
	

	

 
PROGRAMA DE DOCTORADO EN BIOCIENCIAS 

MOLECULARES 
 
 
 
 
 
 
 

Pharmacological and biological 
annotations enhance functional 

residues prediction 
 

 
 

Paolo Maietta 
 
 
 
 
 
 
 
 
 

Madrid 2017 
 

 
  
 



	

I	

 
Departamento de Biología Molecular 

Facultad de Ciencias	
	
	
	

	
	
	
	
	
	

Pharmacological and biological 
annotations enhance functional 

residues prediction 
 
 
 

Memoria presentada por Paolo Maietta 
Licenciado en Biotecnologías Agrarias Vegetales 

por la Universitá degli Studi di Milano (IT) 
 
 
 
 
 
 
 
 

Director de Tesis: 
 

Dr. Michael Liam Tress 
Centro Nacional de Investigaciones Oncológicas (CNIO) 

 
 
 
 
 



	

III	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

SUMMARY	
	
	
	 	



	

V	

	
El continuo desarrollo de las plataformas de secuenciación masiva ha dado lugar a un 
incremento vertiginoso en la cantidad de datos genómicos generados y, 
consecuentemente, a un aumento en la deposición en repositorios públicos de 
secuencias proteicas sin función conocida. Por esta razón, en los últimos años se han 
publicado diferentes algoritmos cuyo objetivo es la predicción automática de función de 
proteínas. 
 
La predicción de función en proteínas presenta algunas características que la convierten 
en un reto científico apasionante. Para empezar, debido a la existencia de diferentes 
niveles de complejidad, la misma definición de función no es univoca. Además se ha 
demostrado que la relación entre secuencia, estructura y función de proteínas no es 
lineal, lo que implica que su inferencia mediante homología de secuencia y/o estructura 
puede dar lugar a errores. Por otra parte, las proteínas pueden llevar a cabo más de una 
función dependiendo de ciertas condiciones externas, lo que también incrementa la 
dificultad. 
 
La información funcional más específica se encuentra a menudo asociada a los 
aminoácidos directamente involucrados en su desempeño. En el laboratorio de Biología 
Computacional del Centro Nacional de Investigaciones Oncológicas (CNIO) se han 
desarrollado previamente diferentes herramientas para la caracterización y predicción de 
estos aminoácidos. En particular, esta tesis utiliza dos de dichas herramientas como 
punto de partida: FireDB es un repositorio de anotaciones de residuos funcionales y 
catalíticos extraídos de las estructuras depositadas en el Protein Data Bank (PDB), así 
como del Catalytic Site Atlas (CSA); firestar es un algoritmo que, utilizando esta 
información, es capaz de inferir sitios de unión a ligandos en proteínas con función 
desconocida, partiendo únicamente de su secuencia aminoacídica. 
   
Esta memoria describe los desarrollos realizados en el contexto de FireDB y firestar. En 
primer lugar, en la base de datos FireDB se ha realizado un gran trabajo de anotación 
química y funcional de todos los compuestos no proteicos, así como un estudio detallado 
de su relevancia biológica. Así mismo, se ha estudiado la relevancia biológica de los 
sitios de unión a ligando. Dicho estudio ha resultado en el establecimiento un protocolo 
automático de clasificación que complementa el sistema de evaluación previo. Todos los 
cambios descritos se han incorporado en FireDB, cuya estructura ha sido mejorada. 
 
En segundo lugar, la incorporación de un nuevo algoritmo de búsqueda de homólogos ha 
permitido mejorar la sensibilidad de firestar. Además, el análisis de los resultados 
obtenidos en el ámbito de las diferentes ediciones del experimento llamado CASP 
(Critical Assessment of protein Structure Prediction) ha permitido establecer estrategias 
para mejorar la especificidad de firestar. Los desarrollos derivados de estos trabajos han 
sido evaluados en un nuevo experimento, CASP10. Un análisis crítico de los resultados 
obtenidos se presenta en esta memoria. 
 
Finalmente, esta Tesis describe la aplicación de FireDB y firestar en tres proyectos con 
diversos objetivos. En concreto, firestar se utilizó en combinación con SIAM, un algoritmo 
de predicción de función basado en homología, en la segunda edición del experimento 
CAFA (Critical Assessment of protein Function Annotation) con el objetivo de aprovechar 
las sinergias predictivas de ambos métodos. Además, FireDB y firestar se han empleado 
para estudiar la coherencia funcional de las familias de proteínas definidas por la base de 
datos Pfam. Por último, ambas herramientas se han integrado como parte del protocolo 
de construcción de APPRIS, un repositorio que contiene anotaciones sobre isoformas 
alternativas e identifica la isoforma principal para genes codificantes. 
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The recent exponential growth of Next Generation Sequencing data has led to a 
noticeable increase of deposited protein sequences without annotated function. As a 
result of this, a number of computational methods to automatically infer function have 
been published in the recent years. However, function prediction is complicated by a 
number of factors. To begin with, the definition of function itself is not straightforward. 
Furthermore it has been demonstrated that the relationship between sequence, structure 
and function is not linear and this means that automatic inference using global sequence 
homology and/or structure homology is not easily applicable. In addition, many proteins 
have multiples roles that depend on different factors. 
 
Often the most interesting functional information is to be found at the residue level. We 
have developed tools to predict functional residues in the CNIO and this thesis takes as 
starting point two of these, FireDB and firestar. FireDB is a database that extracts 
information about ligand binding sites and catalytic residues directly from the Protein Data 
Bank (PDB) and Catalytic Site Atlas (CSA). firestar is a tool that takes advantage of this 
structured data to predict binding sites for proteins of unknown function and/or structure.  
 
This thesis describes the many improvements applied to these two tools. For the FireDB 
database, functional and chemical information has been added for all PDB binding 
compounds. Ligands have been manually annotated for their biological relevance. In 
addition the biological relevance of every conserved binding site has been analysed 
automatically, complementing the existing evaluation schema. All these changes have 
been included in the revised schema of the database.  
 
The sensitivity of firestar functional residue prediction has been increased by the addition 
of a new search method. At the same time, specificity has been improved by examining 
the data generated in the Critical Assessment of protein Structure Prediction (CASP) 
experiments. The new parameters were tested in the tenth CASP edition and the final 
results are presented. 
 
Finally this thesis describes the incorporation of FireDB and firestar into other tools. 
firestar was used in conjunction with a SIAM, a function prediction algorithm based on 
homology, in the context of the second edition of the Critical Assessment of protein 
Function Annotation (CAFA) experiment. FireDB and firestar were used for a study of the 
functional coherence of the Pfam database protein families. Finally the two methods have 
been integrated along with other computational methods in the APPRIS database and 
web services, which provide annotations for alternative splice isoforms and identify 
principal isoforms for protein coding genes 
  



	

VII	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

TABLE	OF	CONTENTS	
 
  



	

VIII	

 

SUMMARY	....................................................................................................................................	III	
TABLE	OF	CONTENTS	.............................................................................................................	VII	
ABBREVIATIONS	.......................................................................................................................	XI	
1	 INTRODUCTION	....................................................................................................................	1	
1.1	 Guess	what	…	..............................................................................................................................	3	
1.2	 Proteins	........................................................................................................................................	4	
1.3	 Protein	representation	...........................................................................................................	4	
1.3.1	 Sequence	.................................................................................................................................................	4	
1.3.2	 Structure	.................................................................................................................................................	5	
1.3.3	 Function	..................................................................................................................................................	6	

1.4	 Sequence,	structure	and	function	relationships	............................................................	7	
1.4.1	 Evolution	and	protein	function	....................................................................................................	7	
1.4.2	 Similarity	and	homology	.................................................................................................................	8	
1.4.3	 Sequence	and	structure	space	relationship	............................................................................	8	
1.4.4	 Sequence	and	function	space	relationship	..............................................................................	9	
1.4.5	 Bringing	together	the	three	spaces	...........................................................................................	10	
1.4.6	 The	search	for	homologs	in	sequence	databases	................................................................	10	
1.4.7	 Function	annotation	databases	..................................................................................................	11	

1.5	 Functional	residues	...............................................................................................................	11	
1.5.1	 Small	ligands	binding	sites	...........................................................................................................	12	
1.5.2	 Catalytic	sites	......................................................................................................................................	12	
1.5.3	 Sources	of	functional	residue	annotations	............................................................................	13	
1.5.4	 Sources	of	catalytic	residues	annotations	..............................................................................	14	
1.5.5	 FireDB	....................................................................................................................................................	14	

1.6	 Chemical	compounds	in	the	PDB	.......................................................................................	15	
1.7	 Functional	site	annotation	..................................................................................................	16	
1.7.1	 Structure	based	methods	..............................................................................................................	16	
1.7.2	 Sequence	based	methods	..............................................................................................................	17	
1.7.3	 firestar	...................................................................................................................................................	17	
1.7.4	 Evaluation	of	function	prediction	methods	...........................................................................	18	

2	 MOTIVATION	AND	OBJECTIVES	...................................................................................	20	
2.1	 Motivation	.................................................................................................................................	22	
2.2	 Specific	Objectives	..................................................................................................................	22	

3	 MATERIALS	AND	METHODS	..........................................................................................	24	
3.1	 Sequence	analysis	...................................................................................................................	26	
3.2	 Molecular	Visualization	........................................................................................................	26	
3.3	 Compound	Matching	..............................................................................................................	26	
3.4	 Databases	..................................................................................................................................	27	
3.4.1	 Primary	databases	............................................................................................................................	27	
3.4.2	 Databases	used	for	sequence	analysis	.....................................................................................	28	
3.4.3	 Chemical	databases	.........................................................................................................................	28	

3.5	 Statistical	Methods	.................................................................................................................	29	
3.5.1	 Programming,	databases	and	web	services.	.........................................................................	30	

3.6	 SQUARE.	Assessing	reliability	of	pairwise	alignments	..............................................	31	
3.6.1	 Reliability	derived	from	template’s	profile	...........................................................................	31	
3.6.2	 Reliability	of	functional	regions	and	functional	transfer	................................................	31	
3.6.3	 Profile	generation	.............................................................................................................................	33	

3.7	 FireDB	.........................................................................................................................................	34	
3.8	 firestar	........................................................................................................................................	36	



	

IX	

	
	
4	 RESULTS	...............................................................................................................................	37	
	 	 	 	 FireDB	
4.1	 Compound	Annotation	..........................................................................................................	39	
4.1.1	 The	biological	relevance	of	compound	....................................................................................	39	
4.1.2	 Ambiguous	compounds	.................................................................................................................	40	
4.1.3	 Metallic	compounds	........................................................................................................................	41	
4.1.4	 Metal	binding	site	conservation	.................................................................................................	42	
4.1.5	 Compound	cross-references	........................................................................................................	43	
4.1.6	 Database	mapping	............................................................................................................................	44	
4.1.7	 Bio-activity	annotations	................................................................................................................	45	

4.2	 Binding	sites	biological	relevance	in	FireDB	................................................................	46	
4.2.1	 Improvements	in	biological	relevance	assessment	...........................................................	47	

4.3	 Final	database	schema	and	public	accessibility	...........................................................	51	
	 	 	 	 firestar	
4.4	 Consensus	Predictions	..........................................................................................................	54	
4.4.1	 Candidate	search	and	filtering	....................................................................................................	54	
4.4.2	 Candidate	merge	and	generation	of	a	consensus	prediction	.........................................	55	
4.4.3	 New	output	web	page	.....................................................................................................................	56	
4.4.4	 Site	reliability	score	.........................................................................................................................	58	

4.5	 Improvements	in	firestar	algorithm	................................................................................	59	
4.5.1	 Introduction	of	HHsearch	sequence	search	method	.........................................................	61	
4.5.2	 Metal	Binding	Sites	..........................................................................................................................	62	
4.5.3	 Non	Metal	Binding	Sites	.................................................................................................................	63	
4.5.4	 Merging	per-residue	frequency	filter	......................................................................................	64	
4.5.5	 The	effect	of	the	filters	and	new	CASP8	dataset	assessment	.........................................	65	
4.5.6	 CASP10	experiment	.........................................................................................................................	70	

	 	 	 	 Applications	
4.6	 Applications	in	large-scale	collaborative	projects	......................................................	78	
4.6.1	 Human	proteome	sites	annotation	and	selection	of	gene	principal	isoform	..........	78	
4.6.2	 Pfam	domain	analysis	.....................................................................................................................	81	
4.6.3	 GO	terms	prediction	for	large	scale	annotation	projects	................................................	82	

5	 DISCUSSION	........................................................................................................................	87	
5.1	 Ligand	annotation	..................................................................................................................	90	
5.2	 Biologically	relevant	binding	sites	...................................................................................	91	
5.3	 Availability	and	future	database	developments	..........................................................	92	
5.4	 Functional	residues	prediction	..........................................................................................	92	
5.5	 firestar	performance	analysis	............................................................................................	92	
5.5.1	 Source	information	..........................................................................................................................	92	
5.5.2	 Homologous	search	methods	and	alignment	quality	........................................................	93	
5.5.3	 Alignments	quality	and	position	conservation	....................................................................	94	

5.6	 The	effect	of	filters	on	firestar	predictions	....................................................................	94	
5.7	 Applications	of	FireDB	and	firestar	in	large-scale	projects	.....................................	95	

6	 CONCLUSIONS	....................................................................................................................	97	
7	 BIBLIOGRAPHY	................................................................................................................	101	
8	 APPENDIX	..........................................................................................................................	114	
 
 
  



	

XI	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

ABBREVIATIONS	
 
 
  



	

XII	

 

 

 

3D   Three dimensional 

BLAST  Basic Local Alignment Search Tool 

CAFA   Critical Assessment of protein Function Annotation  

CASP   Critical Assessment of protein Structure Prediction 

CSA   Catalytic Site Atlas 

EC   Enzyme Commission 

EM   Electron microscopy 

FN   False Negative 

FP   False Positive 

GO   Gene Ontology 

HMM   Hidden Markov Model 

InChi   INternational CHemical Identifier 

IUBMB  International Union of Biochemistry and Molecular Biology 

IUPAC   International Union of Pure and Applied Chemistry 

MCC   Matthews Correlation Coefficient 

mmCIF  macromolecular Crystallographic Information File 

MS   Master Sequence 

MSA   Multiple Sequence Alignment 

MSS   Master Sequence binding Site 

NMR   Nuclear Magnetic Resonance 

PDB   Protein Data Bank 

PSI-BLAST  Position-Specific Iterated Basic Local Alignment Search Tool 

PSSM   Position Specific Scoring Matrix 

RMSD   Root Mean Square Deviation 

SMILE   Simplified Molecular-Input Line-Entry System 

TN   True Negative 

TP   True Positive 
 
 
. 



	

1	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

1 INTRODUCTION	
	 	



INTRODUCTION	|	

3	

 
	

	

	

	

1.1 Guess	what	…	
 
I still remember a simple didactic game we played during a high school science 

lesson. The teacher gave everyone a square black box with a variable number of holes in 
4 of the surfaces, the same number of holes in each surface. Long wooden dowels 
passed through the holes to create an invisible net inside the box and plastic rings were 
placed at different points of the net, either on the rods or at the intersection between two 
rods. The challenge was to guess the number and position of the rings in as little time as 
possible. It was possible to shake the box, but extracting one or more rods resulted in 
points being subtracted from your total score. At the end of the game we were allowed to 
open the boxes and to check how good our prediction was. The game was highly 
addictive, and while the idea was simple, it brought together a lot of fundamental scientific 
concepts. 

In science we are continuously facing unknowns (the position and numbers of 
rings) that we cannot directly confirm (the black box) and that we are forced to predict 
based on a limited amount of (un)connected data (the rods and the sounds). The 
extraction of the dowels simulates the experimental part of our work. It is possible to 
experiment, but at a cost; points in the game, but expense and time in reality. 

Although the investigation of a single box is intriguing, the computational biologist 
will want to know if there is a model able to predict the position and number of all the rings 
in every box. Furthermore I intentionally omitted to mention one detail: the rings were 
colored. And after the opening our teacher told us that even if we were able to guess 
perfectly the position and the numbers, there was no possibility to determine the color of 
the rings inside the black box. And I think this is the most stimulating part of science. Even 
when you discover something, there are always new questions arising and new aspects 
that you have not considered before. 

So, many years later, I am repeating the game we played in school. Only this time 
the boxes are proteins and the rings are functionally important amino acid residues.  
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1.2 Proteins	
 
DNA, RNA and proteins are the principal biopolymers of the cells. The information 

encoded in DNA sequence controls the genetic makeup of organisms, while RNA is 
appointed to carry out the instructions encoded in DNA. RNA has different fundamental 
roles, but the most important is its translation as part of protein synthesis. So genetic 
information mainly flows from DNA to proteins, which finally fulfill genetic instructions. 

A protein is a linear combination of amino acids that folds into a specific 
tridimensional structure to carry out one or more tasks. We can identify in proteins specific 
conserved and functionally independent subunits, called domains: these domains often 
fold into compact, clearly recognizable three-dimensional modules. Many proteins consist 
of several structural domains and each domain may appear in a variety of different 
proteins. We can consider domains as building blocks that may be recombined in different 
arrangements to create proteins with different functions. 

 Proteins variability and versatility are unmatched among other biomolecules, since 
they participate directly or indirectly in almost all biological processes. Mechanical 
support, movement, signaling, regulation and catalysis are just a few examples of the 
many tasks known to be carried out by proteins. For example, collagen is a structural 
protein: three protein chains wound together in a tight triple helix, creating molecular 
cables that strengthen connective tissues. Myosin is the protein responsible for 
movement, a molecule-sized muscle that uses chemical energy, in form of adenosine-3-
phosphate (ATP), to perform a deliberate motion. Hemoglobin is the most abundant 
protein in red blood cells and its combined subunits, in association with the iron contained 
in the heme group cofactor, are able to bind and transport different gases. Insulin is a 
peptide hormone, responsible for controlling the sugar level in blood. When insulin binds 
another protein, the insulin-receptor, a complex cascade of reactions occurs, leading to 
the transcription of different proteins that promote the intake of glucose in the cell. 
Phosphoglucose isomerase (PGI) represents another fundamental class of proteins, the 
enzymes. PGI catalyzes the inter-conversion of glucose-6-phosphate and fructose 6-
phosphate, a critical step in two fundamental cellular pathways as glycolysis and 
gluconeogenesis. This reaction is driven by the relative concentrations of these sugars in 
the cytoplasmic matrix of the cell. 

Understanding how proteins work, individually and from a systemic point of view, is 
fundamental not only for molecular biology, but also for biomedicine, since the possibility 
to finely modulate them has a direct impact onto organisms’ physiology. 

 

1.3 Protein	representation	
 
From a reductionist point of view, individual proteins can be represented by their 

sequence, structure and function. 
 

1.3.1 Sequence	
 
Proteins are polymers, made up of amino acids linked together by peptide bonds. 

This chain of amino acids is the protein sequence. The length of amino acid chains can be 
very variable. Formally, below 50 amino acids they are called oligopeptides, while above 
that, polypeptides or proteins. Eukaryotic proteins have an average size of 472 residues1, 
but the variations around this value can be important: for example titin, a component of 
the muscle sarcomere, reaches a total length of more than 18.000 amino acids2. 
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Genetic material (DNA and RNA) information is translated to proteins through 
genetic code3 There are 20 standard amino acids and their vast permutation makes the 
number of possible proteins virtually unlimited. 

In addition non-standard amino acids can also be found. Some are incorporated 
directly during biosynthesis of the peptide chain and are specific to some protein families 
or organisms4,5. Others come from post-translational modifications: these modified amino 
acids are often essential for the function or regulation of a protein. 

Protein sequences can be obtained directly by Edman degradation reaction or 
mass spectrometry. Despite the technical improvements of the last few years, especially 
in mass spectrometry6, both techniques are still time and money consuming. Due to these 
limitations, protein sequences are mainly obtained from in-silico DNA/mature mRNA 
translation. The flourishing of genomic and metagenomic sequencing projects7, pushed by 
the rapid costs decrease of Next Generation Sequencing (NGS) techniques, has rapidly 
generated a vast amount of genetic data that is driving the growth in protein sequences 
databases. In August 2016 TrEMBL, the UniProtKB8 section containing translations of all 
coding regions extracted from the DDBJ9, the European Nucleotide Archive and the 
GenBank10 databases, contained more than 65 million sequences. Of these, only 1.8% 
have their existence confirmed at transcript or protein level. 
 

1.3.2 Structure	
 
Protein structure is the three-dimensional arrangement of the amino acid chain. It 

is commonly accepted that for a given sequence there is only one possible way of folding 
under native conditions11. While sequence is the main determinant of the final three-
dimensional scaffold, many other factors, like pH, solvent, temperature, presence of 
chaperones influence the dynamics, speed and the correct folding of a protein12. 
Furthermore proteins are not rigid bodies13: events like post-transcriptional modifications14, 
or the binding of a ligand15 or a modulator16 can cause either small conformational 
changes, such as the movement of one loop, or larger rearrangements, such as the 
displacement of entire domains of the protein17. It is worth mentioning here a particular 
group, the intrinsically disordered proteins. On their own, these proteins lack defined 
globular structure; but they can undergo a structural transition to a folded form upon 
interacting with their targets: this characteristic makes them well suited to associate with 
multiple partners18. 

Protein structure can be experimentally determined using nuclear magnetic 
resonance (NMR), electron microscopy (EM) and X-ray diffraction, alone or in 
combination. Unfortunately each of them presents limitations; for NMR the main obstacle 
is the size, since current technologies are unable to resolve medium or large proteins. The 
upper limit is around 35KDa19 (approximately  300 aa), but most structures resolved by 
NMR are much smaller. EM Achilles heel is resolution; despite improvements over the last 
decade20, it is still around 5-10 Å, much lower than other techniques. X-ray crystallography 
is the most widely used method; here the difficulty is the obtaining of a diffractable crystal, 
since there is no standard protocol applicable to all cases. 

On top of that, independently of the technique used, experimental structure 
determination also entails great cost in terms of time and money, and a final result, if any, 
may take years to obtain. 

Once a structure is resolved, it is deposited in the Protein Data Bank or PDB21. 
The PDB started as a repository of formatted plain text files, but over the years it has 
become a fully structured database, a unique reference for the crystallographic and 
structural community. Among its different tasks, the PDB consortium makes structural 
data easily accessible and establishes standards for data deposition and representation. 

The number of individual protein chains stored in the database in August 2016 was 
more than 367,000, although if the sequences are clustered at 90% redundancy this drops 
to just 45,000. When compared to the more than 65 million sequences in the databases, it 



|	INTRODUCTION	

6	

is clear there is a huge gap between available sequence information and the deposited 
structural information. 

While protein sequence can vary a lot, comparisons between PDB deposited 
structures shows that these sequences all fold into a limited number of basic structural 
domains22,23. So in principle protein structure variability can be decomposed into a 
combination of basic individual folds. This observation gave birth to different structural 
domain databases, of which probably the most used are SCOP24,25 and CATH26. Using as 
starting point the evolutionary relationship between proteins, they continuously analyze 
the PDB content and organize it in hierarchical representation of protein structure 
variability. 

 

1.3.3 Function	
 

The semantic definition of protein function is complex. The function of a protein 
may be defined by the effect it has on the substrate the protein binds (for example, 
phosphorylation of another protein), or by the role that it plays as part of one (or more) 
higher-level process, such as apoptosis or mitosis. Proteins can also perform more than a 
single function, depending on different factors, such as location, cellular condition or 
domain organization.  

The translationally controlled tumor protein (TCTP) is a good example of 
multifunctional protein. This protein is highly conserved through its phylogenetic tree and it 
has been extensively studied. It has been suggested that it regulates the organization of 
microtubules and the centrosome27, but also that it can work as transcription factor28 and 
can be secreted as messenger that stimulates histamine release29. Phosphoglucose 
isomerase (PGI) is an example of how location can affect function: in the cytoplasm it is 
involved in glycolysis and gluconeogenesis, while outside the cell it functions as 
a neurotrophic factor30, promoting survival of skeletal motor neurons and sensory 
neurons, and as a lymphokine that induces immunoglobulin secretion31. Some intrinsically 
disordered proteins are able to interact with different targets in the cell regulatory network 
thanks to their structural adaptability32, and can play a role in different cell pathways. 

The scientific community has long worked on controlled vocabularies or ontologies 
for standardizing protein function definition and classification. The initiative started by 
Enzyme Commission (EC) is worthy of mentioning in this work. This is a controlled 
nomenclature33 following the recommendations of IUBMB (International Union of 
Biochemistry and Molecular Biology) for one specific subgroup of proteins, the enzymes. 
Basically, enzymatic catalytic activities are represented in a 4-digit code, which has the 
form x.x.x.x; the first two levels are hierarchical, whereas the third and fourth levels are 
specific to each group. For example the EC number 1.1.1.x is associated to alcohol 
dehydrogenases, which catalyze the oxidation of an alcohol to a ketone or an aldehyde, 
using NAD+ as acceptor. The number can be dissected as follow: 

 
1 è  Class  oxidoreductase (redox catalysis reactions) 
1.1 è Subclass acts on CH-OH group of donors bonds 
1.1.1    uses NADH or NADP as acceptor 
1.1.1.1   uses substrate glycerol as donor 
 
The Gene Ontology (GO) Consortium started in 2000 and is the biggest effort to 

systematically classify protein functions to date 34. The goal is to produce a dynamic 
controlled vocabulary applicable to all organisms and that can be easily adapted as the 
knowledge about cellular protein roles grows and becomes more accurate. The structure 
of the GO terms can be described in terms of a graph, where all the ontologies (or GO 
terms) are nodes, connected with arcs representing the different relationships between 
them. GO relationships are directional and the graph is acyclic, meaning that cycles are 
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not allowed. Ontologies resemble a hierarchy, as child terms are more specialized than 
parent terms, but unlike a hierarchy, a term may have more than one parent. All terms can 
trace their parentage to the root term, but actually there are three unrelated roots: 

cellular component: groups information relating to the cellular compartment or 
extracellular environment; 

molecular function: brings together the elemental activities of a gene product at 
the molecular level, such as binding or catalysis; 

biological process: gathers sets of molecular events with a defined beginning 
and end, pertinent to the functioning of integrated living units: cells, tissues, organs, and 
organisms. 
 

1.4 Sequence,	structure	and	function	relationships	
 
The total set of sequences so far discovered can be defined as sequence space, 

just as the whole set of structures or functions can be referred to respectively as the 
structural and functional spaces. The exact definition of the characteristics of these 
spaces is still challenging (especially for the functional space), and in this task converge 
efforts from different groups and public initiatives. Intra-space similarities are informative 
but inter-space relationships are more interesting to the purposes of this work. Fully 
understanding of how these spaces are connected and to what extent two sequences that 
share certain sequence similarity also share structural and functional features is one of 
the ambitious goals of biologists. It is important for the full comprehension of proteins 
biology and the underlying mechanisms of their evolution, but also because it is the basis 
of prediction algorithms that are used to transfer functional and structural information from 
one protein to another. 
 

1.4.1 Evolution	and	protein	function	
 
Biological evolution is the continuous process of transformation of the species 

through changes in successive generations, and is reflected in the change of DNA allele 
frequencies. These changes affect the genetic material, since only germinal genetic 
information is transmitted from one generation to another (epigenetic changes can be also 
transmitted35, but they are environment-susceptible). When we talk about molecular 
evolution, reference is made to the evolution at the molecular level and more specifically 
to specific changes in nucleic acids sequences and their primary products, RNA and 
proteins. 

Gene variability is due to events that directly change their nucleotide sequence, 
such as mutations, insertions, deletions, etc. Nevertheless, the reason we do not observe 
all the possible combinations of DNA sequence in genes is because of selection. In “The 
Origin of Species” Darwin first proposed the theory of natural selection. It states that those 
modifications that provide adaptive advantages to the organism will prevail. Since natural 
selection did not explain perfectly the allelic distribution observed in living populations, 
Kimura in 1983 enunciated the neutral theory of molecular evolution. According to this 
theory, the prevalence of gene sequences that do not involve adaptive changes occurs as 
a result of chance, often as the result of genetic drift. This means that without selective 
forces (or genetic bottlenecks) genes will evolve gradually over time, accumulating 
changes. 

