
slots) and EDF (Early Deadline First, the user assigns estimated execution times to each process,
and the smaller this time is, the higher the priority). The four schedulers are Uniprocessor (UP),
optimized for one processor computers; Symmetric Multi Processor (SMP), able of running
tasks in any CPU or fix it to one particularly; Multi Uniprocessor (MUP), which forces the
task execution into a specific CPU in return for a better use of its resources and performance;
and NEWLXRT, that unifies the previous three and is able of handling both RTAI and Linux
processes.

RTAI is implemented as kernel modules that are loaded when they are necessary, except for
the basic rtai module that always must be loaded. Therefore, by default real-time programs
must work in kernel space and be loaded as modules, calling the function rt_task_init to specify
that they want to work under RTAI scheduler and use its services. Kernel programming is quite
limited, since only functions and libraries loaded in kernel can be used, so an RTAI extension
is included to allow the use of real-time services in user space. This extension is called LXRT
and when the real-time initialization function is called from user space it creates a task in the
microkernel, linked to the Linux process, that provides the real-time utilities.

However, while working in hard real-time mode in user space no system calls or kernel services
can be used, since this would migrate the task execution back to Linux scheduler control, until the
standard kernel operation is completed, which prevents ensuring that the time restrictions will
be respected and might cause unexpected behaviours. Hence this practice is not recommended
unless there is complete awareness of which calls and services the program is going to use [Team,
2006].

Most of the modules that RTAI incorporates are related to Inter-Process Communication
(IPC), i.e. mechanisms to communicate processes running over the same domain or different
ones. These services include FIFO queues (rtai_fifo), shared memory (rtai_shm), semaphores
(rtai_sem), mailboxes (rtai_mbx), remote procedure calls (rtai_netrpc), event flags (rtai_bits)
and message queues (rtai_mq). In addition to these, it also includes its own malloc allocation
implementation (rtai_malloc), tasklets for periodic or event-triggered functions (rtai_tasklets)
or POSIX-threads support (rtai_pthread).

Overall

RTAI presents the following advantages

• Very low latencies values, as will be quantified later in thsi report.

• Widely used.

and disadvantages

• Documentation is quite old (last user manual is for version 3.4, from 2006).

8 CHAPTER 2. STATE OF THE ART

Real-time software technology and its use in experimental neuroscience

• RTAI installation involves patching a vanilla Linux kernel, which is not an easy task for
non-specialized users.

• While running in user space is difficult to ensure real-time restrictions compliance.

• Long and not stable support and maintenance (before last release, in May 2017, the newest
change submitted was in 2013).

2.2.2 Xenomai

Xenomai is a dual-kernel solution to provide hard real-time support over a Linux kernel, trying
to be as integrated with it as possible [Yaghmour, 2003]. Born in 2001, and merged with the
RTAI project in 2003, Xenomai started a path on its own in 2005, becoming the open-source
dual-kernel preferred tool for obtaining a RTOS.

In order to provide the most comfortable user experience it emulates the system calls and
structure from other architectures and RTOS, such as POSIX [Xenomai Team, 2016a], VxWorks,
pSOS+, VRTX, ulTRON and RTAI, naming these libraries skins. It also includes a new API,
called Native, that allows developing real-time applications without previous knowledge of any
of the other APIs, and the Real-Time Driver Model (RTDM), which provides a development
interface for real-time devices drivers.

Architecture

One of the most important elements of its architecture is an evolution of RTAI ADEOS pipeline,
called in this case I-Pipe or Interrupt Pipeline, which Xenomai uses as a virtual pipeline between
hardware components, the standard Linux kernel and its own real-time microkernel. I-Pipe
organizes the system in domains that share a common address space, which allows a process to
use both microkernel and Linux kernel resources if needed, where Xenomai real-time domain has
the highest priority and treats Linux kernel as a lowest priority process. When an event arrives
to the pipeline, Xenomai handlers manage it first and decide which domain will take care of it.
I-Pipe architecture is easily exportable to other CPUs, but has to be specifically adapted to the
Linux version that is going to be used.

The different APIs emulations provide the basic operating system resources that Xenomai
needs, since having a distinct kernel for the real-time capabilities isolate its processes from the
standard one services. The emulators are build combining and specialising the different basic
blocks provided by the module nucleus. This module main elements are the following:

• A real-time threads object controlled by Xenomai scheduler. It is preemptive and able of
managing multiple priority levels, as well as scheduling types as FIFO and Round-Robin.
All the skins thread management (priority management, preemption, thread suspend, etc)
is based on this abstract object.

• An IRQ handling object to connect to hardware handlers, using a simple mechanism that
fits in the complex solutions that the different emulations implement.

• A memory allocator object that is bounded by predictable latencies.

• A synchronization object that implements the thread lock mechanisms for resources access
(by priority, FIFO, etc) on which mutexes, queues, semaphores and mailbox are based.

• A time management object, setting its own timebase, with support to nanoseconds and
clock ticks, so the different skins timers can be used separately but concurrently.

CHAPTER 2. STATE OF THE ART 9

Real-time software technology and its use in experimental neuroscience

How it works

The dual-kernel approach carries certain problems to use Linux kernel utilities in real-time pro-
grams, since they are not bound to latency restrictions and may cause unexpected behaviour on
the real-time side, and because both kernels work independently. Xenomai deals with this issue
by creating its real-time threads from standard POSIX threads, keeping all their functionalities
while running in non-critical-time mode, and using the Real-Time Shadow extension, that allows
the Linux-like task to be handled by Xenomai scheduler, when time restrictions are needed.

Each skin also implements a new set of system calls, that are included in libraries that replace
the standard Glibc in the microkernel. As said before, both kernels work separately, which can
cause troubles in different situations, for example, if a Linux task is in the middle of a critical
section and is preempted by a Xenomai one, that also makes changes on that section, causing the
first one to fail when it is woke up. To prevent this from happening two running modes exist: the
primary one, controlled by the microkernel, and the secondary one, controlled by the standard
kernel. Each kernel system calls can only be done from the proper mode and Xenomai puts each
thread in the correct one depending on the system calls invoked. This scheduler change is called
domain migration.

Overall

Xenomai presents the following advantages

• Xenomai does not depend on Linux development cycle, so it is protected against the
problems that changes in the mainline may cause.

• Non real-time threads misbehaviour does not affect to real-time ones.

• In case of wrong latencies measures, the causes will be in the microkernel, much more
lighter and easy to debug that the standard.

• Linux kernel is not affected by real-time mechanisms.

• Skins make easy to migrate code from other RTOS to Xenomai, and also provide a wide
range of tools to new developers.

and disadvantages

• Linux drivers and libraries are not accesible (in real-time mode) from the microkernel.

• Xenomai’s installation involves patching a vanilla Linux kernel, which is not an easy task
for non-specialized users.

• The documentation [Xenomai Team, 2016b] is many times incomplete or unclear, and
some functions does not work as described on it.

• Xenomai uses its own version of the Comedi tools, called Analogy, but again, the docu-
mentation is not very complete.

• Since Xenomai is completely independent from Linux development, its microkernel does not
benefit from its support and maintenance, and also has to be adapted to new hardware and
software architectures independently (with no guarantees of how long will this be done).

10 CHAPTER 2. STATE OF THE ART

Real-time software technology and its use in experimental neuroscience

2.2.3 Preempt-RT

Since the apparition of the RTLinux project mentioned before, numerous efforts have been made
in order to make Linux kernel fully preemptable [Dietrich and Walker, 2005], and therefore turn
it into an RTOS by itself, without the need of microkernels. Nowadays, all the changes and
improvements made in this regard can be found in the Preempt-RT patch, which offers a viable
alternative to dual-kernel systems.

This project was started and directed for many years by Ingo Molnár, and since then it has
been mainly supported and funded by the Open Source Automation Development Lab (OSADL),
until 2015, when it was transferred to the Linux Foundation, meaning more funding, developers
and support. Currently, 80% of the Preempt-RT patch is already included in the mainline Linux
kernel, due to the fact that part of the improvements solve some general problems that were
found in the kernel when it was made preemptive, mainly related with locks and race conditions,
and help increasing the standard kernel stability and performance.

How it works

The modifications made by this patch to the vanilla kernel in order to make it fully preemptive
are the following:

• Reimplementation of the mutexes to make kernel spinlocks preemptive. An spinlock is a
software lock over a resource where the locking process checks constantly if the resource
is available (active waiting) so the scheduler thinks it is active even if it not really doing
any task. They are useful for short and important locks, as the kernel ones.

• Critical sections protected by spinlock_t and rwlock_t are now preemptive. In kernel
space no preemptive critical sections can be created with raw_spinlock_t.

• Implementation of priority inheritance [Sha et al., 1990] for kernel spinlocks and semaphores
to solve priority inversion. Priority inversion is a situation that happens when a process
prevents another one with higher priority of completing its task. This may happen, for
example, if a low priority process (1) creates a lock over a resource and then is preempted
by a higher priority one (2), but then a process with priority higher than both of them
(3) wants access to the locked resource, unsuccessfully until the second process release the
processor and lets the first one complete its task and release the lock. This is a problem
since there is no way of calculating the time that the higher priority process will be waiting.

Priority inheritance is a mechanism to solve this issue, consisting in giving to a process
that is holding a lock over a resource the priority of the highest priority process that is
waiting at that moment for that same resource until it releases the lock. By doing so, at
the previous example, process 1 would have the same priority as process 3, thus process 2
would not be able of preempting it before releasing the resource.

• Interrupt handlers are run as preemptive kernel threads [Henriques, 2009]. In this manner,
these threads have an specific priority and cannot preempt another process running at that
moment with a higher one. In any other aspect, these threads imitate the behaviour of
the standard handlers, like having CPU affinity, for example.

• Implementation of a new set of high resolution timers. Linux kernel measures time in
jiffies, a variable time unit defined by kernel’s constant HZ. Alarms storage is implemented
through a timer wheel, an structure divided in buckets. The first wheel’s layer represents
the next 256 jiffies in the future, one per each of the 256 buckets that it contains. The next

CHAPTER 2. STATE OF THE ART 11

Real-time software technology and its use in experimental neuroscience

layers also contain 256 buckets, but each one of them represent 256 jiffies. For example,
if an alarmis programmed for 20 jiffies in the future, it will be saved at the 20th bucket
of the first layer, but if it is for 276 jiffies in the future it will be placed in the second
layer. When the time represented by the first layer passes, the elements stored in the first
bucket of the second layer have to be rehashed to the unitary buckets of the first one, an
operation that have an O(n) cost, where n is the number of elements moved. Moreover,
the computational cost of adding or removing a timer from the wheel is O(1), being a
really cheap operation in contrast to rehashing.

While trying to find an improvement to this structure, Thomas Gleixner [Gleixner and
Niehaus, 2006] realised that there were two kind of timers being stored in the timer wheels:
the action timers and the timeout timers. The former are those used by processes to be
notified of an event and are removed after that, thus if they are programmed for a far
future moment they will be rehashed many times, but added or removed just a few, so
using a timer wheel for these timers is quite inefficient (lots of O(n) operations against few
O(1)). On the other hand, timeout timers are triggered when an event does not occur (for
example, a network package that does not arrive). These kind of timers stay a short time
at the timers wheel (few O(n) costs) but are added and deleted frequently (many O(1)
costs), so they do benefit from the timers wheel paradigm.

With this in mind, Gleixner designed the following solution: he implemented a new struc-
ture, called hrtimers, that would store the action timers using red/black trees, instead
of hash tables, having these an O(log n) cost for adding or removing elements (O(1) for
the first element), but no cost for rehashing since the tree is already sorted. Additionally,
hrtimers work in nanoseconds instead of jiffies, so its performance depends on the hardware
clock and not a software constant. This improvement was added to the mainline Linux
kernel 2.6.

Overall

Preempt-RT presents the following advantages

• On some operating systems, such as Debian, it can be easily installed with an apt install
command.

• There is no need of learning new programming APIs because standard POSIX functions
and structures are capable of ensuring real-time.

• Being supported by the Linux Foundation, and included in the mainline kernel, it is more
likely that the project will be maintained and continued in the future.

• Being supported by the Linux Foundation, and included in the mainline kernel, it is more
likely that the project will be maintained and continued in the future.

• The same code can be used in real-time and standard executions.

and disadvantages

• Latency measures maximums are greater than the ones obtained by dual-kernel options.

• POSIX libraries are not designed specifically for real-time applications, which is seen by
some users as a possible source of problems.

• Any bug on the Linux kernel is also a bug on the RTOS.

12 CHAPTER 2. STATE OF THE ART

Real-time software technology and its use in experimental neuroscience

2.2.4 Other RTOS solutions

All three previously explained RTOS implementations correspond to open-source, free and
Linux-based solutions. Nevertheless, there exist multiple commercial options, which being hard
real-time specifically oriented are many times considered as more robust than the others. On
the other hand, they have some inconveniences of their own, like their price to begin with, which
is usually one of the main drawbacks for many research groups and laboratories, that cannot
afford it. Moreover, the usage in embedded systems is the main context for real-time technology
one, so the commercial RTOS are mostly aimed to it and they are not GPOS.

One of the most widely used commercial RTOS is VxWorks, created by Wind River Systems
in 1987 and nowadays used at BOEING-777 airplanes and NASA’s Curiosity Rover (sent to
Mars), among others. In 1982, the company Quantum Software Systems released QNX Neutrino,
one of the first real-time kernels that reached the market and used in a wide range of embedded
systems, from mobile phones to cars. Of course Microsoft also developed a real-time version of
its Windows OS in 1996, called Windows Compact Embedded, which they use for their Windows
Phones, for example. Other proprietary software-based real-time solutions are RTOSWin, that
runs paravirtualized real-time software next to Windows; xPC, a MATLAB’s toolbox that runs
the real-time functionalities in another device; or National Instruments’ LabVIEW Real-Time,
that works in a similar way than xPC. Finally, it is important to emphasize that there are nu-
merous works and papers comparing different RTOS [Hambarde et al., 2014][Aroca and Caurin,
2009] and they prove that performance of open-source solutions is not worse than commercial
ones, on the contrary, it is similar or even better in some cases.

2.2.5 Real-time software for closed-loop neuroscience

Nowadays there exist numerous open-source software applications designed to perform closed-
loop experiments, even some of them are specific for dynamic-clamp. These tools are quite
diverse, both in functionality as in running platforms and architectures. Some of them use
proprietary software, which is usually expensive and many laboratories and research groups
cannot afford it , while others run over GPOS, which is more user-friendly but cannot ensure
hard real-time behaviour, and others do work over free tools and RTOS, but may be more
difficult to use for non-specialised in computer science users. In figure 2.2 some of this tools are
listed and described (references [Linaro et al., 2014], [Biró and Giugliano, 2015], [Nowotny et al.,
2006], [Pinto et al., 2001], [Dorval et al., 2001], [Lin et al., 2010], [Ortega et al., 2014], [Muñiz
et al., 2009]).

2.3 Neuron models

In order to understand how does the brain works it is necessary to support the experimental
research with computational simulations of its behaviour. The first step towards reaching a
complete brain simulation is designing neuron models that represent the behaviour of single
neurons, and that these can be combined to form neural networks and other more complex
structures. Neuron models are sets of mathematical equations which describe properties of the
neurons and their performance.

However, real neurons dynamics are quite complex and diverse, hence the models must
represent a simplified version of them, but still reproducing their biological qualities. Back in
1907, Lapicque designed the integrate-and-fire model, a very simple and light one, but also little
realistic [Gerstner et al., 2014]. The most known realistic model is the one developed by Hodgkin
and Huxley in 1952 [Hodgkin and Huxley, 1952a] [Hodgkin and Huxley, 1952b] [Hodgkin and

CHAPTER 2. STATE OF THE ART 13

Real-time software technology and its use in experimental neuroscience

Name Application Platform Characteristics References

LCG Cellular
dynamic clamp

UNIX-based
OS

Command-line program
Performs simple tasks that can be
connected
No real-time

[Linaro et al., 2014]

PC NEURON
Simulink

Cellullar
electrophysiology

Windows Uses xPC Matlab and
Simulink (propietary)
Real-time

[Biró and Giugliano,
2015]

StdpC Cellular
dynamic clamp

Windows Easy to use and install
Works on a propietary platform
No real-time

[Nowotny et al., 2006]

DYNCLAMP4 Cellular
dynamic clamp

Windows Can perform dynamic clamp
control over 4 neurons together
Works on a propietary platform
No real-time

[Pinto et al., 2001]

RTXI Cellular, network,
cardiac
dynamic clamp
Deep brain
stimulation

RTAI
Xenomai

Only works on RTAI and Xenomai
Has different modules for different
tasks
New modules can be programmed
Real-time

[Dorval et al., 2001]
[Lin et al., 2010]
[Ortega et al., 2014]

RTBiomanager Cellular dynamic clamp
Behavioural studies
EEG-based BCI

RTAI Only works on RTAI
Only works for old Linux kernels
(compatible with Qt3)
Real-time

[Muñiz et al., 2009]

Figure 2.2: Different real-time applications for closed-loop experiments.

Huxley, 1952c], for which they received the Nobel Prize in Physiology-Medicine in 1963, which
represents very accurately the live biophysical dynamics, at the expense of a high computational
cost.

Many other neuron models have been proposed over the years as more simple, and therefore
less computationally expensive, but able of reproducing some aspects of the biological behaviour
(but not at the level of Hodgkin-Huxley). Each one of these models have advantages and
disadvantages and are more useful in specific situations. A deeper insight of three of them is
provided below.

