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ABSTRACT

The mammalian olfactory system had provided inspiration for a new class of

electronic devices called electronic noses (e-nose) with applications in a wide vari-

ety of domains such as environmental monitoring, medical diagnosis, and industrial

processes, among others. Electronic noses detect volatile chemical compounds, be-

ing more objective than human or canine experts and working continuously without

exhaustion.

In this Master’s Thesis, we will focus on the use a multimodal sensory network

composed by an e-nose in order to detect presence and estimate the number of occu-

pants in a classroom, which can be considered as an uncontrolled or semi-controlled

environment. We have collected an extensive database from a multisensory network

composed of 12 sensors.

To address the occupancy detection and occupancy estimation problems, we pro-

pose a model that combines a classification algorithm for occupancy detection fol-

lowed by a regression algorithm for occupancy estimation. This model is applied

over two types of datasets extracted from our e-nose records: the first type of data

is formed by a set of statistical features summarizing the sensors’ response behavior

during a period of time, and the second type of data is defined by attributes mod-

eling the rising and decaying portions of the sensors’ resistance computed from the

Exponential Moving Average of the signals.

On the one hand, the classification accuracy rates for the occupancy detection

task vary from 93% to 100% using a Logistic Regression model. On the other hand,

the best result for the occupancy estimation problem is obtained using a Random

Forest algorithm that achieves a Mean Absolute Error of 5 people and a Mean Rel-

ative Error of 13%. The latter result corresponds to a dataset based on statistical

variables, being the most relevant sensors the CO2 and wifi sensors, and the CO2,

TGS 2600, and temperature sensors in the absence of the wifi sensor. The models

trained with datasets formed by EMA features do not obtain competitive results

as their error rates are very high in comparison with those achieved by the models



based on statistical variables.

In summary, this Masters Thesis presents promising results that demonstrate the

ability of chemical sensors and wifi sensor to successfully address the presence detec-

tion and occupancy estimation problems. The main novelty of this work compared

to other studies in the literature relies on the use of Metal Oxide (MOX) sensors in

the sensoring network as well as the recording of data during several months.
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Chapter 1

Introduction

The sense of smell is a chemical sense that detects and analyses volatile chemical

substances (odors) present in the air. Smell is a very powerful sense due to its ability

to change our heart rate, attract us to a mate or stir our memories to different times

in our lives, and it can also alert us from danger such as gas leak, fire or rotten food.

The sense of smell plays an important role in a wide variety of activities including

daily hygiene, industry, and medical diagnostics.

Given the importance of odors and the sense of smell, it has been thought to

develop an electronic alternative that acts the same way as the mammalian smell

system occupying the positions of humans and dogs by detecting different odors. The

most important advantage of this alternative is that it works continuously without

tiredness and with objectivity. In addition, all the data captured will be automati-

cally stored in a database.

1.1 Artificial noses

Perhaps the earliest attempt to develop a machine capable of detecting fra-

grances was in the year 1920 when Hogewind, F and H. Zwaardemaker

[Hogewind and Zwaardemaker, 1920], suggested that odors can be detected by mea-

1



1.1. ARTIFICIAL NOSES

suring the electric charge in a fine stream of water containing an aqueous solution.

The “electronic nose” concept was firstly discussed by Wilkens and Hatman in

1964 [Wilkens and Hartman, 1964], but the term ”electronic nose” was not men-

tioned until later during a conference in 1987 [Gardner et al., 1988]. Ten, the artifi-

cial olfactory system design was established by Gardner et al. [Gardner et al., 1990],

and the first conference dedicated to e-nose was celebrated in 1990 [Gardner, 1991].

From a technical point of view, artificial noses are electronic systems with an-

alytical capacities whose purpose is to detect volatile organic compounds (VOCs)

that are part of an odorous sample and can thus recognize or discriminate them

within a set of odorous substances. Electronic noses are basically composed of a

multisensor array, which in turn consists of different sensors that respond to a wide

range of chemical gases. Figure 1.1 and Table 1.1 show the similarities between an

electronic nose and a biological nose. The main objective of an e-noses is to be

able to identify and/or quantify some type of aroma or gaseous sample. An e-nose

typically consists of a sensing or detection system responsible for sensing odour and

collecting data, and a computing system aimed at preprocessing and analyzing the

signal by means of pattern recognition algorithms focused on discriminating among

odors and/or quantifying the amount of different substances. In laboratory exper-

iments, an electronic nose usually includes a sample delivery system that generates

samples to be analyzed. Therefore, the e-nose workflow is formed by the following

components:

• The sample delivery system: The sample delivery system enables the gener-

ation of volatile compounds. These volatile compounds are sent to the sensing

system of the e-nose.

• The sensing system : A system consisting of a multisensor array or a group

of sensors which is able to generate electrical signals in response to either

simple or complex volatiles compounds present in the gaseous sample, and

then transforms these signals into digital values.

2



CHAPTER 1. INTRODUCTION

• The computing system : A mechanism for pattern recognition that mimics

the human brain: it combines the responses of all sensors to produce results

that can be analyzed to identify/quantify the chemical volatiles exposed to the

e-nose.

Table 1.1: Comparison between electronic and biological nose.

Biological nose E-nose System Functions

Nostril Sampler Serves as gas detection chamber

Olfactory receptor Sensory array Sense odor and collect data

Olfactory bulb
Signal conditioning &

data preprocessing
Analyze and process data

Brain or

Olfactory cortex
Pattern Recognition Classify the smell and/or quantify

its chemical compounds

Figure 1.1: Electronic nose devices mimic the human olfactory system. Source:

[Zhao and Yongxin, 2012].

Among the different modules involved in an e-nose system, this Master’s thesis is

focused in the computing system responsible for processing the data coming from the

3



1.2. GOALS AND OUTLINE

sensors in order to detect and quantify the gas exposed to the e-nose. In particular,

the objective of this work is to analyze the data coming from an e-nose located in a

classroom by means of machine learning algorithms in order to detect and estimate

the classroom occupancy. The machine learning techniques used in this work will be

explained in Chapter 2, and the obtained results will be presented in Chapter 4.2.

Electronic noses were originally used by the food, beverage and cosmetic in-

dustries in order to control the quality of their products as e-noses can detect

hazardous or poisonous gases [Chilo et al., 2016, Pathange et al., 2006]. Current

applications include detection of odors specific to diseases for medical diagnosis

[D’Amico et al., 2010], and detection of pollutants and gas leaks for environmental

protection [Baby et al., 2000].

1.2 Goals and Outline

The goal of this work is to apply machine learning techniques to data from an un-

controlled or semi-controlled environment coming from a multimodal sensor system

installed in a classroom in the Autonomous University of Madrid to detect human

presence in the classroom (occupancy detection) and to estimate the number of oc-

cupants (occupancy estimation). As far as we know, some of the sensors used in this

work have never been used to solve these type of problems.

In order to achieve this objective, we will proceed as follows: first, we will study

the state of the art to determine the pattern recognition techniques used for the anal-

ysis of data from artificial noses in both controlled and uncontrolled environments,

and their particular application in the detection and estimation of occupation in

different environments such as offices and classrooms. Second, taking into account

the results from previous works in the literature, we will prepare the data collected

from our electronic noses records to build an input dataset to be analyzed by the

machine learning techniques. Next, we will apply a series of data analysis and ma-

chine learning techniques over our datasets to solve the occupancy detection and the

4



CHAPTER 1. INTRODUCTION

occupancy estimation problems.

The organization of this Master’s thesis is as follows: in Chapter 2, we present an

overview of some previous works that have used machine learning techniques with

data coming from e-nose and introduce the pattern recognition techniques used in

this work including feature selection algorithms as well as classification and regression

models. Different metrics used to evaluate the performance of the machine learning

models are also presented. Chapter 3 explains how data were collected using the e-

nose installed in a classroom in the Autonomous University of Madrid. This section

also describes the four datasets that were generated using the information captured

by the sensors. The experimental setup and the empirical results are presented in

Chapter 4. Finally, the conclusions of our investigation and some suggestions of

further research lines are presented in Chapter 5.

5
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Chapter 2

Related work and pattern recognition techniques

This chapter present an overview of some previous works that have used e-nose to

detect or to estimate the occupancy of a room, as will as, a resume of the machine

learning techniques used in our work.

2.1 Related work

There are several studies that have successfully applied machine learning tech-

niques in controlled environments [Fonollosa et al., 2014, Muezzinoglu et al., 2009],

but their application in uncontrolled environments is more limited due to the greater

difficulty of the problem and the lack of data [Monroy et al., 2016].

In [Candanedo and Feldheim, 2016], the authors study the problem of detecting

whether an office is occupied or not using data from light, temperature, humidity

and CO2 sensors. They achieve a classification accuracy rate of 97% using a Linear

Discriminant Analysis (LDA) model based on the information coming from a com-

bination of two sensor namely: temperature and light, light and CO2 and light and

humidity, light and humidity ratio. They also show that regardless of the classifier

used, the high classification accuracy is always obtained when using the light sensor

which means that the light sensor is the most relevant for the classification problem.

7



2.1. RELATED WORK

To solve the same problem, [Hailemariam et al., 2011] proposed to use information

captured by CO2, light, motion, sound and electrical current (Power consumption

of two computers) sensors. They achieve a classification accuracy rate that ranges

from 81.019% using only the light sensor, to 98.44% using only the motion sensor.

In both cases, the classification is performed by a decision tree model.

A more complicated problem is to estimate the number of occupants in a room.

To deal with this problem, Yang et al. [Yang et al., 2012] propose to use a Radial Ba-

sis Function (RBF) Neural Network model with a combination of sensors that detect

indoor temperature, humidity, CO2, light, sound and motion to estimate the num-

ber of occupants in two laboratories with a maximum number of occupants of 5 and

8, respectively. They achieve a classification accuracy rates of 88.74% and 86.50%,

respectively. To get a classification accuracy rate from the regression problem, a pre-

diction is considered as correct if the difference between the estimated and real value

is less or equal to 1. A more general approach is presented in [Rodrigues et al., 2017],

where they propose to use three types of environmental variables (relative humidity,

air temperature and CO2 concentration) to estimate the number of occupants in a

classroom. They propose to use a MultiLayer Perceptron (MLP) model trained with

information coming only from two of the three environmental variables.

More precisely, the features used as input for the MLP model were defined as

the average of the last 5 samples of each sensor’s response [Rodrigues et al., 2017].

