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Introducción/Introduction

Español
El protagonista de este trabajo es el grupo de Riordan, que denotaremos por R(K). El grupo
de Riordan fue nombrado así en honor de J. Riordan, 1903-1988 y nació (aparece por primera
vez con este nombre) en el trabajo de L. Shapiro, S. Getu, W. J. Woan y L. C. Woodson en
[105] (aunque la definición ha variado ligeramente: el grupo que se definió en ese artículo es
de hecho un subgrupo del grupo que se considera actualmente) y fue utilizado posteriormente
(por ejemplo en los trabajos de R. Sprugnoli [107] y [108]) como herramienta adecuada para
problemas de naturaleza combinatoria como la demostración de identidades. Los directores de
este trabajo también participaron en este desarrollo, cuando se encontraron con el grupo de
Riordan desde una aproximación bastante diferente (véase [66]).

Los elementos del grupo de Riordan suelen describirse como matrices triangulares infinitas
invertibles, esto es, de la forma:

(aij)0≤i,j<∞ =


a00
a10 a11
a20 a21 a22
...

...
... . . .


(inicialmente con entradas en C, aunque pueden considerarse con entradas en cualquier cuerpo
K) asociadas a un par de series formales de potencias d(x), h(x) ∈ K[[x]] donde:

d(x) = d0 + d1x+ d2x
2 + . . . h(x) = h1x+ h2x

2 + h3x
3 + . . . con f0, g1 ̸= 0

con la propiedad de que la función generatriz de las entradas de la columna i-ésima es:

d(x) · (h(x))i, esto es: d(x) · (h(x))i = aiix
i + ai+1,ix

i+1 + ai+2,ix
i+2 + . . .

En este caso dicha matriz se denota por R(d(x), h(x)). Gracias a esta estructura, hay una
interpretación en términos de series formales de potencias de la multiplicación de estas matrices
por un vector columna (el llamado Primer Teorema Fundamental de las Matrices de Riordan
o simplemente 1FTRM) y de la multiplicación de dos de estas matrices entre sí (véase la
subsección 0.3.2 para más detalles).

Por lo anteriormente expuesto, el grupo de Riordan podría clasificarse en el área de Com-
binatoria. Pero por otra parte, como cualquier objeto matemático de interés, el grupo de

ix
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Riordan tiene aspectos que pueden llamar la atención de expertos de otros ramas del desar-
rollo matemático. Al exponer al grupo de Riordan a distintas lupas, y buscando diferentes
características se aumenta el conocimiento sobre dicho objeto y, por lo tanto, las posibilidades
de su uso en problemas de distinta índole. Por eso en esta tesis vamos a tratar fundamental-
mente tres tipos de aspectos:

1. Estudio de la estructura de grupo de R(K), que se realiza en los capítulos 1, 2
y 3, y al que hemos dedicado más trabajo. Contiene una fundamentación importante
para el resto del trabajo relacionada con la estructura como límite inverso del grupo
de Riordan. La correspondiente sucesión inversa involucra unos grupos de matrices de
dimensión finita que llamaremos grupos parciales de Riordan. Además, en esta parte
se estudia la serie derivada del grupo (con varias aplicaciones), las clases de conjugación
desde diferentes puntos de vista y los elementos de orden finito, haciendo especial hincapié
en las involuciones y encontrando el grupo generado por las involuciones. También se
estudia la relación entre problemas algebraicos en el grupo de Riordan y ecuaciones y
sistemas de ecuaciones funcionales en series formales de potencias.

2. Estudio de una estructura de grupo de Lie infinito-dimensional de R(K) para
K = R,C, que se realiza en el capítulo 4, como ejemplo de grupo de Lie sobre un espacio
de Frechet, que además es un pro-grupo de Lie (límite inverso de grupos de Lie clásicos).
Se estudian también parametrizaciones globales de los grupos parciales y del grupo de
Riordan infinito.

3. Aplicaciones a problemas de Topología Combinatoria de Complejos Simpli-
ciales, que se realiza en el capítulo 5. Se aplican las técnicas algebraicas desarrolladas
en el resto del trabajo al estudio del problema del f-vector. Se pretende también mostrar
la presencia de objetos con patrones del tipo Riordan en este campo.

Un procedimiento común en los resultados conseguidos es considerar el grupo de Riordan
R(K) como límite inverso de una sucesión inversa:

{(Rn(K), Pn)}∞n=0

donde los grupos Rn(K) son unos grupos de matrices triangulares inferiores de tamaño (n +
1) × (n + 1) que llamaremos los grupos parciales, estudiar primero qué ocurre en las proyec-
ciones finitas y la posibilidad de elevación de propiedades al grupo de matrices infinitas (esta
construcción de límite inverso será presentada con detalle en la sección 1.4).

También hay que tener en cuenta que la identificación de las matrices de Riordan y la in-
terpretación del producto de las mismas en términos de series formales de potencias establece
una forma de traducir problemas algebraicos en el grupo (conjugación, serie derivada, carac-
terización de elementos de orden finito, etc.) a sistemas de ecuaciones funcionales (en series
formales de potencias) y viceversa.

Existen diferentes maneras de construir matrices de Riordan. Tenemos por ejemplo la
construcción horizontal (que involucra a la A-sequence) y la construcción vertical (que involucra
a la g-sequence y es uno de los motivos del uso de la notación T (f | g) por parte de los directores
de este trabajo introducida en [66] y utilizada en sus trabajos siguientes, como por ejemplo
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[62, 64, 67]) y otras, como las introducidas en [21, 64]. También existen ciertas construcciones
para encontrar nuevas matrices de Riordan a partir de otras conocidas (véase [16,65,116,118]).

Hay también una fuerte relación entre matrices de Riordan y sucesiones clásicas de poli-
nomios (véase [26,44,68,71,114]).

Es importante conocer también que el grupo de Riordan contiene un subgrupo isomorfo (el
subgrupo asociado o de Lagrange) a F1(K), el grupo de series formales de la forma:

g(x) = g1x+ g2x
2 + g3x

3 + . . . con g1 ̸= 0

respecto a la composición, que ha sido bastante estudiado. Principalmente ha recibido mucha
atención su subgrupo de series formales de potencias con g1 = 1 llamado el composition group
of formal power series (véase por ejemplo [2] para más información). Cuando K es un cuerpo
cíclico finito, este último grupo se conoce como el grupo de Nottingham (véase [18]). A lo
largo de este trabajo, en ocasiones algunos de los resultados se particularizan en resultados de
interés para F1(K).

En resumen, podemos decir que la literatura del grupo de Riordan se generó en gran parte
en la última década del siglo XX (véase [76, 77, 80, 105, 107, 108]) y que sigue actualmente en
desarrollo (véase [22–25,29,48,62,64,66,78,79,104,117]).

Hemos incluido en este trabajo un capítulo inicial para revisar algunos conceptos básicos
que intervienen en los demás y ofrecer bibliografía complementaria.

En el Capítulo 1, la primera cuestión que trataremos será la estructura del grupo de Riordan
como límite inverso (teorema 1.4.2) de la sucesión inversa antes mencionada:

{(Rn(K), Pn)}∞n=0

donde Pn : Rn+1(K) → Rn(K) es la aplicación que elimina la última fila y columna de la
matriz sobre la que se aplica. El concepto de límite inverso se utiliza en prácticamente todas
las ramas de las Matemáticas, algunas veces también llamado límite proyectivo. Es un método
para aproximar ciertos objetos por otros que se comportan o se conocen mejor. Los sistemas
inversos, de los cuales se derivan los límites inversos pueden, en general, definirse en cualquier
categoría. Un texto introductorio para estos temas es [72]. Como ya hemos dicho, para
nosotros este enfoque será de gran utilidad ya que es el adecuado para hacer, entre otras
cosas, demostraciones por inducción. Estudiaremos, por lo tanto, como extender una matriz
Mn ∈ Rn(K) a una matriz Mn+1 ∈ Rn+1(K) de forma que Pn(Mn+1) = Mn (proposición
1.3.1). Relacionaremos estos grupos parciales con la ultramétrica que se propone en [66] y con
una nueva.

También mostraremos otra representación del grupo de Riordan como grupo de matrices
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bi-infinitas, esto es, matrices de la forma:

(aij)−∞<i,j<∞ =



. . .

. . . a−2,−2

. . . a−2,−1 a−1,−1

. . . a0,−2 a0,−1 a00

. . . a1,−2 a1,−1 a10 a11

. . . a2,−2 a2,−1 a2,0 a21 a22
...

...
...

...
... . . .


que también puede estudiarse como límite inverso de diferentes sucesiones (que involucran
matrices finitas o no) utilizando las construcciones verticales y horizontales anteriormente
citadas. Debido a trabajos previos [62, 64, 65, 109], se hacía necesaria una mejor comprensión
de las diferentes simetrías en las matrices de Riordan bi-infinitas. Gracias a la estructura de
límite inverso, podremos describir mucho más facilmente dichas simetrías reflejando las matri-
ces finitas involucradas en el límite inverso y elevando al grupo bi-infinito esta simetría (dando
lugar a las matrices duales y complementarias). En esta dirección estudiaremos y daremos
respuesta a cuestiones propuestas en [65] sobre matrices que sean autoduales y autocomple-
mentarias (recogida en los teoremas 1.12.3 y 1.12.4). Algunos de los conceptos anteriores han
sido independientemente utilizados en [21] para construir matrices de Riordan. Como apli-
cación final, a partir de la estructura de límite inverso en la representación infinita, podremos
recuperar fácilmente usando inducción en térmitos de los límites inversos (sección 1.14) al-
gunos resultados clásicos sobre las ecuaciones funcionales de Schröder y de Schröder con pesos
(para K de característica 0) en series formales de potencias (recogidos en el teorema 1.14.6
y en el teorema 1.14.7, véase también la bibliografía [2, 59, 99, 100, 112]). Razonamientos de
este tipo utilizando el límite inverso puede que permitan en un futuro el tratamiento de otras
ecuaciones funcionales en series formales de potencias de interés. Las ecuaciones de Schröder
y de Schröder con pesos se pueden formular como un problema de autovectores de matrices de
Riordan, lo que será relevante en capítulos posteriores de este trabajo.

En el capítulo 2, de nuevo gracias a la estructura de límite inverso que nos ayuda a realizar
con comodidad pruebas por inducción, estudiaremos algunas propiedades de grupo de R(K),
con K de característica 0.

Nos centraremos en primer lugar en el estudio de la serie derivada del grupo de Riordan
(véase [91]) dando una caracterización del n-ésimo grupo derivado en el teorema 2.3.2 dando así
respuesta, con mucha generalidad, a una pregunta abierta sobre el grupo de Riordan propuesta
por L. Shapiro en [103]. Para hacer esto, necesitaremos caracterizar antes el grupo derivado
n-ésimo de F1(K) (teorema 2.1.2, nótese que el primer grupo derivado F1(K) es precisamente
el anteriormente citado substitution group of formal power series, véase [2]). Hasta donde
nosotros sabemos, la caracterización de los grupos derivados sólo era conocida para K cuerpo
cíclico finito (véase [18]). Todos estos resultados los obtendremos utilizando la estrategia
que mencionamos antes: estudiar primero lo que ocurre en los grupos parciales y elevar los
resultados a las matrices infinitas.

Después de esto, se realiza un cierto estudio sobre conjugación en R(K) (que no está
completo), para F1(K) (véase [58, 59, 84] para bibliografía sobre conjugación en F1(K)) y en
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el primer subgrupo derivado de ambos, para K de característica 0. La estrategia seguida
es trasladar el problema a un sistema de ecuaciones funcionales en las que intervienen las
ecuaciones funcionales de Schröder y de Schröder con pesos y después, de nuevo, elevar el
resultado de los grupos parciales al grupo infinito. Se estudia en primer lugar el problema
de conjugación en los subgrupos derivados (véase proposition 2.4.1) y (R(K))′(donde se da
también un conjunto de representantes canónicos de cada clase de conjugación, teorema 2.4.5).
Despues se estudia completamente el problema de conjugación para F1(K) (recuperándose
teoremas conocidos: teorema 2.5.1 y teorema 2.5.2) y se estudian las clases de conjugación de
elementos R(d(x), h(x)) tales que el multiplicador de h(x) es distinto de raiz de la unidad o
bien R(d(x), h(x)) es de orden finito (teorema 2.5.1).

El capítulo 3 es el último capítulo sobre cuestiones puramente algebraicas. Su centro de
estudio son los elementos de orden finito, problema que había recibido cierta atención en la
bibliografía del grupo de Riordan (véase [23–25,69,103]).

Comenzaremos por el estudio de los elementos de orden 2: las involuciones. Hay una
literatura extensa que trata involuciones en grupos, mucha de la cual se apoya, si es posible,
en una representación lineal de los grupos (como matrices finitas o incluso infinitas).

El interés en el estudio del grupo de Riordan fue iniciado por algunas preguntas propuestas
por L. Shapiro en [103]. Algunos años más tarde, aparecieron algunos artículos de G. S Cheon
y sus alumnos y en algunas ocasiones también co-autorizados por el propio L. Shapiro conte-
stando algunas de esas preguntas (véase por ejemplo [22, 23, 25]). Como antes mencionamos,
las matrices de Riordan están intrínsecamente relacionadas con sucesiones de polinomios. El
artículo [69] es de interés en este punto, ya que relaciona sucesiones de Sheffer auto-inversas e
involuciones en el grupo de Riordan.

En primer lugar se expresa el problema de las involuciones como un sistema de ecuaciones
funcionales en serie formales de potencias, en el que aparece la ecuación funcional de Babbage.
En el teorema 3.2.2 se da una nueva caracterización de las entradas de las involuciones en
el grupo de Riordan, que puede utilizarse también para estudiar las involuciones en el grupo
F1(K) mediante la representación natural de F1(K) como el subgrupo de Lagrange de R(K).
De nuevo esto se ha conseguido probando el resultado primero para los grupos parciales y
permite construir gran cantidad de involuciones de una manera sencilla. Además, se prueba
con este resultado una conjetura propuesta por He en [43].

Después, se realiza un estudio similar para elementos de cualquier orden finito k y se
consigue también una caracterización de las entradas de dichas matrices (teorema 3.4.3).

Por último se estudia un problema general que ha sido de interés para muchos grupos, entre
ellos los grupos de matrices (véase el trabajo de W. H. Gustafson, P. R. Halmos y H. Radjavi
[40], de P. R. Halmos y S. Kakutani [41], de D. Z. Djokovic [28], o el de M. J. Wonenburger
[115]): determinar el grupo generado por las involuciones I(K) en R(K) y el número máximo
de involuciones necesarias para expresar como producto cualquiera de los elementos de I(K)
(teorema 3.6.5). Incluso, de nuevo, podemos recuperar un resultado reciente de A. O’Farrell
sobre este mismo problema para F1(K) (véase [88]).

El capítulo 4 pasa a abordar el estudio de la estructura de grupo de Lie infinito-dimensional
de R(K) para K = R,C.

Merece epecial mención el artículo de R. Bacher [3] porque algunos de los resultados
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obtenidos en este capítulo fueron primero descritos en este artículo para K = C. Por ejemplo y
entre otras cosas, apareció por vez primera la representación del álgebra de Lie como matrices
infinitas, la descripción del corchete de Lie y la descomposición en el producto semidirecto
Toeplitz-Lagrange del álgebra de Lie. Tiene también un capítulo muy interesante sobre el
cálculo explícito de la exponencial. Implícitamente, Bacher parece utilizar la parametrización
del grupo de Riordan dado por los coeficientes de las series formales de potencias d(x), h(x)
que describen cada elemento R(d(x), h(x)). Bacher no utiliza hasta bastante avanzado el tra-
bajo la estructura diferencial. Pero, en su trabajo, la forma de justificar la existencia de esta
estructura diferencial es incorrecta (cita textual del abstract de [3]): This group has a faithful
representation into infinite lower triangular matrices and carries thus a natural structure as a
Lie group. Esto no parece cierto en general: supongamos que G es el grupo entero de matrices
invertibles triangulares inferiores infinitas. G recibe, como límite inverso de:

{(Gn(K), Pn}

donde Gn son los subgrupos de GLn de matrices triangualres inferiores y las aplicaciones Pn
extienden a las que se describieron antes, una estructura de grupo topológico y de pro-grupo
de Lie y no es un grupo de Lie (si K = R ni si quiera es localmente conexo y si K = C no
es localmente contractible). Por supuesto, la estructura diferenciable propuesta por Bacher es
correcta y es la misma que describiremos aquí (aunque la parametrización no será igual) así
que este trabajo puede considerarse también que describe un marco teórico para [3].

Queremos hacer también notar que el grupo de Riordan contiene una copia isomorfa al
antes mencionado substitution group of formal power series, que ya ha sido tratado desde el
punto de vista de la teoría de grupos de Lie infinito dimensionales. La correspondiente álgebra
de Lie ha sido identificada como W1(1): la parte nilpotente de la conocida álgebra de Witt
W (1) de campos de vectores formales en la recta real. En cualquier caso aquí se ha seguido
una aproximación diferente.

Dicho lo anterior, nuestro trabajo trata de describir en primer lugar un contexto adecuado
para dotar al grupo de Riordan de una estructura de grupo de Lie infinito dimensional. Existen
dos marcos que resultan adecuados principalmente:

• La aproximación de J. Milnor en [82]. Consideramos KN con la topología producto y
utilizando la identificación entre KN y K[[x]] pasando de sucesiones a funciones genera-
trices podemos inducir dicha topología. De esta forma se convierte a K[[x]] en un espacio
de Frechet, esto es, un espacio vectorial topológico localmente convexo y completamente
metrizable. Este es el punto de partida para describir una estructura natural en el grupo
de Riordan de grupo de Lie sobre un espacio de Frechet.

• Como R(K) es el límite inverso de una sucesión inversa en la que aparecen los grupos
parciales Rn(K) (que son grupos de matrices finito-dimensionales y por lo tanto grupos
de Lie en el sentido clásico) recibe naturalmente una estructura de pro-grupo de Lie sobre
K, que es además en sí mismo, un pro-grupo de Lie. Véase [45, 46] para un desarrollo
exhaustivo del estudio de la teoría de pro-grupos de Lie.

Hemos seguido preferiblemente la primera de las opciones, aunque relacionamos lo obtenido
con la otra, ya que R(K) es un ejemplo ilustrador de esta segunda. De hecho uno de nuestros
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objetivos es precisamente mostrar que gracias a la estructura de R(K) como pro-grupo de Lie
podemos elevar algunas propiedades de los grupos parciales (que son grupos de Lie clásicos),
como por ejemplo la descripción del álgebra de Lie y el cálculo de la exponencial.

Después de describir este marco, estudiaremos la estructura de grupos de Lie que tienen
naturalmente los grupos parciales Rn(K) como grupos de matrices (véase por ejemplo [5] para
una introducción general a los grupos de Lie clásicos de matrices finito-dimensionales). En
la proposición 4.3.1 describimos la estructura diferenciable de los mismos que son, en efecto,
grupos de Lie. En la proposición 4.5.4 y su correspondiente corolario encontramos el álgebra
de Lie en términos de matrices triangulares inferiores, describimos el corchete de Lie y la
aplicación exponencial (que es la exponencial usual de matrices).

Una vez comprendida la estructura de Lie de los grupos parciales, estudiaremos la estruc-
tura de Lie sobre el espacio de Frechet KN del grupo R(K) (proposición 4.7.2) y la relacionamos
con la estructura que hereda como pro-grupo de Lie (sección 4.8). Con el teorema 4.10.1 se
describe una representación en términos de matrices triangulares inferiores infinitas del álge-
bra de Lie de R(K) y en el corolario 4.11.1 se describe la exponencial. También se indica
brevemente en la sección sección 4.12 como se extiende naturalmente esta construcción para
la representación con matrices bi-infinitas.

Sorprendentemente, las matrices infinitas que representan elementos del algebra de Lie de
R(K), cumplen también un patrón parecido a las matrices de Riordan: para una tal matriz
L, existen dos series α(x), β(x) ∈ K[[x]] tales que la función generatriz de la columna i-
ésima de L es xi · (α(x) + i · β(x)), esto es, las columnas están en progresión aritmetico-
geométrica. Gracias a esto, también hay una interpretación en términos de series formales
de potencias de la multiplicación de estas matrices por un vector columna infinito análoga al
1FTRM (proposición 4.13.2). Esta interpretación, permite entender las ecuaciones diferenciales
de matrices (similares a los sistemas lineales clásicos de primer orden, véase proposición 4.11.2)
como un cierto tipo de problemas de valor inicial que gracias a este marco sabremos resolver
en series formales de potencias utilizando exponenciales de matrices (véase corolario 4.14.1),
de las que mostramos varios ejemplos.

Por último, para cerrar el capítulo, dedicaremos nuestra atención a considerar una extensión
del (esto es, un grupo que contiene al) grupo de Riordan, motivado por la construcción del
fibrado tangente, veremos como se traslada al álgebra de Lie la descomposición del grupo de
Riordan como producto semidirecto de los subgrupos de Toeplitz y Lagrange y apuntaremos
brevemente algunas cuestiones sobre las algebras de Lie de subgrupos estabilizadores de R(K)
(respecto de la acción de las matrices sobre vectores columna infinitos, o equivalentemente
sobre series formales de potencias, dada en el 1FTRM, véase el teorema 4.18.4).

Por último, el capítulo 5 de este trabajo trata sobre aplicaciones de las técnicas desarrolladas
en los anteriores a ciertos problemas de topología combinatoria, principalmente relacionados
con el problema del f-vector. El f-vector de un complejo simplicial K de dimensión d (véase
[39,119]) es una sucesión:

(f0, f1, f2, . . .)

donde la entrada fi indica el número de caras de dimensión i de K (y por lo tanto fk = 0
para todo k > d). El problema del f-vector consiste en caracterizar las posibles sucesiones que
pueden ser el f-vector de un complejo simplicial que cumpla una cierta condición topológica
(ser una esfera, por ejemplo). Es un problema abierto en el que actualmente hay mucho trabajo
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activo (véase [13,15,27]). Se conocen pocos resultados fuertes en este sentido. Uno de ellos es
el g-teorema (véase los trabajos de L. J. Billera y C. W. Lee [8, 9] y de R. P. Stanley [110]) y
otro es la caracterización de los posibles f-vectores de un complejo K conocida la sucesión de
números de Betti (también llamada simplemente la sucesión de Betti) del mismo y que aparece
en el artículo de A. Björner y G. Kalai [14].

Existen otras sucesiones de enteros (como los g-, h- y γ-vectores) que aparecen en la
bibliografía sobre el problema del f-vector y que contienen esencialmente la misma informa-
ción expuesta de manera más conveniente para el problema con el que están relacionadas.
Mostraremos que no son sino la imágen del f-vector mediante una matriz de Riordan (véanse
los resultados de la sección 5.3). Esto además, motiva a preguntarse si algunos resultados clási-
cos (que tratan unimodalidad, positividad, log-concavidad, etc. de alguna de las sucesiones
anteriormente citadas) podrían probarse exclusivamente en términos de matrices de Riordan.

Por otra parte, se muestra que las ecuaciones clásicas de Dehn-Sommerville (véase [39])
pueden formularse como un problema de autovectores de unas ciertas involuciones en los gru-
pos finitos Rn(R) (proposición 5.4.1) y se recuperan y enfocan de diferente manera algunos
resultados clásicos sobre sus soluciones (véase la sección dedicada a las soluciones de las ecua-
ciones de Dehn-Sommerville en el libro [39]).

Además, mostramos que los f-vectores de los símplices y los cross-polytopes si son colocados
por filas en una matriz dan lugar a una matriz de Riordan. Como los símplices y las cross-
polytopes no son sino los complejos simpliciales obtenidos partiendo de los complejos:

• L1 = ∆1
0, que consiste en un solo punto

• L2 = ∆2
0, que consiste en dos puntos aislados

y realizando iterativamente joins iterados:

L1, L1 ∗ L1, L1 ∗ L1 ∗ L1, . . . y L2, L2 ∗ L2, L2 ∗ L2 ∗ L2, . . .

respectivamente, estudiamos también otros complejos simpliciales obtenidos mediante joins
iterados. Mostraremos como este proceso iterativo da lugar a un cierto patrón Riordan al
colocar los f-vectores por filas, pero veremos que hay sólo un modo de conseguir que los f-
vectores formen realmente una matriz de Riordan. A estas familias que resultan las hemos
llamado m, q-conos (ver proposición 5.5.6). El hecho de que esta matriz de f-vectores sea de
Riordan es para nosotros de gran interés porque permiten calcular muy rápidamente algunas
relaciones en los f-vectores utilizando el 1FTRM (véase por ejemplo el ejemplo 5.5.8). También
las sucesiones de Betti de estas familias de complejos simpliciales son matrices diagonales de
Riordan (ver proposición 5.8.2).

También mostraremos algunos ejemplos de como la acción de los llamados métodos de
subdivision (como por ejemplo la subdivision baricéntrica) sobre el f-vector pueden describirse
como una multiplicaión de una matriz infinita por un f-vector (véase la proposición 5.6.2).
Esto permite por ejemplo (sección 5.7) recuperar algún resultado ya conocido y mostrar alguno
nuevo sobre la imposibilidad de existencia de relaciones lineales en el f-vector de familias de
complejos simpliciales cumpliendo una cierta propiedad topológica (véase la proposición 5.7.5).

Por último en la sección 5.9 estudiaremos “supercomplejos”: complejos simpliciales en los
que cada símplice se sustituye a su vez por otro complejo simplicial perteneciente a una “familia
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de ladrillos”. No cualquier familia de complejos simpliciales puede ser una “familia de ladrillos”,
pero entre las que sí pueden, se encuentran los q, q-conos. Por lo tanto, dado cualquier complejo
simplicial K, podemos estudiar el complejo obtenido al sustituir los símplices por q, q-conos,
que es a su vez otro complejo simplicial llamado el q-engrosamiento de K. El f-vector de este
q- engrosamiento es el f-vector del complejo original multiplicado por una matriz de Riordan.

Incluimos al final de la tesis un último apartado con preguntas abiertas que serán las que
intentaremos contestar en un futuro próximo.

El trabajo realizado en esta tesis ha dado lugar a la publicación de los siguientes artículos:

• [63] junto con los directores de este trabajo, D. Merlini y R. Sprugnoli.

• [70] junto con los directores de este trabajo.

a los siguientes preprints enviados ya para su evaluación y posible publicación:

• Finite and infinite dimensional Lie group structures on Riordan groups con los directores
de este trabajo, G. S. Cheon y M. Song.

• A formula to construct all involutions in Riordan matrix groups con los directores de este
trabajo.

a los siguientes preprints aún no enviados:

• The derived series of the Riordan group con los directores de este trabajo.

• The group generated by the involutions in the Riordan group con los directores de este
trabajo.

y por último al trabajo en progreso:

• The Riordan group and the f-vector problem con los directores de este trabajo.

English
The main object of study in this work is the Riordan group, that will be denoted by R(K).
The Riordan group was named in honor of J. Riordan, 1903-1988 and appeared for the first
time (with this name) in the work by L. Shapiro, S. Getu, W. J. Woan and L. C. Woodson in
[105] (although the definition has changed slightly: the group defined in this article is in fact
a subgroup of the group considered nowadays) and was succesufully used after this as a tool
for problems of combinatorial flavour, as the proof of combinatorial identities (for example in
the articles by R. Sprugnoli [107] and [108]). The advisors of this work also were part of this
development, when they met the Riordan group coming from a very different approach (see
[66]).
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The elements in the Riordan group are usually described as invertible infinite lower trian-
gular matrices, that is, matrices of the form:

(aij)0≤i,j<∞ =


a00
a10 a11
a20 a21 a22
...

...
... . . .


(initially with entries in C, although the can be considered with entries in any field K) associated
to a couple of formal power series d(x), h(x) ∈ K[[x]] where:

d(x) = d0 + d1x+ d2x
2 + . . . h(x) = h1x+ h2x

2 + h3x
3 + . . . con f0, g1 ̸= 0

with the property of the generating function of the entries in the i-th column being d(x)·(h(x))i,
that is:

d(x) · (h(x))i = aiix
i + ai+1,ix

i+1 + ai+2,ix
i+2 + . . .

In this case, this matrix is denoted by R(d(x), h(x)). Thanks to this structure, there is an
interpretation in terms of formal power series of the multiplication of these matrices by a column
vector (the so called First Fundamental Theorem of Riordan matrices, or simply 1FTRM) and
of the multiplication of two of those matrices (see subsection 0.3.2 for more details).

In view of what we have explained above, Riordan group could be clasified in the branch
of Combinatorics. But on the other hand, as any mathematical object of interest, the Riordan
group has aspects that could be of the interest of experts in other branches of Mathematics.
Looking at different aspects of the Riordan group and from different points of view, we improve
the understanding of this object and so the possibilities of application to several kinds of
problems. Becouse of that, in this thesis we will study three type of aspects:

1. The group structure of R(K), that will be fulfilled in chapters 1, 2 and 3. Most
of this work is devoted to this part. It contains the basics for the rest of this work
concerning the inverse limit structure of the Riordan group. The corresponding inverse
sequence involves finite dimensional matrix groups that will be called partial Riordan
groups. Moreover, here the derived series of the Riordan group will be studied (including
some applications), conjugacy classes from different viewpoints and the elements of finite
order, specially involutions. Also the group generated by involutions will be studied.
Also the relation between algebraic problems in the Riordan group and equations and
functional equations in formal power series will be considered.

2. The infinite-dimensional Lie group structure of R(K) for K = R,C, which is
done in chapter 4. The Riordan group is an example of Lie group over a Frechet spaces
which is also a pro-Lie group (inverse limit of an inverse sequence involving classical Lie
groups). Global parametrizations of the partial groups and of the infinite Riordan group
are studied.

3. Applications to some problems in Topological Combinatorics of Simplicial
Complexes, that will be done in chapter 5. The tools developed in the rest of this work
will be applied to the f-vector problem. We also want to show the presence of Riordan
type patterns in this field.
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A common process of working in the results obtained in this work is considering the Riordan
group R(K) as the inverse limit of the inverse sequence:

{(Rn(K), Pn)}∞n=0

where the groups Rn(K) are lower triangular matrix groups of size (n + 1) × (n + 1) that we
will call partial groups This allow us to study what happens in the partial groups and the
possibility of liftingón properties to the infinite matrix group (this inverse limit construction
will be presented in detail in section 1.4).

We should also take into account that the interpretation of the product of Riordan matrices
in terms of formal power series stablishes a way to translate algebraic problems in the group
(conjugacy, derived series, characterization of elements of finite order, etc.) into systems of
functional equations (in formal power series) and viceversa.

There exist several ways to construct Riordan matrices. For example we have the horizontal
construction (involving the A-sequence) and the vertical construction (involving the g-sequence,
being one of the reasons of the notation T (f | g) introduced by the advisors of this work in [66]
and used in most of the rest of their work, like for example [62, 64, 67]) and others, as those
introduced in [21, 64]. There also exist some construction to find new Riordan matrices from
older ones (see [16,65,116,118]).

There is also a strong relation between Riordan matrices and classical polynomial sequences
(see [26,44,68,71,114]).

It is also important that the Riordan group contains a subgroup isomorphic to F1(K), the
group of formal power series of the type:

g(x) = g1x+ g2x
2 + g3x

3 + . . . con g1 ̸= 0

with respect to the composition that has already been widely studied. Its subgroup with g1 = 1
has received even more attention. It is usually referred as the substitution group of formal
power series (see for example [2] for more information) which is known as the Nottingham
group when K is a finite cyclic field (see [18]). Through this work, sometimes some or the
result particularize into results in F1(K).

To sum up, we could say that the literature of the Riordan group was generated mainly in
the last decade of XX century (see [76,77,80,105,107,108]) and that is currently growing (see
[22–25,29,48,62,64,66,78,79,104,117]).

We have included in this work an initial chapter to review some of the contcepts involved
in the rest of the chapters and to provide some aditional bibliography.

In chapter 1, the first point considered (theorem 1.4.2) will be the structure of the Riordan
group as an inverse limite of the inverse sequence introduced above:

{(Rn(K), Pn)}∞n=0

where Pn : Rn+1(K) → Rn(K) is the map that deletes last row and column of the matrix.
The concept of inverse limit is used in almost all branches of Mathematics, sometimes referred



xx CONTENTS

as projective limit. It is a method for approaching certain objetcs by others that are well
behaved or better understood. Inverse systems, from which inverse limits are derived, may
be defined, in general, in any category. An introductory text to cover those topics is [72]. As
we have already said, for us this point of view will be very useful to do, among other things,
proofs by induction. We will study then how to extend a matrix Mn ∈ Rn(K) into a matrix
Mn+1 ∈ Rn+1(K) in such a way that Pn(Mn+1) = Mn (proposition 1.3.1). We will relate those
partial groups to the ultrametric proposed in [66] and to a new one.

We will also show another representation of the Riordan group: as a group of bi-infinite
matrices, that is, matrices of the form:

(aij)−∞<i,j<∞ =



. . .

. . . a−2,−2

. . . a−2,−1 a−1,−1

. . . a0,−2 a0,−1 a00

. . . a1,−2 a1,−1 a10 a00

. . . a2,−2 a2,−1 a2,0 a21 a22
...

...
...

...
... . . .


that can also be studied as the inverse limit of different sequences (involving finite or infinite
matrices) using the horizontal and vertical construction cited above. Due to the previous works
[62,64,65,109], it seemed to be necessary a better understanding of the different symetries in bi-
infinite Riordan matrices. Thanks to the structure of inverse limit, we will be able to describe
easily those symmetries reflecting the finite matrices involved in the inverse limit and lifting
this reflection into the bi-infinite group (giving rise to complementary and dual matrices). In
this direction we will also study and give an answer to some questions proposed in [65] about
matrices being self-dual and self-complementary (theorems 1.12.3 and 1.12.4). The previous
concepts have already been independently used in [21] to construct Riordan matrices. As a
final application, from the inverse limit structure of the inverse representation of the Riordan
group we will be able to recover, using induction in terms of the inverse limits, some classical
results about the Schröder and weighted Schröder functional equations for K of characteristic
0 (section 1.14) in formal power series (see theorem 1.14.6 and theorem 1.14.7, see also the
bibliography [2,59,99,100,112]), and in the future, we think that this will allow the treatment
of other functional equations in formal power series. Schröder and weighted Schróder equations
can be stated as an eigenvector problem for Riordan matrices. This fact will be of importance
for future chapters of this work.

In chapter 2, again using the inverse limit structure that helps us to do proof by induction,
we will study some group properties of R(K), with K of characteristic 0.

Firstly we will focus on the derived series of the Riordan group (see [91] for general infor-
mation) giving a characterization of the n-th derivative subgroup in theorem 2.3.2, giving then
an answer (with much more generality) to an open question posted by L. Shapiro in [103].
To do this, we will need to characterize before the n-th derivative groups of F1(K) (theorem
2.1.2. Note that the first derivative subgroup of F1(K) is precisely what it is usually called in
the biblioraphy the substitution group of formal power series (see [2]). As far as we know, a
characterization of the derived series of F1(K) was only known for finite cyclic fields (see [18]).
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All those results will be obtained following the strategy suggested before: studying first the
partial groups and then lifting the results to the infinite matrices.

After this, a certain (not complete) study of conjugacy is made for R(K), for F1(K) (see
[58,59,84] for some bibliography about conjugation in F1(K)) and in the first derived subgroup
of both, for K of characteristic 0. The strategy followed is translating the problem into a
system of functional equations where Schröder and weighted Schröder equations appear and
then, again, lifting the result from the partial groups to the infinite group. Firstly the problem
of conjugation is studied for the first derivated subgroups (F1(K))′ (see proposition 2.4.1)
and (R(K))′ (where also a set of canonical representatives is given for each conjugacy class,
theorem 2.4.5). After this, the problem of conjugacy is completely studied for F1(K) (recovering
known theorems: theorem 2.5.1 and theorem 2.5.2). And finally conjugacy classes in R(K) is
considered for elements R(d(x), h(x)) so that the multiplier of h(x) is different from a root of
unity or R(d(x), h(x)) is of finite order (theorem 2.5.1).

Chapter 3 is the last chapter devoted to purely algebraic aspects. The object of study
is this time the elements of finite order, a problem that has received some attention in the
bibliography of the Riordan group (see [23–25,69,103]).

This study starts with the study of elements of finite order 2: the involutions. There is an
extensive literature treating the study of involutions in groups, some of it relays in the linear
representation, if possible, of those groups (with finite or even infinite matrices).

The interest in the study of Riordan involutions started due to some open questions pro-
posed by L. Shapiro in [103]. Some years later, some articles appeared by G. S Cheon and his
students and sometimes co-authoriced by L. Shapiro answering some of these questions (see for
example [22,23,25]). As we have already mentioned, Riordan matrices are intrinsically related
to polynomial sequences. The article [69] is of interest in this sense, since it relates self-inverse
Sheffer sequences and involutions in the Riordan group.

At first, the problem of finding involutions is expressed as a system of funcional equations
in formal power series in which Babbage’s functional equation appears. In theorem 3.2.2 a
new characterization of the entries of involutions in the Riordan group is given, that can be
applied to find a characterization of the coefficients of involutions in F1(K) using the natural
identification of F1(K) with the Lagrange subgroup. Again, this has been obtained proving the
result at first for the partial groups, and allow us to construct several involutions in a simple
way. Moreover, a conjecture proposed by He in [43] is proved with this result.

After this, a similar study for elements of any finite order k is made, obtaining also a
characterization of the entries of those matrices (theorem 3.4.3).

Finally, a general problem that has been of interest for many groups ( between them also
matrix groups, see for example the work by W. H. Gustafson, P. R. Halmos and H. Radjavi
[40], of P. R. Halmos and S. Kakutani [41], of D. Z. Djokovic [28], or of M. J. Wonenburger
[115]) is studied: determining the group generated by the involutions in R(K), denoted by
I(K), and the maximal number of involutions required to express any element in this group as
a product of involutions (theorem 3.6.5). Again, particularizing our work we obtain a recent
result by A. O’Farrell about this same problem but for F1(K) (see [88]).

In chapter 4 we start the study of the infinite-dimensional Lie group structure of R(K) for
K = R,C.
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It deserves special attention the article by R. Bacher [3], becouse some of the obtained
results in this chapter, were first described there. For example and among other things, there
appeared the representation of the Lie algebra in terms of infinite matrices, the description of
the Lie bracket and the decomposition associated to the Toeplitz-Lagrange subgroup decom-
position in the Lie algebra. It also has a very interesting chapter about the explicit computa-
tion of the exponential. Implicitely Bacher seems to use the parametrization of the Riordan
group given by the coefficient of the formal power series d(x), h(x) that describe each element
R(d(x), h(x)). Bacher does not use until the work is already more than started the differential
structure. But in his work the way of justifying this differential structure is incorrect (taken
exactly from the english version of the abstract of [3]): This group has a faithful representation
into infinite lower triangular matrices and carries thus a natural structure as a Lie group. This
does not seem to be true in general: suppose that G is the group of invertible infinite lower
triangular matrices. G is the inverse limit of the inverse sequence

{(Gn(K), Pn}

where Gn are the subgroups of lower triangular matrices in GLn and the bonding maps Pn
act as described before. Thus G receives a topological group structure and a pro-Lie group
structure and G is not a Lie group itself (if K = R it is not even locally connected and if K = C
it is not locally contractible). Of course the differential structure proposed by Bacher is correct,
and is the same used here (the parametrization is not) so this chapter may be considered as a
theoretical framework for [3].

Note also that, as explained before, the Riordan group contains a subgroup isomorphic to
the substitution group of formal power series, that has already been studied from the point of
view of the theory of infinite-dimensional Lie group. Its Lie algebra has already been identified
as W1(1): the nilpotent part of the well known Witt algebra W (1) of vector fields in the real
line. Anyway our approach is quite different from this.

In view of this, our work tries firstly to describe an adequated framework to endow the Rior-
dan group with an infinite dimensional Lie group structure. There are two suitable frameworks
to do this:

• The approach by J. Milnor in [82]. If we consider KN with the product topology and
then we use the natural identification between KN and K[[x]] changing from sequences
to generating functions, we can induce a topology in K[[x]]. This topology makes K[[x]]
a Frechet space, that is, a topological vector space locally convex and totally metrizable.
This is the starting point to describe a natural structure of Frechet Lie group in the
Riordan group.

• Since R(K) is the inverse limit of the inverse sequence of the partial groups Rn(K) (which
are finite dimensional matrix groups and so Lie groups in the classical sense) it receives
a pro-Lie groups structure over K and is itself a Lie group.See [45, 46] for an exhaustive
development of pro-Lie groups theory.

We have followed mainly the first of the two options although we have related it with the other,
since R(K) is an illustrative example of this second one. In fact, one of the aims of this work is
precisely showing that thanks to the pro-Lie group structure we can lift some properties from
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the partial groups (which are classical Lie groups), since, for example, the description of the
Lie algebra and the computation of the exponential map.

After describing this thoretical framework, we will study the natural Lie group structure of
the partial groups Rn(K) as matrix groups (see [5] for a general introduction to classical finite-
dimensional matrix Lie groups). In proposition 4.3.1 we describe the differential structure
of them and then we show that they are actually Lie groups. In proposition 4.5.4 and its
corollary we find the Lie algebra in terms of infinite lower triangular matrices, we describe the
Lie bracket and finally the exponential map (which is the usual exponential of matrices).

Once the Lie group structure of the partial groups is understood, we will study the Lie
group structure over the Frechet space KN of the group R(K) (proposition 4.7.2) and we relate
it with the structure that it inherits as a pro-Lie group (section 4.8). With theorem 4.10.1 the
representation in terms of lower triangular matrices of the Lie algebra of R(K) is obtained, and
in corollary 4.11.1 a description of the exponential is included too. It is also briefly explained
in section 4.12 how we can naturally extend this construction for the representation of R(K)
in terms of bi-infinite matrices.

Surprisingly, the infinite matrices that represent elements in the Lie algebra of R(K), also
satisfy a pattern similar to this in Riordan matrices: for any of those matrices L, there are two
formal power series α(x), β(x) ∈ K[[x]] so that the generating function of the i-th column in L
is xi ·(α(x)+i ·β(x)), that is, the columnsin L are in arithmetic-geometric progression. Thanks
to this, there is also an interpretation in terms of formal power series of the multiplication of
those matrices by an infinite column vector analogous to 1FTRM (proposition 4.13.2). This
interpretation, allow us to understand matrix differential equations (similar to those classi first
order linear systems, see proposition 4.11.2) as a certain type of initial value problems that, in
this framework, we can solve in formal power series using matrix exponentials (see corollary
4.14.1). We will provide some examples of this.

Finally to close this chapter we will focus our attention in considering an extension of (that
is, a group that contains) the Riordan group, motivated by the tangent bundle. We will see how
the decomposition of the Riordan group as a semidirect product of the Toeplitz and Lagrange
subgroups is traslated to the Lie algebra and we will discuss briefly some questions about the
Lie algebras of stabilizer subgroups in R(K) (with respect to the action of the matrices over
infinite column vectors described in 1FTRM, see theorem 4.18.4).

Finally chapter 5 in this work deals with applications of the tools developed in previous
chapters to a certain type of problems in topological combinatorics, principally related to the
f-vector problem. The f-vector of a simplicial complex K of dimension d (see [39, 119]) is a
sequence:

(f0, f1, f2, . . .)

where the entry fi represents the number of faces of dimension i in K (and all the entries fk
equal 0 for k > d). The f-vector problem consist in characterizing the possible sequences that
can be the f-vector of a simplicial complex satisfying a given topolocial condition (being an
sphere, for example) Is an open problem in which there is currently a lot of active work (see
[13, 15, 27]). There are few strong results in this sense. One of them is the g-theorem (see the
work by L. J. Billera and C. W. Lee [8, 9] and by R. P. Stanley [110]) and the other one is
the characterization of the conditions on the f-vector provided the sequence of Betti numbers
(Betti sequence for short) of the complex (see the article by A. Björner and G. Kalai [14]).
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There exist other classical sequences of integers (like the g-, h- and γ-vectors), that appear
in the bibliography of the f-vector problem and that contain essentially the same information
than the f-vector in a more convenient way for the problem they are treating. We will show that
those sequences are no other things than the image of the f-vector through a Riordan matrix
(see the results in section 5.3). This also leads to wondering if some of the classical results
(dealing with unimodality, positivity, log-concavity, etc.) of any of the previous sequences
cannot be proved in terms of Riodan matrices.

On the other hand, we will show that the classical Dehn-Sommerville equations (see [39])
can be formulated as an eigenvector problem for some involutions in the partial groups Rn(R)
(propositión 5.4.1) and then we recover and study from a different viewpoint some classical
results about their solutions (see the section devoted to solutions of the Dehn-Sommerville
equations in [39]).

Moreover, we will show that the f-vectors of the simplices and of the cross-polytopes, if
placed as rows of a matrix, give rise to a Riordan matrix. Simplices and cross polytopes are
no other thing but simplicial complex obtained starting from the complexes:

• L1 = ∆1
0 consisting in a simple point

• L2 = ∆2
0 consisting in two single points

and doing iteratively the joins:

L1, L1 ∗ L1, L1 ∗ L1 ∗ L1, . . . y L2, L2 ∗ L2, L2 ∗ L2 ∗ L2, . . .

respectively. So we will also study other simplicial complexes obtained iterating joins. We will
show how this kind of processes lead to a Riordan pattern when we place the f-vectors as rows in
a matrix. But there is essentially only one way to do this process obtaining actually a Riordan
matrix. The familiy of simplicial complexes obtained doing this will be called m, q-cones (see
proposition 5.5.6). The fact of this matrix of f-vectors being Riordan is for us of great interest,
since it allows us to compute quickly relations in the f-vectors using the 1FTRM (see example
5.5.8). Also the Betti sequences of these families of simplicial complexes are diagonal Riordan
matrices (see proposition 5.8.2).

We will also show some examples of how the action of the so called subdivision methods (like
for example barycentric subdivision) over the f-vector may be described as the multiplication
of an infinite matrix by an f-vector (see propostion 5.6.2). This allow us in section 5.7, for
example, to recover a known result and to prove a new one on the non-existence of linear
relations in the f-vector of families of simplicial complexes satisfying a certain topological
property (see proposition 5.7.5).

Finally in section 5.9 we will study “supercomplexes”, that is, simplicial complexes in which
each simplex is substituted by another simplicial complex belonging to a “family of building-
blocks”. We will see that not any family of simplicial complex can be a family of building
blocks, but between those that can, we can find q, q-cones. So, given any simplicial complex
K, we can study the simplicial complex obtained replacing the simplices by q, q-cones obtaining
another simplicial complex called the q-widening of K. The f-vector of this q-widening of K is
the f-vector of the original simplicial complex multiplied by a Riordan matrix.
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We have decided to include a last chapter with open questions that we will try to answer
in the future.

This work has given rise to the publication of the following articles:

• [63] with the advisors of this work, D. Merlini and R. Sprugnoli.

• [70] with the advisors of this work.

to the following pre-print, already submitted for review:

• Finite and infinite dimensional Lie group structure on Riordan groups with the advisors
of this work, G. S. Cheon and M. Song.

• A formula to construct all involutions in Riordan matrix groups with the advisors of this
work.

the following preprints which have not been sent yet:

• The derived series of the Riordan group with the advisors of this work.

• The group generated by the involutions in the Riordan group with the advisors of this
work.

and finally to the following work in progress:

• The Riordan group and the f-vector problem with the advisors of this work.



Chapter 0

Basics

In this chapter we will introduce briefly some of the basic concepts involved in this work, to
facilitate its reading and to fix some of the notation.

We will also provide some bibliography for further reading about the topics covered.

• In section 0.1 we will introduce the concept of inverse limit of a sequence, that will play
an important role throughout all this work.

• In section 0.2 we will review some basic concepts about formal power series, which are
closely related to Riordan matrices as we will show later. We will also introduce two
groups of power series: F0(K) and F1(K) of great interest for the study of Riordan
matrices.

• In section 0.3 we will provide a brief introduction to Riordan matrices in their classical
(infinite) representation. We will remark most of the aspects concerning the notation
used in this work for Riordan matrices.

• In section 0.4 we will include more recommended bibliography covering other topics
involved in this work: Lie groups (classical and over Frechet spaces) and simplicial com-
plexes.