2.3.1 Izhikevich neuron model

In 2000, Eugene M. Izhikevich presented a model of neural spiking and bursting, light as an
integrate-and-fire model but able of replicating biophysical behaviour of certain cortical neu-
rons as realistically as Hodgkin-Huxley model [Izhikevich, 2003]. Based in the bifurcations of
dynamical systems he designed a two ordinary differential equations system(2.1) (2.2) with an
auxiliary condition (2.3).

v′ = 0.04v2 + 5v + 140− u+ I (2.1)

u′ = a(bv − u) (2.2)

if v ≥ 30mV, then
{

v ← c
wu← u+ d

(2.3)

14 CHAPTER 2. STATE OF THE ART

Real-time software technology and its use in experimental neuroscience

Variable v corresponds to the neuron’s membrane potential, while variable u models the
activation of the potassium ionic channels and inactivation of the sodium ones. The auxiliary
condition resets the variables to some specific values after an spike, v due to the fast K+

conductances and u due to Na+ and K+ slow conductances. Parameter a adjust the recovering
time of u (the smaller a is, the slower the recovery); b describes the coupling between v and u
(the coupling is higher as b is), which makes u less or more sensitive to subthreshold oscillations
of v; c is the value used at condition 2.3 to reset v; and the last parameter d models the reset of
variable u. Parameter I is used to introduce synaptic or dc-currents in the equations.

All variables and parameters are dimensionless, but equation 2.1 is fitted so the potential has
scale mV and the time, scale ms. Different configurations of these parameters lead to distinct
types of neural behaviour, for example imitating those of different types of cortical neurons, as
shown in figure 2.3.

Figure 2.3: Different dynamics generated by Izhikevich model and parameters diagram (from
[Izhikevich, 2003]).

2.3.2 Hindmarsh-Rose neuron model

In 1984, Hindmarsh and Rose published a spiking and bursting dynamics of neurons model,
quite simple but capable of describing many behavioural patterns (including chaotic dynamics),
which is an extension of their two-variable model presented the previous year [Hindmarsh and
Rose, 1982], which at the same time is a generalisation of Fitzhugh model [Fitzhugh, 1961] (a
second order model designed as a simplification of Hodgkin-Huxley). Their previous model fired
indefinitely, therefore they added a third differential equation to be able of include a slow current
to provoke the slow wave after-hyperpolarisation behaviour [Hindmarsh and Rose, 1984].

To study the performance of the model and its spiking dynamics, the system is represented
in the phase space and its nullclines, limit cycles and critical points are analysed. When the
neuron enters a limit cycle it get caught in there, going over the values in it periodically, thus
giving place to the spiking behaviour. The third equation is needed to have a time-modelled
variable which allows the system to leave the limit cycle.

CHAPTER 2. STATE OF THE ART 15

Real-time software technology and its use in experimental neuroscience

ẋ = y − ax3 + bx2 + I − z
ẏ = c− dx2 − y
ż = r(s(x− x1)− z)

(2.4)

All parameters and variables in the ordinary differential equations of system 2.4 are di-
mensionless. Variable x represents membrane potential, while y, also called spiking variable,
symbolises Na+ and K+ fast ionic channels, and z, known as bursting variable, models the
other slow ionic channels. In the original paper the constants have fixed values a = 1, b = 3,
c = 1 and d = 5 to ease the phase space study of the system, while I represents the external
current. Fixing constants r, s and x1 to different values, diverse performances of the neuron are
obtained. Due to the value of constant r, much smaller than the other parameters, of the order
of 10−3, z variation over time is slower than x and y ones, hence it can be considered as a slow
variable and get rid of the third equation to work in a two-dimensional phase space (see figure
2.4).

Figure 2.4: Hindmarsh-Rose neuron model dynamics and phase space for the model with fixed
values z = 1.95 and I = 2.

2.3.3 Rulkov map neuron model

A high dimension and strictly non linear dynamic system is difficult to study, and with this kind
of equations is very complicated or even impossible to analyze the mechanisms that act in the
restructuring collective behaviour of neurons. Furthermore, some neural conducts require of an
elevate number of dimensions in the system to be described, as the chaotic bursting which needs
three equations. Rulkov wanted to provide a method to represent the complex neural dynamics
in a simpler manner, so he propose a two dimensional map able to describe generation of tonic
spikes, irregular spiking, and both regular and irregular bursting, which is simple enough to
study its underlying dynamics [Rulkov, 2002].

xn+1 = f(xn, yn + βn) (2.5)

yn+1 = yn − µ(xn + 1) + µσn (2.6)

16 CHAPTER 2. STATE OF THE ART

Real-time software technology and its use in experimental neuroscience

f(x, y) =

α/(1− x) + y) x ≤ 0

α+ y 0 < x < α+ y

−1 x ≥ α+ y

(2.7)

To describe both fast spiking with slow oscillation it is necessary to have a fast and a slow
dynamic. The fast one is modeled by equation 2.5, while the slow is shown in equation 2.6,
because of the small value µ = 0.001. β is the variable which represents the injection of current,
either from external current (Idc) or synaptic inputs (Isyn) and σ is a control parameter which
also symbolizes external influence. To model the individual spikes dynamics during bursting the
non-linear equation 2.7 was included, with α being another control parameter.

Figure 2.5: (a) Spiking-bursting behaviour generated by Rulkov Map with different σ and α
values. (b) Bifurcation diagram on the parameter plane (σ,α). Both figures taken from [Rulkov,
2002].

2.3.4 Synapse models

Synapses are the mechanism that neurons use to communicate between them. There are basically
two kinds of synapses: electrical and chemical. They have inhibitory or excitatory effects on the
postsynaptic neuron, that may last for just milliseconds to minutes. Electric ones send a current
proportional to the voltage difference of the two cells connected , sending simple and fast signals,
while chemical synapses can provoke more complex changes on the receiver by sending highly
nonlinear current modulated on time [Kandel, 2013]. This is reflected in the equations that
model them and have been used in this library, being the electrical synapse just the difference
between the post and presynaptic potentials, multiplied by the synaptic conductance, as in

elec_syn = g ∗ (Vpost − Vpre) (2.8)

while chemical synapses typically include different dynamics (fast and slow) and numerous pa-
rameters [Golowasch et al., 1999], as for example in a graded synapse

chem_syn = fast_chem+ slow_chem (2.9)

fast_chem =
gfast ∗ (V post− Esyn)

1 + exp[sfast(Vfast − vpre)]
(2.10)

CHAPTER 2. STATE OF THE ART 17

Real-time software technology and its use in experimental neuroscience

slow_chem = gslow ∗mslow ∗ (V post− Esyn) (2.11)

dmslow

dt
=

k1(1−mslow)

1 + exp[sslow(Vslow − Vpre)]
− k2mslow (2.12)

18 CHAPTER 2. STATE OF THE ART

3
Real-time solutions comparison

The aim of this chapter is to offer a detailed comparison among the different real-time solutions
introduced and described in section 2.2. Since the main goal of this work is to provide an analysis
for a future development of a standarized approach in neuroscience research, available for any
researcher who may need it without economic or technical boundaries, the tools that will be used
are free open-source extensions for the also free, open and general purpose operating system,
Linux. Three of them will be tested, RTAI, Xenomai and Preempt-RT, considering both their
real-time performance and their usability and user-friendliness for any kind of user.

3.1 Structure of the test

Neuron model implementations are periodic functions which generate points at a specific rate. In
order to test the real-time performance of the mentioned RTOS a very simple periodic code in C
language has been implemented. This program sleeps until a determined time, does something
and then sleeps again, imitating the models behaviour. A snippet of the pseudocode of this
simple program is shown in algorithm 3.1, and will be the cornerstone for further functions
implemented in this work.

Algorithm 3.1: Periodic sleeping function.
1 input: int time, int period
2 begin
3 target_time = period
4

5 for (i = 0; i < time; i++)
6 sleep_until(target_time)
7 do_something()
8 target_time = target_time + period
9 end

10 end

When a process is idle (sleeping, for example) the scheduler takes the resources that it was
using, including the processor, and gives them to other tasks until the idle process awakes again.
In a non real-time OS, if this process has higher priority than the ones running at the expected
awaking time, it will have preference. However, that does not mean that the scheduler will give

19

Real-time software technology and its use in experimental neuroscience

it the resources back immediately: it may, or may not, according to its policy. On the other
hand, a RTOS will return the resources to the higher priority task as soon as possible.

This latency between the expected awaking time and the real one is going to be taken as
a measure of the real-time capabilities of a system, as well as the jitter. With this test also
interruptions are taken into account, since an interruption longer than the period will cause a
high latency value, but a shorter one will not affect the execution. Algorithm 3.2 include these
additions to the code.

Algorithm 3.2: Periodic sleeping latency function.
1 input: int time, int period
2 begin
3 start_time = get_time()
4 target_time = start_time + period
5

6 for (i = 0; i < time; i++)
7 sleep_until(target_time)
8

9 awake_time = get_time()
10 latency = awake_time − target_time
11 print(latency)
12

13 do_something()
14

15 target_time = target_time + period
16 end
17 end

For each platform a different implementation of this code will be required, with different
advantages and drawbacks, which will be discussed in further sections. Two more tools will be
also used for these tests, which are described below.

Sysbench

Sysbench is an open-source benchmarking tool suite designed to easily test some aspects of
a computer, as its file I/O performance, the scheduler performance, memory allocation and
transfer speed, threads implementation performance or database server performance [Kopytov,
2009]. The most basic functionality it has is to execute a thread which calculates prime numbers,
introducing a huge workload in a processor and making it work at full capacity. This can be run
as many times as needed until the percentage of use of all the cores of every processor in the
machine is at 100%. In this scenario, the real-time task should not have any problem to preempt
any of the threads and take control of the processor every time it wakes up. An example of a
Sysbench execution is showed in listing 3.3.

Listing 3.3: Sysbench command line execution.
sysbench --test=cpu --time=5600 --cpu-max-prime=20000 run

Core isolation

Modern computers usually have more than one processor or, more typically, a multicore processor
(a single component with two or more independent processing unit). With this in mind, a logical
question raises: can a processor unit be reserved to run only the tasks specified by the user, and
therefore allow a real-time task to do its job unmolested without the need of an RTOS?

This situation will be tested, both on the RTOS and the non real-time operating system.
Isolating a core in a Linux OS requires just a few simple steps:

20 CHAPTER 3. REAL-TIME SOLUTIONS COMPARISON

Real-time software technology and its use in experimental neuroscience

• Open the file /etc/default/grub and modify the lineGRUB_CMDLINE_LINUX_DEFAULT
="quiet splash" to GRUB_CMDLINE_LINUX_DEFAULT="quiet splash isolcpus=n",
where n is the ID number of the core or cores that will be isolated (separated by commas).

• Run update-grub.

• Restart the computer.

• Now the isolcpus=n should appear in /proc/cmdline.

Once a specific core is isolated, a process can be bound to it by using the function sched
setaffinity (or pthread_setaffinity_np for threads), so the task will supposedly run alone in the
isolated core without sharing it with other processes.

3.2 Results

The latency tests consisted in two separated 20 minutes executions of the program described in
algorithm 3.2, adapted in each case to the particularities of the operating system, from which
the worst case is the one included here. During all of them the processor was working at
full capacity, with Sysbench-created workload. Since the aim of the project was to develop a
neuron model library, the do_something() part of the code consisted of an implementation of
the Izhikevich neuron model, which delivered a point of the signal with a frequency of 10 kHz.
Further explanation of the implemented models will be discussed in Chapter 4.

Some issues that affected to the real-time behaviour, like printing the results, and the ways
they have been dealt with will also be addressed in the next chapter.

3.2.1 Non real-time Linux

The first trials were run over a standard non real-time Linux kernel, just to check which were
the baseline latencies and that they were not predictable. The computer used had the following
characteristics:

• Processor: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, 8 hyperthreaded cores (4 phys-
ical).

• RAM memory: 16 GB.

• Operating system: Debian GNU/Linux 9.0 (stretch), kernel 4.9.0-2-amd64.

Numerous high-level languages can operate in real-time [Burns and Wellings, 2009][Bollella
and Gosling, 2000], however C was chosen to implement the program because POSIX time-
management tools are good enough by themselves (if not disturbed by the OS) and the APIs
and libraries used by the studied RTOS are designed for this language. The functions and data
structures used to implement the periodic loop are:

• struct timespec: data structure used to store times, with two fields: tv_sec for the
seconds and tv_nsec for nanoseconds. By adding both the full time is obtained.

• clock_gettime: gets the time of one of the system clocks. In this case, the clock used
was CLOCK_MONOTONIC, which represents the absolute elapsed wall-clock time since
some unspecified fixed point in the past.

CHAPTER 3. REAL-TIME SOLUTIONS COMPARISON 21

Real-time software technology and its use in experimental neuroscience

• clock_nanosleep: function that makes the process sleep for a determined time period
or until an specified moment, according to the same clocks as the previous function. For
our program the second option was chosen, so as to not add the latencies delay in each
iteration. There are other POSIX functions designed for the same operation, but they are
not precise enough.

• pthread_setschedparam: function used to set the priority of a thread to a determined
value, in this case, to the highest possible (99).

• mlockall: function that locks all the calling process’ virtual address space into RAM, so
that memory can not be paged to the swap area, avoiding the unpredictable latencies that
this may cause.

The latencies obtained, after loading the system with Sysbench workload (see figure 3.1a), in
the non real-time kernel are showed in figure 3.3. The same test was repeated with an isolated
core (actually cores 0 and 1, since the processor is hyperthreaded and every pair of logical
processors are just a physical one, and therefore share some resources), with the same workload
(see figure 3.1b) and the process with affinity to core 0, as shown in figure 3.4.

The model had to provide a value with a frequency of 10 kHz, which means one point every
100 µs, hence any latency superior to this time would be a wrong-sent point and a fault in
the real-time behaviour. In both figures can be verified that the deadline is overcame by far,
reaching values greater than 1000 µs, even in the case of the isolated core. The reason of the
bad performance of the isolated core scenario is that only user tasks are prevented from using
it, but not root ones (see figure 3.2), so there is still some work running on it and interfering
with the real-time task. Anyway, even if the maximum latency obtained in that case is high,
in modern computers and without overloading the processor, this configuration can be still be
used to achieve soft real-time performances.

Notice that if the acquisition frequency was 20 kHz, which is also a normal case, then any
latency superior to 50 µs would be a fault.

3.2.2 RTAI

At first, the RTAI tests were conducted on an old uni-core processor computer, which has been
used for some years in eletrophysiology experiments at GNB laboratory. Nevertheless, there was
some unexpected behaviour both in the time measurement as in the results of the model, in
addition to crashes and failures of the computer itself, which led to re-run the tests in a more
modern computer. The specifications of the first machine are:

• Processor: Intel(R) Pentium(R) 4 CPU 3.20GHz, 1 core.

• RAM memory: 2 GB.

• Operating system: Ubuntu 10.04, kernel 2.6.35.7-rtai.

And the second one:

• Processor: Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz, 4 physical cores.

• RAM memory: 4 GB.

• Operating system: Ubuntu 10.04, kernel 2.6.34.5-rtai.

22 CHAPTER 3. REAL-TIME SOLUTIONS COMPARISON

Real-time software technology and its use in experimental neuroscience

(a) Without core isolation.

(b) With cores 0 and 1 isolated.

Figure 3.1: top command execution in a non real-time system, with the processors running at
full capacity. Intel I7 processor used.

Figure 3.2: top command execution in an environment with core 0 isolated. The right-most
column indicates the core over the process is running, showing that root processes are using the
isolated core. Intel I7 processor used.

CHAPTER 3. REAL-TIME SOLUTIONS COMPARISON 23

Real-time software technology and its use in experimental neuroscience

0 5 10 15 20 25 30
Latencies (s)

10 1

100

101

102

103

104

105

106

107
Oc

ur
re

nc
es

1435 1440

Non RT Test 1 latencies

Figure 3.3: Latency values (in microseconds) occurrences with a non real-time operating system.
Intel I7 processor used.

0 5 10 15 20 25 30
Latencies (s)

10 1

100

101

102

103

104

105

106

107

Oc
ur

re
nc

es

1790 1795

Non RT Isolated core Test 2 latencies

Figure 3.4: Latency values (in microseconds) occurrences with a non real-time operating system
and an isolated core. Intel I7 processor used.

Despite of the differences on hardware, both computers run the same operating system, same
kernel and same version of the RTAI patch. Installing RTAI involves patching a vanilla Linux
kernel, compiling it and then installing it, which can prove quite challenging, even for experienced
computer users. In Appendix B we include a manual to install RTAI, but even following it the
user may encounter different problems, as missing libraries or configuration errors. In order to

24 CHAPTER 3. REAL-TIME SOLUTIONS COMPARISON

Real-time software technology and its use in experimental neuroscience

use the RTAI functions, its modules have to be manually loaded before.

As mentioned before, the program was implemented in C language, but using RTAI APIs
instead of POSIX functions. The most reliable way of ensuring real-time with RTAI is imple-
menting the real-time depending functions as a kernel module, that is also trickier since only
loaded in kernel functions can be used in this case, which is a huge limitation. On the other
hand, the LXRT module provides real-time performance in user space, simplifying enormously
the programming of the code, but is also less stable. In both cases, the functions and data types
used to make the task periodic are the following:

• RTIME: data type used by RTAI to store times. It uses counts as a unit, which are related
to the CPU clock frequency. To convert nanoseconds to counts the function nano2count
is used.

• rt_get_time: gets the time elapsed in real time clock ticks since the moment defined
by RTAI internal value RT_TIMER. To convert counts to nanoseconds the function
count2nano is used.

• rt_set_periodic_mode: function that sets the timer in a periodic timing mode, with
period defined in start_rt_timer.