Their results show that the models in which the CO2 sensor was included were the

ones with the lowest Mean Absolute Error (MAE), reporting a MAE of 1 occupant.

However, it should be noted that the performances obtained in this work were calcu-

lated considering also data corresponding to periods of time when the classroom is

empty, such as weekends or nights, so their error estimates may be positive biased.

In [Ekwevugbe et al., 2013], a back propagation Artificial Neural Network (ANN) al-

gorithm is applied over data coming from the following sensors: temperature, light,

humidity, CO2, sound and PIR (motion). Data are captured for a period of 8 days

to detect occupancy in a room. They achieve a classification accuracy rate of 84.59%

8
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TECHNIQUES

and the most effective sensors were the sound and the motion ones.

As far as we know, the problems of occupancy detection and occupancy estimation

have not been addressed using a network of multimodal sensors like the one employed

in this work and capturing data over such a prolonged period of time.

The problem of occupancy detection can be also addressed from other points of

view without using chemical sensors. For example, in [Kleiminger et al., 2013], the

electricity consumption in 5 households was used to detect their occupancy. The

classification accuracy was on average above 80%.

Table ?? summarizes the related works by showing the used sensors and algo-

rithms as well as the classification accuracies or the accuracies of number of occupants

Regardless of the type of sensors to be used to detect/estimate occupancy, dif-

ferent strategies can be applied to extract features from the sensors’ response signal

that will serve as the input for the machine learning algorithms. On the one hand,

in [Monroy et al., 2016], the authors show that features generated form a moving

average and a moving variance techniques with sliding windows allow improving

the performance of a classifier trained over sensor’s response raw data up to 6%

as past information is taken into account in the features. On the other hand, in

[Muezzinoglu et al., 2009] and [Vergara et al., 2012], features are created using an

Exponential Moving Average (EMA) approach to solve the problem of gas classifica-

tion . The Exponential Moving Average (EMA) is a type of infinite impulse response

filter that applies weighting factors that decrease exponentially using the following

equation:

y[t] = (1− α)y[t− 1] + α(r[t]− r[t− 1]) (2.1)

where t=1,2,...T, being T duration of the experiment, r[t] is the raw sensor’s response

at time t, and y[t] is the EMA’s filter for r at time t with initial condition y[0]=0.

Finally, the parameter α is a smoothing parameter that takes values between 0 and

1. Muezzinoglu et al. conclude that the transient features from EMA provide a

classification accuracy of 92.9% when used together with SVM classifier, while the
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steady state features –features that describe the dynamic process of the whole signal–

only achieve a classification accuracy of 63.3%.

However, in the scope of our work, EMA’s features are not helpful to either have

a good classification accuracy in the occupancy detection task or to obtain a good

regression model for occupancy estimate problems. This point will be discussed in

detail in Chapter 4.2.

2.2 pattern recognition techniques

Machine Learning is the sub-field of computer science and a branch of artificial in-

telligence whose goal is to develop theoretical foundations, models, and procedures

that allow computers to learn from data. More concretely, machine learning algo-

rithms are capable of generalizing behaviors from provided data. Machine learning

algorithms can be divided into supervised and unsupervised models as a function of

the learning paradigm they address.

Supervised learning is a family of techniques for deriving a function from training

data. The training data consist of object pairs, the input data of the algorithm

(usually vectors), and the desired outputs. These algorithms are typically used to

solve classification and estimation or regression problems. A simple example would

be to detect if there is someone in a room or not, for learning this we should train our

machine with different tagged data. On the other hand the unsupervised learning is a

family of techniques where the model is adjusted to the input data, These algorithms

are typically used in clustering and representation learning.

In this section we will introduce the machine learning algorithms used in this

work which include feature selection, classification, and regression models. In all

cases, we will assume a labeled dataset (x(n), y(n)) for n = 1,2,...,N, where x(n) ∈ RD

represents each data sample formed by D features, and y(n) ∈ {0,1} is the label

associated to the sample. In the case of binary classification problems, , while for

regression problems y(n) ∈ R.
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2.2.1 Feature Selection

Feature selection in machine learning is a process of selecting a subset of features or

variables to reduce the dimensionality of the patterns to be used in the classification

or the regression model. Feature selection helps to simplify the model, accelerate the

training and/or testing processes, and reduce over-fitting.

The main premise when using a feature selection algorithm is that the data

contain many features that are irrelevant or redundant, and can thus be removed

without incurring much loss of information.

2.2.1.1 Quadratic Programming Feature Selection

Quadratic Programming Feature Selection (QPFS) is a feature selection algorithm

that formulates feature selection as a quadratic programming problem. It has been

shown to be competitive with state-of-the-art feature selection methods in terms

of classification accuracy, while it reduces the training times of several multivariate

filter-type feature selection methods thanks to the use of the Nyström approximation

[Rodriguez-Lujan et al., 2010].

Given a dataset with D features, the QPFS formulation is

minw
1
2
(1− α)wTQw − αF Tw,

subject to wi ≥ 0∀ i = 1...D ||w1|| = 1
(2.2)

where w is a D dimensional vector that represents the weights gived to the features, Q

is a D ×D symmetric positive semi-definite matrix that represents the redundancy

among the features, and F is a D dimensional vector of non-negative values that

measures the correlation between each feature and the target class.

Considering the components of w as the weight or importance of each feature,

its optimal value represent the feature ranking, thereby the features with the higher

weight are the most relevant ones.
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2.2.2 Classification

Among supervised machine learning, techniques, classification algorithms try to iden-

tify which categories or classes a new observation belongs to, based on a training

set of data containing observations (samples or patterns) whose category is already

known. In this work, we use a linear classifier, the Logistic Regression model, due to

its simplicity and good results in our datasets.

2.2.2.1 Logistic Regression

The logistic regression is possibly the well-known statistical model of binary clas-

sification for its simplicity and good performance in simple problems.

The Logistic Regression model estimates the probability P (Y = 1|X = x(n)) as

a function of x(n) as follows:

P (Y = 1|X = x(n)) =
1

1 + e−f(x(n))
(2.3)

where f(x) is a linear function on the training samples that can be expressed as

follows

f(x(n)) = w0 + wTx(n) (2.4)

This model predict y=1 if P (Y = 1|X = x(n)) ≥ 0.5 and y=0 otherwise. Thereby,

logistic regression defines a linear classification model where the decision boundary

is defined by the solution of f(x) = 0, which is equivalent to P (Y = 1|X = x(n)) =

0.5. Figure 2.1 shows P (Y = 1|X = x(n)) as a function of f(x) .
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Figure 2.1: The sigmoid output in function of f(x)

To train logistic regression model and estimate the parameters w, well-known

methods such as maximum likelihood or ordinary least squares [Bishop, 2006,

Hastie et al., 2009] are commonly used.

2.2.3 Regression

Regression models are supervised machine learning techniques that estimate a func-

tion f(x) that maps from an input data-point to a real number based on training

data. In general, a regression model can be written as follows

y(n) = f(x(n),w) + ν (2.5)

where f(x,w) is the function that represent the regression model and ν is the noise

term.

In this work, we use four different linear regression models (Linear Regression,

Ridge Regression, Lasso Regression and Linear Support Vector Regression Machine),

13
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and one non-linear regression model (Random Forest). These models will be briefly

described in the following sections.

2.2.3.1 Linear Regression

Linear regression is one of the most popular regression models because of its sim-

plicity and easy interpretability. This model assumes that the variable y(n) can be

represented as a a linear combination of the input variables. Each data sample is

represented as x(n) = [x
(n)
0 , x

(n)
1 , ..., x

(n)
D ]T with (x

(n)
0 = 1) is used for modeling the

bias. Therefore, the goal of a linear regression model is to find a vector of coefficients

w = [w0, w1, ..., wD]T .

linear combination of the variables x(n) = [x
(n)
0 , x

(n)
1 , ..., x

(n)
D ]T (x

(n)
0 = 1) that rep-

resents the data samples formed by D features, with coefficients w = [w0, w1, ..., wD]T .

Then, the decision function of a linear regression model can be expressed as follows

ŷ(n) = f(x(n),w) =
D∑
i=0

wix
(n)
i , (2.6)

where ŷ(n) is the estimated value of y(n). Equation (2.6) can be rewritten in a matrix

form by setting Y = [y(1), y(2), ..., y(N)]T and X being a N×(D+1) matrix formed by

all the patterns x(n), where each row represent a single pattern with an extra column

with all entries equal to 1 to represent x(0). Then, the decision function of a linear

regression model can be expressed as follows

ŷ = wTX. (2.7)

To train this simple model and find the regression coefficients w, we can use the

normal equations for the least squares problem (See section 3.1.1 of [Bishop, 2006]):

w = (XTX)−1XTY. (2.8)

This equation gives us the vector of coefficients that minimizes the mean squared
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error (MSE) between ŷ and y

MSE =
1

N

N∑
n=1

(ŷ(n) − y(n))2 (2.9)

2.2.3.2 Regularized Linear Regression

Regularization is a process that reduces over-fitting and improves the generalization

capabilities of the machine learning model by adding a complexity penalty to the

cost function [Hastie et al., 2009].

The least square regression method described in the previous section minimizes

the sum of residual squares; however, it may be unstable and may produce over-fitting

[Hastie et al., 2009, Mustafa et al., 2014]. Therefore, the inclusion of a regularization

term in this model is highly advisable. One of the simplest form of regularization is

to constrain the the magnitude of each weight wj, thus favoring small values for wj.

The regularized cost function can be written as follows:

min
w

1

2

N∑
i=1

(ŷ(n) − y(n))2 subject to |w|q < t (2.10)

or in the Lagrangian form:

min
w

1

2
(
N∑
i=1

(ŷ(n) − y(n))2 + λ||w||q) (2.11)

where ŷ(n) is the predicted value for the i-th pattern, and y(n) is the real value, w is

the vector of the regression coefficients, and λ > 0 is the regularization parameter.

The larger the λ parameter, the more regularization is imposed in the model. The

most used values for q are 1 and 2 corresponding to Lasso Regression and Ridge

Regression, respectively [Hastie et al., 2009].

Ridge Regression

As mentioned above, the Ridge Regression model corresponds to q = 2 in the

equation (2.10), also known as L2 regularization or quadratic regularization. Ridge
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Regression was firstly introduced in statistics in 1970 [Hoerl and Kennard, 1970] to

provide a solution in the case where XTX is not of full rank and, thus, it is not

invertible and the solution to the least squares linear regression (equation 2.8) cannot

be computed.