0.1 Inverse Limits
The concept of inverse limit has been and is still being widely used in practically all branches of
mathematics, sometimes under the name of projective limit. Usually it is a way to approximate
objects by better behaved or widely known ones.

The concept of inverse system, from which the inverse limit is derived, can be defined in
any category, where the related concept of pro-category appears.

An introductory text for Category Theory is [72]. On the other hand, in [30] the authors
developed, from the categorical point of view, the Algebraic Topology, and there it can be
found a study of inverse limit in the categories of both, groups with homomorphisms and
topological spaces with continuous maps.

1
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Concerning this work, we will be mainly interested in a simple case of inverse limits: the
inverse limit, not of an arbitrary inverse system, but of an inverse sequence and in the categories
of groups and Lie groups. For this first glimpse, we will restrict ourselves to the category of
groups:

Definition 0.1.1 (Inverse Limit (I)) Given a sequence of groups {G0, G1, G2, . . .} and a
sequence of homomorphisms (Ψ0,Ψ1,Ψ2, . . .) called bonding maps where for each n ≥ 0:

Ψn : Gn+1 −→ Gn

we say that the sequence of pairs {(Gn, pn)}0≤n is an inverse sequence. The inverse limit
of this sequence is the group made from the set:

lim
←
{Gn,Ψn} =

{
(g0, g1, g2, . . .) ∈

∞∏
n=0

Gn : Ψn(gn+1) = gn

}

with the componentwise operation:

(g0, g1, g2, . . .) ∗ (h0, h1, h2, . . .) = (g0 ∗0 h0, g1 ∗1 ∗h1, g2 ∗2 h2, . . .)

where ∗i is the operation in Gi. There is a natural map called projection:

Πn : lim
←
{Gk,Ψk} −→ Gn

that maps (g0, g1, g2, . . .) to gn.

Another equivalent way to introduce inverse limits is to present them as universal objects:

Definition 0.1.2 (Inverse Limit (II)) A group X together with a collection of homomor-
phism πi : X −→ Gi is the inverse limit of an inverse sequence of groups {(Gn, pn)} if:

• For any i ≥ 0, the following diagram commute:

X

πn+1||yy
yy
yy
yy πn

  B
BB

BB
BB

B

Gn+1
Ψn // Gn

• For any other group Y together with a collection of homomorphisms π̃i satisfying the
property above, there exists a unique homomorphism π̃ that makes the following diagram
commutative:

Y

π̃
��

π̃n+1

����
��
��
��
��
��
��
�

π̃n+1

��1
11
11
11
11
11
11
11

X

πn+1||yy
yy
yy
yy πn

  B
BB

BB
BB

B

Gn+1
Ψn // Gn
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As it was said before, in the category of groups, both definitions coincide (we will not check
this here). But we have to keep the following in mind:

Remark 0.1.3 Unlike what happens in the category of groups, not for any sequence in any
category there exists an inverse limit for any inverse sequence. This is the case of the category
of Lie groups, which is also of interest for this work and where we will have to make some effort
to ensure and understand the coherence of the definition of inverse limits of certain sequences.

Therefore, this second definition is more convenient for categories where the product is not
so well behaved. For instance replacing “group” by ”Lie group” and “homomorhism” by “Lie
group homomorphism” in this second definition we can define also the inverse limits of an
inverse sequence of Lie groups.

But obviously from the universal object definition, if the inverse limit exists in a given
category, it is unique up to isomorphism. Moreover, the isomoprhism is also unique.

0.2 Formal Power Series
In this chapter we will provide some basic definitions and notation for power series that will be
used throughout the rest of this work. For this section, let K denote a field of any characteristic,
unless otherwise specified.

A basic reference covering most ot the topics in this section, could be the paper by I. Niven
[87]. For an introduction to formal power series from the point of view of combinatorics (were
power series are usually generating functions of sequences) a good reference could be chapter 2
of the book by J. Riordan [95]. With respect to the substitution group of formal power series (a
subgroup of the group that we have denoted in this work as F1(K)) and even covering certain
aspects of the multiplication group of formal power series (denoted in this work by F0(K)) we
recommend the reader the wide survey by I. K. Babenko [2]. Concerning aspects related to
convergent power series (Taylor series of analytic functions are formal power series) any book
of complex analysis can provide many information, such as the one by M. Rao and H. Stetkaer
[93].

0.2.1 Basic Definitions
Definition 0.2.1 Formal power series in the variable x over a field K are formal algebraic
objects of the type:

(1) f(x) = f0 + f1x+ f2x
2 + . . .

The set of all formal power series over the field K will be denoted by K[[x]].

We will use the notation [xk]f(x) to refer to the k-th coefficient of the power series, that
is, fk in the power series described in (1).

Polynomials are also formal power series (which coefficients are 0 from certain k on). The
set of polynomials in the variable x over the field K will be denoted by K[x]. The set of
polynomials of degree less or equal than n in the variable x over the field K will be denoted
by Kn[x].
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Although the notation suggests it the other way round, in general the evaluation of a
formal power series in a point 0 ̸= p ∈ K, that is the infinite sum:

f0 + f1 · p1 + f2 · p2 + . . .

doesn’t make any sense (the evaluation of f(x) in 0 is f0). It might do in some important cases
like K = R,C where the field has a norm. In those cases, for a given p ∈ K we can define the
evaluation to be:

f(p) = lim
n→∞

n∑
k=0

fk(p)
k

when this limit exists. In this case, we will say that f(x) is a convergent power series in p.
The set of formal power series which are convergent in any neigbourhood of 0 will be denoted
by Khol[[x]].

Formal power series are very useful in combinatorics due to the following bridge between
sequences and formal power series:

Definition 0.2.2 For a given sequence (d0, d1, d2, . . .) of elements in a field (or ring) K , we
say that:

d(x) = d0 + d1x+ d2x
2 + . . . ∈ K[[x]]

is the generating function. By convention, if we have a finite sequence, that is (d0, . . . , dn) ∈
Kn+1, we will say that its generating function is the polynomial:

d(x) = d0 + . . .+ dnx
n

Conversely, from a given formal power series or a polynomial, we can recover the corre-
spondent sequence of coefficients.

Analogously to what is done in analysis, we define:

Definition 0.2.3 The Taylor Polynomial of degree n of a formal power series:

f(x) = f0 + f1x+ f2x
2 + . . . ∈ K[[x]]

is the polynomial:
Taylorn(f(x)) = f0 + f1x+ . . .+ fnx

n ∈ K[x]

There is a natural way to define the addition and product elements in K[[x]]. With respect
to those operations, K[[x]] is a ring. Also there is a natural multiplication of the elements in
K[[x]] by scalars. With respect to the addition and product by scalars, K[[x]] is a vector space.
Also a formal derivative and a formal integral can be defined for formal power series.

In some sense, a concept that generalizes the one of formal power series is the following:

Definition 0.2.4 The set of formal Laurent series over the field K denoted by K((x)) is the
set of formal objects of the type:

∞∑
k=n

fkx
k with n ∈ Z



0.2. FORMAL POWER SERIES 5

Remark 0.2.5 Another way to understand formal Laurent series is supposing that K((x)) is
the set of quotients of power series:

K((x)) =

{
f(x)

g(x)
: f(x), g(x) ∈ K[[x]] with g(x) ̸= 0

}
since if g(x) ∈ K((x)) \K[[x]] there always exists a formal power series g̃(x) ∈ K[[x]] \ xK[[x]]
such that:

f(x)

g(x)
=

1

xn
f(x)

g̃(x)

Then we can define the sum and product of formal Laurent series out of the sum and product
of power series in the natural way:

• f(x)
g(x) +

u(x)
v(x) =

f(x)v(x)+g(x)u(x)
g(x)v(x)

• f(x)
g(x) ·

u(x)
v(x) =

f(x)·u(x)
g(x)·v(x)

It is easy to check that, with respect to these operations, K((x)) is a field.

Also formal power series in two (or more) variables can be defined:

Definition 0.2.6 A formal power series in two variables x, t over a field K are formal algebraic
objects of the type:

(2) ϕ(x, t) =

∞∑
i,j=0

aijx
itj = a00 + a10x+ a01t+ a20x

2 + a02t
2 + a11xt+ . . .

The set of all these formal power series will be denoted by K[[x, t]].

Those series can be multiplied according to certain rules, substitution of one of the variable
x by a formal power series in one variable is possible, etc.

0.2.2 The group F0(K)

Two groups of formal power series will be of great impact on the rest of this work. The first
one is the following:

Proposition 0.2.7 The set:

F0(K) = K[[x]] \ xK[[x]] = {f0 + f1x+ f2x
2 + . . . : f0 ̸= 0}

with respect to the multiplication of formal power series is a group.

When there is no possibility of misunderstanding we will write simply F0 instead of F0(K).
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Concerning the description of the inverses in this group, we have the following formula:

Proposition 0.2.8 (Reciprocation Formula) Let f(x) ∈ K[[x]], g(x) ∈ F0. Then if:

u(x) = u0 + u1x+ u2x
2 + . . . =

f(x)

g(x)

we have that u0 = f0
g0

, and for n ≥ 1:

un = −g1
g0

un−1 −
g2
g0

un−2 − . . .+
gn
g0

u0 +
fn
g0

A nice proof of this result may be found in the paper by the advisors of this work [66] as
a consequence of the Generalized Banach Fixed Point Theorem.

Remark 0.2.9 Note that for any elements f(x), g(x) ∈ F0:

Taylorn(f(x) · g(x)) = Taylorn(Taylorn(f(x) · Taylorn(g(x))

Taylorn

(
1

f(x)

)
= Taylorn

(
1

Taylorn(f(x)

)
We will omit details, but this would allow us to show that F0 is the inverse limit of the inverse

sequence {(Kn[x] \ xKn−1[x],Ψn)} where the operation is p(x) ∗n q(x) = Taylorn(p(x) · q(x))
and Ψn is given by:

a0 + a1x+ . . .+ anx
n + an+1x

n+1 7−→ a0 + a1x+ . . .+ anx
n

This is an example of how inverse sequence and inverse limits (of groups in this case) allow
us to approximate complicated structures by simpler ones.

Regarding convergent power series:

Remark 0.2.10 For K = R,C, we can define F0,hol(K) = F0(K) ∩Khol[[x]] and we have:

F0,hol < F0
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0.2.3 The group F1

The second group of formal power series of great importance for this work is F1(K).

Proposition 0.2.11 The set:

F1(K) = xK[[x]] \ x2K[[x]] = {f0 + f1x+ f2x
2 + . . . : f0 = 0, f1 ̸= 0}

with respect to the composition of formal power series is also a group. The composition
of two power series:

f(x) = f0 + f1x+ f2x
2 + . . . , g(x) = g1x+ g2x

2 + . . .

in F1(K) is given by:

f(g(x)) = (f ◦ g)(x) = f0 + f1 · g(x) + f2 · (g(x))2 + . . .

Independently to the development of the study of the Riordan group, many years before,
the groups F1(K) were studied by many authors and from many points of view (and using
many different notations). We highly recommend the survey by I. Babenko [2] for the study
of one of its subgroups. In the case K = Fp (finite fields of positive characteristic) they are
closely related to Nottingham groups and have been widely studied (see [18]).

A description of the inverse of elements in this group is known:

Proposition 0.2.12 (Lagrange Inversion Formula) Let v(x) ∈ F1. Then if v(x) =
x
g(x) , we have that:

(3) [xn+1]v−1 =
1

n+ 1
[xn]gn+1

The proof of this result can be found in page 38 of [111] but also a nice proof of it using
the Banach Fixed Point Theorem may be found in the paper [62] by one of the advisors of this
work.

We will borrow the following notation from [83]:

• Let f(x) = f1x + f2x
2 + . . . be an element in F1. Then f1 is called the multiplier of

f(x). It is easy to see (section 2.8 in [2]) that:

F1 = K∗ n
(
x+ x2K[[x]]

)
so we can see that the multiplier plays an important role in the algebraic structure of
F1.
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• If the multiplier of g(x) ∈ FC is 1, we say that 0 is a fixed point with multiplicity k, or
simply that the multiplicity of g(x) is k if:

g(x)− x ∈ xkK[[x]] \ xk+1K[[x]]

As we can see in [2], the group F1 has a natural structure of Lie group but we are not going
to give a detailed description of this structure here.

Similarly to what happened for F0(K):

Remark 0.2.13 Note that for any elements f(x), g(x) ∈ F1, let f̃(x), g̃(x) be their Taylor
polynomials of degree n ≥ 1 we have:

Taylorn(f(g(x))) = Taylorn(f̃(g̃(x)))

Taylorn
(
f−1(x)

)
= Taylorn

(
f̃−1(x)

)
Again we will omit details, but this would allow us to show that F1 is the inverse limit

of the inverse sequence {(xKn−1[x] \ x2Kn−2[x],Ψn)} where the operation is p(x) ∗n q(x) =
Taylorn(p(q(x))) and Ψn is given by:

a0 + a1x+ . . .+ anx
n + an+1x

n+1 7−→ a0 + a1x+ . . .+ anx
n

This is an example of how inverse sequence and inverse limits (of groups in this case) allow
us to approximate complicated structures by simpler ones.

And with regards to convergent power series:

Remark 0.2.14 For K = R,C, we can define F1,hol(K) = F1(K) ∩Khol[[x]] and:

F1,hol < F1

0.2.4 Power Series in one variable over Rings
Formal power series in a variable x can also be defined over a unitary ring R. In this case we
will use the analogue notation R[[x]]. This has been considered in combinatorics for example
when dealing with generating functions of integer sequences.

We can again define the multiplication of an element in R by a power series, and the sum,
multiplication and composition of two given power series as done before.

The problem is that as in a ring not any element has a multiplicative inverse, the existence
of multiplicative and compositional inverses is not guaranteed.

To have something similar to the group F0, we will need to find sets as big as possible of
elements in R[[x]] with multiplicative and compositional inverses respectively:

Proposition 0.2.15 Let R be a unitary ring. (1 + xR[[x]]) is a group with respect to the
multiplication of power series.
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Analogously, we can try to define a group of the type F1 finding a set as big as possible of
elements in R[[x]] with compositional inverses:

Proposition 0.2.16 (Proposition 2.1 in [2]) Let R be a unitary ring with unity element
1R, then (1Rx+ x2R[[x]]) is a group with respect to the composition of power series.

0.3 The Riordan Group (Infinite Representation)
This section is an introduction to the basic concepts, notation and tools related to the classical
Riordan group that will be necessary for the rest of this work.

The Riordan group is usually introduced as a group of matrices with entries in an arbitrary
field K (again, a generalization for entries over a ring is possible). It can be viewed either:

• in its infinite representation (the classical one): as a subgroup of ILT∞(K), that is, the
group of invertible matrices (those which have non-zero entries in the main diagonal) of
the type:

(aij)0≤i,j<∞ =


a00
a10 a11
a20 a21 a22
...

...
... . . .


with entries in K, with respect to the multiplication (which is well defined).

• in its bi-infinite representation (that will appear in chapter 1): as a subgroup of ILT∞∞(K),
that is, the group of invertible matrices (those which have non-zero entries in the main
diagonal) of the type:

(aij)∞<i,j<∞ =



. . .

. . . a−1,−1

. . . a0,−1 a00

. . . a1,−1 a10 a11
...

...
... . . .


The Riordan group appears in many branches of Mathematics, since it is an useful tool for

doing computations with power series (and power series appear in many branches of Mathe-
matics and from many different points of view). Although neither the name “Riordan group”
may not be so “old” (it first appeared in the paper of L. Shapiro and his colaborators [105],
in 1991) nor is the sistematic study of its properties (see for example [17,23–25,51,63,66,76]),
some of the ideas involved were know in the 19th century in relation to some problems in
Analysis (where formal power series play an important role when studying functions which are
analytic in a neighbourhood of a point).
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Anyway it was the interest of the Riordan group in combinatorics (generating functions of
sequences are formal power series) the reason why L.W. Shapiro, S. Getu, W.-J. Woan and
L.C. Woodson started the “modern” study of this group in [105] from a different point of view.
The group was named after John Riordan (April 22, 1903 to August 26, 1988) with ocassion
of his death, since he already setted the base for the study of this group in his previous work
(see for example his book [94]).

This combinatorial point of view is the one that we will follow in this section to introduce
the main concepts. We will introduce several changes in the notation and we may focus on
slightly different aspects from the classical approaches.

As we said before, many ideas included in this section were known before the foundation
of the term “Riordan matrix”. As far as we know, the principal ones are the following:

• One of the important subgroups of the Riordan group, the associated subgroup or La-
grange subgroup, and the actions of its elements on K[[x]] were already studied before
(see the work by L. Leau in the 19-th century [60], the work by A. A. Benett [7] and the
work by E. Javotinski [49], [50]).

• The associated or Lagrange subgroup is naturally anti-isomorphic (and then isomorphic)
to F1(K) which, as we have already showed, has been widely studied by I. K. Babenko
and his colaborators (see for example the survey [2]), and by other authors (see for
example the work by D. L. Johnson [53] and by S. A. Jennings [52]). In the case K being
a finite field, the group F1(K) is closely related to Nottingham subgroup and was also
widely studied (see for example the corresponding chapter writen in the book [18] for
references).

• Another of the important subgroups, the Toeplitz subgroup, is isomorphic to F0(K) with
respect to the product. Also the action of its elements on K[[x]] has been already studied.

• Riordan matrices (with respect to their action on K[[x]]) can be considered to be a
“symbolic version” of weighted composition operators which has been also widely studied
in analysis (see for example the book by J. Shapiro [101]).

0.3.1 Basic Definitions
Definition 0.3.1 An infinite lower-triangular matrix (dij)0≤i,j<∞ with entries in a field K is
a Riordan matrix, if there exist two power series:

(4) d(x) ∈ F0(K), h(x) ∈ F1(K)

in which case we will denote it by R(d(x), h(x)), such that the generating function of the

j-column

d0,jd1,j
...

 is d(x) · (h(x))j, that is:

d(x) · (h(x))j =
∞∑
k=0

dkjx
k
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Sometimes it will be convenient to keep in mind the existence of a more general object: the
improper Riordan matrix (introduced in [107]) which are the matrices that satisfy all the
above conditions replacing (1.4) by:

d(x) ∈ K[[x]] h(x) ∈ xK[[x]]

This matrix will be denoted by R̃(d(x), h(x)). If we want to remark that a given Riordan
matrix is not improper, we will talk about proper Riordan matrices.
The difference is that improper Riordan matrices may have zeros in the main diagonal, while
Riordan matrices cannot. From the discussion made in the chapter about basic concepts
about matrices, we know that a lower triangular infinite matrix with zeros in its diagonal is
not invertible.

Note the following:

Remark 0.3.2 The fact that the generating functions of the columns in D = (dij)0≤i,j<∞ ∈
ILT∞ are in geometric progression of ratio h(x), can be equivalently stated in terms of the
exist a sequence (h1, h2, h3, . . .) of elements in K satisfying:

(5) ∀1 ≤ j ≤ i <∞ dij = h1di−1,j−1 + h2di−2,j−1 + . . .+ hidj−1,j−1

Obviously, the generating function of this sequence is h(x).

Riordan matrices appear frequently in combinatorics. The most famous example is:

Example 0.3.3 (Pascal’s Triangle) The Pascal’s Triangle, which for this work will be the
matrix: 

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
...

...
...

...
... . . .


that is, the matrix (dij)0≤i,j<∞ such that dij =

(
i
j

)
(with the convention

(
n
k

)
= 0 if k > n), is

the Riordan matrix:
R

(
1

1− x
,

x

1− x

)
Since:

• The generating function of the 0-column is 1
1−x .

• The generating function of the 1-column is 1
(1−x)2 .

• The generating function of the 2-column is 1
(1−x)3

and so on.

We will see another example in section 0.3.3 once we have introduced the A-sequence.
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0.3.2 The natural action of a infinite Riordan matrix on K[[x]]. The Riordan
group R(K)

One of the most useful properties that Riordan matrices have is the following result, sometimes
called the First Fundamental Theorem of the Riordan matrices (1FTRM), concerning
the action of Riordan matrices over the set of power series:

Proposition 0.3.4 (1FT) Let R(d(x), h(x)) be a Riordan matrix (the result also holds
for improper Riordan matrices), let f(x) = f0 + f1x+ f2x

2 + . . . ∈ K[[x]]. Then if:w0

w1
...

 = R(d(x), h(x))

f0f1...


we have that the generating function of the sequence (w0, w1, w2, . . .) satisfies:

w0 + w1x+ w2x
2 + . . . = d(x) · f(h(x))

Proof: We have that (via the identification with the sequences and their generating functions):

R(d(x), h(x))

f0f1...
 =

 ↑ ↑ ↑
d(x) d(x) · h(x) d(x) · (h(x))2 . . .
↓ ↓ ↓


f0f1...

 =

= f0 ·

 ↑d(x)
↓

+ f1 ·

 ↑
d(x) · h(x)

↓

+ f2 ·

 ↑
d(x) · (h(x))2

↓

+ . . .

Although this is an infinite sum of vectors, in the position k there is only k vectors with a
non-zero entry. So this sum makes sense and equals to d(x) · f(h(x)).

2

From now on, for this action over the set of power series, we will use the notation:

R(d(x), h(x))⊗ f(x)

As an application, we will prove a well known formula for the binomial coefficients by using
the 1FT:

Example 0.3.5 Let P = R
(

1
1−x ,

x
1−x

)
(the Pascal’s triangle). According to the 1FT:

P ⊗
(

1

1 + x

)
= 1
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But this is equivalent to say that:



1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
...

...
...

...
... . . .





1
−1
1
−1
1
−1
...


=



1
0
0
0
0
0
...


which reduces to the well known formula:

n∑
k=0

(−1)k
(
n

k

)
= 0 if n ≥ 1

The 1FT also allow us to endow the set of all Riordan matrices with a group structure, as we
can see below:

Theorem 0.3.6 The set of Riordan matrices with entries in K together with the product
of matrices is a group, called the Riordan group, and denoted by R(K). In fact we have
that:

(1) R(d(x), h(x)) ·R(u(x), v(x)) = R(d(x) · u(h(x)), v(h(x))).

(2) R(1, x) is the neutral element.

(3) R(d(x), h(x))−1 = R
(

1
d(h−1(x))

, h−1(x)
)

.

If there is no possibility of misunderstanding, we will denote the Riordan group simply by
R.

Proof: It follows from theorem 0.3.4. We omit the details, that can be found together with a
different approach in [66].

2

Improper Riordan matrices need to be excluded since they have no multiplicative inverse. But
for them (1) still holds.

This result stablishes an useful bridge between matrix multiplication and the correspondent
operations between power series.
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0.3.3 A-sequence
One characteristic property of the Riordan matrices is the existence of an A-sequence (first
introduced in [98], see also [76]). The following result is sometimes called the Second Fun-
damental Theorem of Riordan Matrices (2FT). :

Proposition 0.3.7 (2FT) Let D = (dij)0≤i,j<∞ ∈ ILT∞ be an infinite lower triangular
matrix. D is Riordan matrix R(d(x), h(x)) for certain power series d(x), h(x) if and only if
there exists a sequence (a0, a1, a2, . . .) of elements in K with a0 ̸= 0, called the A-sequence,
satisfying:

(6) ∀i, j ≥ 1, dij = a0di−1,j−1 + a1di−1,j + . . .+ ai−jdi−1,i−1

In this case, if we denote by A(x) to the generating function of the A-sequence we have
that:

h(x) =

(
x

A(x)

)−1

We will show a direct proof for this result found by the advisors of this work in section
0.3.5 as a consequence of the algebraic structure of the Riordan group.

This pattern followed by the entries of the Riordan group have, for instance, the two
following consequences:

Corollary 0.3.8 Let R(d(x), h(x)) = (dij)0≤i,j<∞ ∈ R, with A-sequence (a0, a1, a2, . . .).

• The main diagonal of a Riordan matrix, that is, the diagonal d00, d11, d22, . . . is a
geometric progression of rate a0 (or equivalently, of rate h0).

• The following diagonal, that is, the diagonal d10, d21, d32, . . . is an arithmetic-
geometric progression:

d10, a0(d10 + a1d00), a
2
0(d10 + 2a1d00), . . .

We will omit the proof, which is a direct application of the formula (6). Understanding the
structure of the rest of the diagonals in a Riordan matrix is still an open problem (see Open
Question 1). As far as we know, R. Sprugnoli has obtained some results in this sense that we
are looking forward to seeing published.
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As an example, we will find the A-sequence for the Pascal’s Triangle, and we will also
recover a well known identity for the binomial coefficients:

Example 0.3.9 The pattern to construct the Pascal Triangle:

R

(
1

1− x
,

x

1− x

)
=



1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
...

...
...

...
... . . .


was (with the convention

(
n
k

)
= 0 if k > n):(

n

k

)
= 1 ·

(
n− 1

k − 1

)
+ 1 ·

(
n− 1

k

)
for 0 < k ≤ n

so the A-sequence in this case is (1, 1, 0, 0, 0, 0, . . .).

Moreover, since many sequences dn,k in combinatorics satisfy a recurrence relation of the
type (6) now is easy to believe that we will find loads of examples of Riordan matrices in
combinatorics apart from Pascal’s Triangle (see for example the survey [102]).

0.3.4 Alternative notation for Riordan matrices. The g-sequence.
In this section we will introduce two alternative notations for Riordan matrices.

The first one is the adequate one to work with the A-sequence and has not been used yet
in the bibliography:

Definition 0.3.10 We define H(u(x), A(x)) to be the Riordan matrix which first column and
A-sequence have generating functions u(x) and A(x) respectively. So the equivalence between
both notations is:

H(u(x), A(x)) = R

(
u(x),

(
x

A(x)

)−1)

The second one, was proposed by the advisors of this work in [66] due to their different approach
to this subject:

Definition 0.3.11 For two power series f(x), g(x) ∈ F0 we define:

T (f(x) | g(x)) = R

(
f(x)

g(x)
,

x

g(x)

)
In those terms also the 1FT can be stated, and a formula for the group operation can be

obtained. We will not give the details.
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One more thing remains to be announced in this subsection: the notation proposed in
definition 0.3.11 implies a power series g(x) = g0+g1x+g2x

2+ . . . The sequence (g0, g1, g2, . . .)
is known as the g-sequence, and it is as useful as the A-sequence thanks to the following
result anologous to remark 0.3.2 and proposition 0.3.7 (see [102]):

Proposition 0.3.12 An element D = (dij)0≤i,j≤∞ ∈ ILT∞ is a Riordan matrix
R(d(x), h(x)) if and only if there exists a sequence (g0, g1, g2, . . .) of elements in K called
the g-sequence of D satisfying:

(7) 0 ≤ ∀k ≤ n, dnk = g0dn+1,k+1 + g1dn,k+1 + . . .+ gndk+1,k+1

In this case, if we denote by g(x) to the generating function of the g-sequence we have that:

h(x) =
x

g(x)
or equivalently

(
x

g(x)

)
=

(
x

A(x)

)−1
where A(x) is the generating function of the A-sequence of R(d(x), h(x)).

0.3.5 The subgroups T (K),A(K)

We will meet the following subgroups of the Riordan group through the rest of this work.
Those subgroups have been largely studied in the bibliography: see the survey [102] or the
paper [104].

Definition 0.3.13 The Toeplitz subgroup (also denoted in the bibliography as the Appel
Subgroup) is the set of Riordan matrices:

T (K) = {R(d(x), x)} < R(K)

It is easy to check the closure of this set by the operation and that it is a subgroup. This
subgroup is normal in R(K) since:

∀R(d(x), h(x)) ∈ R(K), R(F (x), x) ∈ T (K), R(d(x), h(x))−1R(F (x), x)R(d(x), h(x)) ∈ T (K)

as it is easily checked by the group law in R(K).

T (K) is naturally isomorphic to the group F0(K), with the product of power series.

Definition 0.3.14 The associated subgroup (also denoted in the bibliography as the La-
grange subgroup, for instance in [64]) is the set of Riordan matrices:

A(K) = {R(1, h(x)} < R(K)



0.3. THE RIORDAN GROUP (INFINITE REPRESENTATION) 17

It is very easy to see the closure of this set by the operation, and that it is a subgroup.

In view of the group law in R, the natural identification:

h(x) 7−→ R(1, h(x))

is an anti-isomoprhism between F1(K) and A(K). Then, we can construct an isomorphism
between F1 and A(K) by:

h(x) 7−→ R(1, h(x))−1

We have the following important result:

Proposition 0.3.15 (see [66]) R(K) = T (K)oA(K)

0.3.6 Riordan matrices with entries in a unitary ring
Most of the discussion in this section has been taken from [2]. Since formal power series are
not only defined in fields but in unitary rings, we can extend the definition of Riordan and
generalized Riordan matrices (definition 0.3.1) for matrices with entries on a unitary ring. But
this time, in order to have an inverse, we need to restrict ourselves to other set of matrices:

Remark 0.3.16 For any commutative ring with unity R, for any two elements:

d(x) ∈ (1 + xR[[x]]), h(x) ∈ (x+ x2R[[x]])

we can define as before a Riordan type matrix R(d(x), h(x)), and it will have an inverse and
an A-sequence.

This was the original definition of Riordan matrix in [105] in order to admit to define
Riordan matrices over Z. So we have:

Definition 0.3.17 Let R be a ring. We wil define C(R) to be the set of Riordan type matrices
R(d(x), h(x)) where: {

d(x) ∈ (1 + xR[[x]])

h(x) ∈ (x+ x2R[[x]])

C(R) is a group according to the previous remark.

This group via the identification made before between F1 and A contains a copy of J (R)
(see the definition in [2]).

As discussed before, the Riordan group arises from combinatorics. Due to this combinato-
rial flavour the group many papers have been devoted to studying aspects of elements in the
subgroup J (Z) < R(R) (see for example [107] or [78]).
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0.3.7 Other relevant subgroups of the Riordan group
For basic information of subgroups of the Riordan Group see the survey [102] or the paper
[104].
R is a group which elements are associated with some formal power series. In the field of

Analysis, the power series considered are always convergent in a neigbourhood of a point. So
the following subgroups are interesting in this field:

Definition 0.3.18 For K = R,C:

• Thol = {R(f(x), x) ∈ T : f(x) ∈ FP,hol}

• Ahol = {R(1, h(x)) ∈ A : h(x) ∈ FC,hol}

• Rhol = {R(d(x), h(x)) ∈ R : d(x) ∈ FP,hol, h(x) ∈ FP,hol}. In other words:

Rhol = Thol oAhol

Remark 0.3.19 The fact that Thol,Ahol,Rhol are subgroups of R comes from the fact that
F0,hol,F1,hol are subgroups of F0,F1 respectively.

Definition 0.3.20 The Checkerboard subgroup is the set of Riordan matrices of the type
R(d(x), h(x)) where: {

d(x) = d0 + d2x
2 + d4x

4 + . . . (d(x) is even)
h(x) = h1x+ h3x

3 + x5x
5 + . . . (h(x) is odd)

Remark 0.3.21 The reason of the name “checkerboard” is that R(d(x), h(x)) ∈ R belongs to
this subgroup if and only if it is of the form:

∗
0 ∗
∗ 0 ∗
0 ∗ 0 ∗
∗ 0 ∗ 0 ∗
0 ∗ 0 ∗ 0 ∗
...

...
...

...
...

... . . .


Definition 0.3.22 We will denote by D to the diagonal subgroup, the set of all the Riordan
matrices that are diagonal matrices. This subgroup is obviously commutative.

Remark 0.3.23 If (dij)0≤i,j<∞ ∈ R the diagonal of a Riordan matrix is always a geometric
progression since if its A sequence is a0, a1, a2, . . ., then the diagonal must be d00, a0d00, a

2
0d00, . . .

according to the (2FT).
So D is isomorphic to the group:

{(d0, a0) ∈ K2 : d0, a0 ̸= 0}

with the binary operation (d0, a0) ∗ (d̃0, ã0) = (d · d̃, a · ã).
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Definition 0.3.24 The renewal subgroup (also denoted in the bibliography by the name
Bell subgroup) is the set of Riordan matrices of the form R(h(x), h(x)).

Remark 0.3.25 The renewal subgroup is naturally isomorphic to A through the map:
1
0 d11
0 d21 d22
0 d31 d32 d33
...

...
...

... . . .

 7−→

d11
d21 d22
d31 d32 d33
d41 d42 d43 d44
...

...
...

... . . .


To see this, again the key is block multiplication in those matrices.

0.4 Final Comments

Other objects will appear in this work. Mainly Lie groups over Frechet spaces and simplicial
complexes.

Since we don’t want to enlarge this introductory chapter we will only provide some bibli-
ography to cover those topics.

0.4.1 Lie groups over Frechet spaces

A readable introduction to the general theory of Lie groups can be found in [37,90].

It is well known that the groups of matrices are Lie groups. A good reference describing
the Lie group structure of matrix groups is [5].

We are not so interested in classical Lie groups but in infinite dimensional Lie groups,
since in chapter 4 our purpouse will be to study the Lie group structure of R(K). Up to our
knowledge, there are two main options to define infinite dimensional Lie groups:

• Defining the concept of manifold modelled over an infinite dimensional vector space (for
example a Frechet space) and then defining a Lie group as a manifold modelled over one
of those spaces with a group structure for which multiplication and inversion are smooth.
A good reference for this is the work by J. Milnor [82], and also [57] may be of interest.

• Considering inverse limits of inverse sequences of classical (finite dimensional) Lie groups
and trying to endow those objects with a reasonable structure, similar to the one of
classical Lie groups. This is the path followed in [45,46].

The Riordan group is a good example for both points of view: the structure of manifold
modelled over a Frechet space is quite simple, and the Riordan group (as we will see in chapters
1 and 4) has a natural structure as inverse limit of an inverse sequence of classical Lie groups.
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0.4.2 Simplicial Complexes
Simplicial complexes are objects that have both: a combinatoric structure and a topological
structure. So to talk about them, a basic background of topology. Good references for this
may be [42,85].

Only finite simplicial complexes will be considered here. Simplicial complexes are built from
certain “building blocks” of different dimensions called simplices. Two definition are possible:

• Geometric definition: where simplices are considered to be certain convex subsets in RN
and a simplicial complex is considered to be a topological space obtained gluing together
some (a finite number) simplices by following certain rules.

• Abstract definition: where simplices are considered to be subsets of a fixed (finite) set V
and a simplicial complex is a set of simplices closed under inclusion.

Both definition are equivalent and there is a canonical way to obtain “geometric simplicial
complexes” from “abstract simplicial complexes” and viceversa.

For more information about the basic theory of simplicial complexes we recommend [42,85].

Since a simplicial complex is constructed out of some simplices, for each simplicial complex
K, we define its f-vector to be the sequence:

f(K) = (f0(K), f1(K), f2(K), . . . , fd(K))

where fi(K) is the number of simplicial complex of dimension i in K.

Characterizing the set of f-vectors of a family of simplicial complex with a given property
in common is a classical problem in topological combinatorics called the f-vector problem. The
f-vector problem has been widely studied for example for the set of simplicial complexes with
a given Betti sequence (see [14]) or for the set of simplicial complexes PL-homeomorphic to
the boundary of a polytope (g-theorem). We recommend the reader [14,39,119].



Chapter 1

Some Inverse Limit Approaches to
the Riordan Group

Most of the topics covered in this chapter are contained in [63]. In this chapter unless otherwise
specified (this will only happen in section 1.14) K will denote a field of any characteristic.

The key tool used in this chapter is the inverse limit (see section 0.1). We will introduce
finite Riordan matrices, which are lower triangular submatrices of a Riordan matrix, and by
using them together with the inverse limit tool, we will obtain the Riordan group in its infinite
and bi-infinite representations.

Some of those concepts of the finite framework have been independently used in [21] to
obtain certain constructions for Riordan arrays.

As it was revealed in some of the previous work in Riordan matrices: by the advisors of
this work in collaboration with D. Merlini and R. Sprugnoli [64, 65], by R. Sprugnoli in [107]
and A. Luzón in [62], there is a necessity of a deeper understanding of different reflections in
bi-infinite Riordan matrices. Obviously, the transposition of a Riordan matrix (either finite or
infinite) is not a Riordan matrix. But from the point of view of finite Riordan matrices, an
internal transformation reflecting accross “y = x” is naturally found:a00a10 a11

a20 a21 a22

 −→
a22a21 a11
a20 a10 a00




a00
a10 a11
a20 a21 a22
a30 a31 a32 a33

 −→

a33
a32 a22
a31 a21 a11
a30 a20 a10 a00



producing again another finite Riordan matrix.

1



2 CHAPTER 1. SOME INVERSE LIMIT APPROACHES TO R(K)

This transformation makes no sense and has no analogue in usual infinite Riordan matrices,
but it does in bi-infinite Riordan matrices. Using inverse sequences of finite Riordan matrices
and the inverse limit concept, we are able to define essentially two different reflections in bi-
infinite Riordan matrices. This allows us to reformulate and give answers to some questions
left open in [65].

The horizontal and vertical constructions that were explored in [64] enable us to understand
these reflections. In fact, the fundamental point is the analogy between the sequence g for a
vertical construction and the A-sequence for an horizontal construction of a Riordan matrix.

In section 1.1 we obtain the groups of finite Riordan matrices Rn(K) of size (n+1)×(n+1)
for n = 0, 1, 2, . . . by means of natural projections (that are also studied in section 1.2) from
the Riordan group R. We also give an internal characterization of such finite matrices. Later
(section 1.4) we recover the Riordan group in its infinite representation as an inverse limit of
these groups of finite matrices with appropriate bonding maps.

In section 1.7 we will recall from the bibliography the concept of complementary and dual
Riordan matrices. After this, in section 1.8 we describe both matrices in terms of inverse limits
and reflections. After this, we will recover the bi-infinite representation of the Riordan group
as the inverse limit of two different sequences: in section 1.9 we achieve it from the usual
infinite one and in section 1.10 we will do it as inverse limit of sequences of groups of finite
Riordan matrices (by two different natural ways depending overall on the parity of the size of
finite matrices in the inverse sequences).

Reflecting term by term the finite matrices involved in both sequences above, in section
1.11 we get two different, but related, reflections on bi-infinite Riordan matrices and the two
corresponding concepts of symmetric matrices where the dual and the complementary appears.
This allows us to translate symmetries in bi-infinite matrices in terms of the problems of self-
complementarity and self-duality in Riordan matrices left open in [65]. We will solve those
problems in section 1.12.

The idea of understanding (infinite or bi-infinite) matrices in the Riordan group as elements
in the inverse limit of certain inverse sequences will be the suitable framework to do proofs
by induction, and will be key in the rest of this work (see sections 1.13 and 1.14 for examples
some examples of the application of this technique).

1.1 Partial Riordan matrices and groups
In a similar fashion to the groups ILT∞(K) introduced in section 0.3, for every n ∈ N consider
the group of invertible lower triangular matrices ILTn+1(K). Let R(K) be the Riordan group.
Since every Riordan matrix is lower triangular, we can define a natural homomorphism:

Πn : R(K)→ ILTn+1(K)

(di,j)i,j∈N =


d00
... . . .

dn0 . . . dnn
...

... . . .

 7→
d00... . . .
dn0 . . . dnn

 = (di,j)0≤i,j≤n
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For obvious reasons, many times we will refer to this homomorphism as the n-th projection
of a certain infinite Riordan matrix.

With the aim of describing the Riordan group as an inverse limit of an inverse sequence of
groups of finite matrices, we consider first:

Definition 1.1.1 The partial Riordan group (or finite, to distinguish it from the infinite
one) Rn(K) is the subgroup of ILTn+1(K) defined by R(K)n = Πn(R(K)) (recall that the image
under a group homomorphism is a subgroup of the target group).

The elements of the groups Rn(K) (for any n ∈ N) are called finite Riordan matrices,
and we will use the notation:

Rn(d(x), h(x)) = Πn(R(d(x), h(x)))

Remark 1.1.2 Beware of the index: the size of any element in Rn(K) is (n + 1) × (n + 1),
that is, Rn(K) < ILTn+1(K).

This is because, as we will see later, we will identify the columns in the elements in Rn(K)
(of size n+ 1) with Taylor polynomials a0 + a1x+ . . .+ anx

n ∈ Kn[x].

If there is no possibility of misunderstanding, we will write simply Rn, ILTn+1 instead of
Rn(K), ILTn+1(K).

Example 1.1.3 For n = 0, 1, 2, 3 we have:

• R0 = K∗ with the usual product in K (being K∗ = K \ {0}).

• R1 is the group of 2× 2 lower triangular invertible matrices.

• R2 is the group of 3× 3 lower triangular invertible matrices where the main diagonal is
formed by three consecutive terms of a geometric progression.d00d10 d00a0

d20 d21 d00a
2
0


• R3 is the group of 4× 4 lower triangular invertible matrices where the main diagonal is

formed by four consecutive terms of a geometric progression and the first sub-diagonal is
formed by three consecutive terms of an arithmetic-geometric progression with the same
ratio as the geometric one in the main diagonal:

d00
d10 d00a0
d20 a0(d10 + a1d00) d00a

2
0

d30 d31 a20(d10 + 2a10d00) d00a
3
0


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In view of the characterizations of infinite Riordan matrices given by 2FT and proposition
0.3.12 we immediately obtain:

Proposition 1.1.4 (Partial A, g -sequences) Let Dn = (dij)0≤i,j<n ∈ ILTn+1. Dn ∈
Rn if and only if there exists a sequence (a0, a1, . . . , an−1) of elements in K with a0 ̸= 0,
called the A-sequence (or the partial A-sequence if we need to make a distinction),
satisfying:

(1.1) ∀i, j ≥ 1, dij = a0di−1,j−1 + a1di−1,j + . . .+ ai−jdi−1,i−1

or equivalently it there exists a sequence g0, . . . , gn−1 of elements in K with g0 ̸= 0, called
the g-sequence (or the partial g-sequence if we need to make a distinction), satisfying:

(1.2) ∀i, j < n, dij = g0di+1,j+1 + g1di,j+1 + . . .+ gidj+1,j+1

Both sequences are unique.

1.2 Riordan matrices with the same n-th projection
It is obvious that we can have a finite Riordan matrix as the projection of different infinite
Riordan matrices. In fact, there are infinitely many different infinite Riordan matrices with
the same n-projection.

Example 1.2.1 Take d(x) = 1, h(x) = 1
1−x and u(x) = 1 + x4, v(x) = 1

1−x + x4. Obviously:

R(d(x), h(x)) =



1
0 1
0 1 1
0 1 2 1
0 1 3 3 1
...

...
...

...
... . . .


̸=



1
0 1
0 1 1
0 1 2 1
1 2 3 3 1
...

...
...

...
... . . .


= R(u(x), v(x))

but:

R3(d(x), h(x)) =


1
0 1
0 1 1
0 1 2 1

 =


1
0 1
0 1 1
0 1 2 1

 = R3(u(x), v(x))
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Infering from this example, we will clarify the general situation on equality of n-projections
with the following result:

Proposition 1.2.2 Two Riordan matrices D = R(d(x), h(x)), T = R(u(x), v(x)) have
the same projections Dn = Πn(D), TnΠn(T ) if and only if Taylorn(d(x)) = Taylorn(u(x))
and Taylorn(h(x)) = Taylorn(v(x)).

On the other hand, given a finite Riordan matrix Dn ∈ Rn with n ≥ 1, there are two
unique polynomials d̃(x) ∈ F0(K) and h̃(x) ∈ F1(K) with deg(d̃(x)), deg(h̃(x)) ≤ n such
that:

Πn(R(d̃(x), h̃(x))) = Dn

We call R(d̃(x), h̃(x)) the canonical Riordan representative of the finite Riordan
matrix Dn.

Proof: Let R(d(x), h(x)) = (bij)0≤i,j<∞, R(u(x), v(x)) = (cij)0≤i,j<∞.

• The entries:
b00, . . . , bn0 c00, . . . , cn0

determine univocally Taylorn(d(x)) and Taylorn(u(x))

• The entries:
b11, . . . , bn1 c11, . . . , cn1

determine univocally Taylorn(d(x) · h(x)) and Taylorn(u(x) · v(x)).

• To complete the proof, note that:{
Taylorn(d(x)) = Taylorn(u(x))

Taylorn(d(x) · h(x)) = Taylorn(u(x) · v(x))
⇔

{
Taylorn(d(x)) = Taylorn(u(x))

Taylorn(h(x)) = Taylorn(v(x))

A proof in terms of the A-sequence is also possible: if two matrices have the same projection,
they obviously have the same A-sequence and the proof of the result follows from the first point
in this proof and from Lagrange inversion formula (3).

2
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The previous result leads to the following consequence which is a very important structural
property of infinite and bi-infinite Riordan matrices:

Proposition 1.2.3 (The equality of banded matrices) Let two finite Riordan matri-
ces R(d(x), h(x)), R(u(x), v(x)) satisfying for certain n ≥ 1:

Rn(d(x), h(x)) = Rn(u(x), v(x))



•
• •
• • •
• • • •
• • • • •
• • • • • •
...

...
...

...
...

...
. . .


or even the weaker condition:

{
Rn−1(d(x), h(x)) = Rn−1(u(x), v(x))

Rn−1

(
d(x) · h(x)x , h(x)

)
= Rn−1

(
u(x) · v(x)x , v(x)

)


•
• •
• • •
• • • •
• • • • •
• • • • • •
...

...
...

...
...

...
. . .


then:

(i) The terms 0, . . . , n− 1 of the A-sequence and g-sequence of both matrices coincide.

(ii) ∀m ∈ Z, Rn−1

(
d(x) ·

(
h(x)
x

)m
, h(x)

)
= Rn−1

(
u(x) ·

(
v(x)
x

)m
, v(x)

)
.

(iii) So in particular, for the entire bi-infinite matrices:

R(d(x), h(x)) = (cij)i,j∈Z, R(u(x), v(x)) = (dij)i,j∈Z

we have the equality of the entire band, that is, that for k = 0, . . . , n− 1

di,j = ci,j for i− j = k



. . .

. . . •

. . . • •

. . . • • •

. . . • • • •

. . . • • • • •
...

...
...

...
. . . . . .



Proof: We have that:

(i) follows directly from proposition 1.1.4.



1.3. EXTENDING INVOLUTIONS 7

(ii) is immediately equivalent to (iii).

(iii) If the terms 0, . . . , n− 1 of the A-sequence are fixed and coincide in both matrices, obvi-
ously from the formula (1.7.9) of the A-sequence all the entries cij dij for 0 ≤ i−j ≤ n−1
are determined and are equal for j ≥ 0. To prove the result for j < 0, we apply the same
argument with the terms 0, . . . , n− 1 of the g-sequence according to the formula (7).

2

1.3 Extending an involution in Rn(K) to obtain an involution
in Rn+1(K)

As we described the Riordan group as an inverse limit of the finite Riordan groups, it is natural
to ask for all extensions in Rn+1 of any given Dn ∈ Rn.

Proposition 1.3.1 We will study the equation Pn(Dn+1) = Dn with Dn+1 ∈ Rn+1 and a
fixed Dn ∈ Rn. If Dn = (di,j)i,j=0,1,··· ,n ∈ Rn with n ≥ 1, then Pn(Dn+1) = Dn if and only
if

Dn+1 =



d0,0
d1,0 d1,1
d2,0 d2,1 d2,2
d3,0 d3,1 d3,2 d3,3
d4,0 d4,1 d4,2 d4,3 d4,4

...
...

...
...

... . . .
dn,0 dn,1 dn,2 dn,3 dn,4 · · · dn,n
α β dn+1,2 dn+1,3 dn+1,4 · · · dn+1,n dn+1,n+1


with α, β ∈ K

and dn+1,j, j ≥ 2 are univocally determined by the matrix Dn.

Proof: This is a direct corollary of the equality of banded matrices.
2

Remark 1.3.2 Suppose that in the construction above Dn = Rn(d(x), h(x)). Any Dn+1

with Πn(Dn+1) = Dn is of the type Rn(d̃(x), h̃(x)) with Taylorn(d̃(x)) = Taylorn(d(x)) and
Taylorn(h̃(x)) = Taylorn(h(x)).

Determining in the matrix Dn+1 that the entry (n + 1, 1) is β is equivalent to deter-
mine [xn+1]h̃(x) or equivalently the last term in the A-sequence of Dn+1 which is of the type
(a0, . . . , an).