• rt_task_make_periodic: function that makes the process periodic.

• rt_task_wait_period: function that makes the process sleep until the next period is
reached, which was specified when the timer was started.

• rt_make_hard_real_time: function used only by LXRT, which allows a user space
process to run in hard real-time.

Due to the architecture explained in section 2.2.1, isolating a core in the Linux kernel does
not have any impact on the real-time microkernel, and therefore there was no point in testing
the real-time capabilities of the system in that scenario. In the same section was also stated
that RTAI programs based on the LXRT module may have difficulties ensuring the temporal
boundaries, so the implementation as a kernel module, even if more troublesome, was preferred
for the tests. Moreover, the same program was executed in the two machines mentioned before,
obtaining quite distinct results. In both cases the processor was full-loaded with Sysbench tasks.

Latencies obtained with the single-core Pentium 4 processor computer are shown in figure
3.5a, and even if most of them are quite low, some high latencies also occur, reaching even 242 µs,
which is an abnormal behaviour for RTAI according to the existing literature [Barbalace et al.,
2008]. On the other hand, with the four-core processor the results are more reasonable, as can
be seen in figure 3.5b, with a maximum latency of 2 µs. The reasons behind this performance
are not known, but since the software used was exactly the same in both cases, it is clear that
they have to be hardware-related. Also notice that the figures represent absolute latency values,
but with RTAI most of them are negative, which means that the process is woken up before it
was specified, since RTAI foresees that waking the process may take some extra time and hence,
wakes it up earlier. Of course, a negative latency is as bad as a positive one (as said before,
precision is needed, not just speed), so they are all represented as absolute values.

3.2.3 Xenomai

For the Xenomai trials only one machined was used, with the following set up:

CHAPTER 3. REAL-TIME SOLUTIONS COMPARISON 25

Real-time software technology and its use in experimental neuroscience

0 5 10 15 20 25 30
Latencies (s)

10 1

100

101

102

103

104

105

106

107
Oc

ur
re

nc
es

235 240

RTAI Test 1 latencies

(a) Pentium 4 processor.

0.5 0.0 0.5 1.0 1.5 2.0 2.5
Latencies (s)

10 1

100

101

102

103

104

105

106

107

Oc
ur

re
nc

es

RTAI Test 1 latencies

(b) I7 processor.

Figure 3.5: Latency values (in microseconds) occurrences with RTAI.

• Processor: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, 8 hyperthreaded cores (4 phys-
ical).

• RAM memory: 16 GB.

• Operating system: Ubuntu 14.04, kernel Linux 3.8.13-xenomai-2.6.4.

The way of installing Xenomai is similar to RTAI: patching a vanilla kernel is needed and
therefore the same complications may appear. Fortunately, the developers of RTXI [Lin, 2011]
also offer an Ubuntu live CD, which includes an Ubuntu 14.04 already patched with Xenomai 2,
that has been used for these tests. Since Xenomai inherited its architecture from RTAI, isolating
a core has the same results as in the previous case, so has not been tested.

Furthermore, C language was also used to implement the program, but this time also one of
Xenomai skins needed to be chosen. Native skin was the first choice, but due to some problems
that will be discussed in Chapter 4 was discarded in favour of POSIX skin, selected because the
same functions had been already used for the non real-time case. Therefore the functions utilized
are again clock_gettime, clock_nanosleep and mlockall ; and the structure struct timespec. The
only difference with an standard POSIX implementation is that there is no need of setting the
task priority manually, since it will already run in the real-time microkernel.

Once the Sysbench workload is running, the real-time program is executed. Notice that this
program appears among the list of processes as gatekeeper/0, instead of the name given to it
(see figure 3.6b), which is a Xenomai service that manages the relations among domains. The
results of the test are shown in figure 3.7, and these are quite similar to the obtained with RTAI:
latency values are low and may also be negative, for the same reasons (the range actually was
from -2 µs to 6 µs).

26 CHAPTER 3. REAL-TIME SOLUTIONS COMPARISON

Real-time software technology and its use in experimental neuroscience

(a) Without real-time task.

(b) With real-time task.

Figure 3.6: top command execution in Xenomai, with the processors running at full capacity.
Intel I7 processor used.

3.2.4 Preempt-RT

Finally, the Preempt-RT tests were conducted over the same computer and operating system as
the ones for the non real-time case, but this time the corresponding patch was applied:

• Processor: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, 8 hyperthreaded cores (4 phys-
ical).

• RAM memory: 16 GB.

• Operating system: Debian GNU/Linux 9.0 (stretch), kernel 4.9.0-2-rt-amd64 PRE-
EMPT RT.

As the other RTOS previously analysed, the installation of Preempt-RT needs patching a
vanilla Linux kernel. Nevertheless, there also exist an apt-get package for Debian distributions,
making the transformation into a RTOS as simple as typing sudo apt-get install linux-headers-
«kernel version»-rt-amd64 (for 64 bits architectures) in a shell console.

The code used is also the same as in the first trial, with no changes, but since now the
scheduler is a real-time one the POSIX functions will work unmolested and respecting the
temporal restrictions, as can be seen in figure 3.8. Core isolation was also tested, with same
configuration as in the non real-time scenario, and the results can be seen in figure 3.9. In both

CHAPTER 3. REAL-TIME SOLUTIONS COMPARISON 27

Real-time software technology and its use in experimental neuroscience

0 1 2 3 4 5 6
Latencies (s)

10 1

100

101

102

103

104
Oc

ur
re

nc
es

Xenomai Test 1 latencies

Figure 3.7: Latency values (in microseconds) occurrences with Xenomai. Intel I7 processor used.

cases the latency values obtained are almost similar, and worse than in the dual kernel solutions,
but still within the real-time boundaries. All the latencies are positive, because all the processes
are woken up after the determined time.

0 5 10 15 20 25 30 35
Latencies (s)

10 1

100

101

102

103

104

105

106

107

Oc
ur

re
nc

es

Preempt-RT Test 2 latencies

Figure 3.8: Latency values (in microseconds) occurrences with Preempt-RT. Intel I7 processor
used.

28 CHAPTER 3. REAL-TIME SOLUTIONS COMPARISON

Real-time software technology and its use in experimental neuroscience

0 5 10 15 20 25 30
Latencies (s)

10 1

100

101

102

103

104

105

106

107
Oc

ur
re

nc
es

Preempt-RT Isolated core Test 2 latencies

Figure 3.9: Latency values (in microseconds) occurrences Preempt-RT and an isolated core.
Intel I7 processor used.

3.3 Comparison

In this final section of the chapter a quantitative comparison between the different RTOS tested
will be carried on, regarding to the results obtained and the characteristics observed, and will
be addressed from different aspects of the solutions.

Installation

The official installation method of all the real-time patches is the same: download a vanilla
Linux kernel, apply the appropriate patch and compile it. As said before, this is not a trivial
task, even for users with knowledge in Computer Science, which may find numerous difficulties
through the process. However, there are alternatives for specific distributions: an Ubuntu 14.04
patched with Xenomai 2 provided by the RTXI team, and Debian apt packages of Preempt-RT
provided by Pengutronix. Despite of being the oldest one, and probably the most used, there is
no easy way of installing RTAI.

Implementation

The test program was developed from algorithm 3.2 and there are just a few differences among
the RTOS for which is was implemented, that are collected in table 3.1. Even so, finding the
appropriate functions and how to use them for each solution was not equally easy.

The easiest one was Preempt-RT, since it uses normal POSIX code and the user just needs to
be careful of using functions with enough precision for the times and operate with them correctly.
Using the POSIX skin for Xenomai is of course as simple, but in the case of Preempt-RT, the
sleeping period has to be handle manually. The Native skin was also quite easy to use, but
the documentation is not very detailed and there are not many examples (also mention that at

CHAPTER 3. REAL-TIME SOLUTIONS COMPARISON 29

Real-time software technology and its use in experimental neuroscience

the moment of writing this work, Xenomai’s webpage, including the documentation, has been
offline without explanation for almost a month). Native functions handle the sleeping period on
their own, as well as RTAI ones. There are more examples of RTAI than Xenomai, but still the
documentation is scarce, and many times confusing, with contradictory examples.

Table 3.1: Time functions and data types used by the different real-time solutions

POSIX RTAI Xenomai
(POSIX skin)

Real-time
functions

pthread_setschedparam
mlockall

rt_set_periodic_mode
start_rt_timer
rt_task_make_periodic

mlockall

Wait functions clock_nanosleep rt_task_wait_period clock_nanosleep
Get time functions clock_gettime rt_get_time clock_gettime
Time data type struct timespec RTIME struct timespec

Performance

RTAI may be the most difficult RTOS to install and use, but, in modern multicore architectures,
it is also the one with better real-time performance: its higher latency is 2 µs, three times
smaller than Xenomai’s one, the second better, even when the computer had worse specifications.
Preempt-RT offers worst results than both dual-kernel solutions, but still respects the real-time
boundaries. Also mention that core isolation does not seem to have any impact on real-time
behaviour. All these results are shown in figure 3.10.

No RT No RT Isol RTAI Xenomai Preempt-RT Preempt-RT Isol

101

102

103

Ti
m

e
(u

s)

1441
1796

2

8

33 28

1441
1796

2

6

33 29

Jitter and maximum latency for each OS
Jitter
Max latency

Figure 3.10: Jitter and maximum latency comparison among the different real-time solutions
tested.

Conclusions

If a real-time environment with very low latencies is needed, the best choice would be a dual-
kernel solution, with RTAI having slightly better performance. But since the real-time restric-
tions are not that strict for most closed-loop experiments, and user-friendliness is a very relevant

30 CHAPTER 3. REAL-TIME SOLUTIONS COMPARISON

Real-time software technology and its use in experimental neuroscience

aspect to consider in this case, Preempt-RT seems to be the RTOS which better fulfil our needs,
because even though its latency values are significantly greater than with the other tools, they
are still within the required temporal boundaries.

CHAPTER 3. REAL-TIME SOLUTIONS COMPARISON 31

Real-time software technology and its use in experimental neuroscience

32 CHAPTER 3. REAL-TIME SOLUTIONS COMPARISON

4
Neuron model library implementation

This chapter describes the implementation of the neuron and synapse model library. Following
the results of the previous chapter, the main development environment has been Preempt-RT,
and then the library was ported to RTAI and Xenomai. The real-time software was designed in
a modular and generic way, making it easier to adapt to the different RTOS and to add models
to the library. In the coming sections each of these modules will be detailed. As mentioned
before, since RTAI and Xenomai programming APIs are designed for it, and because POSIX
time-management functions can ensure real-time performance if the scheduler allows it, the
chosen coding language was C.

4.1 Neuron models

All the models explained in section 2.3, both of neuron and synapses, have been implemented in
file model_library.c, following the same pattern and structure so using them is transparent for
the user and there is no need of knowing how the model works, since there is no difference in the
callings for any of them. This favours maximum flexibility to change from one given model to
another in the experimental setup. In table 4.1 are described the functions used to implement
the models, as well as the parameters they receive as input. The return value of all of them is
void and all the input arguments are pointers, so the data can be updated and returned inside
them.

Izhikevich and Hindmarsh-Rose models have differential equations that have to be solved
numerically, so the 6(5) Runge-Kutta method was implemented [Hull et al., 1972], again in a
generic way, so it can be used indistinctly by any model: it receives the same parameters as the
general model function (dim, dt, vars, params and syn) but also a pointer to the corresponding
equations function. In figures 4.1 and 4.2 the behaviour of Izhikevich and Hindmarsh-Rose mod-
els can be seen, respectively, along to the figures from the original papers that are reproduced.

But Rulkov’s model is not described with differential equations but with a two-dimensional
map, meaning that it is computationally cheaper and faster than a model implemented with
differential equations, but has also a drawback: it lacks temporal resolution. Therefore for
every point generated by the model, a number of points between it and the previous one must
be calculated. The method to generate new data between two points that was used is called

33

Real-time software technology and its use in experimental neuroscience

Table 4.1: Functions used to implement the neuron models

Description Parameters

ini_«model» Initialize the variables of
the model

vars: variables of the model
min: threshold value over which the
model is in spiking behaviour
minABS: lowest value reached by
the model
max: greatest value reached by the model

«model»_f Equations of the model

vars: variables of the model
ret: return values
params: parameters of the model
syn: synapse value

«model_name»
Logic of the model
(derivation of the equations,
auxiliar conditions, etc)

dim: number of variables of the model
dt: integration step of the model
vars: variables of the model
params: parameters of the model
syn: synapse value

«name»_syn Main synapse function

v_post: postsynaptic potential
v_pre: presynaptic potential
g: conductances
ret: return values
aux: auxiliary data

Figure 4.1: Comparison of Izhikevich model original paper and implemented model. The pa-
rameters for each behaviour can be seen in figure 2.3.

Linear Interpolation [Hazewinkel, 2002]. In figure 4.3 there is a comparison among the model
implemented and the figures from the original paper.

34 CHAPTER 4. NEURON MODEL LIBRARY IMPLEMENTATION

Real-time software technology and its use in experimental neuroscience

1

-1

0

1

2
Single HR neuron regular (I=3.0)

0 5000 10000 15000 20000 25000

-1

0

Single HR neuron non-regular (I=3.281)

0 5000 10000 15000 20000 25000

x
(t

)
x
(t

)

Figure 4.2: Comparison of Hindmarsh-Rose model original paper and implemented model. The
parameters are: e = 3.0 (a), e = 3.281 (b), a = 1.0, b = 3.0, c = 1.0, d = 5.0.

4

2

0
x
_n

2

0

2

x
_n

6000 6500 7000 7500 8000 8500 9000 9500
n

2

0

2

4

2

0

2

0

2

Rulkov Map dynamics side-by-side
x

n
x

n
x

n

Figure 4.3: Comparison of Rulkov Map model original paper and implemented model. The
parameters are: α = 4.5, σ = 0.14 (a), α = 6.0, σ = −0.1 (b), α = 6.0, σ = 0.386 (c). The rest
of the parameters are not specified.

4.2 DAQ communication

In order to connect the virtual neuron model to a real or electronic neuron, an intermediate device
is needed to transform the digital signals to analog ones, and the other way around. These devices
are known as data acquisition devices (DAQ) and can be connected to the computer through its
I/O ports or special cards. As any other hardware, the appropriate drivers have to be installed
in the computer which is going to use them, to act as an interface between the user and the
device.

Comedi is a free, open-source set of drivers for various DAQ cards of different brands, avail-
able for Linux distributions. It offers an API to perform synchronous and asynchronous read
and write operations over the device [Schleef et al., 2012]. Comedi installation, even if a bit
long, is extensively explained in its documentation and should not represent a difficult task.

CHAPTER 4. NEURON MODEL LIBRARY IMPLEMENTATION 35

Real-time software technology and its use in experimental neuroscience

Files comedi_functions.c and .h contain the structures and functions developed to handle the
Comedi drivers:

• Comedi_session: data structure which stores the information of a Comedi session, be-
ing this a connection to a determined device through specific input and output subdevices.

• open_device_comedi: given a device name (e.g. "/dev/comedi0") opens a connection
with it and returns a pointer to a comedi_t structure, used as identifier.

• close_device_comedi: given a comedi_t pointer, closes the connection to the associ-
ated device.

• create_session_comedi: given a comedi_t pointer, a Comedi session is created.

• get_range_info_comedi: auxiliary function to obtain the range_info value for a
channel, needed by the read/write functions.

• get_maxdata_comedi: auxiliary function to obtain the maxdata value for a channel,
needed by the read/write functions.

• read_comedi: given a session and a list of channels, reads the data from those channels
and return them in the ret variable. Calls to the function read_single_data_comedi.

• write_comedi: given a session, a list of channels and a set of values, writes each value
to the corresponding channel. Calls to the function write_single_data_comedi.

• read_single_data_comedi: given a session, the range_info and maxdata values and
a channel, reads a single value from the channel and returns it in variable ret.

• write_single_data_comedi: given a session, the range_info and maxdata values, a
channel and a data, writes the single value into the channel.

This library can be used by any program that runs in an environment that has the Comedi
drivers and libraries installed, it does not matter if it is RTAI, Xenomai, Preempt-RT or a non
real-time operating system. In our case the DAQ used was a National Instruments’ PCI NI
BNC-2090A device, but any other National Instruments card would work as well.

4.3 Real-time functions

Once the models and DAQ communication modules are ready, it is time to implement the real-
time periodic functions, following the scheme presented in algorithm 3.2. Probably the most
troublesome issue faced was the fact that printing any data to a file or the terminal caused
unpredictable high latencies, unacceptable for a hard real-time execution. Due to this problem,
a new way of storing the desired data in a file was needed.

The solution designed was the following: if a real-time process can not handle a call to a
print function within the temporal boundaries, then another process should take care of this
task. IPC mechanisms provide the necessary tools to send the information from the real-time
process to the writing one. In this case, FIFO message queues were used, so the first task could
write the data in the queue and it would wait there until the second read it and printed it to
the file, when he could. Therefore, two threads were created, rt_thread and writer_thread, one
running in real-time and the other not. Two files are created in each execution of the program,
and a line is written in them per iteration of the periodic loop. The names of the files are the
hour, minute and second when the program was run, followed by the type of the file, 1 or 2,

36 CHAPTER 4. NEURON MODEL LIBRARY IMPLEMENTATION

Real-time software technology and its use in experimental neuroscience

(e.g. 19h_23m_7s_1.txt), and they are stored in a directory with the current date as name
(e.g. data/2017y_5m_28d). The first line of type 1 files have two values, the number of input
channels and output channels, and each row of the rest of the file represents:

• t_mon: time in milliseconds since the set of the computer’s monotonic clock.