We can write Equation (2.11) in a matrix form as follows

wridge = min
w

1

2
((Ŷ − Y )T (Ŷ − Y ) + λ||w||22) (2.12)

or

wridge = min
w

(X ·w− Y )T (X ·w− Y ) + λwTw (2.13)

Where X is the input matrix whose lines are the patterns, therefore X is s N ×
D dimensional matrix. Y is the vector of the N real values, Ŷ the vector of the N

predicted values, and w the coefficient vector.

To train this model and find the regression coefficients w, we can proceed in a

similar way as in linear regression (See section 3.1.1 of [Bishop, 2006]) and obtain a

closed form solution:

wridge = (XTX + λI)−1XTY (2.14)

where I is the N × N identity matrix. Since the Ridge Regression model has a

quadratic penalty wTw, its solution is also a linear function of x. Ridge Regression

will not yield sparse models as all coefficients are shrunk by the same factor (none

are eliminated) [Hastie et al., 2009].

Lasso Regression

The Lasso regression model uses the L1 regularization method that corresponds

to q = 1 in Equation (2.10) . It can be shown that if λ is sufficiently large, some of

the coefficients wj are driven to zero, which makes Lasso to produce sparse models.

The Lasso problem can be written in the equivalent Lagrangian form as follows
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wlasso = arg min
w

(
1

2

N∑
i=1

(y(n) − ŷ(n))2 + λ||w||1

)
. (2.15)

This penalty term makes the solutions nonlinear in y(n) so there is no closed

form solution as in linear regression and ridge regression models. To compute the

Lasso solution, we need to solve a quadratic programming problem, which have

a high computational cost, although, there are efficient algorithms with the same

computational cost of ridge regression, see Section 3.4.4 of [Hastie et al., 2009] for

more details.

The most attractive characteristic of Lasso regression is the sparsity of its solu-

tions, which not only reduces the number of operations needed to calculate the Lasso

estimation, but also makes it possible to use Lasso as a feature selection algorithm

[Hastie et al., 2009].

2.2.3.3 Support Vector Machines

Support Vector Machines (SVM) are considered as one of the best “off-the-

shelf” supervised machine learning algorithms. Initially developed for binary

classification problems [Burges, 1998], SVMs have been extensively researched

by the machine learning community for the last decade, giving as a re-

sult SVMs’ extensions to other type of problems such as Support Vector Re-

gression (SVR) [Smola and Schölkopf, 2004] and Ranking SVM (or RankSVM)

[Herbrich et al., 2000, Yu, 2005]. The main advantages of the SVM formulation are

the generalization capability of the model guaranteed by the margin maximization,

and the easy extension of SVMs to nonlinear functions by means of the kernel trick.

In this work, Support Vector Regression (SVR) models are used to estimate

the number of people in a classroom. However, before explaining the fundamentals

behind SVR, we need to introduce the binary SVM and the concept of margin.

SVM Classification
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In a linearly separable problem, a binary linear classifier separates the input

data in two classes or categories with an hyper-plane that may not be unique. For

example, in Figure 2.2, it can be seen how there exist several hyper-planes capable of

discriminating the two classes with a classification error equals to zero. Among these

hyper-planes, we should try to find the one with the best generalization capability,

that is, the hyper-plane that will correctly classify “unseen” or testing data with the

highest probability. To do so, SVMs try to find the hyper-plane with the maximum

separation between the two classes, or, in other words, the hyper-plane that has the

largest margin. The margin is defined as the smallest distance between the decision

boundary (hyper-plane) and any of the training samples, as illustrated in Figure 2.3.

Figure 2.2: Linear classifiers (hyper-plane) in two-dimensional spaces

In the binary SVM formulation, the target variable is assumed to take the value

-1 or 1; that is, y(n) ∈ {−1, 1}. The SVM decision function F (x) takes the form

F (x) = wx− b (2.16)

where w is the weights or coefficients vector and b is the bias, both will be determined

during the SVM training phase. To correctly classify a pattern x(n), F (x(n)) must
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Figure 2.3: SVM classification function: the hyper-plane maximizing the margin in

a two-dimensional space. Source: [22].

return a positive value if y(n) = 1, and a negative value when y(n) = −1. Therefore,

the following inequality must hold:

y(n)(w · x(n) − b) > 0, ∀(x(n), y(n)). (2.17)

If the dataset is linearly separable, we can rewrite the condition in Equation 2.17

by adding the restriction | F (x) |≥ 1 as

y(n)(w · x(n) − b) ≥ 1, ∀(x(n), y(n)). (2.18)

The distance from the hyper-plane F to a vector x(n) is given by |F (x)|
‖w‖ and the

margin becomes

margin =
1

‖w‖
. (2.19)

Therefore, in order to maximize the margin, we can minimize ||w|| under the

restriction given in Equation (2.18). Thus, the training problem in SVM becomes a

constrained optimization problem as follows,

min
w

1

2
‖w‖22 (2.20)

s.t. y(n)(w · x(n) − b) ≥ 1 n = 1, ..., N.
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This optimization problem, known as hard-margin SVM, does not have a solution

if the dataset is not linearly separable, which is the common case in practice. To deal

with such cases, we need to introduce some modifications, in this new formulation,

known as soft-margin SVM, we introduce new variables ξ(n), called slack variables,

which measure the degree of misclassification of the sample x(n) in terms of how

far it is x(n) from the correct side of its corresponding margin [Yu and Kim, 2012,

Rao, 2013].

The soft-margin SVM formulation can be writing as :

min
w

1

2
‖w‖2 + C

N∑
n=1

ξ(n) (2.21)

s.t. y(n)(w · x(n) − b) ≥ 1− ξ(n)

ξ(n) ≥ 0 n = 1, ..., N.

Slack variables ξ(n) in Equation ( 2.21 ), allow data samples to be misclassified to

certain degree, and the amount of misclassification quantified by the slack variables

will be minimized while the margin is maximized. The new hyperparameter C ≥ 0

determines the tradeoff between the margin size and the amount of misclassification

in training.

Support Vector Regression

SVM Regression is a modification of the soft-margin SVM for regression problems

in which y(n) ∈ IR. The key idea in SVR is the introduction of a ε-insensitive error

function that is equals to zero if the absolute difference between the target y(n) and

the predicted value ŷ(n) is less than ε, where ε > 0. More precisely, the ε-insensitive

error function is given by:

E(y(n), ŷ(n)) =

 0 if
∣∣y(n) − ŷ(n)∣∣∣∣y(n) − ŷ(n)∣∣ otherwise

(2.22)

The SVR formulation is given by:
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min
w

1

2
‖w‖2 + C

N∑
n=1

(ξ(n) + ξ(n)∗ ) (2.23)

s.t. y(n) −w · x(n) − b ≤ ε+ ξ(n)

w · x(n) + b− y(n) ≤ ε+ ξ(n)∗

ξ(n), ξ(n)∗ ≥ 0 n = 1, ..., N.

Figure 2.4: The soft margin loss setting for a linear SVM. Source

[Smola and Schölkopf, 2004].

Figure 2.4 illustrates the idea behind the optimization problem in Equation 2.1

only the points outside the dark region contribute to the SVR cost function, out-

side this area the penalty increase in a linear fashion with the sample prediction

error. This optimization problem can be solved more easily in its dual formulation

[Yu and Kim, 2012, Smola and Schölkopf, 2004].

2.2.3.4 Random Forest

Regression Random Forest (RF) is an ensemble method, which means that it is a

fusion of multiple weak learners [Breiman, 2001]. Random forest is built by training

a large number of regression trees, and the RF output is computed as the average

of individual trees output. To exploit the maximum from this fusion, we need to
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guaranteed a diversity between individual trees. To do that RF uses two diversity

techniques, Bootstrap Sampling and randomized feature selection. To explain how

Random Forest algorithm works, we will first introduce its three principal elements

: regression trees, bootstrap sampling or Bootstrapping, and Random Subspace

method.

Regression trees

A Regression tree is a recursive partitioning regression model that consists on

partitioning the space into smaller regions until we finally get pieces of space

where the problem is sufficiently simple that we can fit simple models for them

[Breiman et al., 1984, Hastie et al., 2009]. A regression tree is a binary tree, it starts

by the root node from which outcome two branches, every branch ends in a new

node from which outcome two new branches. Every inner node represent a condition

over one problem variable, and the branches between represent the answers to this

condition. this sequence of condition divide the input space in set of sub-spaces.

Figure 2.5 shows a regression tree for a problem with three input features and one

output ŷ that is a continuous variable. We first start by dividing the input space into

two subspaces according to the values of ‘feature 1’; then, we divide again these two

resulting spaces into two subspaces each one, one according to the values of ’feature

1’ and the other one according to the values of ’feature 2’ and so on. The predicted

value ŷ in a leaf-node is the mean of the samples’ targets belonging to that leaf-node.

Bootstrapping

Proposed by Efron in 1979 [Efron, 1979], Bootstrapping is a technique for re-

ducing the variance of an estimated prediction function and improving the stability

and accuracy of machine learning algorithms. It is used in both classification and

regression problems.

The basic idea of Bootstrapping is to produce several data subsets from the

original training set of the same size using random sampling with replacement. It
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Figure 2.5: Regression tree for predicting a continuous output ŷ as a function of

three input features.

means that some original training samples appear more than once, while some other

are not present. A machine learning algorithm is trained over every generated subset

of data, and the predictions of each model are combined by some voting scheme in

classification problems, or by averaging the predictions in regression problems.

Random subspace method

Also know as Random subspace method [Bryll et al., 2003, Ho, 1998], the random

subspace method is very similar to bagging except that it randomly samples features,

not samples, for each learner. In this way, individual learners do not over-focus on

features that seem to be highly predictive in the training set, but fail to be as

predictive for points outside that set. This strategy prevents from over-fitting.

Random Forest

After introducing the different element of Regression Random Forest, we will
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now describe how it works. Given a dataset of N samples and D features, a Random

Forest Algorithm composed of B trees can be summarized as Algorithm 1:

for b=1 to B: do
1 - Draw a bootstrap sample of size N from the training data.

2 - Select randomly d variables form the D variables.