Similarly, determininng that the entry (n+ 1, 1) is α is equivalent to determine [xn+1]d̃(x).

In this work, many times we are going to proceed by induction. So, we will need to extend
a given finite Riordan matrix in Rn to others in Rn+1.
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1.4 R(K) as an inverse limit
Apart from the sequence of groups {R0,R1, . . .}, in order to obtain an inverse sequence the
bonding maps are also required:

Definition 1.4.1 We define the maps:

Pn : Rn+1 →Rn

(dij)0≤i,j≤n+1 =


d00
... . . .

dn0 . . . dnn
dn+1,0 . . . dn+1,n dn+1,n+1

 7−→
d00... . . .
dn0 . . . dnn

 = (dij)0≤i,j≤n

Pn(Dn+1) is obtained from Dn+1 by deleting its last row and its last column.

It is easy to see that Pn is a group homomorphism for every n because the matrices are
lower triangular. Moreover, the diagram below is commutative:

R

Πn

��

Πn+1

##F
FF

FF
FF

FF

Rn Rn+1
Pn

oo

Consequently we get:

Theorem 1.4.2 The Riordan group R is isomorphic to lim←−{(Rn)n∈N, (Pn)n∈N}.

Proof: According to definition 0.1.1 of the inverse limit, we only need to see that the natural
map:

D = R(d(x), h(x)) =


d00
d10 d11
d20 d21 d22
...

...
... . . .

 7−→

7−→ (Π0(D), Π1(D), Π1(D), . . .) =

[d00],

[
d00
d10 d11

] d00d10 d11
d20 d21 d22

 , . . .


is an isomorphism. It is obvious that it is an injective homomorphism. In order to see that
this map is onto we just see that, by using proposition 1.2.2, an element:

(D0, D1, D2, . . .) ∈ lim←−{(Rn)n∈N, (Pn)n∈N}
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is the image of R(d(x), h(x)) where [xn]d(x) and [xn]h(x) are determined (in a compatible way,
since Pm(Dm+1) = Dm) by any of the DN with N ≥ n.

2

The above proposition means that a Riordan matrix can be uniquely described by a se-
quence of finite matrices (Dn)n∈N with Dn ∈ Rn (corresponding to the projections) and such
that Pn(Dn+1) = Dn for every n ∈ N. Furthermore, the product in the Riordan group corre-
sponds to the component-wise products in the sequences.

1.5 Finite matrices and metrics in R(K)

In [66] an ultrametric for R was introduced. Intuitively, this ultrametric measures the distance
between two Riordan matrices looking at the first different row. This ultrametric can be
trivially formulated in terms of the maps Πn:

Proposition 1.5.1 Let A,B ∈ R, then:

d∗(A,B) =
1

2n
where n = min{k : Πk(A) ̸= Πk(B)}

Moreover:

Remark 1.5.2 Denote only for a moment by φ to the isomorphism betweenR and lim←−(Rn, Pn).
Through φ the distance d∗ induces a well known metric for sequences:

d∗∗((A0, A1, A2, . . .), (B0, B1, B2, . . .)) =
1

2n
where n = min{k : Ak ̸= Bk}

From the idea of the equality of banded submatrices, it is possible to define another metric
for R:

Definition 1.5.3 For A,B ∈ R, we will define:

d∗∗(A,B) =
1

2n
where n = min{k : the k-th diagonals of A,B are distinct}

where the k-th diagonal is the one passing through dk0, dk+1,1, . . .

We can see that there is a relation between both matrices:

Remark 1.5.4 It is easy to see that d∗ and d∗∗ are Lipschitz equivalent: we have that for all
A,B ∈ R:

1

2
d∗∗(A,B) ≤ d∗(A,B) ≤ d∗∗(A,B)
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Check this inequality for example with the matrices:

A =


1
1 1
1 1 1
...

...
... . . .

 , B =


1
1 1
1 2 1
...

...
... . . .


We have not explored this metric d∗∗ yet, but we consider that it may have aspects to be

studied as done with d∗ in [66]. For example:

Remark 1.5.5 As it was already announced in [66], the ultrametric d∗ induces a sequence of
normal subgroups:

Gk = {T ∈ R : d∗(T,R(1, x)) ≤ 1

2k
}

with the property that:
∞∪
k=0

Gk = {R(1, x)}

Naturally we could do an analogue definition for d∗∗. This, together with the study of the
importance of those sequences of normal subgroups will be left as open question 2.

1.6 Reflection of Finite Riordan Matrices
Once this inverse limit context has been set, we will jump into the question about simmetries
and reflections.

The usual reflection studied for matrices is usually transposition. Matrix transposition can
be viewed as a reflection on the matrix across “y = −x”. But the transpose of a Riordan
matrix is not a Riordan matrix (it is not even lower triangular).

However, if we reflect a Riordan matrix across “y = x” we obtain another lower triangular
matrix: a00a10 a11

a20 a21 a22

 −→
a22a21 a11
a20 a10 a00




a00
a10 a11
a20 a21 a22
a30 a31 a32 a33

 −→

a33
a32 a22
a31 a21 a11
a30 a20 a10 a00


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which in fact is again a Riordan matrix:

Proposition 1.6.1 (The reflected Riordan matrix) Let D = (dij)0≤i,j≤n be a finite
Riordan matrix and consider the matrix DR = (cij)0≤i,j≤n with ci,j = dn−j,n−i. Then
DR is a finite Riordan matrix that we call the reflected matrix of D. Moreover, the
A-sequence of D is the g-sequence of DR and viceversa.

Proof: Let a0, . . . , an−1 be the partial A-sequence of Dn. Then, according to (6) we have that
for all 0 < j ≤ i ≤ n:

cij = dn−j,n−i = a0dn−j−1,n−i−1 + . . .+ ai−jdn−j−1,n−j−1 =

= a0ci+1,j+1 + . . .+ ai−jcj+1,j+1

So a0, . . . , an−1 acts as a g-sequence. The fact that this reflected matrix is a Riordan matrix
follows from the fact that an element in ILTn+1 is a finite Riordan matrix if and only if it has
a g-sequence (proposition 1.1.4).

2

Remark 1.6.2 Due to the importance of the A, g-sequences for those kind of manipulations
the notation T (f | g) introduced by the advisors of this work and discussed in subsection 0.3.4
is sometimes very convenient to work with reflections, since it is easier to recover information
about those sequences in this notation.

Remark 1.6.3 The constants used to construct DR
n by rows are the same as those used to

construct D by columns. Moreover, if Dn = Rn(d(x), h(x)) the first column of DR
n can be

calculated by the expression

(1.3) ci0 = dn,n−i = [xi]d(x) · (h(x))n.

Let us include an example of reflection:

Example 1.6.4 Let P be the Pascal Triangle (introduced in example 0.3.3). As usual, denote
P5 = Π5(P ). Then:

PR
5 =



1
5 1
10 4 1
10 6 3 1
5 4 3 2 1
1 1 1 1 1 1

 ,

PR
5 = Π5(T ((1 + x)6 | 1 + x)) = Π5

(
R
(
(1 + x)5,

x

1 + x

))
.
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Some properties that can be deduced from the above proposition are:

Corollary 1.6.5 Let Dn, Cn ∈ Rn:

(i) (DR)R = D.

(ii) (DnCn)
R = CR

nD
R
n .

(iii) (DR
n )
−1 = (D−1n )R.

(iv) If Dn a Toeplitz matrix, then Dn = DR
n .

(v) DnD
R
n is a Toeplitz matrix, i.e., DnD

R
n = Rn(d(x), x). In particular:

D−1 = DR
n ·Rn

(
1

d(x)
, x

)

Proof: (i), (ii) and (iv) are a direct consequence of the definition of reflected matrix in propo-
sition 1.6.1. (iii) follows from (ii) since:

R(1, x) = (Dn ·D−1n )R = DR
n · (D−1n )R

In order to prove (v), just see that as we said before, the A-sequence of Dn is the g-sequence
of DR

n and according to the relation between the A-sequence and the g-sequence discussed in
proposition 0.3.12 we have that if Dn = Rn(u(x), v(x)), then DR

n is of the type Rn(ũ(x), v
−1(x))

for some ũ(x) ∈ F0 (more will be said about this ũ(x)).
2

1.7 The Riordan group in its bi-infinite representation. Com-
plementary and Dual Riordan matrices.

As already mentioned in section 0.3, it is possible to consider the Riordan group as a subgroup
of the set of invertible lower triangular bi-infinite matrices ILT∞∞(K). This representation is
called the bi-infinite representation of the Riordan group. The elements in ILT∞∞(K)
are of the type:

(dij)−∞<i,j<∞ =



. . .

. . . d−1,−1

. . . d0,−1 d00

. . . d1,−1 d10 d11
...

...
... . . .

 with dii ̸= 0, ∀i ∈ Z
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Note that:
Remark 1.7.1 In order to define the multiplication, it is important for these bi-infinite ma-
trices the assumption that the entries are labelled, that is, there is a row and a column labelled
as 0-column and 0-row used as reference. Then, since they are lower triangular, we can define
the product as usual:

· : ILT∞∞ × ILT∞∞ −→ ILT∞∞

(bij)−∞≤i,j<∞ · (dij)−∞≤i,j<∞ = (pij)−∞≤i,j<∞ where pij =
∞∑

k=−∞
bikdkj

This product is well defined since only a finite set of elements in this sum are non-zero.

The first papers to present this bi-infinite representation are [64] and [65]. But the idea of
using bi-infinite matrices appeared previously in the bibliography (see for example the paper
by E. Jabotinsky [49]).
Definition 1.7.2 A bi-infinite lower-triangular matrix (dij)−∞<i,j<∞ with entries in a field
K is a bi-infinite Riordan matrix, if there exist two power series:

(1.4) d(x) ∈ F0(K), h(x) ∈ F1(K)

in which case we will denote it by R∞∞(d(x), h(x)), such that the generating function of the

j-column

d0,jd1,j
...

 is d(x) · (h(x))j, that is:

d(x) · (h(x))j =
∞∑
k=0

dkjx
k

The Riordan bi-infinite matrix R∞∞(d(x), h(x)) does not contain more algebraic infor-
mation than the infinite one R(d(x), h(x)). But due to the combinatorial aspects, bi-infinite
matrices deserve to be studied.

Again, the set of all bi-infinite Riordan matrices with respect to the product is a group,
called the bi-infinite Riordan group. Also improper invertible bi-infinite Riordan
matrices can be defined. This time, the (1FT) is stated as:

Proposition 1.7.3 (1FT for bi-infinite matrices) Let R∞∞(d(x), h(x)) be a bi-
infinite Riordan matrix, let:

f(x) =
f−k
xk

+ . . .+
f−1
x

+ f0 + f1x+ . . . ∈ K((x))

Then if: 

...
0

w−k
w−k+1

...

 = R∞∞(d(x), h(x))



...
0

f−k
f−k+1

...


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we have that the generating function of the sequence (w−k, w−k+1, . . .) satisfies:

w−k
xk

+ . . .+
w−1
x

+ w0 + w1x+ w2x
2 + . . . =

d(x)

(h(x))k
· f(h(x))

According to this, we again have an interpretation of the group operation and of the inverse.
It is easy to see that, again, an element in ILT∞∞ is a Riordan matrix if and only if there
exists an A-sequence, and the entries satisfy (6).

In view of this, we have that:

Proposition 1.7.4 The map R→ R∞∞ given by:

R(d(x), h(x)) 7−→ R∞∞(d(x), h(x))

is a group isomorphism.

We will skip the proof. The ismorphism between R and R∞∞ also allow us to push forward
the ultrametrics discussed in section 1.5 to R∞∞. We will omit details.

Since the elements in R∞∞ are objects with combinatorial meaning, it is reasonable to
study some simmetries in the entries on the matrices. The bases for this study may be found
in [65]. In this work, for a given bi-infinite matrix D, the [m]-complementary of D is presented.
But later in section 4, the attention is restricted to the cases m = 0,−1.

Definition 1.7.5 Let:

D∞∞ = (dij)−∞<i,j<∞ =



. . .

. . . d00

. . . d10 d11

. . . d20 d21 d22
...

...
... . . .

 ∈ R∞∞

• The dual of D∞∞ (not named like this in [65]) is the matrix denoted by D♢∞∞ =
(cij)−∞<i,j<∞ and given by ckn = d−m,−k

. . .

. . . d00

. . . d0,−1 d−1,−1

. . . d0,−2 d−1,−2 d−2,−2
...

...
... . . .


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• The complementary of D∞∞ (not named like this in [65]) is the matrix denoted by
D⊥∞∞ = (cij)−∞<i,j<∞ and given by ckn = d−1−m,−1−k

. . .

. . . d−1,−1

. . . d−1,−2 d−2,−2

. . . d−1,−3 d−2,−3 d−3,−3
...

...
... . . .


We will now recall some results needed for the rest of this chapter. As we will recall in a

moment, we have that D♢∞∞, D⊥∞∞ belong to R∞∞. Due to this reflection in the bi-infinite
Riordan matrices, for any infinite Riordan matrix we associate two infinite Riordan matrices:

Proposition 1.7.6 (section 4 in [65]) Let:

D = R(d(x), h(x)) D∞∞ = R∞∞(d(x), h(x))

and:
D♢∞∞ = (cij)−∞<i,j<∞, D⊥∞∞ = (dij)−∞<i,j<∞

We define:

• The dual of D is the matrix D♢ = (cij)0≤i,j<∞. We have that:

D♢ = R

(
d(h−1(x)) · (h−1(x))′ · x

h−1(x)
, h−1(x)

)
= R

(
d(h−1(x))

h′(h−1(x))
· x

h−1(x)
, h−1(x)

)

• The complementary of D is the matrix D⊥ = (dij)0≤i,j<∞. We have that:

D⊥ = R
(
d(h−1(x)) · (h−1(x))′, h−1(x)

)
= R

(
d(h−1(x))

h′(h−1(x))
, h−1(x)

)

Remark 1.7.7 (Section 4 in [65]) There is an obvious relation between the dual and the
complementary matrices: D⊥ is the matrix that we obtain if we delete the first row and column
from D♢.

We also have the following:

Proposition 1.7.8 (Involutory condition, corollary 3.5 in [65]) For any infinite or
bi-infinite Riordan matrix D:

(D♢)♢ = D (D⊥)⊥ = D
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Finally, note that analogously to what we had for infinite Riordan matrices:

Proposition 1.7.9 ([65]) An element in D∞∞ = (dij)−∞<i,j<∞ILT∞∞ is a bi-infinite
Riordan matrix if and only if one of the following two equivalent conditions hold:

(1) There is a sequence (a0, a1, a2, . . .) called the A-sequence such that, for every n, k:

dnk = a00dn−1,k−1 + . . .+ an−kdn−1,n−1

Moreover, If D∞∞ = R∞∞(d(x), h(x)), then the generating function of the A-sequence
is A(x) where:

h(x) =

(
x

A(x)

)−1
(2) There is a sequence (g0, g1, g2, . . .) called the g-sequence such that:

∀n, k, dnk = g0dn+1,k+1 + g1dn,k+1 + . . .+ gn−kdk+1,k+1

If D∞∞ = R(d(x), h(x)), then the generating function of the g-sequence, g(x), satisfies:

h(x) =
x

g(x)

In this case, the g-sequence is just the A-sequence of the complementary and the dual
of D∞∞.

1.8 Reflections and complementary and dual Riordan matrices

In Definition 1.4.1 we constructed the maps Pn(Dn+1) that delete the last row and the last
column of Dn+1. Anologously, we will consider:

Definition 1.8.1 We define:
Qn : Rn+1 →Rn

by:
Qn((di,j)0≤i,j≤n+1) = (d̃i,j)i,j=0,··· ,n with d̃i,j = di+1,j+1

that is: 
d00
d10 d11
...

... . . .
dn+1,0 dn+1,1 . . . dn+1,n+1

 7−→
 d11

... . . .
dn+1,1 . . . dn+1,n+1


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The fact that Qn(Dn+1) ∈ Rn, when Dn+1 ∈ Rn+1, is immediate: the columns of Dn+1 and
of Qn(Dn+1) form two geometric progressions of the same ratio. The difference between both
matrices is the first term of this progression. We can see that an equivalent way to describe
those maps is the following:

(1.5) Qn(Rn+1(d(x), h(x))) = Rn

(
d(x) · h(x)

x
, h(x)

)
It is easy to see that Qn is a group homomorphism. Therefore, we get the following result:

Proposition 1.8.2 (Dn)n∈N ∈ lim←−{(Rn)n∈N, (Pn)n∈N} if and only if DR
n = Qn(D

R
n+1) for

all n ∈ N.

Proof: Recall that (Dn)n∈N ∈ lim←−{(Rn)n∈N, (Pn)n∈N} if and only if for all n ∈ N, Pn(Dn+1) =
Dn, that is, Dn is obtained by deleting the last column and the last row in Dn+1. This is
equivalent to delete the first row and the first column in DR

n+1.
2

Thanks to this result we will be able to relate reflections in finite matrices to the dual and
complementary Riordan matrices:

Theorem 1.8.3 Let D = R(d(x), h(x)) be any Riordan matrix. Then:

(i) The sequence:

(1.6)

(Rn

(
d(x) ·

(
x

h(x)

)n+1

, h(x)

))R
n∈N

is a Riordan matrix. In fact, the above sequence, as an element in
lim
←
{(Rn)n∈N, (Pn)n∈N}, is the complementary Riordan matrix of D, that is D⊥.

(ii) The sequence: ((
Rn

(
d(x) ·

(
x

h(x)

)n
, h(x)

))R)
n∈N

is a Riordan matrix. In fact, the above sequence, as an element in in
lim
←
{(Rn)n∈N, (Pn)n∈N}, is the dual Riordan matrix of D, that is D♢.

Proof: To prove (i), it suffices to show that it coincides with the complementary Riordan
matrix, since the complementary Riordan matrix is a Riordan matrix (anyway, checking that
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the sequence in (1.6) belongs to the inverse limit lim
←

(Rn, Pn) is easy by using the previous
result). See that the entry (n− j, n− i) in:

Rn

(
d(x) ·

(
x

h(x)

)n+1

, h(x)

)
is:

[xn−j ]

(
d(x)

(
x

h(x)

)n+1

· (h(x))n−i
)

= [x−1−j ]

(
d(x)

1

(h(x))i+1

)
which is, by definition of reflexion the entry (i, j) in:(

Rn

(
d(x) ·

(
x

h(x)

)n+1

, h(x)

))R
In order to prove that this matrix is actually the complementary, just see that this entry
(i, j) is the entry (−1 − j,−1 − i) of R∞∞(d(x), h(x)). The proof of (ii) is totally analogous.
2

Remark 1.8.4 We have not introduced them here, but in fact any [m]-complementary in the
sense of [65] can be described in a similar way.

1.9 R∞∞ as an inverse limit I: from infinite to bi-infinite Rior-
dan matrices

As we showed previously, the Riordan group R is, in some sense, the asymptotic behaviour of
the inverse sequence {(Rn)n∈N, (Pn)n∈N}. Similarly, we can study the asymptotic behaviour
of the sequence of homomorphisms (Qn)n∈N. In this sense, by using the definition of Qn, we
easily have:

Proposition 1.9.1 There is an unique isomorphism Φ : R → R such that the following
diagram commutes for all n ≥ 0:

R Φ //

Πn+1

��

R

Πn

��
Rn+1

Qn // Rn

The action of this isomorphism on any infinite Riordan matrix can also be understood as
deleting the first row and column, or equivalently, it can be defined as:

Φ(R(d(x), h(x)) = R

(
d(x) · h(x)

x
, h(x)

)



1.9. R∞∞ AS AN INVERSE LIMIT I: FROM R(K) TO R∞∞(K) 19

This isomorphism was first used in [65]. Now we are going to use this result to get the
bi-infinite representation of the Riordan group found in [64] by a different approach and using
again the concept of inverse limit of an inverse sequence.

Proposition 1.9.2 The Riordan group R is isomorphic to the lim←−{Gn,Ψn}n∈N, where
Gn = R and Ψn = Φ for every n ∈ N.

Proof: Let G = lim←−(Gn,Ψn)n∈N. Consider the map τ : G −→ G0 (which obviously preserves
the operation), let us prove that this map is an isomorphism.

• Note first that α ∈ lim←−G if and only if there is a R(d(x), h(x)) ∈ R such that

α =

(
R(d(x), h(x)), R

(
d(x) ·

(
h(x)

x

)
, h(x)

)
, . . . , R

(
d(x)

(
h(x)

x

)n
, h(x)

)
. . .

)
So it is now obvious that τ is onto.

• In order to prove the injectivity, take α ∈ ker τ , that is τ(α) = R(1, x). Consequently:

α = (R(1, x), R(1, x), . . . , R(1, x), . . .)

which is the neutral element in G.

2

The above construction allows us to get the following representation of the elements in the
Riordan group. Let α ∈ lim←−G and R(d(x), h(x)) ∈ R = G0 be its 0-coordinate. We have that:

. . .
Φ // R Φ // R Φ // . . . Φ // R Φ // R

α =
(
· · · , R

(
d ·

(
h
x

)n+1
, h

)
, R

(
d ·

(
h
x

)n
, h

)
, · · · R

(
d · h

x
, h

)
, R(d, h)

)
Then:

• The 0-approximation of α is
(
R(d(x), h(x))

)
.

• The 1-approximation is
(
R(d(x), h(x), R

(
d(x) · h(x)x , h(x)

))
with:

Φ

(
R

(
d(x) · h(x)

x
, h(x)

))
= (R(d(x), h(x)

that is R
(
d(x) · h(x)x , h(x)

)
is obtained from the 0-approximation by adding adequately

a column (to the left) and a row (on the top).
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In a similar way, we can associate a unique matrix, the matrix R
(
d(x) ·

(
h(x)
x

)n
, h(x)

)
,

with the n-approximation which is:(
R(d(x), h(x)), R

(
d(x) ·

(
h(x)

x

)n−1
, h(x)

)
, . . . , R

(
d(x) ·

(
h(x)

x

)n
, h(x)

))

Then now, it is very natural to identify α with the bi-infinite matrix R∞∞(d(x), h(x)) =
(dn,k)n,k∈Z where

dn,k = [xn]d(x) · (h(x))k n, k ∈ Z, n ≥ k.

Moreover, the product of two elements of lim←−G turns into the usual row-by-column product
of the corresponding bi-infinite representations.

Remark 1.9.3 It is clear that Φ induces an isomorphism, denoted again by Φ, in R∞∞ given
by:

Φ(R∞∞(d(x), h(x))) = R∞∞

(
d(x) · h(x)

x
, h(x)

)
or equivalently:

Φ((dn,k)n,k∈Z) = (dn+1,k+1)n,k∈Z

Note that the action of Φ changes the location of the reference axis in the bi-ininite matrix,
that is, the entry considered as (0,0).

1.10 R∞∞ as an inverse limit II: from finite to bi-infinite Rior-
dan matrices

At this time we are going to get the bi-infinite representation of the Riordan group in a new
way, by using only finite Riordan matrices.

Definition 1.10.1 For n ≥ 0, we define the projection γevenn : R∞∞ →R2n by:

γevenn (R∞∞(d(x), h(x))) = R2n

(
d(x) ·

(
h(x)

x

)n
, h(x)

)
Thus, for D∞∞ ∈ R∞∞ we can define the sequence:

(γeven0 (D∞∞), γeven1 (D∞∞), γeven2 (D∞∞), . . .)

which is a sequence of matrices of the type:

(1.7)

[d00],

d−1,−1d0,−1 d00
d1,−1 d1,0 d11

 ,


d−2,−2
d−1,−2 d−1,−1
d0,−2 d0,−1 d00
d1,−2 d1,−1 d1,0 d11
d2,−2 d2,−1 d2,0 d2,1 d22

 , . . .


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Remark 1.10.2 Note that if n ≥ 0, since the diagram:

Rn+1
Pn //

Qn

��

Rn
Qn−1

��
Rn

Pn−1 // Rn−1

is commutative, we have that:

γevenn = Q2n ◦ P2n+1 ◦ γevenn+1 = P2n ◦Q2n+1 ◦ γevenn+1

So we will define µevenn−1 : R2n →R2n−2 as:

µevenn−1 = Q2n−1 ◦ P2n−2 = P2n−1 ◦Q2n−2

to make the following diagram commutative:

R∞∞

γevenn{{www
ww
ww
ww γevenn−1

$$I
II

II
II

II

R2n
µevenn // R2n−2

Analogously:
Definition 1.10.3 For n ≥ 0, we define the projection γoddn : R∞∞ → R2n+1 by:

γoddn (R∞∞(d(x), h(x))) = R2n+1

(
d(x) ·

(
h(x)

x

)n
, h(x)

)
Thus, for D∞∞ ∈ R∞∞ we can define the sequence:

(γodd0 (D∞∞), γodd1 (D∞∞), γodd2 (D∞∞), . . .)

which is a sequence of matrices of the type:
(1.8)
[
d00
d10 d11

]
,


d−1,−1
d0,−1 d00
d1,−1 d1,0 d11
d2,−1 d20 d21 d22

 ,



d−2,−2
d−1,−2 d−1,−1
d0,−2 d0,−1 d00
d1,−2 d1,−1 d1,0 d11
d2,−2 d2,−1 d2,0 d2,1 d22
d3,−2 d3,−1 d30 d31 d32 d33

 , . . .


Thus, as we had before, for n ≥ 0:

γoddn = Q2n+1 ◦ P2n+2 ◦ γoddn+1 = P2n+1 ◦Q2n+2 ◦ γoddn+1

and we can define µoddn−1 : R2n+1 →R2n−1 in order to make the following diagram commutative:

R∞∞

γoddnzzuuu
uu
uu
uu γoddn−1

$$I
II

II
II

II

R2n+1

µoddn−1 // R2n−1



22 CHAPTER 1. SOME INVERSE LIMIT APPROACHES TO R(K)

So we obtain:

Proposition 1.10.4

(i) The bi-infinite representation of the Riordan group R is isomorphic to the inverse
limit lim←−(R2n, µ

even
n ) where recall that µevenn = Q2n ◦ P2n+1 = P2n ◦Q2n+1.

(ii) The bi-infinite representation of the Riordan group R is isomorphic to the inverse
limit lim←−(R2n+1, µ

odd
n )n≥0 where recall that µoddn = Q2n+1 ◦ P2n+2 = P2n+1 ◦Q2n+2.

Proof: We will prove (i), and (ii) is totally analogous. Let X be the inverse limit, which is
the set of sequences:

(D0, D2, D4, . . .) where ∀n ≥ 0, µevenn (D2n+1) = D2n

We will look for an isomorphism π̃ by making the following diagram commutative:

R∞∞
π̃
��

γevenn

��		
		
		
		
		
		
		
		

γevenn−1

��7
77

77
77

77
77

77
77

7

X

τn{{vv
vv
vv
vv
v

τn−1

$$JJ
JJJ

JJJ
JJ

R2n

µevenn−1 // R2n−2

where τn : R∞∞ → R2n is the natural projection into the corresponding coordinate. Take π̃
given by:

π̃(D) = (γeven0 (D), γeven1 (D), . . .)

which is obviously an injective homomorphism. We only need to see that this map is onto.
Fixed a sequence α = (D0, D2, D4 . . .) ∈ X, we can find a Riordan matrix D = R(d(x), h(x))
such that π̃(D) = α doing the following:

• d(x) = d0 + d1x+ d2x
2 + . . . is given by the following formula:

dk = (D2k)k0 where D2k = [(D2k)ij ]−k≤i,j≤k

The condition that for all n ≥ 0, αn(Dn+1) = Dn ensures that (D2k)k0 = (D2m)k0 for
any m ≥ k.

• As we already know, an element in R2n has a partial A-sequence of terms numbered
0, . . . , 2n− 1. We will set that the A-sequence of D is a0, a1, a2, . . . where the terms
a2k, a2k+1 for any k ≥ 0 are the terms 2k, 2k + 1 in D2k+2.
The condition αn(Dn+1) = Dn for all n ≥ 0 ensures that the terms 2k, 2k + 1 of the
A-sequence of D2k+2 are also the terms 2k, 2k+2 of the A-sequence of any other D2m+2

for m ≥ k.
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The unique matrix D determined by this d(x) and this A-sequence satisfies γevenn (D) = D2n

for all n ≥ 0.
2

1.11 Symmetries in bi-infinite Riordan matrices
In section 1.8 the concepts of complementary and dual Riordan matrices were introduced. It
is natural to look for some symmetries related to these “reflections”. We would like to clarify
the solutions of the following two problems:

(Problem 1) D = D⊥ D ∈ R

(Problem 2) D = D♢ D ∈ R

that is, to characterize Riordan matrices which coincide with their complementary matrices
(Problem 1) and their dual arrays (Problem 2). These problems will be solved in Theorem
1.12.3 and Theorem 1.12.4, respectively.

What we are going to do in this section is to reinterpret these problems in terms of two
different reflections of bi-infinite Riordan matrices involving even an odd finite matrices and
reflections.

Theorem 1.11.1 Let D = (dij)−∞<i,j<∞ = R∞∞(d(x), h(x)) ∈ R∞∞.

(i) If we identify D with:

(D2n)n≥0 ∈ lim←− (R2n, µ
even
n )n≥0 where D2n = γevenn (D)

then:
(DR

2n)n≥0 ∈ lim←− (R2n, µ
even
n )n≥0

and it can be identified with a bi-infinite Riordan matrix which is precisely D♢.

. . .

. . . a22

. . . a21 a11

. . . a20 a10 a00

. . . a2,−1 a1,−1 a0,−1 a−1,−1

. . . a2,−2 a1,−2 a0,−2 a−1,−2 a−2,−2
...

...
...

...
... . . .


(ii) If we identify D with:

(D2n+1)n≥0 ∈ lim←−
(
R2n+1, µ

odd
n

)
n≥0

where D2n+1 = γoddn (D)
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then:
(DR

2n+1)n≥0 ∈ lim←−
(
R2n+1, µ

odd
n

)
n≥0

and it can be identified with a bi-infinite Riordan matrix which is precisely
R⊥∞∞

(
d(x) ·

(
h(x)
x

)2
, h(x)

)
.



. . .

. . . a22

. . . a21 a11

. . . a20 a10 a00

. . . a2,−1 a1,−1 a0,−1 a−1,−1
...

...
...

... . . .



Proof: Let (cij)−∞<i,j<∞ the matrix identified with (DR
2n)n≥0. According to proposition 1.6.1,

ckm = d−m,−k, so (i) follows directly from the definition of the complementary matrix. The
proof of (ii) is totally analogous.

2

Recall that, for any D ∈ R∞∞:
Φ(D♢) = D⊥

1.12 Solution of (Problem 1) and (Problem 2)
We first need the following result to solve (Problem 1) and (Problem 2):

Proposition 1.12.1 Let Dm = (di,j) ∈ Rm be such that Dm = DR
m with m ≥ 1.

(a) If m is odd then Dm is a Toeplitz matrix.

(b) If m is even and d0,0 = d1,1, then Dm is a Toeplitz matrix.

Proof: In order to prove (a) we will proceed by induction. Let m = 2n+1. For any matrix in
Rm, being Toeplitz means that the g-sequence (g0, . . . , gm−1) is (1,0,0,…,0). We can see that:

• If n = 0 then: (
d00
d10 d11

)
=

(
d11
d10 d00

)
, ⇒ d00 = d11, ⇒ g0 = 1.
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• If n = 1, take:

D3 =


d0,0
d1,0 d1,1
d2,0 d2,1 d2,2
d3,0 d3,1 d3,2 d3,3

 =


d3,3
d3,2 d2,2
d3,1 d2,1 d1,1
d3,0 d2,0 d1,0 d0,0

 = DR
3 .

– In particular we must have:

µodd0 (D3) =

(
d11
d21 d22

)
=

(
d22
d21 d11

)
= (µodd0 (D3))

R

so d11 = d22 and consequently g0 = 1.
– Since:

d10 = d32, d10 = d21 + g1d22, d21 = d32 + g1d22

we get:
d10 = d21 = d32, g1 = 0

Proceeding in the same way from the equality d20 = d31, we get g2 = 0.

• Suppose now that this is true for n and consider D2n+3 ∈ R2n+3 with D2n+3 = DR
2n+3.

– We know that µoddn (D2n+3) ∈ R2n+1 satisfies µoddn (D2n+3) = µoddn (D2n+3)
R. Hence

g0 = 1 and gi = 0 for all i = 1, · · · , 2n.
– Since D2n+3 = DR

2n+3, then d2n+1,0 = d2n+3,2 and since D2n+3 ∈ R2n+3, conse-
quently:

d2n+1,0 = d2n+2,1 + g2n+1d00, d2n+2,1 = d2n+3,2 + g2n+1d00

This implies that g2n+1 = 0. Moreover, since:

d2n+2,0 = d2n+3,1 d2n+2,0 = d2n+3,1 + g2n+2d0,0

we obtain g2n+2 = 0 and D is a Toeplitz matrix.

Finally, putting all above together we have g0 = 1, gn = 0 for all n ≥ 1 and then Dm is
a Toeplitz matrix. In order to prove (b), we note that the condition d00 = d11, implies that
g0 = 1 and we proceed in a similar way as in (a).

2

An immediate corollary is:

Corollary 1.12.2 Let R(d(x), h(x)) be a Riordan matrix. This matrix is Toeplitz if and
only if (Rn(d(x), h(x)))

R = Rn(d(x), h(x)) for all n ∈ N.
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Before going on, recall that in the notation used in this work:

R(d(x), h(x)) = R⊥(d(x), h(x))⇔ R∞∞(d(x), h(x)) = R⊥∞∞(d(x), h(x))

R(d(x), h(x)) = R♢(d(x), h(x))⇔ R∞∞(d(x), h(x)) = R♢∞∞(d(x), h(x))

Now, the solution of the (Problem 1) is:

Theorem 1.12.3 Let D ∈ R. D⊥ = D if and only if D is a Toeplitz matrix.

Proof: If D ∈ T , obviously D = D⊥. On the other hand, let D ∈ R∞∞. According to
theorem 1.11.1:

• D can be identified with (D2n+1)n≥0 ∈ lim
←

(R2n+1, µ
odd
n )n≥0 where D2n+1 = γoddn (D).

• D⊥ can be identified with (DR
2n+1)n≥0 ∈ lim

←
(R2n+1, µ

odd
n )n≥0 where D2n+1 = γoddn (D).

Now note that D = D⊥ if and only if D2n+1 = DR
2n+1. According to proposition 1.12.1 this

implies that for all n ≥ 0, D2n+1 is Toeplitz, which implies that D is Toeplitz.
2

We will now discuss (Problem 2) whose answer is very different from that of (Problem 1).
The result is the following:

Theorem 1.12.4 For K = R, C, the solutions of (Problem 2) are the Riordan matrices
R(d(x), h(x)) such that:

• h(x) = h−1(x), that is either h(x) is an involution in F1 (element of order 2) or
h(x) = x (element of order 1).

• d(x) = λ ·
(√

xh
′(x)
h(x)

)
· eϕ(x,h(x)) with λ ∈ K∗ and ϕ(x, t) =

∑∞
0=i,j aijx

itj is a sym-
metric bivariate power series in K[[x, t]] that is:

ϕ(x, t) = ϕ(t, x) or equivalently ∀0 ≤ ij <∞, aij = aji

with ϕ(0, 0) = 0.

Proof: According to the formula given after the definition in section 1.8, R♢(d(x), g(x)) =
R(d(x), h(x)) if and only if: {

d(x) = d(h−1(x))
h′(h−1(x))

· x
h−1(x)

h(x) = h−1(x)
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So we only need to prove that the second point is equivalent to the first equation. By using the
first equation, and composing the first one with h(x) (or equivalently with h−1(x)) we obtain
easily that the first equation is equivalent to:

d(h(x))

d(x)
=

h(x)

x · h′(x)

Now we can take logarithms (the formal power series version of the logarithm, which makes
sense since both terms in the equation belong to F0) in both sides of the equation:

log

(
d(h(x))

d(x)

)
= F (x) where F (x) = log

(
h(x)

x · h′(x)

)
that we will write as:

log

 d(h(x))
d(0)

d(x)
d(0)

 = F (x) where F (x) = log

(
h(x)

x · h′(x)

)

to ensure that the following expression makes sense:

log

(
d(h(x))

d(0)

)
− log

(
d(x)

d(0)

)
= F (x)

Now denote y(x) = log
(
d(x)
d(0)

)
and then, the previous equation is now:

y(h(x))− y(x) = F (x)

Now, if order to solve this equation:

• Since F (x) = −F (h(x)), then 1
2F (x) is a particular solution.

• In order to get the general solution, note that the corresponding homogeneous equation
has as general solution yH(x) = ϕ(x, ω(x)) where ϕ(x, t) is a symmetric bivarite formal
power series in K[[x, t]]. It is clear that such a ϕ(x, ω(x)) is a solution. On the other
hand, if yH(x) is a solution then:

ϕ(x, t) =
yH(x) + yH(t)

2

satisfies all the required conditions.

• So the general solution is:

y(x) =
1

2
F (x) + ϕ(x, ω(x)) with ϕ symmetric

Since y(x) = log
(
d(x)
d(0)

)
, the result follows from taking exponentials in this expression.

2
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A consequence of the above result is a way to construct self-dual bi-infinite Riordan matri-
ces:
Example 1.12.5 Take h(x) = x

2x−1 and ϕ(x, z) = 0. Then:

D = R∞∞

(√
1

1− 2x
,

x

2x− 1

)

is self-dual. Below we write γeven3 (D) = R6

((
x

h(x)

)3
·
√

1
1−2x ,

x
2x−1

)
which is obviously

symmetric under the correspondent reflection in R6:

1
−5 −1
15/2 3 1
−5/2 −3/2 −1 −1
−5/8 −1/2 −1/2 −1 1
−3/8 −3/8 −1/2 −3/2 3 −1
−5/16 −3/8 −5/8 −5/2 15/2 −5 1


.

Example 1.12.6 In general, if we take h(x) = x
αx−1 (see [67], where these kind of matrices are

studied in the notation T (f | g) introduced in subsection 0.3.4 which is much more comfortable
in this case) and ϕ(x, z) = 0 and we proceed as in the previous example we get that for any
λ ∈ K∗:

R
(

−λ√
1− αx

,
x

αx− 1

)
is a family of self-dual matrices. The case α = −1 and α = 4 was first detected as self-dual in
[65] page 82.

1.13 Relation to Functional Equations in Power Series
Most of the results in this work, obtained by combinatoric ways of reasoning from Riordan
matrices, have an interpretation in terms of existence and uniqueness of solutions of functional
equations or system of two functional equations. We have decided not to devote an entire
chapter to solve functional equations, but we will point out some of those reasonings as often
as possible. For instance, theorem 1.12.3 is a good example of this double interest, since its
consequence in terms of functional equations is the following:

Corollary 1.13.1 The solutions system of functional equations:

(1.9)
{
d(x) = d(h(x)) · h′(x)
h(h(x)) = x

such that d(x) ∈ F0, h(x) ∈ F1 are:

d(x) is arbitrary, h(x) = x
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Proof: Obviously this is a solution for (1.9). Now see that:

• (1.9) is equivalent to R(d(x), h(x)) being self-complementary. As we have seen before,
R(d(x), h(x)) being self-complementary is equivalent to:{

d(x) = d(h−1(x))
h′(h−1(x))

h(x) = h−1(x)

The second equation of this system is obviously equivalent to the second equation in
(1.9). Now composing in both sides of the first equation by h−1(x) (or equivalently by
h(x)) we obtain the equivalence.

• A matrix R(d(x), h(x)) is self-complementary if and only if belongs to T (theorem 1.12.3),
that is, d(x) is an arbitrary element in F0 and h(x) = x.

2

The inverse limit is the adequate framework to do proofs by induction when working with
the Riordan group. Proposition 1.12.1 and the way of obtaining its consequence for the infinite
case (theorem 1.12.3) is an example of this, but these kind of proofs will appear all the time
throughout the rest of this work, and will turn out to be very fruitful. Another way to organize
this induction will appear in the next section.

1.14 Application: Schröder and weighted Schröder equations
Before ending this chapter we will show an application to this inverse limit structure proving
by induction some known results about the so called Schröder equation (linearisation problem)
in F1 and for the weighted Schröder equation. Those equations are very related to structural
algebraic properties of A and R.

Firstly we will assert one of the ideas that we will be used frequently in this work:

Remark 1.14.1 In [1, 58] a formal definition of functional equation in one variable appears.
In this moment, simplifying, we can think that a functional equation is an equality between two
power series that depend on one unknown power series y(x) ∈ K[[x]]:

Φ1(y(x)) = Φ2(y(x))

Obviously this equality between power series holds if and only if ∀n ≥ 0:

(1.10) Taylorn(Φ1(y(x))) = Taylorn(Φ2(y(x)))

So for functional equations satisfying Taylorn(ϕi(y(x))) = Taylorn(ϕi(Taylorn(y(x)))) we can
study the solutions:

y(x) ∼= (Taylor0(y(x)), Taylor1(y(x)), Taylor2(y(x)), . . .) ∈ lim
←

(K[[x]], Taylorn)

by induction determining for each n Taylorn(y(x)) from (1.10).
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Now we will use this idea for the following two examples:
Definition 1.14.2 Let h(x) ∈ F1(K), λ ∈ K. The following equation in the indeterminate
g(x) ∈ F1[[x]] is called the Schröder equation:

(1.11) g(h(x)) = λg(x)

If λ is the multiplier of h(x) then this is known as the linearisation problem and h(x) is said
to be the linearisation of h(x).

Definition 1.14.3 Let d(x) ∈ F0(K), h(x) ∈ F1(K), λ ∈ K. The following equation in the
indeterminate f(x) ∈ K[[x]] is called the weighted Schröder equation:

(1.12) d(x) · f(h(x)) = λf(x)

If λ = d(0) we will call this equation the main case of equation 1.12.

The study of the Schröder equation is a classical problem in analysis tipically in the case
K = C and in F1,hol(C). It was first studied in the 1871 paper [100] and has also been explored
in our formal power series context (for K = R,C): see for example the survey by I. K. Babenko
[2], or any of the works [59,99,112] for more information.

The weighted Schröder equation is a natural generalization of the previous equation, trig-
gered by the study of weighted composition operators (see for example [47], where this name
is used) which, as mentioned before, are closely related to Riordan matrices. Those equa-
tions have also been studied under the name of linear homogeneous functional equations
(chapter II in [58]). When this last equation is studied from other points of view, the condition
h(x) ∈ F1 is sometimes removed, but it is convenient to mantain it in our setting.

Note that, both equations can be related to a problem of eigenvectors and to problems of
conjugation in A,R:
Remark 1.14.4 Equation (1.11) can be written in terms of Riordan matrices as:

(1.13) R(1, h(x))

 0
g1
...

 = λ

 0
g1
...


Equivalently, equation (1.12) can be written as:

(1.14) R(d(x), h(x))

f0f1...
 = λ

f0f1...


The list of eigenvalues of a Riordan matrix is easy to find, since it is lower triangular, so now
we know for which possible values of λ we can expect to have a solution.

Remark 1.14.5 Equation (1.12) can be writen in terms of Riordan matrices as:

(1.15) R(1, h(x)) = R(1, g(x))R(1, λx)R(1, g−1(x))

Equivalently, the system made out from the two functional equations (1.11), (1.12) can be
writen as:

(1.16) R(d(x), h(x)) = R(f(x), g(x))R(d(0), h′(0)x)R(f(x), g−1(x))
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Now we will recover two theorems which are already well known (see section 6 in [2] and
chapter II in [58]) but that we can prove in a new and simple way by using inverse limit
structure in R with the advantage that our proof easily works for any field of characteristic 0:

Theorem 1.14.6 (Linearisation problem, see section 6 in [2]) In relation to the
linearisation problem (1.11) (λ is the multiplier of h(x)) in power series over a field K of
charactersitic 0:

(1) If the multiplier of h(x) is not a root of unity, equation (1.11) has a unique solution
in F1(K) up to multiplication by a constant.

(2) If the multiplier of h(x) is a root of unity of order q, and h(x) is an element of finite
order q in F1(K), (1.11) has infinitely many solutions in F1(K). Concretely, for every
choice of g1, g1+q, g1+2q, . . . there is a unique solution g(x) = g1x+ g2x+ . . . ∈ F1(K).

(3) If the multiplier of h(x) is a root of unity of order q and h(x) is not of order q, there
is no solution in in F1(K).

Proof using the inverse limit structure in R: Let’s look at (1.11) in its formulation (1.13). In
view of remark 1.14.1 each solution y(x) of (1.13) can be identified with an element:

(Taylor0(y(x)), Taylor1(y(x)), Taylor2(y(x)), . . .) ∈ lim
←

(Kn[x], Taylorn)

or equivalently, taking only the coefficients of each polynomial with a sequence o row vectors:

(1.17)

[0] , [
0
g1

]
,

 0
g1
g2

 , . . .


such that, for each n:

(1.18) Rn(1, h(x))


0
g1
...
gn

 = λ


0
g1
...
gn


or equivalently:

(1.19) Rn(1, h(x)) = Rn(1, g1x+ . . .+ gnx
n)Rn(1, λx)Rn(1, Taylorn((g1x+ . . .+ gnx

n)−1))
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So we can use induction over n to determine the set of possible solutions to (1.13) in each
case:

(1) If the multiplier of h(x) is not a root of unity we have that:

• Obviously R0(1, h(x))
[
0
]
= λ

[
0
]
.

• For every choice of g1, we have that:

R1(1, h(x))

[
0
g1

]
=

[
1
0 λ

] [
0
g1

]
= λ

[
0
g1

]

• Suppose


0
g1
...
gn

 is a solution of (1.18). Then the extension


0
g1
...
gn
gn+1

 is a solution of:

Rn+1(1, h(x))


0
g1
...
gn
gn+1

 =

 Rn(d(x), h(x))

mn+1,0 . . . mn+1,n mn+1,n+1




0
g1
...
gn
gn+1

 =

= λ


0
g1
...
gn
gn+1


if and only if (remember that mn+1,n+1 = λn+1):

gn+1 =
1

λ− λn+1
= mn+1,0 · 0 +mn+1,1g1 + . . .+mn+1,ngn

Note that since λ is, by hypothesis, not a root of unity, λ− λn+1 ̸= 0.
• Since for every choice of g1 we have a unique solution of the form (1.17), and for

every solution of (1.13) any multiple by a constant is again a solution, we obtain the
desired result.

(2) If the multiplier λ of h(x) is a root of unity of order q and h(x) is of order q we have:

• Obviously R0(1, h(x))
[
0
]
= λ

[
0
]
.

• For every choice of g1, we have that:

R1(1, h(x))

[
0
g1

]
=

[
1
0 λ

] [
0
g1

]
= λ

[
0
g1

]
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• Suppose we have a solution


0
g1
...
gn

 of (1.18).

– If n ̸≡ 0 mod q there is a unique extension satisfying:

Rn+1(1, h(x))


0
g1
...
gn
gn+1

 =

 Rn(d(x), h(x))

mn+1,0 . . . mn+1,n mn+1,n+1




0
g1
...
gn
gn+1

 =

= λ


0
g1
...
gn
gn+1


which is again given by:

gn+1 =
1

λ− λn+1
= mn+1,0 · 0 +mn+1,1g1 + . . .+mn+1,ngn

where since n ̸≡ 0 mod q, λ− λn+1 ̸= 0

– If n ≡ 0 mod q obviously other strategy is needed. We need formulations of type
(1.19) instead of (1.19). Then in the equation:

Rn+1(1, h1x+ . . .+ hn+1x
n+1) =

= R(1, g1x+ . . .+ gn+1x
n+1)R(1, λ)R(1, Taylorn+1(g1x+ . . .+ gn+1x

n+1))

we have that regardless gn+1 the matrix on the right hand side of the equation
is of order q. On the left side of the equation we can see that there is a unique
hn+1 making Rn+1(1, h1x+ . . .+ hn+1x

n+1) an element of order q (we will omit
this proof now, since this will be proved in chapter 3, where the hypothesis of K
being of characteristic 0 is used). The only possible conclusion is that equation
(1.19) holds regardless the choice of gn+1.

(3) Putting all the pieces above together, we obtain the desired result.