From the next section, we are going to discuss how we can investigate the 
evolutive relationship between two proteins, and what this implies considering their 
sequence, structure and function.  
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1.4.2 Similarity	and	homology	
 
It is appropriate at this point to define protein similarity and homology and the 

relationship between them. Similarity and homology are often used in an interchangeable 
way in scientific literature, but they are actually two distinct concepts. Two proteins are 
homologous when their encoding genes have a common ancestor. Unlike similarity, 
homology between proteins is not measurable: it only implies an evolutionary relationship. 
Similarity and homology are linked, but not always directly. Similar proteins are not 
necessarily homologous, similarity may arise from convergent evolution events or by 
chance for sequences with low complexity, while homologous proteins might have little 
detectable sequence similarity if their common ancestor is very distant in evolutionary 
terms.  

Two aligned protein sequences can be considered similar if they have a significant 
number of identical (or at least with compatible characteristics) amino acids in 
corresponding positions. This evaluation is obviously alignment-dependent, meaning that 
the quantification of the similarity can be different depending on the algorithm used to 
generate the alignment between two sequences. This is a classical problem in 
computational biology and over the years several solutions have been proposed36,37 

Structural similarity can be calculated using a similar approach. Given two aligned 
protein structures, their structural similarity depends on the spatial closeness of 
corresponding atoms in the aligned structures. The traditional similarity measure used is 
the root mean square deviation (RMSD), the measure of the average distance between 
the backbone alpha carbon’s atoms. RMSD is reliable but it is sensitive to flexible and 
divergent protein regions. In order to overcome this limitation, different algorithms38,39 
have been developed that compute the optimal local superposition of structures. 

Assessing function similarity is more complicated. In many cases, functional 
descriptors are based on the available experimental techniques or have been used for 
historical reasons. Nevertheless, thanks to the GO consortium’s efforts to standardize 
function annotation, different methods40,41 have been developed that use GO term graph 
structure to calculate the distance between the annotated functions of two proteins; a new 
method42 has recently been proposed that tries to bring together all the available 
functional information, albeit scattered and unrelated, in order fill GO annotation gaps. 
 

1.4.3 Sequence	and	structure	space	relationship	
 
The first work to study the relationship between sequence and structure was 

presented by Chothia and Lesk in 198643 once a sufficient number of solved structures 
and the tools for reliable quantification of structure similarity became available. They 
compared percentage sequence identities with RMSD for homologous pairs of proteins. 
They concluded that differences in structures correlate directly with sequence changes in 
a non-linear way; they also claimed that below 20% sequence identity structures might 
differ substantially. 

Other groups44–46 investigated whether there was a percentage sequence identity 
limit below which structures were not similar. It was found that there was not a well-
defined cut-off, but instead there was a blurred range (defined as the twilight zone) from 
20 to 35% where the correlation with structural similarity goes down dramatically. Even 
under this limit there are still many similar structures with very low sequence similarity47, 
some of which may have arisen from events of convergent evolution. 

In order to unveil the relation between sequence and structure, a key point is to 
understand whether structure folding is driven by interactions of a small number of 
residues or whether it requires the contribution of many residues. Previously cited papers 
(Chothia and Lesk, Chung and Subbiah, Rost43,44,46) support a “local” model, in which 
protein folding is driven mainly by a few critical residues, while changes in residues other 
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than these hotspots have almost no effect on the general tridimensional arrangement. 
Other groups support a “global” model, in which every change in sequence is followed by 
a structural change; the magnitude of this change can vary by position and has to be 
evaluated in the evolutionary context of the protein family. Wood and Pearson in 199948 
presented results that showed how sequence similarities and RMSD statistical 
significances were linearly related. Koehl and Levitt suggested49 that variations and not 
identities correlated linearly and recent work taking advantage of new data and new 
metrics has supported this hypothesis50,51. However, there are cases that cannot be 
completely explained either by the “global” model, (such as proteins that share the same 
fold despite very low percentage identities52), or by the “local” model (such as the results 
of some designed mutational studies)53. It seems that neither model is able to explain the 
whole picture alone, and that probably other phenomena, such as coevolution54, should 
be taken into account. 

 

1.4.4 Sequence	and	function	space	relationship	
 
Determining functional similarity and its relationship with sequence similarity is 

complicated. Protein function can be defined by a combination of local (ligand binding 
sites, protein-protein interfaces, post translational modifications, etc.) and global (folding, 
stability, conformational changes, etc.) features. There is no standard way to define 
function, in part because of the breadth of functional space. 

We have already mentioned that until the beginning of the GO Consortium project, 
there was no standardization in functional annotation. The number of manually curated 
proteins stored in the databases is also really small compared with the total (in UniprotKB, 
the manually curated part SwissProt55 represents just 0.01% of the whole database) and, 
apart from that, the type of functional annotations generated is strongly influenced by the 
leading technology. A study56 published in 2013 showed how results from high-throughput 
technologies (such as Mass-spectrometry, RNAi) dominate recent functional annotation. 
These studies generate information bias: while they determine the cellular component and 
some specific biological process terms, they provide almost no contribution to molecular 
function.  

Within this tangled panorama, different groups have tried to explore the 
relationship between sequence and functional spaces. Todd57 in 2001 published a work 
on homologous enzyme superfamilies, taking into account sequence, structure and 
function (EC numbers). They observed how the four EC numbers rarely change above 
40% sequence identity, and that above 30% identity was possible to predict three of the 
four numbers with a 90% accuracy. Below this threshold structural information had to be 
taken into account to understand potential functional changes. Devos and Valencia in 
2000 published a comprehensive study58 to shed a light on how functional conservation 
correlates with sequence identity. The selected functional features were: EC numbers, 
keywords extracted from SwissProt, cellular function class according to TIGR59 
classification and conservation of ligand binding residues. They also took into account the 
structural changes that occur, using the FSSP domain classification60. Comparing the 
minimum percentage of sequence identities required for the conservation of 50% of 
functional or structural characteristics, they found that binding site, keywords, and 
functional class annotations were less conserved than EC numbers, and all of them in turn 
were less conserved than protein structure. 

In a more recent study61, where functional similarity was inferred based on the 
distance in the Gene Ontology graph, it was observed that among homologous proteins 
the proportion of divergent functions increases below a sequence similarity of 50%. For 
very similar proteins (50% or more identical residues) the chance of completely different 
annotation is low; however, it is still non-zero. So it seems clear that there is a correlation 
between sequence and function similarity, but again it seems not to be linear and a 
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blurred area corresponding to the sequence-structure “twilight zone” is difficult to 
establish62. 
 

1.4.5 Bringing	together	the	three	spaces	
 
The studies presented so far clearly demonstrate, using different approaches and 

metrics, that there is a correlation between sequence, structural and functional similarities. 
However at the same time they also demonstrate that this correlation is not linear. 

Among the three spaces, the structural space is the smallest, and it is commonly 
accepted that there is a limited group of folds that act as attractors63, since different 
sequence families often have the same structure, and different functions can be carried 
out by proteins families with similar 3D arrangements57. 

In the last years, thanks to the increase of information available, sequence 
similarity can be calculated with ease, and can be used to infer homology, structural and 
functional similarities. But every case has to be evaluated individually, and possible 
effects of specific sequence changes corroborated through evolutionary information. 

 

1.4.6 The	search	for	homologs	in	sequence	databases	
 
The search for possible homologs of a protein of interest based on sequence 

similarity is a classical task in bioinformatics. It consists of the comparison of the amino 
acid sequence of the protein of interest with all the sequences stored in a given database 
and the generation of an optimal alignment between them. These alignments are scored 
according to preset rules (e.g. rewarding identical amino acids, penalizing gaps, …) and 
finally the results are presented in the form of a ranked list. 

Generating the optimal alignment between two sequences has a high 
computational cost36 and if this operation is repeated many times (such as in the case of 
very large databases), it would be unfeasible. In order to deal with this limitation, the 
problem has been tackled from two different sides. At algorithmic level, the release of the 
Basic Local Alignment Search Tool (BLAST37) in 1990 become a computational biology 
milestone and suppose an historic advance. Instead of exploring all possible solutions for 
an alignment between two sequences, BLAST uses a heuristic algorithm. It is several 
times faster than an exhaustive algorithm would be, and it is reasonably accurate. BLAST 
has become one of the most widely used programs in sequence analysis. 

At database level, the speed of the analysis is related to the global size to the 
order of n2, where n is the total number of the sequences analyzed. The rapid growth of 
sequences databases in the last 10 years pushed the development of clustering 
algorithms, able to group sequences that share a given level of similarity, so reducing the 
size of the database with a minimal loss of informative power. 

As we said before, proteins are biological entities that are evolving. As result of 
this process, sequences diverge. Direct comparison between two sequences cannot be 
sufficient to detect a distant evolutionary relationship and for this reason new algorithms 
have been developed. The main idea was to generate profiles as well as substitution 
matrices64,65 from pre-calculated alignments, able to capture the specific evolution of the 
different amino acid positions within a given protein family. The widely used Position 
Specific Iterative BLAST or PSI-BLAST was one of the first programs using profiles or 
Position Specific Score Matrices (PSSMs). Later on in 1998, Eddy released HMMER66, 
another widely used program based on Hidden Markov Models (HMMs) profiles, that were 
more robust than PSSMs, especially for protein domains. HHsearch67 algorithm 
represents a further development. While most methods generate profiles and use them to 
search against sequences, HHsearch generates a HMM profile and searches against a 
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pre-calculated database of profiles. This approach68 has been demonstrated to be very 
sensitive and fast.   
 

1.4.7 Function	annotation	databases	
 
The main source of functional information is the scientific literature. This data is not 

structured, comes from thousands of detailed small-scale experiments and therefore it is 
not easy to access. Biocurators search for, bring together, filter and store this information 
in specialized databases. They are also in charge of updating this information. Input from 
bioinformatics can speed up the process69, but human evaluation and validation is always 
needed and this makes the entire process time and money consuming.  

As previously mentioned, most of the protein sequences in databases are obtained 
indirectly by translation of DNA sequences8. These proteins are hypothetical, meaning 
that even their in vivo expression has not been experimentally determined: almost always 
structure and function are also unknown. Their deposition rate keeps pace with nucleotide 
sequences deposition, something that accurate manual curation cannot possibly do. This 
trend can be easily verified if we look at UniprotKB: Swissprot, which contains the high 
quality manually annotated protein sequences (although there are functionally 
unannotated entries), is 130 times smaller than TrEMBL, which contains all automatically 
DNA-translated protein sequences. In order to narrow this gap, sequence databases 
automatically annotate proteins, transferring information from high-quality datasets. 
Electronic annotation is mainly based on the fact that homologous proteins often share 
similar structural and functional features. 

One of the great challenges in bioinformatics is to develop intelligent systems able 
to make the automatic annotation of protein as reliable as the expert curation. A study70 in 
2009 showed that even considering protein families for which extensive experimental 
information is available, SwissProt annotations are very reliable, while derived automatic 
annotations in three well-known public databases (TrEMBL included) exhibit similar and 
surprisingly high levels of misannotation. So while homologous protein searching 
methods71 are getting better, there is much room for improvement in the identification and 
the transference of the correct functional features. 
 

1.5 Functional	residues	
 
The amino acid sequence of a protein and its structure are intrinsic to its function. 

The selective pressure on these amino acid residues is not equally distributed. Those 
amino acids that are more constrained are generally structural determinants (see section 
1.4.3) or residues that determine protein functional characteristics72. 

Functionally important residues can be divided in two sub-groups. A first group is 
made up of amino acids at the interface in protein-protein interactions or protein-nucleic 
acids interactions. These interactions are fundamental to many biological processes and 
may be transient, like those in the signal transduction process, or stable, like those in 
macro-protein complexes (such as ribosome). Residues at these interfaces are not 
necessarily conserved, but they have specific features that make them recognizable73. 

The second sub-group is made up of residues in regulator and active sites. 
Regulator sites are important to finely modulate protein activity in response to external 
signals, while active sites are the places where the molecular function of a protein is 
carried out. Compared with the first sub-group, these amino acids are usually found in 
spatially clustered. For these reasons (and others that will be discussed in detail later) 
they present higher conservation74. 
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This work focuses on regulator and active sites, and in concrete how to collect and 
use the available experimental information to predict functionally important residues 
reliably and how to determine possible chemical partners in novel proteins. 

 

1.5.1 Small	ligands	binding	sites	
 
A binding site is defined as the ensemble of amino acids that selectively bind one 

or more molecules. Binding is mediated by a variety of inter-atomic interactions, principally 
electrostatic and Van der Waals forces. These forces depend on the amino acid 
constitution of the site, and this is one of the main reasons for their higher conservation74. 
Other factors such as entropy, hydration, desolvation and flexibility, can play minor but 
significant roles. 

Proteins interact with almost all the different molecular species present in the cells, 
such as carbohydrates, lipids and hormones among others. Molecules binding at protein 
active sites can be divided into 2 categories: those needed to carry out the function 
(cofactors/coenzymes) and those that are the target of the activity (substrates/products). 
Molecules can actually act as both of them: one can be the cofactor of a protein A and the 
substrate of other reaction catalyzed by a protein B. 

Cofactors and coenzymes are essential to the function of the proteins they interact 
with. The difference between them is their chemical nature: cofactors are small inorganic 
ions, while coenzymes are organic molecules75. When they are bound tightly, through a 
covalent bond, they are called prosthetic groups. Union is permanent as long as the native 
structure of the protein is maintained, such as in the case of the heme group in the 
hemoglobin. When the interaction is loose, they often act as transient carriers of specific 
atoms or functional groups. In many cases they can be considered as co-substrates, since 
they are modified in the chemical reaction. For example the ATP is used to transfer a 
phosphate group to another entity by the kinases and it is continuously recycled as part of 
metabolism. 

The substrates group is bigger than the group of known co-enzymes. Substrates 
are all the ligands that are transformed by proteins. Interactions between substrates and 
proteins are in general transient, with different affinity: for example among the enzymes 
the turnover number (maximum number of molecules of substrate converted per site per 
unit of time) varies from 0.5/s for lysozyme to 6x105/s in carbonic anhydrase. 
 

1.5.2 Catalytic	sites	
 
Enzymes are sophisticated biological catalysts, able to reduce the activation 

energy of a reaction and increase its rate under biological conditions. As with other 
catalysts, they are not consumed during the reaction, nor do they alter the equilibrium. 
The catalytic site of an enzyme comprises those amino acid residues that participate 
directly in the reaction catalyzed and can be considered as a subset of the enzyme’s 
binding site. 

A profound analysis of the MACiE76 database, a publicly available database that 
gathers detailed information about known enzyme catalytic mechanisms, found that there 
are seven general classes of catalysis77,78: (de)stabilization of intermediates, steric 
hindrance, activation of reactive species, covalent catalysis (a bond formed with an 
intermediate) and proton, hydrogen or electron shuttling. The residues that more 
frequently appeared in the catalytic sites were (from the most to the least frequent) 
histidine, cysteine, aspartate, arginine, tyrosine, lysine and glutamate. These are all 
charged or polar residues at biological pH, which makes sense because catalytic 
mechanisms often imply movements of charge and/or electrons.  



INTRODUCTION	|	

13	

Another important repository of catalytic information is the Catalytic Site Atlas79,80 
(CSA), a database documenting enzyme active sites and catalytic residues culled from 
PDB structures. Catalytic residues are those thought to be directly involved in some 
aspect of the catalyzed reaction. A study published in 200781 explored in details catalytic 
sites combined with structural information extracted from the SCOP82 database. The 
authors found both mechanistic analogues (same catalytic mechanism, related but 
possibly different reactions) and transformational analogues (same reaction, different 
mechanisms). The most annotated mechanistic analogue was the catalytic triad, a 
mechanism in which an amide or ester bond is cleaved by nucleophilic attack. It was 
found in catalytic sites from 23 enzymatic superfamilies with functions ranging from 
acyltransferases to peptidases. Unrelated enzymes with different structural organization 
performing the same chemical transformations were also found. Chloroperoxidases (EC 
number: 1.11.1.10), acid phosphatases (EC number: 3.1.3.2) and protein Ser/Thr 
phosphatases (EC number: 3.1.3.16) displayed the greatest biochemical diversity, with 
three different reaction mechanisms involved in each case. The findings suggested that 
there are strong evolutionary constraints that guide catalytic site evolution, and some are 
still not wholly understood. 

Due to their fundamental functional role, catalytic residues are highly conserved; a 
single change would, in most cases, dramatically alter or disrupt the function of the 
enzyme. In the literature there are numerous examples of disruption of protein function 
caused by mutations in catalytic83,84 or adjacent residues85,86. 

 

1.5.3 Sources	of	functional	residue	annotations	
 
There are two fundamental sources of functional residue information: literature 

mining, searching for experimental evidences of the composition and biochemistry of 
protein active sites, or data extraction from atomic coordinates of protein structures 
deposited in the PDB. 

The PDB format has a dedicated section where binding information is directly 
reported87, but since there are no standard rules for site composition calculation, it is 
usually obtained from the atomic coordinates by calculating atomic distances between 
ligand and residues using the formula: 
 

Distance= !! − !! ! + !! − !! ! + !! − !! ! 
 
Formula 1 Distance between the atoms of a protein (p) and of a ligand (l) is calculated taking into 
account the absolute distances respect to the three axis X,Y,Z. Usually two atoms are considered 
in contact when this distance is lower than the sum of their Van der Waals radii plus 0.5 
Angstroms. 
 
Residues containing atoms below a certain distance threshold from the ligand are 
considered in contact. 

Tools have been developed in order to explore the binding information contained 
in the PDB and to assess the biological relevance of the. HIC-Up88 is a web-based tool to 
visualize and explore protein-ligand complexes, without providing any additional 
information. PDBsum89 was published in 2001 with the same goal, and authors since then 
have added new features and information, such as the analyses of ligand binding clusters 
from different experimental determinations of the same protein90. 

LigBase91 was one of the first repositories that used alignments of related 
sequence and structures for the study of binding sites. In Relibase92, published in 2003, 
functional residue data extracted from the PDB was coupled with protein-ligand interaction 
features. Binding MOAD93 was released in 2007 with the objective of creating a reference 
subset of high-quality biologically relevant ligand binding sites. Their selection was based 
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on the nature of the bound ligands: using pre-established criteria, metals, salts, buffers, 
solvents and huge compounds, were automatically removed. More or less at the same 
time Ligasite94 was published. It consisted exclusively on the annotation of binding sites in 
proteins for which at least one apo (ligand free) and one holo (including ligand) structures 
were available. The biological relevance of binding sites was assessed using literature 
information and/or ligand size and connectivity. Most recently the Zhang group released a 
database, BioLip95, updated weekly, which principal feature is the identification of 
biological relevant sites in recently released proteins through a semi-manual protocol. 
When a new structure is released, the database first sifts out candidate sites based on 
bound ligand. Selection criteria are the number and type of contacts with the protein, 
frequency in the PDB and the presence in a pre-generated artifact list. If the ligand 
satisfies all the requirements, curators manually validate biological relevance, using 
literature information.  
 

1.5.4 Sources	of	catalytic	residues	annotations	
 
Curated databases such as SwissProt96 and BRENDA97 contain a wealth of 

information about enzymes and catalyzed reactions. Catalytic site annotation requires a 
great deal of effort in terms of targeted experiments and expert interpretation. Catalytic 
site characterization is not possible from atomic coordinates alone, and is not easily 
standardizable or automatable, so the primary source of information about catalytic sites 
is the scientific literature, and this information needs expert curation. Consequently, 
catalytic site annotation databases are less numerous than ligand binding site. 

According to Bartlet98, a residue can be considered catalytic if it fits one (or more) 
of the following roles: 

 
a. It is directly involved in the catalysis as a reactant; 
b. It directly interacts with another residue or water molecule involved in catalysis, 

helping in the process; 
c. It directly interacts with a substrate or cofactor involved in catalysis; 
d. It stabilizes a transition state. 

 
However, since a widely accepted definition of catalytic residue does not exist yet, the 

definition and identification of catalytic residues depends on the criteria of each specific 
annotator. 

A number of databases gather enzyme-related information and some of them focus on 
catalytic residues. The MACiE76 and EzCatDB99, databases are valuable resources that 
focus on the amino acidic composition and chemical details of catalytic reactions. The 
aforementioned Catalytic Site Atlas80 is probably the largest reference resource on 
catalytic sites. In the data gathering phase, manual annotators have extracted molecular 
details and the amino acids involved in the reaction mechanism from articles associated to 
almost a thousand PDB structures. This gold-standard dataset was later used for the 
automatic detection of additional sites in homologous sequences through direct inference, 
to obtain an extended set. 

1.5.5 FireDB	
 
In 2007 was first published FireDB100, a repository of functional residues 

developed in our lab. The main objective was to bring together ligands crystallized in PDB 
structures, the residues in contact with those ligands, and the catalytic sites annotated by 
hand in the Catalytic Site Atlas. FireDB focused on small compounds; protein-protein and 
DNA/RNA binding sites were excluded from the database, as previously described. 
FireDB is more than a simple repository of PDB residue-ligand contacts since it also 
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attempts to bring order to the interactions. First of all, all sequences are clustered at 97% 
identity, reducing so the high redundancy of the PDB. If a cluster with more than one 
sequence is found, a Master Sequence (MS) is generated from the aligned sequences by 
selecting the most frequent amino acid in each position. In a similar way, binding sites are 
calculated from the single PDB structures and then are collapsed onto the Master 
Sequences to generate a Master Sequence binding Site (MSS). The biological relevance 
of each FireDB MSS is determined from evolutive, structural and empirical characteristics: 
this approach will be discussed later in the results chapter. The MSS have two important 
roles: the first is to merge contact information from different proteins, helping to highlight 
residues that are critical for the binding; the second is to directly transfer ligand contact 
information to proteins crystallised without a ligand.  

 

1.6 Chemical	compounds	in	the	PDB	
 

All the databases presented so far focus their attention on functional residues in 
proteins, while the analysis of the molecules they bind to is limited to the assessment of 
the biological relevance of the binding sites. However there also exist databases 
specialized on ligands and their properties. 

The Protein Ligand Database101, published in 2003 provides binding energies and 
constants and allows comparisons of PDB ligands and geometric similarity searches. 
LigandDepot102 (now integrated into the PDB under the name of Ligand Expo) presents 
ligands with their chemical and structural characteristics as isolated entities. PDB-ligand103 
is a database in which ligands and their protein environment are structurally aligned and 
compared. Similar features are offered by the more recent SuperLigands, which also 
includes a list of drug-like compounds (according to the Lipinski rule of five104 to evaluate 
druglikeness) and a search for user determined sub-structures. 

All these resources are valuable for rational drug-design or computational 
screening of drug molecules and this information has been exploited105,106 to develop new 
drugs or investigate characteristics of previously known drugs. However, none of these 
databases annotate PDB ligands from any point of view other than pharmacological. 

The PDB contains a range of small molecules, from biological ligands to inhibitors, 
analogs, drugs, crystallization additives, and solvents. The main source of information 
about their nature are the mmCIF107 dictionaries, elaborated by the wwPDB consortium 
itself. Here molecules are classified in 11 classes, such as “Saccharides and products”, 
“Coenzymes” or “Drugs”, but this is a loose classification since diverse compounds can 
share the same class. When detailed information relating to the nature of the compound is 
available, it is stored in the related scientific literature, making it difficult to access 
automatically. 

Information about chemical compound properties can be found in dedicated 
databases. There are several available, each of them with its own functional grouping 
criteria. Pharmaceutical companies also generate their own repositories that store activity 
data for tested molecules; the U.S Food and Drug administration stores information about 
all approved marketed drugs. A number of databases focus their attention on biologically 
relevant molecules, providing experimental data like bioassays, binding affinities and 
literature references. The overlap between all these resources is high, since the 
categorization criteria are not mutually exclusive, but the reciprocal data mapping has 
been always complicated due to the lack of standardization of the 1D representation of the 
ligands. Recently the International Union of Pure and Applied Chemistry (IUPAC) created 
the InChi108 standard to overcome this problem. 

Bringing together all these data with the structural and functional information in the 
PDB ought to be interesting for a number of reasons, beyond the characterization of a 
single protein-ligand interaction. For instance, it could also facilitate the discovery of new 
candidate target-drug associations via drug repositioning. Drug repositioning methods109 
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are promising novel approaches for discovering new pharmacological targets for existing 
drugs. 
 

1.7 Functional	site	annotation	
 
Several binding site binding prediction algorithms have been developed: a 

preliminary rough distinction to classify them is based on the source information used to 
generate predictions: de novo or homology transferring. For de novo sequence methods, 
given a problem sequence (target), a multiple sequence alignment (MSA) is generated 
from the homologous sequences detected in a sequence search against the protein 
databases. The evolutionary history of the family, and the subfamilies (if any) can be 
studied from the MSA and the phylogenetic tree: constrained key positions that are 
conserved within the protein family can be extracted from the alignment. These positions 
are likely to be related to function or have a structural importance in the protein. Since not 
all the proteins in the MSA will have exactly the same function, some residues may be 
conserved in a certain sub-group of sequences rather than completely conserved in the 
alignment. These positions in the MSA may be important for the detection of subfamilies 
and the identification of specificity determinants. One of the first approaches to study this 
information was developed by Casari110 in 1995 and is based on a principal component 
analysis from the vector representation of an MSA. Another method to identify these 
positions is evolutionary trace111 (ET), that studies the conservation of position across the 
evolutionary trees, from root to branches. Lately a number of papers112–114 have been 
published based on this idea, using a range of mathematical models and the increasing 
availability of protein sequences in the public databases. 

Structure-based de novo methods also exist115–117. Using different metrics, they 
investigate protein cavities to identify potentially fitting ligands and consequently infer 
ligand binding site composition. These methods perform quite well with bulky ligand 
binding sites, but they depend on the availability of a good resolution structure (or model). 

From now on we will focus on predictors based on the transfer of functional 
annotations, since they are more relevant to this work. As previously mentioned, they are 
mainly based on the conservation of functional and structural characteristics in 
homologous proteins; in some cases it is also possible to detect convergent evolution. 
These transfer methods, like the previous examples, can be sequence or structure based, 
according to the information they are exploiting. 

 

1.7.1 Structure	based	methods	
 

Since structure is more conserved than sequence and function; structure 
comparison can detect remote homology that is impossible to recognize from sequence 
information alone. 

In 1997 Wallace and collaborators published an algorithm, TESS118, that was able 
to scan the PDB and to generate 3D templates of annotated binding sites. These 
templates were used to analyze a large non-redundant dataset of proteins of known 
structure in order to uncover function for poorly annotated proteins or to find additional 
annotations. This promising methodology had one big bottleneck; it was applicable only to 
resolved structures. Over the years, improvements in the structure prediction field brought 
new possibilities, and in 2004 a new method called FINDSITE was published. If a 
structure was not available, models of the target could be generated through structural 
alignments between the models and a derived database of structures containing co-
crystallised ligands. Predicted binding sites were evaluated and ranked. The authors were 
able to successfully predict 70.9% of the ligand binding sites for a set of 901 proteins. 
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This prediction strategy has two independent steps and both need to be accurate. 
If the structure is not available, the model generated for the protein (or more specifically of 
the binding site) has to be reliable. Then the structural alignment and evaluation criteria 
have to be good enough to spot binding sites and avoid false positives (like superficial 
clefts). More recent algorithms have tried to improve one or both of these steps. In 2010 
Wass and Sternberg published 3DLigandSite119. In this approach, all candidate sites are 
grouped based on their 3D position; the cluster with the highest number of ligands is 
selected as the general area of the binding site. Refinement of the site composition is 
performed based on the contact occurrence of the single residues and finally a consensus 
prediction is generated. Residue conservation, calculated from ad-hoc generated profiles, 
is mapped onto the prediction, but it is not discriminating. Other recent methods attempted 
to improve precision using different solutions for pocket picking and binding site 
composition selection 120,121, or tried to improve every single step, from model generation 
to the transfer of the annotation122. 

1.7.2 Sequence	based	methods	
 
Sequence based approaches search for homologues with experimentally 

annotated binding residues and use this information to infer the function of the target 
protein. These methods need an accurate filter process before transferring since, as 
mentioned before, homology between two proteins means that they have a common 
evolutionary ancestor, but they may not have the same function.  