• t_exec: time in milliseconds since the beginning of the execution.

• i: number of points sent.

• lat: latency between the real and the expected awakening time of the loop sleep function,
in nanoseconds.

• v_model: voltage generated by the computational model.

• v_model_scaled: voltage generated by the computational model scaled to the range of
the external neuron.

• c_model: current generated by the computational model.

• c_real: current generated by the external neuron.

• data_in: variable number of columns, defined by the number of input channels, which
represent the data that entered through each input channel of the DAQ used.

• data_out: variable number of columns, defined by the number of output channels, which
represent the data that was sent to each output channel of the DAQ used.

The second type of file saves information related to the calibration of different parameters of
the model, and also contains a header row, which this time indicates the number of conductance
values that are stored (e.g. one for the electrical synapse, two for the chemical), while the
following rows have this structure:

• ecm: mean squared error between the voltages of the real neuron and the model.

• extra: auxiliary parameter.

• g_real_to_virtual: variable number of columns, defined by the number of conduc-
tances, which represent the value of those from the real neuron to the model.

• g_virtual_to_real: variable number of columns, defined by the number of conduc-
tances, which represent the value of those from the model to the real neuron.

There exists a third file in the same directory, named summary.txt, which stores some useful
data from each execution of the program, as the model and synapse type used, the sample
frequency in kHz, the duration of the run, if the neurons behaviours were in antiphase, the
calibration mode, the model jump points (this will be explained shortly) or the bursts duration.
The writer_thread functions receives as an argument a pointer to writer_args, an structure
which contains all the information it needs, such as the file names or the number of input and
output channels. First, it creates the necessary files and adds the execution information to the
summary, then it enters the loop to read the data sent by the real-time thread in the queue
(which will block until there is some data to read) and prints it row by row in the files. The
pseudocode for this function can be found in algorithm 4.1.

CHAPTER 4. NEURON MODEL LIBRARY IMPLEMENTATION 37

Real-time software technology and its use in experimental neuroscience

Algorithm 4.1: writer_thread
1 input: writer_args
2 begin
3

4 filename_1 = writer_args.filename + _1.txt
5 filename_2 = writer_args.filename + _2.txt
6 filename_3 = writer_args.path + /summary.txt
7

8 f1 = file_open(filename_1, w)
9 f2 = file_open(filename_2, w)

10 f3 = file_open(filename_3, a)
11

12 print_to_file(f3 , data_to_f3)
13 file_close (f3)
14

15 for (i = 0; i < (5 ∗ writer_args.freq + writer_args.points) ∗ writer_args.s_points; i++)
16 if (i % writer_args.s_points == 0)
17 message = receive_from_queue(writer_args.msqid)
18

19 if (i == 0)
20 print_to_file(f1 , message.n_in_chan, message.n_out_chan)
21 print_to_file(f2 , message.n_g)
22 end
23

24 print_to_file(f1 , data_to_f1)
25 print_to_file(f2 , data_to_f2)
26

27 for (j = 0; j < message.n_in_chan; j++)
28 print_to_file(f1 , message.data_in[j]
29 end
30

31 for (j = 0; j < message.n_out_chan; j++)
32 print_to_file(f1 , message.data_out[j]
33 end
34

35 for (j = 0; j < message.n_g; j++)
36 print_to_file(f2 , message.g_real_to_virtual[j]);
37 print_to_file(f2 , message.g_virtual_to_real[j]);
38 end
39 end
40 end
41

42 file_close (f1)
43 file_close (f2)
44 end

On the other hand, rt_thread handles the logic of the program, executes the periodic loop
with the model that represents the virtual neuron and connects it to the real one. Its input
argument is a pointer to rt_args, a structure that stores the basic information for the execution
(points to calculate, input and output channels, sample frequency, etc) but also the essential
model data, such as arrays with its variables and parameters, the dimension (number of vari-
ables), the integration step to be used and pointers to the appropriate functions for the model
(as described in table 4.1). Since the model functions are declared as pointers to function and
they all share a common structure, their use is transparent and in the context of the real-time
thread there is no difference in using one or another.

Another relevant aspect of the code is the s_points variable. Some computational neuron
models, as the Izhikevich or Hindmarsh-Rose ones, generate more points than real neurons
(depending on the integration step) during the data acquisition and response cycle. To deal
with this, the solution is to not send all the points generated by the model, since it calculates
more points than necessary due to its high integration precision, but only the needed to match
the real neuron bursting duration and frequency. Therefore s_points represents how many
points of the model should be skipped and is use in a module operation: if iteration_counter
mod s_points is equal to zero, the point have to be sent 4.4. Is in this case when

38 CHAPTER 4. NEURON MODEL LIBRARY IMPLEMENTATION

Real-time software technology and its use in experimental neuroscience

1. The task sleeps until the target time is reached.

2. The latency between the expected and real waking up times is calculated.

3. All the data that needs to be put in the queue is inserted in the message structure.

4. The synaptic current that is going to be injected in the real neuron is calculated.

5. This current and the model voltage are stored in the array to be written into the DAQ (it
has been fixed that the current goes through the first output channel available, and the
voltage through the second).

6. The previous data is written into the DAQ using the Comedi functions.

7. The message is sent to the queue. This function is non-blocking, meaning that if the data
can not be inserted in the queue the process will go on without halting.

8. The target time is incremented another period.

9. Data from the DAQ is read using the Comedi functions (it has been fixed that the current
of the external neuron comes through the first available channel).

The synaptic current from the real neuron to the model is calculated and the model calculates
a point in any case, regardless the point is going to be used or not. It is also desirable to record
the isolated behaviour of both neurons before connecting them, so the loop is repeated twice,
but the first time it just runs for five seconds and the injecting currents are keep at 0.

60

40

20

0

20

Vo
lta

ge
 (m

V)

Izhikevich model with and without temporal scaling

0 5000 10000 15000 20000 25000 30000 35000
Time (ms)

80

60

40

20

0

20

Vo
lta

ge
 (m

v)

Figure 4.4: Comparison between an Izhikevich model sending every point generated (and sleeping
after that) (a), and another skipping 11 points to have the same bursting behaviour as an
electronic neuron (b).

Note that two neurons or models do not have to be necessarily in the same range, either be-
cause they work in a different order of magnitude or even because these values are dimensionless.

CHAPTER 4. NEURON MODEL LIBRARY IMPLEMENTATION 39

Real-time software technology and its use in experimental neuroscience

The time scales can also be very different. In any case, the signals must be scaled and adjusted
to each other to have a proper neural interaction. As s_points is used to perform some temporal
adjustment, other variables are included in the code to do the same task over the model values
and parameters. All the calibration work included in the code, and used in the validation tests
that will be described in Chapter 5, is part of the project "Algoritmos para el establecimiento
de conexiones neuronales híbridas" [Reyes-Sanchez, 2017], and thus have not been described in
this work.

Algorithm 4.2: rt_thread
1 input: rt_args
2 begin
3 message.n_in_chan = rt_args.n_in_chan;
4 message.n_out_chan = rt_args.n_out_chan;
5

6 d = open_device_comedi(dev_name)
7 session = create_session_comedi(d)
8

9 prepare_real_time()
10

11 start_time = get_time()
12 target_time = start_time + period
13

14 for (i = 0; i < 5 ∗ rt_args−>freq ∗ rt_args.s_points; i++)
15 if (i % rt_args.s_points == 0)
16 sleep_until(target_time)
17 awake_time = get_time()
18

19 message.id = 1
20 message.i = i
21 message.v_model = rt_args.vars[0]
22 message.v_model_scaled = rt_args.vars[0] ∗ scale
23 message.lat = awake_time − target_time
24 message.t_absol = awake_time − start_time
25 message.t_unix = awake_time
26 message.g_virtual_to_real = g_virtual_to_real
27 message.g_real_to_virtual = g_real_to_virtual
28

29 c_model = 0
30 out_val[0] = c_model
31 out_val[1] = v_model_scaled
32 message.in_data = ret_val
33 message.out_data = out_val
34

35 write_comedi(session, rt_args−>n_out_chan, rt_args−>out_channels, out_val)
36

37 send_to_queue(rt_args.msqid, message)
38

39 target_time = target_time + period
40

41 ret_val = read_comedi(session, args.n_in_chan, args.in_channels)
42 end
43

44 v_real_scaled = ret_val[0] ∗ scale
45 c_real = 0
46 message.c_real = c_real;
47

48 rt_args.func(rt_args.dim, rt_args.dt, rt_args.vars, rt_args.params, c_real)
49 end
50

51 for (i = 0; i < rt_args.points ∗ rt_args.s_points; i++)
52 if (i % rt_args.s_points == 0)
53 sleep_until(target_time)
54 awake_time = get_time()
55

56 message.id = 1
57 message.i = i
58 message.v_model = rt_args.vars[0]
59 message.v_model_scaled = rt_args.vars[0] ∗ scale
60 message.lat = awake_time − target_time

40 CHAPTER 4. NEURON MODEL LIBRARY IMPLEMENTATION

Real-time software technology and its use in experimental neuroscience

61 message.t_absol = awake_time − start_time
62 message.t_unix = awake_time
63 message.g_virtual_to_real = g_virtual_to_real
64 message.g_real_to_virtual = g_real_to_virtual
65

66 c_model = rt_args.syn(v_model_scaled, v_real)
67 out_val[0] = c_model
68 out_val[1] = v_model_scaled
69 message.in_data = ret_val
70 message.out_data = out_val
71

72 write_comedi(session, rt_args−>n_out_chan, rt_args−>out_channels, out_val)
73

74 send_to_queue(rt_args.msqid, message)
75

76 target_time = target_time + period
77

78 ret_val = read_comedi(session, args.n_in_chan, args.in_channels)
79 end
80

81 v_real_scaled = ret_val[0] ∗ scale
82 c_real = rt_args.syn(v_real_scaled, v_model)
83 message.c_real = c_real;
84

85 rt_args.func(rt_args.dim, rt_args.dt, rt_args.vars, rt_args.params, c_real)
86 end
87

88 close_device_comedi(d)
89 end

Even with all the work carried out during an iteration of the loop (calibration, reading and
writing from DAQ, sending to the queue, etc) and the calculation of the model itself, most of
the time is spent sleeping, as can be seen in figure 4.5. More than a half of it, the process is
waiting, and the model takes less than a twentieth part of the period to complete its job (this
may variate depending on the model used). Nevertheless, this execution of the program was
using a frequency of 10 kHz, so implementations of more consuming time models or operations
with higher frequencies may lead to more severe artifacts.

0.0699 0.0995 0.1000
Time (ms)

Sleep

Others

Model

Figure 4.5: Mean time (and standard deviation) spent by the sleeping function, the calculation
of the model (Izhikevich) and the rest of the operations during a 0.1 ms iteration of the loop.
The values were calculated after a two minutes execution.

Algorithm 4.2 shows the pseudocode for the real-time periodic function. Implementation of
this code in the different platforms (Preempt-RT, RTAI and Xenomai) is almost the same, just
existing differences in the time related functions and structures (specified in table 3.1) and the
IPC functions used. In order to make the rt_thread as generic as possible, the queue-related
functions (open_queue, close_queue, send_to_queue and receive_from_queue) are included in
a separate file, queue_functions.c, which implements the specific IPC methods for each solution,
while in the periodic function the calls are transparent and the same for any of them. RTAI uses

CHAPTER 4. NEURON MODEL LIBRARY IMPLEMENTATION 41

Real-time software technology and its use in experimental neuroscience

their own implementation of real-time queues in rt_thread, reading from it like from a file in
the writer_thread. Xenomai POSIX skin [Xenomai Team, 2016a] includes its message queues
services, which has been used, with the drawback of having to set the queue itself as blocking or
not, but not the specific calls to the send and receive functions. Because of this, in the Preempt-
RT code the System V message queues have been used, as they offer the same functionality but
with that problem solved. Table 4.2 summarises these functions for each environment.

Table 4.2: IPC functions used by the different real-time solutions

Preempt-RT RTAI Xenomai
(POSIX skin)

Open msgget rtf_create mq_open
Close msgctl close mq_close
Send msgsnd rtf_put mq_send
Receive msgrcv read mq_receive

4.4 Main program

Finally, the last piece of code is the main.c file, the entry point to the program. It can receive
the input arguments listed below:

• -f, –frequency: sample frequency (in kHz). Default value is 10.

• -t, –time: simulation time (in seconds). Default value is 0.

• -m, –model: neuron model (0 = Izhikevich, 1 = Hindmarsh-Rose, 2 = Rulkov Map).
Default value is 0.

• -s, –synapse: synapse type (0 = electrical, 1 = chemical). Default value is 0.

• -i, –input_channels: input channels, separated by commas (e.g. 0,2,3,7). By default is
empty, which means no input.

• -o, –output_channels: output channels, separated by commas (e.g. 0,2,3,7). By default
is empty, which means no output.

• -a, –antiphase: turn on antiphase in electrical synapse (phase in the chemical). Default
value is 0.

• -c, –calibration: automatic calibration process. Default value is 0.

• -h, –help: print help.

After receiving and parsing the input arguments, the main function initialises the rt_args
and writer_args structures with the appropriate values for each model, creates the corresponding
message queue and threads and waits until both of them are done to finish the execution of the
program. One more latency test was run in order to check the impact that the addition of
all this new code, and specially the Comedi input/output functions, implies to the real-time
performance of the algorithm. The version tested was the one for Preempt-RT, in the same
computer as in Chapter 3 (Intel I7 processor), with similar outcome (see figure 4.6).

As stated in previous chapters, an RTAI program can work in two different environments: the
kernel space and the user space. User space real-time with RTAI is achieved by using the LXRT

42 CHAPTER 4. NEURON MODEL LIBRARY IMPLEMENTATION

Real-time software technology and its use in experimental neuroscience

0 5 10 15 20
Latencies (s)

10 1

100

101

102

103

104

105

106

107
Oc

ur
re

nc
es

Model and electronic neuron connected by chemical synapse latencies

Figure 4.6: Latencies during a 20 minutes two-neuron interaction between an Izhikevich model
and an electronic neuron, connected by a chemical synapse. Sysbench workload was running on
a Intel I7 processor.

module, but is also quite easy in this mode to do something that makes the task to not respect
the temporal restrictions strictly, and even in the documentation its use is not recommended
but for seasoned RTAI programmers. Thus, a kernel space execution is preferred to ensure the
hard real-time boundaries, and therefore the program must be implemented as a kernel module.
Nevertheless, kernel programming have its own drawbacks [Salzman et al., 2007], as it can not
use functions or structures than are not loaded into kernel themselves, like for example printf
or fprintf, so communication with the kernel is done via the /proc files [Jones, 2006]. Special
directives, like EXPORT_SYMBOL, make the selected elements of a module to be available for
others when it is loaded into kernel. The load operation is done through the insmod command
(e.g. sudo insmod ./RTTask.ko), and it can be removed from kernel with the instruction rmmod
(e.g. sudo rmmod RTTask).

Every module implementation has an init function, called when the module is loaded, that
performs the first instructions of the program (in our case, starting a real-time thread, for
example), and an exit function, called when rmmod is executed. These characteristics of kernel
programming cause the RTAI kernel module to be a bit different from the versions for Preempt-
RT and Xenomai: in the main function, the real-time thread creation should be replaced by
a system call to insmod, to load the kernel module which will create that thread, and also all
the auxiliary files (comedi_functions, model_library, etc) have to be loaded into kernel, with
the necessary symbols exported. The writer_thread can be created as always, and when the
execution is finished another system call should be performed to remove the modules from
kernel.

CHAPTER 4. NEURON MODEL LIBRARY IMPLEMENTATION 43

Real-time software technology and its use in experimental neuroscience

44 CHAPTER 4. NEURON MODEL LIBRARY IMPLEMENTATION

5
Validation tests

In this chapter all the work developed in the previous pages will be tested and validated in
various scenarios. The different setups, tools and technologies that will be used are detailed and
explained, as well as the results obtained. Three experiments will be carried out:

• Stepper motor experiment: to validate the need of real-time technology on systems
with low frequency activities in a device used for mechanical stimulation in neuroscience
experiments.

• Electronic neuron experiments: to perform preliminary trials with an external neuron
before implementing an hybrid circuit with living neurons.

• Real neuron hybrid circuit experiments: to validate the need of real-time technology
on systems with high frequency activities, and therefore high precision requirements.

Clarify that in all following figures the blue signal represents the voltage generated by the
model or the current injected to the biological neuron, while the orange one represents the
opposite direction.

5.1 Stepper motor experiment

5.1.1 Setup

As mentioned in section 2.1, electrophysiology is not the only recording technique in neuroscience
that can benefit from real-time software. In order to check the impact of this kind of technology
over a different target, this time a mechanical stimulation device, part of the content of [Muñiz
et al., 2008] was reproduced. The aim of that work is to use a stepper motor to perform
mechanical stimulation in neuroscience experiments, and to have precise control over the device
they use a real-time program, working over RTAI and a Pentium 4 with 3.2 GHz uniprocessor.
For this trial their original code has been ported to a POSIX/Preempt-RT version, and proved in
a computer with the same specifications, as well as the one detailed in section 3.2.4. The stepped
motor used was a Mclennan 2400 stepper motor P535L482U-G17L82 (Mclennan Servo Supplies
Ltd., Surrey, UK), a unipolar-geared stepper motor with 2400 steps per revolution which can
receive 200 commands per second at most.