(4) The existence of such a linerisation of h(x) is equivalent to say that:

h(x) = g(λg−1(x))

but the expression in the right side of this equation is a power series of finite order in
F1(K) and the left side expression is not by hypothesis.

2
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Theorem 1.14.7 (Main Case of W. Schröder Eq., chapter II in [58]) In relation
to the main case of the weighted Schröder equation (1.12) (λ = d(0)) in power series
over a field K of characteristic 0:

(1) If the multiplier of h(x) is not a root of unity, there is a unique solution up to multi-
plication by a constant in F0(K).

(2) If the multiplier of h(x) is a root of unity of order q and R(d(x), h(x)) is either an
element of order q in R(K) or an element of order q in R(K) multiplied by a constant,
then there are infinitely many solutions in F0(K).

Proof using the inverse limit structure in R: The proof is analogous to the previous one. We
are looking for a sequence of column vectors:

(1.20)

[f0] , [
f0
f1

]
,

f0f1
f2

 , . . .


each of them satisfying the correspondent equations.

(1) In this case we will see by induction that there is a unique solution of (1.14) up to multi-
plication by a constant. Again we have that:

• Obviously R0(d(x), h(x))(f0) = λf(0) for any λ.

• Now suppose that we have a fixed column vector

f0...
fn

 satisfying:

Rn(d(x), h(x))

f0...
fn

 = λ

f0...
fn


we can see that there is a unique fn+1 making the following equation hold:

Rn+1(d(x), h(x))


f0
...
fn
fn+1

 =

=

 Rn(d(x), h(x))

mn+1,0 . . . mn+1,n mn+1,n+1




f0
...
fn
fn+1

 = λ


f0
...
fn
fn+1


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which is:

fn+1 =
mn+1,0f0 + . . .+mn+1,nfn

λ−mn+1,n+1
=

mn+1,0f0 + . . .+mn+1,nfn
d(0)(1− (h′(0)n+1)

(2) We only need to look at the case of R(d(x), h(x)) being an element of finite order q and the
other case follows trivially. As in the proof or theorem 1.14.6, the reasoning of (1) works
as long as n+1 ̸≡ 0 mod q. Otherwise, we can use theorem 1.14.6 to ensure the existence
of g(x) satisfying h(x) = g−1(h′(0)g(x))). Thus, for those cases of n, instead of looking at:

Rn+1(d(x), h(x))


f0
...
fn
fn+1

 = λ


f0
...
fn
fn+1


we can look at the equivalent equation (see remark 1.14.5):

Rn+1(d(x), h(x)) = R(f(x), g(x))R(d(0), h′(0)x)R(f(x), g−1(x))

Again, as in the proof of 1.14.6, we postpone for the future (chapter 3, where the hy-
pothesis of 0 characteristic is needed) to proof that there is a unique [xn]d(x) making
R(Taylorn(d(x)) + [xn]d(x), h(x)) an element of finite order q. So, since regardless the
choice of fn+1 we obtain an element of finite order on the left hand of the equation, we
conclude that this equation holds for any fn+1.

2

Those theorems will have many applications in this work. We have the following remarks
to do:

Remark 1.14.8 We will omit here the details since they are not related to our discussion,
but we have only studied the linearisation problem and the main case of the weighted Schröder
equations because other cases of the Schröder and weighted Schröder equations respectively can
be reduced to those.

Remark 1.14.9 In section 6 in [2] and in chapter II of [58] more precise descriptions of the
solutions of the Schröder and the weighted Schröder equations can be found.

Remark 1.14.10 Later on this work, another case of the main case of the Weighted Schröder
equation will appear for λ = 1 (see section 2.2) but up to our knowledge, nothing is known
for the case λ being a root of unity but R(d(x), h(x)) not an element of finite order, neither a
multiple of an element of finite order.



Chapter 2

Some aspects of the algebraic
structure of the Riordan Group

In this chapter, we will study some aspects of the algebraic structure of R(K) for different
fields K (most of the times of characteristic 0), mainly the derived series, some results about
conjugacy and some consequences. Some aspects of the elements of finite order will be also
studied here, but a more detailed study of involutions (elements of order 2) has been put aside
for next chapter and closes the study of the purely algebraic aspects of the Riordan group
made in this work.

Since the Riordan group contains a copy (modulo isomorphism) of F1(K), a good starting
point can be found in [2], where a very exhaustive study of F1(K) is made. The derived series
of F1(K) for K being a field of characteristic 0 is partially explored: the elements of each n-th
derived subgroup of F1(K) are proved to be contained in the subgroups x + x2nK[[x]] of F1.
As a consequence of our study we will improve the results surveyed in [2] proving the equality
between both subgroups. Also a complete catalogue is made in this work about the conjugacy
classes in F1. Concerning the derived series of F1, more is already known about the derived
series in the case K being a finite field, and also this equality is known (see for example [18]).

Regarding the known results about the algebraic structure of the Riordan group, in the
previous work a great effort has been made. A lot is known about the subgroups of R(K):
see for example the survey [102], and [104]. Also in the survey [102], the question of finding
the derived series of R(K) is posted (question that it is answered in this chapter) together
with other questions about conjugacy and elements of finite order, that were later analyzed for
K = C in [24] (those questions will also be studied here too, proving in a different way some
of the known results and extending them). In [51], some aspects of the algebraic structure
of R(K) has also been studied. Some centralizers and stabilizers are computed, some group
isomorphisms are also given and some properties connecting similar Riordan matrices and
pseudo-involutions in the Riordan group are proved.

In section 2.1 we will compute the derived series of A (and so of F1 completing the study
presented in [2]). After an auxiliary result is proved in 2.2 treating another case of the weighted
Schröder equation, we will be ready to study the derived series of R in section 2.3.

After this, we will jump into the study of conjugacy. Firstly we will study in section 2.4
the problem of conjugacy in A′(K) (or equivalently F1(K)) and R′(K) (at this point we will

37
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have studied the derived series of R(K)) for various reasons: due to the importance of those
groups (recall that in the starting point of the study of Riordan matrices [105] the Riordan
group was R′(K)) and second because we will be able to find unified results for any field K
of characteristic 0. Then in section 2.5 we will state some facts about the general problem of
conjugacy in A(K) (or equivalently in F1(K)). After this in section 2.6, as an example of the
previous study, we will study the conjugacy class of the extended and the non-extended Pascal
Triangles.

Finally, there are two sections where we will remark two applications of the study of con-
jugacy in R(K): computing centralizers and computing powers of matrices and in section 2.9
a description of the abelianized of Rn and R will be made.

2.1 Derived Series of F1

As explained in the introduction, our first point of interest will be the derived series of F1(K)
for K being a field of characteristic 0. Recall that:

Definition 2.1.1 Let (G, ∗) be a group.

• Let g, h ∈ G. We define the commutator of g, h as:

[g, h] := g−1 ∗ h−1 ∗ g ∗ h

• The set of all the commutators of elements in G is denoted by [G,G]. The subgroup of G
generated by the commutators in G (the elements in [G,G]) is called the first derivative
subgroup of G, which is denoted by G′.

• Inductively, for n ≥ 2, we can define the n-th derivative subgroup of G, denoted by
G(n), as the subgroup of G(n−1) generated by the commutators in G(n−1) (the elements in
[G(n−1), G(n−1)]).

It follows from the definition that [G,G] ⊂ G′. If for a group G, equality holds, this group
is said to satisfy the Ore property (see [91]).

The main result of this section is the following:

Theorem 2.1.2 Let K be a field of characteristic 0. Then:

(i) F ′1 = {v(x) ∈ F1 : v
′(0) = 1} and all of its elements are commutators.

(ii) For n ≥ 2:

(2.1) F (n)
1 = {v(x) ∈ F1 : v(x) = x+O(x2n)}

and all of its elements are commutators of elements in F (n−1)
1 .
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Recall that when K is a finite field, F(K) is said to be a Nottingham group (see for example
[18]). An analogue of the previous theorem was known for Nottingham groups, and proved by
using different techniques. But the case K of characteristic 0 and K being an infinite field of
positive characteristic were still up in the air, although partial results were known (see below).
The first case will be solved in this section, but the case K being an infinite field of positive
characteristic is still unknown up to our knowledge (open question 9).

In relation to Riordan matrices, thanks to the natural anti-isomorphism h(x) 7−→ R(1, h(x))
we have that:

h(x) ∈ F (n)
1 ⇐⇒ R(1, h(x)) ∈ A(n)

since:
h(x) = v−1(g−1(v(g(x))))⇐⇒

⇐⇒ R(1, h(x)) = R(1, g(x)) ·R(1, v(x)) ·R(1, g(x))−1 ·R(1, v(x))−1

so this theorem has an immediate and simple translation to the derived series of A.

Example 2.1.3 For instance, this theorem asserts that the Riordan matrix:

R(1, x+ x4) =



1
0 1
0 0 1
0 0 0 1
0 1 0 0 1
0 0 2 0 0 1
...

...
...

...
...

... . . .


belongs to A′′.

We will prove Theorem 2.1.2 by induction over n (by using the inverse limit setting). The
following lemma is the base case:

Lemma 2.1.4 Let K be a field of characteristic 0 (the proof still holds for other field K as
long as ∃r ∈ K, not a root of unity). Then:

• h(x) = h1x+ h2x
2 + . . . is in F ′1 if and only if h1 = 1. Equivalently, R(1, h(x)) is in A′

if and only if it has ones in the diagonal.

• F1 or equivalently A satisfy the Ore property ([F1,F1] = F ′1 and [A,A] = A′ respectively).

Proof: We will prove the Riordan matrix statement. The subset of A with ones in its diagonal,
is clearly a subgroup of A, so it suffices to prove that any element in this subgroup is, in fact
a commutator of element sin A. Take any R(1, h(x)) such that h1 = 1, and take any λ ∈ K
not a root of unity. According to remark 1.14.5 and to theorem 1.14.6:

R(1, h(λx)) = R(1, λx)R(1, h(x)) = R−1(1, v(x))R(1, λx)R(1, v(x))

and then:
R(1, λx) = R−1(1, h(x))R−1(1, v(x))R(1, λx)R(1, v(x))
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2

Now, in order to prove the induction hypothesis in the induction of the proof of theorem
2.1.2, we will take two steps: showing that any element in A(n) must be of the type announced,
and showing that any element of this type is in A(n).

The first of those steps is taken in the following lemma. As announced before, this result
was already proved by Babenko and Bogatyi (see for example [2]). Anyway we have decided
to prove it here by using our own techniques.

Lemma 2.1.5 (proved in section 2.3 of [2]) Let K be any field. Let:

v(x), w(x) ∈
(
x+ xkK[[x]]

)
Then R2k−1(1, v(x)) and R2k−1(1, w(x)) cummute. In particular, we are interested in:

I2k−1 = [R2k−1(1, v(x)), R2k−1(1, w(x))]

where I2k−1 is the (2k)× (2k) identity matrix.

Proof: Let the partial A-sequences of R2k−1(1, v(x)), R2k−1(1, w(x)) be respectively:

(1, 0, . . . , 0, αk−1, . . .), (1, 0, . . . , 0, βk−1, . . .)

Consider that the k diagonal of a Riordan matrix (aij)i,j∈N is the sequence:

ak0, ak+1,1, ak+2,2, . . .

Then, for the elements R2k−1(1, v(x)), R2k−1(1, w(x)), according to the vertical construction
for Riordan matrices using the A-sequence:

• The 0 diagonals are: 1, 1 . . .

• The diagonals 1, . . . , k − 2 are: 0, 0, . . .

• The diagonals k − 1 are arithmetic progressions, they are respectively:

0, αk−1, 2αk−1, 3αk−1, . . . and 0, βk−1, 2βk−1, 3βk−1, . . .

In order to check the commutativity of R2k−1(1, v(x)) = (aij)0≤i,j≤2k−1, R2k−1(1, w(x)) =
(bij)0≤i,j≤2k−1 is equivalent to check the equality for all 0 ≤ i, j ≤ 2k − 1 between:

(a) cij , being the position (i, j) of the product R2k−1(1, v(x)) ·R2k−1(1, w(x)), that is (excep-
tionally (0), will denote either a row or a column of zeros):

cij =
[
0, ai,1 . . . , ai,i−k+1, (0), 1, (0)

]


(
0
)

1(
0
)

bk+j−1,j
...

bm,j


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(b) dij , being the position (i, j) of the product R2k−1(1, w(x)) · R2k−1(1, v(x)) (again excep-
tionally (0) denotes either a row or a column of zeros):

dij =
[
0, bi,1 . . . , bi,i−k+1, (0), 1, (0)

]


(
0
)
1(
0
)

ak+j−1,j
...

am,j


We can do the following case by case comprobation:

(1) For every 1 ≤ j < i ≤ 2k − 2 we have that:

i− k + 1 < k + j − 1

and then: {
cij = aij + bij

dij = aij + bij

(2) The only position left is i = 2k, j = 1, and in this case:{
cij = aij + bij + a2k−1,kbk,1 = aij + bij + k · αk−1 · βk−1
dij = aij + bij + b2k−1,kak1 = aij + bij + k · αk−1 · βk−1

2

Now we are ready to complete the proof:
Proof of Theorem 2.1.2: For each n, the sets of elements satisfying equation (2.1) in Theorem
2.1.2 are obviously a group. So if for a given n, the set of elements satisfying (2.1) is the set
of commutators of elements in R(n−1), then this set is R(n).

We will prove the following statement: let X = R(1, F (x)) ∈ A such that X2k−1 =
π2k−1(X) = I2k−1 (the (2k)× (2k) identity matrix), where:

F (x) =
∞∑
i=1

Fix
i

then for every A ∈ A, such that πk−1(A) = Ik−1,πk(A) ̸= Ik and for every choice of βk ∈ K
there exists a unique B = R(1, x+ βkx

k + . . .) ∈ A such that πk−1(B) = Ik−1 satisfying:

X = A−1B−1AB

Let (1, 0, . . . , 0, βk−1, . . .) the A-secuence of B = (bij)0≤i,j<∞. We will prove by induction
over n that for every choice of βk−1 there exists a unique partial A-sequence:

(1, 0, . . . , 0, βk−1, . . . , βn−k)
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such that:

(i) πk−1(B) = Ik−1

(ii) πn(B)πn(A)πn(X) = πn(A)πn(B)

Recall that for the elements ofA, a partial A-sequence (a0, . . . , am) determines the diagonals
0, . . . ,m.

• Case n = 2k − 1 If we want B to satisfy (i), then the partial A-sequence of πk(B) must
be:

(1, 0, . . . , 0, βk−1)

So for every choice of βk−1 the induction hypothesis holds trivially according to the
previous lemma.

• Case n > 2k − 1 We want the following equation to hold (exceptionally
(
0
)

denotes a
column of zeros of the adequate size):

 πn−1(B)

bn0 . . . bn,n−1 1


 πn−1(A)

an0 . . . an,n−1 1




0
1(
0
)

F2k−1
...
Fn


=

=

 πn−1(A)

an0 . . . an,n−1 1




0
1(
0
)

bk,1
...

bn1


where by induction hypothesis the equations for the rows 0, . . . , n− 1 hold.

Then, we only need to check the last entry of this equation, which by block multiplication
is:

(2.2)
([
bn0 . . . bn,n−1

]
πn−1(A) +

[
an0 . . . an,n−1

])


0
1(
0
)

F2k−1
Fn−1

+ Fn =

=
[
an0 . . . an,n−1

]


0
1(
0
)

bk,1
...

bn−1,1


+ bn1
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(a) Taking into account that πk−1(A) = πk−1(B) = Ik−1 and that if we call:

[d0, . . . , dn−1] =
[
bn0 . . . bn,n−1

]
An−1

we have that:

(2.3) dm =

n∑
r=0

bnrarm = bnm +

[
n−k−1∑

r=m+k−1
bnrarm

]
– For m = 1 is:

d1 = bn1 + ak1bnk +

[
n−k−1∑
r=k+1

bnrar1

]
where the bnr inside the brackets are already determined, because they lie in
digonals lower or equal to n− k − 1 since:

n− r ≤ n− k − 1⇔ r ≥ k + 1

and then, they are determined by the partial A-sequence (1, . . . , βn−k−1)

– For 2 ≤ m ≤ n − 1 the bnr inside the brackets in (2.3) are already determined
for m ≥ 2, becouse they lie in digonals lower or equal to n− k − 1 since:

n− r ≤ n− k − 1⇔ r ≥ k + 1⇐ m+ k − 1 ≥ k + 1⇔ m ≥ 2

and then, they are determined by the partial A-sequence (1, . . . , βn−k−1)

(b) The left hand side of this equation is:

(2.4) (an1 + d1) +
n−1∑

m=2k−1
(anm + dm)Fm =

=

[
an1 +

n−1∑
m=2k−1

anmFm

]
+

[
d1 +

n−1∑
m=2k−1

dmFm

]
where everything in the first bracket and in the summatory of the second bracket is
known or determined

So this expression is of the form:

d1 + [. . .] = bn1 + ak1bnk + [. . .]

where all the bij inside the [. . .] are already determined.
(c) The right hand side of this equation is:

(2.5) an1 + an,n−k+1bn−k+1,1 +

(
n−k∑
m=k

anmbm1

)
+ bn1

that is, it has the form:

bn1 + an,n−k+1bn−k+1,1 + [. . .]

where all the bm1 in [. . .] are already determined because they lie in diagonals lower
or equal to n− k − 1 since m− 1 ≤ k − 1.
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(d) So the equation we need to solve is of the type:

bn1 + ak1bnk + [. . .] = bn1 + an,n−k+1bn−k+1,1 + [. . .]

that is:

(2.6) ak1bnk − an,n−k+1bn−k+1,1 = [. . .]

If (β0, . . . , βn−1) is the partial A-sequence of Bn, where the terms β0, . . . , βn−k−1
are already determined, and (α0, α1 . . .) is the A-sequence of A, then:

ak1bnk − an,n−k+1bn−k+1,1 = ak1([. . .] + k · βn−k)− an,n−k+1([. . .] + βn−k) =

= (ak1 · k − an,n−k+1)βn−k + [. . .] = (2k − n− 1) · αk · βn−k + [. . .]

where the terms [. . .] only depend on the aij , on the bij lying in the diagonals
0, . . . , n− k − 1 and on the β0, . . . , βn−k−1.

(e) So equation (2.6) is finally of the type:

(2.7) (2k − n− 1) · αk · βn−k = [. . .]

where everything inside the brackets is known by hypothesis and the indeterminate
is βn−k. This equation must have a unique solution.

2

2.2 Again the weighted Schröder Equation: main case with
multiplier equal 1

Recall that a, as defined in section 1.14, a weighted Schröder equation is a functional equation
(in formal power series) in the indeterminate y(x) of the type:

u(x) · y(v(x)) = λy(x)

where u(x) = d0 + d1x+ d2x
2 + . . ., v(x) = v1x+ v2x

2 + . . ., and 0 ̸= λ = d0. Recall also that
those equations are suitable to be treated in terms of Riordan arrays, since:

u(x) · y(v(x)) = λy(x)⇐⇒ R(u(x), v(x))⊗ y(x) = y(x)

and dividing in both sides of the equation by λ, we can reduce our study to equations of the
type:

(2.8) u(x) · y(v(x)) = y(x)

with d(x) = 1 + d1x+ . . ..
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The main result in this section is the following:

Proposition 2.2.1 Let K be a field of characteristic 0. Let R(d(x), h(x)) = (dij)0≤i,j<∞.
If h(x) ∈

(
x+ xkK[[x]] \ xk+1K[[x]]

)
. Then there exists a power series:

u(x) = 1 +

∞∑
m=1

umx
m

solution of (2.8) if and only if d(x) ∈
(
1 + xkK[[x]]

)
. In this case, this u(x) is unique.

Moreover, the solution u(x) lie in 1 + xrK[[x]] if and only if:

d(x) ∈
(
1 + xr+k−1K[[x]]

)

Proof: Seeing that necessarily u(x) ∈
(
1 + xkK[[x]]

)
is easy, since:


1
0 1
... . . . . . .
0 . . . 0 1
di0 0 . . . 0 1



1
u1
...
ui

 =


1
u1
...
ui

⇒ di0 = 0

In order to prove the converse, we will prove by induction over n that there exists a unique
sequence (u1, . . . , un−k+1) such that:

(2.9) Rn(d(x), h(x))


1
u1
...
un

 =


1
u1
...
un


regarless the sequence (un−k+2, . . . , un).

• Case n = k − 1 The result is obviously true, since Rn(d(x), h(x)) = In (the (n+1)×(n+1)
identity matrix).

• Case n > k − 1 By induction hypothesis there exist a unique sequence (u1, . . . , un−k)
such that:

Rn−1(d(x), h(x))


1
u1
...

un−1

 =


1
u1
...

un−1


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for all the sequences (un−k+1, . . . , un−1).
So we only need to check that there exists a unique un−k+1 such that the last equation
in 2.9, that is:

dn0 +

(
n−k∑
m=1

dnmum

)
+ dn,n−k+1 · un−k+1 + un = un

and since the A-sequence of Rn(d(x), h(x)) is of the type (1, 0, . . . , 0, αk−1, . . .), this is
equivalent to say that there exists a unique un−k+1 such that:

(2.10) (n− k + 1)αk−1un−k+1 = −dn0 −

(
n−k∑
m=1

dnmum

)

holds for all the sequences (un−k+2, . . . , un), which is obviously true.

The condition saying that u(x) lie in 1+ xrK[[x]] if and only if d(x) lie in 1+ xr+k−1K[[x]]
come from induction on n in the equation (2.10).

2

2.3 Derived Series of R
Once we have understood the derived series in F1(K) and A(K) for K of characteristic zero,
we will go for the derived series of R(K).

First note that:

Remark 2.3.1 Analogously to the proof of 2.1.4, for K being a field of characteristic 0,
R′(K) is precisely the set of Riordan matrices with ones in the diagonal. Obviously the set of
Riordan matrices with ones in the diagonal is a group and we can see that each of its elements
R(d(x), h(x)) with d(0) = 1, h′(0) = 1 is a commutator of elements in R, since according to
remark 1.14.5, for any λ ∈ K not a root of unity:

R(d(x), h(x)) ·R(1, λx) = R−1(u(x), v(x))R(1, λx)R(u(x), v(x))

for certain R(u(x), v(x)) ∈ R(K), and thus:

R(d(x), h(x)) = R−1(1, λx)R−1(u(x), v(x))R(1, λx)R(u(x), v(x))

In this case, it is easy to compute the coefficients of this R(u(x), (x)). If we suppose that:

R(d(x), h(x)) = R(1, rx)R(u(x), v(x))R−1(1, rx)R−1(u(x), v(x)) =

= R(1, rx)R(u(x), v(x))R
(
1,

x

r

)
R

(
1

u(v−1(x))
, v−1(x)

)
=

= R

(
u(rx)

u(v−1(v(rx)r ))
, v−1

(
v(rx)

r

))
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So we have:

• h(x) = v−1
(
v(rx)
r

)
. Composing in both sides of the equation by v(x) we get:

(2.11) v(h(x)) =
v(rx)

r

or equivalently:
R(1, h(x))⊗ v(x) = R

(
1

r
, rx

)
⊗ v(x)

from where if v(x) = v1x+ v2x
2 + . . ., and for each 0 ̸= v1 ∈ K we obtain that:

vn =
1

rn−1 − 1

n−1∑
k=1

vk · ([xk](h(x))k)

• On the other hand, by using (2.11) in the other equation we get:

d(x) =
u(rx)

u(h(x))

which is equivalent to:
d(x) · u(h(x)) = u(rx)

or equivalently:
R(d(x), h(x))⊗ u(x) = R(1, rx)⊗ u(x)

and then, if u(x) = u0 + u1x+ u2x
2 + . . .:

un =
1

rn − 1

n−1∑
k=0

dnkuk

In the past Riordan arrays were defined with the restriction on having ones in the diagonal
(see [105]) to also obtain a group when we choose the entries to lie in the ring Z. Here the
notation C(K), C(R) has been introduced for the same reason in section 0.3.6. In particular,
finding R′′ (which was the first commutator of the original Riordan group) answers an open
question from L. Shapiro in [103].

The main result of this section is the following:

Theorem 2.3.2 Let K be a field of characteristic 0. Then, for n ≥ 1:

(2.12) R(n) = {R(d(x), h(x)) ∈ R : h(x) ∈ F (n), d(x) = 1 +O(x2n−n)}

and all of its elements are commutators of elements in R(n−1).
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Example 2.3.3 This theorem asserts that the following Riordan matrix lie in R′′:

R(1 + x2, x+ x4) = R(1 + x2, x) ·R(1, x+ x4) =

=



1
0 1
1 0 1
0 1 0 1
0 0 1 0 1
0 0 0 1 0 1
...

...
...

...
...

... . . .


·



1
0 1
0 0 1
0 0 0 1
0 1 0 0 1
0 0 2 0 0 1
...

...
...

...
...

... . . .


=



1
0 1
1 0 1
0 1 0 1
0 1 1 0 1
0 0 2 1 0 1
...

...
...

...
...

... . . .


We will give a sketch of the proof of Theorem 2.3.2 and one of the points will be proved

separatedly in lemma 2.3.4.
Sketch of the proof of Theorem 2.3.2: We will prove it by induction over n. The base case

has been studied in remark 2.3.1. Now we will go on with the induction:

• Assume the result is true for R(n)

• R(d(x), h(x)) is a commutators of elements inR(n) if there exists R(u(x), v(x)), R(f(x), g(x)) ∈
R(n) with:

R(d(x), h(x)) = [R(u(x), v(x)), R(f(x), g(x))]

that is: {
d(x) = 1

u(x) ·
1

f(v−1(x))
· u(g−1(v−1(x))) · f(v(g−1(v−1(x))))

h(x) = v−1(g−1(v(g(x)))

which is equivalent to:

(2.13)
{
u(x) =

[
f(v(g−1(v−1(x))))
d(x)·f(v−1(x))

]
· u(g−1(v−1(x))))

h(x) ∈ F (n+1)

• The first of these two equations:

(2.14) u(x) =

[
f(v(g−1(v−1(x))))

d(x) · f(v−1(x))

]
· u(g−1(v−1(x))))

will be studied in 2.3.4, and will be shown to have an adequated solution.

• It is a simple comprobation to check that the set of commutators of R(n) is a group (and
then equal to R(n+1)) since the set of matrices satisfying (2.13) is closed under products
and inversions.

2

Lemma 2.3.4 Equation (2.14) has a solution if and only if d(x) ∈
(
1 + x2

n+1−(n+1)K[[x]]
)
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Proof: We have two different cases:

• For n = 0 we are looking at the equation:

u(x) =

[
f(v(g−1(v−1(x))))

d(x) · f(v−1(x))

]
· u(g−1(v−1(x))))

where v(x), g(x) ∈ F , f(x), u(x) ∈
(
K[[x]] \ xK[[x]]

)
.

According to proposition 2.2.1, there exists such an u(x) if and only if:

f(v(g−1(v−1(x))))

d(x) · f(v−1(x))
∈
(
1 + xK[x]]

)
and this happens if and only if 1

d(x) and equivalently d(x) lie in
(
1 + xK[x]]

)
• For each n ≥ 1, we are looking at the equation:

u(x) =

[
f(v(g−1(v−1(x))))

d(x) · f(v−1(x))

]
· u(g−1(v−1(x))))

where v(x), g(x) ∈
(
x+ x2

nK[[x]]
)

, f(x), u(x) ∈
(
1 + x2

n−nK[[x]]
)

.

According to proposition 2.2.1, there exists such an u(x) if and only if:

f(v(g−1(v−1(x))))

d(x) · f(v−1(x))
∈
(
1 + x2

n+1−(n+1)K[x]]
)

and this happens if and only if 1
d(x) and equivalently d(x) lie in

(
1 + x2

n+1−(n+1)K[x]]
)
2

2.4 The Conjugacy Problem in A′ (or F ′1), R′

Recall that, for any group (G, ·) (multiplicative notation), we say that g, h ∈ G are conjugated
elements, and we write g ∼ h if there exists p ∈ G such that:

g = p−1 · h · p

This is an equivalence relation. In each equivalence class, any element can be said to be a
representative of this conjugacy class.

The understanding of the conjugacy clases of a given group is very important for clarifying
its algebraic structure. So obviously we will be interested in studying conjugacy in A, R

The reason why we are now studying conjugacy in A′,R′ instead of in A,R is double:

• Firstly, it has its own interest as originally the Riordan group was actually R′.
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• Secondly, the study of conjugacy in A′(K),R′(K) shows less dependence on the choice of
the field K than the study of conjugacy in A(K), R(K), as we will see in the following
section. So it is, in some sense, a way to present a unified approach to the study of
conjugacy that can be concreted for particular choices of K in the next section for A(K),
R(K).

In relation to conjugacy in A′, or equivalently in F ′1 we have:

Proposition 2.4.1 Let K be a field of characteristic 0 and f(x) ∈ F ′(K). If:

f(x) = x+ . . .+ fnx
n + . . .

then there exists v(x) of the type v(x) = x+ αxn + βx2n−1 such that:

f(x) ∼ v(x)

Before going on with the proof, note that this result is easily translated in terms of A where
it is more visual. Let’s denote with a bullet (•) a nonzero entry in the matrix, leave in blank
the entries that are zeroes, and write a cross product sign (×) for an entry that may be zero
or not. Then we can represent a matrix R(1, h(x)) in A′, where h(x) has multiplicity n as:

1
1

. . .
• 1
× • 1
× × • 1
× × × • 1
× × × × • 1
...

...
...

... . . . . . . . . .


where the “bullet” in the 1-column is in the entry (n, 1). Then its canonical representative
would be of the type: 

1
1

. . .
• 1
• 1

• • 1
• • 1
• • 1

. . . . . . . . .





2.4. THE CONJUGACY PROBLEM IN A′ (OR F ′1), R′ 51

This matrix has two nonzero diagonals, the first one passing through (n, 1) and the second one
through (2n− 1, 1). It seems to be a banded matrix, but is not: for instance the entry:

(3n− 1, 2) = [x3n−1](h(x))2

is nonzero in general. Recall that no Riordan matrix is a banded matrix except from the
identity matrix.

Remark 2.4.2 Recall that in section 1.5 (we were talking about metrics in the Riordan group)
we already presented the set of the elements in A′ with multiplicity n, and was denoted by Gk.
It was shown to be a normal subgroup of R, so it is not surprising now that all the conjugated
elements to an element of multiplicity n have also multiplicity n.

Proof or Proposition 2.4.1: We will prove this result in terms of matrices in A. We want to
show the existence of a Riordan matrix R(1, g(x)) satisfying:

R(1, f(x)) = R(1, g−1(x))R(1, x+ αxn + βx2n−1)R(1, g(x))

or equivalently:

(2.15) R(1, g(x))⊗ f(x) = R(1, x+ αxn + βx2n−1)⊗ g(x)

We will denote R(1, g(x)) = (di,j)0≤i,j<∞.
As usual, we will prove this result by induction over k in the partial grous Rk. This time we
will have to distinguish some cases:

• k = n. We have that the corresponding Πk projection of both sides in equation (2.15)
leads to the equation:

1
0 1
0 g2 1
...

... . . .
0 gk−1 . . . . . . 1

0 gk . . . . . . . . . 1





0
1
0
...
0
fk


=

 Rk−1(1, x)

0 α 0 . . . 0 1



0
1
g2
...
gk



This is a system of k+1 equation. For 0 ≤ i ≤ k−1 the first equations are gi = gi. Only
the last equation needs to be studied, which is:

gk + fk = α+ gk

that is:
α = fk
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• n < k < 2n − 1. We have the corresponding Πk projection of both sides in equation
(2.15) leads to the equation:



1
0 1
0 g2 1
...

... . . .
0 gk−1 . . . . . . 1

0 gk . . . . . . . . . 1





0
1
0
...
0
fn
...
fk


=

 Rk−1(1, x+ αxn)

. . . (k − n+ 1)α . . . 1



0
1
g2
...
gk



All the elements in the last row of the matrix in the right are zeros except, of course, the
entry (k, k) and the entry (k, k − n+ 1). In order to understand this, firstly we have to
understand the structure of the matrix R(1, x+ αxn)

1
1

1
0 1

α 1
2α 1

3α 1
. . . . . .


which according to the formula of the A-sequence, equals the identity matrix except from
the elements in the diagonal (n− 1, 0), (n, 1), (n+ 1, 2), . . . which are 0, α, 2α, . . .

Thus, we have a system of k + 1 equation. Equations 0, . . . , k − 1 are already fixed by
induction hypothesis. And the k-th equation is:

(2.16) gk + fndkn + . . .+ dkkfk = (k − n+ 1)αgk−n+1 + gk

Note that:
dki = [xk](g(x))i =

∑
j1,...,ji=k

gj1 . . . gji = igk−i+1 + [. . .]

where everything inside the brackets depends on entries gj with j < k−i+1. So equation
(2.16) is of the type:

gk + fnngk−n+1 + [. . .] = (k − n+ 1)αgk−n+1 + gk

or equivalently (recall that α = fn):

(2.17) (k − 2n+ 1)αgk−n+1 = [. . .]

where the things inside the brackets depend on the variables gi with i < k− n+1 (fixed
by induction hypothesis), and where the coefficient of gk−n+1, (k− 2n+1)α is obviously
nonzero. So this equation has a solution.
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• For k = 2n− 1, this time we have:



1
0 1
0 g2 1
...

... . . .
0 gk−1 . . . . . . 1

0 gk . . . . . . . . . 1





0
1
0
...
0
fn
...
fk


=

 Rk−1(1, x+ αxn)

0 β . . . (k − n+ 1)α . . . 1



0
1
g2
...
gk



where the entries in the dots in the last row of the matrix on the left are zero. Again, we
have a system of k + 1 equations. Equations 0, . . . , k − 1 are already fixed by induction
hypothesis. And the k-th equation is now of the type (compare with equation (2.17)):

0 = β + [. . .]

(this time the coefficient of gk−n+1 = gn is 0) so there is a unique β satisfying this
equation. We fix gn = 0, for example.

• For k > 2n − 1 we do the same as in case k < 2n − 1 and again we obtain an equation
of the same type of (2.17), where again the coefficient of the variable gk−n+1 is nonzero.

2

From the proof above, we have also obtained:
Remark 2.4.3 In terms of matrices in A(K) with K being a field of characteristic 0, the above
result means that the conjugacy class of an element R(d(x), h(x)) ∈ A′ with h(x) of multiplicity
n is determined by the finite matrix R2n−1(1, h(x)).

Concerning conjugacy in R′ (as well as in R), as in the case of the derived series, it is
possible to reduce the problem to the corresponding problem (of conjugacy in this case) in A
and to solve a weighted Schrd̈er equation, as we can see in the following:
Remark 2.4.4 R(d(x), h(x)) = (R(f(x), g(x)))−1R(u(x), v(x))R(f(x), g(x)) if and only if
R(f(x), g(x))R(d(x), h(x)) = R(u(x), v(x))R(f(x), g(x)) which is equivalent to:

(1) R(f(x), g(x))⊗ d(x) = R(u(x), v(x))⊗ f(x)

(2) R(f(x), g(x))⊗ h(x) = R(u(x), v(x))⊗ g(x)

Using the 1FTRM (1) is equivalent to:

f(x) · d(g(x)) = u(x) · f(v(x))

and then to:
u(x)

d(g(x))
f(v(x)) = f(x)

which is a weighted Schröder equation in the indeterminate f(x). (2) is equivalent to h(x) ∼
u(x).
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We have not even tried to find a canonical representative of each conjugacy class in R′(K).
but it is easy to find, at least a simple one:

Theorem 2.4.5 Let K be a field of characteristic 0. Let R(d(x), h(x)) ∈ R′(K). If the
multiplicity of v(x) is k then:

R(d(x), h(x)) ∼ R(u(x), v(x))⇔

{
h(x) = g−1(v(g(x)))

Taylork−1(u(x)) = Taylork−1(d(g(x)))

This means that we can find a canonical representative R(u(x), v(x)) where u(x) is a
polynomial of degree k− 1 and v(x) is of the type x+ αxk + βx2k−1 of the conjugacy class
of R(d(x), h(x)).

Proof: According to the previous remark, we want to solve the functional equation:

u(x)

d(g(x))
f(v(x)) = f(x)

According to proposition 2.2.1 this has a solution (and this solution is unique) if and only if:

f(x)

u(h(x))
∈ 1 + xkK[[x]]

that is, if and only if:
Taylork−1(f(x)) = Taylork−1(u(h(x)))

This same argument can easily show that two of those representatives will never be conju-
gated.

2

Using the same way of picturing as before, the representative used in the theorem are of
the type: 

1
• 1
• 1
• 1
• 1
• 1
• 1

• • 1
. . . . . . . . .


To conclude this section we have to say that, up to our knowledge, there are no results

concerning conjugacy in A(K), R(K) if K is an infinite field of positive characteristic. So, as
far as we know, this question remains open (open question 13).
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On the other hand, recall that we have already introduced the notation C(K) = R′(K)
precisely to consider the groups C(R) where R is a commutative ring with unity. For this
group, the proof above does not work, so the question of studying conjugacy in C(R) remains
open (open question 14).

2.5 Some words on the general Conjugacy Problem in A, R
In this thesis, we have already stated some results about conjugacy, we will present them
together in the following:

Theorem 2.5.1 Let K be a field of characteristic 0:

(i) Let h(x) ∈ F1(K) and let λ be its multiplier. If either λ is not a root of unity or
either h(x) is an element of finite order then h(x) ∼ λx.

(ii) Let D = R(d(x), h(x)) ∈ R(K)) and let λ be the multiplier of h(x). If either λ is not
a root of unity or either D is an element of finite order or an element of finite order
multiplied by a constant R(d00, x) then:

R(d(x), h(x)) ∼ R(d(0), h′(0))

Proof: (i) follows from theorem 1.14.6 and from the first statement in remark 1.14.5. (ii)
follows from theorem 1.14.7 and from the second statement in 1.14.5.

2

Results about conjugacy of the elements of finite order in F1(C) were known a long time
ago (see for example the work by J. F. Ritt [96]), in both, the formal an analytic categories.
Also the case with the multiplier not a root of unity is also well known as a consequence of
Köning’s theorem (equivalent statement to theorem 1.14.6).

The general study of the conjugacy classes in F1(C) has been done by B. Muckenhoupt
in [84], and by S. Scheinberg in [99], and it also appears in the book by M. Kuczma, B.
Choczewski and R. Ger in [59]. For a brief discussion of the analytic case (conjugacy in the
group F1,hol(C)), see also [2]. The next result contains all the cases left concerning conjugacy
in F1(C):

Theorem 2.5.2 Let f(x) ∈ F1(C).

(1) (theorem 1, [84]) If the multiplier of f(x) is 1 and the multiplicity is n, there exists
exactly one α such that:

f(x) ∼ x+ xn + αx2n−1
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(2) (theorem 5, [84]) If the multiiplier of f(x) is primitive q-th root of unity a1 and
f [q](x) ̸= x, and we have another g(x) ∈ F1(C) with multiplier b1:

f(x) ∼ g(x) if and only if a1 = b1 and f [q](x) ∼ g[q]

(3) (proposition 10 in [99]) In the previous case, since we have:

f [q](x) ∼ x+ xn + cx2n+1

then:

f(x) ∼ a1x+ b1x
n + c1x

2n−1 where:
{
b1 =

1
qa1

c1 =
ca1
q −

(q−1)n
2q2a31

We are not going to prove this result here, since it is well known, but it can be proved by
using our methods similarly to the proof of proposition 2.4.1. Before going on, just remark the
following:

Remark 2.5.3 There is an interpretation for those n, α in (1). Those numbers are related to
the Julia equation and the iterative logarithm. We refer the reader to section 8.5 in [59].

Unlike the results for conjugacy in F ′1(K), A′(K), conjugacy in F1(K), A(K) depends
strongly on K even if we restrict on fields of characteristic 0. It remains open to us the
question of understanding conjugacy classes in F1(K), A(K) for a general field of characteristic
0 (see open question 12).

We will include in the following remark what we know about conjugacy for other fields of
interest as K = R,Q, although again we will not give a proof, since it is exactly the same of
proposition 2.4.1.

Remark 2.5.4 Let K be a field of characteristic 0. Let h(x) ∈ F (K) with multiplier 1 and
multiplicity n. If we want to find a conjugacy representative of h(x) in F(K) we will always be
able to find a representative v(x) = x + αxn + βx2n−1 (because h(x) and v(x) are conjugated
as elements in F ′(K)).

If K = C we have already seen that we can choose α = 1. It is easy to see that for K = R,
we only can ensure that we can find such a representative with α being ±1. For K = Q in
general the representant will have an arbitrary α.

We don’t know much more about conjugacy in R(K) even for K = C. As explained in
remark 2.4.4 the problem of conjugacy in R(K) can be reduced to studying conjugacy in
F1(K) (or in A(K)) and studying a weighted Schröder equation. So since we have not studied
all the cases of the weighted Schröder equation even for K = C we cannot expect to complete
such an study, that remains open for the future (open question 12).
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2.6 Example: the Conjugacy Class of the Pascal Triangle
As an application, we will describe explicitly the conjugacy class of the Pascal Triangle. This
was suggested by G. S. Cheon and it could be a good way to clarify the results above, specially
being the Pacal Triangle our favourite example of Riordan matrix.

With “Pascal Triangle” this time we will refer to both: the Extended Pascal Triangle
P̃ = R

(
1, x

1−x

)
and the Classical Pascal Triangle P = R

(
1

1−x ,
x

1−x

)
.

Both elements belong to the corresponding commutator: P̃ ∈ A′(K), P ∈ R′(K), where we
can consider that K = R,C.

According to the previous study, another matrix T is conjugated (in any of the groups
listed above) to P̃ or P respectively if and only if Π3(T ) is, to Π3(P̃ ), Π3(P ) in each case.

So we have:

Proposition 2.6.1 The elements conjugated to P̃ are those matrices R(1, v(x)) with v(x)
such that:

• If we are looking at conjugacy in A′(K) for any K of characteristic 0:

v(x) = x+ x2 + x3 +O(x4)

or in other words, those elements in A′(K) with A-sequence of the type
(1, 1, 0, A3, A4, . . .).

• If we are looking at conjugacy in A(K) for K = C,R,Q:

v(x) = x+ αx2 + α2x3 + v4x
4 + . . . with α ̸= 0

in other words, the elements in A(K) with A-sequence of the type (1, α, 0, A3, A4, . . .)
with α ̸= 0.

Proof: We have already stated that we only need to solve the problem in A3(K). Now we are
going to check this 4× 4 case in detail. We are looking for the matrices of the type:

1
0 a0
0 a0a1 a20
0 a0a

2
1 + a20a2 2a20a1 a30


−1 

1
0 1
0 1 1
0 1 2 1



1
0 a0
0 a0a1 a20
0 a0a

2
1 + a20a2 2a20a1 a30

 =

=


1
0 1

a0
0 −a1

a20

1
a20

0
a21
a30
− a2

a20
−2a1

a30

1
a30



1
0 1
0 1 1
0 1 2 1



1
0 a0
0 a0a1 a20
0 a0a

2
1 + a20a2 2a20a1 a30

 =
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=


1
0 1
0 1

a0
1

0 1
a20

2
a0

1


The result follows from a case by case comprobation in the matrix above.

2

Proposition 2.6.2 The set of matrices R(u(x), v(x)) in R(K) for K = Q,R,C conugated
to R

(
1

1−x ,
x

1−x

)
are those of the type:


1
1
v2

1

d20 d21 1

d30 (d20 + 2d221 − d21
v2

) (d21 − 1
v2
) 1

...
...

...
... . . .


where v(x) = v1x+ v2x

2 + . . ., and all the entries of the type dij together with the entries
not included above are free.

Proof: Concerning the first column, we only need to look at R2(K). We are looking for
the matrices of the type (we can suppose that the entry (0, 0) of the matrix we are using to
conjugate is 1):  1

d10 d11
d20 d21 d211

11 1
1 2 1

 1
d10 d11
d20 d21 d211

−1
We only need the 0-column of this product, which is: 1

d10 d11
d20 d21 d211

11 1
1 2 1


 1

−d10
d11

−d20
d211

+ d10d21
d311

 =

 1
d11

[d21 + d211]− (2d11)d10


It is easy to see that, since 2d11 ̸= 0, varying d10 we can get any value in the last entry of this
column. The same would have happened if we had tried to solve the problem in Rk(K): fixing
adequately dk−1,0 we can obtain any entry in the last column of this product, as explained in
section 2.2.

2

2.7 Application of Conjugacy I: centralizers
The study of the problem of finding the centralizer of elements in R is closely related to
the study of the problem of conjugacy. This problem has been also partially studied by C.
Jean-Louis and A. Nkwanta, who found the centralizer of R(1,−x) (theorem 5 in [51]).
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Recall that:

Definition 2.7.1 For any group (G, ·) the centralizer of an element g ∈ G is the set:

ZG(h) = {h ∈ G : hg = gh}

Analogously, we can define the centralizer of a subset S of G as:

ZG(S) = {h ∈ G : ∀g ∈ S, hg = gh}

The centralizer of G is called the center of the group, is the set of elements that commute with
all the elements in G.

According to the following lemma (we omit the proof):

Lemma 2.7.2 Let (G, ·) be a group. Let an element g ∈ G such that g = v−1pv for some
v, p ∈ G. Then h is in the centralizer of g if and only if g = v−1g̃v for some g̃ in the centralizer
of p.

Having found some canonical representative for the conjugacy classes in A and R, we have
made a step towards a way to find the centralizer of any element in A or R, since it is easy to
compute the centralizer of some of those canonical representatives:

Proposition 2.7.3 For any field K of characteristic 0, let T = R(λ, µx) ∈ R(K).

(i) If µ is not a root of unity, then ZR(T ) is the set of diagonal matrices R(a, bx) ∈ R.

(ii) If µ = 1, then ZR(T ) is R.

(iii) If µ = −1, (root of unity of order 2), then ZR(T ) is the Checkerboard Subgroup.

Proof: We will prove each case separatedly:

(i) Obviously, diagonal matrices commute. On the other hand, we can see that if µ is not a
root of unity, from: [

1
d10 d11

] [
λ

λµ

]
=

[
λ

λµ

] [
1
d10 d11

]
looking at the position (1, 0), we obtain that:

d10λ = λµd10 ⇒ d10 = µd10
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and since µ ̸= 0, 1, this can only hold if d10 = 0. Assuming the result is true for n−1 ≥ 1,
then from: 

1
0 d11
... . . . . . .
0 . . . 0 dn−1,n−1
dn0 dn1 . . . 0 dnn




λ

λµ
. . .

λµn−1

λµn

 =

=


λ

λµ
. . .

λµn−1

λµn




1
0 d11
... . . . . . .
0 . . . 0 dn−1,n−1
dn0 dn1 . . . 0 dnn


we obtain that dn0 = dn1 = 0.

(ii) This part is obvious using the 1FTRM.

(iii) In the case µ = −1, repeating the argument above we obtain that d10 must be 0. Then
assuming the result is true for certain n− 1 ≥ 1 we have that from the equations in the
last row: 

1
... . . .

dn−1,0 . . . dn−1,n−1
dn0 dn1 . . . dnn



λ

. . .
λµn−1

λµn

 =

=


λ

. . .
λµn−1

λµn




1
... . . .

dn−1,0 . . . dn−1,n−1
dn0 dn1 . . . dnn


we obtain the desired result, since they are:{

(1− µn)dn0 = 0

(1− µn−1)dn1 = 0

and the coefficients of dn0, dn1 vanish when µn = 1, µn−1 = 0 respectively.

2

Note that:

Remark 2.7.4 We are not going to check it out but, in general, if µ is a root of unity of order
q ≥ 2, then ZR(T ) is the generalized Checkerboard subgroup:

GCh(q) = {R(d(x), h(x)) : [xn]d(x) = [xn+1]h(x) = 0, unless n ≡ 0 mod q}
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Remark 2.7.5 For any field K of characteristic 0, the center of R(K) is the set of diagonal
matrices which diagonal is a constant pregression:

{R(λ, x) ∈ R}

It is easy to check that for any Riordan matrix R(d(x), h(x)), and for all 0 ̸= λ ∈ K we
have that ((ii) in the previos proposition):

R(d(x), h(x))R(λ, x) = R(λ, x)R(d(x), h(x))

On the other hand, the matrices in the center must commute with every element in R(K)
including the diagonal ones. So by (i) in the previous proposition we also know that the
elements in the center must be diagonal matrices. Finally, looking only at the corresponding
part in F1(K), we can see that if:

g(λx) = λg(x)

for g(x) = x+ x2, then λ must be 1.