3 - Train a new tree with the bootstraped samples only with the d selected

variables .

end

Averaging the individual tree outputs.
Algorithm 1: Random Forest algorithm for regression problem

We start by generating a new training dataset using a Bootstrapping technique

[Hastie et al., 2009]. After that we randomly select d features from the original D-

dimensional space, and we finally train a regression tree with the generated dataset.

This procedure is repeated B times. After training the B trees, we aggregate them

by averaging the individual tree output.

2.2.4 Evaluation Procedures

This section presents the evaluation procedures used in this work such as strategies

for splitting our dataset in training/validation/test partitions to properly measure

the generalization capability of the machine learning models, the evaluation met-

rics used to quantify the performance of these methods, and the hyperparameter

search strategy followed to obtain the best configuration for each pattern recognition

algorithm.

2.2.4.1 Hold-out

The hold-out method randomly splits the data into two subsplits, the first one is used

for training the machine learning model, while the second partition is used as test

set to measure the performance of the algorithm in ”unseen data, and thus, estimate

its generalization capability.
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2.2.4.2 Cross Validation

Cross-Validation (CV) is a method used to estimate the reliability of a model. CV

consist in splitting the training data in k splits, named folds, train the model with

k-1 folds and test it with the remaining fold. This procedure is repeated until each

fold has been used once as test set. The cross validation error is obtained as the

average over the errors obtained in the test partition in each of the k iterations of

the algorithm. Figure 2.6 shows an example of a 10-fold Cross Validation.

Figure 2.6: Example of a 10/-fold Cross Validation [Raschka, 2017]

2.2.4.3 Grid Search

Many machine learning algorithms have some hyperparameters or no-trainable pa-

rameters which have to be specified by the user. To select no-trainable parameters,

we have to use an hyperparameter optimization method.

One of the most simple methods to perform hyperparameter optimization is the

Grid Search algorithm that consists in an exhaustive searching through a subset of

the hyperparameters of the learning algorithm.

To perform a grid search, we have first to define a range of values for each no-
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trainable parameters and create all the possible combinations of no-trainable pa-

rameters. Then, we calculate the cross validation error for every combination, and,

finally, we select those parameters that provide the best cross validation error.

2.2.5 Evaluation Metrics

This section contains a brief definition of the evaluation metrics that have been

used to measure the performance of the classification and regression models such as

classification accuracy, mean absolute error and mean relative error.

2.2.5.1 Classification accuracy

The classification accuracy Caccuracy of an classification algorithm is defined as the

proportion of samples correctly classified and it is evaluated by the following formula:

Caccuracy =
m

N
× 100, (2.24)

where m is the number of samples correctly classified and N is the total number of

samples.

2.2.5.2 Mean Absolute Error

The Mean Absolute Error (MAE) is a measure of difference between two continuous

variables. In our case, these variables are the target variable y that represent the

number of people in the classroom and its predicted value ŷ. Formally, MAE can be

defined as :

MAE =
1

N

N∑
i=1

|ŷ(n) − y(n)|, (2.25)

where N is total number of patterns.
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2.2.5.3 Mean Relative Error

Mean Relative Error (MRE) is computed to evaluate the goodness of a model, and

it is defined as the mean of the relative errors (RE) of each sample.

MRE =
1

N

N∑
i=1

|ŷ(n) − y(n)|
y

, (2.26)

Where N is the total number of samples.
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Chapter 3

Data collection and datasets description

This chapter describes the data collection and feature extraction processes carried

out. As a result, four different datasets were produced, which differ in the recording

periods, the input sensors, and the generated features. These datasets will serve as

input for pattern recognition techniques to be used to solve the occupancy detection

and occupancy estimations problems.

3.1 Data collection

In classroom number 5 of the Polytechnical school of the Autonomous University of

Madrid (UAM), an e-nose device (see Figure 3.1) composed of several sensors that

monitorize different chemical substances in the air (Analog CO2, Digital CO2, air

quality, and the records of the TGS 2620, TGS 2600, TGS 2611, TGS 2603 and

TGS 2602), humidity, luminosity and the temperature sensors was installed in April

2016. In addition to a wifi sensor that allows us to estimate the number of electronic

devices connected to the wifi network in the proximity of the classroom. Finally, other

sensors that detect when the door of the classroom and the door of the computer

case get opened or closed were also installed in the same classroom. In what follows,

we will call e-nose to this multisensory sensing network. The information about all
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the sensors used can be found in Table 3.1.

Figure 3.1: The e-nose installed in the classroom number 5.

Table 3.1: Sensors included in the main device installed in classroom number 5

(EPS-UAM)

Sensor Description

Figaro CDM4161A Analog CO2 sensor

DHT22 Humidity sensor

LDR Luminosity sensor

TGS 2600 Detection of pollutants in the air (eg, hydrogen and carbon monoxide).

TGS 2620 Detection of vapors from organic solvents and other volatile vapors.

TGS 2011 Methane sensor

TGS 2602 Detection of Air Pollution (Air Purifiers - Ventilation Control)

TGS 2603 Detection of odors and air pollution (Air cleaners - Ventilation control)

Winsen MP503 Air-Quality. Detection Gas: Alcohol, Smoke, VOC ects air quality elements

Figaro CDM4160 Digital CO2

WiFi Module - ESP8266 low-cost Wi-Fi chip with full TCP/IP stack and MCU (microcontroller

unit) capability

The e-nose sends the data recorded by the different sensors to a remote database

every 10 seconds. To access the registered data, we dispose of a web tool that allows

us to visualize and download the data (See Figure 3.2).

30



CHAPTER 3. DATA COLLECTION AND DATASETS DESCRIPTION

Figure 3.2: The web tool that allow us to visualize and download the e-nose records.

In addition to the sensors constituting the multisensory network, some informa-

tion about about the activities taking place in the classroom was captured with the

collaboration collaboration of some professors that provided information about the

number of people in the classroom, the type of activity carried out such as keynote

lecture or exam, or some modifications in the class schedule. These variables were

introduced manually into the database and some of them (classroom attendance)

will be used as target variable in the machine learning models.

3.2 Datasets and Feature extraction

This section describes the features extracted from sensors’ responses in order to

generate the datasets that will serve as input to the machine learning models. More

precisely, in this work we have constructed two types of datasets as a function of the

nature of their attributes: statistical variables summarizing sensors’ response for a

period of time and variables based on the Exponential Moving Average of the signals

that try to reflect the sensor dynamics of the increasing/decaying transient portion
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of the sensor response for a period of time.

3.2.1 Datasets with statistical variables

To construct the datasets using the statistical variables, we considered the following

features: the median of the signal from which we subtract the its minimum value

denoted median-min to subtract the baseline, the mean of the signal from which we

subtract its minimum value to remove the baseline denoted mean-min. Removing

the baseline signal at the beginning of the activity is especially crucial when we have

two classes in a row, because when having two classes in a row, the initial condition

of the sensor for the second class will not be the same as in the first one, so it is

expected the values of the mean and the mean to be very different even in those

cases in which the number of occupants is similar. The standard deviation (Std),

the maximum (Max), the minimum (Min), and the difference between the maximum

and the minimum value of the signal (Max-Min) are variables also included in the

dataset. All these statistical features are computed during the period of time in

which the class/activity takes place or during predefined periods of time in which

the classroom is empty.

Table 3.2: Main characteristics of the datasets used in this work

Name Start date End date Dimension Patterns Sensors

DS1 20/04/2016 30/06/2016 54 56

Temperature, Analog CO2, Humidity,

Luminosity, TGS 2620, TGS 2600, TGS 2611,

TGS 2602, Air quality

DS2 20/09/2016 31/01/2017 66 78

Temperature, Analog CO2, Humidity, Luminosity,

TGS 2620, TGS 2611, Air quality, TGS 2602,

Digital CO2, TGS 2603 and ESP8266(wifi)

DS3 20/04/2016 31/01/2017 48 135
Temperature, Analog CO2, Humidity, Luminosity,

TGS 2620, TGS 2611, Air quality, TGS 2602

To obtain the corresponding patterns at times when the classroom is empty, we

computed the same features for two periods of one hour during the weekends. We
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chose the period of time between 13pm and 14pm on Saturdays and Sundays in

order to ensure that the classroom is, in general, empty and to avoid any kind of

bias regarding the luminosity. Under this experimental setup, we considered three

different databases that differ in both the period of tie in which data were captured,

and the sensors installed in the classroom during this period of time as some sensors

changed while this work was under development. Table 3.2 shows the characteristics

of the three datasets used in this work.

3.2.2 Datasets with Exponential Moving Average variables

An exponential moving average (EMA), also known as the exponentially weighted

moving average is similar to a simple moving average, except that more weight is

given to the most recent data points.

The Exponential Moving Average is computed using the equation (2.1). The

EMA transformation generates a time serie with a single peak that corresponds to

the increasing/decreasing transient portion of original signal, as can be seen in Figure

3.3, the exact location of the peak or the maximum value depends on the value of

the smoothing parameter α.

Muezzinoglu et al. [Muezzinoglu et al., 2009] proposed the use of the EMA over

chemical sensors’ signals because their responses are slow when exposed to a con-

stant concentration of a stimulus, and the same happens when the stimulus is re-

moved. Given that EMA’s features lead to successful results in other electronic nose

data [Muezzinoglu et al., 2009, Vergara et al., 2012], we have applied the features

proposed by Muezzinoglu et al. over our original signals to study whether EMA’s

variables provide additional information to the statistical features described in the

previous section. EMAs variables were only computed over the chemical sensors

(Analog CO2, Digital CO2, TGS 2620, TGS 2611, TGS 2602, TGS 2603 and Air

quality) because the rest of the sensors like the wifi sensor are not expected to have

this behaviour.

The features considered in this dataset are the maximum value of the signal
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corresponding to a class period minus its minimum value denoted “Max-Min” and

the maximum value minus the minimum value divided by the minimum value of the

signal corresponding to a class period “Max-Min
Min

” as steady-state features in addition

to the EMA’s features that are the maximum value of the increasing portion and

the minimum value of the decaying portion corresponding to the three values of α

(α = {0.1, 0.01, 0.001}) as transient features (See Table 3.3).

For pattern corresponding to times when the classroom is empty, we computed

the same features for two periods of one hour during the weekends as we did in the

previous section (Section 3.2.1 for the three datasets with statistical variables).

Table 3.3: Feature extracted for the EMA’s datasets.