Methods can be classified according to strategy. Some methods123–125 use 
statistics to rank annotations detected from sequence searches and transfer the best 
scoring information. However, global sequence comparisons have been shown to be more 
error prone 126, so more recent tools127,128 go beyond whole sequence comparison to focus 
on significantly conserved alignment positions. If the target protein has the same 
conservation pattern as the annotated protein, functional information is transferred. 
Successive evolutions of this methodology produced functional signatures that are shared 
by proteins with same function. Inference based on these signatures increases annotation 
specificity by recognizing functionally inconsistent differences among key residues. 
Example of these motif-based algorithms are ConFunc129, DME130, EFICAz131. 

 

1.7.3 firestar	
 

The first version132 of firestar was published in 2007 by . It is a sequence-based 
method that takes advantage of functional signatures to predict functional important 
residues. 

The firestar workflow is simple: for a given target, a homology search with PSI-
BLAST is performed against the sequences contained in the FireDB. Pairwise alignments 
are extracted from this analysis and are evaluated by conservation at the residue level 
(and not by the calculated e-value). Binding information signatures are retrieved from 
FireDB annotations and compared with the conservation pattern: if they substantially 
match, a binding site prediction is generated. The key steps in this pipeline are essentially 
two: the evaluation of the per-residue conservation in the alignment and the assessment 
of the reliability of the source information. 

PSI-BLAST evaluates the reliability its sequence alignments using the statistical 
significance of the matching positions from the alignments. The reported significance for 
PSI-BLAST is global: the higher the number of conserved positions, the better the 
alignment score. PSI-BLAST also produces an evolutionary profile for the target sequence 
based on the multiple pairwise alignments it generates. These profiles can be transformed 
into matrices that record scores for each amino acid at each position in the target 
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sequencen and the matrices can be used to calculate a local amino acid level score for 
any alignment against the target sequence. 

Tress 133 showed that the reliability of a heuristic pairwise alignment can be 
evaluated using profile information from just one of the two proteins. The method 
evaluates each alignment position using the converted matrix and by considering also the 
influence of the adjacent positions using a sliding window. To validate the scoring model, 
structural alignments of the proteins were evaluated: positions with higher reliability values 
were found in regions where calculated RMSD of alfa carbons was lower. Furthermore it 
was observed that 80% of ligand binding residues in ligand-binding proteins were located 
in highly conserved regions of the alignment, and where the structure was also conserved. 
These regions received systematically a higher score from the method. This work resulted 
in a tool, SQUARE134, which is the core of the local single residue reliability evaluation in 
firestar. 

The transference of annotations using functional signatures can be complicated by 
the presence of multiple predictions from different templates and different ligands. This is 
especially challenging in the case of bulky yet flexible ligands (e.g. ATP) that in the PDB 
have a site composition big variability, even in homologous pockets135. Automatic 
biological relevance assessment and size thresholds helped to filter out non-reliable 
source information: even though the identification of the correct binding site composition 
can be still challenging. 

 

1.7.4 Evaluation	of	function	prediction	methods	
 
Due to the explosion of computational prediction methods in recent years, the 

scientific community has organized a number of “critical assessments” to independently 
compare methods. These initiatives are also useful to highlight existing general limitations 
and bottlenecks and to set new challenges, promoting the progress of the entire field. Two 
among all these assessments are related function prediction field: CASP and CAFA. 

CASP (Critical Assessment of techniques for protein Structure Prediction) is 
focused mainly on structure prediction. The experiment is essentially a blind test based on 
structures that are solved but not publicly available and it evaluates how well participant 
groups are able to predict protein 3D features starting from just the amino acid sequence. 
To keep pace with emerging needs and lines of research CASP has added a range of 
specific prediction categories over the years. In the sixth edition of CASP a function 
prediction category was introduced. At the beginning a number of features were included 
in the evaluation (for example GO terms and EC numbers prediction). Due to technical 
difficulties most features were eliminated from the evaluation136,137, and from CASP8 
onwards ligand binding site prediction was the only feature evaluated. firestar was used 
as an assessment tool in CASP7 and CASP8138,139 and participated as official predictor in 
the following two140,141 CASP experiments. As we will see in the results chapter, CASP 
played a fundamental role in the improvement of firestar. 

CAFA (Critical assessment of Function Annotation) is a different community-wide 
experiment that focuses mainly on function annotation for whole protein sequences. As 
with CASP, a number of sequences (for which poor or non functional annotations are 
available) are released to the predictors. Participants have to predict GO terms and/or 
Human Phenotype Ontologies. The initiative is quite recent; in the first experiment142 
48,298 sequences were initially released, but just 866 were used as benchmark set for the 
assessment. The second edition made more than 100,000 sequences available for 
predictors to predict (although finally only 3,681 of them were used for the assessment). 
These numbers fit realistically with the emerging needs of massive annotation, as 
mentioned frequently in this introduction. Even if firestar is not a GO predictor from a strict 
point of view, its predictions have been used and integrated in a more general predictor, 
SIAM (Angela del Pozo, to be published). SIAM (Statistically Inferred Annotation Method) 
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is GO terms predictor: given a target sequence, it performs a sequence based homology 
search among functionally characterized proteins and clusters the results. Once the 
cluster is defined, SIAM identifies a functional signature, defined as the set of annotations 
agreed on by the consensus of its member sequences, and transfers them to the target 
sequence. 

firestar enables the identification of binding residues and of bound ligands, and 
also catalytic residues. This information can shed a light on molecular function, allowing 
SIAM to add and modify specific associated GO terms. 

The third edition of CAFA included the prediction of ligand binding sites for the first 
time, and firestar made a full prediction for almost 41,000 targets. The experiment is now 
in the evaluation stage. 
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2.1 Motivation	
	

The gap between functionally characterized and unannotated protein sequences is 
widening due to the explosion of data from Next-Generation Sequencing, and reliable 
automatic function annotation will be required to close it. The development of accurate 
and reliable function annotation algorithms is one of the important challenges for 
bioinformatics, and the number of potential applications for functional information justifies 
the boom in these methods. Their reliability is crucial since functional information is a 
starting point for other analyses, and incorrect information could propagate through 
different levels. 

Function can be inferred from homologous proteins, but it has been demonstrated 
that function relies on a reduced group of residues. This is the reason why even proteins 
with high sequence similarity can perform different functions. For methods that rely mainly 
on global sequence comparison, this can be a problem. 

Clearly methods that can predict function via local sequence motifs can play a big 
role here, and FireDB and firestar together have been demonstrated to be state-of-the-art 
resources for ligand binding site annotation and prediction since their publication. For this 
reason, they are the ideal starting framework to introduce several key improvements, 
essential for converting both of them in flexible and precise tools, valuable for large scale 
functional prediction in different contexts. 

Improvements in FireDB can be done in biological activity annotation of chemical 
compounds in complex with resolved protein structure, since database stores little or non 
information about them. Furthermore we spotted some cases where binding sites 
automatic biological relevance needs to be polished. 

firestar results in the ambit of the CASP experiment show that sensitivity in the 
search of homologous binding sites is good; nevertheless template sites search could be 
improved using complementary approaches. On the other hand, the algorithm would 
require a profound revision in order to pinpoint most informative data extracted from the 
PDB and to deal with its intrinsic noise, polishing so its specificity. 

 
 

2.2 Specific	Objectives	
 
This work has three lines of research as described below. 
 

Database curation, to provide functional annotation of higher quality: 
 
• Annotation of the chemical compounds in FireDB; 
• Revaluation of the biological relevance of all binding sites in FireDB; 
 

firestar algorithm modification, to increase prediction reliability: 
 

• Integration of a newly available method to search for remote homologues; 
• Introduction of targeted filters to increase the specificity of the predictions; 
• Tool assessment in the context of the CASP experiment. 
 

Application of the methods in large-scale analyses: 
 
• Functional coherence analysis of protein families within the Pfam database; 
• Integration of firestar into a pipeline for the annotation of splice variants; 
• Combination of firestar predictions with a GO-term based prediction method. 
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3.1 Sequence	analysis	
 

PSI-BLAST143 was developed to enhance the sensitivity of BLAST to detect 
remote protein homologs in a sequence database, generating Position Specific Scoring 
Matrix (PSSMs) from target sequence. This matrix allows to better weight per-residue 
evolutionary constraints and to track down remote relationships. 

 
IMPALA144 is a set of programs that allow to generate and search a database of 

PSI-BLAST PSSMs. Among other features, it allows you to translate a binary formatted 
profile to an ASCII formatted array, feature used by SQUARE (see section 3.6). 

 
MUSCLE145 is a program that generates multiple alignments of nucleotide or 

protein sequences. MUSCLE alignments combine good quality and low computational 
cost. The program is freely accessible for download at http://www.drive5.com/muscle/ web 
page. It is also available as SOAP web-service at the EBI. 

 
CD- HIT146 is a program that implements a classification algorithm (clustering) of 

biological sequences based on the percentage of identity and length to reduce the 
redundancy of large databases. Its main advantage is the speed, especially important 
when the selected threshold sequence identity is high. The program is available at: 
http://www.bioinformatics.org/cd-hit/. 
 

HH-suite is an open-source software package for sensitive sequence searching 
based on the pairwise alignment of hidden Markov models (HMMs). It contains 
HHsearch67 and HHblits147 among other programs and utilities. HHsearch takes as input a 
multiple sequence alignment or profile HMM and searches a database of HMMs for 
homologous proteins. HHblits uses the same HMM-HMM alignment algorithms as 
HHsearch, but it employs a fast pre-filter that reduces the number of target HMMs from 
tens of millions to a few thousands. 
	

3.2 Molecular	Visualization	
 

PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC is one of 
the few available open source visualization tools for structural biology. It is suitable for 
producing high quality 3D images of small molecules and biological macromolecules such 
as proteins. It can be extended to perform complex analysis of molecular structures using 
libraries available for Python. 

3.3 Compound	Matching	
 

InChi Standard148  The IUPAC International Chemical Identifier (InChi) is a textual 
identifier for chemical substances, designed to provide a standard and human-readable 
way to encode molecular information. The identifiers describe chemical substances in 
terms of layers of information: atoms and their bond connectivity, tautomeric information, 
isotope information, stereochemistry, and electronic charge information; not all layers 
have to be provided. It is possible to generate an InChIKey starting from the InChI string, 
through a compression algorithm that creates a fixed-length string of upper-case 
characters.	 The InChIKey has been designed to be easily searched by internet search 
engines. 
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UniChem149 is a freely available compound identifier mapping service. Basically it 
is a large-scale, non-redundant database of Standard InChIs. Unichem stores pointers 
between these descriptors and chemical identifiers stored in 34 different chemistry 
resources. It contains correspondence information from many databases of our interest. 

 
Isomeric SMILES150 The Simplified Molecular Input Line Entry System is a line 

notation for entering and representing molecules using short ASCII strings. It is a true 
language, with a simple vocabulary (atom and bond symbols) and only a few grammar 
rules. The isomeric SMILES notation allows configuration at tetrahedral centers and 
double bond geometry specified for any structure, if it is known. This standard is generally 
considered to be slightly more human-readable than InChI. 
 
3.4 Databases	

 
3.4.1 Primary	databases	

 
Protein Data Bank21,151 (or PDB) was established in 1971 as an archive for 

biological macromolecular crystal structures. Over the years it has grown and has now 
reached almost 130,000 structure depositions, mostly crystal structures, but also many 
NMR (nuclear magnetic resonance) derived structures and a few models. All the data 
collected from depositors by the PDB are considered primary data. A part from atomic 
coordinates, it also includes additional data such as obtained resolution, technical 
features, experimental details and some more. The PDB is a key resource in the area of 
structural biology and a number of databases, such as FireDB, are derived from its data.	

 
Catalytic Site Atlas79,80 (or CSA) is a freely available catalog of catalytic sites and 

residues identified in enzymes stored in the PDB. Two types of entries are available: 
• A high reliable set, maintained by curators, containing information extracted manually 

from the primary literature. 
• A derived set, containing annotations transferred via homology analysis 
 

Gene Ontology34 (or GO) is a key resource for the function definition and 
standardization. The Gene Ontology Consortium started in 2000 with the purpose to 
produce a structured, precisely defined, common, controlled vocabulary for describing the 
roles of genes and gene products in any organism.  

Ontologies are organized as nodes in a network that have a parent-children 
relationship. There are three main categories of Gene Ontologies. 
 

• Biological process: the biological objective to which the gene or gene product 
contributes. 

• Molecular function: the biochemical activity (including specific binding to ligands 
or structures) of a gene product. 

• Cellular component: the cellular compartment where a gene product is active. 
 

 
UniProt KnowledgeBase8 (UniProtKB) is the central hub for the collection of 

functional information on proteins and consists of two sections: 
 

• a reviewed section containing manually annotated records with information 
extracted from literature and curators evaluated computational analysis 
(UniProtKB/SwissProt). 

• an unreviewed section with automatically annotated records (UniProtKB/TrEMBL). 
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Next to core data (amino acid sequence, protein name or description, taxonomic 
data and citation references), curation of the protein sequences includes functional sites 
or regions, as well as variant protein forms produced by natural genetic variation, RNA 
editing, alternative splicing, proteolytic processing and post-translational modifications 
(PTMs). 
 

ENZYME33 database is a repository of information related to the nomenclature of 
enzymes, organized and elaborated following the recommendations of Nomenclature 
Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB). 
Even if every entry has an associated recommended name, EC numbers do not describe 
enzymes, but enzyme-catalyzed reactions. 
 

3.4.2 Databases	used	for	sequence	analysis	
 
PSI-BLAST search needs a reliable profile to have the best possible sensitivity. 

Since the PDB is too small and biased in terms of sequence representation to generate 
informative profiles, UniProtKB is the database selected for this task. We do not use the 
whole official database available, but we pre-filter out known sequence fragments. It has 
been shown152 that the inclusion of a high number of incomplete gene sequences, such as 
those from metagenomic sequencing projects such as the Sargasso Sea153 project, in 
search databases affects the quality of PSI-BLAST profiles. Annotations are retrieved 
from Swissprot and TrEMBL in order to identify and discard fragments and furthermore 
the redundancy is then reduced to 70% to improve speed, using the CD-HIT program. 
 

Both HHsuite search methods (HHsearch and HHblits) need to generate profiles 
to search against a profile database. The default database available is called nr20, a 
clustered database generated from the NCBI data, freely available at 
https://github.com/soedinglab/hh-suite 

In order to use these tools against FireDB Master Sequences (MS), a HHsuite 
formatted database has to be generated after every update. We create a profile for every 
consensus sequence searching against the nr20 database; and then we combine and 
index them using the hhblitsdb.pl tool of the package. 
 

3.4.3 Chemical	databases	
 
PubChem154 is an open repository of experimental data relating to the biological 

activity of small molecules. It is one of the most widely used for deposition and one of the 
biggest chemical databases. It consists of three primary databases: compounds, 
substances and bioassays. In May 2017 they contain respectively more than 91 millions, 
230 millions and 1.2 millions entries.  

 
Kyoto Encyclopedia of Genes and Genomes155 (or KEGG) is a long-established 

project, started in 1995, born from the need for a reference resource that can be used for 
biological interpretation of genome sequence data. It became a reference pathway 
database by capturing and organizing experimental knowledge from published literature, 
first focusing on metabolism but soon followed by other cellular processes. KEGG has 
been expanded significantly over the years to meet the needs for integrating and 
interpreting various types of high-throughput data, as well as for supporting translational 
bioinformatics and now is an integrated database resource consisting of 15 main 
databases. Besides the systems and genomic information databases, other curated 
databases bring together chemical and health information.  



MATERIALS	AND	METHODS	|	

29	

ChEBI 156 starts as a project of European Bioinformatics Institute (EBI) in 2002, to 
create a controlled dictionary of Chemical Entities of Biological Interest. The molecular 
entities in question are either natural products or synthetic products that usually intervene 
in biological processes. The primary motivation of the database was to provide a high 
quality, thoroughly annotated vocabulary to promote the correct and consistent use of 
unambiguous biochemical terminology in molecular biology databases at the EBI. 
 

ChEMBL 157 is an Open database containing binding, functional and ADMET 
(Absorption, Distribution, Metabolism, Excretion and Toxicity, a form of describing the 
disposition of a pharmaceutical compound within an organism) information for a large 
number of drug-like bioactive compounds. These data are manually extracted from the 
primary published literature on a regular basis, then further curated and standardized. 
Currently, the database contains 5.4 million bioactivity measurements for more than 1.5 
million compounds over almost 10 thousand protein targets. 
 

DrugBank158 database is a unique bioinformatics and chemoinformatics resource 
that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data 
along with drug target (i.e. sequence, structure, and pathway) information. It has become 
a reference database for drug-discovery studies, includes data from the FDA (Food and 
Drug administration) and since 2008, the year of publication, 3 updates have been 
published with more than 2,000 citations. 
 

MetaCyc159 is a curated database of experimentally described metabolic 
pathways. It contains data that have been experimentally validated and reported in the 
scientific literature. Even if the main objects of MetaCyc are metabolic pathways and 
reactions, for us the available collection of more than 13 thousands (in May 2017) 
metabolites is invaluable to spot possible biologically relevant compounds. 

 
PharmGKB160 is a publicly available web-based knowledge base whose aim is to 

aid researchers in pharmacogenomics studies: as a matter of fact genetic variants can be 
considered the main entities. Born in 2001, all the data provided has been validated 
through extensive manual and automatic curation; the user can browse not only the 
biological role of the genes affected by the mutation of interest, but also can retrieve 
clinical interpretation and even pharmacologically relevant molecules associated with the 
mutational landscape. 
 

3.5 Statistical	Methods	
 

Sensitivity and specificity: these are the principal measures of the quality of a 
binary classification. Given a classification of a specific data set, there are four basic data 
sets: correct predictions (TP), incorrect predictions (FP), correct negative predictions (TN) 
and missed predictions (FN). Sensitivity measures the ability to correctly classify TP while 
specificity measures the degree of precision with which the TN are identified. 

 

    

 
 
 
Matthews Correlation Coefficient (or MCC) is often used in machine learning as 

a measure of the quality of binary (two-class) classifications. Unlike sensitivity and 
specificity, it is generally considered a balanced measure that can be used even if the 
classes are of very different sizes. The MCC is in essence a correlation coefficient 

sensitivity = TP
TP +FN

specificity = TN
TN +FP
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between the observed and predicted. It returns a value between −1 and +1 where the first 
indicates total disagreement between prediction and observation and +1 represents a 
perfect prediction; 0 means no better than random prediction. 

 
 

 

 
 
This measure was used in the CASP experiments for the first assessment of 

ligand-binding site prediction category139–141 
 

3.5.1 Programming,	databases	and	web	services.	
 
SQL (Structured Query Language) is a special-purpose programming 

language designed for managing data held in a relational database management 
system (RDBMS). It consists of a data definition language and a data manipulation 
language. The scope of SQL includes data insert, query, update and 
delete, schema creation and modification, and data access control. FireDB has been 
written in SQL language.	

 
MySQL is a popular open-source relational database (SQL) management system 

used for the administration of FireDB database. 
 
Perl (or Practical Extraction and Report Language) is an interpreted programming 

language derived from C and awk. Its forte is its flexibility and its ease for parsing text 
files. Supported by a wide community, it has many useful libraries (eg: DBI, for the 
database management or CGI for the generation of dynamic content on the web page). 
Almost all the script behind the firesuite web server has been written in this language. 

 
Apache HTTP Server is an open-source community supported web server 

sotware. It’s widely used and supports a variety of features, many implemented 
as compiled modules which extend the core functionality, and from the server-side fully 
support Perl, the language that most of the firesuite scripts are written in. 

 
PHP (Personal home page Hypertext Pre-processor) is an interpreted 

programming language, originally designed for creating dynamic web pages. 
Interpretation mainly occurs on the server side. All the web-forms in the firesuite server 
are written in PHP. 
 

JavaScript is a dynamic computer programming language. It is most commonly 
used as part of web browsers, whose implementations allow client-side scripts to interact 
with the user, control the browser, communicate asynchronously, and alter the displayed 
document content. JavaScript copies many names and naming conventions from Java, 
but the two languages are otherwise unrelated and have very different semantics.	For the 
firesuite web-page forms, many pre-submission checks (eg. for FASTA format or PDB ID 
format) are written in JavaScript. 

  
REST is an architecture style for designing networked applications. The name 

stands for Representational State Transfer. The idea is that, rather than using complex 
mechanisms, such as SOAP, to connect between machines, simple HTTP is used to 
make calls between machines. So to query a server you can use just a URL. This URL is 

MCC = TP ⋅TN −FP ⋅FN
(TP +FP) ⋅ (TP +FN ) ⋅ (TN +FP) ⋅ (TN +FN )
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sent using a simple GET request, and the HTTP reply is the not embedded raw result 
data. 
 

3.6 SQUARE.	Assessing	reliability	of	pairwise	alignments	
 

SQUARE134 evaluates the local reliability of pairwise sequence alignments using 
PSSMs obtained from PSI-BLAST profiles via IMPALA, that have been pre-calculated for 
every template included in the target database. The method is based on an earlier 
study133 and it is a keystone in the generation of FireDB since profiles are generated for 
each Master sequence. However, it is even more important in firestar, because 
identification of the reliable regions in the alignment between two sequences is necessary 
for transferring functional information from the template sequence to the target sequence.  
 

3.6.1 Reliability	derived	from	template’s	profile	
 

Unlike other methods that study the evolutionary behavior of a position in a 
multiple alignment, SQUARE considers the residue window surrounding each position 
being evaluated. 

So: 
 

Score= Sares-2 + 2 � Sares-1 + 3 � Sares + 2 � Sares+1 + Sares+2 
 

where Sa is the score from the matrix of the PSI-BLAST profile for residue res. The effect 
of the inclusion of the residue’s environment is shown in figure 1. Calculating the score for 
a residue window and not just from the evolutive information for each position smooths the 
variation of the score between adjacent positions. 

 

      
  
Figure 1 Smoothing of the reliability score for the alignment between the sequences 
corresponding to PDB codes 1plc and 1aac. On the left a value for each aligned residue 
was calculated from the template sequence profile for each residue position; on the right 
the smoothed values considering a window of 5 residues (from Tress et al133) 

 
Calculating a reliability score taking into account the environment also makes biological 
sense because if a residue conserved between two proteins is to maintain the same role, 
the surrounding residues must also maintain a certain amount of conservation. 

 

3.6.2 Reliability	of	functional	regions	and	functional	transfer	
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Given a pairwise alignment, SQUARE assigns a score to every position; this 
reflects the probability that two aligned residues share the same role in both proteins. In 
the paper133 the author used protein structural alignments to evaluate the position-based 
scoring and found that correctly aligned residues had a better mean position-based score. 
What was most interesting was the fact that correctly aligned binding sites and catalytic 
residues were located in regions of high reliability and usually had very high scores, so the 
SQUARE reliability values could be particularly useful to predict functionally important 
residues. In FireDB, and in the SQUARE and firestar web-servers, the position-based 
scores have been discretized and associated to a shade of blue in order to make them 
more user-friendly: the higher the score, the darker the blue (table 1). 

 

 
 

Table 1 Reliability values for alignment position evaluated by the program SQUARE. 
 
As an example of SQUARE results, we show here the firestar analysis output of a 

putative tryptophan synthase from Aeropyrum camini, a hyperthermophilic archea (Uniprot 
code U3TBS7, figure 2). PSI-BLAST finds as a similar template (PDB ID 1k3u). This is a 
tryptophan synthase from Salmonella typhimurium, the two tryptophan synthase 
sequences have diverged considerably and have just 20% identity. Despite this the color 
coded SQUARE alignment reliability scores clearly highlight the regions surrounding the 
catalytic residues (Glu 2, Asp 13 and Tyr 129) and the residues involved in the binding of 
the coenzyme pyridoxal-5’-phosphate; in this way SQUARE scores help to detect the 
most conserved functional regions even in distant homologs. 	

 

 
 

 
 

Figure 2 SQUARE evaluation for an alignment between a target sequence, tagged as “Query”, 
and a template, (PDB ID 1k3u) a Tryptophan synthase alpha chain. SQUARE generates the 
reliability values, reported as colors in the first line below the alignment. Lines 2-4 below the 
alignment show the reliability scores for the functional annotations retrieved from FireDB. Every 
residue is represented with a background that reproduces the same color of the SQUARE score. 
The darker the blue, the more the position is conserved and the higher the score. 

 
Besides the integration in FireDB and firestar, SQUARE is also available at 
http://firedb.bioinfo.cnio.es/Php/square.php as a stand-alone web server.  
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3.6.3 Profile	generation	
 
Since SQUARE scores are derived from profiles built around the template 

sequences, template profiles need to be pre-calculated. For the version of SQUARE 
integrated into firestar and FireDB, due to the size and biases in PDB sequence space, 
we generated Master Sequences Profiles against an ad-hoc clustered version of 
UniProtKB database (see section 3.4.2 for details). 
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3.7 FireDB	
	

FireDB100 was first published in 2007. It is a databank of functional information 
relating to proteins with known structure. FireDB is built around ligand binding data 
obtained from the 3D structures in the Protein Data Bank (PDB) and the catalytic residues 
in Catalytic Site Atlas (CSA). 

Programmatically, the database was built in SQL and it is managed using MySQL; 
Perl is used for the access, through DBI library. 

The original database schema consisted of 18 tables (see appendix figure 1); Perl 
scripts carry out the periodical updates, generating all the information from scratch. Here 
we give an overview of the most relevant tables: 
 

COMPOUND: stores basic information about the small molecules co-crystallised 
with the PDB structures. This data comes from the mmCIF4 library generated by the 
wwPDB5 consortium. 

INFOACC: contains sequence information from the PDB, the correspondence 
between PDB and Uniprot IDs and functional annotation (GO terms and EC numbers). 

SITExx: three tables that store binding site composition, calculated directly from 
the PDB coordinates using different distance cut-offs (all distances calculated plus Van 
der Waals radii): 0.5 (SITE35), 1 (SITE40) and 1.5 Å (SITE45). They also store catalytic 
information extracted from the Catalytic Site Atlas and mapped onto the protein sequence. 

CONSENSUS: The PDB is highly redundant. FireDB uses CD-HIT to cluster 
proteins at 97% identity and generates alignments for each of these clusters with 
MUSCLE. These alignments generate a new sequence entity, called the Master 
Sequence (MS), as the cluster representative. 

CSITExx: these tables are built from the SITExx information. All binding sites from 
templates in the same cluster with an overlap greater than 50% of their size are mapped 
onto the Master Sequences (MS) to create Master Sequence binding Sites (MSS). The 
residues that form the MSS are obtained from the collapse of the separate sites. CSA 
residues undergo the same process, but separately from the MSS. In this case the 
overlap has to be 100% in order to be clustered into a Master Sequence Catalytic site 
(MSC).  

BINDSITExx: in some binding sites we can find more than one compound (eg: 
ATP and MG), but in CSITExx tables binding information is joined in a unique MSS. 
BINDSITExx tables store per compound binding information for all these composite sites  

COMPARExx: In order to identify inter-cluster homologous sites, an all-against-all 
PSI-BLAST analysis of the Master Sequences is performed. When a hit is found and two 
MSS overlap for more than 40% of their size, SQUARE evaluates the alignment and this 
information is stored in these tables. 

CCTEVAL_xx: these tables bring back together some MSS features to 
automatically assess their biological relevance. Parameters like the occurrence (the 
fraction of chains within the cluster that have the MSS occupied), the tendency of the 
chemical heterogeneity of the bound ligands compounds to occupy conserved sites in the 
PDB, and the absolute and relative residues conservation are taken into account. 
 

FireDB is publicly accessible and users can browse the available data using a web 
interface. They can search for a specific PDB chain, Uniprot ID or for a keyword contained 
in the proteins descriptions. The output of the query is shown in figure 3. The entire 
MySQL database is also available for download. 
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Figure 3 Web interface output for the chain C of the 1tco PDB code (Peptidyl-prolyl cis-trans 
isomerase FKBP1A). In the header information extracted from Uniprot, EC numbers and GO terms 
is included and linked to its source. In the middle section the entire protein sequence aligned to the 
cluster master sequence is shown. SQUARE conservation values are reported as colors (darker 
blue, higher conservation) and all the cluster master sequence catalytic sites (MSC) and binding 
sites (MSS) are listed, one per line. For the MSCs, the information support in the Catalytic Site 
Atlas is shown (PSIBLAST/Literature), while the MSS are accompanied by information on the 
number of evolutively related sites (marked as “E=”), the percentage ligand occupancy of the 
cluster binding site and a linked list of bound compounds information. Clicking on the EXPAND or 
MORE links gives access to the single sites collapsed to generate the MSSs or MSCs (shown in 
the bottom section) 
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3.8 firestar	
 
firestar132 was developed as an automatic system for the transference of functional 

information from FireDB. The input is an amino acid sequence; a PSI-BLAST analysis is 
launched to detect near and remote homology with FireDB’s Master Sequences (MS). 
Pairwise alignments between the target sequence and the FireDB templates are extracted 
and every aligned amino acid is assigned a conservation score from SQUARE (section 
3.6.1). The results are presented to the user as shown in figure 4. 