Remark 2.7.6 We can particularize (we will skip the proof) the above results to the group A
or equivalently to F1 we obtain, the following results, most of them known:

For any field K, let T = R(1, µx) ∈ A(K).

(i) If µ is not a root of unity, then the centralizer of T is the set of diagonal matrices
R(1, cx) ∈ A.

(ii) If µ = 1, the centralizer of T is A.

(iii) If µ = −1, (root of unity of order 2), then the centralizer of T is the intersection of the
Checkerboard subgroup with A.

(iv) In general, if µ is a root of unity of order q ≥ 2, the centralizer of T is the intersection
of the generalized Checkerboard subgroup with A.

We are neither going to compute the centralizer of any element in R(K), nor in A(K) (or
equivalently in F1(K)).

The problem of finding the centralizer of elements in F1(C) is treated in the book [59]
section 8.7A.

On other occasions in this work, the problem of finding the centralizer of an element
R(d(x), h(x)) ∈ R(K) can be reduced to finding the centralizer of h(x) ∈ F1(K) and then
solving a weighted Schröder equation. So in order to complete the study of centralizers of
elements in R(K) (see open question 16) we would need to be able to solve all the cases of the
weighted Schröder equation.

2.8 Application of Conjugacy II: powers of Riordan matrices
When studying the group F1(C), specially if we want to study one parameter groups in order
to study the Lie group structure of F1(C), it is reasonable to study the iterative powers and
iteratives roots of elements in F1(C).
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The idea is widely developed in the books [58, 59]. It is obvious what we understand by
the n-th iterative power of an element g(x) ∈ F1(C) when n ∈ Z: it is g[n](x). On the other
hand we say that v(x) is an n-th iterative root of g(x) for n ∈ Z if:

v[n](x) = g(x)

Using this idea, we can say in general that v(x) is the a
b -th iterative power of g(x) if:

v(x)[a] = g[b](x)

for a ∈ Z, 0 ̸= a ∈ N.
Using the natural identification h(x)↔ R(1, h(x)) between elements in F1(K) and elements

in A(K), we can see that, for r ∈ Q, the r-th iterative power of h(x) corresponds to r-th power
or the corresponding matrix: (R(1, h(x)))r.

Thanks to our study of conjugacy, it is sometimes easy to compute the powers or those
matrices:
Remark 2.8.1 For all a ∈ R, for all T in either R(R) or R(C) we have that if:

T = P−1SP

then:
T a = P−1SaP

Which allow us, for instance to compute the powers and root of any matrix conjugated to
diagonal matrices in R(R) or in R(C) respectively.

Analogously we could think about powers of matrices in R(C) and in R(R) which in fact
are very relevant to find the one parameter subgroups in relation to the Lie group structure of
the Riordan group. But we will leave this for future work (open question 15).

2.9 The abelianized of Rn

In any group G, the abelianization is the quotient G/[G,G]. If G is abelian, this quotient is
G, so in some sense the abelianization is a measure of the “commutativity” of G: the bigger is
the abelianization the “more commutative” is G. We have that:

Proposition 2.9.1 Let n ≥ 1 and let K be a field of 0 characteristic. Then the abelianized
group Rn/R′n is a group isomorphic to:

(1) The product K⋆ ×K⋆.

(2) The group
{

λ

1− rx
, λ, r ∈ K⋆

}
with the Hadamard product of series.

Finally Rn is isomorphic to the semidirect product

R′n oRn/R′n
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Proof: The groups in (1) and (2) are obviously isomorphic. So we only need to check that
Rn/R′n. We only need to apply the first isomorphism theorem for the diagram:

Rn Φ //

��

K∗ ×K∗

Rn/ker(Φ)

77ppppppppppp

for Φ given by Φ(R(d(x), h(x))) = (d(0), h′(0)).

The set of diagonal matrices Dn and the first derivative subgroup R′n only intersect in the
neutral element Rn(1, x) and we have that Rn = DnR′n. So:

Rn = R′n oRn/R′n

2

A complete characterization of the quotients R(k+1)
n /R(k)

n would be desirable. This will be
left as an open question (open question 11).



Chapter 3

Involutions and elements of finite
order in the Riordan Group

For a start, we will remember that:

Definition 3.0.1 In any group (G, ∗) with identity element e, we say that g ∈ G is an
involution if and only if g is an element of order 2, that is, g ∗ g = e, or in other words,
g is the inverse of g.

Involutions are a particular case of elements of finite order q in G, that is, elements
such that gq = e (multiplicative notation) and such that there is no other 1 ≤ k < q such that
gk = e.

Unless otherwise specified, in this chapter K will denote one of the fields Q,R or C.
This chapter deals mainly with some questions related to involutions in the Riordan group,

although also some aspects of elements of general finite order will be visited.
In section 3.1, some basic aspects about involutions in R(K) will be included. In section

3.2 a characterization of the entries of the involutions in R(K) will be made. It will be followed
by section 3.3, where some explicit examples of this characterization may be found, together
with a particularization of this result to A(K) (or equivalently to F1(K)).

After this, in section 3.4 a similar characterization will be proved for elements of finite
order q in R(C).

After the revision of some aspects concerning the A-sequence in sections 3.6 and 3.7 we
will find an algebraic study of the group generated by the involutions I < R(K) including
the minimal number of involutions needed to express an element of I as a product of involu-
tions. Some motivation of those results will also be given. In section 3.8 we will include some
consequences of the results in 3.6 and 3.7.

3.1 Basics about involutions
Particularizing definition 3.0.1 to the Riordan group, we have that an involution in R(K) is a
matrix R(d(x), h(x)) such that :

R(d(x), h(x)) ·R(d(x), h(x)) = R(d(x) · d(h(x)), h(h(x))) = R(1, x)

1
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or equivalently, using the group law, such that:

(3.1) R(d(x), h(x)) = (R(d(x), h(x)))−1 = R

(
1

d(h−1(x)))
, h−1(x)

)
This last expression establishes the bridge between the problem of finding involutions and
the problem of solving a system of functional equations, which has shown to be useful in the
previous chapters.

First of all, note that:
Remark 3.1.1 Using the identification between Riordan matrices and elements in the inverse
limit lim←−{(Rn), (Pn)}n≥0, it is easy to see that D ∈ R(K) is an involution, if and only if
Dn = Πn(D) is an involution for every n ≥ 0.

It is clear that in any involution in Rn(K) the elements in the main diagonal should be ±1
(in lower triangular matrices the elements in the position (i, i) of the product are the product
of the elements in the position (i, i) of each factor).

There are two obvious Riordan matrices whose squares are the identity Rn(1, x), the identity
itself and −Rn(1, x) = Rn(−1, x). In fact:
Remark 3.1.2 If Dn = Rn(d(x), h(x)) with D2

n = Rn(1, x) and h′(0) = 1, then Dn = ±R(1, x)
depending on d(0) = ±1.

This is because the minimal polynomial of Dn must divide the polynomial x2 − 1. Since
Dn ∈ Rn(K) and h′(0) = 1 then all the elements in the main diagonal are 1 if d(0) = 1
and all elements are −1 if d(0) = −1. So the characteristic polynomial of Dn is (x ± 1)n+1.
Consequently, the minimal polynomial of Dn is either x− 1 or x+ 1, hence Dn = Rn(1, x) or
Dn = −R(1, x).

Considering now any infinite Riordan matrix as an element in lim←−{(Rn), (Pn)}n≥0 we have
the above result for infinite Riordan matrices.

R(1, x) is not considered to be an involution, since it has order 1, not order 2. R(−1, x) is
actually an involution, that is called (either in the finite or infinite case) the trivial involution.
The rest of the involutions in R(K) (which diagonal is a geometric progression of rate −1, and
so the 0-term of its A-sequence is -1) will be called non-trivial involutions.

Even the previous remark has its interpretation in terms of formal power series, proving a
result in an elegant way:
Remark 3.1.3 A consequence of the above reasoning is that the unique solution of the Babbage
equation: {

ω(ω(x)) = x

ω′(0) = 1

is ω(x) = x.

To talk about Riordan involutions, it is sometime much more comfortable to use the nota-
tion T (f | g) (see section 0.3.4) since, for instance:
Remark 3.1.4

T−1(1 | g) = T (1 | A) ⇔ T−1(1 | A) = T (1 | g)

So, if T (f | g) is an involution A = g.
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3.2 Finite and infinite non-trivial involutions.
Our first step to construct all Riordan involutions, finite or infinite, is the following:

Lemma 3.2.1 (Band of Involutions) Let Dn = Rn(d(x), g(x)) be an involution. Then

Rn−1

(
d(x) ·

(
h(x)
x

)j
, h(x)

)
is an involution for every j ∈ Z.

Let us ilustrate this result, before its proof. If the indicated 3× 3 matrix is an involution:

×
• •
• • •
• • • •
• • • • •
...

...
...

...
... . . .


then so are the following 2 × 2 matrices, and so are the rest of the matrices of this type that
lie along the diagonal up and below in the correspondent bi-infinite matrix:

. . .

. . . ×

. . . • •

. . . • • •

. . . • • • •

. . . • • • • •
...

...
...

...
... . . .





. . .

. . . ×

. . . • •

. . . • • •

. . . • • • •

. . . • • • • •
...

...
...

...
... . . .





. . .

. . . ×

. . . • •

. . . • • •

. . . • • • •

. . . • • • • •
...

...
...

...
... . . .




. . .

. . . ×

. . . • •

. . . • • •

. . . • • • •

. . . • • • • •
...

...
...

...
... . . .


Proof: Let Rn(d(x), h(x)) ∈ Rn(K). Suppose that (Rn(d(x), h(x))

2 = R(1, x). Then we know
that:

(3.2) Taylorn(d(x) · d(h(x)) = 1, Taylorn(h(h(x))) = x

We only need to check that for any j:

(3.3) Taylorn−1

(
d(x) ·

(
h(x)

x

)j
· d(h(x)) ·

(
h(h(x))

h(x)

)j)
= 1 Taylorn−1(h(h(x))) = x
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The second equation in (3.2) obviously implies the second equation in (3.3). The first one in
(3.3) is also true since, by using both equations in (3.2):

Taylorn−1

(
d(x) ·

(
h(x)

x

)j
· d(h(x)) ·

(
h(h(x))

h(x)

)j)
=

= Tylrn−1

[(
Tylrn−1 (d(x) · d(h(x)))

)
·
(
Tylrn−1

((
h(x)

x

)))j
·
(
Tylrn−1

((
h(h(x))

h(x)

)))j]
=

= Taylorn−1

[
(1) ·

(
Tylrn−1

((
h(x)

x

)))j
·
(
Tylrn−1

((
x

h(x)

)))j]
= 1

2

This result is in the core of the proof of the main result in this section. There is an
alternative and more general proof (it will be included in section 3.4, since it also works for
elements of order q ≥ 2) of this main result bypassing some points in this proof. We consider
that both proofs are interesting: the first one is more direct and combinatorial, and checks
directly the needed property doing computations with the entries of the matrix, the second
one is more abstract, is much more of a linear algebraic flavour, and also uses the results about
conjugacy in chapter 2.

Theorem 3.2.2 Suppose n ≥ 2. Let Dn−1 = (di,j)0≤i,j<n−1 ∈ Rn−1(K) be an involution
and take D̂n = (di,j) ∈ Rn such that Pn−1(D̂n) = Dn−1.

(a) If n is even, D̂n is an involution if and only if (dn,1 is arbitrary) and:

(3.4) dn,0 = −
1

2d0,0

n−1∑
k=1

dk,0dn,k

(b) If n is odd, D̂n is an involution if and only if (dn,0 is arbitrary) and:

(3.5) dn,1 = −
1

2d1,1

n−1∑
k=2

dk,1dn,k

Moreover, if the A-sequence of Dn−1 is (a0, · · · , an−2) then the needed an−1 to construct
D̂n is given by the formula:

(3.6) an−1 =
1

dn−1,n−1

dn,1 −
n−2∑
j=0

ajdn−1,j


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Proof: It is clear that the unique elements in R0(K) that multiplied by themselves are the
unity are (1) and (−1) (R0(K) is isomorphic to (K∗ .·) as a group. In R1 are those of the type:[

d0,0
d1,0 −d0,0

]
where d0,0 = ±1 and d1,0 is arbitrary.

The bigger cases, will be studied by following the iterative method that will be described
below.

We will divide the proof in two parts. In part 1, we will prove a claim related to how the
different steps of this iterative method fix. In part 2 we will describe this iterative method to
extend involutions in Rn(K) to involutions in Rn+1(K).

PART 1: Claim: Let m ≥ 2. Suppose Bm−1, Cm−1 ∈ Rm−1(K) are two involutions with a0 = −1
and such that Qm−2(Bm−1) = Pm−2(Cm−1), that is, the two indicated submatrices are
equal:

Bm−1 =


×
× •
× • •
× • • •

 , Cm−1 =


•
• •
• • •
⋆ ⋆ ⋆ ⋆


Let:

E(Bm−1, Cm−1) = {Dm ∈ Rm(K) : Pm−1(Dm) = Bm−1 and Qm−1(Dm) = Cm−1}

that is, in relation to the previous diagram, the set of matrices of the type:
×
× •
× • •
× • • •
dm0 ⋆ ⋆ ⋆ ⋆


where dm0 ∈ K. Then,

(i) If m is even, there is a unique involution in E(Bm−1, Cm.1)
(ii) If m is odd, any matrix in E(Bm−1, Cm−1) is an involution.

In order to prove this claim, suppose Bm−1 = (bi,j)i,j=0···m−1 and Cm−1 = (ci,j)i,j=0···m−1.
Let Dm = (di,j)i,j=0···m ∈ E(Bm−1, Cm−1). Then:

di,j = bi,j = ci−1,j−1 for i, j = 1, · · · ,m− 1

di,0 = bi,0 i = 0, · · · ,m− 1 and dm,j = cm−1,j−1 i = 1, · · · ,m

Consequently, the unique entry in Dm which is not determined by Bm−1 and Cm−1 is
dm,0.
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By choosing suitable blocks and using matrix multiplication by blocks we can compute

D2
m = (d̄i,j)i,j=0,··· ,m where, except for the place (m, 0), d̄i,j =

{
1, if i = j
0, if i ̸= j

and in the

place (m, 0) we have d̄m,0 =

m∑
k=0

dm,kdk,0. Hence Dm is an involution if and only if:

(3.7) d̄m,0 =
m∑
k=0

dm,kdk,0 = 0

(i) Suppose m is even. Since Dm is a Riordan matrix with a0 = −1, then dm,m = d0,0
and the unique value of dm,0 making (3.7) hold is

dm,0 = −
1

2d0,0

m−1∑
k=1

dm,kdk,0

(ii) Suppose m is odd and write m = 2n+ 1 with n ≥ 1. Since Dm is a Riordan matrix
with a0 = −1, then dm,m = −d0,0 consequently (3.7) is equivalent to:

2n∑
k=1

dk,0d2n+1,k = 0

Note that the above equality depends only on the matrices Bm−1 and Cm−1 and that:

2n∑
k=1

dk,0d2n+1,k = d1,0d2n+1,1 +

2n∑
k=2

dk,0d2n+1,k = (∗)

Since Cm−1 is an involution we get:

d2n+1,1 =
1

2d0,0

2n∑
k=2

dk,1d2n+1,k

and then:

(∗) = d1,0
2d0,0

2n∑
k=2

dk,1d2n+1,k+

2n∑
k=2

dk,0d2n+1,k =
1

2d0,0

2n∑
k=2

(d1,0dk,1+2d0,0dk,0)d2n+1,k =
1

2d0,0
(∗∗)

So we need to check that (∗∗) equals 0.

• Dividing the expression above into even and odd rows we get:

(∗∗) =
n∑
i=1

(d1,0d2i,1 + 2d0,0d2i,0)d2n+1,2i +
n−1∑
i=1

(d1,0d2i+1,1 + 2d0,0d2i+1,0)d2n+1,2i+1
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• As we know that P2 ◦ · · · ◦ Pm−2(Bm−1) is an involution, then:

d1,0d2,1 + 2d0,0d2,0 = 0

thus:

(∗∗) =
n∑
i=2

(d1,0d2i,1 + 2d0,0d2i,0)d2n+1,2i +
n−1∑
i=1

(d1,0d2i+1,1 + 2d0,0d2i+1,0)d2n+1,2i+1

• As P2i ◦ · · · ◦ Pm−2(Bm−1) is an involution, then:

2d0,0d2i,0 +
2i−1∑
k=1

dk,0d2i,k = 0

or equivalently

(3.8) 2d0,0d2i,0 + d1,0d2i,1 = −
2i−1∑
k=2

dk,0d2i,k

• And since P2i+1 ◦ · · · ◦ Pm−2(B) is an involution then:

2i∑
k=1

dk,0d2i+1,k = 0

or equivalently

(3.9) d1,0d2i+1,1 = −
2i∑
k=2

dk,0d2i+1,k

• Hence, by using (3.8) and (3.9) in (∗∗) we get:

(∗∗) =
n∑
i=2

(
−

2i−1∑
k=2

dk,0d2i,k

)
d2n+1,2i+

n−1∑
i=1

(
−

2i∑
k=2

dk,0d2i+1,k + 2d0,0d2i+1,0

)
d2n+1,2i+1

gathering again together the even and odd rows and removing common factors we
get:

(∗∗) =
n−1∑
i=1

2d0,0d2i+1,0d2n+1,2i+1 −
2n−1∑
j=2

dj,0

2n∑
k=j+1

dk,jd2n+1,k

• On the other hand, as Qm−2i ◦ · · · ◦Qm−2(Cm−1) is an involution then:

2n∑
k=2i+1

dk,2id2n+1,k = 0
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• We only have to take care of odd columns j = 2i+ 1 then:

(∗∗) =
n−1∑
i=1

2d0,0d2i+1,0d2n+1,2i+1 −
n−1∑
i=1

d2i+1,0

2n∑
k=2i+2

dk,2i+1d2n+1,k

• As Qm−(2i+1) ◦ · · · ◦Qm−2(C) is an involution then:

−2d0,0d2n+1,2i+1 +

2n∑
k=2i+2

dk,2i+1d2n+1,k = 0

• So finally we get:

(∗∗) = −
n−1∑
i=1

d2i+1,0

(
−2d0,0d2n+1,2i+1 +

2n∑
k=2i+2

dk,2i+1d2n+1,k

)
= 0

PART 2: Let Dn−1 = Rn−1(d(x), h(x)) = (di,j)0≤i,j≤n−1 ∈ Rn−1 be an involution. Suppose that
D̂n ∈ Rn(K) with Pn−1(D̂n) = Dn−1.

• We have that:

Qn−2(Qn−1(D̂n)) = Rn−2
(
d(x) · (h(x))2, h(x)

)
= (di,j)2≤i,j≤n

is an involution.
• In order to D̂n to be an involution, Qn−1(D̂n) must be an involution. Note that:

Qn−1(D̂) ∈ E(Qn−2(Dn−1), Qn−2(Qn−1(D̂n)))

• From part 1 we get all the results related to dn,1 in order to Qn−1(D̂) to be an
involution. In this case, note that

D̂n ∈ E(Dn−1, Qn−1(D̂n))

• From part 1 again we obtain all the results in the theorem related to dn,0. Finally,
by using the Riordan structure of D̂n we get the formula for an−1 and the proof is
finished.

2

It is clear that there are Riordan matrices such that for some n ∈ N, their n-th projections
are involutions but their (n + 1)-th projections are not. Those matrices are not involutions.
But, in the result below, we will point out that the property to be an involution can be lifted
from finite Riordan groups to the infinite one by using the corresponding maps Πn concerning
the inverse limit structure in R(K).
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Corollary 3.2.3 Any Riordan involution Dn ∈ Rn can be extended to a Riordan involution
Dn+1 ∈ Rn+1, i.e. Pn(Dn+1) = Dn.

Equivalently, for any finite Riordan involution Dn ∈ Rn there is an infinite Riordan
involution D ∈ R such that Πn(D) = Dn.

An immediate consequence of Theorem 3.2.2 is the following:

Corollary 3.2.4 Let α =
∑

i∈N αix
i be an arbitrary formal power series then:

(i) There is an unique nontrivial involution that we will denote by I+,α = (di,j)i,j∈N such
that:

d0,0 = 1, d2i+1,0 = α2i and d2i+2,1 = α2i+1 for i = 0, 1, · · ·

(ii) There is an unique nontrivial involution that we will denote by I−,α = (di,j)i,j∈N such
that:

d0,0 = −1, d2i+1,0 = α2i and d2i+2,1 = α2i+1 for i = 0, 1, · · ·

Moreover, any nontrivial Riordan involution can be constructed by this way.

Corollary 3.2.5 We can construct nontrivial involutions D = (di,j)i,j∈N with A-sequence
A =

∑
i∈N aix

i such that

d2i+1,0 and a2i+1 are arbitrary.



10 CHAPTER 3. INVOLUTIONS AND ELEMENTS OF FINITE ORDER

3.3 Examples and Related Aspects

Example 3.3.1 (Non trivial involutions I+,α and I−,α) Let α(x) = α0 + α1x + . . . ∈
K[[x]]:

I+,α =



1
α0 −1
d2,0 α1 1

α2 d3,1 d3,2 −1
d4,0 α3 d4,2 d4,3 1

...
...

...
...

... . . .


I−,α =



−1
α0 1

c2,0 α1 −1
α2 c3,1 c3,2 1

c4,0 α3 c4,2 c4,3 −1
...

...
...

...
... . . .


Remark 3.3.2 (Non-trivial involutions and the sign) Non trivial diagonal involutions
are:

I+,0 = R(1,−x) and I−,0 = R(−1,−x)

and thus:
I−,0 = −I+,0

But, in general
−I+,α = I−,−α

Note that we have the relation:
I±,α = I+,0I∓,αI−,0

Example 3.3.3 (Some involtutions for different values of α(x))

I+,
1

1−x =



1

1 −1
−1

2 1 1

1 −3
2 −3 −1

−9
8 1 15

2 5 1

1 17
8 −15 −35

2 −7 −1
...

...
...

...
...

... . . .


A-sequence: (−1,−2, 0 , 1, 1,−2, . . .)

I
+, −2x

1−4x2 =



1

0 −1
0 -2 1

0 −4 4 −1
0 -8 12 −6 1

0 −16 32 −24 8 −1
...

...
...

...
...

... . . .


A-sequence: (−1, 2, 0 , 0, 0, . . .)
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I
+, 1

(1−x)2 =



1

1 −1
−1 2 1

3 −5 −5 −1
−4 4 20 8 1

5 32 −56 −44 −11 −1
...

...
...

...
...

... . . .


A-sequence: (−1,−3, 0 , 1, 8,−24, . . .)

Let C(x) be the generating function of the Catalan numbers:

I+,C(x) =



1

1 −1
−1

2 1 1

2 −3
2 −3 −1

−45
8 5 15

2 5 1

14 −131
8 −24 −35

2 −7 −1
...

...
...

...
...

... . . .


A-sequence: (−1,−2, 0 ,−4, 8, . . .)

As it can be easily checked in the above examples, all of those involutions has an A-sequence
of the type (−1, a1, 0, a2, . . .). This property will be formally proved (proposition 3.5.1).

A more interesting example appears when we take α an arbitrary odd power series.

Proposition 3.3.4 (Involutions in F1(K)) An involution I+,α ∈ R(K) belongs to
A(K) if and only if α(x) is an odd power series.

Equivalently, this result could be stated in the following way: for any sequence
(ω2, ω4, ω6, . . .) there is a unique non-trivial involution ω(x) ∈ F1(x) (non-trivial this
time means that ω′(0) = −1) of the type:

ω(x) = −x+ ω2x
2 + ω3x

3 + ω4x
4 + ω5x

5 + . . .

Moreover, for any n odd ωn is given by:

ωn =
1

2

n−1∑
k=2

([xn]ω(x))k · ωk

Proof: It is a direct consequence of the formulas of theorem 3.2.2 taking all the parameters
dk0 equal 0.

2
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In the realm of formal power series, the functional equation ω(ω(x)) = x is known as the
Babbage equation. As a corollary of our result, we have proved a conjecture posted by T.
X. He (page 349 in [43]).

Corollary 3.3.5 The Taylor polynomial of order 10 of any nontrivial solution, ω(x) ∈
K[[x]], of Babbage’s equation is

(3.10) −x+β0x
2−β2

0x
3+β1x

4+(2β4
0−3β0β1)x5+β2x

6+(−13β6
0+18β3

0β1−4β0β2−2β2
1)x

7+

+β3x
8 + (145β8

0 − 221β5
0β1 + 35β3

0β2 + 50β2
0β

2
1 − 5β0β3 − 5β1β2)x

9 + β4x
10

where β0, β1, β2, β3, β4 ∈ K. Moreover, for any values β0, β1, β2, β3, β4 ∈ K the expression
(3.10) is the Taylor polynomial of order 10 of a nontrivial solutions of Babbage’s equation.

Another interesting example arises when we take α an arbitrary even power series and
we construct I−,α. In this case, Theorem 3.2.2 gives us an iterative process to compute its
A-sequence which appears in the first column in that involution:

Proposition 3.3.6 Let α(x) be an even formal power series and I−,α = (di,j)i,j∈N. Then
the generating function of the A-sequence of I−,α is:

A(x) =
∞∑
n=0

dn,0x
n

Proof: In order to see this, note that if α(x) is even d2i+1,1 = α2i+1 = 0 and by using (3.5)
we get dn,1 = 0 for all n ≥ 2. Let us proceed by induction. For n = 2 from (3.6) in Theorem
3.2.2

a1 =
1

d11
(d2,1 − a0d1,0) = d1,0

Suppose true to n. What happens in n+1? Taking into account that dn+1,1 = 0, by induction
hypothesis ak = dk,0 for all k ≤ n− 1 and using again (3.6), we obtain

an =
1

dn,n

dn+1,1 −
n−1∑
j=0

ajdn,j

 =
1

dn,n

− n−1∑
j=0

dn,jdj,0


As I−,α is an involution, the product of its n-row by its 0-colunm is 0, then

n∑
j=0

dn,jdj,0 = 0 ⇔ −
n−1∑
j=0

dn,jdj,0 = dn,ndn,0.
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so

an =
1

dn,n

− n−1∑
j=0

dn,jdj,0

 =
1

dn,n
(dn,ndn,0) = dn,0

2

Some special nice examples of involutions are the self-dual ones, due to their symmetries
(see sections 1.11, 1.12).

Proposition 3.3.7 R(d(x), h(x)) ∈ R is a self-dual involution if and only if:

h(h(x)) = x and d(x) = ±

(√
xh′(x)

h(x)

)

Proof: According to (the proof of) theorem 1.12.4 and the introduction of section 3.1 the
conditions that must be satisfied simultaneously by d(x) and by h(x) if R(d(x), h(x)) is a self
dual involutions are, respectively:{

d · d(h(x)) = 1

h(h(x)) = x
and

{
d(x) = d(h−1(x))

h′(h−1(x))
· x
h−1(x)

h(h(x)) = x

In theorem 1.12.4 we already showed that in order to satisfy both equations in the second
system:

d(x) = λ ·

(√
x
h′(x)

h(x)

)
· eΦ(x,h(x))

with λ ∈ K∗ and Φ(x, t) a symmetric bivariate power series in K[[x, t]]. If we impose to this
d(x) to satisfy also the first equation in the first system we have, at the first sight, that λ = ±1
and thus this equation is:[(√

x
h′(x)

h(x)

)
· eΦ(x,h(x))

]
·

[(√
h(x)

h′(h(x))

h(h(x))

)
· eΦ(h(x),h(h(x)))

]
= 1

and since h(h(x)) = x and Φ(x, t) is symmetric, this is equivalent to:(√
h′(h(x)) · h′(x)

)
· e2Φ(x,h(x))) = 1

By taking derivatives from h(h(x)) = x we obtain that h′(h(x)) ·h′(x) = 1 and so this equation
is in fact:

e2Φ(x,h(x))) = 1

where, modulo the sign that we have considered with the parameter λ implies that:

eΦ(x,h(x))) = 1

2
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Example 3.3.8 (Constructing a self-dual involution.) Below the first step for construct-
ing a self-dual involution is shown:

d0,0 = −1,

 1
γ0 −1

d1,−1 γ0 1

 ,


−1

d−1,−2 1
d0,−2 γ0 −1
γ1 d1,−1 γ0 1

d2,−2 γ1 d2,0 d2,1 −1




1
d−2,−3 −1
d−1,−3 d−1,−2 1
d0,−3 d0,−2 γ0 −1
d1,−3 γ1 d1,−1 γ0 1

γ2 d2,−2 γ1 d2,0 d2,1 −1
d3,−3 γ2 d1,3 d3,0 d3,1 d3,2 1


with d−j,−i = di,j and those parameters γi ∈ K being arbitrary.

The study of pseudo-involutions is also of our interest. We say that D ∈ R is a
pseudo-involution if and only if D · R(1,−x) is an involution. The interest in the study of
pseudo-involutions is related to the fact that, in case we are considering entries in Z, the more
convenient group to be consider is C(Z), and so we cannot expect to find regular involutions
there.

Remark 3.3.9 Note that once obtained an involution by using the formula, to get the corre-
sponding pseudo-involution we have only to change signs suitably.

For instance, we are going to compute:

Proposition 3.3.10 (Pseudo-involutions in the Toeplitz subgroup) Let α(x) be a
formal power series such that α2i+1 = −α2i. Then I+,ααI+,0 and I+,αI+,0 are pseudo-
involutions in the Toeplitz subgroup. Moreover, any pseudo-involution in the Toeplitz
subgroup can be obtained by this way.

Proof: For n = 2 we get

I+,αI+,0 =

 1
α0 −1
d2,0 −α0 1

 1
−1

1

 =

 1
α0 1
d2,0 α0 1


By induction, we suppose that is true for every k ≤ n, this means that a0 = −1 and ak = 0 for
1 ≤ k ≤ n − 1, then, in particular dk+1,1 = −dk,0 for 1 ≤ k ≤ n − 1. Once again by Riordan
involution formula:

an = (−1)n(dn+1,1 + dn,0) = 0
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As an example, note that the product:

1
α0 −1
1
2α

2
0 −α0 1

α2 −1
2α

2
0 α0 −1

α0α2 − 1
8α

4
0 −α2

1
2α

2
0 −α0 1

α4
1
8α

4
0 − α0α2 α2 −1

2α
2
0 α0 −1

 · I
+,0

belongs to the Toeplitz subgroup. 2

In [25], G.-S. Cheon, H. Kim and L.W. Shapiro treat, from a different point of view, this
kind of involutions.

3.4 Elements of finite order in R(K)

Totally analogous to our previous study of involutions, we can produce similar results for
finite elements of order q. Similarly to what happened with involutions, we will talk about
non-trivial elements of finite order q for those matrices such that the rate of the geometric
progression in the main diagonal is a root of unity of order q.

Remark 3.4.1 As happened in the case of involutions, trivial elements of finite order q are
elements of finite order q′ with q′ dividing q multiplied by a constant.

This time, we are only interested in elements in R(C), F1(C), since among the fields
considered in the previous sections, is the one which has roots of unity of order q.

Remark 3.4.2 Fon non-trivial involutions we can restrict our study to those matrices R(d(x), h(x))
with d(0) = 1, since the rest of them are one of those multiplied by a constant. We will do this
assumption throughout the rest of this section.

So our main result is the following:

Theorem 3.4.3 (Analogous to Theorem 3.2.2) Suppose n ≥ 2. Let Dn−1 =
(dij)0≤i,j≤n−1 ∈ Rn−1(C) be an involution and take D̂n = (dij)0≤i,j≤n ∈ Rn(C) such
that Pn−1(D̂n) = Dn−1.

• If n ≡ 0 mod q for any dn,1, there is a unique dn,0 such that D̂n is an element of
finite order q.

• If n ≡ 1 mod q for any dn,0, there is a unique dn,1 such that D̂n is an element of
finite order q.

• In other case any Xn+1 extending Xn is an element of finite order q.
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Proof: As usual we may assume that Dn−1 = Rn−1(d(x), h(x)) where d(0) = 1. Let λ be the
multiplier of h(x).

• Obviously there is at least one matrix in Rn(C) being an involution and extending Dn−1.
According to our results of conjugacy (see theorems 1.14.6, 1.14.7 and their proofs):

Dn−1 = X−1n−1Rn−1(1, λx)Xn−1, for some Xn−1 ∈ Rn−1(C)

Let X̂n be any matrix extending Xn−1, that is, such that Pn−1(X̂n) = Xn−1. Then
obviously:

X̂−1n Rn(1, λx)X̂n

is a matrix of finite order q that extends Dn−1.

• Similarly to the case of involutions, dn,0, dn1 must satisfy an equation for D̂n being an
element of finite order q. By using block multiplication we can see that the last row of
the following product:

D̂q
n =

 Dn−1

dn,0 . . . dn,n−1 dnn


q

is the row:

(3.11) [dn0, . . . , dn,n−1]D
q−1
n−1 + dnn[dn0, . . . , dn,n−1]D

q−2
n−1 + . . .+ dq−1nn [dn0, . . . , dn,n−1]

and taking into account that dnn = λn (which is a q-root of unity) we have that the
0-entry and the 1-entry in this row are, respectively of the type:

(1 + (λn) + . . .+ (λn)q−1)dn0 + [. . .]

and:
1

λ
(1 + λnλq−2 + . . .+ (λn)q−1)dn1 + [. . .]

or equivalently (we refer to this last equation):

1

λ
(1 + λn−1 + . . .+ (λn−1)q−1)dn1 + [. . .]

where nothing inside the brackets depend on dn0, dn1. Since we want the expression in
(3.11) to equal 0, those expressions give two equations of the type:

(1 + (λn) + . . .+ (λn)q−1)dn0 + [. . .]

1

λ
(1 + λn−1 + . . .+ (λn−1)q−1)dn1 = [. . .]



3.5. MORE ABOUT THE A-SEQUENCE 17

• For n ̸≡ 0, 1 the two equations above have a nonzero coefficient of the corresponding
indeterminate (dn0 or dn1). For n ≡ 0, 1 the corresponding equation has a zero coefficient
of the indeterminate. Since we know that this system has a solution, this means that
regarless of the corresponding indeterminate, D̂n is an element of order q.

2

And again analogously to the case of involutions:

Corollary 3.4.4 Let two sequences sequence (a1, . . . , aq−1, aq+1, . . . a2q−1, a2q+1, . . .) and
(b2, . . . , bq, bq+2, . . . b2q, b2q+2, . . .). We can construct a unique Riordan element of order q
D = (dij)0≤i,j<∞ such that d00 = 1, d11 = λ an element of order q in C and:

∀n ∈ N, n ̸≡ 0 mod q, dn0 = an, ∀n ∈ N, n ̸≡ 1 mod q, dn1 = bn

Corollary 3.4.5 Let a sequence (b2, . . . , bq, bq+2, . . . b2q, b2q+2, . . .) and let b1 an element
of order q in C. We can construct a unique element of finite order q in F1(C) of the type:

b1x+ b2x
2 + b3x

3 + . . .

3.5 More about the A-sequence
We will start by recalling that R(K) = T (K) o A(K). A consequence of this algebraic fact,
and of independent interest of our current discussion, is the following proof of proposition 0.3.7
that we are including now as a part of this work:
Proof of the 2FT: Let (G, ∗) be a group, and (H, ∗) a normal subgroup of it. Let g, h ∈ H.
The equation:

h ∗ g = g ∗ x

in the indeterminate x ∈ G has a unique solution x ∈ H. Now by taking G = R(K) and
H = T (K), we have that there exists a unique solution:

R

(
h(x)

x
, x

)
·R (d(x), h(x)) = R(d(x), h(x)) ·X

which is equivalent to:

R

(
d(x) · h(x)

x
, h(x)

)
= R(d(x), h(x)) ·X
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that is:

(3.12)


d00
d10 d11
d20 d21 d22
...

...
... . . .



a0
a1 a0
a2 a1 a0
...

...
... . . .

 =


d11
d21 d22
d31 d32 d33
...

...
... . . .


which is exactly the identity we wanted (remember that X must belong to T (K), so is of the
type X = R(A(x), x)). It is easy to see that:

A(x) =
x

h−1(x)

2

As we have already mentioned, an important property of the A-sequence of the involutions
is the following:

Proposition 3.5.1 If R(d(x), g(x)) is a non-trivial Riordan involution then its A-sequence
is of the type (−1, a1, 0, a3, . . .).

Proof: Given a Riordan matrix D = (dij)0≤i,j<∞ with A-sequence (a0, a1, . . .), the terms
(a0, a1, a2) are already determined by Π3(D) = (dij)0≤i,j≤3 ∈ R3. According to theorem 3.2.2,
the elements in R3 that are involutions are those of the type:

±


1
d10 −1

−1
2d10d21 d21 1
d30 −1

2(d10 + d21)d21 −d10 − 2d21 −1


a0 is always the ration of the geometric progression in the diagonal, which in this case

equals 1. a1 can be obtained from d21, d11, d10 and a0 according to the formula that must be
satisfied for Riordan matrices:

d21 = a0d10 + a1d11

so in this case we obtain that a1 = −d10−d21. Analogously we can obtain a2 from the relation:

d31 = a0d21 + a1d21 + a2d22

we can see that in the previous matrix, a2 = 0.
2

There are several different ways to prove the above proposition. We have chosen just one.
In fact, all Riordan matrices with this condition form a subgroup:
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Proposition 3.5.2 The set of Riordan matrices with the 2-term in the A-sequence equal
0 is a subgroup of R(K) (for any field K, this time).

Proof: Let T denote this subset of R. To see that T is a group, we only need to see that:
• If two matrices belong to T , then so does their product. Since:

R(f(x), g(x)) = R(d(x), h(x)) = R(h(x) · d(g(x)), h(g(x)))

and the A-sequence of R(F (x), G(x)) is totally determined by G(x), we only need to
check that if R(1, g(x)), R(1, h(x)) belong to T , that is:

R(1, g(x)) =


1
0 a0
0 a0a1 a20
0 a0a

2
1 2a20a1 a30

...
...

...
... . . .

 R(1, h(x)) =


1
0 b0
0 b0b1 b20
0 b0b

2
1 2b20b1 b30

...
...

...
... . . .


then so does R(1, h(g(x))) = R(1, g(x)) ·R(1, h(x)), which is:

1
0 a0b0
0 a0a1b0 + a20b0b1 a20b

2
0

0 a0a
2
1b0 + 2a20a1b0b1 + a30b0b

2
1 2a20a1b

2
0 + 2a30b

2
0b1 a30b

3
0

...
...

...
... . . .


It is easy to check that this matrix belongs to T .

• If a matrix belongs to T , then so does its inverse. Following a similar reasoning, we only
need to prove that for a given element in A ∩ T :

R(1, g(x)) =


1
0 a0
0 a0a1 a20
0 a0a

2
1 2a20a1 a30

...
...

...
... . . .


its inverse, which is:

R(1, g−1(x)) =



1
0 1

a0
0 −a1

a20

1
a20

0
−a21+2a21

a30
−2a1

a30

1
a30...

...
...

... . . .


and obviously belongs to T .
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2

Remark 3.5.3 It is not difficult to prove that the above subgroup is not normal.

Remark 3.5.4 The group described above can be described as the set of Riordan matrices
R(d(x), h(x)) such that:

h(x) = h1x+ h2x
2 +

h22
h1

x3 + h4x
4 + . . .

In view of the result above, we can search for groups similarly described:

Remark 3.5.5 The set of Riordan matrices with A-sequence of the type (a0, 0, a2, . . .) is also a
subgroup of R(K). In general, for m ≥ 3 the set of matrices with the m-term of the A-sequence
equal to 0 is not a group. Another groups of this flavour can be found, also related to the
metrics that we have already introduced for the Riordan group, but we are not going to develop
this here.

3.6 The group generated by the involutions I: Statement of the
Problem

Recall that an element M ∈ R(K) is an involution if and only if M = M−1. There is a
generalization in some sense of the concept of involution which is the concept of reversible
element. In this case M is not equal but conjugated to M−1.

It is well known that:

Remark 3.6.1 For every group, if an element M of any group is the product of two involutions
then is conjugated to M−1. In order to see this just note that:

M = I1I2 ⇒ I1M1 = I2 ⇒ I1MI1 = I2I1 ⇒M−1 = I2I1 ⇒M−1 = I1MI1

Pseudo-involutions are a particular case of reversible elements.
For groups of matrices, there is a lot of work in the bibliography (see the work by W. H.

Gustafson, P. R. Halmos and H. Radjavi [40], by W. H. Gustafson and S. Kakutani [41], by
D. Z. Djokovic [28], or by M. J. Wonenburger [115]) studying the set of matrices which can be
writen as a product of involutions. For example:

Theorem 3.6.2 (Gustafson-Halmos-Radjavi, [40]) Every square matrix over a field,
with determinant ±1, is the product of no more than four involutions.

Even there is some work for infinite matrices (not in the Riordan matrices framework) done
by R. Slowik in [106]. Concerning the same problem for the group F1(C) a lot has been also
writen (see the work by E. Kasner in 1916 [55] and the recent ones by A. G. O’Farrell [88,89]).
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Now, our main result in this section deals with the analogue problem in R(K): to study
the group and the structure of it generated by the involutions in R(K).

We will use the following notation:

Definition 3.6.3 Let SI(K) be the set of all Riordan involutions and by I(K) the group
generated by Riordan involutions.

It is known, and easy to prove, that:

Remark 3.6.4 The group generated by involutions in any group is a normal subgroup of such
a group.

Other subgroup that we are going to use in the description of the subgroup generated by
involutions is K = {R(1, x),−R(1− x), I+,0, I−,0}. It is easy to prove that any set of the type
{R(1, x),−R(1 − x), A,B} for A,B ∈ SI(K) is in fact a subgroup of R(K) isomorphic to the
Klein group of order 4.

The main result of this part of this chapter is:

Theorem 3.6.5 The subgroup generated by the involutions in R(K), denoted by I(K)
is the set of Riordan matrices with ±1 in the entry (0, 0) and A-sequence of the type
(±1, a1, 0, a3, a4, . . .).

Every element in I(K) is the product of no more that four involutions.
The analogue result holds for Rn(K).

3.7 The group generated by the involutions II: Proof of the
Main Result

Since we already know that the elements in the commutator of R(K) are those with ones in the
main diagonal, and we also know that a product of involutions in R(K) will have A-sequence
of the type (±1, a1, 0, a3, . . .), we will call special commutators to those elements in R′(K)
with A-sequence of the type (1, a1, 0, a3 . . .). We will denote the set of special commutators in
R(K) by SC(K), and this set is obviously a group

Note that, actually:

Remark 3.7.1 In order to prove theorem 3.6.5, we only need to show that for every special
commutator D, there exists three involutions H, I, J ∈ SI(K) such that:

(3.13) D ·R(1,−x) = H · I · J

This statement is lemma 3.7.4 below. In order to see that lemma 3.7.4 implies theorem
3.6.5, just see that:

• Every special commutator D is a product of at most 4 involutions.
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• Let T be matrix with A-sequence of the type (−1, a1, 0, a3, . . .). Then either T ·R(1,−x)
or −T ·R(1,−x) is a special commutator. So there exists H, I, J ∈ SI(K) such that:

(T ·R(1,−x))R(1,−x) = H · I · J or (−T ·R(1,−x))R(1,−x) = ·I · J

In any case, we can write T as a product of 3 involutions:

T = H · I, ·J or T = (−H) · I · J

On the other hand, no matrix of other type can be writen as a product of involutions for
obvious reasons.

Not only have we reduced our problem to prove lemma 3.7.4 but also, in the following
remark, we will split the proof of lemma 3.7.4 in two parts:
Remark 3.7.2 In the notation of the previous remark, if we consider that D · R(1,−x) =
R(d(x), h(x)) and:

H = R(f(x), g(x)), I = R(u(x), v(x)), J = R(α(x), ω(x))

finding I, J,K satisfying (3.17) is equivalent to find f(x), u(x), α(x) ∈ F0(K) and g(x), v(x), ω(x) ∈
F1(K) such that: {

d(x) = f(x) · u(g(x)) · α(v(g(x))))
h(x) = ω(v(g(x)))

For any given h(x) showing the existence of those ω(v(g(x))) is lemma 3.7.3. So the proof
of lemma 3.7.4 is just to find those f(x), u(x), α(x) for any possible combination of d(x), g(x),
v(x), ω(x).

Apart from the utility of the following lemma according to the previous remark, it is also
interesing itself and has its own consequences as we will see in section 3.8.
Lemma 3.7.3 Let h(x) such that the A-sequence of R(1, h(x)) is of the type (−1, a1, 0, a3, a4, . . .)
or equivalently that:

h(x) = −x+ h2x
2 − h22x

2 + h4x
4 + h5x

5 + . . .

Then there exists three involutions v(x), g(x), ω(x) ∈ F1(K) such that:

h(x) = ω(v(g(x)))

Proof: This result can be easily re-stated in terms of matrices in A(K),that is, we want to
show the existence of three involutions A = (aij)0≤i,j , B = (aij)0≤i,j and C = (aij)0≤i,j in
A(K) satisfying:

R(1, h(x)) = A ·B · C
or equivalently:

A ·R(1, h(x)) = B · C
or even better:

(3.14) A⊗ h(x) = B ⊗ ω(x)

This last statement will be more convenient for us. As usual, we will prove the correspond-
ing analogue for the partial groups An(K) by induction.
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• Base case: n = 3 We have already characterized involutions in A(K) (see proposition
3.3.4). So the equation we want to solve is:

1 0 0 0
0 −1 0 0
0 a21 1 0
0 −a221 −2a21 −1




0
−1
h2
−h22

 =


1 0 0 0
0 −1 0 0
0 b21 1 0
0 −b221 −2b21 −1




0
−1
c21
−c221


The above equality is equivalent to the system{

a21 − h2 = b21 − c21

(a21 − h2)
2 = (b21 − c21)

2

and it is clear that this system reduces to the following linear equation:

a21 − b21 + c21 = h2

which, obviously, has solutions.

• Induction step: n+ 1 ≥ 4 As induction hypothesis, suppose now that the analogue of
(3.14) in An(K) has solution:

An = (aij)0≤i,j≤n, Bn = (bij)0≤i,j≤n, Cn = (cij)0≤i,j≤n

In order to solve the corresponding analogue of equation (3.14) in An+1(K): An

0 an+1,1 . . . an+1,n+1




0
−1
...

hn+1

 =

 Bn

0 bn+1,1 . . . bn+1,n+1




0
−1
...

cn+1,1


only a new equation appears (corresponding to the last entry of the column vector) since
the rest can be solved by induction hypothesis:

(3.15)
n+1∑
k=1

an+1,khk =
n+1∑
k=1

bn+1,kck,1

We have two different cases:

– In the case n odd (3.15) can be written as:

(3.16) an+1,1 − bn+1,1 + cn+1,1 = hn+1 +
n∑
k=2

(an+1,khk − bn+1,kck,1)

According to the characterization of involutions made in proposition 3.3.4, for every
choice of an+1,1, bn+1,1, cn+1,1 we obtain that the Riordan matrices:

An+1 = (aij)0≤i,j≤n+1, Bn+1 = (bij)0≤i,j≤n+1, Cn+1 = (cij)0≤i,j≤n+1
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provided that the matrices obtained from the induction hypothesis:

An = (aij)0≤i,j≤n, Bn = (bij)0≤i,j≤n, Cn = (cij)0≤i,j≤n

also are.
– In the case n even, we obtain an equation similar to (3.16). But in order to construct

the involutions the coefficients an+1,1, bn+1,1, cn+1,1 are not arbitrary, they depend,
in particular, on an,1, bn,1 and cn,1.
So equation (3.16) can be reduced to an expression of the form:(
2h2 −

(n
2
+ 1
)
a2,1

)
an,1+

((n
2
+ 1
)
b2,1 − 2c2,1

)
bn,1+

((n
2
+ 1
)
c2,1 − nb2,1

)
cn,1 = K

where everything inside this K are elements that do not depend on the elements ak1, bk1,
ck1 for k < n.
Since (for n ≥ 4) in the study of the even case n + 2, we involve parameters of the
previous odd case n+ 1, we have to study compatibility between the equations:

an+1,1 − bn+1,1 + cn+1,1 = hn+1 +
∑n

k=2(an+1,khk − bn+1,kck1)

(
2h2 −

(
n+1
2 + 1

)
a21
)
an+1,1 +

((
n+1
2 + 1

)
b21 − 2c21

)
bn+1,1+

+
((

n+1
2 + 1

)
c21 − (n+ 1)b21

)
cn+1,1 = K

together all equations in the system have solution if

a21 − b21 + c21 = h2 and a21 ̸= b21

Putting all the piece together we have that as long as we make a choice of the parameters
a21, b21, c21: {

a21 − b21 + c21 = h2

a21 ̸= b21

we can solve the problem for A3(K). After this, we can do extensions by induction
progressively extending two rows at each time.