Statistical features
EMA’s features

Rising portion Decaying portion

Max-Min maxk emaα=0.001(r[k]) mink emaα=0.001(r[k])

Max-Min/Min maxk emaα=0.01(r[k]) mink emaα=0.01(r[k])

maxk emaα=0.1(r[k]) mink emaα=0.1(r[k])

Figure 3.3 shows the EMA’s signals of the Analog CO2 corresponding to an iso-

lated class, where we can clearly see the values of the EMA’s features -the maximum

of the rising portion and the minimum of the decaying portion-.
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Figure 3.3: Real signal and its emaα transform for α = 0.1, 0.01, 0.001 corresponding

to the Analog CO2 of an isolated class where there is no other class directly before

or after. The vertical lines indicate the beginning (green) and the end (red) of the

class period.
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Chapter 4

Experiments and results

In this chapter we present the proposed architecture to solve the occupancy esti-

mation problem. The proposed architecture consists in an hierarchical model, that

firstly detect if the classroom is empty or not (occupancy detection problem) and

finally estimate the number of occupant if the classroom is occupied (occupancy es-

timation problem). We also present and analyze the results of applying this model

to the datasets presented in 3.2.

4.1 Experimental setup

To be able to evaluate our models, we start first by splitting the data into a training

set and a test set, where the training set represents the 90% of our dataset, and the

remaining 10% corresponds to the test set. Data are normalized to have zero mean

and unit variance. As we want to predict the number of people in the classroom

during a class and given that the classroom was empty the majority of the time, we

decided to design a hierarchical model that in the first stage attempts to separate the

samples corresponding to the empty classroom from the other scenarios by means

of a classification algorithm, and in the second stage provides an estimation of the

classroom occupancy using a regression model. Figure 4.1 shows the steps of the
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experimental setup that we will explain in more detail in the following sections.

Figure 4.1: Proposed hierarchical model with the occupancy detection stage to detect

if the classroom is empty or not followed by the occupancy estimation stage to

estimate the number of occupant.

First stage: Occupancy detection

First of all, we perform a feature selection step using the QPFS algorithm

[Rodriguez-Lujan et al., 2010] to identify the most relevant features (sensors) for

the classification process, then we use the selected features to train the Logistic

Regression algorithm (block 1 in Figure 4.1). In this stage we do not need to use

any hyperparameter optimization method because the logistic regression model does

not require to adjust any hyperparameter. Our model predict “0 occupants” for

patterns that were classified as “empty classroom”, and the remaining patterns will

pass to the second stage.
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Second stage: occupancy estimation

Once the classification is done, we consider a subset of the initial data made up

of patterns in which the classifier predicts the presence of people in the classroom.

Then, a feature selection algorithm over all the features and a regression model over

this data subset is applied in order to estimate the number of people in the classroom

(block 2 in Figure 4.1).

Considering the available features, we apply again the QPFS algorithm

[Rodriguez-Lujan et al., 2010] for feature selection but this time the target variable

is the number of people in the classroom. Once the relevant features for the regres-

sion problem are detected, the performance of five regression models to estimate the

number of occupants in the classroom, namely: Linear Regression, Linear Support

Vector Regression Machine, Random Forest, Ridge Regression and Lasso Regression

is evaluated.

Table 4.1: Values of the Grid search for the regression models used in this work

where λ is the penalty parameter for Lasso Regression and Ridge Regression (Section

2.2.3.2), number of trees refers to the number of decision trees in the Random forest

(Section 2.2.3.4), ε is the margin tolerance, and C is the regularization parameter

that establishes a trade-off between the margin size and the minimization of the loss

function for the SVM (Section 2.2.3.3).

Regression model Grid of hyperparameters

Linear Regression -

Linear SVM
C = 2a where a varies from -12 to 12 with a step of size 1.

ε = 2b where b varies from -8 to 0 with a step of size 1.

Random Forest number of trees varies from 10 to 100 with a step of size 1.

Ridge Regression (Section 2.2.3.2) λ = 2a where a varies from -12 to 12 with a step of size 1.

Lasso Regression λ = 2a where a varies from -12 to 12 with a step of size 1.

An important task before training the above mentioned regression models except
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for linear regression is to choose the best value of the hyperparameters that set up

the model; this is done by performing a search over a grid that represents some

discrete values for the parameter space using logarithmic scale. Table 4.1 shows the

hyperparameter grid considered for each regression model.

The search over the grid is guided by a 10-fold cross validation procedure over

the training set. That is, 10-CV is performed for every combination of the grid

parameters and the error associated with such combination is obtained as the mean

error in the ten folds. The combination of hyperparameters with the lowest Mean

Average Error is used to train the final regressor over the whole training set. This

procedure is repeated ten times over 10 different training/test partitions of the initial

dataset, and the reported errors are obtained by averaging the errors obtained in the

test sets of the ten permutations. Section 4.2 will show the results obtained after

applying the above mentioned algorithms over our datasets.

4.2 Results

This section presents a description of the results obtained after applying the ex-

periments described in Section 4.1 over our datasets both with statistical variables

(Section 3.2.1) and EMA’s variables (Section 3.2.2).

As already described in Section 4.1, before estimating the number of occupants in

the classroom, we start by classifying our samples into two classes using the Logistic

Regression model (Section 2.2.2.1), and then, estimate the number of occupants for

those patterns in which the classifier predicts the presence of people in the class-

room using five regression models: Linear Regression, Support Vector Regression

Machine, Random Forest, Ridge Regression and Lasso Regression. The results ob-

tained by these models are compared in order to determine the model with the best

performance”

In order to estimate the number of people in the classroom, we apply five regres-

sion models over our complete datasets considering all the features and then removing
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some features corresponding to some specific sensors: CO2, luminosity and wifi. The

reasons why we decided to analyze the performance of the models without taking

into account these sensors are:

• Variables related to CO2 and Wifi are the most relevant for the regression

problem when all the available features were initially considered. By removing

these features, we wanted to see to what extent the MOX sensors are capable

of performing this task since, as far as we know, the is not any work in the

literature focused on occupancy detection by means of MOX sensors.

• Luminosity data were used in other work to detect the presence of people

in an office [Candanedo and Feldheim, 2016]. In this work, luminosity is the

most relevant feature to determine whether there are people inside the room.

However, it should be mentioned that almost all the patterns associated to an

empty room in this work corresponds to hours of the day in which there is not

natural light outside. Although for the occupancy detection problem we do not

expect luminosity to be a particularly relevant variable, we decided to analyze

the performance of the whole system (classification and regression steps) when

luminosity information is not taken into account in order to dismiss a possible

source of bias.

4.2.1 DS1 dataset

The DS1 dataset is made of data coming from the following sensors: Temperature,

Analog CO2, Humidity, Luminosity, TGS 2620, TGS 2600, TGS 2011, TGS 2602 and

Air quality(Winsen MP503) captured from 20/04/2016 to 30/06/2016 (See Table

3.2).

As shown in Figure 4.1, feature selection is carried out before both occupancy

detection and occupancy estimation models. The motivation behind the application

of a feature selection algorithm is to reduce the risk of over-fitting, but mainly, to

improve the interpretability of the obtained models by determining the most relevant
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sensors for each problem. In this regard, Table 4.2 shows the features selected by

QPFS for the classification problem when all the features are initially considered.

According to these results, analog CO2 is one of the most relevant features since it

is selected 60% of the time. None of the features that comes from the luminosity

sensor are relevant for the classification problem, so there is not a luminosity bias

between empty and non-empty scenarios. Finally, it is remarkable that we obtain a

100% classification accuracy in all cases as shown in Table 4.3.

Table 4.2: Percentage of times that a feature is selected by QPFS for the classification

problem over the 10 iterations of experimental procedure presented in Figure 4.1

when the DS1 dataset is used. Different subsets of initial features are considered

as input for the feature selection algorithm: All: DS1 dataset with all the features;

All-CO2: DS1 dataset without the CO2 data, All-Luminosity: DS1 dataset without

the luminosity data and All-{CO2, Luminosity}: DS1 dataset without both the CO2

and the luminosity data.

Features selected

for classification

Initial set of features

All All-CO2 All-Luminosity All-{CO2, Luminosity}

Max Analog CO2 60% - 50% -

Max TGS 2600 50% 30% 30% 50%

Max TGS 2620 100% 100% 100% 100%

Max Air quality 100% 100% 100% 100%

Max TGS 2602 0% 0% 0% 10%

Regarding the occupancy estimation problem, we can clearly see in Table 4.4 that

the Analog CO2 sensor is the most relevant one as it is selected by the QPFS in all

the permutations. It means that CO2 information is essential to get a good regression

model. This fact is also clear when looking at the Mean Absolute Errors and the

Mean Relative Errors of the regression models in Table 4.3 when CO2’s features are

not considered by the regression algorithms, their performances get worse.
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Table 4.3: Results after applying the classification and the regression models to the

DS1 dataset using different evaluation metrics. MAE test: Mean Absolute Error

over all the test set, MAE test >0: Mean Absolute Error over samples predicted as

positive by the classification model, MRE test >0: Mean Relative Error over samples

predicted as positive by the classification model. The column Input features indicates

the subset of variables considered as the input of the feature selection algorithm. The

best result in terms of the lowest MAE is shown in bold.

Input features Model MAE test >0 MAE test MRE test>0
classification

accuracy

Linear regression 9.38±1.27 9.38±1.27 0.29±0.06

Linear SVM 10.34±1.04 10.34±1.04 0.29±0.05

ALL Random forest 9.61±0.80 9.61±0.80 0.29±0.04 100%

Lasso 8.34±1.07 8.34±1.07 0.23±0.04

Ridge regression 9.37±1.24 9.37±1.14 0.28±0.06

Linear regression 10.00±1.44 10.00±1.44 0.30±0.07

Linear SVM 10.01±1.05 10.01±1.05 0.3±0.05

ALL-CO2 Random forest 11.54±1.18 11.54±1.18 0.32±0.04 100%

Lasso 10.80±1.29 10.80±1.29 0.31±0.05

Ridge regression 9.93±1.43 9.93±1.43 0.30±0.01

Linear regression 8.98±1.14 8.98±1.14 0.27±0.05

Linear SVM 10.38±1.02 10.38±1.02 0.28±0.05

ALL-Luminosity Random forest 10.3±0.82 10.30±0.82 0.3±0.03 100%

Lasso 8.40±1.37 8.40±1.37 0.23±0.04

Ridge regression 9.00±1.13 9.00±1.13 0.27±0.05

Linear regression 9.64±1.39 9.64±1.39 0.29±0.01

Linear SVM 10.38±1.20 10.38±1.20 0.31±0.06

ALL-{CO2 Random forest 11.68±1.15 11.68±1.15 0.33±0.05 100%

, Luminosity} Lasso 10.95±0.92 10.95±0.92 0.29±0.03

Ridge regression 9.64±1.39 9.64±1.39 0.29±0.01

Results in Table 4.3 and Figure 4.2 show that the lowest MAE is obtained by

Lasso considering all the features. This model gets a MAE of 8.34 ± 1.07 and a MRE
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of 0.23 ± 0.04. In addition, the models without the Analog CO2 are clearly the worst,

which confirms that CO2 features are the most relevant ones when predicting the

number of people in the classroom. It makes sense as the level of CO2 rises as a

function of the number of people [Jiang et al., 2016].