 
 

 
Figure 4 Output of the first version firestar for a pyruvate kinase (PDB: 1au2) showing alignments 
for two FireDB template clusters, 4fkwA and 4eojC. In the header (white background) information 
from the PSI-BLAST alignment. Below that, the pairwise alignment between the query and 
consensus MSS sequence. Finally, below the alignment, the SQUARE scores (the color code 
shows the conservation: the darker the blue, the higher is the conservation). There is a line for 
every binding site annotated in FireDB. On the left the evolutive related sites (E=), the percentage 
of the members of the cluster having the site occupied (where the font color represents the site 
score: red is 1, yellow is 2 and green is 3) and the compounds found. Annotated binding residues 
are reported with their relative SQUARE score for each binding site line. 
 
 

The first version of firestar was designed to help manual annotators, automating 
the work of searching for PDB homologs with functional information, generating 
alignments for each one and evaluating conservation of key residues.	
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4.1 Compound	Annotation	
 

Ligands are fundamental to the construction of FireDB database, since binding 
sites composition is determined by the spatial proximity of the nearest amino acids (based 
on an established cut-off. See section 3.7, Materials and Methods). But the database 
stored almost no additional information about these molecules, except for the structural 
and chemical features contained in the mmCIF libraries. Ligand-associated annotation is 
useful for a number of reasons. For FireDB the most interesting are functional 
characterization of a protein (misidentification of the natural ligand of the protein can lead 
to incorrect predictions) and the assessment of biological relevance of a binding site. 
Further annotation is also interesting for purposes that go beyond the main scope of the 
database. In this section we describe how FireDB ligands have been classified. 
 

4.1.1 The	biological	relevance	of	compound	
 

Biologically relevant ligands are defined here as the natural binding partners of a 
protein, important to its function. The PDB contains a diverse range of bound ligands, and 
the vast majority of them are not the natural ligands. As mentioned before, a primary raw 
classification, in many cases not even sufficient to guess their chemical nature, can be 
found in the mmCIF libraries (table 2). 
 

Class Description Members 
ATOMN Nucleotides and products 548 
ATOMP Amino acids and products 1,086 
ATOMS Saccharides and products 462 
HETAC Co-enzymes 31 
HETAD Drugs 226 
HETAI Ions 117 

HETAIN Substrates, cofactors, inhibitors 
Non canonical compounds 13,885 

HETAS Solvents 5 
HETIC Ions with coordinated bonds 38 

? Undefined 263 
 Total 16,661 

 
Table 2 Class name and descriptors for PDB compounds with their absolute frequencies extracted 
from the FireDB, version of the 22nd of August 2013.  
 

Although some class names, such as co-enzymes, suggest possible biological 
relevance of their members, it is not possible to establish a direct association. This makes 
mmCIF classification useless for our purposes. 

The first version of FireDB assessed biological relevance indirectly: a ligand is 
likely to be biologically relevant if it is frequently found occupying conserved binding sites 
(more details in section 4.2). While this simple rule works well for highly represented 
natural ligands like ATP or FAD, which often occupy conserved sites (in 81% and 94% of 
the cases, respectively), it fails for others. One good example is analogs, molecules used 
to “freeze” the protein in a certain state for crystallographic purposes: they are often found 
in biologically relevant sites (but not binding all the biological relevant residues) and might 
be mistaken for biological compounds. A further problem is that certain protein families in 
the PDB are under-represented and biological ligands that are limited to these families will 
be less likely to be classified correctly. 

In order to deal with these limitations, we decided to carry out an extensive manual 
re-annotation of the PDB compounds. We first established a strict criterion for a chemical 
compound to be tagged as biological relevant (here named COGNATE):  
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In FireDB a ligand is tagged as COGNATE if it appears to be the real natural-binding 
partner in PDB structures (more than 80% of them) and it is important to the function. 

 
 
We used as starting point the automatic compound classification as generated by 

the first version of FireDB, and we carried out a laborious manual validation of the 
biological importance of each ligand in the list. After this step, we started the re-annotation 
of compounds originally tagged as NON COGNATE (more than 95%), according to their 
ascending occurrence in the PDB database, since lower occurrence allows a faster 
assessment and probably hides novel biologically relevant compounds. 

So far 664 of the 16.661 compounds in FireDB (22nd of August 2013 version) have 
been annotated as COGNATE (approximately of 40% curated ligands).  The annotation is 
obviously a continuous process that goes hand in hand with the growth of the PDB 
database since new compounds are always added and compounds that may have been 
crystallised as NON COGNATE can later crystallise with their natural biological partners. 
We developed a strategy to spot new potential COGNATE ligand candidates to be 
checked, that will be discussed in section 4.1.6. 

The complete set of manually curated COGNATE ligands constitutes, to the best 
of our knowledge, the largest and most reliable list of annotated biologically relevant 
molecules in the PDB. The complete collection of FireDB annotated compounds is freely 
available at firedb.bioinfo.cnio.es/Php/biologicalreference/index.html, where it can be 
searched via web or downloaded as plain text. 
 

4.1.2 Ambiguous	compounds	
 
During the curation process, we also found a number of interesting cases where a 

molecule was present as the natural partner in some template structures, while it was 
non-cognate in others. Sucrose (PDB code: SUC) can serve as a representative case 
(see figure 5).  

 

 
 
Figure 5 A) Sucrose molecule bound to the catalytic site of the A domain of a Lactobacillus reuteri 
glucansucrase (PDB 3HZ3). B) Sucrose bound to a superficial cleft of a tRNA-splicing ligase RtcB. 
In both figures sucrose is represented in red spheres, while the protein chains in cartoon, blue 
color. Residues within the 4 Angstroms distance from the sucrose are colored in yellow, stick 
representation. 
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Sucrose is a disaccharide, composed by glucose and fructose, commonly involved 
in reactions of the energy metabolism, and it is present in more than 190 PDB structures. 
For instance in one entry (PDB code 3HZ3) sucrose is complexed with a bacterial 
glucansucrase. Glucansucrases are large enzymes belonging to glycoside hydrolase 
family 70, which catalyze the cleavage of sucrose into fructose and glucose161, with the 
concomitant transfer of the glucose residue to a growing α-glucan polymer. In this protein 
family, sucrose is the main substrate of these enzymes, and consequently in FireDB the 
molecule should be labeled as COGNATE. In another structure (PDB code 4DWR) 
sucrose binds a 3′-phosphate RNA-splicing ligase. These proteins catalyze a GTP/Mn2+ 
dependent reaction that joins 2 RNA strand ends. In this case the PDB entry associated 
article8, explicitly cites sucrose as a buffer and a cryo-protectant and it should be tagged 
as NON-COGNATE. We estimated that sucrose should be tagged as COGNATE in 
almost 55% of the cases. 

We generated an additional class (“AMBIGUOUS”) to mark those natural 
compounds present in the PDB that often do not have a COGNATE role. This is a warning 
to FireDB users to further investigate the role of these compounds and the presence of 
this tag has some implications for the scoring of the predicted binding sites reliability, as 
illustrated in section 4.2.1. 56 compounds have been tagged as AMBIGUOUS. 

 

4.1.3 Metallic	compounds	
 

Metal elements from the periodic table are highly represented in PDB structures, 
so they constitute a relevant group inside FireDB. As charged ions or in their oxidized 
form, they often fulfill a biological role. For example zinc ions are fundamental for the 
stabilization of the fold of the zinc finger structural domain. Members of the DNase I like 
superfamily use the magnesium in the binding site to catalyze the cleavage of DNA 
filaments. The same proteins make use of two calcium cations to stabilize the enzyme 
structure. 

Metallic compounds share common features like reduced size, high conservation 
and a net charge162. To study the implications of these characteristics into binding site 
composition, we performed a global comparison of the metal binding sites tagged as 
biologically relevant in FireDB. A total of 15,542 metal binding sites were extracted, 
binding to a total of 52,050 amino acids. The global average per-site size is 4 amino acids, 
with a standard deviation of 1.12. In contrast non-metal binding sites have an average 
size of 13 residues, and a standard deviation of 7.15.  

We looked at the amino acid distribution differences of metal binding sites with the 
rest (figure 6). While the amino acid composition of non-metal binding sites is similar to 
the background distribution of the PDB, metal binding sites are clearly enriched in 4 
specific amino acids (cysteine, glutamate, histidine and aspartate). In fact, metal binding 
sites are depleted in all the rest of the amino acids except asparagine. 
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Figure 6 Relative frequencies for all natural amino acids: metal binding sites are in red and non-
metal in blue. The green columns represent the overall amino acid distribution in the PDB. Data 
calculated over the subset of binding sites considered as biologically relevant by FireDB. 

 

4.1.4 Metal	binding	site	conservation	
 
We also investigated the conservation of the amino acid composition in 

homologous metal-binding sites across FireDB.  
As an illustrative example of this evaluation we can look at the binding site homologs 
comparison for a MSS site annotated from a zinc finger cluster (representative PDB code 
1P47, figure 7). The same 4 residues are conserved in 94 of 102 templates (not all shown 
in the figure), even when the overall identity of the aligned sequence falls to below 25-
30%. Among sites with at least two homologs in the PDB, the amino acid composition is 
conserved in more than 75% metal binding sites. 

We created a new tag (“METAL_TAG”) to identify compounds that contain 
exclusively metal atoms (organometallic compounds have been excluded). We assigned 
this tag to 31 compounds in FireDB. The complete list is available to search or download 
at firedb.bioinfo.cnio.es/Php/biologicalreference/index.html. 

After considering the results obtained in the comparison, we decided to modify the 
building schema of FireDB by separating the collapsing of metal binding sites (section 3.7, 
Materials and Methods) from the rest. In part because overlap between metal and non-
metal binding sites is a frequent event (e.g: ATP and Mg2+ in ATPases) and in part due to 
their size: metal sites often “disappear” when they overlap with non-metal binding sites, 
and this event can mask their aforementioned features. Furthermore this allowed us to 
integrate a module that exploits the typical size and amino acid composition of metal 
binding sites into firestar to filter out possible false positive candidate sites, as it will be 
detailed in section 4.5.2. 
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Figure 7 Homologous site comparison for one of the zinc binding sites of 1P47 (first line). The first 
column shows the FireDB cluster names, the second the bound ligand while the third the 
percentage sequence identities between the cluster and the 1P47 master sequence. The 
conservation of each amino acid residues of the 1P47 master sequence versus its aligned 
homologs is represented using a color code: the darker the blue, the higher the conservation. 

 

4.1.5 Compound	cross-references	
 

Biologically (or potentially biological) relevant molecules are of high importance for 
the purposes of the database, though they represent just a small fraction of all compounds 
contained in the PDB (720 out of 16,661 compounds). The NON COGNATE group of 
molecules in FireDB is large and heterogeneous: it contains solvents, cryoprotectants and 
reagent molecules that are part of the crystallization solutions and that have little or no 
interest for FireDB purposes. But there are other classes such as analogs, antagonists 
and inhibitors that are nonetheless biologically interesting. 

Annotation of these compounds can be useful for two main reasons. Firstly binding 
information extracted from these sites can still be informative, but the user has to be 
aware that the native site composition could be different, since these molecules are not 
the biological partners of the proteins they are in contact with. Second, information about 
the activity of these non-natural compounds may also be interesting for further studies. 

We decided to retrieve information from 8 chemical and biological databases, 
bearing in mind three basic priorities: 

 
• Availability: the data had to be freely available and the cross matching should be 

fully automatable; 
• Coverage: the goal is to map information to as many PDB compounds as possible; 
• Focus: we were interested in information relating to bioactivity but also in the 

biological relevance in order to expand the annotation of COGNATE ligands. 
 
Three databases (KEGG compound, MetaCyc and ChEBI) were selected because they 
are focused on biologically relevant compounds. The other five (KEGG drug, DrugBank, 
ChEMBL, PubChem and PharmGKB) are large databases centered on bioactive 
molecules. The specific features of each one are illustrated in section 3.4.3, Materials and 
Methods. 
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4.1.6 Database	mapping	
 

We initially made use of the 1D molecular descriptors (rule-based strings that 
represent 3D molecules using plain text) generated by the PDB consortium. Isomeric 
SMILES and InChi codes (section 3.3, Materials and Methods) were directly mapped onto 
the PubChem database. Despite the huge size difference (PubChem contains more than 
91 million compounds entries), we retrieved relatively few PDB hits (~20%). This result 
clearly showed that there were differences in the representation code used, so we 
decided to standardize the descriptors using OpenBabel, an open-source chemistry 
Toolbox. Although the final coverage increased to 30%, this was still a small fraction of the 
compounds present in the PDB. 

Finally we decided to make use of pre-calculated mappings provided by the 
databases themselves. All databases we chose have at least one correspondence with 
the others, so we created a database specific vector for every compound. After that, we 
compared the vectors to find possible disagreements in ID associations and we manually 
resolved discrepancies.  

We found cases where different IDs from the same database were associated to 
the same PDB ID, as can happen for different stereoisomers of the same molecule. The 
disambiguation was carried out by manual revision of the stereochemistry. For some 
databases we found novel PDB associations, using indirect information from a third 
database. We found 15 new correspondences for KEGG database and 70 for PharmGKB. 
The total match with PDB ligands and the overlap with the COGNATE/AMBIGUOUS list, 
as well as overlaps between databases are shown in table 3: 

 
 PubChem KEGG 

compound 
KEGG 
drug ChEMBL ChEBI DrugBank MetaCyc PharmGKB COGNATE & 

AMBIGUOUS 
PubChem 15576         

KEGG 
compound 1961 1962        
KEGG drug 665 443 665       

ChEMBL 6159 1283 621 6200      
ChEBI 2165 1427 461 1330 2172     

DrugBank 5257 1126 507 2658 1195 5305    
MetaCyc 730 477 134 429 459 337 730   

PharmGKB 362 293 311 342 314 359 71 362  
COGNATE & 
AMBIGUOUS 673 431 106 285 409 395 146 63 720 

 
Table 3 Total number of PDB compounds mapped onto the eight different databases (shown in 
blue) and the overlap between databases. The overlap with the subset of 
COGNATE/AMBUIGUOUS FireDB ligands is also shown. Concurrence between compounds 
tagged as biologically relevant in FireDB and compounds in databases of mainly natural occurring 
molecules are highlighted in green. 

	
In total we were able to map 15,658 PDB compounds to at least one database, almost 
94% of the entire dataset. PubChem provided the best coverage (99.5% of the mapped 
compounds), while we retrieved the lowest number of correspondences from the 
pharmacological specialized database PharmGKB (2.3%).  

This mapping process allowed us to automatically generate a non-redundant list of 
PDB compounds mapping onto ChEBI, KEGG COMPOUND and MetaCyc. These three 
databases gather specific information about biologically relevant compounds, so in this 
way we created a priority list of 2,416 compounds for spotting new possible COGNATE 
compounds through manual curation. Furthermore this approach provides the basis for 
automatic selection of the candidates whenever the database is updated. 

All this information has been integrated in two new FireDB tables. 
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4.1.7 Bio-activity	annotations	
 
5 of the 8 selected databases provide short descriptions of the biological activity of 

the compounds. This information is useful to spot protein modulators, agonists, analogs 
and other different molecules. KEGG, ChEMBL, ChEBI and PubChem annotate structured 
phrases or tags that define a category. These are associated to multiple compounds. 
Drugbank provides extensive annotations about the specific pharmacology of the 
molecule, which is extracted from literature and from drug company indications. 

 
 PubChem KEGG 

DRUG ChEMBL ChEBI DrugBank COGNATE & 
AMBIGUOUS 

PubChem 1001 (6,4%)      
KEGG DRUG 407 608 (91,4%)     

ChEMBL 257 272 296 (4.8%)    
ChEBI 485 382 237 1119 (51,5%)   

DrugBank 348 351 264 323 506 (9,5%)  
COGNATE & 
AMBIGUOUS 119 91 15 245 75 720 

 
Table 4 Final count of annotated bioactive PDB compounds in drug oriented databases; and their 
mutual overlap. Blue boxes show the number of annotated bioactive compounds and in round 
brackets their ratio in comparison with all the chemicals retrieved for that particular database. 
Concurrence with biologically relevant compounds in FireDB is highlighted in the green boxes.  
 
PubChem              unique annotations -> 295 Freq. 
Compounds or agents that combine with an enzyme in such a manner as to prevent 
the normal substrate-enzyme combination and the catalytic reaction 165 

Substances that inhibit or prevent the proliferation of NEOPLASMS 81 
Substances that reduce the growth or reproduction of BACTERIA 70 
Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways 
they may act include preventing viral replication by inhibiting viral DNA polymerase; 
binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; 
inhibiting viral protein synthesis; or blocking late stages of virus assembly 

35 

KEGG DRUG        unique annotations -> 367  
Antineoplastic 54 
Antibacterial 34 
Antiviral 25 
Amino acid 16 
ChEMBL                unique annotations -> 198  
DNA inhibitor 18 
Bacterial 70S ribosome inhibitor 13 
Cyclooxygenase inhibitor 12 
Bacterial penicillin-binding protein inhibitor 11 
ChEBI                    unique annotations -> 525  
human metabolite 288 
Metabolite 198 
antineoplastic agent 104 
plant metabolite 84 

 
Table 5 Overview of the four most frequent bioactivity terms for PubChem, ChEMBL, ChEBI and 
KEGG DRUG. This information is extracted from these 4 databases and stored in FireDB. 
Drugbank is not included here since every annotation is unique.  
	

Table 4 details the coverage among databases with available information. In total 
1,824 unique compounds have been annotated, and the ratio between annotated/un-
annotated entries is almost 1:9. We retrieved this information when it was directly 
associated with our matched compound, but we also extracted and properly tagged 
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stereoisomer annotations, when available, in order to improve global coverage. ChEBI 
provides largest set of annotations (1,119 molecules). Table 5 shows the most frequent 
tags and descriptors retrieved from each consulted database. Drugbank is not included 
since every descriptor is unique. 

Additionally, we started a manual annotation process for PDB molecules with 
unique or no external database references, mining the structure-associated papers. We 
chose first compounds with low occurrence in the PDB, to speed up the information 
retrieval. We extracted a single description phrase for every recorded bioactivity (so one 
compound can be associated to more than one bioactivity), the organism where the effect 
was observed and the reference of the source from where we obtained the information 
(doi or PubMed id). So, for instance, we annotated compound 3SZ with “pyruvate kinase 
M2 (PKM2) activator”, “Homo sapiens” and “http://dx.doi.org/10.1038/nchembio.1060” 
respectively. So far, 326 additional molecules have been manually curated, raising the 
total annotated compound to 2,150. All this information has been integrated into FireDB.	

 

4.2 Binding	sites	biological	relevance	in	FireDB	
	

In the last years, PDB entries, FireDB master sequences (MS) and the related 
master sequence (consensus) binding sites (MSS) have been growing at a comparable 
pace (figure 8). In FireDB version August 22nd 2013, the number of total binding sites 
extracted from crystal structure coordinates is almost 500,000, these are finally collapsed 
into 116,514 MSS.   

 

 
 
Figure 8 Growth of FireDB Master Sequences (MS, in green) and Master Sequences binding 
Sites (MSS, in purple) in comparison with the PDB entries growth (in red) since FireDB was first 
released. 
 

These numbers illustrate how the growing number of structurally solved binding 
sites requires an automated protocol for relevance. For this reason first version of FireDB 
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provided an accurate protocol for dealing with this scenario; manual curation is still 
advisable for small scale analyses, for which FireDB provides a suitable reference 
annotation. The biological relevance of sites was evaluated automatically using various 
criteria (see table 6). 

 
Type Description 

Evolutive Relative binding site conservation (in comparison with the rest of the sequence) 
Evolutive Co-occurrence of the binding site in homologous PDB proteins 

Redundancy Percentage of times the site is occupied in the FireDB cluster 
Redundancy Tendency of the bound ligand to occupy conserved sites in the PDB 

Structural Mean size of the binding site for the bound ligand in the whole PDB 
 

Table 6 Criteria used for the evaluation of the biological relevance of binding sites in the first 
version of FireDB. 

 
One is based on the relative binding residues conservation respect to the rest: 

binding residues are positively selected and their conservation is usually higher compared 
with other amino acids in the same protein. 

Another one assumes that sites with many homologs in the PDB are more likely to 
be biologically relevant. The evaluation process looks at the number of hits found in the 
all-against-all PSI-BLAST analysis of the collapsed Master Sequence binding Sites 
(MSS).  

Another one is based on the hypothesis that unspecific interactions can arise by 
chance, but the probability of observing them in all the members of a FireDB cluster is 
low. 

The last two criteria focus on the ligand. If the compound usually binds conserved 
sites and the evaluated pocket size is comparable with the mean size for this specific 
ligand, the site is more likely to be biological relevant. 

The combination of the different parameters allows FireDB to classify binding sites 
in three levels of relevance: 

 
• Spurious or artifact sites: score 1 
• Putative relevant sites: score 2 
• Biologically relevant sites: score 3 

4.2.1 Improvements	in	biological	relevance	assessment	
 

We detected three different situations in which the previous automatic assessment 
returns incorrect classifications. Firstly when a new binding site is annotated, with few or 
no homologs, it is usually tagged as an artifact since the first and the second criteria 
cannot be considered. To understand the extent of this scenario, we have to bear in mind 
that in FireDB version August 22nd 2013 there were 51,618 binding sites with no homologs 
(44%). We faced the same situation when a novel cognate compound is crystallised with 
the protein. In FireDB 11,885 compounds (71%) appear in 2 or fewer sites, so misleading 
or no information is available for the last 2 criteria of table 6. Finally overrepresented 
clusters or small sites can be erroneously tagged as biologically relevant due to their 
overlap with many different sites. 

PDB binding site information (figure 8) is growing and in principle it should be 
possible to find one or more homologs for the majority of the biologically relevant 
annotated sites. Simple sequence overlap does not imply homology, since the function 
relies on binding residues. So the conservation of these positions over the different 
aligned homologs should be interpreted as a proof of biological relevance. 

We overhauled the previous classification and established new criteria to assess 
the sites, based on: 
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• Site size 
• Ligand biological relevance 
• Amino acid composition 
• Amino acid conservation in homologous sites.  

 
Following this protocol, we discarded a priori sites with a size smaller than 3, since they 
can give non-specific conservation signals. Then for every site we evaluated the 
information from aligned homologs stored in FireDB. Whereas before we were taking into 
account the raw total number, now we are selecting features considered relevant for the 
assessment: only alignments binding the same type of ligand (metal or non metal) and 
containing a COGNATE or AMBIGUOUS compound are valid. Alignment percentage 
identity is also evaluated: close homologs (more than 80% identity) are excluded and 
remote homologs have a higher weight. Finally we evaluate the single residue 
conservation, using SQUARE reliability scores. Those that pass a conserved residue cut-
off (site type and size dependent) are considered supporting. Finally a site is tagged as 
“RELEVANT” if it has more than 50% of supporting sites. 

When no homologs from the PDB are detected, we only take into account the 
biological relevance of the ligand: if a site contains a COGNATE compound(s) it is tagged 
as “NOVEL”. All the remaining sites are tagged as “NOT SUPPORTED”. 

For some binding sites (for instance metals) we have assigned specific constraints 
that need to be satisfied, since their binding sites features have been already 
characterized. So far we introduced ligand-based rules for zinc and for some calcium 
binding sites (EF-hand), after a literature review of binding site architecture for both 
metals163,164. Zinc binding sites have to contain cysteine, histidine or aspartic acid, while 
calcium sites have to contain asparagine, serine, threonine, aspartic or glutamic acid. In 
both cases these amino acids must represent more than 75% of the site. 

As an example of how these two different strategies perform, we present here the 
homologous site comparison for the sodium binding MSS of the cluster 1b57A (figure 9).  

 

  
Figure 9 Representation of NA (sodium) binding MSS site homologues -FireDB cluster 1b57A-. In 
the third column the percentage of identity between the two MS is reported, and after this the 
aligned sites. Conservation is represented by the background color: the darker the blue, the more 
conserved. The fifth column shows the original size of the sites, the sixth the mean SQUARE score 
of the overlapped residues and the final column the compounds bound in the cluster. Note that not 
all homologous sites bind sodium. 
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This cluster contains 3 chains, 2 from PDB 1B57 and one from PDB 1ZEN. Both 
are class II Fructose-Biphosphate aldolases, an enzyme that catalyzes the aldol 
condensation of a ketose and an aldose to form fructose 1,6-bisphosphate. The enzyme is 
also able to catalyze the reverse reaction. In the their work9, the authors explain that two 
ions (present in the crystal) are required in the binding site, a catalytic zinc and a sodium; 
both of them are needed to activate the enzyme. The Na2+ coordinates the substrate 
inside the binding site, stabilizing the intermediate states. 

The sodium binding site was classified as an artifact in FireDB according to the 
previous classification algorithm (score number 1). Homologous sites analysis shows that 
it overlaps with other sodium binding pockets. Looking at the sequence conservation, we 
observe how the amino acid positions that bind sodium are almost entirely conserved 
even in remote homologues (22% and 23% identity). New classification schema tags this 
site as “RELEVANT”. 

All sites have been re-evaluated with our new protocol and the overlap between 
the previous and new biologically relevant dataset is presented in figure 10: 
 

	
 

Figure 10 Total number of the initial and new biological relevance evaluation of whole FireDB 
binding site dataset. Size of the overlaps is also reported. 
 

RELEVANT and NOVEL tagged sites overlap as expected with score 2 and 3 
(respectively putative biological and biologically relevant sites). But they also rescue other 
sites, previously tagged as artifact: 6,037 new sites are now classified as RELEVANT and 
1,923 as NOVEL. On the other hand, there are 13,056 and 7,481 sites tagged with scores 
3 or 2 respectively that are now classified as NOT SUPPORTED. 

We manually inspected some of those cases where the two protocols do not 
agree, in order to understand the reasons behind discrepancy. For those sites newly 
classified as “RELEVANT” with a previous score of 1, the new method was able to use to 
evolutionary information to correctly detect biological relevance in many sites, as we 
previously illustrated (figure 9). Additionally we spotted complex cases that are still 
problematic: for example small sites that overlap with larger biologically relevant binding 
sites, and that would require manual validation to understand whether they really are 
biological significant. 

We also looked at sites that had obtained a score of 3 under the old method but 
that the new method classified as “NOT SUPPORTED” (orange in the figure 10). The new 
protocol discards more than 55% of these MSSs because of their size (smaller than 3 
residues). Among the rest, 9% contains NON COGNATE tagged compound(s) and have 
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no homologues; the remaining 41% have few supporting alignments, but may be 
biologically interesting. 

To illustrate the differences in results between these two protocols we present 
here two particular cases. The first is a case where initial classification system works 
better, the heme binding site of leghaemoglobin of yellow lupin (PDB code: 1GDI). Figure 
11 shows how the conservation of the site is detectable, but it fades in homologues below 
40% identity (probably due to the size of the site) even though every MSS is binding 
exactly the same COGNATE compound. This site does not pass the filter due to the 
residue conservation and coverage cut-offs, new algorithm classifies it as NOT 
SUPPORTED. 

 
 

 
 
 
Figure 11 Representation of HEM (protoporphyrin IX containing iron) binding MSS site homologs 
-FireDB cluster 1gdiA-. Conservation is represented by the background color: the darker the blue, 
the more conserved. 
 