45

Real-time software technology and its use in experimental neuroscience

5.1.2 Results

Both their RTAI code and the Preempt-RT one worked perfectly in real-time environments.
With no real-time, in the Pentium 4 computer the average latency was 4720.84 µs and the
latency values distribution is shown in figure 5.1a, so in this case the use of real-time technology
to control the mechanism with precision is necessary, as stated in the paper. But when the same
test was repeated in the newer computer, the mechanism worked just fine even without ensuring
the compliance of the temporal boundaries. The average latency obtained with the standard
Debian OS (having overloaded the processor using Sysbench) was 2.88 µs, and their distribution
can be seen in figure 5.1b.

0 5000 10000 15000 20000 25000 30000
Latencies (s)

10 1

100

Oc
ur

re
nc

es

Stepper motor with Pentium 4 latencies

(a) Pentium 4 latencies.

0 5 10 15 20 25 30
Latencies (s)

10 1

100

101

102

103

104

Oc
ur

re
nc

es

630 635

Stepper motor with I7 latencies

(b) I7 latencies.

Figure 5.1: Latency values distribution during the stepper motor experiment without real time.

It seems clear that some experiments with low frequency performance, even if not so many
years ago required precise real-time technology, now can work just fine with an standard system
[Fry et al., 2008]. The reasons of this improvement in the OS capabilities are numerous, like
the enhancement of the hardware technology (more GHz and cores, for example) but also of the
software, since, as mentioned in section 2.2, nowadays the 80% of the kernel changes that allow
Linux to become an RTOS with the Preempt-RT patch are already included in the mainline
kernel. It is important to emphasize that other stimulation devices, frequently used in closed-
loop with electrophysiological recordings whose detection events require real-time restrictions,
may in any case require the use of RTOS solutions.

5.2 Electronic neuron experiments

5.2.1 Setup

As mentioned in the first chapters of this report, implementing an analog hardware-based model
that works in real-time is easier than a computational version, but it is less programmable and
manageable. Even so, an analog device is very useful for preliminary tests, since they are small,
simple, inexpensive and easy to connect to other devices [Pinto et al., 2000]. For this experiment
an electronic implementation of a three-dimensional Hindmarsh-Rose model, which can have its
I parameter (external input current) adjusted, has been used. The model frequency for all the
trials was 10 kHz. The computer used for these experiments had the following characteristics:

46 CHAPTER 5. VALIDATION TESTS

Real-time software technology and its use in experimental neuroscience

• Processor: Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, 8 hyperthreaded cores (4 phys-
ical).

• RAM memory: 16 GB.

• Operating system: Debian GNU/Linux 9.0 (stretch), kernel 4.9.0-3-rt-amd64 PRE-
EMPT RT.

• DAQ: National Instruments’ PCI NI BNC-2090A.

5.2.2 Results

As has been mentioned earlier, Hindmarsh-Rose model is not very flexible, i.e. the length of
its bursts can be modified, but the slow wave after them remains immovable. Therefore, it is
difficult to provoke big changes in its subthreshold behaviour, but it is still a good scenario to
test the basic functioning of both electrical and chemical synapse. Figure 5.2 shows an example
of an electrical synapse, between a computational Izhikevich model and an external electronic
neuron, with conductances in both ways having value g = 0.3, and each current having opposite
signs to cause the antiphase behaviour. In figure 5.3 an example of chemical synapse can be
seen, again between a computational Izhikevich model and the electronic neuron. The model
sends current to the external one using a fast synapse with conductance g = 0.2, while the other
way round is a slow synapse with the same conductance. The chemical synapse implemented is
an inhibitory one (hence always negative) and if two neurons inhibit themselves mutually using
this connection an antiphase behaviour is also obtained. The temporal precision achieved by
the model results in free of artefacts signals.

5.0

2.5

0.0

2.5

5.0

Vo
lta

ge
 (m

V)

Izhikevich model - Electronic neuron with electric synapse (antiphase)
Model
Real

9000 9200 9400 9600 9800
Time (ms)

4

2

0

2

4

Cu
rre

nt

Model
Real

Figure 5.2: A computational Izhikevich model connected to an electronic neuron through an
electric synapse.

5.3 Real neuron hybrid circuit experiments

With the performance of the real-time software tested in Chapter 3, the reliability of the neuron
models implemented proven in Chapter 4 and the correct connection between neurons through

CHAPTER 5. VALIDATION TESTS 47

Real-time software technology and its use in experimental neuroscience

4

2

0

2

4

6

Vo
lta

ge
 (m

V)

Izhikevich model - Electronic neuron with chemical synapse
Model
Real

22000 22200 22400 22600 22800 23000
Time (ms)

1.25

1.00

0.75

0.50

0.25

0.00

Cu
rre

nt

Model
Real

Figure 5.3: A computational Izhikevich model connected to an electronic neuron through a
chemical synapse.

different kinds of synapses just confirmed in section 5.2 it is time to test the neuron models
library in a hybrid circuit implementation with a real neuron.

5.3.1 Setup

Central pattern generators, commonly known as CPGs, are neural networks which control cer-
tain motor functions (such as walking, swimming, breathing, etc) through the generation of
rhythmic patterns [Marder and Eisen, 1984] [Grillner, 2003]. They typically possess what is
called a non-open topology, i.e. every neuron has at least one synaptic input from another
neuron of the circuit [Huerta et al., 2001]. At the same time this architecture is based in os-
cillatory circuits with pairs of neurons that inhibit themselves mutually [Miller and Selverston,
1982] [Sakurai et al., 2014]. Despite of this networks being formed by neurons with irregular
dynamics, the reciprocal inhibition between them causes them to regularize their behaviours
when they are connected to other neurons of the circuit [Elices and Varona, 2015]. This rhythm
negotiation in terms of the inputs, which derives in regular rhythmic patterns, is the reason why
CPGs can coordinate motor functions [Selverston et al., 2000].

The biological component of the experiment is obtained using in vitro electrophysiology from
a Carcinus maenas, commonly known as shore crab, which are bought in a local fish store and
are kept in artificial sea water. The neural circuit that will be used for the validation tests are
the pyloric and gastric CPGs from the stomatogastric ganglion. Before the procedure, the crab
is anesthetized by introducing it in the freezer for 20/30 minutes, and after this its stomach
is extracted. The ganglion is attached to a Petri with Sylgard and cold saline dissolution (13-
15oC kept by a microcontroller and always perfused) using pins. This saline dissolution has the
following composition (in mmol/l): NaCl 433, KCl 12, CaCl2.2H2O 12, MgCl2.6H2O 20, Hepes
10. To adjust the pH to 7.4-7.6, NaOH 0.1 M is added. To record the intracellular activity
10MΩ crystal electrodes are used, filled with KCl 2 M.

The following tests have been carried out using one of the neurons of a pyloric CPG, specif-
ically the one named LP, as the one shown in figure 5.5. Being a real neuron, its behaviour it is

48 CHAPTER 5. VALIDATION TESTS

Real-time software technology and its use in experimental neuroscience

(a) Carcinus maenas. (b) Stomatogastric ganglion.

Figure 5.4: Pictures of the crab used in the experiments and its stomatogastric ganglion seen
through the microscope.

not always perfect and can be affected by the environment conditions or the experiments that
had taken place before, so it variate a little during the trials. The model frequency for all the
trials was 10 kHz. The computer used was the same as in section 5.2.

Figure 5.5: Pyloric CPG and representation of some of its neuronal behaviour.

5.3.2 Results

The first model tested was Izhikevich, using different configurations. Figure 5.6 shows the
interaction between the model and the LP neuron using an electric synapse, with conductances
g = 0.2 from the model to the real neuron and g = 0.3 the other way around, no antiphase
behaviour caused. Figure 5.7 a represents similar case but provoking antiphase rhythm, this
time using g = 0.2 conductances in both ways. The last trial carried out was with a chemical
synapse, specifically a fast synapse from the real neuron to the virtual with conductance g =
0.2, and a slow one with g = 0.02 in the other direction, as can be seen in figure 5.8. It can
be seen that the expected rhythm negotiation of the biological circuits is reproduced in these
hybrid circuits, i.e. phase and antiphase coupling can be achieved with electrical synapse, and
a regular rhythmic pattern is obtained when chemical synapse is used.

CHAPTER 5. VALIDATION TESTS 49

Real-time software technology and its use in experimental neuroscience

5.5

5.0

4.5

4.0
Vo

lta
ge

 (m
V)

Izhikevich model - LP neuron with electric synapse (no antiphase)
Model
Real

16000 17000 18000 19000 20000
Time (ms)

0.2

0.0

0.2

Cu
rre

nt

Model
Real

Figure 5.6: A computational Izhikevich model connected to a LP neuron through an electric
synapse. Conductances g = 0.2 from the model to the neuron and g = 0.3 in the other way.

5.5

5.0

4.5

4.0

3.5

Vo
lta

ge
 (m

V)

Izhikevich model - LP neuron with electric synapse (antiphase)
Model
Real

23000 23500 24000 24500 25000 25500 26000
Time (ms)

0.4

0.2

0.0

0.2

0.4

Cu
rre

nt

Model
Real

Figure 5.7: A computational Izhikevich model connected to a LP neuron through an electric
synapse. Conductances g = 0.2 from the model to the neuron and g = 0.2 also in the other way,
but one synapse is positive and the other negative to cause the antiphase behaviour.

The next one was Hindmarsh-Rose model, and the same scenarios were studied. In figure
5.9 the electrical connection without antiphase, with conductances g = 0.2 from the model to
the LP and g = 0.3 in the other way. The case with antiphase can be seen in figure 5.10, this
time with g = 0.2 in both directions. Lastly, the chemical synapse experiment is shown in figure
5.11, with a fast connection from the real neuron to the virtual with g = 0.3 and a slow synapse
in the other direction with g = 0.1.

Finally, the last model tested was Rulkov Map, and the same strategy as with the other was

50 CHAPTER 5. VALIDATION TESTS

Real-time software technology and its use in experimental neuroscience

5.0

4.5

4.0

3.5

3.0

Vo
lta

ge
 (m

V)

Izhikevich model - LP neuron with chemical synapse
Model
Real

20500 21000 21500 22000 22500 23000
Time (ms)

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Cu
rre

nt

Model
Real

Figure 5.8: A computational Izhikevich model connected to a LP neuron through an chemical
synapse. From the real neuron to the model there is a fast synapse with conductance g = 0.2,
while from the virtual to the real there is a slow synapse with g = 0.02.

6.0

5.5

5.0

4.5

4.0

Vo
lta

ge
 (m

V)

Hindmarsh-Rose model - LP neuron with electric synapse (no antiphase)
Model
Real

19000 20000 21000 22000 23000 24000 25000
Time (ms)

0.4

0.2

0.0

0.2

0.4

Cu
rre

nt

Model
Real

Figure 5.9: A computational Hindmarsh-Rose model connected to a LP neuron through an
electric synapse. Conductances g = 0.2 from the model to the neuron and g = 0.3 in the other
way.

followed. The first experiment consisted of connecting the LP neuron with the model through
an electric synapse, with no antiphase, with similar g = 0.2 conductances in both direction, as
is shown in figure 5.12. For the antiphase case the conductances were quite asymmetric, with
the one from the real neuron to the virtual being g = 0.2 and the other g = 0.02, giving place
to the behaviour seen in figure 5.13. Last of all, the chemical synapse trial was done with the
same values as with Hindmarsh-Rose: from real to virtual, fast synapse with g = 0.3 and from

CHAPTER 5. VALIDATION TESTS 51

Real-time software technology and its use in experimental neuroscience

5.5

5.0

4.5

4.0

3.5
Vo

lta
ge

 (m
V)

Hindmarsh-Rose model - LP neuron with electric synapse (antiphase)
Model
Real

9000 9250 9500 9750 10000 10250 10500 10750
Time (ms)

0.4

0.2

0.0

0.2

0.4

Cu
rre

nt

Model
Real

Figure 5.10: A computational Hindmarsh-Rose model connected to a LP neuron through an
electric synapse. Conductances in both ways have value g = 0.2, but one synapse is positive and
the other negative to cause the antiphase behaviour.

6.0

5.5

5.0

4.5

4.0

3.5

3.0

Vo
lta

ge
 (m

V)

Hindmarsh-Rose model - LP neuron with chemical synapse
Model
Real

22000 22500 23000 23500 24000 24500
Time (ms)

0.4

0.3

0.2

0.1

0.0

Cu
rre

nt

Model
Real

Figure 5.11: A computational Hindmarsh-Rose model connected to a LP neuron through an
chemical synapse. From the real neuron to the model there is a fast synapse with conductance
g = 0.3, while from the virtual to the real there is a slow synapse with g = 0.1.

virtual to real, slow synapse with g = 0.1. Figure 5.14 shows the results.

During all these tests the real-time restrictions were respected, with latency values never
surpassing the 100 µs threshold. Just to illustrate this affirmation, the latency histograms
corresponding with figures 5.8, 5.7, 5.9, and 5.12 are shown in figure 5.15.

52 CHAPTER 5. VALIDATION TESTS

Real-time software technology and its use in experimental neuroscience

5.5

5.0

4.5

4.0

3.5

Vo
lta

ge
 (m

V)

Rulkov Map model - LP neuron with electric synapse (no antiphase)
Model
Real

20800 21000 21200 21400 21600 21800
Time (ms)

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Cu
rre

nt

Model
Real

Figure 5.12: A computational Rulkov Map model connected to a LP neuron through an electric
synapse. Conductances g = 0.2 from the model to the neuron and g = 0.3 in the other way.

6

5

4

3

Vo
lta

ge
 (m

V)

Rulkov Map model - LP neuron with electric synapse (antiphase)
Model
Real

10200 10400 10600 10800 11000 11200 11400 11600 11800
Time (ms)

0.4

0.2

0.0

0.2

0.4

0.6

Cu
rre

nt

Model
Real

Figure 5.13: A computational Rulkov Map model connected to a LP neuron through an electric
synapse. Conductances g = 0.02 from the model to the neuron and g = 0.2 in the other way.

Circuits without real-time

In order to test the real impact of not using a real-time platform during the electrophysiology
experiments, one more trial was conducted: a computational Izhikevich model was connected
with the previously used electronic neuron, and the model’s voltage was also sent to a second
computer, which recorded this signal. If everything work properly, both original and received
signal should be almost identical (but for the connection noise), both in shape and temporal
aspects. But if real-time is not ensured, and therefore high latency values appear, then some

CHAPTER 5. VALIDATION TESTS 53

Real-time software technology and its use in experimental neuroscience

6.0

5.5

5.0

4.5

4.0

3.5
Vo

lta
ge

 (m
V)

Rulkov Map model - LP neuron with chemical synapse

Model
Real

23000 23250 23500 23750 24000 24250 24500 24750
Time (ms)

0.4

0.3

0.2

0.1

0.0

Cu
rre

nt

Model
Real

Figure 5.14: A computational Rulkov Map model connected to a LP neuron through an chemical
synapse. From the real neuron to the model there is a fast synapse with conductance g = 0.3,
while from the virtual to the real there is a slow synapse with g = 0.1.

0 2 4 6 8 10 12
Latencies (s)

10 1

100

101

102

103

104

105

Oc
ur

re
nc

es

Izhikevich model - LP neuron with chemical synapse latencies

(a) Corresponds to figure 5.8.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Latencies (s)

10 1

100

101

102

103

104

105

Oc
ur

re
nc

es

Izhikevich model - LP neuron with electric synapse latencies

(b) Corresponds to figure 5.7.

0 5 10 15 20 25 30
Latencies (s)

10 1

100

101

102

103

104

105

Oc
ur

re
nc

es

Hindmarsh-Rose model - LP neuron with electric synapse (no antiphase) latencies

(c) Corresponds to figure 5.9.

0 5 10 15 20
Latencies (s)

10 1

100

101

102

103

104

105

Oc
ur

re
nc

es

Rulkov Map model - LP neuron with electric synapse (no antiphase) latencies

(d) Corresponds to figure 5.12.

Figure 5.15: Latencies for various of the hybrid circuits experiments performed.

points can be sent late, and the receiving computer will record the same point for some iterations,
until the new value arrives and the signal continues. This temporal delay will not be recovered
in the remaining execution. In figure 5.16 can be seen how this event occurs around 8320 ms,
and from this point the received signal have always a 6 milliseconds delay. The latency values
histogram is represented in figure 5.17.

54 CHAPTER 5. VALIDATION TESTS

Real-time software technology and its use in experimental neuroscience

8200 8300 8400 8500 8600 8700
Time (ms)

0.2

0.4

0.6

0.8

1.0

V
o
lt

a
g

e
Latency effect

Original

Received

Figure 5.16: Signal delay caused by high latency values. The blue signal was recorded in the
sending computer, while the orange one was the received in another one. After the real-time
error occurred at 8320 ms, the received signal has a delay of 6 ms for the rest of the execution.

0 5 10 15 20 25 30
Latencies (s)

10 1

100

101

102

103

104

105

Oc
ur

re
nc

es

1235 1240

Hybrid circuit without real-time latencies

Figure 5.17: Latency values during the hybrid circuit experiment without real-time.