Figure 4.2: Bar plot comparing the Mean Absolute Error of the five regression models

used in this work for the DS1 dataset when considering different subsets of sensors.

The x-axis represents the input features, and the y-axis represents the Mean Abso-

lute Error obtained by each of the models for each feature subset in the occupancy

detection problem.

As Lasso is the model with the best performance, and it has its own feature

selection process, Figure 4.3 shows the importance of each sensor according to the

Lasso’s coefficients. This importance is calculated by summing the absolute values

of the Lasso’s coefficients over the 10 permutations of the experimental setup (Figure

4.1). This sum is divided by 10 to normalize. After that we sum the coefficients of

the 6 variables that correspond to the same sensor in a single variable and we divide

it by 6 to normalize it again.

Figure 4.3 reveals that the analog CO2 sensor is the most important one for the
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Figure 4.3: Importance of the features according to the according to Lasso’s coeffi-

cients for the 10 permutations of the experimental setup (Figure 4.1).

regression task together with the TGS 2600 sensor. These results are consistent with

those obtained when using a QPFS for the regression problem (Table 4.4). However,

there are some differences between both approaches: while air quality features are

very important for Lasso, they are not so relevant for QPFS. This may be due to the

differences on how both algorithms deal with features’ collinearity.

Finally, Figure 4.4 is a comparison between the actual number of occupants in

the classroom and the prediction of the Lasso regression model with all features as

it is the model with the lowest Mean Absolute Error. In Figure 4.4 we can see

that training and test points are close to the bisector, so the model provides a good

estimation of the number of people in the classroom.
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Table 4.4: Percentage of times that a feature is selected by QPFS for the regression

problem over the 10 iterations of experimental procedure presented in Figure 4.1

when the DS1 dataset is used. Different subsets of initial features are considered

as input for the feature selection algorithm: All : DS1 dataset with all the features;

All-CO2 : DS1 dataset without the CO2 data, All-Luminosity : DS1 dataset without

the luminosity data and All-{CO2, Luminosity}: DS1 dataset without both the CO2

and the luminosity data.

Features selected

for regression

Initial set of features

All All-CO2 All-Luminosity All-{CO2, Luminosity}

Min Temperature 90% 90% 90% 90%

Median-Min Analog CO2 30% - 30% -

Max Analog CO2 100% - 100% -

Std TGS 2600 60% 70% 80% 100%

Max TGS 2600 100% 100% 100% 100%

Std Luminosity 20% 70% - -

Max-Min Luminosity 10% 0% - -

Max-Min TGS 2600 0% 0% 10% 0%

Median-Min TGS 2620 10% 0% 10% 0%

Mean-Min TGS 2620 0% 10% 0% 10%

Std TGS 2611 0% 20% 0% 30%

Max Air quality 0% 10% 0% 20%

Max TGS 2602 10% 70% 10% 70%
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Figure 4.4: Estimation of the number of people in the classroom corresponding

to the DS1 dataset without the luminosity’s data using Lasso Regression. The x-

axis represents the actual number of people in the classroom, the y-axis represents

the predicted values, blue points represent training patterns, and red points are

associated with est patters. The bisector represents the perfect prediction.

4.2.2 DS2 dataset

In this dataset, we include data coming from three new sensors. The recording period

(from 9 September 2016 to 31 January 2017) is different comparing to DS1 dataset

while the used sensors are: Temperature, Analog CO2, Humidity, Luminosity, TGS

2620, TGS 2611, Air quality, TGS 2602, Digital CO2, TGS 2603 and wifi sensor

(See Table 3.2). Since one of these sensors allows us to estimate the number of

devices connected to the wifi network of the classroom, we expect improvements in

the performances of the regression models.
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Table 4.5: Percentage of times that a feature is selected by QPFS for the classifi-

cation problem over the 10 iterations of experimental procedure presented in Figure

4.1 when the DS2 dataset is used. Different subsets of initial features are considered

as input for the feature selection algorithm: All : DS2 dataset with all the features;

All-CO2 : DS2 dataset without the CO2 data; All-Luminosity : DS2 dataset without

the luminosity data; All-Wifi : DS2 dataset without the wifi data; All-{CO2, Lu-

minosity}: DS2 dataset without both the CO2 and the luminosity data, All-{Wifi,

Luminosity}: DS2 dataset without both the wifi and the luminosity data and All-

{CO2, Wifi}: DS2 dataset without both the CO2 and the wifi data.

Features selected

for classification

Initial set of features

All All-CO2 All-Luminosity All-Wifi
All-{CO2,

Luminosity}
All-{Wifi,

Luminosity}
All-{Wifi,

CO2}

Max Temperature 0% 0% 0% 0% 0% 10% 0%

Max Analog CO2 0% - 0% 20% - 30% -

Max Luminosity 100% 100% - 100% - - 100%

Max TGS 2620 0% 0% 0% 30% 0% 80% 20%

Max Air quality 100% 100% 100% 100% 100% 100% 100%

Min Air quality 0% 0% 0% 0% 0% 10% 0%

Max TGS 2602 10% 10% 90% 10% 90% 100% 10%

Median-Min TGS 2603 0% 0% 0% 0% 0% 30% 0%

Std TGS 2603 0% 0% 0% 0% 0% 10% 0%

Max TGS 2603 0% 0% 0% 0% 0% 20% 0%

Max-Min TGS 2603 0% 0% 0% 0% 0% 30% 10%

Max Wifi 100% 100% 100% - 100% - -

In terms of the occupancy detection task, Table 4.5 shows the percentage of

times that each feature is selected by QPFS algorithm. According to the results

presented in this table, wifi and luminosity are always chosen by the feature selection

algorithm when available, which reveal their importance and matches with our initial

expectation with regards to the wifi.

Table 4.6 is similar to Table 4.3 and it shows the classification accuracy of the

Logistic Regression model for the occupancy detection problem along with the MAE
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and MRE of the five regression models considered in this work. The classification

results in Table 4.6 are slightly worse than those presented in Table 4.3 with an

accuracy of 97.5% since the DS1 and DS2 do not actually have the same dimension

nor the same number of patterns (see Table 3.2) as they do not have the same sensors

and the data were not recorded in the same period of time, in addition to the presence

of the wifi chip that estimates the number of devices connected to the wifi network of

the classroom, this chipset can also detect the devices connected to the wifi network

in the corridor near the classroom which means that we can have a positive values

although the classroom is empty. The wifi’s features are really relevant being that the

Max wifi is selected by the QPFS for the classification problem in the 10 permutation

as shown in Table 4.5.

Considering the complete dataset with all the features, the results improve con-

siderably when predicting number of people: the Mean Absolute Error and the Mean

Relative Error significantly drop as it can be seen in 4.6. For example, the MAE of

the test set of the Random Forest model decreases from 9.61±2.53 to 5.39±1.97 and

the MRE drops from 0.29±0.04 to 0.13±0.03. As for the most relevant sensors, we

find that analog CO2 and wifi’s features are selected in all the permutations, and

TGS 2603 sensor is selected in 80% of times as shown in Table 4.7.

Although these results are very promising, we repeat the same procedure as for

the DS1 dataset in which we remove features from the most relevant sensors in

order to check the usefulness of the chemical sensors not used in previous works.

We start by removing the data coming from both analog and digital CO2 sensors,

then we remove the data coming from the luminosity sensor, and later we do not

take into account the wifi sensor’s data. Once the analysis of the relevance of the

individual sensors are completed, we remove the already cited sensors in pairs: CO2

and luminosity, luminosity and wifi, and finally CO2 and wifi. Table 4.6 shows the

results obtained on these experiments. On the one hand, the model with the lowest

MAE (5.09±0.69) and MRE (0.15±0.1) is the Random Forest without the luminosity
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Table 4.6: Results after applying the classification and the regression models to the

DS2 dataset using different evaluation metrics. MAE test: Mean Absolute Error

over all the test set, MAE test >0: Mean Absolute Error over samples predicted as

positive by the classification model, MRE test >0: Mean Relative Error over samples

predicted as positive by the classification model. The column Input features indicates

the subset of variables considered as the input of the feature selection algorithm. The

best result in terms of the lowest MAE is shown in bold.