 
The second shows a site where new classification works better, the NAG binding site of 
receptor that regulates, in response to brassinosteroid binding, a signaling cascade 
involved in plant development (PDB code 3RGZ). NAG (N-acetyl-D-glucosamine) is a 
monosaccharide, highly represented in the PDB (more than 5,600 entries) since it is often 
included in crystallization mix, such as in this case. In figure 12 we can observe how the 
conservation of the site is poor through different homologues (all NAG-binding): for this 
reason new protocol correctly classifies it as NOT SUPPORTED. Redundancy of sites 
and high NAG ligand representation in PDB causes the assignation of score 3, here and 
in another 2,191 NAG-binding MSSs. The new algorithm assigns the “NOT SUPPORTED” 
tag to 2,134 of them (more than 97%). 
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Figure 12 Representation of NAG (N-acetyl-D-glucosamine) binding MSS site homologues -
FireDB cluster 3rgzA-. Conservation is represented by the background color: the darker the blue, 
the more conserved. 

 
The results obtained suggest that new method complements, more than replaces, 

the previous algorithm definition of biological relevance, since both are able to cover 
specific cases where the other fails. The combination of both of them allows to reach a 
total number of 52,915 sites assessed (non redundant sum of all the sites with score 
higher than 1 or non tagged as “NOT SUPPORTED”), a 7% more compared with the 
previous classification alone. 

4.3 Final	database	schema	and	public	accessibility	
 

Along with the addition of new information and tables, we made several changes 
to simplify the old schema (see appendix figure 1 and 2). All tables related to site 
calculation cut-offs other than 0.5 Å (1 and 1.5 Å + Van der Waals radii, represented 
respectively with the suffix 40 and 45) have been removed, since in our experience the 
more restrictive distance cut-off is the most informative. BINDSITE tables have also been 
removed, because overlapping site compositions (two molecules in the same pocket) are 
no longer allowed to merge in the same MSS. The new compounds chemical information 
we have generated has also been made available through a tab alongside the FireDB and 
firestar web pages, at http://firedb.bioinfo.cnio.es/ Php/ligand/index.html, making it easily 
accessible to a range of users. A snapshot of the new ligand information page is shown in 
figure 13: 
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Figure 13 Web page output to browse the chemical information stored for the Melagatran (MEL) 
ligand. A) Users can access the data using the PDB three letter code for the ligand or searching for 
a string present in the common name or synonym. B) Results of the string search generate a pop-
up window to help users select relevant compounds. C) Visualization of the information: pull-down 
menus are generated that contain general information, external references, manual annotations (if 
any) and a binding site summary.  

  
FireDB is highly accessed through its web page at 

http://firedb.bioinfo.cnio.es/Php/FireDB.php and according to CNIO official statistics in the 
last six months of 2013 was visited daily almost 50 times. In order to make FireDB easier 
to access, we implemented a RESTful service with which it is possible to connect directly 
to the database and to retrieve the relevant information in XML format. A model 
connection script is provided on the web page and all the options available are clearly 
explained in the code as well in the help pages. The current MySQL database and all the 
previous stable releases are also available at http://firedb.bioinfo.cnio.es/repository/. 
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4.4 Consensus	Predictions	
	

firestar is a method for the automatic transference of the functionally important 
residues in FireDB: both tools together provide a useful framework for assisting functional 
annotation by human experts.  

The output of the original firestar web server was a single web page (figure 4, 
Materials and Methods) where all the aligned candidate binding sites (and related ligands) 
were presented along with the local conservation score, as calculated by SQUARE. 
However the increasing number of binding sites in the PDB and the high proportion of 
non-biologically relevant sites made this representation difficult to use for all but a handful 
of experts. For this reason we developed a new version of firestar, both for the web server 
and for the stand-alone algorithm that was able to evaluate and merge results from many 
templates into a single readable output. 

To generate consensus predictions from the many homologous binding sites 
detected by firestar, a rule-based module was introduced. This was applied directly to the 
results of the first version of firestar, with the aim of automatizing the annotation protocol 
that would be followed by a human expert annotator. This algorithm:   

  
 

• Evaluates the source information to discard non biologically relevant information; 
• Evaluates every template and its binding information, selecting the conserved residues 

that are more likely to be functionally important in the target protein; 
• Merges predictions from the separate MSS into a final consensus prediction(s); 
 

4.4.1 Candidate	search	and	filtering	
 

In the initial version of firestar the first step to generate a prediction was a PSI-
BLAST-based sequence similarity search of the target protein sequence against an ad-
hoc created database containing Master Sequences (MS) stored in FireDB. firestar then 
selected just those containing a Master Sequence Site (MSS in section 3.7, Material an 
Methods) from among the aligned MS templates found in the first step. In the first output 
version, at this point the alignments were evaluated with SQUARE and all the results were 
presented in a unique page (figure 4, Materials and Methods). 

The new version of firestar generates alignments with both PSI-BLAST and 
HHsearch (see section 4.5.1) and produces a consensus prediction starting from the 
MSS. firestar evaluate the candidate MSS detected by both search algorithms and 
discards non-relevant information: in figure 14 we illustrate the filtering process step by 
step. 

For this, firestar relies on the assessment of biological relevance performed by 
FireDB (see section 4.2). In particular, firestar considers reliable only the information that 
comes from MSS tagged as biologically relevant, putative or novel (~45% of all the MSSs 
stored in FireDB version of 22nd August 2013). For catalytic site annotations, only human 
curated sites of CSA are considered. 

Selected alignments are analyzed by SQUARE to assess the individual binding 
residue conservation. Using residue conservation scores, we: 

 
• Exclude poorly conserved candidate sites: mean conservation score for the 

site has to be higher than the mean conservation score of the whole alignment.  
• Exclude poorly conserved individual binding residues within each candidate 

site, discarding those below a pre-established SQUARE cut-off. 
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Finally, in order to assess its integrity, we compare the resulting candidate site size with 
its original size, as stored in FireDB. In this way we discard degenerated binding sites or 
isolated conserved residues, whose higher conservation might have arisen for reasons 
other than ligand-binding (e.g: structurally important residues). Candidate sites that are 
smaller than a manually established threshold (variable depending on the size of the 
original FireDB site) are discarded. 
 

 
 

Figure 14 firestar pipeline to filter information extracted from FireDB. A PSI-BLAST sequence 
analysis with the query protein (represented by red line) is launched against Master Sequences 
(MSs) stored in FireDB. In panel 1 on the left we can see alignments (T1 to T6) containing 
candidate binding residues (yellow boxes) from the homologous Master Sequences Sites (MSSs, 
black lines). The first filter step is based on database biological relevance score: only predictions 
coming from sites tagged as reliable pass. After that SQUARE calculates conservation at the 
residue level for binding sites and other aligned residues (panel 2, here green squares correspond 
to conserved positions, red to poorly conserved) and sites that have low conservation scores 
compared with the rest of the alignment are filtered out in a second filter step. Finally those 
predictions where the conserved candidate site is much smaller than the original (=< than 50%, for 
example T4 in the figure) are also excluded. 
  
 

4.4.2 Candidate	merge	and	generation	of	a	consensus	prediction	
 
Once selected, candidate sites are merged to generate the final prediction (see 

figure 15). 
 



|	RESULTS	-	firestar	

56	

 
 
Figure 15 Panel 3 corresponds to panel 3 in the previous figure. All the information evaluated as 
reliable through the different filters is now collapsed to consensus prediction(s). The different 
candidate sites (black lines are the templates, green square are conserved candidate residues) are 
divided according to the chemical nature of the annotated bound compound. Then relative overlap 
is calculated (panel 4, percentages in brackets). In Panel 5 sites that present an overlap of 60% or 
higher are merged, and the predicted residues mapped onto the query protein (red lines). The 
different predicted candidate MSS are also grouped as pockets (P1, P2) if their overlap suggests 
that they could share the same 3D position in the protein (33% or higher).  
 

In the first step of the merge firestar groups all the candidate sites depending on 
the type or the chemical nature of the bound compounds. So metal binding, non-metal 
binding or catalytic sites can only be merged with other sites of the same type. 

Then the program evaluates overlap between individual predictions, marks those 
that will be merged and generates one (or more) final consensus predictions. The final 
amino acid composition of each predicted site is obtained from the combined composition 
of all sites that overlap over at least 60% of their respective size; the predicted ligand is 
the most frequent COGNATE (if any) ligand found in the templates. The output of our 
pipeline is now a more simple and informative representation of the predicted binding sites 
and this drastically improves the usability of the method. 
 

4.4.3 New	output	web	page	
	

A new summary output web page has been generated to present the consensus 
predictions (see figure 16).  
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Figure 16 Summary output for 3NO3, chain A. A) Top: target sequence is reported with per 
position conservation scores (the darker the blue, the higher the conservation); catalytic and 
binding residues are highlighted respectively in green and yellow in separate lines. B) The details 
for each prediction are shown in text format. Additional information is accessible by clicking on 
related links (highlighted here by red circles). Through the links in the light-blue box it is possible to 
visualize the alignments generated in detail (original single-page firestar output). C) Relative 
frequencies of the predicted residues across the collapsed candidate sites can be highlighted. D) 
The “generate a model” yellow button allow the user to generate an automatic model of the site in 
PDB format. 

 
The entire target sequence and its per-residue SQUARE conservation score is 

presented at the top of the page. Below the sequence, on different lines, predicted ligand 
binding and catalytic site residues are reported with colored residues. To make the 
visualization clearer (especially for proteins with multiple predictions) predictions that 
overlap over more than 40% of the alignment are represented on the same line, since 
they should be located in the same pocket on the protein. Predictions are reported 
separately at the bottom if the page, ranked by a reliability score. The prediction list 
contains fundamental summary information: amino acid composition, predicted ligand and 
site biological relevance and pharmacological annotations (if any) for the ligands used. All 
these data can be browsed in details through available links; it is possible to check the 
original detailed output (figure 4, Material and Methods) that includes all the binding site 
alignments, and also to retrieve extended information for every prediction and ligand, as 
shown in figure 17. Finally it is possible to highlight individual predictions next to the 
sequence and to generate and download a PDB file with predicted residues highlighted. 
As a whole, the output web site provides an intuitive representation of the new consensus 
predictions generated by firestar. 
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Figure 17 Extended ligand information page for the firestar prediction for PDB structure 1TCO. 
For every predicted catalytic site the templates from which the catalytic site was sourced are 
available through external links. For predicted binding sites the complete list of template binding 
ligands from templates in the clustered PDBs, together with available annotations from FireDB, is 
shown. Whenever pharmacological information exists for a compound, this is also retrieved from 
FireDB. 
 

4.4.4 Site	reliability	score	
 
Initially, predictions were ranked by the mean SQUARE conservation score of the 

binding site residues, since higher conservation correlates with higher reliability. This is a 
reasonable criterion but it is site-size dependent, since smaller sites (e.g. metal-binding 
sites) usually have better mean conservation as a result of higher pre-residue selective 
pressure. 

In order to get a more refined evaluation of the reliability of the predictions, we 
created a new composite score taking into account 4 different parameters that from our 
experience are important to evaluate a predicted binding site: 

 
1. Overall site conservation, in terms of mean SQUARE score of the binding 

residues; 
2. Coverage of predicted amino acids in comparison with the annotated size 

of the ligand binding site in FireDB; 
3. The percentage of identity of the closest template homologue in which the 

binding site is found; 
4. The fraction of the total aligned templates included in the prediction.  

 
In all criteria higher values correlate with higher reliability. The final score is the mean of 
these 4 normalized parameters. A higher weight is given to the conservation score since it 
is our main discriminating criteria; it counts double in the calculation of the mean. 

As an illustrative example of how this composite score works we can look at 
firestar predictions for a putative glycerophosphodiester phosphodiesterase with a known 
structure (PDB code 3NO3) from Parabacteroides distasonis (figure 18). This enzyme 
catalyzes the hydrolysis of the 3′–5′ phosphodiester bond of glycero-3-
phosphoethanolamine into glycerol-3-phosphate (G3P) and ethanolamine. A metal cation 
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is required at the binding site to coordinate two residues involved in the binding and 
catalysis of the reaction, histidine 74 and aspartate 61. firestar reports 3 binding sites: for 
the catalytic cation (MG), for the substrate binding site and for a second metal binding site 
partially overlapping the first one. The conservation score is high for both metal binding 
site predictions. However, the other three parameters in the composite score distinguish 
between the two predictions. The catalytic magnesium binding site has perfect coverage, 
the source templates include close homologs and the site is present in the majority of the 
extracted alignments. The second metal binding site is found only in distant homologues 
and has few supporting alignments, so it has a poor overall reliability score. 
 

 
 
Figure 18 snapshot of firestar prediction section output for glycerophosphodiester 
phosphodiesterase (PDB code 3NO3). The three sites are reported with the predicted ligands. The 
reliability scores are shown in green boxes all the components of the score are listed between 
square brackets: COV = coverage of predicted amino acids compared to annotated binding site 
size; SITE = mean site SQUARE score; Ident = the percentage of identity of the closest template 
homologue with site; Ali = percentage of aligned templates with homologous site. Red boxes 
highlight the conservation score, which was used in earlier versions of firestar as the reliability 
score 

 

4.5 	Improvements	in	firestar	algorithm		
	

The availability of an experimentally validated test dataset is fundamental for the 
development of prediction method, in order to get a real evaluation of the performance. 
Since our source information is the PDB, ideally we should test our algorithm against 
ligand binding structures not included in the PDB. The Critical Assessment of techniques 
for protein Structure Prediction (CASP) provides structures not yet in the PDB and has 
proved to be the perfect testing ground for firestar. CASP is a biennial experiment 
supported by the structural and computational biology community with the goal of blindly 
testing the performances of state-of-the-art 3D structure prediction methods. Over 
approximately three months, participants are sent new protein sequence targets every day 
and have to submit a predicted structure within a given timeframe. The chosen proteins 
have already been resolved but not yet released publically. CASP started in 1994 and it is 
still active. Initially it concentrated solely on protein 3D structure prediction, but over these 
years it has included other protein feature categories. For example, “protein-protein 
interactions” was introduced in the second edition: this category finally leads to the 
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creation of a new independent experiment called CAPRI (Critical Assessment of 
Prediction of Interactions), now at its 39th round.  

Function prediction was introduced for the first time in 2004 (CASP6) in response 
to the increasing interest in the scientific community. Since function is a wide concept, a 
number of different features were accepted and evaluated in this edition, from GO 
annotations to 1D prediction for post-translational modifications. However exhaustive 
target evaluation was not possible for most proteins, since reliable information was not 
available for most of the targets, even several months after the end of the experiment. 

Our group participated as the evaluator of two editions of CASP, the seventh and 
the eighth. While the CASP7 edition focused mainly on GO terms and EC code 
predictions, the CASP8 evaluation was based entirely on the prediction of ligand binding 
sites. The chosen metric was the MCC score (see section 3.5, Materials and Methods), 
since it is able to deal with binary classifications when there is a large imbalance between 
the numbers of true positives and true negatives, as is the case in the ligand-binding 
category (binding residues are highly outnumbered by non-binding residues). The 
experience of the evaluation and the data collected during the assessment (see appendix 
tables 1 and 2) laid the foundations for the development of firestar. 

Over the CASP7 and CASP8 experiments, firestar was able to predict ligand-
binding sites for 46 out of 49 targets that were crystallised with biologically relevant 
ligands. During CASP8, even though firestar was not officially participating in the 
experiment, it generated predictions for all but one target and achieved a mean MCC 
score of 0.761 over the 26 predicted targets. It predicted a total of 353 residues: 237 were 
correctly predicted (TP, 72%), 93 were false positive (FP, 28%), and 53 confirmed binding 
residues were missed (FN). There were 23 additional predicted residues that did not enter 
in any of these groups since the assessors had tagged them as neutral. These are 
residues that should bind a biological ligand, but the ligand was not present in the 
crystallographic structure. These residues did not count as TP or FP (if predicted) or FN or 
TN (if not predicted). Sensitivity and specificity were 80% and 67% respectively, 
suggesting that at the time firestar had a certain tendency to over-predict. Indeed, firestar 
was set to make predictions at a distance of 1.5 Å while the official distance used to define 
a ligand-binding residue was 0.5 Å. Most of false positive predictions were residues close 
to the binding site: of 108 false positives, 74 were within 2.5 Å of the bound ligand. firestar 
still had a better mean MCC score than all officially participating groups in CASP8, human 
or automatic predictors. 

In CASP9 firestar participated officially for the first time as server predictor. In the 
official assessment140, it ranked 2nd as automatic server and 3rd in the global ranking. 29 
targets were included in the evaluation, and this number should have provided statistical 
robustness to the results. Unfortunately, the selection of biologically relevant compounds 
to calculate the binding sites was controversial: in many targets (13) the ligand or ligands 
used were all non-biological. While in some cases at least the size of the crystallised and 
predicted compound was more or less comparable (eg: target T0609, where tartaric acid 
was assumed to be a good replacement for galactose), in other cases the difference was 
huge (eg: target T0622, where sulfate was taken to represent NAD). In addition there 
were a further 4 targets where a biological ligand was crystallised with a non-biological 
one and both were considered in the definition of the binding site and two targets that 
bound COGNATE/AMBIGUOUS metals to biologically relevant sites, but these metal 
ligands were present in the crystallization conditions and were not the biological binding 
partner (T0518 and T0635).  

Data and results collected from these experiments (with the exception of CASP9) 
have been fundamental for the development and the improvement of firestar presented in 
this work. 
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4.5.1 Introduction	of	HHsearch	sequence	search	method	
	
The main factors affecting firestar’s capability to detect a binding site depends on: 

 
• The presence of a homologous template in the source database, FireDB. 
• The ability to find this sequence homolog among the others. 
• The ability to generate a good sequence alignment between template and 

target. 
 
While the first point basically depends by the growth of the PDB database, the other two 
rely on the chosen search method. 

firestar since the beginning integrated PSI-BLAST as the search algorithm: PSI-
BLAST in firestar generates non-biased profiles for target sequences from a 70% non-
redundant version of the UniProtKB database (see section 3.4.2, Materials and Methods) 
and this is used to explore the FireDB sequence space. The PSI-BLAST output provides a 
ranked list of candidates and their respective alignments with the target.  

New generation sequence search methods, based on profile-profile comparisons, 
have a better sensitivity for distant homologues since they generate better 
alignments165,166. For this reason we decided to test a sequence search method based on 
profiles, HHsearch, since it was the best performing server for template-based predictions 
in the official CASP9 assessment68. HHsearch generates profiles from a sequence 
database, and these are used to search against a database of ad-hoc generated FireDB 
profiles. As test dataset we used the genes annotated by GENCODE (version 3C167) for 
chromosomes 21 and 22, a total of 798 genes. firestar using PSI-BLAST predicted 12.657 
ligand-binding residues, while using HHsearch it predicted 15.078 residues; the union of 
the two methods produced 17.027 non-redundant ligand binding residues, a 34% 
improvement on coverage over PSI-BLAST alone. The results showed that the HHsearch 
is able to predict 19% more residues than PSI-BLAST but also demonstrates that the two 
methods are complementary rather than overlapping. So we decided to integrate 
HHsearch as search method in addition to PSI-BLAST. 

In order to further evaluate the integration of both sequence search methods, we 
used the CASP8 dataset, where firestar results were obtained with PSI-BLAST as the only 
integrated search method. We ran the algorithm with three different combinations of 
search methods: PSI-BLAST only, HHsearch only and both methods combined. Since the 
FireDB database structure changed over the years and also because the version used 
during the CASP8 experiment was no longer available, we decided to use the most recent 
version. To exclude the use of information coming from target structures themselves and 
to limit the contribution of newly available close homologs, we put a maximum percentage 
of identities limitation to the templates, 35%. It has to be said that even using this 
restriction, new templates with a sequence identity lower than the established cut-off are 
present and firestar used them to generate predictions but, at the same time, we also 
discarded any previously existent template with higher sequence identity. 

We compared our results with those of the CASP8 experiment and observed that 
although the new firestar using PSI-BLAST and an updated database had a comparable 
number of true positive predictions to CASP8, it also had a noticeable increment in false 
positives (see figure 19). These results confirm that the introduction of HHsearch 
generated an additional set of templates, not completely overlapping with the ones 
generated by PSI-BLAST, and the two of them are complementary methods. 

These extra templates were important to increase firestar sensitivity, but also 
came with new false positives. The absolute number of false positive is higher if we 
compare each method with the CASP8 results, and even more when they are combined. 
We found that the greatest increase of predicted false positive residues was for sites 
where an adenine phosphate nucleotide compound was bound (“ADP only” column). For 
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other types of binding site, the numbers of false positives actually went down (see figure 
19). 

  
 

	
 

Figure 19 False positive count of firestar predictions for the CASP8 experiment dataset. Blue bars 
refer to the original CASP8 predictions, while the other colors refer to more recent predictions using 
updated search databases and different sequence search methods. Predictions are considered all 
together (26 targets) and by separating adenine phosphate nucleotides sites (4) from the others 
(22). 
 

4.5.2 Metal	Binding	Sites	
 
The number of annotated metal binding sites inside FireDB is far higher than any 

other type: zinc (ZN) and magnesium (MG) are the most common compounds in FireDB, 
with respectively 23,403 and 18,343 annotated binding sites. In contrast the most 
common cofactors, the protoporphyrin IX containing iron (HEM) or flavin-adenin 
dinucleotide (FAD), total 7,733 and 4,033 binding sites respectively. This high frequency 
comes with a high level of noise: looking at the automatic biological relevance 
assessment, 56% of them are tagged as biologically relevant. Reduced size, net charge 
and the recurrent presence in crystallization mixes are the main causes of this high rate of 
non-specific associations. Bearing in mind the results obtained from the analysis 
composition of metal binding sites (see section 4.1.3), we went forward and searched the 
literature in order to establish metal-specific rules able to determine unequivocally whether 
each candidate prediction has higher probabilities to be biologically important. 

The most frequent metal in PDB is zinc; it appears in many structures, frequently 
as a divalent cation. In some proteins it holds a catalytic role168, stabilizing negative 
charges (carboxypeptidases or dehydrogenases), activating the reactive species (alkaline 
phosphatases) or coordinating active groups (cytidine deaminase). In other proteins zinc 
has a structural role169, such as in the zinc finger domains in transcription factors or in 
RING finger domains, which have a key role in the interaction of the protein with other 
macromolecules in the cell. The different architecture of the zinc binding sites has been 
studied for specific proteins and for specific families163. We extrapolated from all this 
information a pattern in terms of size and amino acid composition that distinguishes 
biologically relevant zinc binding sites from other zinc binding sites: 
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• Amino acid signature: cysteine, histidine, aspartic and glutamic acid; 
• Constraint: at least two of the previous amino acids has to be present; 
• Size: from 2 to 5 residues 

 
These features have been transformed in a filter applied in firestar pipeline, after the 
exclusion of poorly conserved residues step (shown in section 4.4.1): if a candidate zinc 
binding site does not fulfill these characteristics, it is automatically filtered out. 

Apart from zinc, we also extrapolated a biological relevance pattern for the second 
most frequent metal, magnesium, from the literature and FireDB: 

 
• Amino acid signature: aspartic and glutamic acid; 
• Constraint: at least one of the previous amino acids has to be present; 
• Size: minimum 3 residues; 
 
Furthermore, we started the same with calcium, based on a published study164: 
 
• Amino acid signature: aspartic and glutamic acid, asparagine and serine; 
• Size: minimum 2 residues; 

 
It is important to keep in mind that this pattern applies to EF-hand domains, since non EF-
hands calcium binding proteins are more variable; further studies and different patterns 
will be probably required to establish a complete prediction filter for calcium. These filters 
could be extended in the future to the others metals in FireDB based on available 
information on the binding architecture of these compounds. 

 

4.5.3 Non	Metal	Binding	Sites	
 
The sites grouped under the tag of “non-metal binding” are much more variable 

than metal binding sites. The number of different molecules bound by PDB structures in 
non-metal binding sites in FireDB is high and the size of these ligands runs from 
molecules with few atoms (for example, Oxygen - O2) to molecules like LHI 
(C93H155N7O23P2S), a lipid II analogue made up of over 200 atoms. This heterogeneity and 
the consequent variability of the binding sites make it difficult to elaborate ligand specific 
rules. 

An in depth analysis of our CASP8 centered experiment showed us that not all the 
candidate residues in binding sites had the same importance. There is a core of important 
residues that are usually well conserved (for example, the P-loop for ATP or GTP binding 
sites), while other binding residues may be much more variable. 

The master Sequence binding site (MSS) of the aligned ATP binding site residues 
from FireDB cluster 1u5qA can serve as an example (figure 20). This cluster groups TAO2 
serine-threonine mitogen-activated protein 3 kinase domains that phosphorylate the MAP 
2 kinases MEK3 and MEK6 twice, activating them. The phosphate binding loop, the purine 
base binding loop and the third phosphate group binding loop are very well conserved 
across the different sites in the MSS. The non-conserved amino acids in the MSS lie 
outside these three loops and may be specific to this kinase subfamily. Another possibility 
is that they are required for the binding of Staurosporine (STU), an unselective inhibitor of 
protein kinases that binds competitively in the ATP binding pocket, since its binding 
residues are collapsed with the ATP binding residues to form the 1u5qA MSS. 
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Figure 20 Aligned residues from sites collapsed into the FireDB MSS for the ATP binding site of 
1u5q. These residues in these sites are evolutively related and conservation at the different 
positions (calculated using SQUARE) is represented using a color code: the darker the blue, the 
higher the conservation. In the alignments three conserved blocks of residues (the phosphate 
binding loop, the purine base binding loop and the third phosphate group binding loop) are clearly 
recognizable (inside the green boxes) even in remote homologues, while conservation among 
residues outside the highlighted boxes is harder to detect.  
 

We concluded that residues identified in the candidate alignment, should be 
evaluated with different conservation threshold. Residues aligning with the core part 
should be evaluated with a more permissive cut-off, since they’ve a higher probability to 
be in the binding site. Residues coming from the variable part, on the contrary, should be 
evaluated with a more restrictive cut-off, especially if coming from remote homologs. 

We integrated an adaptive filter based on conserved patches. firestar uses the 
homologous site analysis information (when available) stored in the FireDB table 
COMPARE35 (see section 3.7, Materials and Methods), to evaluate aligned candidate 
sites. Core residues are given a higher weight during the firestar filtering, while the 
variable residues are maintained only if their conservation, in terms of their SQUARE 
score, is high. Furthermore COGNATE containing sites are tagged for a separate 
merging. 
 

4.5.4 Merging	per-residue	frequency	filter	
 

We designed a per-residue frequency filter to apply at the merging step to penalize 
isolated predicted residues that are not well conserved and at the same time to favor 
information coming from close homologs. The final composition of the predicted site is 
now not merely combination of all residues from a group of overlapping candidate 
alignments. Instead every predicted residue is evaluated by its frequency and origin 
(figure 21).  
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Figure 21 Illustrative example of consensus prediction merging schema in firestar. For residues 
coming from close homologous alignments (>60% Seq. ID), frequency is calculated as follows: 
(relative frequency in close homologs + frequency in the rest)/2. For positions A, D, E, F is 
calculated respectively as (0.5+0)/2 = 0.25, (1+0)/2 = 0.5, (1+0.75)/2 = 0.63 and (1+1)/2 = 1. For all 
the residues coming from more distant homologs, the relative frequency is calculated as number of 
hits / total number of candidate sites. So for positions B and C is respectively 1/6=0.17, 2/6=0.34. 
Please note that position B and C, in spite of having the same global frequency of positions A and 
D, have a lower relative frequency and are discarded. Positions D, E and F are transferred to target 
sequence (red line and black squares), since their relative frequency is higher than 0.35 (green 
values). 

 
The relative frequency of every residue in a consensus prediction is calculated 

taking into account the percentage identity of their source alignments. Predicted positions 
extracted from close sequence homologs (we chose > 60% identities, based on our 
experience) are considered more reliable and are given a higher weight. Their relative 
frequency is calculated as the mean of their frequency in close homologs (the number of 
supporting alignments divided by the total number of alignments) and the frequency in 
more distant homologs. For all the others residues, frequency is calculated over the total 
number of alignments. The presence of close homologs also raises the relative frequency 
cut-off, from 0.25 to 0.35. This strategy has been shown to be effective to spot positions 
specific to a particular protein sub-family. 