CHAPTER 5. VALIDATION TESTS 55

Real-time software technology and its use in experimental neuroscience

56 CHAPTER 5. VALIDATION TESTS

6
Conclusions and future work

6.1 Conclusions

The first goal of this work was to compare different RTOS solutions and list their advantages
and disadvantages. The three tools analyzed have been RTAI, Xenomai and Preempt-RT, since
they are free and open-source and work over Linux, which also share this characteristics. If
the capacity of complying the temporal restrictions is studied, the best performance is given by
the dual-kernel implementations, especially RTAI (under 5 µs), followed by Xenomai (under 10
µs). Preempt-RT obtains higher latency values (around 30 µs, can reach 80 µs) than the other
alternatives, but still could be a reasonable choice for most neuroscience closed-loop experiments.
In terms of usability and accessibility, Preempt-RT wins by far, since in usage aspects is just a
standard Linux OS and its installation for some distributions is really easy, while Xenomai and
RTAI both are quite difficult to install, even having previous experience in Computer Science
and following detailed instructions, and only work through their own special programming APIs.
Another strong point in favour of Preempt-RT is that it nowadays is a Linux Foundation project,
meaning that the maintenance and supporting is greater than the ones for RTAI and Xenomai.
This work has also shown that the same code can be used in Linux with Preempt-RT and
without real-time scenarios, while RTAI and Xenomai codes only work on those platforms and
in real-time. This versatility favours the spread of protocols in different kinds of applications,
which can be run by any UNIX user, with real-time if they need it, or not.

It is important to mention that isolating a core and setting the affinity of a process to it does
not improve its temporal performance in real-time platforms (when possible). In a standard OS
without real-time it does not prevent root processes of using the isolated core, thus the latency
values are not predictable, but at least user tasks will not interfere so in some machines it can
help to achieve soft real-time.

Once the real-time platforms had been compared, the next objective was to development an
stand-alone command-line neuron models library which used this technology. The main version
of it was implemented for Preempt-RT for the reasons just mentioned, and then ported to RTAI
and Xenomai. Rulkov Map, Izhikevich and Hindmarsh-Rose models were implemented, as well
as the electrical and gradual chemical synapses, using in all cases C programming language,
since it fits the temporal requirements quite well and is also the one used by the dual-kernel
solutions APIs. In this version, also the automatic calibration work from [Reyes-Sanchez, 2017]

57

Real-time software technology and its use in experimental neuroscience

was implemented. To connect the computer to other neurons a DAQ device is needed, and in
this case the one used was a National Instruments’ PCI NI BNC-2090A, controlled through the
open-source Comedi drivers. The singularities of RTAI and Xenomai APIs (in addition to the
lack of documentation an examples in many cases) makes it more difficult to program for this
environments. In particular, the best way to ensure the compliance of the temporal boundaries
in RTAI is to develop the program as a kernel module, thus having several limitations. The
program also record relevant information of each experiments, as the values of the signals or the
parameters used, which is really important in closed-loop.

Finally, different trials were carried out in order to validate the correct behaviour of the real-
time library developed. From the results of those tests the proper functioning of the program was
checked, for every neuron and synapse model, building a hybrid circuit both with an electronic
neuron and a biological one. Another observation that can be drawn from these experiments is
that not all the closed-loop neuroscience experiments require an RTOS implementation to its
proper execution with the actual computer performance, as the stepper motor case, simulations
(which can be faster or slower depending the case), or the ones whose real-time performance rely
on hardware components. Others will require stricter temporal boundaries, as electrophysiology
ones, hence standardized real-time software technology for neuroscience closed-loop experiments
would come in handy for many laboratories and researchers that nowadays find it difficult to
deal with these tools.

6.2 Future work

This work was developed as a first approach to a project that will be continued in a PhD thesis,
and hence there is plenty future work to be done:

• First of all, optimize the neuron model library, as well as improve some aspects of its usage.

• Implement all the features of the program also in RTAI and Xenomai, including the cali-
bration functions.

• Add more models, both of neurons and synapses, to the library.

• Add the model library to the RTBiomanager software developed by the GNB in [Muñiz
et al., 2009], which nowadays works on RTAI, so it should also be ported to Xenomai and
Preempt-RT. most closed-loop protocols would benefit from graphic tools for the design
and visualization of its performance.

• Dissemination of the technology and use of other recording techniques: optogenetics, video,
BCI, behaviour experiments, etc.

In summary, in the future more work in order to design and implement standardized real-time
software technology, easy to install and use for any kind of user is needed. If this is achieved,
many researching groups and laboratories would see feasible to perform closed-loop experiments
for online control and interaction in different fields, from mechanical or visual stimulation, BCI
interactions or, of course, electrophysiology.

58 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Bibliography

Rafael V Aroca and Glauco Caurin. A Real Time Operating Systems (RTOS)
Comparison. 2009. URL http://home.iitj.ac.in/{~}saurabh.heda/Papers/Survey/
RTOSPerformanceComparison-2008.pdf.

Cédric Arrouët, Marco Congedo, Jean-Eudes Marvie, Fabrice Lamarche, Anatole Lécuyer, and
Bruno Arnaldi. Open-ViBE: A Three Dimensional Platform for Real-Time Neuroscience.
Journal of Neurotherapy, 9(1):3–25, jul 2005. doi: 10.1300/J184v09n01_02. URL http:
//www.isnr-jnt.org/article/view/16837.

A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A. Soppelsa, and C. Taliercio. Performance
Comparison of VxWorks, Linux, RTAI, and Xenomai in a Hard Real-Time Application. IEEE
Transactions on Nuclear Science, 55(1):435–439, 2008. ISSN 0018-9499. doi: 10.1109/TNS.
2007.905231. URL http://ieeexplore.ieee.org/document/4448543/.

Jennifer A. Bauer, Katherine M. Lambert, and John A. White. The past, present, and future of
real-time control in cellular electrophysiology. IEEE Transactions on Biomedical Engineering,
61(5):1448–1456, 2014. ISSN 15582531. doi: 10.1109/TBME.2014.2314619.

István Biró and Michele Giugliano. A reconfigurable visual-programming library for real-time
closed-loop cellular electrophysiology. Frontiers in neuroinformatics, 9:17, 2015. doi: 10.
3389/fninf.2015.00017. URL http://www.ncbi.nlm.nih.gov/pubmed/26157385http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4477165.

G. Bollella and J. Gosling. The real-time specification for Java. Computer, 33(6):47–54, jun 2000.
ISSN 00189162. doi: 10.1109/2.846318. URL http://ieeexplore.ieee.org/document/
846318/.

Frédéric D Broccard, Siddharth Joshi, Jun Wang, and Gert Cauwenberghs. Neuromorphic neural
interfaces: from neurophysiological inspiration to biohybrid coupling with nervous systems.
Journal of Neural Engineering, 2017. URL http://iopscience.iop.org/1741-2552/14/4/
041002.

Alan Burns and Andrew J. Wellings. Real-time systems and programming languages : Ada,
Real-Time Java and C/Real-Time POSIX. Addison-Wesley, 2009. ISBN 9780321417459.
URL https://www.cs.york.ac.uk/rts/books/RTSBookFourthEdition.html.

Pablo Chamorro, Rafael Levi, Francisco B Rodríguez, Reynaldo D Pinto, and Pablo Varona.
Real-time activity-dependent drug microinjection. BMC Neuroscience, 10(Suppl 1):P296,
2009. ISSN 1471-2202. doi: 10.1186/1471-2202-10-S1-P296. URL http://bmcneurosci.
biomedcentral.com/articles/10.1186/1471-2202-10-S1-P296.

Pablo Chamorro, Carlos Muñiz, Rafael Levi, David Arroyo, Francisco B. Rodriguez, and Pablo
Varona. Generalization of the Dynamic Clamp Concept in Neurophysiology and Behavior.
PLoS ONE, 7(7):e40887, jul 2012. doi: 10.1371/journal.pone.0040887. URL http://dx.
plos.org/10.1371/journal.pone.0040887.

59

http://home.iitj.ac.in/{~}saurabh.heda/Papers/Survey/RTOS Performance Comparison -2008.pdf
http://home.iitj.ac.in/{~}saurabh.heda/Papers/Survey/RTOS Performance Comparison -2008.pdf
http://www.isnr-jnt.org/article/view/16837
http://www.isnr-jnt.org/article/view/16837
http://ieeexplore.ieee.org/document/4448543/
http://www.ncbi.nlm.nih.gov/pubmed/26157385 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4477165
http://www.ncbi.nlm.nih.gov/pubmed/26157385 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4477165
http://ieeexplore.ieee.org/document/846318/
http://ieeexplore.ieee.org/document/846318/
http://iopscience.iop.org/1741-2552/14/4/041002
http://iopscience.iop.org/1741-2552/14/4/041002
https://www.cs.york.ac.uk/rts/books/RTSBookFourthEdition.html
http://bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-10-S1-P296
http://bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-10-S1-P296
http://dx.plos.org/10.1371/journal.pone.0040887
http://dx.plos.org/10.1371/journal.pone.0040887

Real-time software technology and its use in experimental neuroscience

Kenneth S. Cole and Howard J. Curtis. ELECTRIC IMPEDANCE OF THE SQUID GIANT
AXON DURING ACTIVITY. The Journal of General Physiology, 22(5), 1939. URL http:
//jgp.rupress.org/content/22/5/649.

Ellen Covey and Matt Carter. Basic electrophysiological methods. 2015. ISBN 9780199939862.
URL http://www.worldcat.org/title/basic-electrophysiological-methods/oclc/
900633113.

Alain Destexhe and Thierry. Bal. Dynamic-clamp : from principles to applica-
tions. Springer, 2009. ISBN 9780387892795. URL https://books.google.es/
books?hl=es{&}lr={&}id=MpMesDViO00C{&}oi=fnd{&}pg=PR4{&}dq=destexhe+dynamic+
clamp{&}ots=j2diXUpJc0{&}sig=HpJizP5Jt{_}BbCg043Ak3fYBPxh4{#}v=onepage{&}q=
destexhedynamicclamp{&}f=false.

Sven-Thorsten Dietrich and Daniel Walker. The Evolution of Real-Time Linux. 2005. URL http:
//linuxdevices.linuxgizmos.com/ldfiles/rtlws-2005/SvenThorstenDietrich.pdf.

Alan D Dorval, David J Christini, and John A White. Real-Time Linux Dynamic Clamp: A Fast
and Flexible Way to Construct Virtual Ion Channels in Living Cells. 2001. doi: 10.1114/1.
1408929ÍŤ. URL https://link.springer.com/content/pdf/10.1114{%}2F1.1408929.pdf.

Lorenzo Dozio and Paolo Mantegazza. Linux Real Time Application Interface (RTAI) in low
cost high performance motion control. 2003.

Irene Elices and Pablo Varona. Closed-loop control of a minimal central pattern generator
network. Neurocomputing, 170:55–62, dec 2015. ISSN 09252312. doi: 10.1016/j.neucom.2015.
04.097. URL http://linkinghub.elsevier.com/retrieve/pii/S0925231215008796.

Irene Elices and Pablo Varona. Asymmetry Factors Shaping Regular and Irregular Burst-
ing Rhythms in Central Pattern Generators. Frontiers in computational neuroscience, 11:
9, 2017. doi: 10.3389/fncom.2017.00009. URL http://www.ncbi.nlm.nih.gov/pubmed/
28261081http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5311053.

R Fitzhugh. Impulses and Physiological States in Theoretical Models of Nerve
Membrane. Biophysical journal, 1(6):445–66, jul 1961. ISSN 0006-3495. URL
http://www.ncbi.nlm.nih.gov/pubmed/19431309http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=PMC1366333.

Felix Franke, David Jäckel, Jelena Dragas, Jan Müller, Milos Radivojevic, Douglas Bakkum, and
Andreas Hierlemann. High-density microelectrode array recordings and real-time spike sorting
for closed-loop experiments: an emerging technology to study neural plasticity. Frontiers in
Neural Circuits, 6:105, 2012. ISSN 1662-5110. doi: 10.3389/fncir.2012.00105. URL http:
//journal.frontiersin.org/article/10.3389/fncir.2012.00105/abstract.

Steven N. Fry, Nicola Rohrseitz, Andrew D. Straw, and Michael H. Dickinson. TrackFly: Virtual
reality for a behavioral system analysis in free-flying fruit flies. Journal of Neuroscience
Methods, 171(1):110–117, 2008. ISSN 01650270. doi: 10.1016/j.jneumeth.2008.02.016. URL
http://www.sciencedirect.com/science/article/pii/S0165027008001210.

Borko Furht, Dan Grostick, David Gluch, Guy Rabbat, John Parker, and Meg
McRoberts. Introduction to Real-Time Computing. pages 1–35. Springer US,
1991. doi: 10.1007/978-1-4615-3978-0_1. URL http://link.springer.com/10.1007/
978-1-4615-3978-0{_}1.

60 BIBLIOGRAPHY

http://jgp.rupress.org/content/22/5/649
http://jgp.rupress.org/content/22/5/649
http://www.worldcat.org/title/basic-electrophysiological-methods/oclc/900633113
http://www.worldcat.org/title/basic-electrophysiological-methods/oclc/900633113
https://books.google.es/books?hl=es{&}lr={&}id=MpMesDViO00C{&}oi=fnd{&}pg=PR4{&}dq=destexhe+dynamic+clamp{&}ots=j2diXUpJc0{&}sig=HpJizP5Jt{_}BbCg043Ak3fYBPxh4{#}v=onepage{&}q=destexhe dynamic clamp{&}f=false
https://books.google.es/books?hl=es{&}lr={&}id=MpMesDViO00C{&}oi=fnd{&}pg=PR4{&}dq=destexhe+dynamic+clamp{&}ots=j2diXUpJc0{&}sig=HpJizP5Jt{_}BbCg043Ak3fYBPxh4{#}v=onepage{&}q=destexhe dynamic clamp{&}f=false
https://books.google.es/books?hl=es{&}lr={&}id=MpMesDViO00C{&}oi=fnd{&}pg=PR4{&}dq=destexhe+dynamic+clamp{&}ots=j2diXUpJc0{&}sig=HpJizP5Jt{_}BbCg043Ak3fYBPxh4{#}v=onepage{&}q=destexhe dynamic clamp{&}f=false
https://books.google.es/books?hl=es{&}lr={&}id=MpMesDViO00C{&}oi=fnd{&}pg=PR4{&}dq=destexhe+dynamic+clamp{&}ots=j2diXUpJc0{&}sig=HpJizP5Jt{_}BbCg043Ak3fYBPxh4{#}v=onepage{&}q=destexhe dynamic clamp{&}f=false
http://linuxdevices.linuxgizmos.com/ldfiles/rtlws-2005/SvenThorstenDietrich.pdf
http://linuxdevices.linuxgizmos.com/ldfiles/rtlws-2005/SvenThorstenDietrich.pdf
https://link.springer.com/content/pdf/10.1114{%}2F1.1408929.pdf
http://linkinghub.elsevier.com/retrieve/pii/S0925231215008796
http://www.ncbi.nlm.nih.gov/pubmed/28261081 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5311053
http://www.ncbi.nlm.nih.gov/pubmed/28261081 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5311053
http://www.ncbi.nlm.nih.gov/pubmed/19431309 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1366333
http://www.ncbi.nlm.nih.gov/pubmed/19431309 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1366333
http://journal.frontiersin.org/article/10.3389/fncir.2012.00105/abstract
http://journal.frontiersin.org/article/10.3389/fncir.2012.00105/abstract
http://www.sciencedirect.com/science/article/pii/S0165027008001210
http://link.springer.com/10.1007/978-1-4615-3978-0{_}1
http://link.springer.com/10.1007/978-1-4615-3978-0{_}1

Real-time software technology and its use in experimental neuroscience

Wulfram. Gerstner, Werner M. Kistler, Richard. Naud, and Liam. Paninski. Neuronal
dynamics : from single neurons to networks and models of cognition. 2014. ISBN
1107060834. URL https://books.google.es/books/about/Neuronal{_}Dynamics.html?
id=D4j2AwAAQBAJ{&}redir{_}esc=y.

Thomas Gleixner and Douglas Niehaus. Hrtimers and Beyond: Transforming the
Linux Time Subsystems. 2006. URL https://www.landley.net/kdocs/ols/2006/
ols2006v1-pages-333-346.pdf.

Jorge Golowasch, Michael Casey, L F Abbott, and Eve Marder. Network Stability from
Activity-Dependent Regulation of Neuronal Conductances. 1999. URL http://neurotheory.
columbia.edu/Larry/GolowaschNeuralComp99.pdf.

Sten Grillner. The motor infrastructure: from ion channels to neuronal networks. Nature
Reviews Neuroscience, 4(7):573–586, jul 2003. ISSN 1471003X. doi: 10.1038/nrn1137. URL
http://www.nature.com/doifinder/10.1038/nrn1137.

Prasanna Hambarde, Rachit Varma, and Shivani Jha. The Survey of Real Time Operating
System: RTOS. In 2014 International Conference on Electronic Systems, Signal Processing
and Computing Technologies, pages 34–39. IEEE, jan 2014. ISBN 978-1-4799-2102-7. doi:
10.1109/ICESC.2014.15. URL http://ieeexplore.ieee.org/document/6745342/.

Michiel. Hazewinkel. Encyclopaedia of mathematics. Springer-Verlag, 2002. ISBN 1402006098.
URL https://www.encyclopediaofmath.org/index.php/Linear{_}interpolation.

Luís Henriques. Threaded IRQs on Linux PREEMPT-RT Linux PREEMPT-RT. 2009. URL
http://www.artist-embedded.org/docs/Events/2009/OSPERT/OSPERT09-Henriques.pdf.

J. L. Hindmarsh and R. M. Rose. A model of the nerve impulse using two first-order differential
equations. Nature, 296(5853):162–164, mar 1982. ISSN 0028-0836. doi: 10.1038/296162a0.
URL http://www.nature.com/doifinder/10.1038/296162a0.

J L Hindmarsh and R M Rose. A model of neuronal bursting using three coupled first order
differential equations. Proceedings of the Royal Society of London. Series B, Biological sciences,
221(1222):87–102, mar 1984. ISSN 0950-1193. URL http://www.ncbi.nlm.nih.gov/pubmed/
6144106.