2

Now finally we can prove the result that implies theorem 3.6.5:

Lemma 3.7.4 For every special commutator D ∈ SC(K), there exists three involutions H, I, J ∈
SI(K) such that:

(3.17) D ·R(1,−x) = H · I · J
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Proof: As we already explained in remark 3.7.2, after having proved lemma 3.7.3, we only
need to find, for any:

d(x) = d0 + d1x+ d2x
2 + . . . ∈ F0(x)

and for any involutions:

g(x) = −x+g2x+g3x
3+. . . v(x) = −x+v2x

2+v3x
3+. . . ω(x) = −x+ω2x+ω3x

3+. . .

in F1(x), some f(x), u(x), α(x) in such a way that:

(i) d(x) = f(x) · u(g(x)) · α(v(g(x))))

(ii) H = R(f(x), g(x)), I = R(u(x), v(x)), J = R(α(x), ω(x))

After intensive inspection we conclude that we can choose α(x) = 1, so (i) reduces to:

(3.18) d(x) = f(x) · u(g(x))

But this equation is equivalent to:

(3.19) d(x) = R(f(x), g(x))⊗ u(x)

We will construct two power series:

f(x) = f0 + f1x+ f2x
2 + . . . u(x) = u0 + u1x+ u2x

2 + . . .

satisfying (3.18) and (ii) by induction. Denote by:

R(f(x), g(x)) = (aij)0≤i,j<∞ R(u(x), v(x)) = (bij)0≤i,j<∞

where obviously ai0 = fi, bi0 = ui for all i ∈ N.

• Base Step: n = 2 The analogue version of (3.19) in terms of partial Riordan matrices
is:

 1
f1 −1

f1(f1−g2)
2 g2 − f1 1

 1
u1

u1(u1−v2)
2

 =

 1
d1
d2


where some entries in the matrices and column vectors above are determined by the char-
acterization of involutions made in theorem 3.2.2 in order to satisfy (ii). This equation
is equivalent to: {

f1 − u1 = d1

(g2 − v2)u1 = 2d2 + g2d1 − d21

that has solution if g2 ̸= v2 which is provided in the proof of the previous lemma.
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• Induction Step: n+ 1 ≥ 3 We want to solve:

 Rn(f(x), g(x))

an+1,0 . . . an+1,n (−1)n+1




1
u1
...

un+1

 =


1
...
dn
dn+1


which is the analogue equation of (3.19). This is a system of equations and assuming
that the case n is solved by induction hypothesis, we only need to fix the equation
corresponding to the (n+ 1)-row:

an+1,0 + an+1,1u1 +

n−1∑
k=2

an+1,kuk + an+1,nun + (−1)n+1un+1 = dn+1

or equivalently:

(3.20) an+1,0 + an+1,1u1 + an+1,nun + (−1)n+1un+1 = K(1)
n+1

where K(1)
n+1 = dn+1 −

∑n−1
k=2 an+1,nun and so it does not depend on fn, fn+1, un, un+1.

Again we have to distinguish between two cases for this last equation:

– If n + 1 is odd, since we want R(f(x), g(x)) and R(u(x), v(x)) to be involutions,
according to the characterization of involutions made in theorem 3.2.2, an+1,1, bn+1,1

are fixed but do not depend on an+1,0 = fn+1 and on bn+1,0 = un+1 and so (3.20) is
of the form:

(3.21) fn+1 − un+1 = K(2)
n+1

where K(2)
n+1 = K(1)

n+1 − an+1,1u1 − an+1,nun and does not depend on fn+1, un+1.
– If n + 1 is even, since we want R(f(x), g(x)) and R(u(x), v(x)) to be involutions,

according to the characterization of involutions made in theorem 3.2.2, an+1,0 =
fn+1, bn+1,0 = un+1 are fixed, and so (3.20) is of the form:

(3.22) −1

2

n∑
k=1

ak0an+1,k + an+1,1u1 + an+1,nun −
1

2

n∑
k=1

bk0bn+1,k = K(1)
n+1

Since (for n ≥ 3) in the study of the even case n + 2 we involve parameters of the odd
case n+1, we must study compatibility between odd an even equations. So first we will
simplify (3.22).
Firstly, note that in (3.22) (n+1 is even) an+1,1, bn+1,1 depend on fn and un. So we can
think that (3.22) is of the type:
(3.23)(
−1

2
an+1,n

)
an0+

(
u1 −

1

2
a10

)
an+1,1+

(
an+1,n −

1

2
bn+1,n

)
bn0−

(
1

2
b10

)
bn+1,1 = K(3)

n+1
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where K(3)
n+1 = K(1)

n+1 + 1
2

∑n−1
k=2 ak0an+1,k + 1

2

∑n−1
k=2 bk0bn+1,k and does not depend on

fn, un, fn+1, un+1.
As we mentioned before, an+1,1, bn+1,1 depend on an0, bn0 since by definition the Riordan
matrices R(f(x), h(x)) and R(u(x), v(x)) satisfy:

an+1,1 = [xn+1](f(x) · g(x)) = f0gn+1 + f1gn + . . .+ fng1

bn+1,1 = [xn+1](u(x) · v(x)) = u0vn+1 + u1vn + . . .+ unv1

so (3.23) is in fact of the form:

(3.24)
(
−1

2
an+1,n +

1

2
a10 − u1

)
an0 +

(
an+1,n −

1

2
bn+1,n +

1

2
b10

)
bn0 = K(4)

n+1

where:

K(4)
n+1 = K(3)

n+1−
(
u1 −

1

2
a10

)
(f0gn+1+f1gn+. . .+fn−1g2)+

(
1

2
b10

)
(u0vn+1+u1vn+. . .+unv1)

and since for the Riordan matrices R(f(x), g(x)) and R(u(x), v(x)) by definition we have
that (f0 = u0 = 1 and g1 = v1 = −1):

an+1,n = −f1 + nf0g2, bn+1,n = −u1 + nu0v2

and so (3.24) is equivalent to:(
−n

2
g2 + (f1 − u1)

)
an0 +

(
ng2 −

n

2
v2 − (f1 − u1)

)
bn0 = K(4)

n+1

Remember from the base step n = 2, f1 − u1 = d1 and so this equation is:(
−n

2
g2 + d1

)
an0 +

(
ng2 −

n

2
v2 − d1

)
bn0 = K(4)

n+1

Now putting all the pieces together, we have found a solution in R2(K) that we can
extend progressively by induction (extending two rows at each step) to a solution of
equation (3.19) if and only if the following system has a solution for every n:{

fn+1 − un+1 = K(2)
n+1(

−n+1
2 g2 + d1

)
fn+1 +

(
(n+ 1)g2 − n+1

2 v2 − d1
)
bn+1,0 = K(4)

n+2

In order to discuss the existence of a solution for this system, we only need to look at its
matrix of coefficients:[

1 −1(
−n+1

2 g2 + d1
) (

(n+ 1)g2 − n+1
2 v2 − d1

)]
This matrix has the same determinant than:[

1 −1
0 (g2 − v2)

]
and since from the proof of the previous result we know that g2 ̸= v2 we conclude that
this determinant is not equal to 0.

2
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3.8 Some Consequences
Interpreting elements in F1(K) as elements in A(K) via the usual identification, we have proved
by the way (as a direct corollary of theorem 3.6.5) that:

Corollary 3.8.1 Consider K = R,C. In F1(K) we have that:

(1) The product of any odd number of involutions is the product of three. A power series
is the product of three involution if and only if it is of the type:

(3.25) −x+ ax2 − a2x+ . . .

(2) The product of any even number of involutions is the product of four. A power series
is of this type if and only if:

(3.26) x+ ax2 + a2x3 + . . .

Note that the conditions (3.25), (3.26) are equivalent to impose that the corresponding
matrices have A-sequences of the type (1, a1, 0, a3, . . .), (−1, a1, 0, a3, . . .) in each case.

This was already known by O’Farrell (see [88]), but his paper did not came to our knowledge
after we had already proved theorem 3.6.5. It would have been possible to obtain a shorter
proof of theorem 3.6.5 by using this result, but we have decided to maintain our technique of
induction in the partial Riordan groups to prove it.

On the other hand, a first immediate consequence of theorem 3.6.5 (we will skip the proof)
for the algebraic structure of R(K) is the following:

Corollary 3.8.2
I(K) ∼= SC(K)oK(K)

Remark 3.8.3 Finally we must say that, as we announced, I is a normal subgroup of R(K),
so it would be possible to wonder how the quotient R/I is. This quotient can be easily found,
but the description is quite long, so we have decided to skip it from this thesis.



Chapter 4

Infinite Dimensional Lie Group
Structure for the Riordan group

In this chapter, K will be R or C.
As we have already presented in chapter 1, the Riordan group can be described as the

inverse limit of an inverse sequence involving the groups Rn(K) < GLn+1(K). As we will
show in a moment, those groups are naturally Lie groups and so, in fact, we are obtaining
automatically a pro-Lie group for the Riordan group R(K).

Not any pro-Lie group happens to be a Lie group (see [45] for an exhaustive topological
treatment of pro-Lie groups) but R(K) does (it is a Frechet Lie group modelled over KN).

As happened before, this pro-Lie group or inverse limit structure will allow us to lift some
features from the Lie group structure of the partial Riordan group to the Lie group structure
of R (the characterization of the tangent algebra, the exponential, stabilizers,...).

The Lie group structure over R(K), among other things:

• Is interesting itself as a toy example of the pro-Lie group theory.

• Presents another interesting class of infinite matrices that represent the tangent algebra
of R(K), and that also has a natural action over K[[x]] that remains to be explored.

• Will allow us, among other things, to solve some initial value problems, recover some
known subgroups as stabilizers and compute their tangent algebra.

The organization of this chapter is the following:

• Some bibliography was already proposed in section 0.4. Anyway some basic definitions
will be recalled in sections 4.1, 4.2.

• In sections 4.3, 4.4 and 4.5 the Lie group structure of the finite matrix groups R(K) will
be studied. In the first one, we will present their manifold structure, in the second one,
we will make some comments about their Lie group structure and finally in the last one
we will present their Lie algebra.

• In section 4.6 we will show that the bonding maps Pn : Rn+1 → Rn, that were already
presented in chapter 1 are Lie groups homomorphisms in this new setting. This will allow
us to describe R(K) as a pro-Lie group below.

1
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• In sections 4.7 and 4.8 we will study the Frechet Lie group structure of R(K). In the
first one we will study some basic facts about this structure and in the second one we
will study the compatibility between this structure and the natural structure of pro-Lie
group of R(K).

• In sections 4.9, 4.10 4.11 we will explain in detail the structure of the Lie algebra and
the exponential for R(K).

• In section 4.12 we will shortly comment the analogous Lie group structure with which
R∞∞ is endowed.

• In section 4.13 an interpretation in terms of power series for the multiplication of an
element in the Lie algebra of R(K) by a column vector is given.

• The rest of the sections in this chapter are devoted to the applications described above
of the Lie group structure of R(K).

4.1 Some Basic Definitions: classical Lie groups
In this chapter we will recall some basic concepts and notation about classical Lie Groups.
Many books could be used as a reference for that, for example [37, 90]. Specific references for
matrix Lie groups are also available, for example [5].

Definition 4.1.1 Let K = R or C. An analytic K-Lie group G is a K-analytic manifold jointly
with a product operation converting G into a group and such that

(i) The multiplication
G×G → G
(a, b) 7→ ab

is a K-analytic map.

(ii) The inversion
G → G
a 7→ a−1

is a K-analytic map.

Example 4.1.2 For all n ≥ 0 GLn(K) is a Lie group. It is considered to be a differentiable
submanifold of Kn2 via the natural identification:

φ̃n :Mn(K) −→ Kn2

a11 . . . a1n
...

...
an1 . . . ann

 ≡ (a11, . . . , an1, . . . , a1n, . . . , ann)

that maps GLn(K) into an open subset of Kn2.
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Let G be a Lie group. Let H ≤ G be a subgroup which is also a closed submanifold of G.
Then H is said to be Lie subgroup of G. Lie subgroups of GLn(K) are usually called matrix
groups.

Lie group homomorphisms are defined as smooth maps preserving the operation and this
leads to the definition of Lie group isomorphism.

Also of our interst is the following:

Definition 4.1.3 Let G be a Lie group and X a differentiable manifold. An homomorphism:

α : G −→ Diff(X)

where Diff(X) is the group of diffeomorphisms of X into itself, is called an action on
X if the following map, bi-univocally determined by the previous one, is differentiable:

G×X −→ X

(g, x) 7−→ (α(g))(x)

where G×X is endowed with the differentiable structure of product of differentiable manifolds.

For any Lie group G one can easily find three actions of G on itself:

Example 4.1.4 The following three maps are actions of G on itself:

Lg(x) = gx Rg(x) = xg Adjg = gxg−1

Example 4.1.5 Since elements in GLn can be naturally identified with diffeomorphisms of
Kn into intself, there is a natural action:

GLn(K) −→ Diff(Kn)

given by the map:

GLn(K)×Kn −→ Kn

(M, (x1, . . . , xn)) 7−→M

x1...
xn


One of the basic methods of the theory of Lie groups consists of reducing questions con-

cerning Lie groups to certain problems of linear algebra. This is done by assigning to every
Lie group G its tangent algebra L(G) which is a Lie algebra, a vector space with a Lie bracket
(definition can be found in the bibliography, for example [37] chapter 2).

The map assigning to each Lie group a Lie algebra is called the Lie functor (between the
category of Lie groups and the category of Lie algebras) and will be denoted by L. As a vector
space, the Lie algebra associated to a Lie group G is the tangent space of G at its identity
element e, denoted by TeG.
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Proposition 4.1.6 Let L(GLn(K)) be the Lie algebra of GLn(K). Consider the set of
matrices Mn(K) with respect to the Lie bracket:

[A,B] = AB −BA

Then (Mn(K), [·, ·]) is a Lie algebra and is a full and faithful representation of
L(GLn(K)), that is, there exists an isomorphism of Lie algebras between L(GLn) and
(Mn(K), [·, ·]).

Analogously, for any matrix group S, L(S) has a full and faithful representation as a
subalgebra of (Mn(K), [·, ·]).

The Lie algebra “almost” determines the Lie group. For example simply connected Lie
groups are determined up to isomorphism by their Lie algebra (p. 43 in [37]).

An interesting result for us will be the following:

Proposition 4.1.7 Let α : G −→ Diff(X) be an action of the Lie group G over the
differentiable manifold X. We define the stabilizer of an element in X with respect to
this action to be the set:

Gx = {g ∈ G : α(g)(x) = x}

(i) (Theorem 2.1 in chapter 1 in [37]) For any x ∈ X, Gx is a Lie subgroup of G.

(ii) (Theorem 1.1 in chapter 2 in [37]) L(Gx) = {v ∈ L(G) : (D(α)(v))(x) = 0}

Recall also that:

Definition 4.1.8 A one-parameter subgroup in the Lie group G is Lie group homomor-
phism:

φ : (R,+) −→ G

However, sometimes we will also use the term “one-parameter subgroup” for the image of this
map.

Remark 4.1.9 It is easy to see (proposition 3.1 in chapter 2 in [37]) that a path on a Lie
group G with identity element e:

γ : R −→ G

is a one-parameter subgroup if and only if its velocity is constant and γ(0) = e.

There is a natural bijection between one parameter subgroups in G and tangent vectors in
v ∈ Te(G). The one-parameter subgroup with velocity v ∈ Te(G) will be denoted by γv.



4.2. LIE GROUPS MODELLED OVER FRECHET SPACES 5

Thanks to remark 4.1.9 we can define the following:

Definition 4.1.10 Let G be a Lie group and L(G) be its Lie algebra. The exponential map
is the application:

exp: L(G) −→ G

exp(v) = γv(1)

It is easy to verify that:
γv(t) = exp(tv)

If G is a matrix group, the exponential map is given by the usual exponential of matrices.
These exponential matrices allow us to solve certain differential equation for matrices as

we will see later.

4.2 Some Basic Definitions: Lie groups modelled over Frechet
spaces

For this section we will follow the work by J. Milnor [82] although a readible development of
the subject is also available in [37].

A classical Lie group is a smooth manifold (that is, every point has a neighbourhood
diffeomorphic to an open subset in Rn) with a compatible group structure. Now with the new
definition, Lie groups will not need to be manifolds in this classical sense but Frechet manifolds
(that is, every point has a neighbourhood diffeomorphic to an open subset of a Frechet space)
and having a compatible group structure.

Recall that:

Definition 4.2.1 A real or complex topological vector space X is a vector space with a
topology which is Hausdorff and such that the operations of sum and scalar multiplication (with
respect to the correspondent product topology) are continous maps.

A Frechet space is a topological vector space X such that:

• X is locally convex , that is, every neighborhood of zero U , contains another neighbor-
hood of zero U ′ which is convex.

• The topology on X can be induced by a translation invariant metric, i.e., a metric d such
that:

∀x, y, a ∈ X, d(x, y) = d(x+ a, y + a)

• X is a complete metric space.

In the original notes by Milnor [82] a more general class of spaces is considered for doing
differential calculus (locally convex vector spaces) but the framework of Frechet spaces will be
enough for us. The reason of the interest of the study of differential calculus and differential
geometry over Frechet spaces is other apart from just generalizing, but we are not going to
discuss this here.
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Roughly speaking, it is possible to do differential calculus between frechet spaces, since
the Gateaux derivative can be well defined, and so we can define Ck or analytic functions.
Some basic properties of the differential calculus still hold. For example the chain rule works.
But this is not the case of the Inverse function theorem.

The Frechet space we are interested in is the following:

Example 4.2.2 KN with the product topology is a Frechet space. A complete metric, which is
also translation invariant and that induces this topology in KN is:

d : KN ×KN −→ R

d((un)n∈N, (vn)n∈N) =

∞∑
n=0

1

2n
|un − vn|

1 + |un − vn|

Now that we have a notion of derivative in Frechet spaces, we can think about doing
(infinite dimensional) geometry on spaces modelled over them. The definition of manifold can
be naturally extended to the definition of manifold over a Frechet space and the definition
of Lie group to the definition of Lie group modelled over a Frechet space. We omit
details that can be found in the bibliography. One-parameter sugroups, the tangent algebra
and the exponential map can be also defined analogously to the finite dimensional case.

Another approach to the theory of infinite dimensional Lie groups is possible and it is also
interesting for our purposes. Inverse limits of sequences of finite dimensional Lie groups, the
so called pro-Lie groups, are good candidates to generalize the notion of Lie group. This is
the approach made by K. H. Hofmann and S. A. Morris in their book [45].

Inverse sequences work well in the category of topological groups: given an inverse sequence
of topological groups joined by appropiate bonding maps we can always define the inverse limit
of this sequence. But this is not true in the category of Lie groups: not any pro-Lie group has
an acceptable structure of Lie group, not even an acceptable structure of infinite dimensional
manifold.

Finally we want to point out the fact that there is a Lie group modelled over a Frechet space
which Lie group structure has been studied. We are talking about F1(K), for K = R,C. The
study of its Lie group structure is interesting due to its applications to some problems related
to the existence of fractional iterates and one parameter subgroups. This topic is discussed in
sections 5.2, 5.3 and 5.4 of [2]. See also the work by S. A. Jennings [52] for an expression to
compute the exponential.

4.3 Rn(K) as a manifold.
As we have already mentioned, Rn(K) is a subgroup of the classical Lie group GLn+1(K).
Therefore if we consider any topology in GLn+1(K) automatically it induces a topology in
Rn(K).

The description for the topology in GLn+1(K) is obtained considering GLn+1(K) ⊂Mn+1(K)
as an open set in K(n+1)2 by using the chart:

(4.1) φ̃n+1 :Mn+1(K) −→ K(n+1)2
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given by:  x11 . . . x1,n+1
...

...
xn+1,1 . . . xn+1,n+1

 7−→ (x11, . . . , x1,n+1, . . . , xn+1,1, . . . , xn+1,n+1)

So according to the characterization of the elements in GLn+1(K) that are Riordan matrices
given in chapter 0, we have:

Proposition 4.3.1 Let n ∈ N.

(i) Rn(R) has a natural structure of differentiable manifold diffeomorphic to an open
subspace Un of R2n+1 compatible with the differentiable structure that it has as sub-
manifold of GLn+1(K).

(ii) Rn(C) has a natural structure of complex manifold holomorphic to an open subspace
Un of C2n+1 compatible with the differentiable structure that it has as submanifold of
GLn+1(K).

Proof: Let us denote by u = (x0, a0, x1, a1, . . . , xn−1, an−1, xn) ∈ K2n+1,

• Consider the following open subspace of K2n+1:

Un = {u ∈ K2n+1 | x0a0 ̸= 0}

• Define:
φn : Un →Rn(K)

φn(u) = (di,j(u))i,j=0,1,...,n

to be the map that assigns the corresponding partial Riordan matrix with first column
x1, . . . , xn and partial A-sequence (a0, . . . , an−1) to each element u.
Iteratively we can easily prove that di,j(u) is a polynomial on the components of u.
Therefore, by using the chart described before (see equation (4.1)) we can see that φn is
analytic or holomorphic in each case.

• Moreover, using the natural characterization of partial Riordan matrices in terms of the
A-sequence it is immediate that φn is injective and surjective. In fact, we can compute
the global chart in the manifold:

φ−1n : Rn(K)→ Un

Rn(d(x), h(x)) 7−→ u

where x0, . . . , xn is the first column of Rn(d(x), h(x)) and (a0, . . . , an−1) is its partial
A-sequence.
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• We can also compute this inverse. Note that if:

φ−1n ((di,j)i,j=0,1,...,n) = (x0, a0, . . . , xn−1, an−1, xn)

then xi = di,0 for every i = 0, 1, . . . , n. Furthermore:

a0 =
d1,1
d0,0

, a1 =
1

d1,1
(d2,1 − a0d1,0) =

1

d1,1

(
d2,1 −

d1,0d1,1
d0,0

)
and in general:

ak =
1

dk,k

dk+1,1 −
k−1∑
j=0

ajdk,j

 for k = 1, . . . , n− 1.

Thus, iteratively, we obtain that ak is a rational function on the entries dij where the
denominators are always non-null because they are product of elements in the main
diagonal.

• So we have proved that φn is an analytic or holomorphic (in each case) global parametriza-
tion of Rn(K).

2

Remark 4.3.2 From the result above we can consider Rn(K) as a closed topological subspace
of GLn+1(K), therefore is a matrix group.

Since φn above is a homeomorphism and by using basic facts in homotopy theory we get
the following topological properties:

Proposition 4.3.3 Consider Rn(K) as a topological subspace of K(n+1)2 (via the identi-
fication φ̃n). Then:

(i) For K = R:

• R0(R) has two connected components each of them is contractible.
• If n ≥ 1, Rn(R) has four connected components each of them is contractible.

(ii) For K = C:

• R0(C) is homeomorphic to the cylinder S1 × R where S1 is the unit sphere in
R2. Consequently R0(C) is path-connected and:

– With respect to the homotopy groups, the fundamental group π1(R0(C)) is
isomorphic to the group of integers Z. The homotopic groups for higher
dimensions are null.
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– For homology, H0(R0(C)) ≡ H1(R0(C)) ≡ Z. All the higher dimensional
homology groups are null.

• If n ≥ 1 Rn(C) is homeomorphic to the topological product T × R4n where
T = S1 × S1 is the torus. Consequently, Rn(C) is path-connected and:

– With respect to the homotopy groups, π1(Rn(C) ≡ Z ⊕ Z and all higher
homotopy groups are null.

– H0(Rn(C)) ≡ H2(Rn(C)) ≡ Z, H1(Rn(C)) = Z ⊕ Z and all higher dimen-
sional homology groups are null.

We will skip the proof.

4.4 The Lie group structure of Rn(K).
Once we have described the differentiable structure on Rn(K) (just the K-differentiable struc-
ture generated by the global parametrization (Un, φn)) the second step we are going to take is
to describe the Lie group structure of Rn(K).

Since we have already noticed that Rn(K) is a closed subgroup of GLn+1(K), then as we
announced in the previous section:

Proposition 4.4.1 For K = R,C, the manifold Rn(K) with the product of matrices as
operation is an analytic K-Lie group for every n ∈ N.

Rn(K) has a natural structure of Lie group over K of dimension 2n+ 1. Note that Rn(C)
can be also considered as a real Lie group of dimension 4n+ 2.

Remark 4.4.2 For further developments and in order to understand better the Lie group
structure of Rn(K) we prefer to check that the conditions in the definition of a Lie group are
satisfied:

(i) Consider the product:
Rn(K)×Rn(K) → Rn(K)

(D,E) 7→ F = DE

where Rn(K) × Rn(K) is endowed with the structure of product of analytic manifolds.
Suppose:

D = φn(x0, a0, . . . , xn−1, an−1, xn) = (dij)0≤i,j≤n

E = φn(y0, b0, . . . , yn−1, bn−1, yn)

F = φn(z0, c0, . . . , zn−1, cn−1, zn)
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• Observe that:

zk =

k∑
j=0

yjdk,j(x0, a0, . . . , xn−1, an−1, xn)

which is a polynomial in the variables:

(x0, a0, . . . , xn−1, an−1, xn, y0, b0, . . . , yn−1, bn−1, yn)

In fact, the polynomials zk do not depend on the variables b0, . . . , bn−1.
• Furthermore, the variables ck for k = 0, 1, . . . , n − 1 depend only on the variables

a0, . . . , an−1, b0, . . . , bn−1. Indeed we obtain that ck for k = 0, 1, . . . , n − 1 are dif-
ferentiable functions on the variables a0, a1, . . . , an−1, b0, b1, . . . , bn−1, that is, the
product is analytic.

(ii) For the inversion, consider:

D = φn(x0, a0, . . . , xn−1, an−1, xn) = (di,j)0≤i,j≤n, D−1 = φn(y0, b0, y1, . . . , bn−1, yn)

As usual, denote u = (x0, a0, . . . , xn−1, an−1, xn). Then we get x0y0 = 1 and

xky0 +

k∑
ℓ=1

yℓdk,ℓ(u) = 0, for k = 1, . . . , n.

• Iteratively we obtain that yk is a rational function on the coordinates u, where the
denominator is of the form x0a

k
0. Consequently, it is analytic for any k = 0, 1, . . . , n.

• From the Lagrange inversion formula we obtain that b0, . . . , bn are analytic functions
on a0, . . . , an.

4.5 The Lie Algebra of Rn(K)

The next step is to describe the Lie algebra of Rn(K) that we denote by L(Rn(K)).
Recall that in this case the tangent algebra L(Rn(K)) is the tangent space to Rn(K) at

its neutral element, which is the identity matrix Rn(1, x), together with the corresponding Lie
bracket.

As explained before, there is a full and faithful representation of the Lie algebra of GLn+1(K)
and of any matrix group as a subalgebra of (Mn+1(K), [·, ·]), where this bracket is given by:

[A,B] = AB −BA

Before going on, note that:

Remark 4.5.1 Using the global parametrization we get:

Rn(1, x) = φn(en)

where en = (1, 1, 0, . . . , 0), that is, en = (x0, a0, x1, . . . , an−1, xn) with x0 = 1 = a0 and
xj = 0 = ak for 1 ≤ j ≤ n and 1 ≤ j ≤ n− 1.
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We will start by computing the Lie algebra of the R1(K) and of R2(K). To motivate the
result we will obtain, let us develop the lower dimensional cases.

Example 4.5.2 In the case n = 1 the global parametrization is given by:

φ1(x0, a0, x1) =

[
x0 0
x1 a0x0

]

We know that
{
∂φ1

∂x0
(x0, a0, x1),

∂φ1

∂a0
(x0, a0, x1),

∂φ1

∂x1
(x0, a0, x1)

}
is a base of the tangent space

to R1(K) at the point φ1(x0, a0, x1). Since (using the usual identification):

∂φ1

∂x0
(x0, a0, x1) =

[
1 0
0 a0

]
,

∂φ1

∂a0
(x0, a0, x1) =

[
0 0
0 x0

]
,

∂φ1

∂x1
(x0, a0, x1) =

[
0 0
1 0

]
evaluating at e = (1, 1, 0):

∂φ1

∂x0
(e) =

[
1 0
0 1

]
,

∂φ1

∂a0
(e) =

[
0 0
0 1

]
,

∂φ1

∂x1
(e) =

[
0 0
1 0

]
and forming all linear combinations with coefficients in K we have:

L(R1(K)) =

{[
χ0 0
χ1 χ0 + α0

] ∣∣∣∣ χ0, α0, χ1 ∈ K
}
.

Example 4.5.3 In the case n = 2 the global parametrization is given by:

φ2(u) =

x0 0 0
x1 a0x0
x2 a0x1 + a0a1x0 a20x0


where u = (x0, a0, x1, a1, x2) with x0a0 ≠ 0.

∂φ2

∂x0
(u) =

1 0 0
0 a0 0
0 a0a1 a20

 ,
∂φ2

∂a0
(u) =

0 0 0
0 x0 0
0 x1 + a1x0 2a0x0

 ,
∂φ2

∂x1
(u) =

0 0 0
1 0 0
0 a0 0

 ,

∂φ2

∂a1
(u) =

0 0 0
0 0 0
0 a0x0 0

 ,
∂φ2

∂x2
(u) =

0 0 0
0 0 0
1 0 0


evaluating at e = (1, 1, 0, 0, 0):

∂φ2

∂x0
(e) =

1 0 0
0 1 0
0 0 1

 ,
∂φ2

∂a0
(e) =

0 0 0
0 1 0
0 0 2

 ,
∂φ2

∂x1
(e) =

0 0 0
1 0 0
0 1 0

 ,

∂φ2

∂a1
(e) =

0 0 0
0 0 0
0 1 0

 ,
∂φ2

∂x2
(e) =

0 0 0
0 0 0
1 0 0


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and forming all linear combinations with coefficients in K we have

L(R2(K)) =


χ0 0 0
χ1 χ0 + α0 0
χ2 χ1 + α1 χ0 + 2α0

 ∣∣∣∣∣∣ χ0, α0, χ1, α1, χ2 ∈ K

 .

Therefore, to give a general result we are going to use the following notation analogous to
the previous examples:

• χk the coordinate respect to ∂φn
∂xk

(en) for 0 ≤ k ≤ n.

• αj the coordinate respect to ∂φn
∂aj

(en) for 0 ≤ j ≤ n− 1

Once this has been settled, we can state the main result of this section:

Proposition 4.5.4 For every n, we have:

∂φn
∂xk

(en) = (δi−j,k)i,j=0,1...,n for k = 0, 1, . . . , n,

∂φn
∂aℓ

(en) = (jδi−j,ℓ)i,j=0,1...,n for ℓ = 0, 1, . . . , n− 1

where δr,s is the Kronecker delta. Consequently, the Lie algebra L(Rn(K)) is given by the
set: 

χ0

χ1 χ0 + α0

χ2 χ1 + α1 χ0 + 2α0

χ3 χ2 + α2 χ1 + 2α1 χ0 + 3α0

...
...

...
...

. . .
χn−1 χn−2 + αn−2 χn−3 + 2αn−3 χn−4 + 3αn−4 · · · χ0 + (n− 1)α0

χn χn−1 + αn−1 χn−2 + 2αn−2 χn−3 + 3αn−3 · · · χ1 + (n− 1)α1 χ0 + nα0


where χk, αj ∈ K. The correspondent Lie bracket is defined by:

[M,N ] = MN −NM

Proof: The result will be proved by induction. We have to prove that:

∂φn
∂xk

(en) = (δi−j,k)i,j=0,1,...,n k = 0, 1, . . . , n

and that:
∂φn
∂aℓ

(en) = (jδi−j,ℓ)i,j=0,1,...,n ℓ = 0, 1, . . . , n− 1.
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• We have already proved the basic cases. Suppose the result is true for n.

• Again the elements of Un ⊂ K2n+1 will be denoted by:

un = (x0, a0, . . . , xn−1, an−1, xn)

Note that we can interpret un+1 = (un, an, xn+1). For example, en+1 = (en, 0, 0).

• Take now:
φn+1(un+1) = (di,j(un+1))i,j=0,1,...,n+1 =

=

 φn(un)

dn+1,0(un+1) dn+1,1(un+1) · · · dn+1,n+1(un+1)


Note that we have:

Pn(φn+1(un+1)) = φn(un)

where Pn is the corresponding bonding map introduced in chapter 1.

• Fix k with 0 ≤ k ≤ n. Then:

(4.2) ∂φn+1

∂xk
(un+1) =


∂φn

∂xk
(un)

∂dn+1,0

∂xk
(un+1)

∂dn+1,1

∂xk
(un+1) · · · ∂dn+1,n+1

∂xk
(un+1)


• Using the characterization of the Riordan matrices in terms of the A-sequence, we have:

(4.3) dn+1,j(un+1) =

n+1−j∑
s=0

asdn,j−1+s(un) for j > 0

and dn+1,0(un+1) = xn+1.

• Consequently: ∂dn+1,0

∂xk
(un+1) = 0 and

∂dn+1,j

∂xk
(un+1) =

n+1−j∑
s=0

as
∂dn,j−1+s

∂xk
(un) for j > 0.

and so evaluating at en+1 we obtain:

∂dn+1,j

∂xk
(en+1) =

∂dn,j−1
∂xk

(en) = δn+1−j,k for j > 0

because a0 = 1 and as = 0 for s = 1, . . . , n and using the induction hypotheses. Evalu-
ating now (4.2) at en+1 and using the induction hypotheses again we have the result.
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• We have to compute: ∂φn+1

∂aℓ
(en+1)

– Let us compute ∂φn+1

∂an
(en+1). Since only dn+1,1((un+1)) depends on an, we get:

∂dn+1,1

∂an
(en+1) = dn,n(en) = 1

Consequently ∂φn+1

∂an
(en+1) fits the desired formula.

– Suppose now 0 ≤ ℓ ≤ n− 1, we have to compute ∂φn+1

∂aℓ
(en+1).

∗ From (4.3) it is easy to see that if ℓ > n+ 1− j then ∂dn+1,j

∂aℓ
(en+1) = 0.

∗ In the case that ℓ ≤ n+ 1− j we obtain:

∂dn+1,j

∂aℓ
(un+1) = dn,j−1+ℓ(un) +

n+1−j∑
s=0

as
∂dn,j−1+s

∂aℓ
(un).

Evaluating at en+1 and using the induction hypothesis, we get:

∂dn+1,j

∂aℓ
(en+1) = δn+1−j,ℓ +

∂dn,j−1
∂aℓ

(en) =

= δn+1−j,ℓ + (j − 1)δn+1−j,ℓ = jδn+1−j,ℓ.

• Finally if we denote by χk and αℓ the coordinates with respect to ∂φn
∂xk

(en) and ∂φn
∂aℓ

(en)

respectively, we get the formula in the proposition.

2

Now that we have described the Lie algebra L(Rn(K)) we can describe the exponential
map (that, since Rn is a matrix group, coincides with the exponential):

Corollary 4.5.5 For any M ∈ L(Rn(K)) and t ∈ K we have that etM ∈ Rn(K) where
etM is the usual matrix exponential. In fact etM is always contained in the connected
component of Rn(1, x).

It would be of great interest to study one-parameter groups in Rn. Unfortunately, we have
decided to leave it for future work (see open question 19).
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4.6 Bonding maps
We have already mentioned that we are going to consider the Riordan group as an inverse limit
of finite dimensional pro-Lie groups. So we have to study the corresponding bonding maps:

Proposition 4.6.1 Pn : Rn+1(K) → Rn(K) is a Lie group homomorphism for every
n ∈ N. Moreover:

DPn(Rn+1(1, x))

(
∂φn+1

∂xk
(en+1)

)
=

{
∂φn

∂xk
(en) if 0 ≤ k ≤ n

0 if k = n+ 1

DPn(Rn+1(1, x))

(
∂φn+1

∂aj
(en+1)

)
=

{
∂φn

∂aj
(en), if 0 ≤ j ≤ n− 1

0 if j = n

Proof: The expression of Pn in terms of global parametrization in each of the groups is given
by:

φ−1n ◦ Pn ◦ φn+1(x0, a0, x1, . . . , an, xn+1) = (x0, a0, x1, . . . , an−1, xn).

Since the matrix of DPn(Rn+1(1, x)) in this parametrization is the Jacobian matrix J(φ−1n ◦
Pn ◦ φn+1)(en+1) we get the results above.

2

Remark 4.6.2 The above proposition shows us that the action of:

DPn(Rn+1(1, x)) : L(Rn+1(K))→ L(Rn(K))

is to delete the last row and the last column in every matrix in L(Rn+1(K)).

4.7 R(K) as a Lie group I: Frechet Lie Group Structure
Consider KN with the product topology for the usual topology in K, which we have already
stated that is a Frechet space. This is the starting point to describe a natural infinite dimen-
sional Lie group structure for the Riordan group.

Firstly, let’s introduce the following:

Definition 4.7.1 (Global Parametrization for R(K)) Think about K = R or C with the
usual Euclidean topology and take the product topology in KN. Consider the open set:

U∞ =
{

u = (uk)k∈N ∈ KN | u0 ̸= 0, u1 ̸= 0
}
⊂ KN

and then define:
φ∞ : U∞ −→ R(K)

u 7−→ φ∞(u).
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that maps a sequence:
u = (uk)k∈N = (x0, a0, x1, a1, x2, a, . . .)

with u0 ̸= 0, u1 ̸= 0 or equivalently x0 ̸= 0, a0 ̸= 0 into a Riordan matrix:

φ∞(u) = D = (di,j)i,j∈N

given by:

xk = dk,0 di,j =

i−j∑
k=0

akdi−1,j−1+k for j ≥ 1

Obviously φ∞ is a bijective function. So, we consider the unique topology on R(K) con-
verting φ∞ into an homeomorphism. Then we have:

Proposition 4.7.2 R(K) with the smooth structure induced by the global parametrization
(U∞, φ∞) described above is a smooth manifold modelled on the locally convex vector space
KN.

Moreover, R(K) with the smooth structure defined above is an infinite dimensional Lie
group in the sense described before.

Proof: Note that the topological space R(K) and the map φ∞ : U∞ →R(K) fit all conditions
in the definition of Lie group:

• To prove the smoothness of the product we consider, as in finite dimensional cases, the
natural smooth structure on the productR(K)×R(K) is given by the global parametriza-
tion:

φ∞ × φ∞ : U∞ × U∞ →R(K)×R(K)

(u,v) 7−→ (φ∞(u), φ∞(v))

Now the smoothness of the product follows as in Proposition 4.4.1 because the factor
matrices are lower triangular and the dependence of the entries in the product is just the
same as in finite cases.

• For the inverse, let D ∈ R(K). Again by Lagrange Inversion Formula, the dependence
of the entries of D−1 depend analitically on the coefficients of the A-sequence of D. The
differentiability of the entries of first column in D−1 respect to the first column and the
A-sequence of D follows exactly as in the last part of the proof of Proposition 4.4.1.

2
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Since φ∞ : U∞ →R(K) is an homeomorphism, we have:

Corollary 4.7.3

(a) R(R) is homeomorphic to R∗×R∗×RN with the product topology. Consequently R(R)
has four connected components each of them is contractible.

(b) R(C) is homeomorphic to T×RN where T = S1×S1 is the torus. Consequently R(C)
is path-connected and has the same homotopy type as the torus.

So, they share the same algebraic invariants as in Proposition 4.3.3.

4.8 R(K) as a Lie group II: Lie group structure as a pro-Lie
group

Beside this, and as it was pointed out in chapter 1, the Riordan group can be described as the
inverse limit of an inverse sequence of finite dimensional matrix groups, obtaining so a pro-Lie
group structure on R(K) (again, we recommend [45] for an exhaustive topological treatment
of pro-Lie groups).

In this section we will show how the structure of pro-Lie group can be used to get informa-
tion on basic facts of the infinite dimensional Lie group structure of R(K) like, for example,
the description of the Lie algebra and the exponential map.

Denote by:
Υ(K) = lim←−{(Rn(K))n∈N, (Pn)n∈N}

If we consider Υ(K) as the inverse limit of an inverse sequence of groups then Υ(K) and R(K)
are isomorphic as groups. Denote by ζ : R −→ Υ this isomorphism.

But since the groups Rn are also Lie groups and the bonding maps Pn are homomorphisms
of Lie groups, Υ(K) is a pro-Lie group. We will show that Υ(K) is also the inverse limit
of the inverse sequence lim←−{(Rn(K))n∈N, (Pn)n∈N} in the category of Lie groups. The key is
that unlike most of the cases considered in [45], the pro-Lie group Υ(K) does have a natural
structure of Frechet manifold:

Proposition 4.8.1 The bijective map φ∞ : U∞ → Υ given by φ∞ = ζ ◦ φ∞ is a global
parametrization which induces a Frechet Lie group structure in Υ (with respect to the
componentwise operations).

(1) If Υ(K) is endowed with this differentiable structure then ζ : R(K) → Υ is a Frechet
Lie group isomorphism.
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(2) The topology that Υ inherits as an inverse limit and the topology induced on Υ by the
Frechet Lie group structure above are the same.

Proof: The first part of the proposition is an immediate consequence of the commutativity of
the following diagram:

R(K)
ξ // Υ

U∞
IdU∞ //

φ∞

OO

U∞

φ∞

OO

where IdU∞ is the identity map on U∞.
To prove the second part, it is easy to see ([31] page 99 Example 2.5.3) that if we consider

the inverse sequence {(Un)n∈N, (µn)n∈N} where:

µn : Un+1 → Un

µn(x0, a0, x1, . . . , an−1, xn, an, xn+1) = (x0, a0, . . . , xn−1, an−1, xn)

then the corresponding topological inverse limit is just U∞ = K∗ ×K∗ ×KN with the product
topology. Since the diagram:

Rn(K) Rn+1(K)
ψnoo

Un

φn

OO

Un+1
µnoo

φn+1

OO

is commutative for every n ∈ N and φk is a homeomorphism for every k ∈ N, then the natural
induced map φ between the corresponding inverse limits is an homeomorphism.

2

It is not casual the choice of the differentiable structure ofR (as a Frechet manifold structure
over KN ). The partial Riordan groups are modelled with a global chart over spaces Kn. As we
have seen in the previous proof, KN is the inverse limit of a certain inverse sequence involving
those spaces and we also want the differentiable structure to be given by a global chart.

The result above shows certain compatibility between this differentiable structure that
we have proposed for Υ and with the topology that it inherits as inverse limit of topolog-
ical spaces. Still to determined is wether this differential structure is compatible with the
differential structure of the groups Rn(K).

Proposition 4.8.2 For every n ∈ N, πn : R(K)→Rn(K) is a Lie group homomorphism.
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Proof: This is because the expression of πn for the parametrizations (U∞, φ∞), (Un, φn) is
given by:

φ−1n ◦ πn ◦ φ∞(x0, a0, x1, . . . , an, xn+1, . . .) = (x0, a0, x1, . . . , an−1, xn)

and then corresponds to the restriction of a Linear continuous map between Frechet spaces.
2

So R has happened to be a pro-Lie group which is a Lie group and in this sense it can be
viewed as a toy example of the theory described in [45].

4.9 Curves and One-parameter subgroups in R
Before going on, we are going to give a natural criterion to detect C∞ curves into the Riordan
group R(K) which will be useful for recognizing the exponential map.

The proof is based on some results about calculus of smooth mappings as established by
A. Kriegl and P.W. Michor in [56,57].

Proposition 4.9.1 Let I ⊂ K be a connected open subset and:

γ : I −→ R(K)

be a map. Suppose that (uk(t))k≥0 are the coordinates of γ in the global parametrization
(U∞, φ∞). Then γ is a C∞ curve if and only if uk : I −→ K is C∞ for any k ≥ 0.

Proof: As we saw before, R(K) is, as manifold, diffeomorphic to the open subspace U∞ of
the Frechet space KN. The differentiability of γ is then, by definition, the differentiability of
φ−1∞ ◦ γ : I −→ U∞. By composing with the inclusion of U∞ into KN, it is also equivalent to
the differentiability of φ−1∞ ◦ β : I −→ KN.

This is equivalent to the fact that ℓ ◦ (φ−1∞ ◦ β) is C∞ for any linear continuous map
ℓ : KN −→ K in the dual of KN. Finally remember that the topological dual of the space KN

of all sequences is the space KN
0 of sequences with only a finite number of nonzero terms. This

implies the statement in the proposition.
2
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Another formulation of this proposition is the following, which fits perfectly with the ideas
of using the inverse limit structure in the Riordan group:

Theorem 4.9.2 Let I ⊂ K be a connected open subset and:

γ : I −→ R(K)

be a map. Then γ is a C∞ curve if and only if:

∀n ∈ N, πn ◦ γ : I −→ Rn(K)

is a C∞ curve.

To study the Lie group structure we are interested in one-parameter subgroups. Recall
that a one-parameter subgroup in R is a Lie group homomorphism from (R,+) to R.

Proposition 4.9.3 A path γ : I →R is a one-parameter group if and only if for every n
πn ◦ γ is a one-parameter group.

Proof: A path γ : I → R is a group homomorphism if and only if for every n πn ◦ γ is a
group homomorphism since R is isomorphic to the inverse limit of the inverse sequence of
(Rn, Pn)n∈N.

A path γ : I →R is differentiable if and only if for every n πn ◦γ is differentiable according
to the previous result.

2

4.10 The Lie Algebra of R(K)

As it is usual in Lie group theory, TR(1,x)R(K) can be identified with KN. Even more, since
{ϵi = (δij)j≥1}i∈N is a Schauder base for KN then we can topologize TR(1,x)R(K) in such a way
that {Dφ∞(e)(ϵi)}i∈N is a Schauder base for TR(1,x)R(K).

Now, we are going to get a representation of TR(1,x)R(K) by means of infinite lower trian-
gular matrices and after that we are going to define the Lie bracket in TR(1,x)R(K) to get the
Lie algebra of R(K).

Theorem 4.10.1 A full and faithful representation of the Lie algebra L(R(K)) of the Lie
group R(K) is given by the set of matrices of the form L(χ(x), α(x)), where for two power
series:

χ(x) = χ0 + χ1x+ χ2x
2 + . . . , α(x) = α0 + α1x+ α2x

2 + . . .
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L(χ, α) is the lower triangular matrix:

L =



χ0

χ1 χ0 + α0

χ2 χ1 + α1 χ0 + 2α0

...
...

... . . .
χn−1 χn−2 + αn−2 χn−3 + 2αn−3 · · · χ0 + (n− 1)α0

χn χn−1 + αn−1 χn−2 + 2αn−2 · · · χ1 + (n− 1)α1 χ0 + nα0

...
...

... · · ·
...

... . . .


with the usual sum of matrices and the usual product by scalars in K. The Lie bracket is

[L1, L2] = L1L2 − L2L1

where the product and the difference are the usual ones for infinite lower triangular matrices.

Proof: Consider the inverse sequence of Lie algebras:

L∞ = lim
←

(L(Rn+1(K)), DPn(In+1))n∈N

where recall that the Lie brackets are given by [An, Bn]n = AnBn − BnAn for any An, Bn ∈
L(Rn(K))). Through all this proof we will identify the elements in L∞ with infinite matrices
when necessary.

We will denote by π̃n to the corresponding projection L∞ −→ L(Rn(K)). If we identify
the elements in L∞ by infinite matrices, then π̃ makes the analogous action to πn : R → Rn,
that is: 

χ0

χ1 χ0 + α0

χ2 χ1 + α1 χ0 + 2α0

...
...