 

4.5.5 The	effect	of	the	filters	and	new	CASP8	dataset	assessment		
 
The effects of the different improvements have been studied step by step, running 

the algorithm against the CASP8 dataset multiple times. It would be impossible to report 
all the tests in this thesis, because of their number and even more for their non-linear 
evolution. In some cases filters have been introduced, discarded and later re-introduced in 
a different combination. As results of these analyses we obtained the final set of 
improvements that we have presented here. Below we present two example cases to 
illustrate in detail how the final improvements affected the predictions as well as the 
results for CASP8 targets.  

The first case is the prediction of a zinc binding site for the target T0480 (PDB 
code 2K4X), the ribosomal protein S27A from Thermoplasma acidophilum. It forms part of 
the 30S subunit of the bacterial ribosome, but its specific role inside this macromolecular 
complex has yet to be unveiled. This peptide contains Pfam domain PF01599, which is 
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probably involved in the recognition and capture of mature mRNA to be translated and is 
proposed to form a zinc finger. In the CASP 8 experiment firestar predicted 6 binding 
residues, the 4 real zinc binding cysteines and two false positives, an arginine and an 
histidine. Now prediction includes only the four true positive cysteines (figure 22, B). 
 

 
Figure 22 A) Original prediction of firestar during the CASP8 experiment for target T0480 mapped 
(amino acid represented with sticks) onto the real structure (PDB code 2K4X). In green the true 
positive predictions and in red the false positives, arginine 23 and histidine 33. B) New firestar 
prediction after the introduction of filters: both false positives have been filtered out without true 
positive loss. 

 
Arginine 23 comes from one MSS containing an iron-sulfur cluster (SF4, figure 23, 

A), with an original size of 11 amino acids. The candidate site has been filtered out 
because its reduced size compared with the original (only 3 over 11 residues pass the 
conservation filter). Histidine 33 comes from one MSS binding to zinc (figure 23, B): it is 
aligned to another histidine after a 9 residue deletion. It is clear that there is a problem in 
the alignment, caused by a well-conserved block of residues around position 40. This 
candidate residue is now filtered out in the final merging step because it only appears one 
time over more than 110 candidate sites. It is worth mentioning that PSI-BLAST provided 
only 7 templates (6%) for this target. 
 
 

 
Figure 23 Alignments extracted from PSI-BLAST analysis results for T0480. In CASP8 all 
residues with SQUARE score > 3 passed the filter. A) Source template MSS for the FP arginine 23 
(red frame) B) Source template MSS for the FP histidine 33 (red frame) 

 
A representative example for a non-metal binding site is the case target T0483 

(PDB code 3DLS), a Per-Arnt-Sim kinase (PASK) ATP binding domain. It is part of an 
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evolutionary conserved protein kinase that acts as a sensor involved in energy 
homeostasis; the deposited structure contains an ADP molecule with two biologically 
relevant magnesium divalent cations. 

 

 
 
Figure 24 A) Graphical representation of T0483 binding site (PDB code 3DLS). 
Contacting residues are represented in sticks and colored in green. The ligands are 
represented as spheres, pink for the ATP and yellow for magnesium B) firestar predictions 
in the CASP8 experiment are mapped onto the binding sites and the ligands have been 
removed in order to facilitate the view: in red are represented the false positives, while in 
black are colored the non predicted residues (FN) C) prediction for the same target after 
the introduction of new filters, same color code for residues. 
 
firestar performed very well in CASP8, predicting correctly 13 of 16 binding residues with 
two false positives (MCC=0.83), but after the introduction of filters we were able to identify 
an extra TP and to filter out 2 FP (figure 24, C). Phenylalanine 37 and glycine 38 have a 
good SQUARE score (higher than 3, figure 25); looking at the homologous site 
information (figure 26), it is clear that these two residues are in the P-loop but they are 
less conserved compared with the rest. The penalization discards glycine 38, but 
phenylalanine still passes the final merging step, where it is finally discarded for low 
relative frequency. The use of different weights for core and specific residues also allows 
us to detect a 14th true positive in the loop that binds to the purine base. 
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Figure 25 Alignment extracted from PSI-BLAST analysis of target T0483. The homologous 
binding site is highlighted in a red box. Every annotated residue is mapped with its SQUARE score 
(the darker the blue, the higher the score). Phenylalanine 37 and glycine 38 are highlighted in the 
green box, and have SQUARE scores of 5 and 4 (filter threshold = 3). 
 
 

 
 

Figure 26 Representation of homologous binding MSS site for the ANP (a non-hydrolyzable 
analog of ATP) binding site of cluster 3qkmA. Conservation is represented by the background 
color: the darker the blue, the more conserved. Phenylalanine 37 and glycine 38 corresponding 
position are highlighted in the red box, and they have worse conservation than the surrounding 
residues. 
 

To evaluate the performance of the new algorithm, we decided to run the CASP8 
dataset again. The introduction of new parameters reduced global number of predicted 
false positives by 53% (from 93 to 43) and increased sensitivity, since the number of the 
true positives increased from 237 to 257. Most targets where the filters predicted more 
true binding residues and at the same time reduced false positives were non-metal 
binding sites (for example T0396, T0483, T0485, T0490). For a number of targets in the 
original CASP8 predictions, firestar identified the correct whole binding site, but generated 
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a large number of false positives (T0453, T0457, T0461, T0470, T0476, T0480). Here the 
new filters maintained the high sensitivity and drastically increased specificity. 
	

	 	 	
CASP8 experiment New firestar 

Target Compounds ID Site size FP TP MCC FP TP MCC 
T0391 FES 9 0 7 0.876 1 9 0.945 

T0394 PO4 8 1 7 0.871 0 7 0.934 

T0396 FAD 23 4 16 0.681 3 20 0.833 

T0406 NI 3 2 3 0.770 0 3 1.000 

T0407 ZN(3) 9 0 9 1.000 0 8 0.941 

T0410 FE 3 2 3 0.773 1 3 0.865 

T0422 ADP 15 2 13 0.861 1 12 0.854 

T0425 ZN 3 0 3 1.000 0 3 1.000 

T0426 ZN 3 1 3 0.864 0 3 1.000 

T0430 AMP-MG 19 7 13 0.648 5 14 0.722 

T0431 HEM 19 11 15 0.660 8 15 0.705 

T0440 FE(2)-ZN 9 0 9 1.000 0 9 1.000 

T0444 FE 4 5 4 0.661 2 4 0.814 

T0450 FAD 32 11 32 0.854 8 29 0.833 

T0453 CA(3) 4 5 4 0.647 0 4 1.000 

T0457 MG 4 6 4 0.626 0 4 1.000 

T0461 ZN 3 1 3 0.864 0 3 1.000 

T0470 MG 4 3 4 0.751 0 4 1.000 

T0476 ZN 4 4 4 0.693 0 4 1.000 

T0477 ADP 10 3 10 0.871 2 10 0.909 

T0478 MG-FE 7 0 0 0.000 0 5 0.842 

T0480 ZN 4 2 4 0.800 0 4 1.000 

T0483 ADP-MG(2) 16 2 13 0.831 0 14 0.932 

T0485 SAM 19 6 11 0.577 4 15 0.769 

T0487 MG 4 0 3 0.865 0 3 0.865 

T0490 FAD 33 12 23 0.644 8 30 0.831 

T0508 SAM 19 3 17 0.858 0 18 0.971 

	
Table 7 Comparison of the performance of the old and new firestar algorithm over all the targets 
included in the function prediction category of the CASP8 experiment. The table shows the size of 
the binding site defined by the assessors, false and true positives predicted in CASP8 and the 
Matthews Correlation Coefficient (MCC). In the last column the cell is colored in green if the MCC 
is better than the original, in red if it is worse or background color if there is no variation. 
 

The new firestar algorithm improved the predictions for 20 targets (table 7), 
predicted the same residues (correctly) for three targets and performed worse than in 
CASP8 for three targets. For these targets the new filters discarded false positives, but at 
the same time penalized a true binding residues. For target T0450 firestar filters discarded 
3 templates and two of them were providing useful information. The final prediction lost 
three false positives, but it also lost three true positives. 

Although T0478 is listed in the table, we have not taken it into account in the 
comparison. In CASP8 firestar did not predict binding residues for this target because 
there were no valid templates. The more recent version of FireDB used in the assessment 
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included a recently released remote template that allowed the algorithm to predict the site. 
Remarkably, the algorithm was able to predict 5 of out of 7 true binding residues. Over the 
26 remaining CASP8 targets the new version of firestar obtained a mean MCC of 0.912, a 
considerable improvement on the previous mean MCC of 0.790. 

 

4.5.6 CASP10	experiment		
	

All firestar improvements were developed and tested on the variety of ligands and 
binding sites in the CASP8 dataset. To test the changes made to the algorithm 
independently and to understand if we overfitted the filters to the CASP8 data, we 
participated in the tenth edition of CASP experiment, celebrated in 2012. 

19 groups sent predictions for the function prediction category, and firestar was the 
only sequence-based method. Only 13 of the 114 released targets were used for the 
official binding site prediction (FN) category assessment141. Looking at the results (table 
8), even though firestar once again had the highest MCC score in the experiment, the 
mean MCC was only 0.715. MCC scores for three targets (T0657, T0659 and T0720) 
were remarkably low. Without these three targets, firestar MCC would have been 0.838. 

 
Target ID Compounds ID Site size FP TP MCC 

T0652 AMP 13 4 12 0.821 

T0657 ZN 4 16 4 0.423 

T0659 ZN(2) 3 - - 0 

T0675 ZN(2) 8 0 7 0.929 

T0686 MG 3 2 3 0.772 

T0696 NA 3 0 3 1 

T0697 LLP(2) 14 3 12 0.823 

T0706 MG(2) 6 1 4 0.723 

T0720 MN(10)-SF4(10) 14 0 4 0.495 

T0721 FAD(2) 31 7 23 0.726 

T0726 ZN 3 0 3 1 

T0737 FAD 22 3 16 0.764 

T0744 FNR 19 2 15 0.825 

 
Table 8 firestar official CASP10 results for the thirteen targets evaluated in the function prediction 
category. For target T0659 no prediction was generated. Metal binding targets highlighted in blue. 
 

firestar ranked as the best function predictor method in the experiment, performing 
better than the other automatic servers, but also than all human predictor groups (figure 
27). Although it was the best performing method in CASP, the authors of the CASP paper 
stated that the size and the imbalance (in terms of size and type of binding sites) of the 
data set resulted in no statistical significance of the overall ranking between the first ten 
methods. 
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Figure 27 Top: Best function prediction servers participating in the CASP10 experiment, ranked 
by the mean MCC obtained over the 13 selected targets. Bottom: Wilcoxon signed rank test 
results among the first ranked 11 groups. Differences in accuracy of binding residue predictions 
were not significant (both images are extracted from the assessment official paper141). 
 

4.5.6.1 Prediction	re-assessment	
 

After a critical evaluation of assessment data, based on the experience 
accumulated over the previous 3 editions of the experiment, we carried out a parallel 
assessment. Firstly, we wanted to fill an important gap left by the official assessors: 
neutral residues. True positives for these 13 targets were obtained only from 
crystallographic closeness of cognate ligands. There are some cases where additional 
information (from literature, crystallised analogs, conservation) supports the probable 
implication of other residues in binding the assessed ligands or ligands that are not 
crystallised with the protein structure. Neutral amino acids do not count as true or false 
positives, or true or false negatives. In addition a second assessment allowed us the 
possibility of enlarging the data set, thanks to the deposition in the PDB of new structures 
in complex with cognate ligands. 

We gathered 22 total targets in complex with biological ligands (table 9; in May 
2016 there were still 5 undeposited 3D structures and 8 non-crystallised proteins). Two of 
them (T0745 and T0754) were canceled during the experiment because one group found 
the crystal structures before the deadline and used this information to make perfect 
binding site predictions. At the end we were able to include 7 additional targets that 
correspond to an expansion by more than 50% of the assessment data set. We compared 
our calculated contacts with those obtained by official assessors (appendix table 3) and 
we found some differences, despite using the same distance cut-off of 0.5 Å. Probably we 
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used slightly different values of Van der Waals radii, since there is no complete agreement 
about the values and their calculation170,171. 

 
Target  PDB ID Ligand ID Contact residues Neutrals 

T0652 4HG0 AMP 74,78,79,80,100,101,102,103,104,165,178,180,
183  

T0657 2LUL ZN 121,131,132,133,143 
13,15,16,17,18,19,
21,22,23,25,27,29,
40,42,51 

T0659 4ESN ZN 43,48,53  

T0661 5UWB PEF 
29,30,33,34,37,59,60,63,64,67,72,97,98,101, 
105,108,109,112,114,134,136,138,139,144,146,
148,159,162,164,165,169  

T0675 2LV2 ZN 21,24,37,42,49,52,65,70  
T0682 4JQ6 RET 80,83,84,87,116,120,134,137,138,141,180,183,

184,187,209,213  
T0686* 4HQ0 MG 28,30,103 26,134 

T0687* 4HQF MG 31,33,106 29,137 

T0694 5JH8 HIS 5,74,109,111,172,174,176,295 177,180,181,217, 
219,229 

T0696 4RT5 NI 18,69,104  
T0697 4RIT LLP 91,150,151,152,190,243,245,247,272,274,301, 

303,304  
T0706* 4RCK MG 25,27,129 23,101 

T0715 4C3S NAD 
133,134,135,136,137,138,161,162,163,198,201,
205,216,217,218,221,224,235,236,237,269,357,
359,387,432,433  

T0720 4IC1 SF4, MN 32,34,35,62,99,113,114,115,187,188,191,194, 
197  

T0721 4FK1 FAD, MG 
10,12,13,14,33,34,35,36,37,38,39,41,42,44,45, 
46,60,78,79,80,109,110,111,114,126,127,136, 
137,235,237,268,269,277,278,281 

 

T0726 4FGM ZN 273,277,307 39,40,41,95,236, 
237,238,362,363 

T0732 4PEG 5GP 45,90,91,180,201,202,205,230,231,232 50,95,99,146 

T0737 3TD7 FAD 37,38,40,41,42,44,45,49,78,83,87,114,117,118,
120,121,123,124,128,130,135,174,237 80,82 

T0738 4IS3 NAD 13,15,16,17,18,38,42,66,92,93,94,95,115,142, 
143,144,157,161,187,188,189,190,192,194,195  

T0744 2YMV FNR 22,23,24,26,58,61,120,121,122,124,196,214, 
216,255,270,271,272,273,314,316  

T0745 4FMW SAH 96,97,98,115,116,118,120,124,127,128,141, 
142,144,154,155,156,158,161 121 

T0754 2LV9 ZN 13,15,27,30,35,38,52,55,69  
 

Table 9 Complete list of the targets binding biological ligands in CASP10 used for the re-
assessment. Contacting amino acids are those below a distance cut-off of 0.5 Angstroms + VdW 
radii. Neutrals are established using literature information available, homology with other proteins 
and conservation. Green targets are new, released after (and so not previously evaluated by) the 
official assessment. Red targets are those cancelled by organizers. The targets marked with an 
asterisk were close homologues that bound the same ligand. The neutral residues in these targets 
are those that are within the van der Waals radius cut-off in one or two targets, but not in the 
others. 
 

Using this new data we performed a new assessment and new MCC scores have 
been calculated for all the groups (appendix table 4). Detailed results for firestar 
predictions are presented in table 10. Based on our binding site definition, we clearly 
obtained a better mean MCC, (0.817 vs 0.715). Differences with the previous MCC results 



RESULTS	-	firestar	|	

73	

can be explained by the change of the amino acid composition of the binding sites and/or 
by the introduction of the neutral residues. Several targets fall into the first group where 
the substitution, introduction or exclusion of some residues made the score change 
slightly: T0652, T0697, T0720, T0721, T0737 and T0744. Among these, the biggest 
firestar variation is a 0.076 increase for target T0652. 
 

Target ID Ligands ID Site size FP TP Neutrals MCC 
T0652 AMP 13 3 13 - 0.897 
T0657 ZN 5(15) 1 4 15 0.793 

T0659 ZN 3 - - - - 

T0661 PEF 31 4 15 - 0.572 

T0675 ZN 8 0 7 - 0.929 
T0682 RET 16 7 16 - 0.821 

T0686 MG 3(2) 0 3 2 1.000 

T0687 MG 3(2) 0 3 2 1.000 

T0694 HIS 8(6) 2 5 3 0.660 

T0696 NI 3 0 3 - 1.000 

T0697 LLP 13 3 12 - 0,855 

T0706 MG 3(2) 0 3 2 1.000 

T0715 NAD 26 4 10 - 0.505 

T0720 SF4, MN 13 0 4 - 0.542 

T0721 FAD, MG 35 5 25 - 0.744 
T0726 ZN 3(9) 0 3 - 1.000 

T0732 5GP 10(4) 2 6 0 0.662 

T0737 FAD 23(2) 1 17 1 0.824 

T0738 NAD 25 2 23 - 0.911 

T0744 FNR 20 2 15 - 0.803 

	
Mean MCC 0.817 

Std. Deviation 0.164 

 
Table 10 Results of the new assessment over 20 CASP10 targets for firestar, using the new 
definition of the binding sites shown in table 9. Bold IDs correspond to targets used in the official 
ligand-binding category assessment. The table shows the crystallised ligand (metals are 
underlined), the size of the binding site with additional neutral residues (if any), true and neutral (TP 
and neutrals) residues identified and wrongly predicted residues (FP). The MCC scores are 
highlighted in green if they improved with respect to official assessment, blue if they are the same 
and red if they worsen. 

 
The introduction of neutral residues had a major impact over the MCC scores of all 
groups, and we are going to present here 2 cases. Target T0657, the pleckstrin homology 
(PH) domain from human a tyrosine-protein kinase (TEC), is one interesting example: all 
groups sent a prediction, two groups predicted just a zinc binding site and the other 17 
predicted a binding site for inositol-tetrakisphosphate, either on its own in addition to a 
zinc residue. The resolved structure (PDB code 2LUL, an NMR ensemble) contained only 
the structural ZN, required to maintain a loop. A functional pleckstrin domain is located at 
the beginning of the sequence, and most PH homology domains bind phosphatidylinositol 
lipids from membranes as part of a process to recruit proteins to the membrane. A simple 
BLAST search shows that the inositol polyphosphate binding residues in the PH domain 
are conserved and in fact the Swiss-Prot entry for TEC (P42680) annotates the PH 
domain of this protein as mediating binding to inositol polyphosphate in the plasma 
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membrane. firestar and other predictions could be correct, but the final NMR ensemble 
does not include an inositol polyphosphate ligand (in fact NMR structures are rarely 
resolved with any ligands), and so far we can not confirm the prediction experimentally. 
For this reason we introduced 15 neutral residues to represent the inositol polyphosphate 
binding site. Example 2, target T0726, is an aminopeptidase of the N family. It contains 2 
domains, PDZ and Peptidase_M61 catalytic domain. While the first is involved in the 
binding of specific peptide sequences, the second, the MEROPS peptidase family M61 
usually has a divalent cation, often zinc but also cobalt, manganese or copper, activates 
the water molecule to hydrolyze a peptide bond. Again, all groups sent a prediction: many 
made predictions for an amino acid binding pocket as well as a zinc ion (17 of 19, but not 
firestar), and once again only a ZN cation was present in the crystal (the amino acid is a 
reagent). For this reason, using the information available, we selected and added 9 
neutral residues. We also performed a Wilcoxon signed rank test to evaluate the statistical 
significance of the new results (appendix table 5), and results are very different from the 
official assessment. The majority of p-Values obtained are significant (because of the 
growth in the test set), showing that there are clear differences in accuracy between 
groups.   

4.5.6.2 Evaluating	problematic	targets	
 

According to our results, firestar performed poorly (MCC below 0.7) for six targets: 
T0659, T0661, T0694, T0715, T0720 and T0732. We revised these predictions in order to 
identify possible improvements and limitations of our algorithm. In table 11 we show how 
many servers predicted the sites and which was the best MCC obtained. 

 

Target ID Ligands 
ID Site size firestar 

MCC 
Server 

Predictions Best MCC 

T0659 ZN 3 - 4/11 0.455 

T0661 PEF 31 0.572 6/11 0.623 

T0694 6KY-HIS 8(6) 0.660 11/11 0.797 

T0715 NAD 26 0.505 10/11 0.866 

T0720 SF4, MN 13 0.542 8/11 0.608 

T0732 5GP 10(4) 0.662 10/11 0.665 

 
Table 11 List of targets where firestar algorithm obtained a MCC < 0.7. Next to firestar 
MCC, the total number of server groups that sent a prediction and the overall best MCC 
are reported. 
 

We present here the analysis of two target predictions, T0659 and T0720. They 
are particularly interesting for us because they are metal binding sites. As we detailed 
previously, this type of sites present higher conservation due to their size and their 
specific features. firestar usually performs very well: over the other 7 metal binding targets 
it had a 0.960 mean MCC. 

 
T0659 (PDB code 4ESN) is a hypothetical protein from Ruminococcus gnavus 

(PDB code 4ESN) that contains a novel ZN binding site, constituted by three cysteines. 
While no sites pass the reliability threshold we established for CASP, actually firestar 
detected the conserved cysteines. The ZN binding site has either diverged from a FE2/S2 
inorganic cluster (FES) binding site or converged on the same residues as figure 28 
shows. Almost all templates found by firestar bound FES using the same ligand binding 
residues that formed the novel ZN in T0659. Two of the three cysteines in the ZN binding 
site were very conserved while the third cysteine only appeared in a few alignments. 
However, firestar did not predict residues since the binding site was treated as an FES 
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binding site. The average size of the FES binding sites is 9 residues, and firestar 
discarded the binding residues detected in those alignments (figure 28) because the 
coverage of the FES binding residues was 33% or lower. A human predictor would have 
noticed the FES conservation footprint using the information generated by firestar possibly 
made a prediction, but target T0659 was a server-only target. 

 
 

 
 
Figure 28 Extended output from the analysis of target T0659 from the CASP10 experiment. 
These are the templates found by for the target sequence, first line of each alignment. The three 
cysteines that constitute the ZN binding site in T0659 are shown in the red and yellow boxes. All 
the aligned templates bind FES (FE2/S2 cluster). Cysteines 43 and 63 (red highlights) are 
conserved in all the alignments, while the position corresponding to cysteine 48 (yellow highlights) 
binds FES in the majority of templates, but it is usually a different amino acid. 
 
These results suggest that this could be a case of divergent evolution: the binding site 
specificity drifted and lost the ability to bind iron-sulfur, while maintaining the capability to 
bind a metal. Or it could be exactly the opposite: it was originally a ZN binding site that 
gained the ability to bind iron-sulfur. Thanks to this target we decided to work on a 
possible improvement of the algorithm. When it is not able to generate a canonical 
consensus prediction but detects conservation for binding site residues in complex with 
biologically relevant compounds, firestar should now report these residues without 
predicting the possible ligand. 
 
The other interesting case is T0720, a CRISPR-associated exonuclease Cas4 from 
Sulfolobus solfataricus. The protein was co-crystallised with manganese and an iron-sulfur 
cluster (SF4), and it had very few remote homologs in the PDB (only 9 unique hits from 
the HHsearch/PSI-BLAST analyses had functional information). While the conserved 
manganese binding site was predicted, missing only histidine 62, information for the other 
site was insufficient and noisy and the filters discarded all the templates. Furthermore the 
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site was split, meaning that 3 of the 10 binding residues are around sequence position 35 
while the rest are located around position 182: no alignment spanned all 202 residues of 
the target. This was a difficult prediction; in fact firestar had the 3rd best server result. In 
our human prediction, using firestar server output, we included four cysteins of the SF4 
binding site based on the conservation detected in the extended firestar output pages, as 
shown in figure 29. 

 

 
 
Figure 29 Extended output from the analysis of target T0720. These are 2 template fragments 
found only in the HHsearch analysis that support functional information for three of four cysteines 
included in our human prediction. Even though both bind SF4 (FE4/S4 cluster), only part of the site 
is conserved. 

 
The other 4 problematic cases are similar: these proteins contain large binding 

sites, and the information coming from FireDB is insufficient or noisy. One good example 
is T0715: even though there are many templates containing NAD in the PDB, no close 
homolog was found. The occurrence and conservation filters discarded all but the core 
binding residues, so firestar lost more than 50% of the site. 

All servers had the same problem with T0732: few remote templates were 
rescued, the majority bound adenosine monophosphate (AMP). 5GP binding proteins 
were also present, but insufficient to allow firestar to focus on the specific functional 
residues. 

For T0694 and T0661 no templates containing the bound ligands were found. In 
fact firestar was not able to predict the compound in the binding site and prediction was 
based only on residue conservation. 
 

4.5.6.3 False	positives	
 

One of the problems we detected for firestar in the CASP8 experiment and even 
more after the introduction of HHsearch as search method was the increase of false 
positive predicted residues. In table 12 we listed for all participant groups the number of 
predicted targets over our overall dataset (20 targets) and the total number of false and 
true positive residues (FP and TP). Only one human group predicted fewer than 30 FP, 
but the group missed 4 targets. After that, 3 servers accumulated 36-37 FP each, and 
among these firestar was the server that predicted most targets. 

 
These simple statistics, although realized over a small dataset, suggest that the filters 
introduced are able to effectively discriminate true negative residues, without losing 
sensitivity, since the algorithm is still able to identify a good number of true positive 
residues. 
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Group ID Target 
predicted TOT FP TOT TP 

McGuffin 16 27 151 

firestar 19 36 187 

IntFOLD2 17 36 155 

3DLigandSite 12 37 126 

zhang 20 48 196 

CNIO 19 48 199 

Binding_Kihara 19 53 82 

Seok-server 19 58 151 

I-TASSER_FUNCTION 20 59 188 

Seok 18 59 163 

COFACTOR_human 19 72 174 

FNGUSHAK 18 75 166 

COFACTOR 20 78 170 

HHpredA 18 81 173 

SP-ALIGN 20 89 206 

Atome2_CBS 11 90 151 

3DLigandSite2 14 91 136 

ConPred-UCL 18 122 160 

chuo-binding-sites 19 913 217 

 
Table 12 The list of the Groups that participated in the CASP10 experiment, with the number of 
predicted targets over the assessment group (20). In the 2 columns the cumulative number of false 
and true positive predicted residues is shown. Automatic server groups row are highlighted in light 
blue. No fill rows represent human groups. 

 
There is an additional aspect that was not considered in the CASP assessment 

and that is incorrectly predicted targets. Predictions are sent for the whole target dataset 
(114 proteins in CASP10) during the assessment, and “No predicted binding site” is 
actually a prediction. This prediction is not the same as not sending any prediction. It is 
true that the assessment of predictions for targets with no ligand would be complicated, 
but where possible, it would be interesting to estimate the tendency of methods to over-
predict or to predict a non biologically relevant site. One example we found in our 
assessment is the case of T0710 (PDB codes: 5CEA), Bd3460 immunity protein from the 
predatory antimicrobial organisms	Bdellovibrio bacteriovorus. This structure is actually one 
among 5 depositions, and in one of them a sulfate (SO4) anion is included. It is clearly an 
artifact due to the presence of the molecule in the crystallization mix. Among the 18 
predictions sent for this target, 15 predicted a binding site, and 11 of them wrongly 
predicted a binding site for a sulfate, a metal or a solvent. firestar did not predict any 
binding site.  

At present the CASP assessment penalizes under-prediction and incorrect 
predictions, but there is no penalty for over-prediction. This means that over-predicting 
(either by predicting non-cognate ligands or by predicting binding clefts) is good strategy 
where it appears that there is no bound ligand. firestar does not over-predict: in fact 
firestar predicts ligand binding sites for just 44 of the 114 targets because it does not 
detect sufficient information to make a reliable prediction for the remaining targets. This is 
a strategy that the CASP assessors refer as cherry picking. By way of contrast the two 
next highest scoring server methods, SP-ALIGN and ITASSER make predictions for all 
targets regardless of ligand type, including making predictions for residues that bind 
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glycerol and ethylene glycol, both well known solvents. Obviously over-prediction should 
also be taken into account in future assessments. 
 

4.6 Applications	in	large-scale	collaborative	projects	
 

One of the objectives after the improvements introduced in both tools and the 
validation of the firestar method was their use in large-scale annotation projects. 