Input

features
Model MAE test >0 MAE test MRE test>0

classification

accuracy

Linear regression 7.04±0.95 6.74±0.96 0.15±0.02

Linear SVM 8.07±0.88 7.90±0.84 0.19±0.04

ALL Random forest 5.39±0.62 5.14±0.38 0.13±0.03 97.5%

Lasso 9.67±1.28 9.51±1.28 0.24±0.05

Ridge regression 7.05±0.95 6.75±0.95 0.15±0.02

Linear regression 8.96±0.61 8.52±0.62 0.20±0.03

Linear SVM 9.57±0.60 9.46±0.60 0.21±0.03

ALL-CO2 Random forest 8.41±0.85 8.28±0.86 0.20±0.03 97.5%

Lasso 11.08±0.72 11.03±0.73 0.26±0.04

Ridge regression 8.69±0.61 8.53±0.62 0.20±0.03

Linear regression 6.83±0.95 6.55±0.96 0.15±0.082

Linear SVM 8.23±0.92 8.05±0.88 0.19±0.04

ALL-Luminosity Random forest 5.09±0.69 5.29±0.70 0.15±0.03 97.5%

Lasso 8.25±0.94 7.93±0.93 0.19±0.03

Ridge regression 6.84±0.95 6.55±0.95 0.15±0.03

Linear regression 9.78±0.73 10.02±0.75 0.23±0.05

Linear SVM 11.19±0.84 11.37±0.90 0.27±0.05

ALL-Wifi Random forest 7.06±0.73 7.14±0.70 0.18±0.04 97.5%

Lasso 9.90±1.05 9.57±1.06 0.26±0.02

Ridge regression 9.74±0.73 9.98±0.76 0.23±0.05

Linear regression 8.67±0.63 8.52±0.64 0.19±0.03

Linear SVM 9.67±0.57 9.48±0.56 0.22±0.03

ALL-{CO2, Random forest 8.89±1.05 9.10±1.04 0.20±0.04 97.5%

Luminosity} Lasso 10.02±0.58 10.10±0.86 0.22±0.04

Ridge regression 8.69±0.63 8.53±0.63 0.20±0.03

Linear regression 9.90±0.62 10.07±0.59 0.23±0.04

Linear SVM 10.36±0.97 10.46±0.98 0.26±0.05

ALL-{Wifi, Random forest 6.40±0.64 6.50±0.61 0.16±0.04 97.5%

Light} Lasso 9.51±0.80 9.17±0.88 0.21±0.02

Ridge regression 9.87±0.62 10.04±0.59 0.23±0.04

Linear regression 11.53±1.27 11.93±1.27 0.28±0.06

Linear SVM 11.64±1.38 11.97±1.46 0.29±0.07

ALL-{Wifi, Random forest 11.07±1.22 11.44±1.27 0.28±0.05 97.5%

CO2 Lasso 13.45±2.43 13.7±2.38 0.33±0.65

Ridge regression 11.56±1.25 11.98±1.26 0.29±0.06
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data. The comparison between the actual number of people in the classroom and

the number of occupants predicted by this model is depicted in Figure 4.5.The most

relevant sensors for this model are Analog CO2 and wifi that are selected in 100% of

times and TGS2603 (amines) that is selected in 9 out of 10 permutations (see Table

4.7). On the other hand, the model with the lowest MRE (0.13±0.09) is the Random

Forest trained with all tall the available features. The MAE of this model (5.39±1.93)

is very close to the MAE obtained by the best model in terms of the MAE. We can

also see in Table 4.3 that when we remove CO2 or wifi’s features, the performance

of the models drops significantly. This worsening is even more pronounced when

both features are eliminated at the same time. It is also remarkable that the feature

representing the variability of the amines sensor (TGS2603) is highly important in all

cases. As far as we know, this type of sensor has been never applied to the occupancy

detection and estimation problems.

As a graphical summary of Table 4.6, Figure 4.6 shows bar plots comparing the

Mean Absolute Errors of the five regression models used for the DS2 Dataset when

considering different subsets of features. Figure 4.6 makes clear that the worst model

is the one without both CO2 and wifi’s data and the best model is the one that does

not take into account luminosity data. These results are in line with those obtained

in Section 5.2.1

From Table 4.6 and Figure 4.6 we can see that Random Forest models always give

the lowest error MRE regardless off the input set of features. It is because Random

Forests can handle problems with a large number of variables with a relatively small

number of observations (see Table 3.2) [Fernández-Delgado et al., 2014]. We can also

deduce from Figure 4.6 that wifi’s features are very useful to estimate the number

of people in the classroom as the wifi sensor allows us to estimate the number of

devices connected to the wifi network of the classroom. The importance of CO2 and

Wifi data is also evident from Table 4.7, which shows that the CO2 and the wifi are

always selected by the QPFS for the regression problems.
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Table 4.7: Percentage of times that a feature is selected by QPFS for the regression

problem over the 10 iterations of experimental procedure presented in Figure 4.1

when the DS2 Dataset is used. Different subsets of initial features are considered

as input for the feature selection algorithm: All: DS2 dataset with all the features;

All-CO2: DS2 dataset without the CO2 data; All-Luminosity: DS2 dataset without

the luminosity data; All-Wifi : DS2 dataset without the wifi data; All-{CO2, Lu-

minosity}: DS2 dataset without both the CO2 and the luminosity data, All-{Wifi,

Luminosity}: DS2 dataset without both the wifi and the luminosity data, and All-

{CO2, Wifi}: DS2 dataset without both the CO2 and the wifi data.

Features selected

for regression

Initial set of features

All All-CO2 All-Luminosity All-Wifi
All-{CO2,

Luminosity}
All-{Wifi,

Luminosity}
All-{Wifi,

CO2}

Median-Min Temperature 0% 0% 0% 0% 0% 10% 0%

Max Temperature 0% 0% 0% 0% 0% 0% 20%

Median-Min Analog CO2 0% - 10% 90% - 90% -

Mean-Min Analog CO2 40% - 20% 0% - 0% -

Max Analog CO2 100% - 100% 100% - 100% -

Std TGS 2620 0% 0% 0% 70% 0% 50%

Max TGS 2620 0% 60% 0% 0% 0% 0% 80%

Std TGS 2611 0% 0% 0% 0% 0% 0% 20%

Max TGS 2611 0% 30% 0% 0% 0% 0% 0%

Std TGS 2602 0% 0% 0% 0% 10% 0% 0%

Max TGS 2602 0% 0% 0% 10% 0% 0% 10%

Median-Min TGS 2603 0% 0% 0% 20% 0% 20% 0%

Std TGS 2603 90% 100% 90% 100% 100% 100% 100%

Max TGS 2603 0% 0% 0% 80% 0% 30% 100%

Max-Min TGS 2603 0% 0% 0% 0% 30% 0% 10%

Max Wifi 100% 100% 100% - 100% - -
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Figure 4.5: Estimation of the number of people in the classroom corresponding to the

DS2 Dataset without the luminosity data using Random Forest. The x-axis represents the

actual value of occupants, the y-axis represents the predicted values, blue points represent

training patterns, and red points are associated with est patters. The bisector represents

the perfect prediction.
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Figure 4.6: Bar plot comparing the MAE of the five regression models used in this work

for the DS2 Dataset when considering different subsets of sensors.The x-axis represents the

input features, and the y-axis represents the MAE obtained by each of the models for each

feature set in the occupancy detection problem.
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4.2.3 DS3 dataset

The recording period of the DS3 dataset is the combination of the recording periods

of DS1 and DS2 dataset, and the sensors used are those available in both datasets,

namely: Temperature, Analog CO2, Humidity, Luminosity, TGS 2620, TGS 2611,

Air quality, TGS 2602 and TGS 2603).

As shown in Table 4.8, the most relevant sensors according to QPFS for the

classification problem are TGS 2620 (Alcohol, Solvents Vapors) and Air quality - their

variables are selected in all the permutations - followed by the Analog CO2 sensor

that is selected 50% of the times. As shown in Table 4.9, the Logistic Regression

model achieves a classification accuracy of 99.29% when considering all the available

features.

Table 4.8: Percentage of times that a feature is selected by QPFS for the classification

problem over the 10 iterations of experimental procedure presented in Figure 4.1

when the DS3 Dataset is used. Different subsets of initial features are considered

as input for the feature selection algorithm: All: DS3 Dataset with all the features;

All-CO2: DS3 Dataset without the CO2 data, All-Luminosity: DS3 Dataset without

the luminosity data and All-{CO2, Luminosity}: DS3 Dataset without both the CO2

and the luminosity data.

Features selected

for classification

Initial set of features

All All-CO2 All-Luminosity All-{CO2, Luminosity}

Max Analog CO2 50% - 50% -

Max TGS 2620 100% 100% 100% 100%

Max Air quality 100% 100% 100% 100%

Max TGS 2602 0% 30% 20% 10%

In terms of prediction the number of occupants, taking into account all the avail-

able features, Random Forest is the model with the lowest Mean Absolute Error

(9.49±1.22), and a Mean Relative Error of 21%, while Lasso is the model with the
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lowest MRE (20%) and a MAE of 9.57±0.58 as shown in Table 4.9. As shown in

Table 4.10, the most relevant sensor for these models is the CO2 sensor as its features

are selected in all the 10 permutations. The temperature sensor is also informative

as its features are chosen in 80% of the times as shown in Table 4.10.

Table 4.9: Results after applying the classification and the regression models to the

DS3 dataset using different evaluation metrics. MAE test: MAE over all the test set,

MAE test >0: MAE over samples predicted as positive by the classification model,

MRE test >0: MRE over samples predicted as positive by the classification model.

The column Input features indicates the subset of variables considered as the input

of the feature selection algorithm. The best result in terms of the lowest MAE is

shown in bold.

Input

features
Model MAE test >0 MAE test MRE test>0

classification

accuracy

Linear regression 10.99±0.94 11.10±0.94 0.26±0.02

Linear SVM 11.88±0.82 12.06±0.83 0.28±0.02

ALL Random forest 9.49±1.22 9.53±1.22 0.21±0.02 99.29%

Lasso 9.57±0.58 9.59±0.58 0.20±0.01

Ridge regression 11.00±0.94 11.11±0.94 0.26±0.02

Linear regression 13.19±0.99 13.34±1.02 0.32±0.03

Linear SVM 13.3±0.86 13.54±0.92 0.33±0.04

ALL-CO2 Random forest 12.81±1.12 13.03±1.22 0.32±0.04 99.29%

Lasso 13.32±0.73 13.43±0.81 0.33±0.03

Ridge regression 13.18±0.99 13.33±1.02 0.32±0.03

Linear regression 10.63±0.94 10.74±0.73 0.25±0.02

Linear SVM 11.58±0.75 11.72±0.75 0.28±0.02

ALL-Luminosity Random forest 9.82±1.06 9.87±1.07 0.22±0.02 99.29%

Lasso 13.67±0.78 13.79±0.82 0.33±0.03

Ridge regression 10.63±0.94 10.74±0.94 0.25±0.02

Linear regression 13.56±1.01 13.77±1.07 0.32±0.03

Linear SVM 13.79±0.93 14.05±0.99 0.34±0.03

ALL-{CO2, Random forest 12.52±1.01 12.75±1.12 0.32±0.09 99.29%

Luminosity} Lasso 13.52±0.80 13.64±0.84 0.32±0.03

Ridge regression 13.65±0.98 13.86±1.04 0.33±0.03
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As done for the DS1 and DS2 datasets, we repeated the same experiment after

removing CO2 and luminosity sensors to check the usefulness of the chemical sensors.