... . . .
χn−1 χn−2 + αn−2 χn−3 + 2αn−3 · · · χ0 + (n− 1)α0

χn χn−1 + αn−1 χn−2 + 2αn−2 · · · χ1 + (n− 1)α1 χ0 + nα0

...
...

... · · ·
...

... . . .


7−→

7−→



χ0

χ1 χ0 + α0

χ2 χ1 + α1 χ0 + 2α0

...
...

... . . .
χn−1 χn−2 + αn−2 χn−3 + 2αn−3 · · · χ0 + (n− 1)α0

χn χn−1 + αn−1 χn−2 + 2αn−2 · · · χ1 + (n− 1)α1 χ0 + nα0


(1) Firstly we will focus on the vector space of the Lie algebra. We want to show that there

is a map:
L : TR(1,x)(R(K))→ L∞
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which is a linear homeomorphism (L∞ is endowed with the corresponding topological and
linear structure as inverse limit in both categories). The map L is defined as follows:

• The diagram:
L∞
π̃n

��

π̃n+1

**VVV
VVVV

VVVV
VVVV

VVVV
V

L(Rn(K)) L(Rn+1(K))
(DPn)Rn+1(1,x)

oo

is commutative for every n. For every tangent vector at R(1, x), v ∈ TR(1,x)(R(K))
(since in our framework the chain rule works) we have:

(DPn)R(1,x)(Dπ̃n+1)R(1,x)(v)) = (Dπ̃n)R(1,x)(v).

• Consequently, the sequence ((Dπ̃n)Rn(1,x)(v))n∈N ∈ L∞. So we can define:

L(v) = ((Dπ̃n)Rn(1,x)(v))n∈N

• This map is obviously linear and continuous.

Now we will define a map:
T : L∞ → TR(1,x)(R(K))

which will be shown to be the inverse of L and also linear and continous:

• Take the infinite matrix L ∈ L∞. L which can be identified with a sequence:

(π̃n(L))n∈N with (Dπn)Rn+1(1,x)(π̃n+1(L)) = π̃n(L)

• For every n ∈ N, consider the one-parameter group:

γπ̃n(L) : R→Rn(K)

γπ̃n(L)(t) = etπ̃n(L)

It is clear that πn ◦ γπ̃n+1(L) = γπ̃n(L), so we can define a continous group homomor-
phism:

γL : R→R(K)

t 7−→ (γπ̃n(L)(t))k∈N

• Since the expression of γL in the parametrization (U∞, φ∞) is:

γL(t) = (x0(t), a0(t), x1(t), a1(t), . . .)

and:
γπ̃n(L)(t) = (x0(t), a0(t), x1(t), a1(t), . . . , an−1(t), xn(t))

in the parametrization (Un, φn) of Rn(K) we have that xk(t) and ak(t) are C∞ for
any k ∈ N and hence, by proposition 4.9.2, γL is C∞. Thus we can define:

T(L) = γ′L(0)
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• It is easy to see that T ◦L is the identity in TR(1,x)(R(K)). Consequently, T is also a
linear map. Moreover, since:

Dπn(I)(γ
′
L(0)) = γ′π̃n(L)(0) = π̃n(L)

then L ◦ T is the identity map in L∞.
• Applying now the Open Mapping Theorem for Frechet spaces we get that L is a linear

homeomorphism.

(2) It remains only to proof that [v, w] ∈ TI(R(K)) is represented by

L(v) · L(w)− L(w) · L(v)

where the product and the difference are the usual ones for infinite lower triangular ma-
trices.

• Note that:

(DPn)Rn+1(1,x)([A,B]n+1) = [(DPn)Rn+1(1,x)(A), (DPn)Rn+1(1,x)(B)]n

• Suppose v, w ∈ L(R(K)) ≡ TI(R(K)) ≡ L∞ and consider the Lie bracket [v, w]. Since
πn : R(K)→Rn(K) is a Lie group homomorphism then:

(Dπn)R(1,x) : L(R(K))→ L(Rn(K))

is a Lie algebra homomorphism.
• Consider the infinite lower triangular matrices:

L(v),L(w),L([v, w]) ∈ L∞

We have:

(Dπn)R(1,x)([v, w]) = [(Dπn)R(1,x)(v), (Dπn)R(1,x)(w)]n = [π̃n(L(v)), π̃n(L(w))]n

where [ , ]n represents the Lie bracket in L(Rn(K)). Since Pn is also a Lie group
homomorphism we have:

(DPn)Rn+1(1,x)([π̃n+1(L(v)), π̃n+1(L(w))]n+1) = [π̃n(L(v)), π̃n(L(w))]n

but:

[π̃n(L(v)), π̃n(L(w))]n = π̃n(L(v)) · π̃n(L(w))− π̃n(L(w)) · π̃n(L(v)).

• Consequently:
L([v, w]) = L(v) · L(w)− L(w) · L(v).

2
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4.11 The exponential map
Recall that the exponental is given by:

exp : L(R) −→ R

exp(v) = γL(1)

where γL is the unique one-parameter subgroup of R whose tangent vector at the identity is
v. So note that the one-parameter group γL used in the proof above, that is:

γL : R 7−→ R(K)

t 7−→ (etπ̃n(L))k∈N

defines the exponential map in R:

Corollary 4.11.1 The exponential map in R(K) for any L ∈ L(R) is given by:

exptL = γL(t) = etL

where γL(t) is the one parameter group described above and etL is the usual exponential of
matrices (in this infinite matrix context):

γL(t) =
∑
n≥0

(tL)n

n!

In particular, eL = γL(1).

It is interesting to note that, in this framework, the behaviour of the exponential resembles
that of the real or complex exponential, in the sense that it transforms arithmetic progressions
(in the rows of the matrices in L(R)) on geometric progressions (in the rows of the matrices
in R). Arithmetic progressions are intrinsically related to the structure of the columns of
the matrices in the Lie algebra and geometric progressions describe just the structure of the
columns in a Riordan matrix.
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Analogously to the finite dimensional case:

Proposition 4.11.2 (Matrix Differential Equations) Let L ∈ L(R). The solution of
the equation:

(4.4)
{
γ′(t) = L · γ(t)
γ(0) = R

where R ∈ R and γt ∈ R for every t has a unique solution:

γ(t) = etLR

Proof: The groups Rn(K) are matrix groups so according to the classical Lie theory (see for
example [5]) for each n, the equation:{

γ′n(t) = πn(L) · γn(t)
γ(0) = πn(R)

has as unique solution:
γn(t) = etπn(L)πn(R)

The result follows from the inverse limit structure. We omit the details.
2

Apart from the already mentioned paper by S. A. Jennings [52], some results about com-
putation of the exponential of Riordan matrices can be found in the paper by R. Bacher [4].

4.12 Lie group structure for R∞∞
Later on we will want to compute the Lie algebra of some stabilizer subgroups for which the
bi-infinite representation of the Riordan matrices will be more convenient.

Remark 4.12.1 We have already mentioned that there is a natural group isomorphism:

B : R −→ R∞∞

B(R(d(x), h(x))) = R∞∞(d(x), h(x))

This isomorphism induces automatically a structure of Frechet manifold on R∞∞ since we can
define the parametrization φ∞∞ by making the following diagram commutative:

R B // R∞∞

U∞

φ∞

OO

U∞

φ∞∞

O O

IdU∞

oo
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just taking φ∞∞ = B ◦ φ∞ ◦ IdU∞, where IdU∞ is the identity map in U∞. Moreover, this
manifold structure is compatible with the product and the inverse in R∞∞ since B is a group
isomoprhism so B also induces a Lie group structure for R∞∞ compatible with the natural
product and inverse in R∞∞.

The elements L(χ, α) ∈ L(R(K)) have also a natural bi-infinite representation:

L∞∞(χ, α) =



. . .
· · · χ0 − 2α0

· · · χ1 − 2α1 χ0 − α0

· · · χ2 − 2α2 χ1 − α1 χ0

· · · χ3 − 2α3 χ2 − α2 χ1 χ0 + α0

· · · χ4 − 2α4 χ3 − α3 χ2 χ1 + α1 χ0 + 2α0
...

...
...

...
... . . .


.

and it is easy to see that the set of elements L∞∞(χ, α) with respect to the Lie bracket:

[T, S] = TS − ST

is again a full and faithful representation of the Lie algebra L(R).

4.13 Multplication of L(χ, α) by a column vector on KN

We are going to use the natural identification KN ≡ K[[x]] by means of considering the ordinary
generating function of any sequence. The topology used in KN is always the product topology
for the usual topology in K.

Recall that for any matrix in the Lie algebra L(χ, α) ∈ L(R) the generating function of the
j-column in L is given by xj(χ(x) + jα(x)), j ∈ N. This fact can be turned into the following.

Proposition 4.13.1 Any L(χ, α) ∈ L(R(K)) induces a linear continuous map KN → KN,
given by:

L(χ, α)

h0h1...
 =

y0y1...


If h(x) is the generating function of (h0, h1, . . .), then the generating function of (y0, y1, . . .)
is:

χ(x)h(x) + xα(x)h′(x)

So via the identification, L(χ, α) also induces a linear continous map K[[x]] −→ K[[x]]. As
done before, we will use the notation:

L(χ, α)⊗ h(x) = χ(x)h(x) + xα(x)h′(x)
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Proof: It is clear that any infinite lower triangular matrix induces a linear continuous map in
KN by using the product of matrices.

Let:
χ = χ0 + χ1x+ . . . α(x) = α0 + α1x+ . . .

Note that, analogously to the proof or the First Fundamentl Theorem of Riordan matrices:

L(χ, α)


h0
h1
h2
...

 = h0


χ0

χ1

χ2
...

+ h1


0

χ0 + α0

χ1 + α1
...

+ h2


0
0

χ+ 2α0
...

+ . . . =

=

h0


χ0

χ1

χ2
...

+ h1


0
χ0

χ1
...

+ h2


0
0
χ0
...

+ . . .

+

1 · h1


0
α0

α1
...

+ 2 · h2


0
0
α0
...

+ . . .

 =

it is easy to see that the generating function of this column vector is what we need.
2

Analogously, we can think of the elements in the Lie algebra acting on K((x)) in the
following way:

Corollary 4.13.2 Any L∞∞(χ, α) ∈ L(R(K)) induces a natural map given by:

L∞∞(χ, α)



...
0

h−k
h−k+1

...

 =



...
0

y−k
y−k+1

...


where if h(x) = h−kx

−k + h−k+1x−k+1, . . ., then:

y−kx
−k + y−k+1x

−k+1 . . . = (χ(x)− k · α(x))h(x) + xα(x)h′(x)

So via the identification, L(χ, α) also induces a linear map K((x)) −→ K((x)). As done
before, we will use the notation:

(4.5) L∞∞(χ, α)⊗ h(x) =
1

xk
L(χ− kα, α)⊗ (xkh(x))

Proof: The proof is totally analogous to the previous one.
2
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4.14 Initial Value Problems
Consider the continuous linear map L(χ, α) as a C∞ vector field in the Frechet space KN under
the canonical identification ThKN = KN in the tangent space at any h ∈ KN.

We have already stated proposition 4.11.2 (which has a natural analogue for bi-infinite
matrices, we omit details). Thanks to the interpretation that we have given to the multipli-
cation of elements in the tangent algebra by row vectors, another way to interpret the above
proposition is:

Corollary 4.14.1 Let χ(x), α(x) ∈ K[[x]]. The unique solution of the initial value prob-
lem:

(4.6)
{
∂u
∂t = χ(x)u(x, t) + xα(x)∂u∂x
u(x, 0) = F (x)

in K[[x, t]] is given by:
u(x, t) = etL(χ(x),α(x)) ⊗ F (x)

The same holds for the bi-infinite case doing the corresponding modifications.

Remark 4.14.2 There are well known methods for the solution of problems of the type (4.6).
This equation is a first order quasilinear differential equation (see [92] or [54], where this
problem is solved in terms of characteristic curves).

On the othe hand, this new method may be computationally useful. We leave this as an
open question (see open question 22).

We will now solve two of those initial value problems, just to see these ideas working.
In those examples, we will choose two matrices in the tangent algebra whose exponential is
particularly easy to compute:

Example 4.14.3 Let c1, c2 ∈ K and take c1
∂φ∞
∂x0

+ c2
∂φ∞
∂a0

∈ L(R(K)). The corresponding
matrix representation is the infinite diagonal matrix:

L(c1, c2) =


c1
0 c1 + c2
0 0 c1 + 2c2
...

...
... . . .


or a given initial condition F (x) ∈ K[[x]], the associated initial value problem is:

(4.7)
{
∂u
∂t = c1u(x, t) + xc2

∂u
∂x

u(x, 0) = F (x)
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Then:
u(x, t) = etL(c1,c2) ⊗ F (x)

is the unique solution of the initial value problem. In this case, we can compute easily:

etL(c1,c2) = R(ec1t, ec2tx)

Hence, the solution is:
u(x, t) = ec1t · F (xec2t).

Example 4.14.4 Consider ∂φ∞
∂x1

+
∂φ∞
∂a1

∈ L(R(K)). The corresponding matrix representa-
tion is the creation matrix, that is

L(x, x) =


0
1 0
0 2 0
0 0 3 0
...

...
...

... . . .


Given any F (x) ∈ K[[x]] as initial condition, the associated initial value problem is:{

∂u
∂t = xu(x, t) + x2 ∂u∂x
u(x, 0) = F (x)

Then:
u(x, t) = etL(x,x) ⊗ F (x)

is the unique solution. It is a well-known example (it can be computed directly) that:

etL(x,x) = R

(
1

1− xt
,

x

1− xt

)
Then:

u(x, t) =
1

1− xt
· F
(

x

1− xt

)
.

4.15 Conjugation in L(R)

Consider the left and right translations in R(K) given respectively by

LA : R(K) −→ R(K)
X 7−→ LA(X) = AX

RA : R(K) −→ R(K)
X 7−→ RA(X) = XA

Remark 4.15.1 Since the product is a C∞-function then both LA and RA are diffeomorphisms.
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(i) Moreover, it is a well-known fact that if G is a finite group of matrices (in particular this
holds for G = Rn) and A,B ∈ G then, the tangent map:

(D(LA))B : TBG→ TABG

is represented again by multiplying by the matrix M ∈ G, i.e.

Y ∈ TBG 7−→ AY ∈ TABG

(ii) Analogously it happens happen for RM , we have that (D(RA))B(Y ) = Y A ∈ TBAG.

(iii) Consequently, the conjugation by an element An ∈ Rn(K) defined by

conjAn
: Rn(K) −→ Rn(K)

X 7−→ AnXA−1n

is a C∞ isomorphism in the groups Rn(K). This implies that (D(conjAn))Rn(1,x) is a
linear isomorphism defined by:

(DconjAn
)Rn(1,x) : L(Rn(K)) −→ L(Rn(K))

(DconjAn
)Rn(1,x)(Ln) = AnLnA

−1
n .

(iv) By this way we get:

TAnRn(K) = {v ∈Mn+1(K) | v = AnLn, Ln ∈ L(Rn(K))} =

= {w ∈Mn+1(K) | w = LnAn, Ln ∈ L(Rn(K))}

By using analogous arguments as in the proof of Theorem 4.10.1 and some direct compu-
tations we get:

Proposition 4.15.2 Let A = R(d(x), h(x)) be a Riordan matrix.

(1) The tangent space of R(K) at R(d(x), h(x)) is given by:

TR(d(x),h(X)R(K) = {R(d(x), h(x)L(χ, α), χ, α ∈ K[[x]]} =

= {L(χ, α)R(d(x), h(x)), χ, α ∈ K[[x]]}

(2) The conjugation by A defined by

conjA : R(K) −→ R(K)
X 7−→ A ·X ·A−1

is a C∞-diffeomorphism and the differential map is given by:

(DconjA)R(1,x) : L(R(K)) −→ L(R(K))

L(χ, α) 7−→ A · L(χ, α) ·A−1
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(3) For any t ∈ R (actually t ∈ K) we have that:

exp
(
t
(
D(conjA))R(1,x)(L(χ, α)

))
= conjA(etL(χ,α))

in particular the following diagram is commutative:

L(R)
D(conjA)R(1,x) / /

exp

��

L(R)
exp

��
R conjA // R

(4) Given L(χ, α) ∈ L(R(K)), a direct computation shows that:(
(DconjR(d(x),h(x))R(1,x)

)
(L(χ, α)) = L

(
χ(h(x))− h(x)

h′(x)

d′(x)

d(x)
α(h(x)),

h(x)

xh′(x)
α(h(x))

)

(1) in this proposition will be very interesting for the next section. (2), (3) and (4) stablish
a bridge between conjugation in L(R) and conjugation in R.

We have the following:
Remark 4.15.3 Let L ∈ L(R). If L′ = ALA−1 for some A ∈ R and L′ is a diagonal matrix,
then eL

′
= AeLA−1 where eL is also a diagonal matrix. This remark relates conjugacy in L(R)

to conjugacy in R (see open question 20).
Determining wether L′ = ALA−1 is equivalent to solve a system of functional-differential

equations. According to (4) in proposition 4.15.2 we have that:

L(χ̃, α̃) = R(d(x), h(x))R(χ, α)R−1(d(x), h(x))

if and only if: {
χ̃(x) = χ(h(x))− h(x)

h′(x)
d′(x)
d(x) α(h(x))

α̃(x) = h(x)
xh′(x)α(h(x))

which is equivalent to: {
d′(x) =

[
χ(h(x))−χ̃(x)

xα̃(x)

]
d(x)

h′(x)α̃(x) = h(x)
x α(h(x))

The questions above are not only interesting for conjugation in R. Look for instance at
the following example:
Example 4.15.4 Let A = R(d(x), h(x)). If we replace L(c1, c2) by (D(conjA))R(1,x)(L(c1, c2))
in example 4.14.3 the corresponding initial value problem is:{

∂u
∂t =

(
c1h(x)− c2

h(x)
h′(x)

d‘(x)
d(x)

)
u(x, t) + c2

h(x)
h′(x)

∂u
∂x

u(x, 0) = F (x)
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But since:

exp
(
t(DconjA)R(1,x)(L(c1, c2))

)
= conjA(e

tL(c1,c2)) = conjA(R(ec1t, ec2tx))

it is easy to compute the solution:

u(x, t) =
ec1td(x)

d(h−1(ec2th(x)))
· F (h−1(ec2th(x)))

4.16 A natural group extension of the Riordan group: the tan-
gent bundle.

The tangent bundle of a differentiable manifold M is another manifold TM which assembles
all the tangent vectors in M : as a set it is the disjoint union of the tangent spaces TMx of M ,
or equivalently it can be thought as a set of pairs (x, v) with x ∈M , v ∈ TMx.

So for M = R(K) we can identify (as a set) the tangent bundle with:

TR(K) = R(K)× L(R(K)) = {(R(d, h), L(χ, α)) : R(d, h) ∈ R(K), L(χ, α) ∈ L(R(K))}.

and as a smooth Frechet manifold the tangent bundle is diffeomorphic to the product of
manifolds R(K)× L(R(K)) considering L(R(K)) as a linear isomorphic copy of KN.

To end this section, following Milnor [82] pages 1033-1036, we have that:

Remark 4.16.1 The tangent bundle TR(K) has a natural structure of Lie group in such a
way that TR(K) is isomorphic to a semidirect product L(R(K))oR(K), where the operation
in L(R(K)) is the sum and the operation in R(K) is the matrix product. So the tangent bundle
TR(K) is naturally endowed with the operation:

(R(d, h), L(χ, α)) ⋆ (R(d̃, h̃), L(χ̃, α̃)) =

= (R(d, h)R(d̃, h̃), R−1(d̃, h̃)L(χ, α)R(d̃, h̃) + L(χ̃, α̃))

Besides, the additive group L(R(K)) is embedded as a normal subgroup in TR(K) and with
R(K) identified with the subset of elements of the form (R(d(x), h(x), 0) in the tangent bundle.
The additive group L(R(K)) is also naturally embedded as a normal subgroup of TR(K) in
such a way that TR(K) is isomorphic to a semidirect product L(R(K)) oR(K), where R(K)
acts on L(R(K)) by conjugation.

We will skip those details since we are not going to use this in this work.

Among other things we have included this subsection to give a motivation and a geometric
framework for open question 21, which states the possibility of studying the subgroup of
ILT∞(K) generated by the elements in R and the invertible elements in L(R) that may have
combinatorial interest.
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4.17 The Toeplitz-Lagrange semidirect product in R(K) and
the corresponding decomposition in L(R(K))

We have already stated (in chapter 0) that the Riordan group is a semidirect product of the
Toeplitz and the associated subgroups (also called Lagrange subgroup).

Moreover, the Toeplitz subgroup is normal inR. Consequently the associated subgroup acts
by conjugation on the Toeplitz subgroup in the corresponding semidirect product structure.

We have the following:

Proposition 4.17.1

(1) For 0 ≤ n ≤ ∞, the subgroups Tn and An are closed Lie subgroups of the matrix Lie
group Rn.

(2) The tangent algebra of the Toeplitz subgroup is the following subalgebra of L(R):

L(T ) = {L(χ, 0) ∈ L(R)}

(3) The tangent algebra of the associated subgroup is the following subalgebra of L(R):

L(A) = {L(0, α) ∈ L(R)}

(4) As a vector space L(R) = L(T )⊕ L(A).

Proof: We have:

• In (i), the proof for a finite n is immediate. To prove n =∞ (that follows the same idea),
consider the global parametrization of the Riordan group:

φ∞ : U∞ −→ R(K)
u 7−→ φ∞(u)

where
U∞ =

{
u = (uk)k∈N = (x0, a0, x1, a1, . . .) ∈ KN | u0 ̸= 0, u1 ̸= 0

}
.

Define:
u′ = (x0, 1, x1, 0, x2, . . .), u′′ = (1, a0, 0, a1, 0, . . .)

and:
U ′∞ = {u′ : u ∈ U∞} U ′′∞ = {u′′ : u ∈ U∞}

U ′∞ and U ′′∞ are closed in U∞ because each of them is a product of closed subset in
each factor in the topological product space U∞. Since φ∞ is a homeomorphism, then
φ∞(U ′∞) and φ∞(U ′′∞) are closed in R(K) and they are, respectively, the Toeplitz and
the Lagrange subgroups.
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• For (ii), (iii), obviously,

{L(χ, 0) ∈ L(R)} {L(0, α) ∈ L(R)}

are linear subspaces of the vectorial space associated to L(R). Consider now the global
parametrizations for the Toeplitz and Associated subgroups given, respectively, by:

(φ∞ ◦ i1)((xn)n≥0) =


x0
x1 x0
x2 x1 x0
x3 x2 x1 x0
...

...
...

... . . .



(φ∞ ◦ i2)((an)n≥0) =


1
0 a0
0 a1a0 a0

2

0 a21a0 + a2a0
2 2a1a

2
0 a0

3

...
...

...
... . . .


where:

i1(x0, x1, . . .) = (x0, 0, x1, 0, . . .), i2(a0, a1, . . .) = (0, a0, 0, a1, . . .)

and for (xn)n≥0, (an)n≥0 ∈ K∗ ×KN. Take now:

u = (x0, a0, x1, a1, . . .)

We have:
φ∞(u) = (φ∞ ◦ i1)((xn))(φ∞ ◦ i2)((an))

Using now the Chain rule and the basic properties for the derivation of the product of
matrices, we get:

∂φ∞
∂xn

|(1,1,0,0,...)=
∂(φ∞ ◦ i1)

∂xn
|(1,0,0,0,...)

∂φ∞
∂an

|(1,1,0,0,...)=
∂(φ∞ ◦ i2)

∂an
|(1,0,0,0,...)

for n ≥ 0. Finally, from Theorem 4.10.1, we obtain that the Lie algebra of each subgroup
is the one proposed above.

• (4) is immediate.

2

So we could say that the decomposition of R as a semidirect product of the Toeplitz and
Associated subgroups is coherent with the inverse limits structures of both R(K) and L(R(K)).



4.18. STABILIZERS IN R(K) AND THE CORRESPONDING LIE ALGEBRAS 35

4.18 Stabilizers in R(K) and the corresponding Lie algebras
In this section we will obtain another application of the pro-Lie group structure of R.

As we have already mentioned, there is a natural linear action of Rn(K) on Kn+1. Consider
now the elements in Kn+1 as polynomials of degree less than or equal to n. We have already
introduced stabilizers too in proposition 4.1.7. In this context:

Remark 4.18.1 Suppose a fixed polynomial h(x) =
∑n

k=0 hkx
k. The stabilizer of h(x) under

the natural linear action is:

(Rn(K))h(x) = {D ∈ Rn(K) : D ⊗ h(x) = h(x)}

Recall from proposition 4.1.7 that the Lie algebra of the stabilizer subgroup Rn(K)h(x) is given
by

L((Rn(K)h(x))) = {L ∈ L(Rn(K)) : h(x) ∈ KerL}

Some results on stabilizers in the Riordan group can be already found in [51].

We will verify the above remark with an example of subgroup whose tangent algebra has
already been computed in this work:

Example 4.18.2 Consider the associated subgroup An(K). The elements of this subgroup are
the Riordan matrices of the form Rn(1, h(x)). The associated subgroup is the stabilizer of the
power series 1. We have already proved that the Lie algebra of the associated subgroup is formed
just by the elements:

{Ln(0, α) : L(Rn(K))}

Note also that Proposition 4.13.2 confirms this result because Ln(χ, α)⊗ (1) = χ(x) and then
1 ∈ KerLn(χ, α) if and only if χ = 0.

Fortunately we will be able to extend this result for the infinite group R(K). Obviously,
we have the following:

Remark 4.18.3 Let γ ∈ K[[x]]. Represent by (R(K))γ the stabilizer of γ in R(K). Then,
R(d(x), h(x)) ∈ (R(K))γ if and only if Πn(R(d(x), h(x))) ∈ (Rn(K))Taylorn(γ) for any n ≥ 0.

As a consequence we get our main result in this section that explains the behaviour of the
stabilizers in R(K):

Theorem 4.18.4 Let γ ∈ K[[x]] be non-null. Consider the stabilizer of γ:

(R(K))γ = {D ∈ R(K) : D ⊗ (γ) = γ}

Then:
Tγ : R −→ R
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Tγ(R(d(x), h(x))) = R

(
d(x)

γ(x)

γ(h(x))
, h(x)

)
defines, by restriction, an isomorphism from the associated subgroup A(K) onto (R(K))γ.
Consequently R(K)γ is a closed Lie subgroup of the Riordan group R(K).

Moreover the differential map defines, by restriction, a Lie algebra isomorphism:

DRγ(R(1, x)) : L(A)→ L((R(K))γ)

Finally,
L((R(K))γ) = {L(χ, α) ∈ L(R(K)) : γ ∈ KerL(χ, α)}

or equivalently:
χ · γ + xαγ′ = 0

Proof:

• Suppose an element R(1, h(x)) in the associated subgroup, then, obviously:

Tγ(R(1, h(x)))⊗ γ(x) = R

(
γ(x)

γ(h(x))
, h(x)

)
⊗ γ(x) = γ(x)

On the other hand if:
R(d(x), h(x))⊗ γ(x) = γ(x)

it is easy to see that:
R(d(x), h(x)) = Tγ(R(1, h(x)))

• The map Tγ is a Lie group isomorphism, since:

Tγ = conjR(1,γ(x))

• Consider L(χ, α) ∈ L(R(K)γ). This implies that etL(χ,α) ∈ R(K)γ for any t ∈ R.
So, etL(χ,α)(γ) = γ and, by proposition 4.18.3, this is equivalent to Πn(e

tL(χ,α)) ∈
Rn(K)Taylorn(γ) for every n ∈ N, t ∈ R. But, recall here the proof of Theorem 4.10.1,
that:

Πn(e
tL(χ,α)) = etDΠn(I)(L(χ,α))

where I = R(1, x) is the neutral element in R(K). For the finite dimensional Lie group
Rn(K), the above equality implies that:

DΠn(I)(L(χ, α)) ∈ L(Rn(K)Taylorn(γ))

for any n ∈ N. Consequently Taylorn(γ) ∈ KerDΠn(I)(L(χ, α)) for any n ∈ N.
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• Proceeding now as in the proof of Theorem 4.10.1, L(χ, α) is represented by the sequence
(DΠn(I)(L(χ, α)))n∈N in the inverse limit description of L(R(K)) pointed out there.
Hence L(χ, α)⊗ γ = 0 and so:

χ(x)γ(x) + xα(x)γ′(x) = 0

• Suppose now that L(χ, α)(γ) = 0. Passing again through the finite dimensional Lie
groups Rn(K) and by using similar arguments we have that etL(χ,α) ∈ R(K)γ for any
t ∈ R. So the curve δ : R −→ R(K)γ given by δ(t) = etL(χ,α), is well defined and
differentiable for the infinite dimensional Lie group structure in R(K)γ whose existence
was proved at the beginning of this proof. Since δ′(0) = L(χ, α), it means, by definition,
that (χ, α) ∈ L((R(K))γ).

2

As we have already mentioned in this chapter, stabilizer of elements in K((x)) are also
useful. Note that:

Remark 4.18.5 With essentially the same proof the above proposition remains true if we
replace finite matrices by bi-infinite matrices and K[[x]] by K((x)).

Moreover, there is again some interesting symmetry when considering the bi-infinite case:

Corollary 4.18.6 For any L(χ, α) ∈ L(R∞∞(K)) and any γ ∈ K((x)) we have that:

L(χ, α) ∈ L(R∞∞(K)γ)⇔ L(−χ, α) ∈ L(R∞∞(K) 1
γ
)

Now, for the rest of this section, we will recover some of the known subgroups of the Riordan
group as stabilizer of certain elements and so we will also compute their Lie algebras.

Example 4.18.7 The Bell subgroup B is formed by all Riordan matrices of the form:

R

(
h(x)

x
, h(x)

)
There is an obvious relation between the Bell and the associated subgroups. In fact, it is

easy to see that the Bell subgroup is the stabilizer of 1
x .

Thus applying the formula in theorem 4.18.4, the matrices L(χ, α) lying in L(B) are those
of the type:

L(−α, α)
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Example 4.18.8 The Stochastic subgroup S of the Riordan group is, by definition, the
stabilizer of the geometric series 1

1−x .

Then L(S) is the set of matrices in L(χ, α) satisfying:

L(χ, α)⊗
(

1

1− x

)
= χ(x) · 1

1− x
+ xα(x) · 1

(1− x)2
= 0

that is, the set of matrices of the type:

L

(
− xα(x)

(1− x)
, α(x)

)



Chapter 5

Riordan Matrices and Simplicial
Complexes

In this final chapter, we will show the presence of Riordan matrices in some classical combi-
natorial problems related to simplicial complexes.

We will start recalling the main concepts involved in the rest of this chapter: for simplicial
complex (section 5.1) and for the f-vector problem (section 5.2).

In section 5.3 we will show how the relation between f-vector, g-vector, h-vector and γ-
vector may be understood as a Riordan change of basis.

In section 5.4 we will see how Dehn-Sommerville equations (a classical result when studying
the f-vector problem, see the books [39, 119]) in the formulation made in [39] (in terms of the
f-vector, not in terms of the h-vector) can be stated as a problem of finding eigenvectors of a
Riordan matrix which is an involution.

We will also show in section 5.5 that fixing two simplicial complexes K and L and consider-
ing the simplicial complexes K,K ∗L,K ∗L∗L, . . . (recall that the join of simplicial complexes
is associative) we obtain a certain Riordan pattern in the f-vector if we write the corresponding
f-vectors as rows in a matrix. We will also introduce the m, q-cones which are the unique choice
of L and K that makes this matrix actually a Riordan matrix. This last fact may be of interest
since it allows us to test some properties about linear relations in the f-vector via the 1FTRM.

After this, we will introduce subdivision methods (section 5.6). Then in section 5.7 we
will see new proofs of some classical results in a new context (the non-existence of other linear
relations on the entries in the f-vector being an homotopical invariant, the invariance of the
Euler characteristic under barycentric subdivision, and the non-existence of other possible
linear relations for certain PL-topologically closed families apart from the Dehn-Sommerville
equations) and even a new one (proposition 5.7.5, (ii)), all of it relying only on linear algebra
and Riordan matrices.

In section 5.8 we will study a matrix concerning the Betti-sequence of m, q-cones that
happens to be a Riordan matrix again.

Finally, we will study the complexes obtained by replacing the simplices by q, q-cones as
building blocks (section 5.9).

1
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5.1 Simplicial Complexes
We will assume that the reader has a basic topological background (basic references for this
can be [42,85]).

Simplicial complexes are formed from a family of more simple objects: the simplices.

Definition 5.1.1 Let {a0, . . . , a1} a set of point affinely independent in RN . We define the
n-simplex σ generated by a0, . . . , an as the set of convex combinations of the points a0, . . . , an,
that is:

σ =

{
n∑
i=0

tiai :
n∑
i=0

ti = 1

}
Note that if σ is generated by n + 1 point we will say that is an n-simplex, or a simplex

of dimension n. By agreement, ∅ is considered to be the simplex of dimension −1.

The points {a0, . . . , a1} are called vertices. Any subset of the set of vertices is again
affinely independent and we can use them to generate another (smaller) simplex. Any simplex
generated by a subset of the original set of vertices is said to be a face of the simplex σ.

Once this is settled, there are two possible ways to define simplicial complexes:

Definition 5.1.2 (geometric definition, see [85]) A (geometric) simplicial complex,
denoted by |K|, is the union of a nonempty collection K of simplices satisfying the following
conditions:

1. ∅ ∈ K

2. (Closure under inclusions) For any simplex in K, the faces are also in K.

3. The intersection of two simplices in K, if not empty, is also a simplex in K.

For the rest of this work, we will only considered finite simplicial complexes, that is,
simplicial complexes which are a finite collection of simplices.

Definition 5.1.3 (abstract or combinatorial definition) Let V be a set, that will always
be finite for us, and whose elements are called vertices. An (abstract) simplicial complex
K over the vertex set V is a non-empty family of subsets of V satisfying the following conditions:

(a) ∅ ∈ K

(b) (Closure under inclusions) A ∈ K, B ⊂ A ⇒ B ∈ K.

Again we will always consider that K must be a finite family of sets (finite simplicial
complex).

In the first one of those definitions, simplicial complexes may be thought as object with a
double structure: geometric objects (since they are topological spaces embedded in RN ) with
some extra combinatorial structure: vertices, edges,…and d-dimensional faces in general.
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Remark 5.1.4 Identifying each simplex with its set of vertices we can obtain an abstract
simplicial complex out of a geometric simplicial complex and there is a canonical way called
canonical geometric realization to obtain a geometric simplicial complex out of an abstract
simplicial complex K with vertex set V associating to each element in K a simplicial complex
in R#V . We omit details that can be found in the bibliography proposed above.

For both definitions we define vertices and faces and subcomplexes in the natural way.
Again we will omit the details.

The maximal faces, that is, the simplices which are not the face of any other simplex in K
are called facets. The simplicial complexes whose facets are of the same dimension are said
to be pure. The family of pure simplicial complexes is very interesting since it contains the
familly of simplicial complexes with a structure of topological manifold.

For both definitions (and of course in a compatible way) we have a notion of simplicial
map and of isomorphism. Roughly speaking, a simplicial map is a function that maps
vertices to vertices and simplices of dimension d to simplices of dimension d. This allow us,
for example, to consider different geometric realizations for an abstract simplicial complexes,
modulo isomorphism.

For the geometric definition of simplicial complex an isomorphism is not only an homeo-
morphism, but an homeomorphism that preserves the combinatorial structure (vertices, edges
and faces in general) of the simplicial complex. One way to preserve the geometric structure
but not the combinatorial one is the use of subdivisions.

Definition 5.1.5 Let K be a simplicial complex. We say that another simplicial complex K ′

is a subdivision of K, if:

• ∀σ ∈ L, ∃τ ∈ K so that σ ⊂ τ .

• ∀τ ∈ K, τ is a finite union of simplicies in L.

If |K ′| is a subdivision (modulo isomorphism) of |K|, then both are homeomorphic as
topological spaces. Two simplicial complexes K and L are said to be PL-homeomorphic (for
Pieceswise-Linear) if there exists a third simplicial complex S which is a subdivision of K and
of L.

Initially, it was thought that for two simplicial complex being homeomorphic and being PL-
homeomorphic were equivalent conditions (Hauptvermutung conjecture), but shi was disproved
by J. Milnor in [81] one can find “two complexes which are homeomorphic but combinatorially
distinct”.

As we have showed, homemorphisms are not a natural language for simplicial complex since
they do not take into account the combinatorial structure so they are replaced by isomorphisms
or PL-homeomorphisms. The same happens with homotopy equivalences that may be replaced
by simple homotopy equivalences. A good reference to cover this topic may be the book by J.
A. Barmak [6].
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Finally, recall that there is an homotopical invariant defined specially for simplicial com-
plexes: simplicial homology groups. We are not going to describe them here. The definition
can be found in [42,85]. We have put all we need to know in the following remark:

Remark 5.1.6 We have that:

• Homology groups are finitely generated. They can be defined over any ring but typically
they are defined over Z or over a field. If they are defined over a field, there is no torsion.

• We can define an homology group for each n ≥ 0 which is denoted by Hn(K,Z) or simply
Hn(K).

• H0(K) is free abelian (see [85], section 7) and its rank equals to the number of arcwise
connected components of |K| (in a simplicial complex, the arcwise connected compo-
nents and the connected components coincide). If K is connected, then H1(K) is the
abelianization of the fundamental group of K (see [73] or [42]).

• Simplicial homology groups are homotopy invariants.

• Sometimes is more convenient to use the reduced homology groups. The n-th reduced
homology group is denoted by H̃n(K) and the only difference is that for n = 0 we have
that:

rank(H0(K)) = rank(H̃0(K) + 1)

• For a simplicial complex of dimension d, it follows from the definition that ∀n >
0, Hn(K) = 0.

• If K is a contractible simplicial complex of dimension d, then for all 0 ≤ n ≤ d, H̃n(K) =
0.

• If a simplicial complex K is homeomorphic to the n-th dimensional sphere Sd we have
that:

H̃n(K,Z) =

{
0 for 0 ≤ n ≤ d− 1

Z for n = d

Once the homology groups have been presented, the Betti numbers can be introduced.
They contain simplified information from the homology groups and they come from one of the
first attempts to assign invariants to the simplicial complexes.

Simplicial homology groups are finitely generated. Let Hp(K) one of those homology groups
and let Tp its torsion subgroup (the subgroup generated by all the elements of finite order).
It must exist ([85], section 4) a free abelian subgroup Gp < Hp(K) of finite rank bp(K), so that
Hp(K) = Tp ⊕ Gp and this bp is univocally determined by the group Hp(K). Those numbers
bp(K) are the so called p-th Betti number of K.

Intuitively, b0(K) is the number of connected components of a simplicial complex K and
bp(K) is the “number of p+1 dimensional holes” (a hole is d+1 dimensional if it is contained
in a d dimensional simplex but not in a d− 1 dimensional simplex) of K.
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Also an analogue of Betti numbers can be defined for reduced homology, the so called
reduced Betti numbers:

b̃0(K), b̃1(K), b̃2(K), . . .

They are equal to Betti numbers except for:

b̃0(K) = b0(K)− 1

For a simplicial complex K of dimension d, the sequence (β0(K), . . . , βd(K)) is called the
Betti sequence. The sequence (β̃0(K), . . . , β̃d(K)) is called the reduced Betti sequence.

Remark 5.1.7 As homology groups are homotopically invariant, so are the following numbers:

χ(K) = b0 − b1 + b2 − . . .± bd, χ̃(K) = b̃0 − b̃1 + b̃2 − . . .± b̃d

called respectively the Euler and the reduced Euler characteristics.

5.2 The f-vector Problem
One of the objects that we will be very interested in along this last chapter are face-vectors
or f-vectors since we will study the connection between those objects and Riordan matrices.

Definition 5.2.1 Let K a simplicial complex of dimension d. We define its f-vector to be
the sequence of integers:

f(K) = (f0(K), . . . , fd(K))

such that for all 0 ≤ i ≤ d, fi(K) counts the number of faces of dimension i of K.

We will sometimes use extended f-vectors , which are sequences:

ef(K) = (f−1(K), f0(K), . . . , fd(K))

where for all 0 ≤ i ≤ d, fi(K) has the same interpretation as in the previous case and by
agreement we always consider that f−1(K) = 1, thinking that we are counting in this case the
unique face with 0 points (dimension −1) that any simplicial complex has: ∅.

Moreover, it will be sometimes convenient to consider (extended or not) f-vectors to be
sequences of infinite length with the convention fk(K) = 0 if d > k.

As usual, it will be sometimes necessary to associate to these vectors some power series
(polynomials in this case). The f-polynomial and the extended f-polynomial of a given
simplicial complex K are respectively the polynomials:

fK(x) = f0 + f1x+ . . .+ fdx
d, efK(x) = f−1 + f0x+ . . .+ fdx

d+1 = 1 + xfK(x)

One of the main problems in topological combinatorics is the so called f-vector problem:
the problem of describing the possible set of f-vectors (f(S)) of a given family of simplicial
complexes (S). Of course, this may not be interesting for any possible family S but for families
that have any characteristic property, tipically a topological one. For example an open and
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hard question is computing f(S) for S, being the set of simplicial complexes homeomorphic to
a fixed simplicial complex K.

There exist some other vectors of integers containing the same information as the f-vector.
They have happened to be very useful in the study of the f-vector problem. We will list some
of them now.

Definition 5.2.2 Let S a simplicial complex of dimension d. Let ef(K) = (f−1, . . . , fd) be
its extended f-vector. We define the h-vector of K to be the sequence h(K) = (h0, . . . , hd+1)
satisfying:

(5.1) hk =
k∑
i=0

(−1)k−i
(
d+ 1− i

d+ 1− k

)
fi−1

Again, associated to this sequence, we have a polynomial hS(x), which will be called the
h-polynomial.

In most of the cases that will be studied here, the h-vector will happen to be a symmetric
vector (see Dehn-Sommerville equations below).

Definition 5.2.3 Let K be a simplicial complex of dimension d whose h-vector is h(K) =
(h0, . . . , hd+1). If h(K) is symmetric, it is usually defined the g-vector by:

g0 = h0, gi = hi − hi−1

Definition 5.2.4 Let K be a simplicial complex, let h(K) = (h0, . . . , hd+1) be its h-vector. If
(h(K) is symmetric, then we can define the γ-vector to be the unique sequence of integers
γ(K) = (γ0, . . . , γ⌈ d

2
⌉) satisfying:

h(x) =

⌈ d
2
⌉∑

i=0

γit
i(1 + t)d+1−2i

In this direction (of the f-vector problem) there are many important results and conjectures,
some of which will be listed in the following. The main references for the known results are:
the book by G.M Ziegler [119] and the article by A- Björner and G. Kalai [14].

1. Kruskal-Katona theorem, that characterizes f(S) for S being the set of all finite simplicial
complexes.

Theorem 5.2.5 (Kruskal-Katona Theorem 8.32 in [119], corrections [120])
We have that:
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(i) For any n, k ≥ 0, there is a unique k-cascade (see section 8.5 in [119], the
term k-cascade appears in [33]) of n of the form:

n =

(
ak
k

)
+

(
ak−1
k − 1

)
+ . . .+

(
a1
1

)
with ak > ak−1 > . . . > a1 ≥ 0

From this unique decomposition the following operator is defined:

∂k−1(n) =

(
ak

k − 1

)
+

(
ak−1
k − 2

)
+ . . .+

(
a1
0

)
(ii) A sequence of integers:

f = (f0, f1, . . . , fd)

is the f-vector of a simplicial complex of dimension d if and only if it satisfies
the Kruskal-Katona condition, that is, ∀k ≥ 1:

∂k(fk) ≤ fk−1

2. The Björner-Kalai theorem, that characterizes f(Sβ) for Sβ being the set of simplicial
complexes with a fixed Betti sequence β = (b0, b1, . . .) and that we are not going to
include here.

3. The Dehn-Sommerville equations, that must be satisfied by pure and shellable simplicial
complexes (in fact by larger classes of simplicial complexes such as Eulerian simplicial
complexes, see for example [34]).

Theorem 5.2.6 (Dehn-Sommerville equations, 8.21 in [119]) Let K be the
boundary of a simplicial polytope. Then the following statements are equivalent and
all of them hold. They are the so called Dehn-Sommerville equations:

(a) Let f(K)=(f−1, . . . , fd), then ∀0 ≤ k ≤ d+ 1:

(5.2) fk−1 =

d+1∑
i=k

(−1)d+1−i
(
i

k

)
fi−1

(b) Let h(K) = (h0, . . . , hd+1), then ∀k = 0, . . . , d+ 1:

(5.3) hk = hd+1−k
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4. The g-theorem, that determines f(S) with S being the set of simplicial complex PL-
homeomorphic to the boundary of a simplicial polytope (we are not going to include it
here, see [119]).

5. Conjecture concerning flag homology spheres, a class of simplicial complexes that
contains spheres.

• Gal’s conjecture (2.1.7 in [34]) If S is a (2k−1)-dimensional flag homology sphere,
then all the coefficients in the γ-polynomial are nonnegative.

• Charney-Davis conjecture (conjecture D in [19]) If S is a (2k − 1)-dimensional
flag homology sphere and hS(x) is its h-polynomial, then:

(−1)khS(−1) ≥ 0

or equivalently:
γk(S) ≥ 0

Of course, also upper bounds for the γ-polynomial would be desirable.
As pointed out by Gal and Januszkiewicz in [36], this conjecture also has implica-
tions for even flag homology spheres.

• Nevo-Petersen conjecture (problem 6.4 in [86]) If S is a flag homology sphere,
then γ is the f-polynomial of a flag simplicial complex.

5.3 f-, h-, g- and γ-vectors
Riordan change of basis for the f-vector: h-, g- and γ-vectors

One of the first appearance of the Riordan group when working with the f-vector is the
one described in this section: the h-vector, g-vector and γ-vector are nothing more than the
product of a Riodan matrix by the f-vector.

Proposition 5.3.1 Let S a simplicial complex of dimension d. Let ef(K) = (f−1, . . . , fd)
be its extended f-vector. Then:

(5.4)


h0
h1
...

hd+1

 =


(−1)0

(
d+1
d+1

)
(−1)1

(
d+1
d

)
(−1)0

(
d
d

)
... . . .

(−1)d+1
(
d+1
0

)
. . . . . . (−1)0

(
0
0

)


f−1
f0
...
fd

 =

= Rd+1

(
(1− x)d+1,

x

1− x

)
f−1
f0
...
fd


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Proof: It follows directly from 5.1.
2

A similar trick for changing between f-vector and h-vector is referred in the bibliography
as “Stanley’s Trick” (see for exmple [119]).

As we already mentioned in section 5.2 in most of the classic cases studied, the h-vector
is symmetric. In this case, all the information of the simplicial complex is contained in the
first half of the sequence, that is, in the numbers (h0, . . . , h⌈ d

2
⌉). For this reason, the g-vector

and the γ-vector are usually only considered if the h-vector is symmetric and only taking into
account the entries (h0, . . . , h⌈ d

2
⌉).

We have:

Proposition 5.3.2 Let K be a simplicial complex of dimension d which h-vector is
h0, . . . , hd+1. Consider the vector:

(5.5)


g0
...

gd+1

gd+2

 := R(1− x, x)


h0
...

hd+1

0


If the h-vector of K is a symmetric sequence, then (g0, . . . , g⌈ d

2
⌉) is what is usually

named the g-vector in the bibliography and the sequence g0, . . . , gd+2 is anti-symmetric.

Proof: It follows directly from definition 5.2.3.
2

Finally, we can see that:

Proposition 5.3.3 Let K be a simplicial complex of dimension d which h-vector is
h0, . . . , hd+1. Consider the vector:

(5.6)

 γ0
...

γd+1

 :=

(
R

(
(1 + x)d+1,

x

(1 + x)2

))−1  h0
...

hd+1


If the h-vector of K is a symmetric sequence, then (γ0, . . . , γ⌈ d

2
⌉) is what is usually

named the γ-vector in the bibliography and the rest of the entries, γ⌈ d
2
⌉+1, . . . , γd+1, equal

to 0.
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Proof: It follows from definition 5.2.4.
2

Remark 5.3.4 A. Björner proposed the unimodality conjecture in [11] that states that the
f-vector of certain simplicial complexes is always an unimodal sequence (it grows and then
decreases). He later disproved it in [12] proving that it is “almost” unimodal and exhibited a
case where it was not. The h-vector of the simplicial complexes considered are always symmetric
and strictly positive.