Hodgkin and AF Huxley. Action Potentials record from inside a nerve fiber. Nature (Lond),
144, 1939. URL http://www.citeulike.org/group/448/article/3332664.

A. L. Hodgkin and A. F. Huxley. The components of membrane conductance in the giant axon
of Loligo. The Journal of Physiology, 116(4):473–496, apr 1952a. doi: 10.1113/jphysiol.1952.
sp004718. URL http://doi.wiley.com/10.1113/jphysiol.1952.sp004718.

A. L. Hodgkin and A. F. Huxley. Currents carried by sodium and potassium ions through
the membrane of the giant axon of Loligo. The Journal of Physiology, 116(4):449–472,
apr 1952b. doi: 10.1113/jphysiol.1952.sp004717. URL http://doi.wiley.com/10.1113/
jphysiol.1952.sp004717.

A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its
application to conduction and excitation in nerve. The Journal of physiology, 117(4):500–44,
aug 1952c. URL http://www.ncbi.nlm.nih.gov/pubmed/12991237http://www.ncbi.nlm.
nih.gov/pubmed/12991237.

BIBLIOGRAPHY 61

https://books.google.es/books/about/Neuronal{_}Dynamics.html?id=D4j2AwAAQBAJ{&}redir{_}esc=y
https://books.google.es/books/about/Neuronal{_}Dynamics.html?id=D4j2AwAAQBAJ{&}redir{_}esc=y
https://www.landley.net/kdocs/ols/2006/ols2006v1-pages-333-346.pdf
https://www.landley.net/kdocs/ols/2006/ols2006v1-pages-333-346.pdf
http://neurotheory.columbia.edu/Larry/GolowaschNeuralComp99.pdf
http://neurotheory.columbia.edu/Larry/GolowaschNeuralComp99.pdf
http://www.nature.com/doifinder/10.1038/nrn1137
http://ieeexplore.ieee.org/document/6745342/
https://www.encyclopediaofmath.org/index.php/Linear{_}interpolation
http://www.artist-embedded.org/docs/Events/2009/OSPERT/OSPERT09-Henriques.pdf
http://www.nature.com/doifinder/10.1038/296162a0
http://www.ncbi.nlm.nih.gov/pubmed/6144106
http://www.ncbi.nlm.nih.gov/pubmed/6144106
http://www.citeulike.org/group/448/article/3332664
http://doi.wiley.com/10.1113/jphysiol.1952.sp004718
http://doi.wiley.com/10.1113/jphysiol.1952.sp004717
http://doi.wiley.com/10.1113/jphysiol.1952.sp004717
http://www.ncbi.nlm.nih.gov/pubmed/12991237 http://www.ncbi.nlm.nih.gov/pubmed/12991237
http://www.ncbi.nlm.nih.gov/pubmed/12991237 http://www.ncbi.nlm.nih.gov/pubmed/12991237

Real-time software technology and its use in experimental neuroscience

A. L. Hodgkin, A. F. Huxley, and B. Katz. Measurement of current-voltage relations in
the membrane of the giant axon of Loligo. The Journal of Physiology, 116(4):424–448,
apr 1952. doi: 10.1113/jphysiol.1952.sp004716. URL http://doi.wiley.com/10.1113/
jphysiol.1952.sp004716.

R. Huerta, P. Varona, M. I. Rabinovich, and Henry D. I. Abarbanel. Topology selection by
chaotic neurons of a pyloric central pattern generator. Biological Cybernetics, 84(1):L1–L8,
jan 2001. ISSN 0340-1200. doi: 10.1007/PL00007976. URL http://link.springer.com/10.
1007/PL00007976.

T E Hull, W H Enright, B M Fellen, A E Sedgwick, and A E Sedgwickt. Comparing Numerical
Methods for Ordinary Differential Equations. Source: SIAM Journal on Numerical Anal-
ysis SIAM J. NUMER. ANAL, 9(4):603–637, 1972. URL http://www.jstor.org/stable/
2156215.

Eugene M Izhikevich. Simple Model of Spiking Neurons. IEEE TRANSACTIONS ON NEURAL
NETWORKS, 14(6), 2003. doi: 10.1109/TNN.2003.820440.

M Tim Jones. Access the Linux kernel using the /proc filesystem This virtual
filesystem opens a window of communication between the kernel and user space.
2006. URL http://www.athena.nitc.ac.in/kousthub{_}b130733cs/CollegeBooks/S5/
OperatingSystems/Notes/lastlectureppt/l-proc-pdf.pdf.

Eric R. Kandel. Principles of neural science. 2013. ISBN 0071390111. URL https://books.
google.es/books/about/Principles{_}of{_}Neural{_}Science{_}Fifth{_}Editi.html?
id=s64z-LdAIsEC{&}redir{_}esc=y.

Alexey Kopytov. SysBench manual, 2009. URL http://imysql.com/wp-content/uploads/
2014/10/sysbench-manual.pdf.

Angel Lareo, Caroline G. Forlim, Reynaldo D. Pinto, Pablo Varona, and Francisco de Borja
Rodriguez. Temporal code-driven stimulation: Definition and application to electric fish sig-
naling. Frontiers in Neuroinformatics, 10:41, 2016. ISSN 1662-5196. doi: 10.3389/fninf.2016.
00041. URL http://journal.frontiersin.org/article/10.3389/fninf.2016.00041.

G Le Masson, S Le Masson, and M Moulins. From conductances to neural network properties:
analysis of simple circuits using the hybrid network method. Progress in biophysics and
molecular biology, 64(2-3):201–20, 1995. ISSN 0079-6107. URL http://www.ncbi.nlm.nih.
gov/pubmed/8987384.

R J Lin, J Bettencourt, J A White, D J Christini, and R J Butera. Real-time Experiment Inter-
face for biological control applications. In 2010 Annual International Conference of the IEEE
Engineering in Medicine and Biology, pages 4160–4163. IEEE, aug 2010. ISBN 978-1-4244-
4123-5. doi: 10.1109/IEMBS.2010.5627397. URL http://ieeexplore.ieee.org/document/
5627397/.

Risa Lin. Real-time eXperiment Interface (RTXI) User Guide. 2011.

Daniele Linaro, João Couto, and Michele Giugliano. Command-line cellular electrophysiology
for conventional and real-time closed-loop experiments. Journal of Neuroscience Methods,
230:5–19, 2014. ISSN 01650270. doi: 10.1016/j.jneumeth.2014.04.003. URL http://www.
sciencedirect.com/science/article/pii/S0165027014001198.

P. Mantegazza, E. L. Dozio, and S. Papacharalambous. RTAI: Real-Time Application Interface.
Linux Journal, 2000(72es):10, 2000. URL http://dl.acm.org/citation.cfm?id=348564.

62 BIBLIOGRAPHY

http://doi.wiley.com/10.1113/jphysiol.1952.sp004716
http://doi.wiley.com/10.1113/jphysiol.1952.sp004716
http://link.springer.com/10.1007/PL00007976
http://link.springer.com/10.1007/PL00007976
http://www.jstor.org/stable/2156215
http://www.jstor.org/stable/2156215
http://www.athena.nitc.ac.in/kousthub{_}b130733cs/CollegeBooks/S5/Operating Systems/Notes/lastlectureppt/l-proc-pdf.pdf
http://www.athena.nitc.ac.in/kousthub{_}b130733cs/CollegeBooks/S5/Operating Systems/Notes/lastlectureppt/l-proc-pdf.pdf
https://books.google.es/books/about/Principles{_}of{_}Neural{_}Science{_}Fifth{_}Editi.html?id=s64z-LdAIsEC{&}redir{_}esc=y
https://books.google.es/books/about/Principles{_}of{_}Neural{_}Science{_}Fifth{_}Editi.html?id=s64z-LdAIsEC{&}redir{_}esc=y
https://books.google.es/books/about/Principles{_}of{_}Neural{_}Science{_}Fifth{_}Editi.html?id=s64z-LdAIsEC{&}redir{_}esc=y
http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
http://journal.frontiersin.org/article/10.3389/fninf.2016.00041
http://www.ncbi.nlm.nih.gov/pubmed/8987384
http://www.ncbi.nlm.nih.gov/pubmed/8987384
http://ieeexplore.ieee.org/document/5627397/
http://ieeexplore.ieee.org/document/5627397/
http://www.sciencedirect.com/science/article/pii/S0165027014001198
http://www.sciencedirect.com/science/article/pii/S0165027014001198
http://dl.acm.org/citation.cfm?id=348564

Real-time software technology and its use in experimental neuroscience

E Marder and J S Eisen. Transmitter identification of pyloric neurons: electrically coupled
neurons use different transmitters. Journal of neurophysiology, 51(6):1345–61, jun 1984. ISSN
0022-3077. URL http://www.ncbi.nlm.nih.gov/pubmed/6145757.

James Thomas Martin. Programming real-time computer systems. Englewood Cliffs, N.J. :
Prentice-Hall, 1965.

J. P. Miller and A. I. Selverston. Mechanisms underlying pattern generation in lobster stom-
atogastric ganglion as determined by selective inactivation of identified neurons. IV. Net-
work properties of pyloric system. Journal of Neurophysiology, 48(6), 1982. URL http:
//jn.physiology.org/content/48/6/1416.long.

Jan Müller, Douglas J. Bakkum, and Andreas Hierlemann. Sub-millisecond closed-loop feedback
stimulation between arbitrary sets of individual neurons. Frontiers in Neural Circuits, 6:121,
2013. doi: 10.3389/fncir.2012.00121. URL http://journal.frontiersin.org/article/10.
3389/fncir.2012.00121/abstract.

Carlos Muñiz, Rafael Levi, Meriem Benkrid, Francisco B. Rodríguez, and Pablo Varona. Real-
time control of stepper motors for mechano-sensory stimulation. Journal of Neuroscience
Methods, 172(1):105–111, 2008. ISSN 01650270. doi: 10.1016/j.jneumeth.2008.04.017. URL
http://www.sciencedirect.com/science/article/pii/S0165027008002446.

Carlos Muñiz, Francisco De Borja Rodríguez, and Pablo Varona. RT-
Biomanager: a software platform to expand the applications of real-time
technology in neuroscience. 2009. doi: 10.1186/1471-2202-10-S1-P49.
URL http://download.springer.com/static/pdf/154/art{%}253A10.
1186{%}252F1471-2202-10-S1-P49.pdf?originUrl=http{%}3A{%}2F{%}2Fbmcneurosci.
biomedcentral.com{%}2Farticle{%}2F10.1186{%}2F1471-2202-10-S1-P49{&}token2=
exp=1490780066{~}acl={%}2Fstatic{%}2Fpdf{%}2F154{%}2Fart{%}25253A10.
1186{%}2525.

Carlos Muñiz, Caroline G Forlim, Rafael T Guariento, Reynaldo D Pinto, Francisco B Rodriguez,
and Pablo Varona. Online video tracking for activity-dependent stimulation in neuroethology.
BMC Neuroscience, 12(Suppl 1):P358, 2011. doi: 10.1186/1471-2202-12-S1-P358. URL http:
//bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-12-S1-P358.

Sriram Neelakandan, P Raghavan, and Amol Lad. EMBEDDED LINUX SYSTEM DE-
SIGN AND DEVELOPMENT. 2005. URL https://pixhawk.ethz.ch/{_}media/dev/
literature/embedded{_}linux{_}system{_}design{_}and{_}development.pdf.

Thomas Nowotny, Attila Szűcs, Reynaldo D. Pinto, and Allen I. Selverston. StdpC: A modern
dynamic clamp. Journal of Neuroscience Methods, 158(2):287–299, dec 2006. ISSN 01650270.
doi: 10.1016/j.jneumeth.2006.05.034. URL http://linkinghub.elsevier.com/retrieve/
pii/S0165027006002810.

Francis A. Ortega, Robert J. Butera, David J. Christini, John A. White, and Alan D. Dor-
val. Dynamic Clamp in Cardiac and Neuronal Systems Using RTXI. pages 327–354.
2014. doi: 10.1007/978-1-4939-1096-0_21. URL http://link.springer.com/10.1007/
978-1-4939-1096-0{_}21.

R. D. Pinto, P. Varona, A. R. Volkovskii, A. Szücs, Henry D. I. Abarbanel, and M. I. Rabinovich.
Synchronous behavior of two coupled electronic neurons. Physical Review E, 62(2):2644–2656,
aug 2000. ISSN 1063-651X. doi: 10.1103/PhysRevE.62.2644. URL https://link.aps.org/
doi/10.1103/PhysRevE.62.2644.

BIBLIOGRAPHY 63

http://www.ncbi.nlm.nih.gov/pubmed/6145757
http://jn.physiology.org/content/48/6/1416.long
http://jn.physiology.org/content/48/6/1416.long
http://journal.frontiersin.org/article/10.3389/fncir.2012.00121/abstract
http://journal.frontiersin.org/article/10.3389/fncir.2012.00121/abstract
http://www.sciencedirect.com/science/article/pii/S0165027008002446
http://download.springer.com/static/pdf/154/art{%}253A10.1186{%}252F1471-2202-10-S1-P49.pdf?originUrl=http{%}3A{%}2F{%}2Fbmcneurosci.biomedcentral.com{%}2Farticle{%}2F10.1186{%}2F1471-2202-10-S1-P49{&}token2=exp=1490780066{~}acl={%}2Fstatic{%}2Fpdf{%}2F154{%}2Fart{%}25253A10.1186{%}2525
http://download.springer.com/static/pdf/154/art{%}253A10.1186{%}252F1471-2202-10-S1-P49.pdf?originUrl=http{%}3A{%}2F{%}2Fbmcneurosci.biomedcentral.com{%}2Farticle{%}2F10.1186{%}2F1471-2202-10-S1-P49{&}token2=exp=1490780066{~}acl={%}2Fstatic{%}2Fpdf{%}2F154{%}2Fart{%}25253A10.1186{%}2525
http://download.springer.com/static/pdf/154/art{%}253A10.1186{%}252F1471-2202-10-S1-P49.pdf?originUrl=http{%}3A{%}2F{%}2Fbmcneurosci.biomedcentral.com{%}2Farticle{%}2F10.1186{%}2F1471-2202-10-S1-P49{&}token2=exp=1490780066{~}acl={%}2Fstatic{%}2Fpdf{%}2F154{%}2Fart{%}25253A10.1186{%}2525
http://download.springer.com/static/pdf/154/art{%}253A10.1186{%}252F1471-2202-10-S1-P49.pdf?originUrl=http{%}3A{%}2F{%}2Fbmcneurosci.biomedcentral.com{%}2Farticle{%}2F10.1186{%}2F1471-2202-10-S1-P49{&}token2=exp=1490780066{~}acl={%}2Fstatic{%}2Fpdf{%}2F154{%}2Fart{%}25253A10.1186{%}2525
http://download.springer.com/static/pdf/154/art{%}253A10.1186{%}252F1471-2202-10-S1-P49.pdf?originUrl=http{%}3A{%}2F{%}2Fbmcneurosci.biomedcentral.com{%}2Farticle{%}2F10.1186{%}2F1471-2202-10-S1-P49{&}token2=exp=1490780066{~}acl={%}2Fstatic{%}2Fpdf{%}2F154{%}2Fart{%}25253A10.1186{%}2525
http://bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-12-S1-P358
http://bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-12-S1-P358
https://pixhawk.ethz.ch/{_}media/dev/literature/embedded{_}linux{_}system{_}design{_}and{_}development.pdf
https://pixhawk.ethz.ch/{_}media/dev/literature/embedded{_}linux{_}system{_}design{_}and{_}development.pdf
http://linkinghub.elsevier.com/retrieve/pii/S0165027006002810
http://linkinghub.elsevier.com/retrieve/pii/S0165027006002810
http://link.springer.com/10.1007/978-1-4939-1096-0{_}21
http://link.springer.com/10.1007/978-1-4939-1096-0{_}21
https://link.aps.org/doi/10.1103/PhysRevE.62.2644
https://link.aps.org/doi/10.1103/PhysRevE.62.2644

Real-time software technology and its use in experimental neuroscience

R.D. Pinto, R.C. Elson, A. Szücs, M.I. Rabinovich, A.I. Selverston, and H.D.I. Abarbanel.
Extended dynamic clamp: controlling up to four neurons using a single desktop computer
and interface. Journal of Neuroscience Methods, 108(1):39–48, 2001. ISSN 01650270. doi:
10.1016/S0165-0270(01)00368-5. URL http://www.sciencedirect.com/science/article/
pii/S0165027001003685.

Mario Prsa, Gregorio L. Galiñanes, and Daniel Huber. Rapid Integration of Artificial Sensory
Feedback during Operant Conditioning of Motor Cortex Neurons. Neuron, 93(4):929–939.e6,
2017. ISSN 08966273. doi: 10.1016/j.neuron.2017.01.023. URL http://www.sciencedirect.
com/science/article/pii/S0896627317300478.

Mohit Rana, Andrew Q Varan, Anis Davoudi, Ronald A Cohen, Ranganatha Sitaram,
and Natalie C Ebner. Real-Time fMRI in Neuroscience Research and Its Use in
Studying the Aging Brain. Frontiers in aging neuroscience, 8:239, 2016. doi: 10.
3389/fnagi.2016.00239. URL http://www.ncbi.nlm.nih.gov/pubmed/27803662http://
www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5067937.

Manuel Reyes-Sanchez. Algoritmos para el establecimiento de conexiones neuronales híbridas.
PhD thesis, Universidad Autónoma de Madrid, 2017.

H P Robinson and N Kawai. Injection of digitally synthesized synaptic conductance transients
to measure the integrative properties of neurons. Journal of neuroscience methods, 49(3):
157–65, sep 1993. ISSN 0165-0270. URL http://www.ncbi.nlm.nih.gov/pubmed/7903728.