 

4.6.1 Human	proteome	sites	annotation	and	selection	of	gene	
principal	isoform	

 
As part of the ENCODE172,173 project, GENCODE167 provides high-accuracy 

manual annotations of protein-coding loci and alternative variants in the human genome. 
Studies have revealed that virtually all multi-exon human genes174 are capable of 
producing multiple RNA transcripts by alternative splicing. Alternative splicing events that 
occur within coding regions will produce alternative transcripts that potentially will be 
translated into distinct gene products. While genome annotation projects are producing 
rapidly a huge amount of information, this data presents serious challenges for functional 
annotation, as we explained in detail in this work. If alternative splicing does have the 
potential to expand the cellular functional repertoire in eukaryotic species, it would seem 
to be important to assign roles to these splicing variants.  

Another important task is to identify the representative (or principal) isoform of the 
gene, the isoform against which all others should be compared, from among these 
possible alternative transcripts. The selection of the principal isoform is not 
straightforward, since there is no agreement about its specific characteristics. Over the 
years, databases such as Ensembl175 and SwissProt have got round this problem simply 
selecting the longest isoform as the main variant. Although this is a convenient choice, 
Tress and collaborators demonstrated in a work176 that longest isoform is not the best 
choice for up to ~25% of the genes and proposed a methodology to pinpoint principal 
functional isoforms, based on conservation and the characteristics of known proteins, 
principally structural and functional features. Using an experimental set of 215 human 
proteins, they determined a principal variant for 179 of them, 83% of genes with multiple 
alternative variants. firestar and FireDB were included in these initial investigations to 
provide reliable functional residues predictions. 

This work provided the basis of the creation of APPRIS177, a database that houses 
annotations of splice isoforms for different organisms, human included. It was designed to 
provide value to manual annotations of the human genome by adding reliable protein 
structural and functional data and information from cross-species conservation. 
Developed alongside the GENCODE annotation process, it flags isoforms with likely 
altered structure, function or localization, and exons that are evolving unusually. The 
information from APPRIS is fed back to the manual annotators and has lead to the 
annotation of new isoforms. As additional feature, it selects (whenever it is possible) a 
principal isoform for each gene based on the available annotations. 

The database flowchart is presented in figure 30. 
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Figure 30 On the left the three types of input information are shown. They are used individually or 
in combination to feed the 8 methods (center) that produce annotations for whole GENCODE 
dataset. The information is used for the selection of the principal isoform. Information coming from 
the four core methods (brown boxes) is fundamental to principal isoform selection; the other 
methods (red boxes) is more important where these four methods are not able to make a decision 
(image extracted from the APPRIS paper177) 

 
The APPRIS system is composed of eight separate annotation modules, chosen 

for their ability to highlight important features to spot principal isoforms. 
Determination of a principal isoform is based on two principles. The first is that there is 
often one isoform that performs the main cellular function or that is expressed in the 
majority tissues or in most stages of development, and that the rest of the annotated 
isoforms are alternatively spliced isoforms that may perform distinct roles. The second 
principle is that the principal isoform should have more evolutionary history, so it ought to 
be the variant that is most conserved across related species. Selection is based on a jury 
of these 8 methods. The isoform selected as principal will be either the variant that has 
the most conserved protein features (since it is much more likely that alternative isoforms 
have lost rather than gained protein features such as 3D structure and function) or that 
has more evidence of cross-species conservation, or, most frequently, both. Four 
methods (SPADE, CORSAIR, Matador3D and firestar) make up the core of the jury 
system, with the other methods becoming more important in cases where these four 
methods are not able to make a decision. APPRIS is updated with each new stable 
GENCODE release. 
 

4.6.1.1 firestar	annotations	within	the	APPRIS	database	
 
The most recent version of the APPRIS database covers the 

Ensembl_88/GENCODE_26 release of the human genome (assembly hg38). GENCODE 
annotates 20,263 protein-coding genes that are predicted to generate a total of 95,139 
coding transcripts through alternative splicing. Among these genes, 22.72% (4,603) are 
annotated with a unique transcript/isoform, meaning that they do not have alternatively 
spliced transcripts. The rest (77.28%, 15,660 genes) are predicted to produce at least one 
alternative isoform.  
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firestar predicted a biologically relevant binding site for 7,935 genes (39.16%). 
Among the APPRIS jury core methods, firestar has the lowest coverage (matador3D: 
72.15%, SPADE: 83.94%, CORSAIR: 87.47%). In the case of firestar the “winning” 
isoform is the one with the highest number of functional residues. It is also usually 
selected by APPRIS to be the principal isoform. In fact there are very few cases where 
firestar predictions do not agree with the final APPRIS principal isoform selection. We 
found 70 genes, 0.3% over the whole GENCODE dataset (no prediction is a prediction for 
APPRIS purposes). Among the jury core methods, it has the lowest disagreement rate 
(matador3D: 0.56%, SPADE: 0.85%, CORSAIR: 0.83%). 

Looking in more detail at these 70 cases, there are 43 where firestar disagrees 
with all others core methods. The reasons for this can be different; this is not only related 
to problems with predictions: for instance some annotated transcripts are larger due to a 
read-through event (defects in transcription termination). These read-through transcripts 
are not allowed to be APPRIS principal isoforms because they are generally not 
translated178 but if the read-through exons are from the neighbouring coding gene, firestar 
may predict more predicted functional residues for these transcripts than for the principal 
variant. 

Other cases are also interesting, since there is a general agreement between the 
methods in APPRIS. These are potential candidates for manual annotators to focus on, 
and we present one example here. 
 

 
 
Figure 31 Screenshot of APPRIS web page showing results for gene RP4-583P15.15 General 
information from Ensembl is shown for the gene; different annotated transcripts are shown in the 
Principal Isoforms table, where the principal isoform is highlighted in green. In the APPRIS 
annotations table the per-transcripts results for all integrated methods are summed up. In the web 
viewer it is possible to browse individual annotations. 
 
 

RP4-583P15.15 is a human gene that codes for a so far functionally 
uncharacterized protein. There are three annotated transcripts in GENCODE version 26, 
and almost no annotations are retrieved by APPRIS for any of them, except for transcript 
ENST00000490623. This transcript has three supporting annotations (see figure 31): a 
predicted ZN binding site (4 residues), three segments that match to deposited structures 
and a Pfam correspondence. However, the transcript has been tagged as 
nonsense_mediated_decay, meaning that it should be involved in regulation of gene 
expression, and it should not be translated. So the selected transcript is 
ENST00000632538, which presents only support from structural information. The 
nonsense_mediated_decay tag is probably erroneous.  
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4.6.2 Pfam	domain	analysis	
 
Pfam is a long established database that gathers information about protein 

domains. Proteins can be considered as a combination of one or more functional regions, 
commonly termed domains. The identification of domains that occur within proteins can 
therefore provide insights into their function. Pfam’s central entity is the family, a set of 
protein regions that share a significant degree of sequence similarity, thereby suggesting 
homology. A high-quality manually curated alignment, called a seed alignment, is created 
and a profile hidden Markov model (HMM) is constructed from the seed alignment. At a 
higher level of hierarchy, clans are collections of related families. 

A clan can contain two or more Pfam families that are considered to have arisen 
from a single evolutionary origin. Four pieces of evidence are used to assess whether 
families are related: structural, functional, significant matching of the same sequence to 
HMMs from different families and profile–profile comparisons; the presence of related 
structures and significant profile–profile comparison scores are primary indicators of a 
relationship. So in principle it is possible for clans to contain families with heterogeneous 
functions, but discrepancies have to be evaluated since they can be suggestive of a non-
homologous origin. 

In order to evaluate the functional uniformity of the clans from a binding site point 
of view, we decided to use firestar and FireDB to annotate all 14,831 families contained in 
the Pfam-A database (version 27.0). After different trials, we decided to use three different 
approaches: 

 
• Using the pre-calculated mappings between Pfam families and PDB structures, we 

extracted all the MSS binding sites from FireDB that overlap Pfam families. 
• From the downloaded seed alignments, we selected a sequence randomly and used it 

as input in firestar 
• Again, from the downloaded seed alignments, we generated a profile to feed a 

modified version of firestar 
 

After merging FireDB and firestar predictions, we obtained a COGNATE binding 
site prediction for 4,190 non-redundant Pfam domains, 28% of the entire Pfam-A data set. 
In terms of concordance, the two approaches do not always overlap: firestar detects sites 
that the FireDB-Pfam mapping does not, and this is something to be expected because 
firestar can extend FireDB binding sites to homologous sequences. Surprisingly, the 
FireDB-Pfam mapping detects sites that firestar did not. One reason was heterogeneous 
conservation of the residues through all the members of the seed that affected the profile. 
Another reason was the random selection of the single seed alignment sequence to 
launch firestar; due again to heterogeneity, if the site was not present, we did not detect it. 
Another reason for the difference was the firestar filters, which discarded sites because 
they were considered non-biologically relevant. Most Pfams that did not have a firestar 
prediction are DUFs (domains of unknown function), protein-protein binding, repeats or 
trans-membrane domains. Among non-predicted domains, the Sugar_tr family 
(PF00083.19) represents an interesting example of to present a false negative caused by 
lack of source information. This family gathers sugar transporters, which are responsible 
for the binding and transport of various carbohydrates, organic alcohols, and acids in a 
wide range of prokaryotic and eukaryotic organisms. Unfortunately PDB contains almost 
no transporters structures in complex with their biological ligand, and for this reason 
firestar is not able to generate a prediction. When we took into account all predictions, the 
number of Pfam domains with binding sites rises to 5,392 (36%). 

We then evaluated the consistency of the binding site (and especially the ligand) 
predictions among families belonging to the same clan. In some clans we found a 
complete homogeneity: we predicted an ANP (Phosphoaminophosphonic Acid-Adenylate 
Ester), ADP or ATP binding site for all 19 members of the ATP- grasp clan (CL0179). We 
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detected an iron-sulfur cluster binding site for all 22 members of the 4Fe-4S clan 
(CL0344), and a copper binding site for all 9 members of the Multicopper oxidase-like 
domain clan (CL0026). 

For other clans we found discrepancies in our predictions: the methods predicted a 
coenzyme binding site for 163 of the 178 members of the NADP_Rossmann (CL0063) 
clan. They detected a calcium binding site for 12 of the 14 domains in the EF_hand 
(CL0220) clan. The other two domains are tagged as “efhand-like” and “Ca2+ insensitive 
EF hand”. We also validated cognate binding sites for 174 of the 178 members of the 
Peptidase_MH (CL0035) clan. 

As part of a collaboration with the Pfam group, we presented them our preliminary 
results and based on the data, they systematically reanalyzed non-consistent clans: here 
we present the case of the P-loop_NTPase (CL0023) clan. This is a large clan that 
gathers AAA+ family proteins. These NTPases contain chaperone-like modules that 
appear to function as molecular matchmakers in the assembly, operation, and the 
disassembly of diverse cellular proteic machineries. We predicted a cognate ligand 
binding site for 178 of the 195 members, so they decided to focus on the 17 families with 
no prediction, and established a workflow to systematically evaluate the families: 

 
• Search of Walker A and B motif (two characteristic motifs of the clan) 
• Search for overlaps with other families within and outside the clan 
• When a family structure was available, structural-pairwise alignment 

comparison, visual assessment against known structures in clan and 
comparison with SCOP entries 

• Literature mining 
 
Finally they decided to maintain 10 out of 17 families in the clan because structural 
information and/or overall sequence similarity suggested homology and fulfilled their 
aggregation criteria. Families without structures, overlaps, Walker A or B motifs (degraded 
or otherwise) were considered on a case-by-case basis: 3 were tagged as uncertain, 3 
were definitely removed from the clan and the last one (PF04326) was removed and 
added to AlbA clan and renamed as AlbA_2. 

These preliminary results suggest that binding site information can be really 
informative in the definition of protein function and can be used as an additional feature in 
the definition of Pfam families and clans. 
 

4.6.3 GO	terms	prediction	for	large	scale	annotation	projects	
 

The huge amount of new sequences obtained yearly has caused the exponential 
growth of sequence databases, but functional annotation of genes and their products has 
so far not been able to keep up this incredible pace. Using an already established 
approach, a group of researchers from the function prediction community joined and 
organized the first CAFA experiment. The Critical Assessment of protein Function 
Annotation algorithms is designed to provide a large-scale assessment of computational 
methods dedicated to predicting protein function. The general set-up can be easily 
visualized in figure 32, extracted from the assessment paper142 published after the first 
edition. 
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Figure 32 Timeline for the first edition of the CAFA experiment extracted from the Nature paper142 
published in 2013. 

 
Briefly, CAFA organizers provide a large number of almost unannotated protein 
sequences and give a deadline date. During this time (the prediction phase) participating 
groups predict the function of these proteins by associating them with Gene Ontology 
terms. In the following phase, target accumulation, the assessors gather experimental 
functional evidence for the target dataset. The prolonged duration of this phase (almost a 
year in the first experiment) is meant to give time for the scientific community to generate 
as many annotations as possible. Even so, it was possible to retrieve information for only 
the 0,01% of the initial set for the first experiment. Finally, in the analysis phase, methods 
are tested against the established benchmark set. 
 The second edition of the experiment started on the 29th of August 2013. The 
whole protein dataset was constituted by 102,117 sequences. A small part of them (1,301) 
came from a large-scale collaborative project called the Enzyme Function Initiative, or 
EFI, whose goal is to develop integrated strategies that will enable focused experimental 
enzymology, genetics, and metabolomics and was constituted by putative enzymes. The 
organizers gathered the rest, more than 100 thousands proteins picking them from 27 
different organisms. 

We decided to participate with a modified version of firestar. In principle the 
method is not able to predict GO terms directly; FireDB stores functional annotation 
associated to PDB entries coming from UniProt, so firestar could transfer this information 
from the different templates used to generate the prediction to the target. But while it is 
true that functionally important residues can be found in very diverse proteins, it is not true 
that all of them are equally relevant to determine function. To overcome these limitations 
we used two different approaches. 

In the first one we extracted from the Molecular function GO domain terms related 
to ligand binding and we associated them to the correspondent PDB molecules. For 
example Beta-lactose (PDB code LAT) is associated to the general GO:0005529 term 
(carbohydrate binding) and to the more specific GO:0030395 term (lactose binding) and in 
total we were able to annotate 112 compounds. Using this information, whenever firestar 
predicts a binding site and the correspondent interacting ligand, it automatically transfers 
the associated GO terms to the target protein. 

In the second approach we used the mapping generated from the Gene Ontology 
consortium itself (http://www.geneontology.org/external2go/ec2go) between Enzyme 
Codes and GO terms. Basically using the Catalytic Site Atlas information stored in FireDB, 
firestar is able to predict catalytic sites and at the same time, through the mapping, it can 
also transfer the correspondent GO terms. To generate GO predictions we decided to use 
information coming from manually annotated CSA entries and we set a more restrictive 
conservation and coverage filters. If a catalytic site is fully conserved and the SQUARE 
scores of the single residues are higher than an established cut-off, the GO term(s) is 
directly transferred. If a third of the site is poorly conserved while the rest is highly 
conserved, the parental GO term(s) is transferred, while if more than a third is not 
conserved at all, it is directly discarded. 

Our lab also participated to this edition of the experiment with the Statistically 
Inferred Annotation Method, or SIAM, developed by Angela del Pozo (manuscript in 
preparation). Briefly the algorithm searches for sequence homologs of the target protein in 
the Swiss-Prot database. Using a non-parametric statistical coefficient of concordance, 
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the set of the functional annotations (GO terms) that better fit the pool of homologs found 
are transferred to the target. 

In principle the two methods do not overlap; firestar generates specific 
annotations, related to binding or/and to the catalytic activity and all the terms basically 
come from the “Molecular function” gene ontology domain. Since the source of information 
for SIAM is SwissProt, terms can come from the three domains and in general they are 
expected to be less specific. For these reasons, a third set of predictions was submitted, 
coming from the integration of the previous two. 

In figure 33 general statistics for firestar and SIAM results in the CAFA2 
experiment dataset are presented. 

 

 
Figure 33 Overview of the predictions for the CAFA2 experiment. The pie charts refer to the 
coverage of the methods, orange for firestar and green for SIAM; grey portion refers to unpredicted 
sequences. Bar charts compare the total number of annotations generated. 

 
Considering only the limited EFI dataset, firestar was able to generate a prediction for all 
but 52 sequences, with an average of two annotations per sequence. SIAM coverage is 
worse, but globally the method was able to transfer more GO terms per sequence. 
Looking at the entire dataset, the coverage of firestar is again slightly better, but the 
number of annotations transferred by SIAM was more than three times greater. 
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Figure 34 Overview of the integration of firestar and SIAM predictions for the CAFA2 experiment. 
A) The global coverage of the combination is shown on the right, while the overlap between the two 
methods (orange for firestar, green for SIAM) is presented on the left side B) The summary of the 
global number of annotations: in the intersection the number of the sequences of SIAM (green 
circle) refined by firestar is shown.  

 
The two methods combined were able to generate predictions for 55% of the targets; 
among these, almost 37% have at least one GO term assigned by both algorithms (figure 
34). Looking at the annotations the reduced intersection (compared with the predicted 
targets overlap) indicates clearly that SIAM and firestar are strongly complementary. 
In order to merge overlapping predictions, a set of rules has been set up, based on the 
hierarchy of the GO term database structure: 
 

1. When firestar predicts a more specific term than SIAM, it is directly added. 
2. When firestar predict a less specific term, and it comes from an incomplete 

catalytic site prediction, the more specific SIAM term is eliminated. 
3. When firestar discards a GO term due to not detected conservation, SIAM term is 

discarded. 
 
This strategy resulted in a scenario where, among 6,123 annotations generated for the 
same target (figure 34 B, intersection), 95% of them involve firestar predicting a more 
specific term, so firestar was able to improve the specificity of SIAM predictions. In the 
remaining cases, firestar refined the SIAM prediction. There were also 2,526 SIAM 
predicted and 50 firestar predicted GO terms that were discarded on the basis of the rules 
presented (not shown in the figure). So preliminary results presented here suggest that 
the integration is useful.  
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In this work we presented improvements of two tools previously developed in the CNIO for 
the prediction of functional residues, FireDB and firestar, and three practical applications 
in large-scale annotation projects. 
 

FireDB is a curated inventory of catalytic and biologically relevant small ligand-
binding residues culled from the protein structures in the Protein Data Bank (PDB). A 
great deal of manual curation has gone into the annotation of the small-molecules 
contained in the database179. Ligands in the most recent version of FireDB are classified 
according to a range of criteria. The introduction of biological relevance and the 
metal/non-metal categorization has changed the construction of the database, and the 
bio-activity annotation and external mapping of the entire ligand molecule set has 
expanded the ambit of FireDB. 

The automatic biological relevance assessment of the binding sites in FireDB is 
fundamental to the database. We introduced a new classification protocol based on the 
local conservation of the individual sites and on ligand type that works alongside the 
original biological relevance classification. In depth analysis of differences between the 
two sets of annotations showed that the new protocol complements the original approach. 

Finally a number of changes have been made to improve database performance, 
usability and accessibility. 
 

firestar is a server for predicting catalytic and ligand-binding residues in protein 
sequences. It is based on information from the FireDB catalog. The earliest versions of 
firestar required expert human interpretation of the results; we implemented a new 
schema to achieve the full automatisation of the server and to improve its accessibility to 
non-expert users180. 

The sensitivity of firestar has also been improved with the integration of an 
additional state of the art homology search method, HHsearch, to go along with PSI-
BLAST.  

Data collected during the different rounds of the CASP experiments showed a 
slight tendency to over-prediction, magnified by the inclusion of HHsearch. As a result 
new filters have been added to improve firestar specificity, ranging from compound 
specific rules to per-residue conservation within candidate templates. The filters have 
been tested against a CASP dataset, and show a good improvement in true positive 
detection along with a drastic reduction of false positives. 

The improved algorithm was tested in the CASP10 experiment, and firestar was 
the highest rated functional residue prediction method among those tested. We have 
reassessed the CASP10 results, including new data made available after the official 
CASP assessment, to pinpoint limitations and strong points of the algorithm. 
 

The two tools have been used in three different large-scale annotation projects. 
They have been permanently included in the APPRIS database177, a database of splice 
isoform annotations developed as part of the GENCODE project. FireDB/firestar provide 
high accuracy annotations for APPRIS and this functional information is an important part 
of the selection process of principal isoforms. 

The results of annotating Pfam domains with firestar and FireDB functional residue 
information shows that this information can be used to disambiguate the evolutionary 
relationships of protein families. 

Some FireDB information has been matched with GO terms via annotation derived 
from the Catalytic Site Atlas and by associating compounds to specific binding related GO 
terms. Starting from this limited dataset, firestar has been used to refine predictions from 
SIAM, a homology based GO term predictor. This approach was tested in the context of 
the CAFA2 experiment. 
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5.1 Ligand	annotation	
	

We described the analysis and annotation of PDB ligands in section 4.1. There are 
many small molecules that co-crystallise with proteins but those that are biologically 
relevant are the most important for the purposes of FireDB. The definition of what is 
considered biologically important is quite straightforward (molecules that participate as 
cofactors, substrates or products in biological reactions). In FireDB these biologically 
relevant compounds are termed COGNATE. The fact that a ligand is COGNATE does not 
automatically mean that the site in which it binds is biologically relevant. Although these 
ligands are likely to bind biologically relevant binding sites, they can also bind outside of 
biological sites (metals in particular), and there are many examples of biologically relevant 
sites occupied by non-COGNATE compounds. In the original FireDB, ligand classification 
was realized indirectly, by assuming that ligands binding frequently to PDB relevant sites 
were probably COGNATE. However, there were various examples where this was not 
always true, as in the case of sucrose (figure 6, section 4.1.2). Manual curation of 
biological relevance improves the reliability of the database. Here the automatic mapping 
of all compounds to biology-centric databases will at least speed up the prioritization step, 
facilitating the curator work. 
 

The distinction between metals and non-metals (section 4.1.3) is important 
because it opened the door to further refinements in FireDB. Ligands with specific binding 
site characteristics (in terms of architecture, preferential amino acid composition and 
conservation) could be grouped and merged independently. This process has two 
advantages. First of all binding sites with different characteristics are no longer collapsed 
together to generate MSS. This makes the MSS characteristics less noisy and improves 
predictions at the firestar level. Separation also makes it possible to create type-specific 
rules that can be used for biological relevance evaluation in FireDB and for filtering of 
truncated or degenerated predicated sites in firestar. Ideally, this work should be 
expanded to cover more COGNATE compound in the future, although the present PDB 
content does not have sufficient coverage for many ligands. 
 

NON COGNATE compounds are in the majority in the PDB. The external cross-
linking in FireDB follows the general tendency of diverse primary databases (such as the 4 
data centers of wwPDB151, Uniprot181 and many more) to unify related data from different 
scientific repositories. At the same time, cross-linking highlights a common hurdle in 
scientific data: standardization. It is striking how difficult it was to retrieve perfect matches 
between PDB and PubChem, despite the existence of established formats like SMILES 
and InChi that should ensure easy computational compound matching between different 
sources (section 4.1.6). To overcome this problem, we decided to make use of pre-
calculated cross-matching directly generated from the selected databases and from 
Unichem149, a non-redundant database of pointers between chemical structure 
repositories. When discrepancies were found, we manually solved them to improve 
matching consistency (section 4.1.6). 
 

Further uses for the external matches have not been explored in this work; a 
possible secondary refinement step for binding site annotation could be realized analyzing 
structural differences of antagonists and analogs and their correspondent COGNATE 
compounds. This would allow the identification of specific NON-COGNATE binding 
residues that could be eliminated or tagged. 

In addition, annotation of biological activity of NON-COGNATE ligands could widen 
FireDB usage. The construction of the database itself allows rapid associations of 
COGNATE and pharmacological chemicals that bind at the same site since this is 
automatically done in the definition of MSS clusters (section 3.7). Going a step further, it 
would be possible to compare all MSS containing the pharmacological molecule of 
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interest in FireDB. Finally, information from homologous site comparisons could provide 
new interesting insights. Overlaps between COGNATE and NON-COGNATE ligands 
could be studied case by case to identify new candidates sites for drug repositioning 
studies. While the real capability for an existing drug to bind alternative sites has to be 
evaluated with specialised tools (chemoinformatics, in-silico simulations among others), 
the approaches to propose and discover new associations are varied, from tridimensional 
site arrangement comparison182, expression profiles analysis183 to literature derived gene-
drug associations184. Sequence homology has been used before as a scoring 
parameter185, but as far as we know conservation at functional residues level has yet to be 
explored. 
	

5.2 Biologically	relevant	binding	sites	
	

The increasing deposition of protein structures brings a consequent increase in the 
availability of binding site information. Most of these binding sites will be artifacts of the 
crystallization process, so the continuing assessment of biological relevance is important, 
not least for the repercussions on function prediction algorithms such as firestar. 

The first protocol for the biological assessment of binding sites in FireDB was 
designed to take into account the biased functional content of the PDB. The assessment 
counted on characteristics based on the frequency of appearance of each ligand and 
structural criteria, along with evolutive criteria, for this reason (section 4.2, table 6). We 
based our classification criteria principally on the observation that a binding site with no 
homologs has a higher probability of being a crystal artifact. Of course this may be not 
true for all sites, so the manual curation of biologically relevant compounds helps to 
recover NOVEL sites: we were able to rescue 4,190 sites with the tag “NOVEL” from the 
51,618 binding sites with no homologs in FireDB, more than 8%. 

Manual evaluation suggests that this protocol is reliable (section 4.2.1). Additional 
improvements in coverage and specificity can come from the completion of the manual 
curation of biologically relevant compounds and the growth of PDB. The study of 
complicated cases such as the heme binding site of leghaemoglobin (figure 12, section 
4.2.1) can also be instructive. Although there is a clear conservation pattern, FireDB tags 
the site as NOT SUPPORTED, due to the cut-off for conserved residue coverage. 
Although we tried a range of combinations in order to overcome this problem (common to 
bulky ligands), we obtained more incorrectly classified sites as a side effect of loosening 
our thresholds (results not shown). Specific ligand rules or ligand group rules, similar to 
the ones developed for metallic ligands, could be implemented to deal with this type of 
case. 

Other available repositories provide biological relevance assessment of PDB 
extracted binding sites94,95,186,187. These resources share similar goals, but they all have 
peculiarities that make them unique and interesting resources. BioLip95 is the most similar 
to FireDB; it was published in 2012 and proposed a semi-automatic assessment of sites. 
New PDB entries are evaluated weekly and an automatic protocol identifies candidate 
biological relevant sites that are reviewed by a human annotator. Despite this there are 
important differences in the definition of biologically relevant ligands (in BioLip all but 
crystallization mix components are biologically important), site definition (in FireDB 
sequences are clustered into MSSs while in BioLip every protein is an entity per se) and 
type (in FireDB protein-protein and DNA-protein interaction are beyond the remit of the 
database). 
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5.3 Availability	and	future	database	developments	
	

For scientific annotation resources such as FireDB, one of the most important 
characteristics is the free and easy availability of the data for the community. This is 
important for the evolution of the field and also because external feedback helps to 
identify needs and to spot undetected problems. For this reason we worked to improve 
FireDB documentation and to make the entire resource available as a downloadable 
mysql database. Accessibility through REST services allows programmatic access to the 
data via scripts without creation of a local database. Furthermore this ensures access to 
the most recent data. 

 
The main information sources for FireDB are the PDB and the CSA, but any 

source of experimentally validated functional residues could easily be integrated. For 
instance, annotations for post-translational modifications, such as phosphorylation188, or 
functional binding sites in intrinsically disordered proteins189, particularly challenging from 
the structural point of view. Whether these features could then be used for firestar 
predictions would depend on their evolutive pattern, since SQUARE detects conservation 
hotspots. 
 

5.4 Functional	residues	prediction	
 

firestar is a template-based method for the prediction of small ligands binding 
residues. But these are not the only residues involved in protein function determination: 
protein-protein interface binding residues are other important categories. Due to the 
characteristics of these sites, firestar is actually not able to able to predict these residues: 
protein-protein binding sites can be very large and variable in their composition190, and 
SQUARE analysis at single residue level may not be very informative. A number of 
different approaches, based on functional determinants113,191 or more recently on 
coevolution192 have demonstrated to be better suited for this kind of predictions. 

Apart from firestar and structural methods (we mentioned some of them in 
CASP10 results analysis), there are other functional residue methods that use only 
sequence information111,191,193 and so generate de novo predictions. Based on the 
information generated from MSAs, they can classify residues as functionally important or 
not, and often generate a reliability score for their prediction. The most important 
advantage of these approaches is that in principle they are designed to obtain predictions 
for any structure or sequence. Template-based method are limited by the available 
information, but if a homolog is detected, they can provide further resolution of the binding 
site, such as the ligand involved and whether a residue is catalytic and not just conserved. 