Björner also conjectured in [13] that the unique matrix Md satisfying:f0...
fd

 = Md

g0. . .
gd


is totally non-negative, i.e. all its minors are non-negative. This was later proved by M.
Björklund and A. Engström in [10] and in a different way by S. R Gal in [35].

Both results are then related to the study of the sequences obtained by multiplying certain
partial Riordan matrices by sequences satisfying certain properties.

The results above yield a lot of open questions:

• Which is the significance of those extended g- and γ-vectors if the h-vector is not sym-
metric? When is it positive, log-concave, unimodal,…? (open question 23).

• On the other hand, when is, in general, the image of a column vector multiplied by the
left by a Riordan matrix symmetric or anti-symmetric? (open question 24). Some work
has already been done in this sense in [20].

• How do Riordan matrices behave with respect to the Kruskal-Katona conditions for f-
vectors (see theorem 5.2.5 and open question 25).

5.4 Dehn-Sommervile Equations
The f-vectors of large classes of simplicial complexes satisfy the Dehn-Sommerville equations
(see section 5.2 for a brief discussion of this).

Let K be a simplicial complex of dimension d, whose extended f-vector is (f−1, . . . , fd) and
whose h-vector is (h0, . . . , hd+1). As stated in theorem 5.2.6, the Dehn-Sommerville equations
are nothing more than imposing the h-vector to be symmetric. The formulation in terms of
the f-vector is more interesting for us:

Proposition 5.4.1 The Dehn-Sommerville equations can be stated as an eigenvector prob-
lem:

(5.7)


fd
fd−1

...
f−1

 =


(
d+1
d+1

)(
d+1
d

)
−
(
d
d

)
...

... . . .(
d+1
0

)
−
(
d
0

)
. . . (−1)d+1

(
0
0

)



fd
fd−1

...
f−1


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The matrix above is the partial Riordan matrix Rd+1

(
(1 + x)d+1,− x

1+x

)
, which is an

involultion.

Proof: It follows directly from the formulation (5.3) of the Dehn-Sommerville equations (in
terms of the f-vector).

2

Finding the sequences satisfying the Dehn-Sommerville equations in their formulation (5.3)
or equivalently (5.7) was a problem already studied by M. Grunbaun in [39], section 9.5, but
by using Riordan matrices is easy to find them:

Remark 5.4.2 Since:

Rd+1

(
(1 + x)d+1,− x

1 + x

)
·Rd+1

(
(1 + x)

d+1
2 ,

x√
1 + x

)
=

= Rd+1

(
(1 + x)

d+1
2 ,

x√
1 + x

)
·Rd+1(1,−x)

a sequence of real numbers (f−1, . . . , fd) satisfies (5.7) if and only if it is a linear combination
of the columns 0, 2, . . . of the Riordan matrix Rd+1

(
(1 + x)

d+1
2 , x√

1+x

)
(which are obviously

independent)or equivalently its generating polynomial is:

Taylord+1

(
(1 + x)

d+1
2 · Φ

(
x

x√
1 + x

))
for some even power series ϕ(x) ∈ K[[x]].

Remark 5.4.3 Studying when such a sequence satisfies Kruskal-Katona conditions is related
to open question 26.

In this case, for small cases at least, it would be easy to find a set of inequalities that
describe the coefficients that we have to choose in the linear combination of the columns in
the matrix of the previous remark in order to obtain a sequence satisfying the Kruskal-Katona
conditions.

But the remark above gives another interpretation of this problem in terms of functional
equations and is related to open question 27: what can we say about formal power series whose
entries satisfy Kruskal-Katona conditions? Can we find any class of them?
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5.5 Iterated Join of Simplicial Complexes as a Riordan pattern
The f-vectors of two well known families of simplicial complexes f-vectors exhibit a Riordan
pattern:

Proposition 5.5.1 (f-vectors of simplices and cross-polytopes)

(1) Let the matrix (fij)0≤i,j = R
(

1
(1−x)2 ,

x
1−x

)
. The k-row (fk0, . . . , fkk) is the f-vector

of the k-dimensional simplex. Moreover, from the matrix (aij)0≤i,j = R
(

1
1−x ,

x
1−x

)
if we consider the (k + 1)-row (ak0, . . . , ak,k+1) we obtain the extended f-vector of the
k-dimensional simplex.

(1, 0, 0, 0, . . .) (2, 1, 0, 0, . . .) (3, 3, 1, 0, . . .) (4, 6, 4, 1, . . .)

b

b

b

bb

b

b

b b

b

(2) Let the matrix (fij)0≤i,j = R
(

2
(1−x)2 ,

2x
1−x

)
. The k-row (fk0, . . . , fkk) is the f-vector of

the k-dimensional cross polytope (see the definition in [119] or the definition in terms
of joins below). Moreover, from the matrix (aij)0≤i,j = R

(
1

(1−x) ,
2x
1−x

)
if we consider

the (k + 1)-row (ak0, . . . , ak,k+1) we obtain the extended f-vector of the k-dimensional
cross polytope.

(2, 0, 0, 0, . . .) (4, 4, 0, 0, . . .) (6, 12, 8, 0, . . .)

b b

b

b

b

b

b b

b

b

b

b

Proof: Let the simplex of dimension k with vertex set V = {v0, . . . , vk}. Observed as an
abstract simplicial complex is the family of subsets of V . The number of subsets of V of size
i + 1 is

(
k+1
i+1

)
. This completes the proof of (1), since R

(
1

1−x ,
x

1−x

)
is then Pascal Triangle
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(which is our main example of Riordan matrix). The statement for the extended f-vector is a
direct consequence of this.

With respect to (2), let ∆
[0]
2 ,∆

[1]
2 ,∆

[2]
2 , . . . be the cross polytopes of dimensions 0, 1, 2, . . .

We will proceed by induction. Let (fij)0≤i,j = R
(

2
(1−x)2 ,

2x
1−x

)
:

• ∆
[2]
2 is the simplicial complex consisting in two single points so obviously its f-vector is

the first row of
R

(
2

(1− x)2
,

2x

1− x

)
• Now suppose that ∆[n]

2 has f-vector [fn0, fn1, . . . , fnn, 0, 0, . . .] for n ≥ 0. To obtain ∆
[n+1]
2

we do the suspension of ∆[n]
2 . When we do the suspension of a simplicial complex K, 2

new vertices appear (apart from those already in K) and 2 new faces of dimension d+1
appear for each face of dimension d in K (apart from those already in K). So, if:

f(∆
[d+1]
2 = (F0, F1, . . . , Fn, 0, 0, . . .)

then F0 = fn,0 + 2 and:

∀d ≥ 1, Fd = 2 · fn,d−1 + 1 · fn,d

The result follows from the fact that the first column in R
(

2
(1−x)2 ,

2x
1−x

)
is the arithmetic

progression 2, 4, 6, 8, . . . and that the A-sequence R
(

2
(1−x)2 ,

2x
1−x

)
is precisely (2, 1, 0, 0, . . .)

The statement for the extended f-vector in (2) follows directly from this.

2

An immediate consequence of the above result, we have the following well known fact with
a new proof by using the 1FTRM:

Corollary 5.5.2

(1) The Euler characteristic of the d-dimensional simplicial complex ∆[d] is 1.

(2) The Euler characteristic of the d-dimensional cross polytope ∆
[d]
2 is 2 if d is even, 0

otherwise.
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Proof: We have already described the matrix which rows are the f-vectors of each family.
Thus, to obtain the Euler characteristic of every complex in each family we only need to

compute the product of the corresponding matrix by the column vector


1
−1
1
...

. And, as the

generating function of this vector is 1
1+x , we can use the 1FTRM to see that:

(1) R
(

1
(1−x)2 ,

x
1−x

)
⊗ 1

1+x = 1
1−x which is the generating function of the column vector


1
1
1
...



(2) R
(

2
(1−x)2 ,

2x
1−x

)
⊗ 1

1+x = 1
1−x2 which is the generating function of the column vector


2
0
2
...


2

The reason under the presence of a Riordan matrix for the f-vectors of those families of
simplicial complex presented above is the iterative proccess that can be used to construct them.

Definition 5.5.3 With more generality, given two simplicial complexes K and L with two sets
of vertices V , W with empty intersection (we can obtain this re-labelling the vertices of one of
those complexes) we define the join of K and L denoted by K ∗L to be the simplicial complex
given by the following rules:

• The vertex set of K ∗ L is V ∪W

• The simplex σ of dimension d is in K ∗ L if one of the following holds:

(a) σ ∈ K

(b) σ ∈ L

(c) σ = τK ∪ τL with τK ∈ K, τL ∈ L, in which case we denote it by σ = τK ∗ τL.

A geometric interpretation of the join is possible but we will not discuss it here (see again
the book by J. Matousek [74]).

All the simplices can be obtained one from another by taking cones iteratively (the cone
of K is the join of K with the simplicial complex consisting in a single point), starting from
the 0-dimensional simplex (the simplicial complex consisting of a single point). Similarly, all
the cross polytopes can be obtained one from another by taking suspensions iteratively (the
suspension of K is the join of K with the simplicial complex consisting of two single points)
and starting from the 0-dimensional sphere (which is the simplicial complex consisting of 2
single points).
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Thus, note that:

Remark 5.5.4 Let L be a simplicial complex. If we start from a given simplicial complex K

and we define the simplicial complexes K
[0]
L ,K

[1]
L ,K

[2]
L , . . . by the iterative proccess of joining

described by:
K

[0]
L = K, ∀i ≥ 0, K

[i+1]
L = Ki

L ∗ L

then the f-vector placed as rows follows a Riordan pattern in some sense. Since for any two
simplicial complexes K,L where:

ef(K) = (f−1, f0, . . .), ef(L) = (f ′−1, f
′
0, . . .)

the number of n dimensional faces of K ∗ L is:

Fn = f ′n · f−1 + f ′n−1f0 + . . .+ f ′0fn−1 + f ′−1fn

the f-vectors f(K
[0]
L ), f(K

[1]
L ), f(K

[2]
L ), . . . have an A-sequence-like pattern.

For example if we consider K,L to be the simplicial complexes consisting of two vertices
and the segment between them, then we define f(K

[0]
L ), f(K

[1]
L ), f(K

[2]
L ), . . . as above:

K
[0]
L

K
[0]
L

L

K
[1]
L

b

b

b

b

b

b

and finally we place the extended f-vectors ef(K
[0]
L ), ef(K

[1]
L ), ef(K

[2]
L ), . . . as the rows of a

matrix what we obtain is the following (obviously not lower triangular) matrix:1 2 1
1 4 6 4 1
...

...
...

...
...

... . . .


From the previous remark we easily deduce that although the matrices of f-vectors (placed

as rows) of a family of simplicial complexes obtained by iterating the join with a fixed simplicial
complex L, have certain pattern, they are not in general Riordan matrices. Determining the
combinatorial meaning of those matrices and the combinatorial meaning of a Riordan matrix,
if any, extending this one will be left as open question 28. If we want the corresponding matrix
to be a Riordan matrix we need K0 and L to be 0-dimensional. So we will define:

Definition 5.5.5 The d-dimensional m, q-cone, which will be denoted by ∆
[d]
m,q, is the simplicial

complex obtained recursively as:

• ∆
[0]
m,q is the 0-dimensional simplicial complex consisting of m points.
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• For k ≥ 0, ∆
[k+1]
m,q is the join between ∆

[k]
m,q and the 0-dimensional simplex consisting of

q points.

So with this definition the family of 1, 1-cones is the family of the simplices. And the family
of the 2, 2-cones is the family of the cross-polytopes. And now we have:

Proposition 5.5.6

(5.8) (dij)0≤i,j = R

(
m+ (q −m)x

(1− x)2
,

qx

1− x

)
=


← f(∆

[0]
m,q) →

← f(∆
[1]
m,q) →

← f(∆
[2]
m,q) →
...


Moreover we have that:

(i) For all n, k:

dnk =

[
q

(
n

k + 1

)
+m

(
n

k

)]
qk

(ii) The extended f-polynomial of ∆[n]
m,q is (mx+ 1)(qx+ 1)n.

(iii) The f-polynomial of ∆n
m,q is the Jackson 0-derivative of the extended f-polynomial

and so is:
(m+ 1)(qx+ 1)n

x

Proof: If we prove (5.8), then we obtain immediately the statements (i),(ii)(iii) as a conse-
quence. So we will only prove (i).

From the previous definition it is easy to see that the number of vertices of the m, q-cones
are m,m+q,m+2q, . . . respectively, which are the entries d00, d10, d20, . . .. On the other hand,
as we have already used before, since the m, q-cones are obtained by iterating a join with the
space consisting of q points, for every k, d, 0 ≤ d ≤ k, the number of d-dimensional faces of
∆

[k+1]
m,q is:

#(d− dimensional faces of ∆k
m,q)#((d− 1)− dimensional faces of ∆k

m,q)

so:
dk+1,d = q · dk+1,d−1 + dk+1,d

this proves that (dij)0≤i,j is a Riordan matrix (it has an A-sequence) and checking that it is
in fact R

(
m+(q−m)x

(1−x)2 , qx
1−x

)
follows from a direct computation.

2
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Moreover, as we can change from f-vector to h-vector by doing a Riordan change of basis,
not only the matrix from the f-vectors but the matrix from the h-vectors of the m, q-cones are
a Riordan matrix and surprisingly it is known to us in this chapter:

Proposition 5.5.7 For m, q ≥ 2, the h-polynomial of ∆[n]
m,q is the extended f-polynomial of

∆
[n]
m−1,q−1. In other words, the matrix which rows are the h-vector of ∆[0]

m,q,∆
[1]
m,q,∆

[2]
m,q, . . .

is:
R

(
(m− 1) + (q −m)x

(1− x)2
,
(q − 1)x

1− x

)
If m = 1 or q = 1, still the h-vector of ∆[n]

m,q is:(
(m− 1)x+ 1

)(
(q − 1)x+ 1

)n

Proof: In proposition 5.5.6 is stated that the extended f-polynomial of ∆[n]
m,q is (mx+1)(qx+

1)n. To obtain the h-polynomial we only need to multiply by the adequated Riordan matrix
(proposition 5.3.1):

Rn+1

(
(1− x)n+1,

x

1− x

)
⊗
(
(mx+ 1)(qx+ 1)n

)
=

= Taylorn+1

[
(1− x)n+1 ·

((
mx

1− x
+ 1

)(
qx

1− x
+ 1

)n)]
=

=
(
(m− 1)x+ 1

)(
(q − 1)x+ 1

)n
2

In [119] the h-vector is not introduced as a sequence containing the same information as the
f-vector but as a sequence defining only for shellable simplicial complex and counting certain
aspects of the shelling (the equivalence is proved later, showing also the independence of the
chosen shelling). We leave open the question of trying to find some combinatorial meaning for
the result above: is the h-vector counting something in the m, q-cones? (see open question 29).

To close this section and to show the utility of this description of the f-vectors as rows in
a Riordan matrix in this setting of formal power series we will include two examples:

Example 5.5.8 We can compute the Euler characteristic by using the 1FTRM in the following
way:

R

(
m+ (q −m)x

(1− x)2
,

qx

1− x

)
1
−1
1
...

 ∼= R

(
m+ (q −m)x

(1− x)2
,

qx

1− x

)
⊗ 1

1 + x
=
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=
m+ (q −m)x

1 + (q − 1)x
∼=


m

(m+ (q −m))(1− q)
(m+ (q −m))(1− q)2

...


Example 5.5.9 We can also compute the total number of faces (of any dimension) of the
m, q-cones again by using the 1FTRM:

R

(
m+ (q −m)x

(1− x)2
,

qx

1− x

)
1
1
1
...

 ∼= R

(
m+ (q −m)x

(1− x)2
,

qx

1− x

)
⊗ 1

1− x
=

=
m+ (q −m)x

1− (q + 1)x
∼=


m

(m+ (q −m))(q + 1)
(m+ (q −m))(q + 1)2

...


5.6 Subdivision methods and matrices in ILT∞

By subdivision method we will mean a way of doing subdivisions making the same operation
in all the simplices of the same dimension. This concept is rigurously defined in [15,27].

Two subdivision methods will be used in this chapter:

Definition 5.6.1 Let K be a (geometric) simplicial complex (an analogue definition is made
for abstract simplicial complexes) with vertex set V and which collection of simplices is K =
{σ1, . . . , σn}

• Barycentric subdivision: For every simplex:

σi = {vi0, . . . , vini
} ∈ K

let ai be its barycenter, that is, the point:

ai =

ni∑
j=0

1

n+ 1
vij

The (first) barycentric subdivision is the simplicial complex bs(K) which vertex set is:

V ′ = V ∪ {ai : 1 ≤ i ≤ n}

and such that, for every chain of simplices in K of the type σi0 ⊂ . . . ⊂ σid, where σij is
of dimension j, the simplex spanned by:

{ai0 , . . . , aid}



5.6. SUBDIVISION METHODS AND MATRICES IN ILT∞ 19

is in bs(K).
We will use the notation bs(m)(K) for the m-th barycentric subdivision, that is,
bs(bs(. . . (K) . . .))

• Simple stellar subdivision: Let σ1, . . . , σk be the facets of maximal dimension in K,
let a1, . . . , ak be the correspondent barycenters. The (first) simple stellar subdivision is
the simplicial complex sss(K) which vertex set is:

V ′ = V ∪ {a1, . . . , ak}

and which simplices are those elements not in {σ1, . . . , σk}, and for each facet σi =
{vj0 , . . . , vjd} of dimension d all the simplices (which are also facets) of the type:

{ai, vm0 , . . . , vmd−1
}

where ai is the barycenter of σi and vm0 , . . . , vmd−1
span a face of diension d− 1 of σi.

We will use the notation sss(m)(K) for the m-th simple stellar subdivision, that is,
sss(sss(. . . (K) . . .)).

The term “simple stellar subdivision” is not standard in the bibliography but we will use
this name since it is related to the so called stellar subdivisions or starring subdivisions
(see [85]) and this is why we have chosen this name.

It is very easy to check from the definition (in particular for those two) that if K is a
simplicial complex of dimension d and K ′ is the simplicial complex obtained by a subdivision
method then there exists a (d+1)× (d+1) lower triangular matrix M such that: [← f(K ′)→
] = [← f(K)→]M

For example we have:

Proposition 5.6.2 Let K be a simplicial complex of dimension d. We have that:

(a) (see [15]) Let K ′ be the barycentric subdivision of K, then:

[← f(K ′)→] = [← f(K)→]


{
1
1

}{
2
1

}
2!
{
2
2

}{
3
1

}
2!
{
3
2

}
3!
{
3
3

}
...

...
... . . .


(b) Let K ′ be the simple stellar subdivision of K, then:

f(K ′) = f(K) + fd(K)

((
d+ 1

0

)
,

(
d+ 1

1

)
, . . . ,

(
d+ 1

d− 1

)
,

(
d+ 1

d

)
− 1

)
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or equivalently:

[← f(K ′)→] = [← f(K)→]



1
0 1
...

... . . .
0 0 1(
d+1
0

) (
d+1
1

) (
d+1
d−1
) (

d+1
d

)
...

...
... . . .



Proof: The first part is already proved in the bibliography proposed above. To prove (b) see
that:

• Let ∆1, . . . ,∆r be the faces of dimension d in K (facets since K is of dimension d).

∆1

∆2

Kb

b

b

b

b

b

• We will replace ∆i by the cone of the border (the simplicial complex consisting of the
faces of ∆ of dimension strictily less than d)

K K’b

b

b

b

b

b

b

b

b

b

b

b

b

b

• This will be the new simplicial complex K ′ and it is by construction a subdivision of K
and thus PL-homeomorphic to K.
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If f(K) = (f0, . . . , fd), then:

f(K ′) = (f0, . . . , fd) + fd ·
((

d+ 1

0

)
,

(
d+ 1

1

)
, . . . ,

(
d+ 1

d− 1

)
,

(
d+ 1

d

)
− 1

)
2

Characterising all possible matrices associated with subdivision methods in order to obtain
results as the ones in the following sections could be very interesting and we will leave it for
future work (open question 30).

5.7 Application: linear algebra and linear arithmetic relations
for the f-vector

Definition 5.7.1 Let S a family of simplicial complexes. A linear arithmetic relation R

for the family S is the linear combination:

λ0f0 + . . .+ λnfn + . . .

that takes the same value for any element in f(S) (this infinite sum can be taken, since any
simplicial complex in this work must be finite dimensional).

The term “arithmetic relation” was already used by C. T. C. Wall in [113].

Determining the set of linear relation that must be satisfied by the f-vectors of a family of
simplicial complexes S is a weaker version of the f-vector problem that has also been partially
studied. As we announced before, most of the families of interest are defined by a topological
property (for example S being the family of simplicial complexes homeomorhpic to a sphere).
So in most of the cases the family S is closed under homeomorphisms or PL-homeomorphism,
that is:

K ∈ S, L homeomorphic or PL-homeomorphic to K ⇒ L ∈ S

or under homotopy or simple homotopy or simple homotopy equivalence (analogous definition).

Definition 5.7.2 Consider the linear combination R on the entries for the f-vector given by:

λ0f0 + . . .+ λnfn + . . .

For any simplicial complex, consider SK to be the family of simplicial complexes consisting of
any simplicial complex PL-homeomorphic to K (we could do an analogous definition for other
relations, such as simple homotopy equivalence). If R satisfies the property:

∀K, R is a linear arithmetic relation for SK

we say that S is a linear arithmetic PL-topological invariant.
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This framework allows us to prove certain classical problems like the one below in a different
way (this result was first proved by W. Mayer in [75] and more recently proved in different
ways in [32,61,97]):

Proposition 5.7.3 (W. Mayer, [75]) There is no other linear arithmetic PL-topological
invariant, apart from the Euler characteristic and its multiples, which is also a simple-
homotopy invariant.

Proof: Take the family S formed by all the simplices (which are of the same simple-homotopy
type). We have already proved (proposition 5.5.1) that if we put the f-vectors of the simplices
ase rows we obtain the matrix R

(
x

(1−x)2 ,
x

1−x

)
. So for any linear arithmetic invariant for the

f-vector of the family S:
λ0f0 + . . .+ λkfk + . . .

we have that:

R

(
1

(1− x)2
,

x

1− x

)
⊗ u(x) =

c

1− x
, where c ∈ R, u(x) = λ0 + λ1x+ λ2x

2 + . . .

Thus, we can see that:

u(x) =

(
R

(
1

(1− x)2
,

x

1− x

))−1
⊗ c

1− x
= R

(
1

(1 + x)2
,

x

1 + x

)
⊗ c

1− x
=

c

1 + x

2

By using exactly the same argument we can prove the following result for one of the families
of simplicial complexes appearing in this chapter:

Proposition 5.7.4 Consider now S to be the family consisting of the m, q-cones of any
dimension (for m, q fixed). There is a unique (up to multiples) linear arithmetical relation
satisfied for all the f-vectors of elements in S, which is:

1

q
· f0 −

1

q2
· f1 +

1

q3
· f2 −

1

q4
· f3 + . . . (and their multiples)

We will omit the proof.
Other proofs relying on Riordan matrices of results of this type are possible. For instance

we have the following result. The first part improves the previous result and the second one
explains in some sense why Dehn-Sommerville equations are so special.
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Proposition 5.7.5 Let S be PL-topologically closed family of simplicial complexes:

(i) If S has at least one element of each dimension up to d with 1 ≤ d ≤ ∞. Then, the
unique linear arithmetical invariant that can hold for any element in S is the Euler
characteristic and their multiples (if it does).

(ii) Note that the Dehn-Sommerville equations are not linear arithmetic relation in the
sense we have defined here but they can be considered linear arithmetic relations when
all the dimensions of the complexes considered are of the same parity. If S has at least
one element of each dimension k even up to 1 ≤ d ≤ ∞ (we can suppose then that d
is even) the unique linear relation that can hold for any element in S are those from
the Dehn-Sommerville equations (and their multiples) that can be stated as (compare
with (5.7)):

(5.9) [1, f0, . . . , fd]
[
Rd+1

(
− 1

1 + x
,− x

1 + x

)
−Rd+1(1, x)

]
= [0, 0, . . . , 0]

or equivalently, if we want to consider them as linear arithmetical relations, they are
the linear combination obtained by multiplying [f0, f1, . . . , fd] by the column vector:
(5.10) ↑

Tylrd

(
1

1+x

)
↓

 ,

 ↑
Tylrd

(
1

(1+x)2
− 1
)

↓

 , . . . ,

 ↑
Tylrd

(
(−1)d+1 xd−1

(1+x)d+1 − xd−1
)

↓


If we are considering simplicial complexes of dimension less or equal than d, linear

arithmetical relations are considered as linear combinations of the type:

λ0 · f0 + . . .+ λd · fd instead of λ0 · f0 + . . .+ λn · fn + . . .

and it is in this framework when we talk about “uniqueness” in this result.

Proof: If S is PL-topologically closed, then if K ∈ S and L is PL-homeomorphic to K, L ∈ S.
So for any K of dimension d we will define K ′ to be its simple stellar subdivision. According
to proposition 5.6.2, if f(K) = (f0, . . . , fd), then:

f(K ′) = (f0, . . . , fd) + fd ·
((

d+ 1

0

)
,

(
d+ 1

1

)
, . . . ,

(
d+ 1

d− 1

)
,

(
d+ 1

d

)
− 1

)
So if an arithmetic linear relation with coefficients (λ0, . . . , λd) holds for K,K ′ then:

[
f0, . . . , fd

]λ0
...
λd

 =
[
(f0, . . . , fd) + fd ·

((d+ 1

0

)
, . . . ,

(d+ 1

d− 1

)
,
(d+ 1

d

)
− 1

)]λ0
...
λd


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or equivalently:

(5.11)
((d+ 1

0

)
, . . . ,

(d+ 1

d− 1

)
,
(d+ 1

d

)
− 1

)λ0
...
λd

 = 0

So:

(i) If we have a PL-topologically closed family S with an element of each dimension up to
d (d could be ∞) and there is an arithmetic linear relation R for S with coefficients
(λ0, . . . , λd), we have that by applying the reasoning above for different values of d, we
obtain equations of type (5.11) that we can put in a system:

[
Rd+1

(
1

1− x
,

x

1− x

)
−Rd+1(1 + x, x)

]
λ0
...
λd
0

 =


0
...
0
0


or equivalently:

Rd+1

(
1

1− x2
,

x

1− x

)
λ0
...
λd
0

 =


λ0
...
λd
0


and it is easy to see that the only eigenvector of Rd+1

(
1

1−x2 ,
x

1−x

)
is [1,−1, 1, . . . ,−1, 0]

and their multiples.

(ii) If we have a PL-topologically closed family S with an element of each even (the same for
odd) dimension up to d (thus we may assume that d is even) by doing the same reasoning
we have a system of d

2 linearly independent equations in d+ 1 variables:

(5.12)



((1
0

)
, 0, . . . , 0

)
λ0

...
λd

 = λ0

...

((d+1
0

)
, . . . ,

(d+1
d−1

)
,
(d+1
d

))

λ0

...
λd

 = λd

thus, the solution is a linear subspace of rank d
2 + 1 of Rd+1.
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It was already proved in [39], page 146, that the linear space spanned by those columns
has dimension d

2 + 1. All of those columns must be a solution (since Dehn-Sommerville
equations hold for the family of simplicial polytopes of even dimension, which is obviously
closed under the subdivision proposed above). So they are a basis for the linear subspace
of solutions.

2

Remark 5.7.6 It is possible to show explicitely that each of the columns (skipping the first
row) of (5.10) satisfies (5.12).

Consider the following system of equations:

[
Rd+1(1,−x) ·Rd+1

(
1

1− x
,

x

1− x

)
−Rd+1(1 + x, x)

]
λ0
...
λd
0

 =


0
...
0
0


or equivalently:

(5.13) Rd+1

(
1

(1 + x)2
,− x

1 + x

)
λ0
...
λd
0

 =


λ0
...
λd
0


All the equations in (5.12) are also equations in (5.13), so the linear space of solutions of

(5.13) must be contained in the linear space of solutions of (5.12).
Now, it is easy to check that all those columns are in fact eigenvectors of eigenvalue 1 of

Rd+1

(
1

(1+x)2
,− x

1+x

)
:

• Rd+1

(
1

(1+x)2
,− x

1+x

)
⊗
(

1
1+x − xd+1

)
=
(

1
1+x − xd+1

)
• For k ≥ 1:

Rd+1

(
1

(1 + x)2
,− x

1 + x

)
⊗ Tylrd

(
(−1)k+1 · xk−1

(1 + x)k+1
− xk−1

)
=

= Tylrd

(
(−1)k+1 · xk−1

(1 + x)k+1
− xk−1

)
A consequence of the second part of the previous result is that no other linear arithmetical

relations hold for shellable simplicial complexes apart from the Dehn-Sommerville ones, which
was already stated in [39], section 9.2.

Another subdivision method will appear in this section, together with the unique infinite
lower triangular matrix neither being a Riordan matrix nor an element in the tangent algebra
L(R) that will appear in this work.
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Barycentric subdivision has already been introduced in this chapter together with a previous
result describing the f-vector of the simplicial complex K ′ obtained by performing a barycentric
subdivision on another simplicial complex K, in terms of the f-vector of K.

This framework of matrices in ILT∞ allow us to prove the following result:

Proposition 5.7.7 The invariance of the Euler characteristic by succesive barycentric
subdivisions is not a topology matter in the sense that we do not need any topological
argument to prove.

It is a consequence of the fact that


1
−1
1
...

 is an eigenvector of eigenvalue 1 of the matrix:

B =


{
1
1

}{
2
1

}
2!
{
2
2

}{
3
1

}
2!
{
3
2

}
3!
{
3
3

}
...

...
... . . .



Proof: In this proof, all the f-vectors are placed as rows. First of all note that according to
proposition 5.6.2 if K ′ is the baricentric subdivision of K, then:

f(K ′) = f(K) ·B

So if


1
−1
1
...

is an eigenvector of eigenvalue 1 of B we have that:

f(K ′)


1
−1
1
...

 = f(K)


1
−1
1
...


To see that it is this way:

• Note that B = DS where:

D =


1!
0 2!
0 0 3!
...

...
... . . .

 S =


{
1
1

}{
2
1

} {
2
2

}{
3
1

} {
3
2

} {
3
3

}
...

...
... . . .


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• From [38], pages 259-264 we have that:

S−1 =

(
(−1)i−j

[
i+ 1

j + 1

])
i,j<∞

where
[
m
n

]
denotes the corresponding Stirling number of the first kind.

• Since for all i ≥ 1
[
i
0

]
and

∑i
j=0

[
i
0

]
= i! we have that:

S−1


1
−1
1
...

 = D


1
−1
1
...


which completes the proof.

2

Obviously, the matrix described above is not a Riordan matrix but still it has its own
structure that will be interesting to clarify: computing more eigenvectors, giving an analogue
of the 1FTRM,…(see open question 31).

5.8 Betti numbers of the m, q-cones
Betti numbers of the m, q-cones: a topologically generated Riordan matrix

The proccess of making the joint between a simplicial complex with another one made of
q points to obtain the m, q-cones, not only induces a Riordan matrix pattern in the f-vector
but in the sequences of Betti numbers.

In general, we have that:

Lemma 5.8.1 Let K be a simplicial complex of dimension d homotopically equivalent to
a wedge of spheres and with reduced Betti sequence (β̃0, . . . , β̃d). Let L be the 0-dimensional
simplicial complex consisting in q points with q > 1. The joint K∗L is homotopically equivalent
to a wedge of spheres wich reduced Betti sequence is (0, (q − 1)β̃0, . . . , (q − 1)β̃d)

Proof:

(i) Firstly, given a topological space X, we will define the q-cone of X, denoted by Cq(X) as
the space obtained gluing through the base q copies of the cone C(X), that is:

• For all 1 ≤ i ≤ q define the cone:

Ci(X) = C(X) = (X × I)/ ∼

where ∼ is the equivalence relation given by (x1, 1) ∼= (x2, 1), ∀x1, x2 ∈ X.
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X C(X)X × [0, 1]

X × {1}

X × {0}

b

• Then define Cq(X) as:
(C1(X) ∪ . . . ∪ Cq(X))/ ∼′

where ∼′ is the equivalence relation given for all 0 ≤ i, j ≤ q by:

[(xi, 0)] ∼′ [(xj , 0)]

where [(xk, 0)] ∈ Ck(X) (so we must use this notation of equivalence class). For
example, for q = 2:

C2(X)C1 C2

b
b b

b

(ii) Let K be a simplicial complex homotopically equivalent to the a wedge of spheres X.
Then Cq(K) is homotopically equivalent to Cq(X)

• As well as we can speak about the cone and suspension of a map, we can speak about
the q-cone of a map. Given a map between two topological spaces f : X → Y we
can define:

Cq(f) : Cq(X)→ Cq(Y )

defining a map:

C̃q(f) : C1(X) ∪ . . . ∪ Cq(X) −→ C1(Y ) ∪ . . . ∪ Cq(Y )

[(x, t)] ∈ Ci(X) 7−→ [(f(x), t)] ∈ Ci(Y )

that behaves well with respect to the equivalence relation ∼′ and then projecting
into the quotient which is well defined in relation to ∼′.

• Now assume that there is an homotopy equivalence f : K → X, that is, there is
another map g : X → K such that f ◦g and g◦f are homotopic to the identity maps
in K and in X respectively, with respect to the homotopies H1,H2 respectively.
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• We will show that Cq(f) is an homotopy equivalence (with respect to the also ho-
motopy equivalence Cq(g)). To see this, we construct the map:

H̃1 : C(X)× [0, 1]→ C(X)

defining the map:

Ĥ1 : (C1(X) ∪ . . . ∪ Cq(X))× [0, 1]→ C1(X) ∪ . . . ∪ Cq(X)

([(x, t)], s) 7−→ (H1([x, s]), t) for [(x, t)] ∈ Ci(X)

and then projecting to the quotient. This map H̃1 is an homotopy between Cq(f) ◦
Cq(g) and the identity in Cq(X).

• The same argument applies to construct the other homotopy needed.

(iii) Since each of the copies C1, . . . , Cq (that are glued through the base) is contractible, we
can collapse one of them. We then obtained the wedge of (q − 1) suspensions of X.

X X̃

Collapsing one copy

b b

b

b b

b

b

2

So we again can considered a matrix having as rows the reduced Betti sequences of the
m, q-cones and this is what we get:

Proposition 5.8.2 If we define the matrix whose rows are the reduced Betti sequences of
∆0
m,q,∆

1
m,q,∆

2
m,q, . . . we obtain the diagonal matrix R(m− 1, (q − 1)x)

Proof: ∆0
m,q has as reduced Betti sequence ((m− 1), 0, 0, . . .), since it has m connected com-

ponents. The rest of this result follows from the previous result.
2
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5.9 New building blocks to build complexes: q-simplices. q-
Euler characteristic

In this section we will only consider q, q-cones. We will denote the d-dimensional q, q-cone by
∆

[d]
q .

Due to the similarities in construction between simplices and q, q-cones we may realize the
following:

Remark 5.9.1 Consider ∆
[d]
q and ∆[d] that are constructed iteratively by making a join oper-

ation. There is a natural simplicial map:

φ : ∆[d]
q → ∆[d]

which is q to 1 restricted to the set of vertices, and is defined in the following way:

• Label the points in ∆[d] as {V0, . . . , Vd}

• Since ∆
[d]
q is obtained iteratively making a join, label the starting points W 1

1 , . . . ,W
1
q .

Label the new vertices after the first join W 1
1 , . . .W

1
q . And so on until labelling the

vertices introduced in the last join as W d
1 , . . . ,W

d
q .

For example, if q = 2, d = 3:

W 0
1 W 0

2

W 1
1

W 1
2

W 2
1

W 2
2

b b b b

b

b

b b

b

b

b

b

• Now the simplicial map is defined imposing that:

∀1 ≤ i ≤ q, ∀0 ≤ k ≤ d, W k
i 7−→ Vk

that is, in the previous example, by mapping all the vertices of the same colour to the
same vertex of ∆[2].

Under the previous equivalence see that:

Lemma 5.9.2 In the notation of the previous remark, the pre-image by ϕ any proper face of
dimension k in ∆[d] is isomorphic to ∆

[k]
q .
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Proof: By using the notation in the previous remark we only need to see that, in the notation
of the previous remark, ∆[d] is the simplicial complex whose simplices are or the type:

{W j0
i0
, . . . ,W jk

ik
} with j0, . . . , jk distinct

2

This structural similarity between q, q-cones and simplices, allow us to use them as “building
blocks” in an analogous way as it is usually done with simplices:

Proposition 5.9.3 Given a simplicial complex K, we can define another simplicial com-
plex Kq, called the q-widening of Kq, replacing every k-dimensional simplicial complex
in K by a copy of ∆[k]

q .

Proof: It is a direct consequence of lemma 5.9.2. Perform the following reasoning in every
facet of K:

• Let L be a facet of dimension d of K, and then also a copy of ∆[d].

• L must be replaced by a copy of ∆[d]
q .

• We only need to check that this replacement is compatible with all the faces of L, that
is, that every face of L of dimension k is replaced by a copy of ∆

[k]
q . And this is a

consequence of lemma 5.9.2.

2

Finding families of simplicial complexes of every dimension with this property of being suit-
able to be used as building blocks might be an interesting question that also have applications
in Chemistry (see open question 32).

Remark 5.9.4 Note that if a simplicial complex Kq is the q-widening of any other simplicial
complex K, this simplicial complex has in some sense a double structure.

Deciding whether a given simplicial complex is the q-widening of any other simplicial com-
plex, is still an open question for us (see open question 33). This problem is similar to the one
of determining if a given simplicial complex can be viewed as the subdivision of another one or
not (hauptvermutung).

Given a simplicial complex K it is easy to obtain the f-vector of the q-widening Kq:
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Proposition 5.9.5 Let K be a simplicial complex with f-polynomial p(x) and let Kq be
its q-widening with f-polynomial pq(x). Then:

pq(x) = R(q, qx)⊗ p(x)

Proof: Each simplicial complex of dimension d is spanned by q+1 vertices. For each of those
vertex Vi we have q vertices W i

1, . . . ,W
i
q in the q-widening of the simplex.

It is easy to see that the number of faces of dimension d in ∆
[d]
q is qd+1 and it comes from

the fact that there is a face of dimension d for any possible combination of vertices of the type:

{W 0
i1 , . . . , . . .W

d
iq}

For example, see the following picture of ∆[1]
3

b

b

b

b

b b

2

Thanks to the previous result, every linear arithmetic relation that holds for a simplicial
complex K is automatically translated into another linear arithmetic relation that holds for
its q-widening Kq. For instance:

Remark 5.9.6 This yields an alternative proof for proposition 5.7.4. Since by transposition
is easy to see that:

[← f(∆[d]
q )→] = [← f(∆[d])→]R(q, qx)

then necessarily:

[← f(∆[d]
q )→]

(R(q, qx))−1


1
−1
1
...



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It is still an open question for us to determine the action of this q-widening proccess on the
Betti sequence (see open question 34) although we have already described the Betti sequence
of ∆[d]

q . For 1-dimensional simplicial complexes (graphs) this problem is easy to solve but it
does not seem to be for higher dimensions:

Proposition 5.9.7 Let G be a graph with v vertices, e edges and such that the rank of the
fundamental group of G is r. Then the rank of the q-widening of G is:

r′ = eq − qv + 1 = (eq + r − 1)(q − 1) + r

Proof: G must have a minimum spanning tree T with t edges.
Then the q-widening of G has a minimum spanning tree T ′ with q · t + (q − 1) edges. To see
this, think as q copies of the spanning tree joined by “stairs” between each “floor”:

K with an spanning treeThe q − widening with an spanning tree

b

b

b

b

b

b

b

b

b

We omit the details showing that this is actually an spanning tree.
2



Open Questions

In this last chapter, as an annex, we will include some questions that have been left open
throughout this work.

Some of them may be easy to solve and some of them may not. Most of them have been
left aside only for reasons of time, so they may be answered with little effort. On the other
hand, some of those questions have a very concrete statement, and some others have a more
vague formulation.

Those questions have been artificially grouped according to the chapter which they belong.

From Chapter 0
Open question 1 The main diagonal of any Riordan matrix is a geometric progression. The
diagonal under this one is a geometric-arithmetic progression.

What can we say about the sequences in the rest of diagonals of Riordan matrices? As far
as we know, R. Sprugnoli has been working in some results about this.

From Chapter 1
Open question 2 In [66] the balls with respect to the ultrametric proposed are shown to form
a nested sequence of group which is described in this article.

A better study of the balls with respect to the new ultrametric proposed in section 1.5 would
be desirable.

One of the problem is that the natural way to describe balls in this ultrametric is by using
banded matrices, which are neither elements in the Riordan group nor a group.

Open question 3 In chapter 1 a nice description of the involutions in R is given. A similar
description for self-dual and self-complementary matrices would be desirable.

Open question 4 Studying the linearisation problem in the case of K being an infinite field
of positive characteristic.

Open question 5 Studying the main case of the weighted Schröder equation in the cases not
studied in section 1.14.

35



36 CHAPTER 5. RIORDAN MATRICES AND SIMPLICIAL COMPLEXES

Open question 6 In chapter 9.5 A of the book by M. Kuczma , B. Chocewski and R. Ger [59]
some problems are studied about systems of functional equations involving Schroder equations.
What can we say with the methods introduced in chapter 1 about this kind of problems?

Open question 7 Which other functional equations, apart from the Schröder, weighted Schröder
and Babbage equations, are suitable or interesting to be studied for formal power series by using
those techniques?

Open question 8 It would be very interesting to study the existence of solutions of the func-
tional equations studied in this work (Schröder, weighted Schröder and Babbage) for formal
power series in Z[[x]] for combinatorial reasons. Specially for the Schröder and weighted
Schröder equations due to the consequences it would have when studying the conjugacy.

The behaviour is quite different. For example, let h(x) = −x + x2. Equation (1.11) does
not have a solution for λ = g′(0), g(x) ∈

(
x+ x2Z[[x]]

)
. Even in the partial case, we have

that: 10 −1
0 1 1

 0
1
g2

 = −1 ·

 0
1
g2


yields g2 = −1

2 .

A general solution would be desirable for those equations in this different setting.

From Chapter 2
Open question 9 For K a non-finite field of positive characteristic, a description of the
derived series of A(K) (and then of FC(K)) and of R(K) is still unknown up to our knowledge.

Open question 10 For the groups C(R) and F1(R) for R being a unitary ring a description
of the derived series is unknown. It would be specially interesting for R = Z, because of its
applications in combinatorics.

Open question 11 Once we have described the derived series of the Riordan group, we could
study the quotients:

R/R′,R′/R′′, . . .

We have already given a good description of the first one of those quotients and we have
some ideas about the rest although we are not going to develop this here.

The same applies for A and its derived series.

Open question 12 Finishing the study of conjugacy of elements in R(K) for K = C and
other fields of characteristic 0.

Open question 13 Studying conjugation in R, A for infinite fields of positive characteristic.
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Open question 14 Studying conjugation in C(R), F1(R) for R being an unitary ring.

At least studying the conjugacy class in the group C(Z) (and even in the associated subgroup)
of the Pascal Triangle would be interesting.

For example we can see that R3(1, x+ x2 + x3) is the only element in the same conjugacy
class of R3

(
1, x

1−x

)
in the associated subgroup of C3(Z). If we want to solve:

v(h(x)) = h

(
x

1− x

)
Take R(1, h(x)) = (xij), R(1, v(x)) = (vij). So this equation is equivalent to:

1
0 1
0 x21 1
0 x31 x32 1
...

...
...

... . . .




0
1
v21
v31
...

 =


1
0 1

0
(
1
0

)
1

0
(
2
0

) (
2
1

)
1

...
...

...
... . . .




0
1
x21
x31
...


See that: 

1
0 1
0 x21 1
0 x31 2x21 1




0
1
v21
v31

 =


1
0 1

0
(
1
0

)
1

0
(
2
0

) (
2
1

)
1




0
1
x21
x31


holds if and only if v21 = v31 = 1. In this case, it holds independently of the choice of x21, x31.

Open question 15 Studying powers and roots of Riordan matrices and elements in A, due
to its relation to fractional iterates and other interesting problems.

Open question 16 Finding the centralizer of any element in R, A.

From Chapter 3

Open question 17 It would be desirable to find a better description of the coefficients of the
power series satisfying the Babbage and the generalized Babbage equations.

Open question 18 For any solution ω(x) of the generalized Babbage equation it is possible
to find a canonical g(x) such that:

ω(x) = g(λg−1(x))

Can those g(x) be chosen in a subgroup of A?
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From Chapter 4
Open question 19 It would be desirable to characterise one-parameter subgroups in the Ri-
ordan group or even in the partial Riordan groups.

Open question 20 Looking at conjugacy in the Lie algebra in the sense of studying the
existence of a matrix P ∈ R satisfying:

L′ = ALA−1

for two given L,L′ ∈ L(R) may be of great interest. It could help to finish our study of
conjugacy in R. See remark 4.15.3.

Open question 21 It would be very interesting, due to its applications in combinatorics, to
study supergroups of the Riordan group. For instance, which is the group generated by R and
L(R)? Do its element have an interpretation, analogous to the 1FTM, when multiplied by
infinite column vectors?

Open question 22 Is it computationally interesting our way to compute the solutions of
the initial value problems? In general, is it computationally interesting our way to compute
solutions for functional equations?

From Chapter 5
Open question 23 Which is the significance of those extended g- and γ-vectors proposed in
chapter 5 if the h-vector is not symmetric? When is it positive, log-concave, unimodal,…? Is
it counting something? Does it have a combinatorial meaning?

Open question 24 On the other hand, when is, in general, the image of a column vector
multiplied by the left by a Riordan matrix symmetric or anti-symmetric? or concave or log-
concave?. Some work has already been done in this sense in [20]. It is very related to the
Björner matrix and to Björner’s partial unimodality theorem (theorem 8.39 in [119]).

Open question 25 How do Riordan matrices behave with respect to the Kruskal-Katona con-
ditions for f-vectors (see theorem 5.2.5). Can we characterize when the image of an infinite
row vector by a Riordan matrix satisfies those conditions? This is related to the McMullen
correspondence (see [119]) and the Björner’s partial unimodality theorem.

Open question 26 When does a linear combination of sequences satisfy the Kruskal Katona
sequence? This question is posted in relation to the set of possible sequences satisfying Dehn-
Sommerville equations and also in relation to the study of this set made in [39].

Open question 27 What can be said about formal power series which coefficients satisfy
Kruskal-Katona conditions? Is there any algebraic property on the formal power series related
to Kruskal-Katona conditions?
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Open question 28 The matrices obtained by iterating a join exhibit a Riordan pattern. What
can we say about them? Can they be extended to Riordan matrices?

Open question 29 The matrix of h-vectors of the m, q-cones is the matrix of f-vector of the
(m − 1), (q − 1)-cones. Why is this happening? Does the h-vector of the m,q-cones have any
combinatorial meaning?

Open question 30 Is it possible to characterise the matrices associated to a subdivision
method? This would be really interesting, since it would allow us to use linear algebraic tools
for the f-vector problem.

Open question 31 The matrix appearing in proposition 5.6.2 is not Riordan but still has
certain interesting pattern. Does this matrix have any property similar to those of Riordan
matrices?

Open question 32 How should it be a family of simplicial complexes K0,K1,K2, . . . where
Ki is of dimension i if we want them to be used as building blocks? are q, q-cones such a family.
Could we find another one?

Some problems in Chemist are related to this (molecular nets), where we are considering
some structures which vertices are, in fact, molecules themselves.

Open question 33 When is a simplicial complex the q-widening of any other?

Open question 34 Which are the homology groups, or even the Betti sequence, of the q-
widening of a given simplicial complex?

Open question 35 Claryfying the behaviour of the operators ∂k (for a fixed k as functions
in n, or varying the value k) could be of great importance. For example a simple question that
may arise is: what could we say about the values n such that:

∂k(n) = ∂k(n+ 1)
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