Nikolai F. Rulkov. Modeling of spiking-bursting neural behavior using two-dimensional map.
Physical Review E, 65(4):041922, apr 2002. ISSN 1063-651X. doi: 10.1103/PhysRevE.65.
041922. URL http://link.aps.org/doi/10.1103/PhysRevE.65.041922.

Akira Sakurai, Charuni A. Gunaratne, and Paul S. Katz. Two interconnected kernels of re-
ciprocally inhibitory interneurons underlie alternating left-right swim motor pattern gen-
eration in the mollusk Melibe leonina. Journal of Neurophysiology, 112(6), 2014. URL
http://jn.physiology.org/content/112/6/1317.long.

Peter Jay Salzman, Michael Burian, and Ori Pomerantz. The Linux Kernel Module Programming
Guide, 2007. URL http://www.tldp.org/LDP/lkmpg/2.6/html/lkmpg.html.

Massimo Scanziani and Michael Hausser. Electrophysiology in the age of light. Nature,
461(7266):930–939, oct 2009. doi: 10.1038/nature08540. URL http://www.nature.com/
doifinder/10.1038/nature08540.

David Schleef, Frank Mori, Bruyninckx, Bernd Porr, Ian Abbott, and Éric Piel. Comedi Docu-
mentation, 2012. URL http://www.comedi.org/doc/.

Allen I. Selverston, Mikhail I. Rabinovich, Henry D.I. Abarbanel, Robert Elson, Attila Szücs,
Reynaldo D. Pinto, Ramón Huerta, and Pablo Varona. Reliable circuits from irregular neurons:
A dynamical approach to understanding central pattern generators. Journal of Physiology-
Paris, 94(5):357–374, 2000. ISSN 09284257. doi: 10.1016/S0928-4257(00)01101-3. URL
http://www.sciencedirect.com/science/article/pii/S0928425700011013.

L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols: an approach to real-time
synchronization. IEEE Transactions on Computers, 39(9):1175–1185, 1990. ISSN 00189340.
doi: 10.1109/12.57058. URL http://ieeexplore.ieee.org/document/57058/.

A A Sharp, M B ONeil, L F Abbott, and E Marder. Dynamic clamp: computer-generated
conductances in real neurons. Journal of Neurophysiology, 69(3):992–995, 1993. ISSN 0022-
3077. URL http://jn.physiology.org/content/69/3/992.

64 BIBLIOGRAPHY

http://www.sciencedirect.com/science/article/pii/S0165027001003685
http://www.sciencedirect.com/science/article/pii/S0165027001003685
http://www.sciencedirect.com/science/article/pii/S0896627317300478
http://www.sciencedirect.com/science/article/pii/S0896627317300478
http://www.ncbi.nlm.nih.gov/pubmed/27803662 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5067937
http://www.ncbi.nlm.nih.gov/pubmed/27803662 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5067937
http://www.ncbi.nlm.nih.gov/pubmed/7903728
http://link.aps.org/doi/10.1103/PhysRevE.65.041922
http://jn.physiology.org/content/112/6/1317.long
http://www.tldp.org/LDP/lkmpg/2.6/html/lkmpg.html
http://www.nature.com/doifinder/10.1038/nature08540
http://www.nature.com/doifinder/10.1038/nature08540
http://www.comedi.org/doc/
http://www.sciencedirect.com/science/article/pii/S0928425700011013
http://ieeexplore.ieee.org/document/57058/
http://jn.physiology.org/content/69/3/992

Real-time software technology and its use in experimental neuroscience

K.G. Shin and P. Ramanathan. Real-time computing: a new discipline of computer science
and engineering. Proceedings of the IEEE, 82(1):6–24, 1994. ISSN 00189219. doi: 10.1109/5.
259423. URL http://ieeexplore.ieee.org/document/259423/.

RTAI Team. RTAI 3.4 User Manual. October, 3(October):1–29, 2006.

Jacopo Tessadori, Marta Bisio, Sergio Martinoia, and Michela Chiappalone. Modular Neuronal
Assemblies Embodied in a Closed-Loop Environment: Toward Future Integration of Brains
and Machines. Frontiers in Neural Circuits, 6:99, 2012. ISSN 1662-5110. doi: 10.3389/
fncir.2012.00099. URL http://journal.frontiersin.org/article/10.3389/fncir.2012.
00099/abstract.

P. Varona, D. Arroyo, F.B. Rodríguez, and T. Nowotny. Online Event Detection Require-
ments in Closed-Loop Neuroscience. Closed Loop Neuroscience, pages 81–91, 2016. doi:
10.1016/B978-0-12-802452-2.00006-8. URL http://linkinghub.elsevier.com/retrieve/
pii/B9780128024522000068.

Xenomai Team. Xenomai POSIX skin API. 2016a. URL http://xenomai.org/documentation/
xenomai-2.6/pdf/posix-api.pdf.

Xenomai Team. Xenomai API, 2016b. URL http://www.xenomai.org/documentation/trunk/
html/api/index.html.

Karim Yaghmour. Building embedded Linux systems. O’Reilly, 2003. ISBN 0596550480. URL
https://books.google.es/books/about/Building{_}Embedded{_}Linux{_}Systems.
html?id=xnFdWfJAK9wC{&}redir{_}esc=y.

Victor Yodaiken. The RTLinux Manifesto. In 5th Linux Expo, 1999. URL http://www.rtlinux.
org.

Guoyin Zhang, Luyuan Chen, and Aihong Yao. Study and Comparison of the RTHAL-Based and
ADEOS-Based RTAI Real-time Solutions for Linux. In First International Multi-Symposiums
on Computer and Computational Sciences (IMSCCS’06), pages 771–775. IEEE, jun 2006. doi:
10.1109/IMSCCS.2006.272. URL http://ieeexplore.ieee.org/document/4673801/.

BIBLIOGRAPHY 65

http://ieeexplore.ieee.org/document/259423/
http://journal.frontiersin.org/article/10.3389/fncir.2012.00099/abstract
http://journal.frontiersin.org/article/10.3389/fncir.2012.00099/abstract
http://linkinghub.elsevier.com/retrieve/pii/B9780128024522000068
http://linkinghub.elsevier.com/retrieve/pii/B9780128024522000068
http://xenomai.org/documentation/xenomai-2.6/pdf/posix-api.pdf
http://xenomai.org/documentation/xenomai-2.6/pdf/posix-api.pdf
http://www.xenomai.org/documentation/trunk/html/api/index.html
http://www.xenomai.org/documentation/trunk/html/api/index.html
https://books.google.es/books/about/Building{_}Embedded{_}Linux{_}Systems.html?id=xnFdWfJAK9wC{&}redir{_}esc=y
https://books.google.es/books/about/Building{_}Embedded{_}Linux{_}Systems.html?id=xnFdWfJAK9wC{&}redir{_}esc=y
http://www.rtlinux.org
http://www.rtlinux.org
http://ieeexplore.ieee.org/document/4673801/

Real-time software technology and its use in experimental neuroscience

66 BIBLIOGRAPHY

A
Appendix A: Implemented code repositories

In the following links the implementations for each RTOS of the neuron model library discussed
in this work can be found.

Listing A.1: Preempt-RT neuron model library repository.
https://github.com/manurs/clamp-cli.git

Listing A.2: Xenomai neuron model library repository.
https://github.com/RoyVII/clamp-cli_xenomai.git

Listing A.3: RTAI neuron model library repository.
https://github.com/RoyVII/clamp-cli_rtai.git

67

B
Appendix B: RTOS Installation Manuals

In this appendix is included an installation manual for RTAI 3.9 over a 2.6 kernel, with the
Comedi drivers, as the one used in this work. At the same time, the script for installing Preempt-
RT is included.

B.1 RTAI

Listing B.1: Installation of necessary items for the compilation and next installations.
sudo apt-get update
echo Y|sudo apt-get install cvs subversion build-essential
echo Y|sudo apt-get install kernel-package linux-source libncurses5-dev
echo Y|sudo apt-get install libtool automake
echo Y|sudo apt-get install bison flex
echo Y|sudo apt-get install libboost-dev libboost-program-options-dev libgsl0-dev
echo Y|sudo apt-get install gfortran sablotron tcl8.5-dev tk8.5-dev xaw3dg-dev

libpvm3 pvm-dev libgtkhtml2-dev libzvt-dev libvte-dev
echo Y|sudo apt-get install qt3-apps-dev
echo Y|sudo apt-get install qt3-assistant
echo Y|sudo apt-get install qt3-designer
echo Y|sudo apt-get install qt3-dev-tools
echo Y|sudo apt-get install qt3-tools
echo Y|sudo apt-get install libqt4-dev libqwt5-qt4-dev
echo Y|sudo apt-get install cmake
echo Y|sudo apt-get install fakeroot
echo Y|sudo apt-get install git-core
echo Y|sudo apt-get install gfortran
echo Y|sudo apt-get install tcl-devel tk-devel libvte
sudo reboot

Listing B.2: Download of the vanilla kernel.
cd /usr/src
sudo wget http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.35.7tar.bz2
sudo tar xjvf linux-2.6.35.7tar.bz2

69

Real-time software technology and its use in experimental neuroscience

sudo ln -s linux-2.6.35.7 linux
echo "Kernel extraction complete"
sleep 5

Listing B.3: Download of RTAI.
cd /opt
sudo wget --no-check-certificate https://www.rtai.org/RTAI/rtai-3.9-test2.tar.bz2
sudo tar xjvf rtai-3.9-test2.tar.bz2
sudo ln -s rtai-3.9-test2 rtai
echo "Extraction of RTAI complete"
sleep 5

Listing B.4: Download of Comedi.
cd /opt
git clone git://comedi.org/git/comedi/comedi.git
git clone git://comedi.org/git/comedi/comedilib.git
git clone git://comedi.org/git/comedi/comedi_calibrate.git
git clone git://comedi.org/git/comedi/comedi-nonfree-firmware.git
echo "Download of comedilib complete "
sleep 5

Listing B.5: Download of Scilab and Qrtailab. Prepare to patch.
cd /opt
sudo wget http://www.scilab.org/download/4.1.2/scilab-4.1.2-src.tar.gz
sudo wget http://www.scilab.org/download/4.1.2/man-eng-scilab-4.1.2.zip
echo "Download of scilab complete "
sleep 5

cd /opt
sudo wget http://downloads.sourceforge.net/qrtailab/QRtaiLab-0.1.6.tar.gz
sudo tar xvzf QRtaiLab-0.1.6.tar.gz
echo "Extraction of QrtaiLab complete "
sleep 5

cd /usr/src/linux
echo "Lets patch 1"
sudo su

Listing B.6: Patching the kernel.
cd /usr/src/linux
echo "Lets patch 2"
sleep 5
patch -p1 < /opt/rtai/base/arch/x86/patches/hal-linux-2.6.35.7-x86-2.8-01.patch
echo "Patch the complete kernel "
sleep 5

cd /usr/src/linux
cp /boot/config-2.6.32-38-generic .config
sudo cp .config .config.old

cd /usr/src/linux
sudo make clean
sudo make mrproper

70 APPENDIX B. APPENDIX B: RTOS INSTALLATION MANUALS

Real-time software technology and its use in experimental neuroscience

sudo make menuconfig
echo "Completed menuconfig number 1 "
sleep 5

The following configuration options must be checked (deactivate all the Kernel Hacking
options):

• Processor type and features -> Symmetric multi-processing support (multiprocessor)

• Processor type and features-> Processor family

• Enable loadable module support > Module versioning support = no

• Processor type and features > HPET = no

• Processor type and features > Interrupt pipeline = yes

• Power management options > Power Management support = no

• Power management options > CPU Frequency scaling > CPU Frequency scaling = no”

• Device Drivers -> Network device support -> Ethernet (XXXX Mbit) = yes

• Device Drivers -> Network device support -> Wlan =yes

• Device Drivers -> Serial ATA and Parallel ATA driver -> AHCI SATA support

• Device Drivers -> Graphics support -> /dev/agpgart (AGP Support) =yes

• Device Drivers -> Sound card support -> Advanced Linux Sound Architecture -> PCI
sound devices=yes

Listing B.7: Patch and install the kernel.
cd /usr/src/linux
sudo make-kpkg clean
sudo CONCURRENCY_LEVEL=4 fakeroot make-kpkg -initrd -append-to-version=-rtai

kernel_image kernel_headers
echo "Compilation of kernel complete "
sleep 5

cd /usr/src
sudo dpkg -i linux-headers-2.6.35.7-rtai_2.6.35.7-rtai-10.00.Custom_i386.deb
sudo dpkg -i linux-image-2.6.35.7-rtai_2.6.35.7-rtai-10.00.Custom_i386.deb
echo "Installation of kernel complete "
sleep 5
sudo reboot

In the next menu the following options must be set:

• Installation: /usr/realtime

• Kernel source: /usr/src/linux

• Machine, choose the number of CPUs

• With Kernel 2.26.3 it was necessary to unmark “In-Kernel C++ Support” en “Add-Ons”

APPENDIX B. APPENDIX B: RTOS INSTALLATION MANUALS 71

Real-time software technology and its use in experimental neuroscience

Listing B.8: Configuration of RTAI.
cd /opt/rtai
sudo mv base/include/asm base/include/asm.old
sudo ln -s base/include/asm.old base/include/asm
sudo make menuconfig
echo "Menu config complete number 2 "
sleep 5

sudo make
sudo make install
sudo sed -i ’s/\(PATH=\"\)/\1\/usr\/realtime\/bin:/’ /etc/environment
export PATH=/usr/realtime/bin:\$PATH
echo "New PATH added "
sleep 5

cd /opt/comedi
sudo sh autogen.sh
sudo ./configure --with-linuxdir=/usr/src/linux --with-rtaidir=/usr/realtime
sudo make
sudo make install
sudo make dev
echo "Installation of RTAI complete "
sleep 5

sudo su

Listing B.9: Comedi configuration and installation.
echo ’options comedi comedi_num_legacy_minors=4’ > /etc/modprobe.d/comedi
##############################
cd /opt/comedilib
sudo sh autogen.sh
sudo ./configure
sudo make
sudo make install
sudo mkdir /usr/local/include/linux
echo "Comedilib complete "
sleep 5
##############################
cd /opt/comedi_calibrate
sudo autoreconf -i -B m4
sudo ./configure
sudo make
sudo make install
echo "Comedi calibrate complete "
sleep 5

sudo cp /opt/comedi/include/linux/comedi.h /usr/local/include/
sudo cp /opt/comedi/include/linux/comedilib.h /usr/local/include/
sudo ln -s /usr/local/include/comedi.h /usr/local/include/linux/comedi.h
sudo ln -s /usr/local/include/comedilib.h /usr/local/include/linux/comedilib.h
cd /opt/rtai
sudo make menuconfig
echo "Menu config number 3 complete "
sleep 5

72 APPENDIX B. APPENDIX B: RTOS INSTALLATION MANUALS

Real-time software technology and its use in experimental neuroscience

Listing B.10: Last steps
sudo make
sudo make install

cd /usr/local/include
sudo mv comedi.h comedi.h.old
sudo mv comedilib.h comedilib.h.old
sudo cp /opt/comedilib/include/comedilib.h .
sudo cp /opt/comedilib/include/comedi.h .
##########LIBRERIA MATEMATICA######################
cd /opt/rtai/base/math
sudo make
sudo make install
#########COMEDI LIBRARIES########################
cd /usr/local
sudo mkdir comedi
cd comedi
sudo mkdir include
cd include
sudo mkdir linux
cd linux
sudo ln -sf /opt/comedi/include/linux/comedi.h
sudo ln -sf /opt/comedi/include/linux/comedilib.h
sudo ldconfig

B.2 Preempt-RT

The following script was used to install Preempt-RT and Comedi in Debian 9:

Listing B.11: Preempt-RT with Comedi installation
sudo apt-get install git build-essential dkms
sudo apt-get install linux-headers-4.9.0-1-rt-amd64 #Check kernel version (uname -r)
echo "Preempt-RT installed"

git clone https://github.com/Linux-Comedi/comedi.git
cd comedi/
sudo apt install automake
./autogen.sh
cd ..
sudo dkms add ./comedi #Check version (e.g 0.7.76.1+20150923git-1.nodist)
sudo dkms install comedi/0.7.76.1+20150923git-1.nodist
sudo depmod -a
sudo apt install libcomedi-dev libcomedi0
echo "Comedi installed"

APPENDIX B. APPENDIX B: RTOS INSTALLATION MANUALS 73

	Figures index
	Introduction
	Motivation of the project
	Project goals
	Organization of the report

	State of the art
	Real-time in neuroscience
	Real-Time Operating Systems
	RTAI
	Xenomai
	Preempt-RT
	Other RTOS solutions
	Real-time software for closed-loop neuroscience

	Neuron models
	Izhikevich neuron model
	Hindmarsh-Rose neuron model
	Rulkov map neuron model
	Synapse models

	Real-time solutions comparison
	Structure of the test
	Results
	Non real-time Linux
	RTAI
	Xenomai
	Preempt-RT

	Comparison

	Neuron model library implementation
	Neuron models
	DAQ communication
	Real-time functions
	Main program

	Validation tests
	Stepper motor experiment
	Setup
	Results

	Electronic neuron experiments
	Setup
	Results

	Real neuron hybrid circuit experiments
	Setup
	Results

	Conclusions and future work
	Conclusions
	Future work

	Bibliography
	Appendix A: Implemented code repositories
	Appendix B: RTOS Installation Manuals
	RTAI
	Preempt-RT