 

5.5 	firestar	performance	analysis	
 
firestar‘s ability to predict ligand binding sites relies on 3 aspects: the source 

information, the homologous search method and the evaluation of the conservation of 
individual positions. 

5.5.1 Source	information	
 
FireDB content directly affects the sensitivity of firestar, meaning that if a 

homologue binding site for a certain protein in not present, firestar cannot make a 
prediction: one good example is the metal binding site of T0478 in CASP8 experiment. As 
result of the work of the crystallographic groups and of the structural genomics 
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consortia194,  PDB content is not only increasing, but also structure resolution has been 
prioritized with the aim of expanding coverage of structural protein space. Many of these 
proteins have been crystallised with one or more ligand, and so the general growth has 
come with an increase in FireDB binding site information, as shown in figure 8, section 
4.2., and this in turn allows firestar to make more predictions.  

Furthermore the structural spaces and the functional sites are not perfectly 
coupled since certain functional sites may be present in different foldings by evolutionary 
convergence, and this phenomenon has been already studied81. This should reduce to 
some extent the limitation that the presence of functional sites in PDB structures is subject 
to the same bottlenecks that affect the resolution of protein structures. Therefore, if this 
trend continues, we should be able to find in the FireDB database all different protein-
ligand complexes, or at least one close homolog, existing in nature but the reality is that 
there are some limitations.  

Even though the expansion of the PDB may provide representative templates for 
many families of biological sites, there is evidence to suggest that not all families will be 
equally represented. Furthermore many ligands may not be crystallised because their 
interactions are less stable, or more transient. For example, of the 51 compounds 
crystallised in the 22 CASP8 targets and 20 CASP10 targets, 20 were cofactors or 
nucleotides and 29 were metal ions with structural function or involved in catalysis. Only in 
two cases did we find differences: for target T0694 (a chitinase) histidine seems to be a 
product, while for target T0661 (a lipid transporter) Palmitoyl-phosphatidylethanolamine 
(PEF) is the substrate of its action. This suggests that substrate and products are under-
represented in the PDB and this will limit the ability to predict substrates and products with 
firestar. Information on these problematic functional sites may have to be collected from 
experiments of biochemical characterization of proteins whose structure is not necessarily 
known. 

Another aspect to take into account is the effect of the expansion of FireDB on the 
false positive detection rate of firestar. As we shown in figure 19 in section 4.5.1, firestar 
predictions were affected in terms of false positive detection by the growth of the database 
(data for PSI-BLAST only analysis) for bulkier ligands such as ADP. We corrected this by 
improving the assessment of biological relevance, and so avoiding the introduction of 
noise from non-specific sites. Furthermore we set up conservation and coverage filters 
(sections 4.5.2, 4.5.3 and 4.5.4) to discard information from degenerated or truncated 
binding sites. 
 

5.5.2 Homologous	search	methods	and	alignment	quality	
 

The ability of firestar to obtain predictions depends mainly on its sensitivity to 
homologous templates in the FireDB database. The first search algorithm implemented, 
PSI-BLAST, is a widely used method to detect remote homologs. In order to widen the 
candidate search strategy and to improve firestar sensitivity, we decided to integrate a 
more recent algorithm, HHsearch. It has two main differences from PSI-BLAST: 

 
1. It is a profile-profile searching method, so in principle it should be more 

sensitive and it should generate better alignments in comparison with PSI-
BLAST, which is just a profile-sequence searching method67; 

2. Secondary structure information can be included in the search parameters; 
 
We observed several targets where HHsearch was able to detect many more templates 
than PSI-BLAST (for example the case of zinc binding site of CASP8 target T0480, 
section 4.5.5). However, results of the analysis (section 4.5.1) suggest that PSI-BLAST 
alignments provide different information, and for this reason we decided to maintain both 
search engines. Variability in alignments is useful, especially for challenging targets, since 
the predictions depend on the SQUARE evaluations.  
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The failed prediction for T0720 showed the limits of the search methods. firestar 
cannot generate an automatic prediction because the two parts of the candidate site are 
split and remote in sequence, and PSI-BLAST and HHsearch are not able to generate an 
alignment that spans the two parts. Both sites are filtered out because of insufficient 
coverage. If the separate parts had satisfied filtering criteria, firestar could had predicted 2 
different sites. Here the detailed results section was still informative, and actually our 
human group in CASP10 was able to submit the correct prediction based on this (best 
MCC for the target, see appendix table 4). In general sites made up of residues distant in 
sequence can be problematic if detected in remote homologs.  
 

5.5.3 Alignments	quality	and	position	conservation	
 

The SQUARE estimation of local alignment reliability is a fundamental step in the 
firestar pipeline; the first acceptance filter is based on the score asigned to every single 
aligned residue (section 4.4.1). The importance of this evaluation is even greater for 
remote homologs where it is not possible to distinguish between true remote homologs 
and random hits solely based on the algorithm scores. Here SQUARE is still able to detect 
conservation and to extract useful binding information. For example in figures 28 and 29 
of section 4.5.6.2 we show how SQUARE is able to spot confirmed conserved residues 
even from templates with an e-value over 30. However, if the alignment quality is poor, 
SQUARE cannot correctly evaluate positions. 

Improvement in sequence alignment quality could be brought by the use structural 
alignments195,196, but in most cases we would have to align a model structure of the target 
protein. This option has some drawbacks, since we cannot be sure of the 3D arrangement 
of the binding site in the model. Furthermore when we are superimposing two rigid bodies 
the more flexible regions may be displaced, and this could be very relevant since often 
binding sites include flexible or disordered regions. In addition, sequence alignments 
derived from the overlapping structures do not take into account evolutionary information. 

In CASP10 experiment firestar was one of just two pure sequence-based methods, 
with HHpred (FN430). The other automatic methods119,197,198 used a mixed strategy, where 
sequence analysis was combined with structural information. These methods generated  
three-dimensional models for target proteins and searched libraries to find structurally 
homologous binding sites. Sequence information was used to refine the prediction. This 
approach can improve some predictions, but present limitations in others. The templates 
used for structure prediction may not be ideal for transferring information from functional 
sites (for example sites may undergo structural changes on binding). Erroneous side 
chain positioning is common in models and this is a another limitation. 

Results suggest that a structural approach can be useful in some cases, such as 
target T0682. Here we detected all binding residues for Retinal (PDB ligand id: RET), but 
we also added 7 false positive residues (table 10, section 4.5.6.1). We refined the firestar 
prediction using structural information for our CNIO human prediction. But in other cases, 
such as the reduced flavin mononucleotide (PDB ligand id: FNR) binding site for target 
T0744 firestar had the best MCC (0.803, appendix table 4) and the methods based on 
structure had worse predictons. CASP10 results suggest that while structural information 
can be useful for some targets, the overall improvement is minimal. 

 

5.6 The	effect	of	filters	on	firestar	predictions	
 
Much of the improvements in firestar accuracy came from reducing false positive 

predictions. In CASP8 experiment we detected a tendency to overpredict in larger binding 
sites such as target T0431 (bound to HEM), T0450 (bound to FAD), and T0490 (bound to 
FAD). But we also found false positives among metal binding sites, as in the case of 
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T0406 (bound to NI), T0410 (bound to FE) or T0444 (bound to FE). This firestar behavior 
was corrected introducing filters based on the site type (metal or non metal) or focused on 
the selection of the most relevant information coming from FireDB (section 4.5.4). As a 
result of this, we reduced the number of false positive by 53% (table 7, section 4.5.5). 

CASP10 was a good testing ground to evaluate these filters against a completely 
new dataset, and to understand if the method was too conservative in comparison with the 
others. As shown in table 12 (section 4.5.6.3), firestar is the best automatic server in 
terms of false positive rate and the third best automatic server in terms of true positive 
detected (187, against 206 of SP-ALIGN and 188 of I-TASSER function). 
However, target T0715 is interesting. firestar did not find a close homolog even though 
there were many NAD templates and the occurrence and conservation filters discarded all 
but the core binding residues, with the result that firestar predicted less than 50% of the 
site. Other methods performed significantly better for this target. We would need to 
evaluate further cases to confirm whether this was an isolated case or a general trend for 
bulky ligands and distant templates. 
 

5.7 Applications	of	FireDB	and	firestar	in	large-scale	projects	
 

In this work we explored the use of firestar and FireDB in large scale functional 
annotation applications. The results confirm the importance of using functional information 
along with sequence and structural information to disentangle cellular and evolutive 
relationships. 

 
firestar and FireDB were included as functional annotation tools in the APPRIS 

database, part of the GENCODE consortium. firestar was included in APPRIS because it 
was shown to be a reliable prediction method. firestar has the lowest coverage of the 
human genome among the 4 core programs in APPRIS, but this is to be expected, since 
not all the proteins contain ligand binding residues. At the same time, firestar is the 
method that has the best agreement with the gold standard for principal isoforms among 
the four core methods (section 4.6.1.1), supporting the use of functional information for 
this purpose. Indeed for cases such as the read-through transcripts or the incorrectly 
tagged nonsense_mediated_decay transcript of RP4-583P15.15, firestar is helping to 
refine the human genome annotation 

 
The second project was centered on the annotation of Pfam functional protein 

domains. These domains, or families, are defined regions related  by homology. For this 
reason conservation of functionally important residues within the family, and within higher-
level groupings of families, or clans, is to be expected. Results from our preliminary 
analysis suggested that the firestar and FireDB annotations are consistent for most clans, 
supporting the aggregation of related families. The case of the P-loop Ntpase (section 
4.6.2) demonstrates how functional residues can be used as additonal criteria in clan 
generation, and how this kind of annotation could be included in the Pfam database. 

 
In the third project we integrated firestar with SIAM, a functional annotation 

algorithm based on homology. The two methods in principle are not overlapping, since 
SIAM makes global functional predictions while firestar identifies local functional 
characteristics. The strategy used to map GO terms on FireDB compounds allowed us to 
cover a small fraction of the sites contained in the database, since only 112 compounds 
were annotated. We also used the catalytic site residues to annotate GO terms that are 
directly related to catalytic activity since catalytic sites are associated with enzymatic 
numbers. The GOA database199 provide a list of correspondences between EC numbers 
and GO terms; in this way 99% of Master Sequence catalytic sites are associated with at 
least one GO term. 
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Over the entire CAFA2 experiment, firestar coverage was similar to SIAM in terms of 
number of sequences annotated, and the limited overlap of terms supported the combined 
use of the two algorithms to cover a wider range of proteins. However, the results from the 
enzyme (EFI) dataset, showed that firestar obtained almost a 96% coverage and 17% 
more annotations than SIAM. A deep analysis of the results would shed light on the 
performance of the combined strategy. 
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1. We developed an automatic pipeline to map all the compounds contained in 
FireDB to 8 external specialized repositories, obtaining a final coverage of almost 
94%. Additionally we retrieved, when available, associated bioactivity information 
and we further expanded the annotation dataset with manual literature mining for 
326 database entries. 
 

2. We manually assessed biological relevance of 664 ligand compounds and we 
tagged as ambiguous 56 compounds. Furthermore we classified a group of 31 
molecules as metals, and we studied their characteristics at binding site level. The 
use of this information in the construction of the database supposed an important 
improvement in information quality. 
 

3. Biological relevance for annotated binding sites has been automatically assessed 
using residue-level evolutionary conservation and manual ligand annotations. This 
protocol has been integrated in database construction pipeline. 

 
4. firestar usability has been improved with the introduction of a fully automatic 

protocol able to evaluate and merge results from many templates into a an easy-
to-read ranked list of consensus predictions. 

 
5. The specificity and sensitivity of firestar have been improved with the introduction 

of a new sequence search method and individual filters for different candidate 
sites. Improvements have been tested in the context of an independent blind 
experiment, where firestar was demonstrated to be a state-of-the-art method for 
the prediction of functionally important residues and bound ligands. 

 
6. We have developed a stand-alone version that allows firestar to be incorporated 

into large-scale pipelines. Reliable protein functional residues and ligand prediction 
has been used in three different annotation projects; the results presented here 
show that FireDB and firestar provide important information for proteome-wide 
functional and biomedical projects. 
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1. En este trabajo se ha desarrollado un protocolo automático capaz de vincular 
cerca del 94% de las moléculas no proteicas contenidas en FireDB con sus 
anotaciones en 8 repositorios especializado externos. Adicionalmente se ha 
recuperado la información disponible para estos compuestos relativa a su 
bioactividad, recurriendo en 326 compuestos a la anotación manual a partir de la 
literatura. 
 

2. Hemos determinado manualmente la relevancia biológica de 664 compuestos y 
anotado otros 56 como ambiguos. Así mismo, hemos clasificado 31 ligandos 
como metales, para los que hemos estudiado las características de sus sitios de 
unión. La incorporación de esta información en el proceso de generación de 
FireDB, ha mejorado sustancialmente la calidad de la información recuperada. 

 
3. Hemos establecido un protocolo de evaluación automática de la relevancia 

biológica de los sitios de unión anotados, basado en la conservación evolutiva de 
los residuos en sitios de unión homólogos y en la propia relevancia biológica del 
correspondiente ligando. Esta metodología también ha sido integrada en el 
proceso de generación de FireDB. 

 
4. Se ha mejorado la funcionalidad de firestar, con la introducción de un protocolo 

automático capaz de evaluar e integrar los resultados de todos las estructuras 
homólogas encontradas en un listado priorizado de predicciones consenso de fácil 
intepretación. 

 
5. Se han mejorado la especificidad y la sensibilidad de firestar, con la integración de 

un nuevo método de búsqueda de hómologos y la introducción de filtros 
específicos. Estos mejoras se han evaluado en el contexto de un experimento 
ciego internacional, cuyos resultados sitúan a firestar entre los mejores métodos 
de predicción de residuos funcionalmente importantes y de ligandos unidos. 

 
6. Hemos desarrollado una versión autónoma de firestar que facilita su integración 

en protocolos de análisis a gran escala. De hecho, FireDB y firestar han aportado 
predicciones fiables de residuos y de ligandos unidos a tres grandes proyectos 
diferentes. Los resultados presentados avalan la capacidad de ambas 
herramientas para proporcionar información esencial para proyectos proteómicos 
a gran escala y de interés biomédico. 
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Appendix figure 1 FireDB SQL schema. Every yellow box represents a table; all the 
corresponding fields are listed with the assigned type. Primary keys are marked with a key symbol. 
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Appendix figure 2 FireDB new version SQL schema. Every yellow box represents a table; all 
the corresponding fields are listed with the assigned type. Primary keys are marked with a key 
symbol, and external keys are connected with a directional arrow. 
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Target  PDB ID Ligand ID Contact residues 
T0284 3B8I OXL-MG2 48,49,50,88,159,212,235 

T0289 2GU2 ZN 20,23,115 

T0292 2CL1 5Z5 12,33,34,66,84-88,90,146,160 

T0293 2H00 SAH 34,36,41,69-71,75,76,91-93,97,119,121-124,143-145,147,186,189 

T0308 2H57 GTP-MG 10-16,31,34,55,56,59,114,115,117,118,147-149 

T0312 2H6L ZN 89,91,104 

T0313 2H58 ADP-MG 7,9,10,12,86-92 

T0315 2GZX NI-NI 6,8,92,128,153,204 

T0316 2HMA SAM-MG 12-14,16,18,19,36-38,100,104,108,126-128,152,155 

T0318 2HB6 ZN-ZN 252,257,275,334,336 

T0319 2J6A ZN 11,16,112,115 

T0320 2WSI FAD 59,61,66,106,107,144,148,161,163-165,181,182,185,188,190,300 

T0324 2HDO PO4 9-11,104,105,137 

T0329 2HL0 NA 9,11,189 

T0330 2HCF MG 9,11,177 

T0332 2HA8 SAH 87-89,110-112,115,129,130,132,137-139,141,144 

T0339 2HDY PLR 71,72,75,117,119,166,205,207,208,228,230,231,267,268 

T0341 2H04 PO4-MG 13,15,46,47,179,204 

T0348 2HF1 ZN 11,14,29,32 

T0369 2HKV NI 48,123,127 

T0371 2HX1 MG 19,21,232 

T0372 2HQY COA 175,190,246,270,272,275 

 
 
Appendix table 1 List of the targets included in the CASP7 official assessment paper138: for 
every target are listed the bound ligand PDB ID, and the numbering for the contacting residues 
(distance cut-off: Van der Waals atomic radii + 0.5 Å). 
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Target  PDB ID Ligand ID Contact residues Neutrals 
T0391 3D89 FES 57,59-62,80,82,83,85 - 

T0394 3DCY PO4 15,16,22,28,66,94,203,204 17-19,21 

T0396 3GWL FAD 3,4,7,8,10,11,15,44,48,49,52,75,77-
79,81,82,84,85,87,90,95,98 - 

T0406 3DI5 NI 48,127,131 - 

T0407 3E38 ZN(3) 44,46,51,76,113,122,157,214,216 - 

T0410 3D3L FE 206,211,386 198,201-203,207,390,393, 
397,403,439,440,442,443 

T0422 3D8B ADP 78,79,85-87,127-132,259,288,289, 
292 183,184 

T0425 3CZX ZN 11,25,77 17,18,78-80,144 

T0426 3DA2 ZN 117,119,142 144,166,221-223,232 

T0430 3DLZ AMP-MG 49-51,54,57,68,70,116,164-168,170, 
212,213,215,245,246 52,53 

T0431 3DAX HEM 
84,112,116,268,269,272,273,276, 
343,419,420,425,427-429,432,433, 
436,471 

- 

T0440 3DCP FE(2)-ZN 6,8,14,40,93,123,181,258,260 - 

T0444 2VUX FE 135,198,232,235 - 

T0450 3DA1 FAD 
24,27-29,47-49,54-57,60,61,63,65, 
191,193,228-231,235,252,254,292, 
338-340,372-375 

277-280,293-295 

T0453 3DED CA(3) 76-78,83 - 

T0457 3DEV MG 29,83,106,158 - 

T0461 3DH1 ZN 75,111,114 - 

T0470 3DJB MG 29,58,59,122 - 

T0476 2K5C ZN 4,7,47,50 - 

T0477 3DKP ADP 49,51,53,56,75-80 - 

T0478 3D19 MG-FE 30,117,121,154,158,248,252 - 

T0480 2K4X ZN 21,24,39,42 - 

T0483 3DLS ADP-MG(2) 32,33,40,53,55,92,109-111,114,116, 
159,160,162,172,173 34-36,108,155,157,158 

T0485 3DLC SAM 8,16,28,50-53,72-74,77,99-101, 
117-119,122,123 - 

T0487 3F73 MG 478,546,548,660 - 

T0490 3DME FAD 
10,11,13-15,33-35,43,44,46-48,50,52, 
171-173,204-206,208,234,272,315, 
316,348-354 

- 

T0508 3DOU SAM 22,46-52,67-69,82-85,111-113,151 - 

 
 
Appendix table 2 List of the targets included in the CASP8 official assessment paper139: for 
every target are listed the bound ligand PDB ID (between parentheses the occurrence of the ligand 
in the crystal), and the numbering for the contacting residues (distance cut-off: Van der Waals 
atomic radii + 0.5 Å). 
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Appendix table 3 List of the targets evaluated in the CASP10 experiment, as extracted from the 
official assessment paper141: for every target are listed the bound ligand PDB ID, type, if it is 
located at the interface in the crystal structure and the numbering for the contacting residues 
(distance cut-off: Van der Waals atomic radii + 0.5 Å) 

Target Ligand ID Type Interface Contacting residues numbering 
T0652 AMP Non-metal No 74,79,80,99,100-104,165,180,182,183 
T0657 ZN Metal No 121,132,133,143 
T0659 ZN(2) Metal No 43,48,63 
T0675 ZN(2) Metal No 21,24,37,42,49,52,65,70 
T0686 MG Metal No 28,30,103 
T0696 NA Metal No 18,69,104 
T0697 LLP(2) Non-metal A-A 91,150-152,190,243,245,247,272,274,301,303,304,351 
T0706 MG(2) Metal A-A 25,27,99,101,129,130 
T0720 MN(10)/SF4(10) Metal No 32,34,35,62,99,113-115,182,188,191,194,197,200 

T0721 FAD(2) Non-metal No 10,12-14,33-39,42,45,46,60,78-80,109-111,114,126, 
136,235,237,268,269,277,278,281 

T0726 ZN Metal No 273,277,307 

T0737 FAD Non-metal No 37,40-42,44,45,49,78,83,114,117,118,120,121,123, 
124,128,130,135,138,174,237 
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Group Name 
T0

65
2 
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65

7 

T0
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9 

T0
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1 

T0
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5 

T0
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2 

T0
68

6 

T0
68

7 

T0
69

4 

T0
69

6 

T0
69

7 

T0
70

6 

T0
71

5 

T0
72

0 

T0
72

1 

T0
72

6 

T0
73

2 

T0
73

7 

T0
73

8 

T0
74

4 

T0
74

5 

T0
75

4 MCC 
mean 

FN119 firestar 0.897 0.793 - 0.572 0.929 0.821 1.000 1.000 0.660 1.000 0.855 1.000 0.505 0.542 0.744 1.000 0.662 0.824 0.911 0.803 - 0.936 0.823 

FN475 CNIO 0.796 0.891 - 0.545 1.000 0.911 0.815 0.815 0.797 0.862 0.822 1.000 0.526 0.774 0.806 0.652 0.731 0.877 0.862 0.755 0.490 0.936 0.794 

FN237 zhang 0.897 0.891 -0.057 0.477 0.755 0.938 1.000 1.000 0.743 0.767 0.963 1.000 0.721 0.502 0.760 0.610 0.662 0.902 0.915 0.745 1.000 0.942 0.779 

FN349 I-TASSER 
FUNCTION 

0.884 0.891 -0.057 0.477 1.000 0.938 1.000 1.000 0.699 0.767 0.899 0.489 0.730 0.252 0.626 0.610 0.662 0.902 0.915 0.700 1.000 0.942 0.742 

FN326 SP-ALIGN 0.884 0.793 0.445 0.497 0.687 0.840 0.815 1.000 0.519 0.813 0.827 1.000 0.866 0.607 0.774 0.403 0.548 0.733 0.868 0.636 0.455 0.936 0.725 

FN208 COFACTOR 
human 

0.797 0.720 - 0.477 1.000 0.828 1.000 1.000 0.797 0.657 0.963 0.569 0.398 0.252 0.704 0.544 0.665 0.804 0.727 0.591 0.596 0.644 0.702 

FN285 McGuffin 0.852 0.000 - - 0.687 0.933 1.000 1.000 - 0.315 0.886 0.864 0.827 0.311 0.735 1.000 0.588 0.799 0.733 0.622 0.303 0.644 0.689 

FN236 3DLigandSite - -0.015 - - - 0.799 1.000 - 0.716 0.315 0.855 - - - 0.778 0.705 0.638 0.880 0.829 0.601 - - 0.675 

FN227 COFACTOR 0.797 0.720 -0.043 0.477 0.438 0.821 0.437 1.000 0.797 0.657 0.963 1.000 0.519 0.252 0.704 0.574 0.665 0.804 0.727 0.591 0.596 0.644 0.643 

FN473 Seok 0.742 -0.015 - 0.616 0.860 0.828 0.864 0.771 - 0.228 0.784 0.864 0.747 0.348 0.710 0.513 0.588 0.796 0.822 0.475 - 0.673 0.643 

FN221 Atome2_CBS 0.842 -0.015 - - - 0.707 - - 0.620 - 0.921 - 0.736 - 0.675 0.372 - 0.796 0.862 0.482 - - 0.636 

FN082 FNGUSHAK - 0.000 0.175 0.419 0.495 0.748 0.606 1.000 0.615 0.697 0.871 0.662 0.733 0.293 0.735 0.574 0.622 0.697 0.842 0.747 0.716 0.936 0.628 

FN273 IntFOLD2 0.852 0.000 - - 0.687 0.860 0.864 0.771 0.241 0.315 0.886 0.864 0.827 0.257 0.795 0.865 0.506 0.827 0.733 0.629 -0.025 0.644 0.620 

FN128 3DLigandSite2 0.773 -0.015 - - - 0.378 0.815 0.815 0.699 - 0.855 - - 0.252 0.691 0.652 0.662 0.460 0.801 0.695 - - 0.610 

FN430 HHpredA 0.897 0.000 0.309 0.623 - -0.063 0.772 0.771 0.776 0.439 0.878 0.864 0.678 0.591 0.886 0.610 0.662 0.687 0.821 0.458 0.102 0.936 0.605 

FN059 ConPred-UCL 0.773 -0.037 - 0.377 0.627 0.527 0.864 0.864 0.464 0.561 0.150 0.864 0.747 - 0.593 0.773 0.622 0.683 0.702 0.515 - - 0.593 

FN261 Seok-server 0.742 -0.015 - 0.616 0.632 0.828 0.663 0.662 0.357 0.315 0.832 0.864 0.713 0.252 0.597 0.665 0.558 0.796 0.744 0.361 - 0.541 0.586 

FN231 Binding 
Kihara 

0.573 0.891 - 0.574 0.936 -0.025 0.223 -0.022 0.302 1.000 0.079 -0.014 0.508 0.301 0.327 -0.005 0.542 0.451 0.578 0.280 - 0.870 0.419 

FN471 Chuo 
binding-sites 

0.597 0.256 - 0.525 0.273 0.185 0.180 0.245 0.167 0.309 0.442 0.314 0.386 0.272 0.619 0.163 0.382 0.524 0.545 0.378 0.072 0.286 0.339 

 
 
Appendix table 4 MCC calculated in our reassessment of CASP10 results for all participating groups. Here disqualified targets T0745 and T0754 are 
included. All the groups are ordered by descending mean MCC (last column, in red). Results from firestar server are highlighted in green, while results from 
our human group are highlighted in orange. Best MCCs for every target are highlighted in bold. 
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Name Group 
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9 

FN
20

8 

FN
22

7 

FN
28

5 

FN
27

3 

FN
43

0 

FN
47

3 
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FN
23

6 

FN
23

1 

FN
22

1 

FN
47

1 

firestar FN119 -                   
CNIO FN475 0.64 -                  
zhang FN237 0.59 0.94 -                 

SP-ALIGN FN326 0.32 0.43 0.39 -                
I-TASSER FUNCTION FN349 0.18 0.33 0.22 0.87 -               

COFACTOR human FN208 0.01 0.04 0.02 0.32 0.08 -              
COFACTOR FN227 0.01 0.01 0.00 0.08 0.16 0.53 -             

McGuffin FN285 0.02 0.06 0.03 0.10 0.13 0.37 0.63 -            
IntFOLD2 FN273 0.01 0.02 0.01 0.04 0.06 0.20 0.40 0.37 -           
HHpredA FN430 0.03 0.04 0.03 0.06 0.16 0.30 0.40 0.78 0.94 -          

Seok FN473 0.00 0.01 0.01 0.02 0.04 0.14 0.27 0.51 0.78 0.93 -         
FNGUSHAK FN082 0.01 0.01 0.01 0.02 0.05 0.15 0.34 0.67 0.85 0.94 0.99 -        
Seok server FN261 0.00 0.00 0.00 0.01 0.01 0.06 0.12 0.34 0.47 0.73 0.53 0.76 -       

ConPred-UCL FN059 0.00 0.00 0.00 0.01 0.01 0.04 0.11 0.21 0.30 0.51 0.44 0.51 0.60 -      
3DLigandSite2 FN128 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.04 0.04 0.10 0.07 0.11 0.22 -     
3DLigandSite FN236 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.05 0.09 0.10 0.04 0.10 0.21 0.76 -    
Binding Kihara FN231 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.09 0.09 0.08 0.08 0.08 0.10 0.14 0.69 0.82 -   
Atome2 CBS FN221 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.02 0.01 0.08 0.37 0.53 0.84 -  

Chuo binding-sites FN471 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.27 0.48 0.60 0.87 - 
 
 
Appendix table 5 Wilcoxon signed rank test results among all the groups. Yellow cells mean statistical significant differences (<0.06 pvalue) for results 
 comparison of the two intersecting groups in the table. Grey cells contain no statistical significant results 
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