We started by removing data coming from CO2 sensor, then we eliminated the

luminosity data, and finally, we discarded both luminosity and CO2 data.

Table 4.10: Percentage of times that a feature is selected by QPFS for the regression

problem over the 10 iterations of experimental procedure presented in Figure 4.1

when the DS3 Dataset is used. Different subsets of initial features are considered

as input for the feature selection algorithm: All: DS3 Dataset with all the features;

All-CO2: DS3 Dataset without the CO2 data, All-Luminosity: DS3 Dataset without

the luminosity data and All-{CO2, Luminosity}: DS3 Dataset without both the CO2

and the luminosity data.

Features selected

for regression

Initial set of features

All All-CO2 All-Luminosity All-{CO2, Luminosity}

Max Temperature 80% 100% 90% 100%

Min Temperature 0% 10% 0% 20%

Median-Min Analog CO2 100% - 100% -

Max Analog CO2 100% - 100% -

Median-Min Luminosity 0% 20% - -

Std Luminosity 40% 60% - -

Max Luminosity 10% 100% - -

Median-Min TGS 2611 20% 50% 20% 60%

Mean-Min TGS 2611 0% 10% 0% 10%

Std TGS 2611 0% 100% 10% 100%

Max TGS 2611 30% 40% 40% 100%

Max Air quality 0% 0% 0% 60%

Max TGS 2602 10% 20% 10% 20%

The most relevant sensors for the classification problem did not change since

57



4.2. RESULTS

Figure 4.7: Bar plot comparing the Mean Absolute Errors of the five regression

models used in this work for the DS3 Dataset when considering different subsets

of sensors. The x-axis represents the input features, and the y-axis represents the

Mean Absolute Error obtained by each of the models for each feature subset in the

occupancy detection problem.

we did not remove any of them (see Table 4.8). Regarding the regression problem,

Table 4.10 shows that the most relevant sensors when removing the CO2 data are

temperature, luminosity and TGS 2611 (methane) that are selected all the times.

Again, these results reveal the usefulness of MOX sensors for the people estimation

problem. Table 4.9 and Figure 4.7 show that the models with the lowest MAE and

MRE are still those considering all the available features.

Figure 4.8 shows a comparison between the actual number of occupants and the

prediction of the Random Forest model trained with all the available features as it

is the model with the lowest MAE and MRE. Red points represent the test patterns

and they are close to the bisector, which indicates accurate predictions.
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Figure 4.8: Estimation of the number of people in the classroom corresponding to

the DS3 dataset using Random Forest. The x-axis represents the actual value of

occupants, the y-axis represents the predicted values, blue points represent training

patterns, and red points are associated with est patters. The bisector represents the

perfect prediction.
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4.2.4 EMA’s Dataset

Looking upon the EMA’s dataset, the recording period is the same as DS2 dataset

(from 9 September 2016 to 31 January 2017) but, we only have data coming from the

following chemical sensors: analog CO2, Digital CO2, TGS 2620, TGS 2611, TGS

2602, TGS 2603 and Air quality (see Section 3.2).

Table 4.11: Results after applying the classification and the regression models to the

EMA’S dataset using different evaluation metrics. MAE test: Mean Absolute Error

over all the test set, MAE test >0: Mean Absolute Error over samples predicted as

positive by the classification model, MRE test >0: Mean Relative Error over samples

predicted as positive by the classification model.

Input

features
Model MAE test >0 MAE test MRE test>0

classification

accuracy

Linear regression 17.15±1.65 16.22±1.65 0.49±0.05

Linear SVM 16.77±1.79 15.52±1.89 0.54±0.07

ALL Random forest 14.80±1.64 12.55±1.80 0.43±0.05 93.75%

Lasso 16.82±2.28 15.84±2.94 0.45±0.05

Ridge regression 17.09±1.64 16.14±1.64 0.49±0.05

Regarding this dataset, we obtain a low classification accuracy of 93.75% and

high Mean Absolute Errors and Mean Relative Errors when predicting the number

of people in the classroom compared to the results obtained for the three datasets

(DS1, DS2, and DS3) with statistical variables. More precisely, the Mean Absolute

Error of the regression models varies from 14.80 to 17.50 as shown in Table 4.11.

The poor performance of the models when using EMA’s features may be due to

sensors do not return to their baseline signal when there are two or more consecutive

classes/activities, which has an effect on the rising and decaying portions of the

EMA’s signal, and it produces meaningless variables. To illustrate this scenario,

Figure 4.9 shows the original and EMA’s signals associated with the Analog CO2
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sensor response in a class that takes place before and after other classes. It can be

seen that the beginning and the end of the class are not properly identified by the

EMA’s signals. In short, EMA’s features are appropriated to model isolated events

(see Figure 3.3 in Chapter 3) in which the rising and decaying portions can be easily

identified, but they are not suitable for semi-controlled or uncontrolled environments

in which a series of events may occur without pause.

Figure 4.9: Original signal and its emaα transformation for α = 0.1, 0.01, 0.001

corresponding to the Analog CO2 sensor’s response during a class that takes place

before and after other classes. The vertical lines indicate the beginning (green)and

the end (red) of the class period.
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Chapter 5

Discussion and Further Work

The main objective of this Master’s Thesis was to study the use of machine learning

techniques along with electrical noses (e-noses) that mimic the human olfaction.

In this work, we wanted to estimate the number of people in a classroom in the

Polytechnical school of the Autonomous University of Madrid (UAM) using an e-

nose. Our e-nose device was composed by several sensors that monitorize different

chemical substances in the air, luminosity and temperature, in addition to a device

that measures the number of electronic devices connected to the wifi network in the

proximity of the classroom.

In order to address the occupancy estimation problem, firstly, we started by

collecting information from the e-nose during a large period of time to obtain enough

data to be able to train a machine learning model. The recording periods were

April 2016 to June 2016, and from September 2016 to January 2017. Secondly,

we constructed two different datasets based on different feature extraction methods.

More precisely, we built three datasets formed by statistical variables obtained from

sensors’ responses, and as a proof of concept, we made up a dataset whose attributes

were based on the Exponential Moving Average of chemical sensors’ response. The

datasets with statistical variables differentiate between themselves in the sensors used

and in the recording period. All the datasets include patterns that correspond to
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times when the classroom was empty and patterns that correspond to times when

there were people in the classroom.

We have proposed a two step procedure to estimate the occupancy of the class-

room. The first step is formulated as a supervised classification problem to detect

the presence of people in the classroom. In this stage, we applied a feature selection

algorithm (QPFS) followed by a Logistic Regression model. The second step aims

at estimating the number of people in the classroom, and it is defined as a feature

selection algorithm (QPFS) followed by a regression model. In this step, we tried five

different regression models: Linear Regression, Support Vector Regression, Random

Forest, Lasso and Ridge Regression.

Both the classification and the regression results differ from a dataset to another.

In terms of the occupancy detection problem (classification), the best result corre-

sponds to a classification accuracy of 100% using information coming from different

sensors.Among all the information used by the classification model, the most relevant

sensors are the Air quality and TGS2620 sensors, which are selected in all the per-

mutations. The incorporation of this kind of sensors is one of the main contributions

of the data used in this Mater’s Thesis. On the other hand, the worst classification

result was obtained when we included data coming from a wifi sensor that allows us

to estimate the number of devices connected to the wifi network in the classroom.

A possible explanation to the poor performance of the model when including this

information is that the wifi sensor may be also detecting devices connected to the

wifi network in the corridor near to the classroom.

Regarding the occupancy estimation problem (regression), the best result was

obtained when using a Random Forest algorithm with the DS2 dataset (September

2016 - January 2017), which includes the wifi sensor information. In this case, the

Mean Absolute Error of the model was 5.09±0.69 and the Mean Relative Error was

0.12±0.03. Regarding the most relevant sensors, Analog CO2, wifi, and TGS2600

sensors are always selected when present, and the TGS 2603 sensor (amines) is

selected 90% or 100% of times depending on the input features. The TGS 2611 sensor
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(methane) is also considered as relevant as it is selected between 30% and 100% of

times depending on the input features. Its importance increases when other relevant

sensors are removed. The usefulness of the CO2 sensor for estimating occupancy was

already known in the literature [Rodrigues et al., 2017, Jiang et al., 2016] , while the

importance of the wifi sensor was expected as it allows us to estimate the number of

devices connected to the wifi network in the classroom.

With regard to the EMA’s dataset, in which we only considered gas sensors, we

got significantly worse results in both the classification and regression problems than

those obtained by the datasets with statistical variables. This is due to to insufficient

isolated classes, so our sensors are not able to recover their baseline status, and the

rising and decaying portions of the signal are not easily identifiable. Overall, the

classification accuracy of the Logistic Regression model for all the datasets was very

high, being all the classification accuracies rates above 93.75%

In conclusion, in this Master’s thesis we have shown that the application of

machine learning techniques to data coming from multimodal sensoring data al-

lows solving the occupancy detection and occupancy estimation problems achieving

competitive performances in comparison with other works in the literature. These

problems are especially interesting in industrial applications such as human ac-

tivity monitoring or the management of energy-efficient buildings, among others

[Verriele, 2016, Pan and Yang, 2009]. The principal novelty of this work relies on

the use of data coming from a multimodal sensory network that includes some metal

oxide (MOX) sensors and a wifi sensor that had never been used before to solve these

type of problems. In fact, our experimental results show that these new sensors pro-

vide relevant information for the occupancy detection and occupancy estimation

problems.
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5.1 Further work

One of the problems that researchers find when working on multisensory networks is

the lack of comprehensive, labeled, and reliable data sources. Our work represents a

significant advance in this direction as we have built a dataset that includes several

months of multimodal sensors’ data. Nevertheless, we consider that the availability

of more data will help to improve the machine learning models, so the first step

of our further work is to collect more data. Another advantage of increasing the

amount of data is the possibility of training more powerful state-of-the-art models

such as Recurrent Neural Networks (RNN), which are specially designed for working

with time series [Walid and Alamsyah, 2017]. Other line of future work is based on

the study of other feature extraction methods for e-nose data such as the sliding

window methodology proposed by Monroy et al. [Monroy et al., 2016]. We believe

that finding the appropriate representation of the data will significantly improve the

performance of the regression models.

Another interesting line of research is to extend our work to other problems like

the identification of the type of activity that takes place in the room - for example,

master class versus exams) - , and real-time occupancy estimation.
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